Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / swap.c
1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34 #include <linux/hugetlb.h>
35
36 #include "internal.h"
37
38 /* How many pages do we try to swap or page in/out together? */
39 int page_cluster;
40
41 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
42 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
43 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
44
45 /*
46 * This path almost never happens for VM activity - pages are normally
47 * freed via pagevecs. But it gets used by networking.
48 */
49 static void __page_cache_release(struct page *page)
50 {
51 if (PageLRU(page)) {
52 struct zone *zone = page_zone(page);
53 struct lruvec *lruvec;
54 unsigned long flags;
55
56 spin_lock_irqsave(&zone->lru_lock, flags);
57 lruvec = mem_cgroup_page_lruvec(page, zone);
58 VM_BUG_ON(!PageLRU(page));
59 __ClearPageLRU(page);
60 del_page_from_lru_list(page, lruvec, page_off_lru(page));
61 spin_unlock_irqrestore(&zone->lru_lock, flags);
62 }
63 }
64
65 static void __put_single_page(struct page *page)
66 {
67 __page_cache_release(page);
68 free_hot_cold_page(page, 0);
69 }
70
71 static void __put_compound_page(struct page *page)
72 {
73 compound_page_dtor *dtor;
74
75 __page_cache_release(page);
76 dtor = get_compound_page_dtor(page);
77 (*dtor)(page);
78 }
79
80 static void put_compound_page(struct page *page)
81 {
82 if (unlikely(PageTail(page))) {
83 /* __split_huge_page_refcount can run under us */
84 struct page *page_head = compound_head(page);
85
86 if (likely(page != page_head &&
87 get_page_unless_zero(page_head))) {
88 unsigned long flags;
89
90 /*
91 * THP can not break up slab pages so avoid taking
92 * compound_lock(). Slab performs non-atomic bit ops
93 * on page->flags for better performance. In particular
94 * slab_unlock() in slub used to be a hot path. It is
95 * still hot on arches that do not support
96 * this_cpu_cmpxchg_double().
97 */
98 if (PageSlab(page_head) || PageHeadHuge(page_head)) {
99 if (likely(PageTail(page))) {
100 /*
101 * __split_huge_page_refcount
102 * cannot race here.
103 */
104 VM_BUG_ON(!PageHead(page_head));
105 atomic_dec(&page->_mapcount);
106 if (put_page_testzero(page_head))
107 VM_BUG_ON(1);
108 if (put_page_testzero(page_head))
109 __put_compound_page(page_head);
110 return;
111 } else
112 /*
113 * __split_huge_page_refcount
114 * run before us, "page" was a
115 * THP tail. The split
116 * page_head has been freed
117 * and reallocated as slab or
118 * hugetlbfs page of smaller
119 * order (only possible if
120 * reallocated as slab on
121 * x86).
122 */
123 goto skip_lock;
124 }
125 /*
126 * page_head wasn't a dangling pointer but it
127 * may not be a head page anymore by the time
128 * we obtain the lock. That is ok as long as it
129 * can't be freed from under us.
130 */
131 flags = compound_lock_irqsave(page_head);
132 if (unlikely(!PageTail(page))) {
133 /* __split_huge_page_refcount run before us */
134 compound_unlock_irqrestore(page_head, flags);
135 skip_lock:
136 if (put_page_testzero(page_head)) {
137 /*
138 * The head page may have been
139 * freed and reallocated as a
140 * compound page of smaller
141 * order and then freed again.
142 * All we know is that it
143 * cannot have become: a THP
144 * page, a compound page of
145 * higher order, a tail page.
146 * That is because we still
147 * hold the refcount of the
148 * split THP tail and
149 * page_head was the THP head
150 * before the split.
151 */
152 if (PageHead(page_head))
153 __put_compound_page(page_head);
154 else
155 __put_single_page(page_head);
156 }
157 out_put_single:
158 if (put_page_testzero(page))
159 __put_single_page(page);
160 return;
161 }
162 VM_BUG_ON(page_head != page->first_page);
163 /*
164 * We can release the refcount taken by
165 * get_page_unless_zero() now that
166 * __split_huge_page_refcount() is blocked on
167 * the compound_lock.
168 */
169 if (put_page_testzero(page_head))
170 VM_BUG_ON(1);
171 /* __split_huge_page_refcount will wait now */
172 VM_BUG_ON(page_mapcount(page) <= 0);
173 atomic_dec(&page->_mapcount);
174 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
175 VM_BUG_ON(atomic_read(&page->_count) != 0);
176 compound_unlock_irqrestore(page_head, flags);
177
178 if (put_page_testzero(page_head)) {
179 if (PageHead(page_head))
180 __put_compound_page(page_head);
181 else
182 __put_single_page(page_head);
183 }
184 } else {
185 /* page_head is a dangling pointer */
186 VM_BUG_ON(PageTail(page));
187 goto out_put_single;
188 }
189 } else if (put_page_testzero(page)) {
190 if (PageHead(page))
191 __put_compound_page(page);
192 else
193 __put_single_page(page);
194 }
195 }
196
197 void put_page(struct page *page)
198 {
199 if (unlikely(PageCompound(page)))
200 put_compound_page(page);
201 else if (put_page_testzero(page))
202 __put_single_page(page);
203 }
204 EXPORT_SYMBOL(put_page);
205
206 /*
207 * This function is exported but must not be called by anything other
208 * than get_page(). It implements the slow path of get_page().
209 */
210 bool __get_page_tail(struct page *page)
211 {
212 /*
213 * This takes care of get_page() if run on a tail page
214 * returned by one of the get_user_pages/follow_page variants.
215 * get_user_pages/follow_page itself doesn't need the compound
216 * lock because it runs __get_page_tail_foll() under the
217 * proper PT lock that already serializes against
218 * split_huge_page().
219 */
220 unsigned long flags;
221 bool got = false;
222 struct page *page_head = compound_head(page);
223
224 if (likely(page != page_head && get_page_unless_zero(page_head))) {
225 /* Ref to put_compound_page() comment. */
226 if (PageSlab(page_head) || PageHeadHuge(page_head)) {
227 if (likely(PageTail(page))) {
228 /*
229 * This is a hugetlbfs page or a slab
230 * page. __split_huge_page_refcount
231 * cannot race here.
232 */
233 VM_BUG_ON(!PageHead(page_head));
234 __get_page_tail_foll(page, false);
235 return true;
236 } else {
237 /*
238 * __split_huge_page_refcount run
239 * before us, "page" was a THP
240 * tail. The split page_head has been
241 * freed and reallocated as slab or
242 * hugetlbfs page of smaller order
243 * (only possible if reallocated as
244 * slab on x86).
245 */
246 put_page(page_head);
247 return false;
248 }
249 }
250
251 /*
252 * page_head wasn't a dangling pointer but it
253 * may not be a head page anymore by the time
254 * we obtain the lock. That is ok as long as it
255 * can't be freed from under us.
256 */
257 flags = compound_lock_irqsave(page_head);
258 /* here __split_huge_page_refcount won't run anymore */
259 if (likely(PageTail(page))) {
260 __get_page_tail_foll(page, false);
261 got = true;
262 }
263 compound_unlock_irqrestore(page_head, flags);
264 if (unlikely(!got))
265 put_page(page_head);
266 }
267 return got;
268 }
269 EXPORT_SYMBOL(__get_page_tail);
270
271 /**
272 * put_pages_list() - release a list of pages
273 * @pages: list of pages threaded on page->lru
274 *
275 * Release a list of pages which are strung together on page.lru. Currently
276 * used by read_cache_pages() and related error recovery code.
277 */
278 void put_pages_list(struct list_head *pages)
279 {
280 while (!list_empty(pages)) {
281 struct page *victim;
282
283 victim = list_entry(pages->prev, struct page, lru);
284 list_del(&victim->lru);
285 page_cache_release(victim);
286 }
287 }
288 EXPORT_SYMBOL(put_pages_list);
289
290 /*
291 * get_kernel_pages() - pin kernel pages in memory
292 * @kiov: An array of struct kvec structures
293 * @nr_segs: number of segments to pin
294 * @write: pinning for read/write, currently ignored
295 * @pages: array that receives pointers to the pages pinned.
296 * Should be at least nr_segs long.
297 *
298 * Returns number of pages pinned. This may be fewer than the number
299 * requested. If nr_pages is 0 or negative, returns 0. If no pages
300 * were pinned, returns -errno. Each page returned must be released
301 * with a put_page() call when it is finished with.
302 */
303 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
304 struct page **pages)
305 {
306 int seg;
307
308 for (seg = 0; seg < nr_segs; seg++) {
309 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
310 return seg;
311
312 pages[seg] = kmap_to_page(kiov[seg].iov_base);
313 page_cache_get(pages[seg]);
314 }
315
316 return seg;
317 }
318 EXPORT_SYMBOL_GPL(get_kernel_pages);
319
320 /*
321 * get_kernel_page() - pin a kernel page in memory
322 * @start: starting kernel address
323 * @write: pinning for read/write, currently ignored
324 * @pages: array that receives pointer to the page pinned.
325 * Must be at least nr_segs long.
326 *
327 * Returns 1 if page is pinned. If the page was not pinned, returns
328 * -errno. The page returned must be released with a put_page() call
329 * when it is finished with.
330 */
331 int get_kernel_page(unsigned long start, int write, struct page **pages)
332 {
333 const struct kvec kiov = {
334 .iov_base = (void *)start,
335 .iov_len = PAGE_SIZE
336 };
337
338 return get_kernel_pages(&kiov, 1, write, pages);
339 }
340 EXPORT_SYMBOL_GPL(get_kernel_page);
341
342 static void pagevec_lru_move_fn(struct pagevec *pvec,
343 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
344 void *arg)
345 {
346 int i;
347 struct zone *zone = NULL;
348 struct lruvec *lruvec;
349 unsigned long flags = 0;
350
351 for (i = 0; i < pagevec_count(pvec); i++) {
352 struct page *page = pvec->pages[i];
353 struct zone *pagezone = page_zone(page);
354
355 if (pagezone != zone) {
356 if (zone)
357 spin_unlock_irqrestore(&zone->lru_lock, flags);
358 zone = pagezone;
359 spin_lock_irqsave(&zone->lru_lock, flags);
360 }
361
362 lruvec = mem_cgroup_page_lruvec(page, zone);
363 (*move_fn)(page, lruvec, arg);
364 }
365 if (zone)
366 spin_unlock_irqrestore(&zone->lru_lock, flags);
367 release_pages(pvec->pages, pvec->nr, pvec->cold);
368 pagevec_reinit(pvec);
369 }
370
371 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
372 void *arg)
373 {
374 int *pgmoved = arg;
375
376 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
377 enum lru_list lru = page_lru_base_type(page);
378 list_move_tail(&page->lru, &lruvec->lists[lru]);
379 (*pgmoved)++;
380 }
381 }
382
383 /*
384 * pagevec_move_tail() must be called with IRQ disabled.
385 * Otherwise this may cause nasty races.
386 */
387 static void pagevec_move_tail(struct pagevec *pvec)
388 {
389 int pgmoved = 0;
390
391 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
392 __count_vm_events(PGROTATED, pgmoved);
393 }
394
395 /*
396 * Writeback is about to end against a page which has been marked for immediate
397 * reclaim. If it still appears to be reclaimable, move it to the tail of the
398 * inactive list.
399 */
400 void rotate_reclaimable_page(struct page *page)
401 {
402 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
403 !PageUnevictable(page) && PageLRU(page)) {
404 struct pagevec *pvec;
405 unsigned long flags;
406
407 page_cache_get(page);
408 local_irq_save(flags);
409 pvec = &__get_cpu_var(lru_rotate_pvecs);
410 if (!pagevec_add(pvec, page))
411 pagevec_move_tail(pvec);
412 local_irq_restore(flags);
413 }
414 }
415
416 static void update_page_reclaim_stat(struct lruvec *lruvec,
417 int file, int rotated)
418 {
419 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
420
421 reclaim_stat->recent_scanned[file]++;
422 if (rotated)
423 reclaim_stat->recent_rotated[file]++;
424 }
425
426 static void __activate_page(struct page *page, struct lruvec *lruvec,
427 void *arg)
428 {
429 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
430 int file = page_is_file_cache(page);
431 int lru = page_lru_base_type(page);
432
433 del_page_from_lru_list(page, lruvec, lru);
434 SetPageActive(page);
435 lru += LRU_ACTIVE;
436 add_page_to_lru_list(page, lruvec, lru);
437
438 __count_vm_event(PGACTIVATE);
439 update_page_reclaim_stat(lruvec, file, 1);
440 }
441 }
442
443 #ifdef CONFIG_SMP
444 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
445
446 static void activate_page_drain(int cpu)
447 {
448 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
449
450 if (pagevec_count(pvec))
451 pagevec_lru_move_fn(pvec, __activate_page, NULL);
452 }
453
454 void activate_page(struct page *page)
455 {
456 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
457 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
458
459 page_cache_get(page);
460 if (!pagevec_add(pvec, page))
461 pagevec_lru_move_fn(pvec, __activate_page, NULL);
462 put_cpu_var(activate_page_pvecs);
463 }
464 }
465
466 #else
467 static inline void activate_page_drain(int cpu)
468 {
469 }
470
471 void activate_page(struct page *page)
472 {
473 struct zone *zone = page_zone(page);
474
475 spin_lock_irq(&zone->lru_lock);
476 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
477 spin_unlock_irq(&zone->lru_lock);
478 }
479 #endif
480
481 /*
482 * Mark a page as having seen activity.
483 *
484 * inactive,unreferenced -> inactive,referenced
485 * inactive,referenced -> active,unreferenced
486 * active,unreferenced -> active,referenced
487 */
488 void mark_page_accessed(struct page *page)
489 {
490 if (!PageActive(page) && !PageUnevictable(page) &&
491 PageReferenced(page) && PageLRU(page)) {
492 activate_page(page);
493 ClearPageReferenced(page);
494 } else if (!PageReferenced(page)) {
495 SetPageReferenced(page);
496 }
497 }
498 EXPORT_SYMBOL(mark_page_accessed);
499
500 /*
501 * Order of operations is important: flush the pagevec when it's already
502 * full, not when adding the last page, to make sure that last page is
503 * not added to the LRU directly when passed to this function. Because
504 * mark_page_accessed() (called after this when writing) only activates
505 * pages that are on the LRU, linear writes in subpage chunks would see
506 * every PAGEVEC_SIZE page activated, which is unexpected.
507 */
508 void __lru_cache_add(struct page *page, enum lru_list lru)
509 {
510 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
511
512 page_cache_get(page);
513 if (!pagevec_space(pvec))
514 __pagevec_lru_add(pvec, lru);
515 pagevec_add(pvec, page);
516 put_cpu_var(lru_add_pvecs);
517 }
518 EXPORT_SYMBOL(__lru_cache_add);
519
520 /**
521 * lru_cache_add_lru - add a page to a page list
522 * @page: the page to be added to the LRU.
523 * @lru: the LRU list to which the page is added.
524 */
525 void lru_cache_add_lru(struct page *page, enum lru_list lru)
526 {
527 if (PageActive(page)) {
528 VM_BUG_ON(PageUnevictable(page));
529 ClearPageActive(page);
530 } else if (PageUnevictable(page)) {
531 VM_BUG_ON(PageActive(page));
532 ClearPageUnevictable(page);
533 }
534
535 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
536 __lru_cache_add(page, lru);
537 }
538
539 /**
540 * add_page_to_unevictable_list - add a page to the unevictable list
541 * @page: the page to be added to the unevictable list
542 *
543 * Add page directly to its zone's unevictable list. To avoid races with
544 * tasks that might be making the page evictable, through eg. munlock,
545 * munmap or exit, while it's not on the lru, we want to add the page
546 * while it's locked or otherwise "invisible" to other tasks. This is
547 * difficult to do when using the pagevec cache, so bypass that.
548 */
549 void add_page_to_unevictable_list(struct page *page)
550 {
551 struct zone *zone = page_zone(page);
552 struct lruvec *lruvec;
553
554 spin_lock_irq(&zone->lru_lock);
555 lruvec = mem_cgroup_page_lruvec(page, zone);
556 SetPageUnevictable(page);
557 SetPageLRU(page);
558 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
559 spin_unlock_irq(&zone->lru_lock);
560 }
561
562 /*
563 * If the page can not be invalidated, it is moved to the
564 * inactive list to speed up its reclaim. It is moved to the
565 * head of the list, rather than the tail, to give the flusher
566 * threads some time to write it out, as this is much more
567 * effective than the single-page writeout from reclaim.
568 *
569 * If the page isn't page_mapped and dirty/writeback, the page
570 * could reclaim asap using PG_reclaim.
571 *
572 * 1. active, mapped page -> none
573 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
574 * 3. inactive, mapped page -> none
575 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
576 * 5. inactive, clean -> inactive, tail
577 * 6. Others -> none
578 *
579 * In 4, why it moves inactive's head, the VM expects the page would
580 * be write it out by flusher threads as this is much more effective
581 * than the single-page writeout from reclaim.
582 */
583 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
584 void *arg)
585 {
586 int lru, file;
587 bool active;
588
589 if (!PageLRU(page))
590 return;
591
592 if (PageUnevictable(page))
593 return;
594
595 /* Some processes are using the page */
596 if (page_mapped(page))
597 return;
598
599 active = PageActive(page);
600 file = page_is_file_cache(page);
601 lru = page_lru_base_type(page);
602
603 del_page_from_lru_list(page, lruvec, lru + active);
604 ClearPageActive(page);
605 ClearPageReferenced(page);
606 add_page_to_lru_list(page, lruvec, lru);
607
608 if (PageWriteback(page) || PageDirty(page)) {
609 /*
610 * PG_reclaim could be raced with end_page_writeback
611 * It can make readahead confusing. But race window
612 * is _really_ small and it's non-critical problem.
613 */
614 SetPageReclaim(page);
615 } else {
616 /*
617 * The page's writeback ends up during pagevec
618 * We moves tha page into tail of inactive.
619 */
620 list_move_tail(&page->lru, &lruvec->lists[lru]);
621 __count_vm_event(PGROTATED);
622 }
623
624 if (active)
625 __count_vm_event(PGDEACTIVATE);
626 update_page_reclaim_stat(lruvec, file, 0);
627 }
628
629 /*
630 * Drain pages out of the cpu's pagevecs.
631 * Either "cpu" is the current CPU, and preemption has already been
632 * disabled; or "cpu" is being hot-unplugged, and is already dead.
633 */
634 void lru_add_drain_cpu(int cpu)
635 {
636 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
637 struct pagevec *pvec;
638 int lru;
639
640 for_each_lru(lru) {
641 pvec = &pvecs[lru - LRU_BASE];
642 if (pagevec_count(pvec))
643 __pagevec_lru_add(pvec, lru);
644 }
645
646 pvec = &per_cpu(lru_rotate_pvecs, cpu);
647 if (pagevec_count(pvec)) {
648 unsigned long flags;
649
650 /* No harm done if a racing interrupt already did this */
651 local_irq_save(flags);
652 pagevec_move_tail(pvec);
653 local_irq_restore(flags);
654 }
655
656 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
657 if (pagevec_count(pvec))
658 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
659
660 activate_page_drain(cpu);
661 }
662
663 /**
664 * deactivate_page - forcefully deactivate a page
665 * @page: page to deactivate
666 *
667 * This function hints the VM that @page is a good reclaim candidate,
668 * for example if its invalidation fails due to the page being dirty
669 * or under writeback.
670 */
671 void deactivate_page(struct page *page)
672 {
673 /*
674 * In a workload with many unevictable page such as mprotect, unevictable
675 * page deactivation for accelerating reclaim is pointless.
676 */
677 if (PageUnevictable(page))
678 return;
679
680 if (likely(get_page_unless_zero(page))) {
681 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
682
683 if (!pagevec_add(pvec, page))
684 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
685 put_cpu_var(lru_deactivate_pvecs);
686 }
687 }
688
689 void lru_add_drain(void)
690 {
691 lru_add_drain_cpu(get_cpu());
692 put_cpu();
693 }
694
695 static void lru_add_drain_per_cpu(struct work_struct *dummy)
696 {
697 lru_add_drain();
698 }
699
700 /*
701 * Returns 0 for success
702 */
703 int lru_add_drain_all(void)
704 {
705 return schedule_on_each_cpu(lru_add_drain_per_cpu);
706 }
707
708 /*
709 * Batched page_cache_release(). Decrement the reference count on all the
710 * passed pages. If it fell to zero then remove the page from the LRU and
711 * free it.
712 *
713 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
714 * for the remainder of the operation.
715 *
716 * The locking in this function is against shrink_inactive_list(): we recheck
717 * the page count inside the lock to see whether shrink_inactive_list()
718 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
719 * will free it.
720 */
721 void release_pages(struct page **pages, int nr, int cold)
722 {
723 int i;
724 LIST_HEAD(pages_to_free);
725 struct zone *zone = NULL;
726 struct lruvec *lruvec;
727 unsigned long uninitialized_var(flags);
728
729 for (i = 0; i < nr; i++) {
730 struct page *page = pages[i];
731
732 if (unlikely(PageCompound(page))) {
733 if (zone) {
734 spin_unlock_irqrestore(&zone->lru_lock, flags);
735 zone = NULL;
736 }
737 put_compound_page(page);
738 continue;
739 }
740
741 if (!put_page_testzero(page))
742 continue;
743
744 if (PageLRU(page)) {
745 struct zone *pagezone = page_zone(page);
746
747 if (pagezone != zone) {
748 if (zone)
749 spin_unlock_irqrestore(&zone->lru_lock,
750 flags);
751 zone = pagezone;
752 spin_lock_irqsave(&zone->lru_lock, flags);
753 }
754
755 lruvec = mem_cgroup_page_lruvec(page, zone);
756 VM_BUG_ON(!PageLRU(page));
757 __ClearPageLRU(page);
758 del_page_from_lru_list(page, lruvec, page_off_lru(page));
759 }
760
761 list_add(&page->lru, &pages_to_free);
762 }
763 if (zone)
764 spin_unlock_irqrestore(&zone->lru_lock, flags);
765
766 free_hot_cold_page_list(&pages_to_free, cold);
767 }
768 EXPORT_SYMBOL(release_pages);
769
770 /*
771 * The pages which we're about to release may be in the deferred lru-addition
772 * queues. That would prevent them from really being freed right now. That's
773 * OK from a correctness point of view but is inefficient - those pages may be
774 * cache-warm and we want to give them back to the page allocator ASAP.
775 *
776 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
777 * and __pagevec_lru_add_active() call release_pages() directly to avoid
778 * mutual recursion.
779 */
780 void __pagevec_release(struct pagevec *pvec)
781 {
782 lru_add_drain();
783 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
784 pagevec_reinit(pvec);
785 }
786 EXPORT_SYMBOL(__pagevec_release);
787
788 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
789 /* used by __split_huge_page_refcount() */
790 void lru_add_page_tail(struct page *page, struct page *page_tail,
791 struct lruvec *lruvec, struct list_head *list)
792 {
793 int uninitialized_var(active);
794 enum lru_list lru;
795 const int file = 0;
796
797 VM_BUG_ON(!PageHead(page));
798 VM_BUG_ON(PageCompound(page_tail));
799 VM_BUG_ON(PageLRU(page_tail));
800 VM_BUG_ON(NR_CPUS != 1 &&
801 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
802
803 if (!list)
804 SetPageLRU(page_tail);
805
806 if (page_evictable(page_tail)) {
807 if (PageActive(page)) {
808 SetPageActive(page_tail);
809 active = 1;
810 lru = LRU_ACTIVE_ANON;
811 } else {
812 active = 0;
813 lru = LRU_INACTIVE_ANON;
814 }
815 } else {
816 SetPageUnevictable(page_tail);
817 lru = LRU_UNEVICTABLE;
818 }
819
820 if (likely(PageLRU(page)))
821 list_add_tail(&page_tail->lru, &page->lru);
822 else if (list) {
823 /* page reclaim is reclaiming a huge page */
824 get_page(page_tail);
825 list_add_tail(&page_tail->lru, list);
826 } else {
827 struct list_head *list_head;
828 /*
829 * Head page has not yet been counted, as an hpage,
830 * so we must account for each subpage individually.
831 *
832 * Use the standard add function to put page_tail on the list,
833 * but then correct its position so they all end up in order.
834 */
835 add_page_to_lru_list(page_tail, lruvec, lru);
836 list_head = page_tail->lru.prev;
837 list_move_tail(&page_tail->lru, list_head);
838 }
839
840 if (!PageUnevictable(page))
841 update_page_reclaim_stat(lruvec, file, active);
842 }
843 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
844
845 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
846 void *arg)
847 {
848 enum lru_list lru = (enum lru_list)arg;
849 int file = is_file_lru(lru);
850 int active = is_active_lru(lru);
851
852 VM_BUG_ON(PageActive(page));
853 VM_BUG_ON(PageUnevictable(page));
854 VM_BUG_ON(PageLRU(page));
855
856 SetPageLRU(page);
857 if (active)
858 SetPageActive(page);
859 add_page_to_lru_list(page, lruvec, lru);
860 update_page_reclaim_stat(lruvec, file, active);
861 }
862
863 /*
864 * Add the passed pages to the LRU, then drop the caller's refcount
865 * on them. Reinitialises the caller's pagevec.
866 */
867 void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
868 {
869 VM_BUG_ON(is_unevictable_lru(lru));
870
871 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
872 }
873 EXPORT_SYMBOL(__pagevec_lru_add);
874
875 /**
876 * pagevec_lookup - gang pagecache lookup
877 * @pvec: Where the resulting pages are placed
878 * @mapping: The address_space to search
879 * @start: The starting page index
880 * @nr_pages: The maximum number of pages
881 *
882 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
883 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
884 * reference against the pages in @pvec.
885 *
886 * The search returns a group of mapping-contiguous pages with ascending
887 * indexes. There may be holes in the indices due to not-present pages.
888 *
889 * pagevec_lookup() returns the number of pages which were found.
890 */
891 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
892 pgoff_t start, unsigned nr_pages)
893 {
894 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
895 return pagevec_count(pvec);
896 }
897 EXPORT_SYMBOL(pagevec_lookup);
898
899 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
900 pgoff_t *index, int tag, unsigned nr_pages)
901 {
902 pvec->nr = find_get_pages_tag(mapping, index, tag,
903 nr_pages, pvec->pages);
904 return pagevec_count(pvec);
905 }
906 EXPORT_SYMBOL(pagevec_lookup_tag);
907
908 /*
909 * Perform any setup for the swap system
910 */
911 void __init swap_setup(void)
912 {
913 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
914 #ifdef CONFIG_SWAP
915 int i;
916
917 bdi_init(swapper_spaces[0].backing_dev_info);
918 for (i = 0; i < MAX_SWAPFILES; i++) {
919 spin_lock_init(&swapper_spaces[i].tree_lock);
920 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
921 }
922 #endif
923
924 /* Use a smaller cluster for small-memory machines */
925 #ifdef CONFIG_ZRAM
926 page_cluster = 0; // disable swap read-ahead
927 #else
928 if (megs < 16)
929 page_cluster = 2;
930 else
931 page_cluster = 3;
932 #endif
933 /*
934 * Right now other parts of the system means that we
935 * _really_ don't want to cluster much more
936 */
937 }