Merge commit 'linus/master' into HEAD
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/kmemleak.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32
33 /*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
109 */
110
111 #ifdef CONFIG_SLUB_DEBUG
112 #define SLABDEBUG 1
113 #else
114 #define SLABDEBUG 0
115 #endif
116
117 /*
118 * Issues still to be resolved:
119 *
120 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 *
122 * - Variable sizing of the per node arrays
123 */
124
125 /* Enable to test recovery from slab corruption on boot */
126 #undef SLUB_RESILIENCY_TEST
127
128 /*
129 * Mininum number of partial slabs. These will be left on the partial
130 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 */
132 #define MIN_PARTIAL 5
133
134 /*
135 * Maximum number of desirable partial slabs.
136 * The existence of more partial slabs makes kmem_cache_shrink
137 * sort the partial list by the number of objects in the.
138 */
139 #define MAX_PARTIAL 10
140
141 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
142 SLAB_POISON | SLAB_STORE_USER)
143
144 /*
145 * Set of flags that will prevent slab merging
146 */
147 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
148 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
149
150 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
151 SLAB_CACHE_DMA | SLAB_NOTRACK)
152
153 #ifndef ARCH_KMALLOC_MINALIGN
154 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
155 #endif
156
157 #ifndef ARCH_SLAB_MINALIGN
158 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
159 #endif
160
161 #define OO_SHIFT 16
162 #define OO_MASK ((1 << OO_SHIFT) - 1)
163 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
164
165 /* Internal SLUB flags */
166 #define __OBJECT_POISON 0x80000000 /* Poison object */
167 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
168
169 static int kmem_size = sizeof(struct kmem_cache);
170
171 #ifdef CONFIG_SMP
172 static struct notifier_block slab_notifier;
173 #endif
174
175 static enum {
176 DOWN, /* No slab functionality available */
177 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
178 UP, /* Everything works but does not show up in sysfs */
179 SYSFS /* Sysfs up */
180 } slab_state = DOWN;
181
182 /*
183 * The slab allocator is initialized with interrupts disabled. Therefore, make
184 * sure early boot allocations don't accidentally enable interrupts.
185 */
186 static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;
187
188 /* A list of all slab caches on the system */
189 static DECLARE_RWSEM(slub_lock);
190 static LIST_HEAD(slab_caches);
191
192 /*
193 * Tracking user of a slab.
194 */
195 struct track {
196 unsigned long addr; /* Called from address */
197 int cpu; /* Was running on cpu */
198 int pid; /* Pid context */
199 unsigned long when; /* When did the operation occur */
200 };
201
202 enum track_item { TRACK_ALLOC, TRACK_FREE };
203
204 #ifdef CONFIG_SLUB_DEBUG
205 static int sysfs_slab_add(struct kmem_cache *);
206 static int sysfs_slab_alias(struct kmem_cache *, const char *);
207 static void sysfs_slab_remove(struct kmem_cache *);
208
209 #else
210 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 { return 0; }
213 static inline void sysfs_slab_remove(struct kmem_cache *s)
214 {
215 kfree(s);
216 }
217
218 #endif
219
220 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
221 {
222 #ifdef CONFIG_SLUB_STATS
223 c->stat[si]++;
224 #endif
225 }
226
227 /********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
230
231 int slab_is_available(void)
232 {
233 return slab_state >= UP;
234 }
235
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237 {
238 #ifdef CONFIG_NUMA
239 return s->node[node];
240 #else
241 return &s->local_node;
242 #endif
243 }
244
245 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
246 {
247 #ifdef CONFIG_SMP
248 return s->cpu_slab[cpu];
249 #else
250 return &s->cpu_slab;
251 #endif
252 }
253
254 /* Verify that a pointer has an address that is valid within a slab page */
255 static inline int check_valid_pointer(struct kmem_cache *s,
256 struct page *page, const void *object)
257 {
258 void *base;
259
260 if (!object)
261 return 1;
262
263 base = page_address(page);
264 if (object < base || object >= base + page->objects * s->size ||
265 (object - base) % s->size) {
266 return 0;
267 }
268
269 return 1;
270 }
271
272 /*
273 * Slow version of get and set free pointer.
274 *
275 * This version requires touching the cache lines of kmem_cache which
276 * we avoid to do in the fast alloc free paths. There we obtain the offset
277 * from the page struct.
278 */
279 static inline void *get_freepointer(struct kmem_cache *s, void *object)
280 {
281 return *(void **)(object + s->offset);
282 }
283
284 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285 {
286 *(void **)(object + s->offset) = fp;
287 }
288
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
292 __p += (__s)->size)
293
294 /* Scan freelist */
295 #define for_each_free_object(__p, __s, __free) \
296 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
297
298 /* Determine object index from a given position */
299 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
300 {
301 return (p - addr) / s->size;
302 }
303
304 static inline struct kmem_cache_order_objects oo_make(int order,
305 unsigned long size)
306 {
307 struct kmem_cache_order_objects x = {
308 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
309 };
310
311 return x;
312 }
313
314 static inline int oo_order(struct kmem_cache_order_objects x)
315 {
316 return x.x >> OO_SHIFT;
317 }
318
319 static inline int oo_objects(struct kmem_cache_order_objects x)
320 {
321 return x.x & OO_MASK;
322 }
323
324 #ifdef CONFIG_SLUB_DEBUG
325 /*
326 * Debug settings:
327 */
328 #ifdef CONFIG_SLUB_DEBUG_ON
329 static int slub_debug = DEBUG_DEFAULT_FLAGS;
330 #else
331 static int slub_debug;
332 #endif
333
334 static char *slub_debug_slabs;
335
336 /*
337 * Object debugging
338 */
339 static void print_section(char *text, u8 *addr, unsigned int length)
340 {
341 int i, offset;
342 int newline = 1;
343 char ascii[17];
344
345 ascii[16] = 0;
346
347 for (i = 0; i < length; i++) {
348 if (newline) {
349 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
350 newline = 0;
351 }
352 printk(KERN_CONT " %02x", addr[i]);
353 offset = i % 16;
354 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
355 if (offset == 15) {
356 printk(KERN_CONT " %s\n", ascii);
357 newline = 1;
358 }
359 }
360 if (!newline) {
361 i %= 16;
362 while (i < 16) {
363 printk(KERN_CONT " ");
364 ascii[i] = ' ';
365 i++;
366 }
367 printk(KERN_CONT " %s\n", ascii);
368 }
369 }
370
371 static struct track *get_track(struct kmem_cache *s, void *object,
372 enum track_item alloc)
373 {
374 struct track *p;
375
376 if (s->offset)
377 p = object + s->offset + sizeof(void *);
378 else
379 p = object + s->inuse;
380
381 return p + alloc;
382 }
383
384 static void set_track(struct kmem_cache *s, void *object,
385 enum track_item alloc, unsigned long addr)
386 {
387 struct track *p = get_track(s, object, alloc);
388
389 if (addr) {
390 p->addr = addr;
391 p->cpu = smp_processor_id();
392 p->pid = current->pid;
393 p->when = jiffies;
394 } else
395 memset(p, 0, sizeof(struct track));
396 }
397
398 static void init_tracking(struct kmem_cache *s, void *object)
399 {
400 if (!(s->flags & SLAB_STORE_USER))
401 return;
402
403 set_track(s, object, TRACK_FREE, 0UL);
404 set_track(s, object, TRACK_ALLOC, 0UL);
405 }
406
407 static void print_track(const char *s, struct track *t)
408 {
409 if (!t->addr)
410 return;
411
412 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
413 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
414 }
415
416 static void print_tracking(struct kmem_cache *s, void *object)
417 {
418 if (!(s->flags & SLAB_STORE_USER))
419 return;
420
421 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
422 print_track("Freed", get_track(s, object, TRACK_FREE));
423 }
424
425 static void print_page_info(struct page *page)
426 {
427 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
428 page, page->objects, page->inuse, page->freelist, page->flags);
429
430 }
431
432 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
433 {
434 va_list args;
435 char buf[100];
436
437 va_start(args, fmt);
438 vsnprintf(buf, sizeof(buf), fmt, args);
439 va_end(args);
440 printk(KERN_ERR "========================================"
441 "=====================================\n");
442 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
443 printk(KERN_ERR "----------------------------------------"
444 "-------------------------------------\n\n");
445 }
446
447 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
448 {
449 va_list args;
450 char buf[100];
451
452 va_start(args, fmt);
453 vsnprintf(buf, sizeof(buf), fmt, args);
454 va_end(args);
455 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
456 }
457
458 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
459 {
460 unsigned int off; /* Offset of last byte */
461 u8 *addr = page_address(page);
462
463 print_tracking(s, p);
464
465 print_page_info(page);
466
467 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
468 p, p - addr, get_freepointer(s, p));
469
470 if (p > addr + 16)
471 print_section("Bytes b4", p - 16, 16);
472
473 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
474
475 if (s->flags & SLAB_RED_ZONE)
476 print_section("Redzone", p + s->objsize,
477 s->inuse - s->objsize);
478
479 if (s->offset)
480 off = s->offset + sizeof(void *);
481 else
482 off = s->inuse;
483
484 if (s->flags & SLAB_STORE_USER)
485 off += 2 * sizeof(struct track);
486
487 if (off != s->size)
488 /* Beginning of the filler is the free pointer */
489 print_section("Padding", p + off, s->size - off);
490
491 dump_stack();
492 }
493
494 static void object_err(struct kmem_cache *s, struct page *page,
495 u8 *object, char *reason)
496 {
497 slab_bug(s, "%s", reason);
498 print_trailer(s, page, object);
499 }
500
501 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
502 {
503 va_list args;
504 char buf[100];
505
506 va_start(args, fmt);
507 vsnprintf(buf, sizeof(buf), fmt, args);
508 va_end(args);
509 slab_bug(s, "%s", buf);
510 print_page_info(page);
511 dump_stack();
512 }
513
514 static void init_object(struct kmem_cache *s, void *object, int active)
515 {
516 u8 *p = object;
517
518 if (s->flags & __OBJECT_POISON) {
519 memset(p, POISON_FREE, s->objsize - 1);
520 p[s->objsize - 1] = POISON_END;
521 }
522
523 if (s->flags & SLAB_RED_ZONE)
524 memset(p + s->objsize,
525 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
526 s->inuse - s->objsize);
527 }
528
529 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
530 {
531 while (bytes) {
532 if (*start != (u8)value)
533 return start;
534 start++;
535 bytes--;
536 }
537 return NULL;
538 }
539
540 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
541 void *from, void *to)
542 {
543 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
544 memset(from, data, to - from);
545 }
546
547 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
548 u8 *object, char *what,
549 u8 *start, unsigned int value, unsigned int bytes)
550 {
551 u8 *fault;
552 u8 *end;
553
554 fault = check_bytes(start, value, bytes);
555 if (!fault)
556 return 1;
557
558 end = start + bytes;
559 while (end > fault && end[-1] == value)
560 end--;
561
562 slab_bug(s, "%s overwritten", what);
563 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
564 fault, end - 1, fault[0], value);
565 print_trailer(s, page, object);
566
567 restore_bytes(s, what, value, fault, end);
568 return 0;
569 }
570
571 /*
572 * Object layout:
573 *
574 * object address
575 * Bytes of the object to be managed.
576 * If the freepointer may overlay the object then the free
577 * pointer is the first word of the object.
578 *
579 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
580 * 0xa5 (POISON_END)
581 *
582 * object + s->objsize
583 * Padding to reach word boundary. This is also used for Redzoning.
584 * Padding is extended by another word if Redzoning is enabled and
585 * objsize == inuse.
586 *
587 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
588 * 0xcc (RED_ACTIVE) for objects in use.
589 *
590 * object + s->inuse
591 * Meta data starts here.
592 *
593 * A. Free pointer (if we cannot overwrite object on free)
594 * B. Tracking data for SLAB_STORE_USER
595 * C. Padding to reach required alignment boundary or at mininum
596 * one word if debugging is on to be able to detect writes
597 * before the word boundary.
598 *
599 * Padding is done using 0x5a (POISON_INUSE)
600 *
601 * object + s->size
602 * Nothing is used beyond s->size.
603 *
604 * If slabcaches are merged then the objsize and inuse boundaries are mostly
605 * ignored. And therefore no slab options that rely on these boundaries
606 * may be used with merged slabcaches.
607 */
608
609 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
610 {
611 unsigned long off = s->inuse; /* The end of info */
612
613 if (s->offset)
614 /* Freepointer is placed after the object. */
615 off += sizeof(void *);
616
617 if (s->flags & SLAB_STORE_USER)
618 /* We also have user information there */
619 off += 2 * sizeof(struct track);
620
621 if (s->size == off)
622 return 1;
623
624 return check_bytes_and_report(s, page, p, "Object padding",
625 p + off, POISON_INUSE, s->size - off);
626 }
627
628 /* Check the pad bytes at the end of a slab page */
629 static int slab_pad_check(struct kmem_cache *s, struct page *page)
630 {
631 u8 *start;
632 u8 *fault;
633 u8 *end;
634 int length;
635 int remainder;
636
637 if (!(s->flags & SLAB_POISON))
638 return 1;
639
640 start = page_address(page);
641 length = (PAGE_SIZE << compound_order(page));
642 end = start + length;
643 remainder = length % s->size;
644 if (!remainder)
645 return 1;
646
647 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
648 if (!fault)
649 return 1;
650 while (end > fault && end[-1] == POISON_INUSE)
651 end--;
652
653 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
654 print_section("Padding", end - remainder, remainder);
655
656 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
657 return 0;
658 }
659
660 static int check_object(struct kmem_cache *s, struct page *page,
661 void *object, int active)
662 {
663 u8 *p = object;
664 u8 *endobject = object + s->objsize;
665
666 if (s->flags & SLAB_RED_ZONE) {
667 unsigned int red =
668 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
669
670 if (!check_bytes_and_report(s, page, object, "Redzone",
671 endobject, red, s->inuse - s->objsize))
672 return 0;
673 } else {
674 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
675 check_bytes_and_report(s, page, p, "Alignment padding",
676 endobject, POISON_INUSE, s->inuse - s->objsize);
677 }
678 }
679
680 if (s->flags & SLAB_POISON) {
681 if (!active && (s->flags & __OBJECT_POISON) &&
682 (!check_bytes_and_report(s, page, p, "Poison", p,
683 POISON_FREE, s->objsize - 1) ||
684 !check_bytes_and_report(s, page, p, "Poison",
685 p + s->objsize - 1, POISON_END, 1)))
686 return 0;
687 /*
688 * check_pad_bytes cleans up on its own.
689 */
690 check_pad_bytes(s, page, p);
691 }
692
693 if (!s->offset && active)
694 /*
695 * Object and freepointer overlap. Cannot check
696 * freepointer while object is allocated.
697 */
698 return 1;
699
700 /* Check free pointer validity */
701 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
702 object_err(s, page, p, "Freepointer corrupt");
703 /*
704 * No choice but to zap it and thus lose the remainder
705 * of the free objects in this slab. May cause
706 * another error because the object count is now wrong.
707 */
708 set_freepointer(s, p, NULL);
709 return 0;
710 }
711 return 1;
712 }
713
714 static int check_slab(struct kmem_cache *s, struct page *page)
715 {
716 int maxobj;
717
718 VM_BUG_ON(!irqs_disabled());
719
720 if (!PageSlab(page)) {
721 slab_err(s, page, "Not a valid slab page");
722 return 0;
723 }
724
725 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
726 if (page->objects > maxobj) {
727 slab_err(s, page, "objects %u > max %u",
728 s->name, page->objects, maxobj);
729 return 0;
730 }
731 if (page->inuse > page->objects) {
732 slab_err(s, page, "inuse %u > max %u",
733 s->name, page->inuse, page->objects);
734 return 0;
735 }
736 /* Slab_pad_check fixes things up after itself */
737 slab_pad_check(s, page);
738 return 1;
739 }
740
741 /*
742 * Determine if a certain object on a page is on the freelist. Must hold the
743 * slab lock to guarantee that the chains are in a consistent state.
744 */
745 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
746 {
747 int nr = 0;
748 void *fp = page->freelist;
749 void *object = NULL;
750 unsigned long max_objects;
751
752 while (fp && nr <= page->objects) {
753 if (fp == search)
754 return 1;
755 if (!check_valid_pointer(s, page, fp)) {
756 if (object) {
757 object_err(s, page, object,
758 "Freechain corrupt");
759 set_freepointer(s, object, NULL);
760 break;
761 } else {
762 slab_err(s, page, "Freepointer corrupt");
763 page->freelist = NULL;
764 page->inuse = page->objects;
765 slab_fix(s, "Freelist cleared");
766 return 0;
767 }
768 break;
769 }
770 object = fp;
771 fp = get_freepointer(s, object);
772 nr++;
773 }
774
775 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
776 if (max_objects > MAX_OBJS_PER_PAGE)
777 max_objects = MAX_OBJS_PER_PAGE;
778
779 if (page->objects != max_objects) {
780 slab_err(s, page, "Wrong number of objects. Found %d but "
781 "should be %d", page->objects, max_objects);
782 page->objects = max_objects;
783 slab_fix(s, "Number of objects adjusted.");
784 }
785 if (page->inuse != page->objects - nr) {
786 slab_err(s, page, "Wrong object count. Counter is %d but "
787 "counted were %d", page->inuse, page->objects - nr);
788 page->inuse = page->objects - nr;
789 slab_fix(s, "Object count adjusted.");
790 }
791 return search == NULL;
792 }
793
794 static void trace(struct kmem_cache *s, struct page *page, void *object,
795 int alloc)
796 {
797 if (s->flags & SLAB_TRACE) {
798 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
799 s->name,
800 alloc ? "alloc" : "free",
801 object, page->inuse,
802 page->freelist);
803
804 if (!alloc)
805 print_section("Object", (void *)object, s->objsize);
806
807 dump_stack();
808 }
809 }
810
811 /*
812 * Tracking of fully allocated slabs for debugging purposes.
813 */
814 static void add_full(struct kmem_cache_node *n, struct page *page)
815 {
816 spin_lock(&n->list_lock);
817 list_add(&page->lru, &n->full);
818 spin_unlock(&n->list_lock);
819 }
820
821 static void remove_full(struct kmem_cache *s, struct page *page)
822 {
823 struct kmem_cache_node *n;
824
825 if (!(s->flags & SLAB_STORE_USER))
826 return;
827
828 n = get_node(s, page_to_nid(page));
829
830 spin_lock(&n->list_lock);
831 list_del(&page->lru);
832 spin_unlock(&n->list_lock);
833 }
834
835 /* Tracking of the number of slabs for debugging purposes */
836 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
837 {
838 struct kmem_cache_node *n = get_node(s, node);
839
840 return atomic_long_read(&n->nr_slabs);
841 }
842
843 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
844 {
845 struct kmem_cache_node *n = get_node(s, node);
846
847 /*
848 * May be called early in order to allocate a slab for the
849 * kmem_cache_node structure. Solve the chicken-egg
850 * dilemma by deferring the increment of the count during
851 * bootstrap (see early_kmem_cache_node_alloc).
852 */
853 if (!NUMA_BUILD || n) {
854 atomic_long_inc(&n->nr_slabs);
855 atomic_long_add(objects, &n->total_objects);
856 }
857 }
858 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
859 {
860 struct kmem_cache_node *n = get_node(s, node);
861
862 atomic_long_dec(&n->nr_slabs);
863 atomic_long_sub(objects, &n->total_objects);
864 }
865
866 /* Object debug checks for alloc/free paths */
867 static void setup_object_debug(struct kmem_cache *s, struct page *page,
868 void *object)
869 {
870 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
871 return;
872
873 init_object(s, object, 0);
874 init_tracking(s, object);
875 }
876
877 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
878 void *object, unsigned long addr)
879 {
880 if (!check_slab(s, page))
881 goto bad;
882
883 if (!on_freelist(s, page, object)) {
884 object_err(s, page, object, "Object already allocated");
885 goto bad;
886 }
887
888 if (!check_valid_pointer(s, page, object)) {
889 object_err(s, page, object, "Freelist Pointer check fails");
890 goto bad;
891 }
892
893 if (!check_object(s, page, object, 0))
894 goto bad;
895
896 /* Success perform special debug activities for allocs */
897 if (s->flags & SLAB_STORE_USER)
898 set_track(s, object, TRACK_ALLOC, addr);
899 trace(s, page, object, 1);
900 init_object(s, object, 1);
901 return 1;
902
903 bad:
904 if (PageSlab(page)) {
905 /*
906 * If this is a slab page then lets do the best we can
907 * to avoid issues in the future. Marking all objects
908 * as used avoids touching the remaining objects.
909 */
910 slab_fix(s, "Marking all objects used");
911 page->inuse = page->objects;
912 page->freelist = NULL;
913 }
914 return 0;
915 }
916
917 static int free_debug_processing(struct kmem_cache *s, struct page *page,
918 void *object, unsigned long addr)
919 {
920 if (!check_slab(s, page))
921 goto fail;
922
923 if (!check_valid_pointer(s, page, object)) {
924 slab_err(s, page, "Invalid object pointer 0x%p", object);
925 goto fail;
926 }
927
928 if (on_freelist(s, page, object)) {
929 object_err(s, page, object, "Object already free");
930 goto fail;
931 }
932
933 if (!check_object(s, page, object, 1))
934 return 0;
935
936 if (unlikely(s != page->slab)) {
937 if (!PageSlab(page)) {
938 slab_err(s, page, "Attempt to free object(0x%p) "
939 "outside of slab", object);
940 } else if (!page->slab) {
941 printk(KERN_ERR
942 "SLUB <none>: no slab for object 0x%p.\n",
943 object);
944 dump_stack();
945 } else
946 object_err(s, page, object,
947 "page slab pointer corrupt.");
948 goto fail;
949 }
950
951 /* Special debug activities for freeing objects */
952 if (!PageSlubFrozen(page) && !page->freelist)
953 remove_full(s, page);
954 if (s->flags & SLAB_STORE_USER)
955 set_track(s, object, TRACK_FREE, addr);
956 trace(s, page, object, 0);
957 init_object(s, object, 0);
958 return 1;
959
960 fail:
961 slab_fix(s, "Object at 0x%p not freed", object);
962 return 0;
963 }
964
965 static int __init setup_slub_debug(char *str)
966 {
967 slub_debug = DEBUG_DEFAULT_FLAGS;
968 if (*str++ != '=' || !*str)
969 /*
970 * No options specified. Switch on full debugging.
971 */
972 goto out;
973
974 if (*str == ',')
975 /*
976 * No options but restriction on slabs. This means full
977 * debugging for slabs matching a pattern.
978 */
979 goto check_slabs;
980
981 slub_debug = 0;
982 if (*str == '-')
983 /*
984 * Switch off all debugging measures.
985 */
986 goto out;
987
988 /*
989 * Determine which debug features should be switched on
990 */
991 for (; *str && *str != ','; str++) {
992 switch (tolower(*str)) {
993 case 'f':
994 slub_debug |= SLAB_DEBUG_FREE;
995 break;
996 case 'z':
997 slub_debug |= SLAB_RED_ZONE;
998 break;
999 case 'p':
1000 slub_debug |= SLAB_POISON;
1001 break;
1002 case 'u':
1003 slub_debug |= SLAB_STORE_USER;
1004 break;
1005 case 't':
1006 slub_debug |= SLAB_TRACE;
1007 break;
1008 default:
1009 printk(KERN_ERR "slub_debug option '%c' "
1010 "unknown. skipped\n", *str);
1011 }
1012 }
1013
1014 check_slabs:
1015 if (*str == ',')
1016 slub_debug_slabs = str + 1;
1017 out:
1018 return 1;
1019 }
1020
1021 __setup("slub_debug", setup_slub_debug);
1022
1023 static unsigned long kmem_cache_flags(unsigned long objsize,
1024 unsigned long flags, const char *name,
1025 void (*ctor)(void *))
1026 {
1027 /*
1028 * Enable debugging if selected on the kernel commandline.
1029 */
1030 if (slub_debug && (!slub_debug_slabs ||
1031 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1032 flags |= slub_debug;
1033
1034 return flags;
1035 }
1036 #else
1037 static inline void setup_object_debug(struct kmem_cache *s,
1038 struct page *page, void *object) {}
1039
1040 static inline int alloc_debug_processing(struct kmem_cache *s,
1041 struct page *page, void *object, unsigned long addr) { return 0; }
1042
1043 static inline int free_debug_processing(struct kmem_cache *s,
1044 struct page *page, void *object, unsigned long addr) { return 0; }
1045
1046 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1047 { return 1; }
1048 static inline int check_object(struct kmem_cache *s, struct page *page,
1049 void *object, int active) { return 1; }
1050 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1051 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1052 unsigned long flags, const char *name,
1053 void (*ctor)(void *))
1054 {
1055 return flags;
1056 }
1057 #define slub_debug 0
1058
1059 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1060 { return 0; }
1061 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1062 int objects) {}
1063 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1064 int objects) {}
1065 #endif
1066
1067 /*
1068 * Slab allocation and freeing
1069 */
1070 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1071 struct kmem_cache_order_objects oo)
1072 {
1073 int order = oo_order(oo);
1074
1075 flags |= __GFP_NOTRACK;
1076
1077 if (node == -1)
1078 return alloc_pages(flags, order);
1079 else
1080 return alloc_pages_node(node, flags, order);
1081 }
1082
1083 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1084 {
1085 struct page *page;
1086 struct kmem_cache_order_objects oo = s->oo;
1087
1088 flags |= s->allocflags;
1089
1090 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1091 oo);
1092 if (unlikely(!page)) {
1093 oo = s->min;
1094 /*
1095 * Allocation may have failed due to fragmentation.
1096 * Try a lower order alloc if possible
1097 */
1098 page = alloc_slab_page(flags, node, oo);
1099 if (!page)
1100 return NULL;
1101
1102 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1103 }
1104
1105 if (kmemcheck_enabled
1106 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS)))
1107 {
1108 int pages = 1 << oo_order(oo);
1109
1110 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1111
1112 /*
1113 * Objects from caches that have a constructor don't get
1114 * cleared when they're allocated, so we need to do it here.
1115 */
1116 if (s->ctor)
1117 kmemcheck_mark_uninitialized_pages(page, pages);
1118 else
1119 kmemcheck_mark_unallocated_pages(page, pages);
1120 }
1121
1122 page->objects = oo_objects(oo);
1123 mod_zone_page_state(page_zone(page),
1124 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1125 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1126 1 << oo_order(oo));
1127
1128 return page;
1129 }
1130
1131 static void setup_object(struct kmem_cache *s, struct page *page,
1132 void *object)
1133 {
1134 setup_object_debug(s, page, object);
1135 if (unlikely(s->ctor))
1136 s->ctor(object);
1137 }
1138
1139 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1140 {
1141 struct page *page;
1142 void *start;
1143 void *last;
1144 void *p;
1145
1146 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1147
1148 page = allocate_slab(s,
1149 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1150 if (!page)
1151 goto out;
1152
1153 inc_slabs_node(s, page_to_nid(page), page->objects);
1154 page->slab = s;
1155 page->flags |= 1 << PG_slab;
1156 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1157 SLAB_STORE_USER | SLAB_TRACE))
1158 __SetPageSlubDebug(page);
1159
1160 start = page_address(page);
1161
1162 if (unlikely(s->flags & SLAB_POISON))
1163 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1164
1165 last = start;
1166 for_each_object(p, s, start, page->objects) {
1167 setup_object(s, page, last);
1168 set_freepointer(s, last, p);
1169 last = p;
1170 }
1171 setup_object(s, page, last);
1172 set_freepointer(s, last, NULL);
1173
1174 page->freelist = start;
1175 page->inuse = 0;
1176 out:
1177 return page;
1178 }
1179
1180 static void __free_slab(struct kmem_cache *s, struct page *page)
1181 {
1182 int order = compound_order(page);
1183 int pages = 1 << order;
1184
1185 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1186 void *p;
1187
1188 slab_pad_check(s, page);
1189 for_each_object(p, s, page_address(page),
1190 page->objects)
1191 check_object(s, page, p, 0);
1192 __ClearPageSlubDebug(page);
1193 }
1194
1195 kmemcheck_free_shadow(page, compound_order(page));
1196
1197 mod_zone_page_state(page_zone(page),
1198 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1199 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1200 -pages);
1201
1202 __ClearPageSlab(page);
1203 reset_page_mapcount(page);
1204 if (current->reclaim_state)
1205 current->reclaim_state->reclaimed_slab += pages;
1206 __free_pages(page, order);
1207 }
1208
1209 static void rcu_free_slab(struct rcu_head *h)
1210 {
1211 struct page *page;
1212
1213 page = container_of((struct list_head *)h, struct page, lru);
1214 __free_slab(page->slab, page);
1215 }
1216
1217 static void free_slab(struct kmem_cache *s, struct page *page)
1218 {
1219 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1220 /*
1221 * RCU free overloads the RCU head over the LRU
1222 */
1223 struct rcu_head *head = (void *)&page->lru;
1224
1225 call_rcu(head, rcu_free_slab);
1226 } else
1227 __free_slab(s, page);
1228 }
1229
1230 static void discard_slab(struct kmem_cache *s, struct page *page)
1231 {
1232 dec_slabs_node(s, page_to_nid(page), page->objects);
1233 free_slab(s, page);
1234 }
1235
1236 /*
1237 * Per slab locking using the pagelock
1238 */
1239 static __always_inline void slab_lock(struct page *page)
1240 {
1241 bit_spin_lock(PG_locked, &page->flags);
1242 }
1243
1244 static __always_inline void slab_unlock(struct page *page)
1245 {
1246 __bit_spin_unlock(PG_locked, &page->flags);
1247 }
1248
1249 static __always_inline int slab_trylock(struct page *page)
1250 {
1251 int rc = 1;
1252
1253 rc = bit_spin_trylock(PG_locked, &page->flags);
1254 return rc;
1255 }
1256
1257 /*
1258 * Management of partially allocated slabs
1259 */
1260 static void add_partial(struct kmem_cache_node *n,
1261 struct page *page, int tail)
1262 {
1263 spin_lock(&n->list_lock);
1264 n->nr_partial++;
1265 if (tail)
1266 list_add_tail(&page->lru, &n->partial);
1267 else
1268 list_add(&page->lru, &n->partial);
1269 spin_unlock(&n->list_lock);
1270 }
1271
1272 static void remove_partial(struct kmem_cache *s, struct page *page)
1273 {
1274 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1275
1276 spin_lock(&n->list_lock);
1277 list_del(&page->lru);
1278 n->nr_partial--;
1279 spin_unlock(&n->list_lock);
1280 }
1281
1282 /*
1283 * Lock slab and remove from the partial list.
1284 *
1285 * Must hold list_lock.
1286 */
1287 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1288 struct page *page)
1289 {
1290 if (slab_trylock(page)) {
1291 list_del(&page->lru);
1292 n->nr_partial--;
1293 __SetPageSlubFrozen(page);
1294 return 1;
1295 }
1296 return 0;
1297 }
1298
1299 /*
1300 * Try to allocate a partial slab from a specific node.
1301 */
1302 static struct page *get_partial_node(struct kmem_cache_node *n)
1303 {
1304 struct page *page;
1305
1306 /*
1307 * Racy check. If we mistakenly see no partial slabs then we
1308 * just allocate an empty slab. If we mistakenly try to get a
1309 * partial slab and there is none available then get_partials()
1310 * will return NULL.
1311 */
1312 if (!n || !n->nr_partial)
1313 return NULL;
1314
1315 spin_lock(&n->list_lock);
1316 list_for_each_entry(page, &n->partial, lru)
1317 if (lock_and_freeze_slab(n, page))
1318 goto out;
1319 page = NULL;
1320 out:
1321 spin_unlock(&n->list_lock);
1322 return page;
1323 }
1324
1325 /*
1326 * Get a page from somewhere. Search in increasing NUMA distances.
1327 */
1328 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1329 {
1330 #ifdef CONFIG_NUMA
1331 struct zonelist *zonelist;
1332 struct zoneref *z;
1333 struct zone *zone;
1334 enum zone_type high_zoneidx = gfp_zone(flags);
1335 struct page *page;
1336
1337 /*
1338 * The defrag ratio allows a configuration of the tradeoffs between
1339 * inter node defragmentation and node local allocations. A lower
1340 * defrag_ratio increases the tendency to do local allocations
1341 * instead of attempting to obtain partial slabs from other nodes.
1342 *
1343 * If the defrag_ratio is set to 0 then kmalloc() always
1344 * returns node local objects. If the ratio is higher then kmalloc()
1345 * may return off node objects because partial slabs are obtained
1346 * from other nodes and filled up.
1347 *
1348 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1349 * defrag_ratio = 1000) then every (well almost) allocation will
1350 * first attempt to defrag slab caches on other nodes. This means
1351 * scanning over all nodes to look for partial slabs which may be
1352 * expensive if we do it every time we are trying to find a slab
1353 * with available objects.
1354 */
1355 if (!s->remote_node_defrag_ratio ||
1356 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1357 return NULL;
1358
1359 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1360 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1361 struct kmem_cache_node *n;
1362
1363 n = get_node(s, zone_to_nid(zone));
1364
1365 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1366 n->nr_partial > s->min_partial) {
1367 page = get_partial_node(n);
1368 if (page)
1369 return page;
1370 }
1371 }
1372 #endif
1373 return NULL;
1374 }
1375
1376 /*
1377 * Get a partial page, lock it and return it.
1378 */
1379 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1380 {
1381 struct page *page;
1382 int searchnode = (node == -1) ? numa_node_id() : node;
1383
1384 page = get_partial_node(get_node(s, searchnode));
1385 if (page || (flags & __GFP_THISNODE))
1386 return page;
1387
1388 return get_any_partial(s, flags);
1389 }
1390
1391 /*
1392 * Move a page back to the lists.
1393 *
1394 * Must be called with the slab lock held.
1395 *
1396 * On exit the slab lock will have been dropped.
1397 */
1398 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1399 {
1400 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1401 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1402
1403 __ClearPageSlubFrozen(page);
1404 if (page->inuse) {
1405
1406 if (page->freelist) {
1407 add_partial(n, page, tail);
1408 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1409 } else {
1410 stat(c, DEACTIVATE_FULL);
1411 if (SLABDEBUG && PageSlubDebug(page) &&
1412 (s->flags & SLAB_STORE_USER))
1413 add_full(n, page);
1414 }
1415 slab_unlock(page);
1416 } else {
1417 stat(c, DEACTIVATE_EMPTY);
1418 if (n->nr_partial < s->min_partial) {
1419 /*
1420 * Adding an empty slab to the partial slabs in order
1421 * to avoid page allocator overhead. This slab needs
1422 * to come after the other slabs with objects in
1423 * so that the others get filled first. That way the
1424 * size of the partial list stays small.
1425 *
1426 * kmem_cache_shrink can reclaim any empty slabs from
1427 * the partial list.
1428 */
1429 add_partial(n, page, 1);
1430 slab_unlock(page);
1431 } else {
1432 slab_unlock(page);
1433 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1434 discard_slab(s, page);
1435 }
1436 }
1437 }
1438
1439 /*
1440 * Remove the cpu slab
1441 */
1442 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1443 {
1444 struct page *page = c->page;
1445 int tail = 1;
1446
1447 if (page->freelist)
1448 stat(c, DEACTIVATE_REMOTE_FREES);
1449 /*
1450 * Merge cpu freelist into slab freelist. Typically we get here
1451 * because both freelists are empty. So this is unlikely
1452 * to occur.
1453 */
1454 while (unlikely(c->freelist)) {
1455 void **object;
1456
1457 tail = 0; /* Hot objects. Put the slab first */
1458
1459 /* Retrieve object from cpu_freelist */
1460 object = c->freelist;
1461 c->freelist = c->freelist[c->offset];
1462
1463 /* And put onto the regular freelist */
1464 object[c->offset] = page->freelist;
1465 page->freelist = object;
1466 page->inuse--;
1467 }
1468 c->page = NULL;
1469 unfreeze_slab(s, page, tail);
1470 }
1471
1472 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1473 {
1474 stat(c, CPUSLAB_FLUSH);
1475 slab_lock(c->page);
1476 deactivate_slab(s, c);
1477 }
1478
1479 /*
1480 * Flush cpu slab.
1481 *
1482 * Called from IPI handler with interrupts disabled.
1483 */
1484 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1485 {
1486 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1487
1488 if (likely(c && c->page))
1489 flush_slab(s, c);
1490 }
1491
1492 static void flush_cpu_slab(void *d)
1493 {
1494 struct kmem_cache *s = d;
1495
1496 __flush_cpu_slab(s, smp_processor_id());
1497 }
1498
1499 static void flush_all(struct kmem_cache *s)
1500 {
1501 on_each_cpu(flush_cpu_slab, s, 1);
1502 }
1503
1504 /*
1505 * Check if the objects in a per cpu structure fit numa
1506 * locality expectations.
1507 */
1508 static inline int node_match(struct kmem_cache_cpu *c, int node)
1509 {
1510 #ifdef CONFIG_NUMA
1511 if (node != -1 && c->node != node)
1512 return 0;
1513 #endif
1514 return 1;
1515 }
1516
1517 /*
1518 * Slow path. The lockless freelist is empty or we need to perform
1519 * debugging duties.
1520 *
1521 * Interrupts are disabled.
1522 *
1523 * Processing is still very fast if new objects have been freed to the
1524 * regular freelist. In that case we simply take over the regular freelist
1525 * as the lockless freelist and zap the regular freelist.
1526 *
1527 * If that is not working then we fall back to the partial lists. We take the
1528 * first element of the freelist as the object to allocate now and move the
1529 * rest of the freelist to the lockless freelist.
1530 *
1531 * And if we were unable to get a new slab from the partial slab lists then
1532 * we need to allocate a new slab. This is the slowest path since it involves
1533 * a call to the page allocator and the setup of a new slab.
1534 */
1535 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1536 unsigned long addr, struct kmem_cache_cpu *c)
1537 {
1538 void **object;
1539 struct page *new;
1540
1541 /* We handle __GFP_ZERO in the caller */
1542 gfpflags &= ~__GFP_ZERO;
1543
1544 if (!c->page)
1545 goto new_slab;
1546
1547 slab_lock(c->page);
1548 if (unlikely(!node_match(c, node)))
1549 goto another_slab;
1550
1551 stat(c, ALLOC_REFILL);
1552
1553 load_freelist:
1554 object = c->page->freelist;
1555 if (unlikely(!object))
1556 goto another_slab;
1557 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1558 goto debug;
1559
1560 c->freelist = object[c->offset];
1561 c->page->inuse = c->page->objects;
1562 c->page->freelist = NULL;
1563 c->node = page_to_nid(c->page);
1564 unlock_out:
1565 slab_unlock(c->page);
1566 stat(c, ALLOC_SLOWPATH);
1567 return object;
1568
1569 another_slab:
1570 deactivate_slab(s, c);
1571
1572 new_slab:
1573 new = get_partial(s, gfpflags, node);
1574 if (new) {
1575 c->page = new;
1576 stat(c, ALLOC_FROM_PARTIAL);
1577 goto load_freelist;
1578 }
1579
1580 if (gfpflags & __GFP_WAIT)
1581 local_irq_enable();
1582
1583 new = new_slab(s, gfpflags, node);
1584
1585 if (gfpflags & __GFP_WAIT)
1586 local_irq_disable();
1587
1588 if (new) {
1589 c = get_cpu_slab(s, smp_processor_id());
1590 stat(c, ALLOC_SLAB);
1591 if (c->page)
1592 flush_slab(s, c);
1593 slab_lock(new);
1594 __SetPageSlubFrozen(new);
1595 c->page = new;
1596 goto load_freelist;
1597 }
1598 return NULL;
1599 debug:
1600 if (!alloc_debug_processing(s, c->page, object, addr))
1601 goto another_slab;
1602
1603 c->page->inuse++;
1604 c->page->freelist = object[c->offset];
1605 c->node = -1;
1606 goto unlock_out;
1607 }
1608
1609 /*
1610 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1611 * have the fastpath folded into their functions. So no function call
1612 * overhead for requests that can be satisfied on the fastpath.
1613 *
1614 * The fastpath works by first checking if the lockless freelist can be used.
1615 * If not then __slab_alloc is called for slow processing.
1616 *
1617 * Otherwise we can simply pick the next object from the lockless free list.
1618 */
1619 static __always_inline void *slab_alloc(struct kmem_cache *s,
1620 gfp_t gfpflags, int node, unsigned long addr)
1621 {
1622 void **object;
1623 struct kmem_cache_cpu *c;
1624 unsigned long flags;
1625 unsigned int objsize;
1626
1627 gfpflags &= slab_gfp_mask;
1628
1629 lockdep_trace_alloc(gfpflags);
1630 might_sleep_if(gfpflags & __GFP_WAIT);
1631
1632 if (should_failslab(s->objsize, gfpflags))
1633 return NULL;
1634
1635 local_irq_save(flags);
1636 c = get_cpu_slab(s, smp_processor_id());
1637 objsize = c->objsize;
1638 if (unlikely(!c->freelist || !node_match(c, node)))
1639
1640 object = __slab_alloc(s, gfpflags, node, addr, c);
1641
1642 else {
1643 object = c->freelist;
1644 c->freelist = object[c->offset];
1645 stat(c, ALLOC_FASTPATH);
1646 }
1647 local_irq_restore(flags);
1648
1649 if (unlikely((gfpflags & __GFP_ZERO) && object))
1650 memset(object, 0, objsize);
1651
1652 kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
1653 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
1654
1655 return object;
1656 }
1657
1658 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1659 {
1660 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1661
1662 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1663
1664 return ret;
1665 }
1666 EXPORT_SYMBOL(kmem_cache_alloc);
1667
1668 #ifdef CONFIG_KMEMTRACE
1669 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1670 {
1671 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1672 }
1673 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1674 #endif
1675
1676 #ifdef CONFIG_NUMA
1677 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1678 {
1679 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1680
1681 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1682 s->objsize, s->size, gfpflags, node);
1683
1684 return ret;
1685 }
1686 EXPORT_SYMBOL(kmem_cache_alloc_node);
1687 #endif
1688
1689 #ifdef CONFIG_KMEMTRACE
1690 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1691 gfp_t gfpflags,
1692 int node)
1693 {
1694 return slab_alloc(s, gfpflags, node, _RET_IP_);
1695 }
1696 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1697 #endif
1698
1699 /*
1700 * Slow patch handling. This may still be called frequently since objects
1701 * have a longer lifetime than the cpu slabs in most processing loads.
1702 *
1703 * So we still attempt to reduce cache line usage. Just take the slab
1704 * lock and free the item. If there is no additional partial page
1705 * handling required then we can return immediately.
1706 */
1707 static void __slab_free(struct kmem_cache *s, struct page *page,
1708 void *x, unsigned long addr, unsigned int offset)
1709 {
1710 void *prior;
1711 void **object = (void *)x;
1712 struct kmem_cache_cpu *c;
1713
1714 c = get_cpu_slab(s, raw_smp_processor_id());
1715 stat(c, FREE_SLOWPATH);
1716 slab_lock(page);
1717
1718 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1719 goto debug;
1720
1721 checks_ok:
1722 prior = object[offset] = page->freelist;
1723 page->freelist = object;
1724 page->inuse--;
1725
1726 if (unlikely(PageSlubFrozen(page))) {
1727 stat(c, FREE_FROZEN);
1728 goto out_unlock;
1729 }
1730
1731 if (unlikely(!page->inuse))
1732 goto slab_empty;
1733
1734 /*
1735 * Objects left in the slab. If it was not on the partial list before
1736 * then add it.
1737 */
1738 if (unlikely(!prior)) {
1739 add_partial(get_node(s, page_to_nid(page)), page, 1);
1740 stat(c, FREE_ADD_PARTIAL);
1741 }
1742
1743 out_unlock:
1744 slab_unlock(page);
1745 return;
1746
1747 slab_empty:
1748 if (prior) {
1749 /*
1750 * Slab still on the partial list.
1751 */
1752 remove_partial(s, page);
1753 stat(c, FREE_REMOVE_PARTIAL);
1754 }
1755 slab_unlock(page);
1756 stat(c, FREE_SLAB);
1757 discard_slab(s, page);
1758 return;
1759
1760 debug:
1761 if (!free_debug_processing(s, page, x, addr))
1762 goto out_unlock;
1763 goto checks_ok;
1764 }
1765
1766 /*
1767 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1768 * can perform fastpath freeing without additional function calls.
1769 *
1770 * The fastpath is only possible if we are freeing to the current cpu slab
1771 * of this processor. This typically the case if we have just allocated
1772 * the item before.
1773 *
1774 * If fastpath is not possible then fall back to __slab_free where we deal
1775 * with all sorts of special processing.
1776 */
1777 static __always_inline void slab_free(struct kmem_cache *s,
1778 struct page *page, void *x, unsigned long addr)
1779 {
1780 void **object = (void *)x;
1781 struct kmem_cache_cpu *c;
1782 unsigned long flags;
1783
1784 kmemleak_free_recursive(x, s->flags);
1785 local_irq_save(flags);
1786 c = get_cpu_slab(s, smp_processor_id());
1787 kmemcheck_slab_free(s, object, c->objsize);
1788 debug_check_no_locks_freed(object, c->objsize);
1789 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1790 debug_check_no_obj_freed(object, c->objsize);
1791 if (likely(page == c->page && c->node >= 0)) {
1792 object[c->offset] = c->freelist;
1793 c->freelist = object;
1794 stat(c, FREE_FASTPATH);
1795 } else
1796 __slab_free(s, page, x, addr, c->offset);
1797
1798 local_irq_restore(flags);
1799 }
1800
1801 void kmem_cache_free(struct kmem_cache *s, void *x)
1802 {
1803 struct page *page;
1804
1805 page = virt_to_head_page(x);
1806
1807 slab_free(s, page, x, _RET_IP_);
1808
1809 trace_kmem_cache_free(_RET_IP_, x);
1810 }
1811 EXPORT_SYMBOL(kmem_cache_free);
1812
1813 /* Figure out on which slab page the object resides */
1814 static struct page *get_object_page(const void *x)
1815 {
1816 struct page *page = virt_to_head_page(x);
1817
1818 if (!PageSlab(page))
1819 return NULL;
1820
1821 return page;
1822 }
1823
1824 /*
1825 * Object placement in a slab is made very easy because we always start at
1826 * offset 0. If we tune the size of the object to the alignment then we can
1827 * get the required alignment by putting one properly sized object after
1828 * another.
1829 *
1830 * Notice that the allocation order determines the sizes of the per cpu
1831 * caches. Each processor has always one slab available for allocations.
1832 * Increasing the allocation order reduces the number of times that slabs
1833 * must be moved on and off the partial lists and is therefore a factor in
1834 * locking overhead.
1835 */
1836
1837 /*
1838 * Mininum / Maximum order of slab pages. This influences locking overhead
1839 * and slab fragmentation. A higher order reduces the number of partial slabs
1840 * and increases the number of allocations possible without having to
1841 * take the list_lock.
1842 */
1843 static int slub_min_order;
1844 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1845 static int slub_min_objects;
1846
1847 /*
1848 * Merge control. If this is set then no merging of slab caches will occur.
1849 * (Could be removed. This was introduced to pacify the merge skeptics.)
1850 */
1851 static int slub_nomerge;
1852
1853 /*
1854 * Calculate the order of allocation given an slab object size.
1855 *
1856 * The order of allocation has significant impact on performance and other
1857 * system components. Generally order 0 allocations should be preferred since
1858 * order 0 does not cause fragmentation in the page allocator. Larger objects
1859 * be problematic to put into order 0 slabs because there may be too much
1860 * unused space left. We go to a higher order if more than 1/16th of the slab
1861 * would be wasted.
1862 *
1863 * In order to reach satisfactory performance we must ensure that a minimum
1864 * number of objects is in one slab. Otherwise we may generate too much
1865 * activity on the partial lists which requires taking the list_lock. This is
1866 * less a concern for large slabs though which are rarely used.
1867 *
1868 * slub_max_order specifies the order where we begin to stop considering the
1869 * number of objects in a slab as critical. If we reach slub_max_order then
1870 * we try to keep the page order as low as possible. So we accept more waste
1871 * of space in favor of a small page order.
1872 *
1873 * Higher order allocations also allow the placement of more objects in a
1874 * slab and thereby reduce object handling overhead. If the user has
1875 * requested a higher mininum order then we start with that one instead of
1876 * the smallest order which will fit the object.
1877 */
1878 static inline int slab_order(int size, int min_objects,
1879 int max_order, int fract_leftover)
1880 {
1881 int order;
1882 int rem;
1883 int min_order = slub_min_order;
1884
1885 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1886 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1887
1888 for (order = max(min_order,
1889 fls(min_objects * size - 1) - PAGE_SHIFT);
1890 order <= max_order; order++) {
1891
1892 unsigned long slab_size = PAGE_SIZE << order;
1893
1894 if (slab_size < min_objects * size)
1895 continue;
1896
1897 rem = slab_size % size;
1898
1899 if (rem <= slab_size / fract_leftover)
1900 break;
1901
1902 }
1903
1904 return order;
1905 }
1906
1907 static inline int calculate_order(int size)
1908 {
1909 int order;
1910 int min_objects;
1911 int fraction;
1912 int max_objects;
1913
1914 /*
1915 * Attempt to find best configuration for a slab. This
1916 * works by first attempting to generate a layout with
1917 * the best configuration and backing off gradually.
1918 *
1919 * First we reduce the acceptable waste in a slab. Then
1920 * we reduce the minimum objects required in a slab.
1921 */
1922 min_objects = slub_min_objects;
1923 if (!min_objects)
1924 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1925 max_objects = (PAGE_SIZE << slub_max_order)/size;
1926 min_objects = min(min_objects, max_objects);
1927
1928 while (min_objects > 1) {
1929 fraction = 16;
1930 while (fraction >= 4) {
1931 order = slab_order(size, min_objects,
1932 slub_max_order, fraction);
1933 if (order <= slub_max_order)
1934 return order;
1935 fraction /= 2;
1936 }
1937 min_objects --;
1938 }
1939
1940 /*
1941 * We were unable to place multiple objects in a slab. Now
1942 * lets see if we can place a single object there.
1943 */
1944 order = slab_order(size, 1, slub_max_order, 1);
1945 if (order <= slub_max_order)
1946 return order;
1947
1948 /*
1949 * Doh this slab cannot be placed using slub_max_order.
1950 */
1951 order = slab_order(size, 1, MAX_ORDER, 1);
1952 if (order < MAX_ORDER)
1953 return order;
1954 return -ENOSYS;
1955 }
1956
1957 /*
1958 * Figure out what the alignment of the objects will be.
1959 */
1960 static unsigned long calculate_alignment(unsigned long flags,
1961 unsigned long align, unsigned long size)
1962 {
1963 /*
1964 * If the user wants hardware cache aligned objects then follow that
1965 * suggestion if the object is sufficiently large.
1966 *
1967 * The hardware cache alignment cannot override the specified
1968 * alignment though. If that is greater then use it.
1969 */
1970 if (flags & SLAB_HWCACHE_ALIGN) {
1971 unsigned long ralign = cache_line_size();
1972 while (size <= ralign / 2)
1973 ralign /= 2;
1974 align = max(align, ralign);
1975 }
1976
1977 if (align < ARCH_SLAB_MINALIGN)
1978 align = ARCH_SLAB_MINALIGN;
1979
1980 return ALIGN(align, sizeof(void *));
1981 }
1982
1983 static void init_kmem_cache_cpu(struct kmem_cache *s,
1984 struct kmem_cache_cpu *c)
1985 {
1986 c->page = NULL;
1987 c->freelist = NULL;
1988 c->node = 0;
1989 c->offset = s->offset / sizeof(void *);
1990 c->objsize = s->objsize;
1991 #ifdef CONFIG_SLUB_STATS
1992 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1993 #endif
1994 }
1995
1996 static void
1997 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1998 {
1999 n->nr_partial = 0;
2000 spin_lock_init(&n->list_lock);
2001 INIT_LIST_HEAD(&n->partial);
2002 #ifdef CONFIG_SLUB_DEBUG
2003 atomic_long_set(&n->nr_slabs, 0);
2004 atomic_long_set(&n->total_objects, 0);
2005 INIT_LIST_HEAD(&n->full);
2006 #endif
2007 }
2008
2009 #ifdef CONFIG_SMP
2010 /*
2011 * Per cpu array for per cpu structures.
2012 *
2013 * The per cpu array places all kmem_cache_cpu structures from one processor
2014 * close together meaning that it becomes possible that multiple per cpu
2015 * structures are contained in one cacheline. This may be particularly
2016 * beneficial for the kmalloc caches.
2017 *
2018 * A desktop system typically has around 60-80 slabs. With 100 here we are
2019 * likely able to get per cpu structures for all caches from the array defined
2020 * here. We must be able to cover all kmalloc caches during bootstrap.
2021 *
2022 * If the per cpu array is exhausted then fall back to kmalloc
2023 * of individual cachelines. No sharing is possible then.
2024 */
2025 #define NR_KMEM_CACHE_CPU 100
2026
2027 static DEFINE_PER_CPU(struct kmem_cache_cpu,
2028 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2029
2030 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2031 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
2032
2033 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2034 int cpu, gfp_t flags)
2035 {
2036 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2037
2038 if (c)
2039 per_cpu(kmem_cache_cpu_free, cpu) =
2040 (void *)c->freelist;
2041 else {
2042 /* Table overflow: So allocate ourselves */
2043 c = kmalloc_node(
2044 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2045 flags, cpu_to_node(cpu));
2046 if (!c)
2047 return NULL;
2048 }
2049
2050 init_kmem_cache_cpu(s, c);
2051 return c;
2052 }
2053
2054 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2055 {
2056 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2057 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2058 kfree(c);
2059 return;
2060 }
2061 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2062 per_cpu(kmem_cache_cpu_free, cpu) = c;
2063 }
2064
2065 static void free_kmem_cache_cpus(struct kmem_cache *s)
2066 {
2067 int cpu;
2068
2069 for_each_online_cpu(cpu) {
2070 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2071
2072 if (c) {
2073 s->cpu_slab[cpu] = NULL;
2074 free_kmem_cache_cpu(c, cpu);
2075 }
2076 }
2077 }
2078
2079 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2080 {
2081 int cpu;
2082
2083 for_each_online_cpu(cpu) {
2084 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2085
2086 if (c)
2087 continue;
2088
2089 c = alloc_kmem_cache_cpu(s, cpu, flags);
2090 if (!c) {
2091 free_kmem_cache_cpus(s);
2092 return 0;
2093 }
2094 s->cpu_slab[cpu] = c;
2095 }
2096 return 1;
2097 }
2098
2099 /*
2100 * Initialize the per cpu array.
2101 */
2102 static void init_alloc_cpu_cpu(int cpu)
2103 {
2104 int i;
2105
2106 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2107 return;
2108
2109 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2110 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2111
2112 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2113 }
2114
2115 static void __init init_alloc_cpu(void)
2116 {
2117 int cpu;
2118
2119 for_each_online_cpu(cpu)
2120 init_alloc_cpu_cpu(cpu);
2121 }
2122
2123 #else
2124 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2125 static inline void init_alloc_cpu(void) {}
2126
2127 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2128 {
2129 init_kmem_cache_cpu(s, &s->cpu_slab);
2130 return 1;
2131 }
2132 #endif
2133
2134 #ifdef CONFIG_NUMA
2135 /*
2136 * No kmalloc_node yet so do it by hand. We know that this is the first
2137 * slab on the node for this slabcache. There are no concurrent accesses
2138 * possible.
2139 *
2140 * Note that this function only works on the kmalloc_node_cache
2141 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2142 * memory on a fresh node that has no slab structures yet.
2143 */
2144 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2145 {
2146 struct page *page;
2147 struct kmem_cache_node *n;
2148 unsigned long flags;
2149
2150 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2151
2152 page = new_slab(kmalloc_caches, gfpflags, node);
2153
2154 BUG_ON(!page);
2155 if (page_to_nid(page) != node) {
2156 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2157 "node %d\n", node);
2158 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2159 "in order to be able to continue\n");
2160 }
2161
2162 n = page->freelist;
2163 BUG_ON(!n);
2164 page->freelist = get_freepointer(kmalloc_caches, n);
2165 page->inuse++;
2166 kmalloc_caches->node[node] = n;
2167 #ifdef CONFIG_SLUB_DEBUG
2168 init_object(kmalloc_caches, n, 1);
2169 init_tracking(kmalloc_caches, n);
2170 #endif
2171 init_kmem_cache_node(n, kmalloc_caches);
2172 inc_slabs_node(kmalloc_caches, node, page->objects);
2173
2174 /*
2175 * lockdep requires consistent irq usage for each lock
2176 * so even though there cannot be a race this early in
2177 * the boot sequence, we still disable irqs.
2178 */
2179 local_irq_save(flags);
2180 add_partial(n, page, 0);
2181 local_irq_restore(flags);
2182 }
2183
2184 static void free_kmem_cache_nodes(struct kmem_cache *s)
2185 {
2186 int node;
2187
2188 for_each_node_state(node, N_NORMAL_MEMORY) {
2189 struct kmem_cache_node *n = s->node[node];
2190 if (n && n != &s->local_node)
2191 kmem_cache_free(kmalloc_caches, n);
2192 s->node[node] = NULL;
2193 }
2194 }
2195
2196 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2197 {
2198 int node;
2199 int local_node;
2200
2201 if (slab_state >= UP)
2202 local_node = page_to_nid(virt_to_page(s));
2203 else
2204 local_node = 0;
2205
2206 for_each_node_state(node, N_NORMAL_MEMORY) {
2207 struct kmem_cache_node *n;
2208
2209 if (local_node == node)
2210 n = &s->local_node;
2211 else {
2212 if (slab_state == DOWN) {
2213 early_kmem_cache_node_alloc(gfpflags, node);
2214 continue;
2215 }
2216 n = kmem_cache_alloc_node(kmalloc_caches,
2217 gfpflags, node);
2218
2219 if (!n) {
2220 free_kmem_cache_nodes(s);
2221 return 0;
2222 }
2223
2224 }
2225 s->node[node] = n;
2226 init_kmem_cache_node(n, s);
2227 }
2228 return 1;
2229 }
2230 #else
2231 static void free_kmem_cache_nodes(struct kmem_cache *s)
2232 {
2233 }
2234
2235 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2236 {
2237 init_kmem_cache_node(&s->local_node, s);
2238 return 1;
2239 }
2240 #endif
2241
2242 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2243 {
2244 if (min < MIN_PARTIAL)
2245 min = MIN_PARTIAL;
2246 else if (min > MAX_PARTIAL)
2247 min = MAX_PARTIAL;
2248 s->min_partial = min;
2249 }
2250
2251 /*
2252 * calculate_sizes() determines the order and the distribution of data within
2253 * a slab object.
2254 */
2255 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2256 {
2257 unsigned long flags = s->flags;
2258 unsigned long size = s->objsize;
2259 unsigned long align = s->align;
2260 int order;
2261
2262 /*
2263 * Round up object size to the next word boundary. We can only
2264 * place the free pointer at word boundaries and this determines
2265 * the possible location of the free pointer.
2266 */
2267 size = ALIGN(size, sizeof(void *));
2268
2269 #ifdef CONFIG_SLUB_DEBUG
2270 /*
2271 * Determine if we can poison the object itself. If the user of
2272 * the slab may touch the object after free or before allocation
2273 * then we should never poison the object itself.
2274 */
2275 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2276 !s->ctor)
2277 s->flags |= __OBJECT_POISON;
2278 else
2279 s->flags &= ~__OBJECT_POISON;
2280
2281
2282 /*
2283 * If we are Redzoning then check if there is some space between the
2284 * end of the object and the free pointer. If not then add an
2285 * additional word to have some bytes to store Redzone information.
2286 */
2287 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2288 size += sizeof(void *);
2289 #endif
2290
2291 /*
2292 * With that we have determined the number of bytes in actual use
2293 * by the object. This is the potential offset to the free pointer.
2294 */
2295 s->inuse = size;
2296
2297 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2298 s->ctor)) {
2299 /*
2300 * Relocate free pointer after the object if it is not
2301 * permitted to overwrite the first word of the object on
2302 * kmem_cache_free.
2303 *
2304 * This is the case if we do RCU, have a constructor or
2305 * destructor or are poisoning the objects.
2306 */
2307 s->offset = size;
2308 size += sizeof(void *);
2309 }
2310
2311 #ifdef CONFIG_SLUB_DEBUG
2312 if (flags & SLAB_STORE_USER)
2313 /*
2314 * Need to store information about allocs and frees after
2315 * the object.
2316 */
2317 size += 2 * sizeof(struct track);
2318
2319 if (flags & SLAB_RED_ZONE)
2320 /*
2321 * Add some empty padding so that we can catch
2322 * overwrites from earlier objects rather than let
2323 * tracking information or the free pointer be
2324 * corrupted if a user writes before the start
2325 * of the object.
2326 */
2327 size += sizeof(void *);
2328 #endif
2329
2330 /*
2331 * Determine the alignment based on various parameters that the
2332 * user specified and the dynamic determination of cache line size
2333 * on bootup.
2334 */
2335 align = calculate_alignment(flags, align, s->objsize);
2336
2337 /*
2338 * SLUB stores one object immediately after another beginning from
2339 * offset 0. In order to align the objects we have to simply size
2340 * each object to conform to the alignment.
2341 */
2342 size = ALIGN(size, align);
2343 s->size = size;
2344 if (forced_order >= 0)
2345 order = forced_order;
2346 else
2347 order = calculate_order(size);
2348
2349 if (order < 0)
2350 return 0;
2351
2352 s->allocflags = 0;
2353 if (order)
2354 s->allocflags |= __GFP_COMP;
2355
2356 if (s->flags & SLAB_CACHE_DMA)
2357 s->allocflags |= SLUB_DMA;
2358
2359 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2360 s->allocflags |= __GFP_RECLAIMABLE;
2361
2362 /*
2363 * Determine the number of objects per slab
2364 */
2365 s->oo = oo_make(order, size);
2366 s->min = oo_make(get_order(size), size);
2367 if (oo_objects(s->oo) > oo_objects(s->max))
2368 s->max = s->oo;
2369
2370 return !!oo_objects(s->oo);
2371
2372 }
2373
2374 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2375 const char *name, size_t size,
2376 size_t align, unsigned long flags,
2377 void (*ctor)(void *))
2378 {
2379 memset(s, 0, kmem_size);
2380 s->name = name;
2381 s->ctor = ctor;
2382 s->objsize = size;
2383 s->align = align;
2384 s->flags = kmem_cache_flags(size, flags, name, ctor);
2385
2386 if (!calculate_sizes(s, -1))
2387 goto error;
2388
2389 /*
2390 * The larger the object size is, the more pages we want on the partial
2391 * list to avoid pounding the page allocator excessively.
2392 */
2393 set_min_partial(s, ilog2(s->size));
2394 s->refcount = 1;
2395 #ifdef CONFIG_NUMA
2396 s->remote_node_defrag_ratio = 1000;
2397 #endif
2398 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2399 goto error;
2400
2401 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2402 return 1;
2403 free_kmem_cache_nodes(s);
2404 error:
2405 if (flags & SLAB_PANIC)
2406 panic("Cannot create slab %s size=%lu realsize=%u "
2407 "order=%u offset=%u flags=%lx\n",
2408 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2409 s->offset, flags);
2410 return 0;
2411 }
2412
2413 /*
2414 * Check if a given pointer is valid
2415 */
2416 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2417 {
2418 struct page *page;
2419
2420 page = get_object_page(object);
2421
2422 if (!page || s != page->slab)
2423 /* No slab or wrong slab */
2424 return 0;
2425
2426 if (!check_valid_pointer(s, page, object))
2427 return 0;
2428
2429 /*
2430 * We could also check if the object is on the slabs freelist.
2431 * But this would be too expensive and it seems that the main
2432 * purpose of kmem_ptr_valid() is to check if the object belongs
2433 * to a certain slab.
2434 */
2435 return 1;
2436 }
2437 EXPORT_SYMBOL(kmem_ptr_validate);
2438
2439 /*
2440 * Determine the size of a slab object
2441 */
2442 unsigned int kmem_cache_size(struct kmem_cache *s)
2443 {
2444 return s->objsize;
2445 }
2446 EXPORT_SYMBOL(kmem_cache_size);
2447
2448 const char *kmem_cache_name(struct kmem_cache *s)
2449 {
2450 return s->name;
2451 }
2452 EXPORT_SYMBOL(kmem_cache_name);
2453
2454 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2455 const char *text)
2456 {
2457 #ifdef CONFIG_SLUB_DEBUG
2458 void *addr = page_address(page);
2459 void *p;
2460 DECLARE_BITMAP(map, page->objects);
2461
2462 bitmap_zero(map, page->objects);
2463 slab_err(s, page, "%s", text);
2464 slab_lock(page);
2465 for_each_free_object(p, s, page->freelist)
2466 set_bit(slab_index(p, s, addr), map);
2467
2468 for_each_object(p, s, addr, page->objects) {
2469
2470 if (!test_bit(slab_index(p, s, addr), map)) {
2471 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2472 p, p - addr);
2473 print_tracking(s, p);
2474 }
2475 }
2476 slab_unlock(page);
2477 #endif
2478 }
2479
2480 /*
2481 * Attempt to free all partial slabs on a node.
2482 */
2483 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2484 {
2485 unsigned long flags;
2486 struct page *page, *h;
2487
2488 spin_lock_irqsave(&n->list_lock, flags);
2489 list_for_each_entry_safe(page, h, &n->partial, lru) {
2490 if (!page->inuse) {
2491 list_del(&page->lru);
2492 discard_slab(s, page);
2493 n->nr_partial--;
2494 } else {
2495 list_slab_objects(s, page,
2496 "Objects remaining on kmem_cache_close()");
2497 }
2498 }
2499 spin_unlock_irqrestore(&n->list_lock, flags);
2500 }
2501
2502 /*
2503 * Release all resources used by a slab cache.
2504 */
2505 static inline int kmem_cache_close(struct kmem_cache *s)
2506 {
2507 int node;
2508
2509 flush_all(s);
2510
2511 /* Attempt to free all objects */
2512 free_kmem_cache_cpus(s);
2513 for_each_node_state(node, N_NORMAL_MEMORY) {
2514 struct kmem_cache_node *n = get_node(s, node);
2515
2516 free_partial(s, n);
2517 if (n->nr_partial || slabs_node(s, node))
2518 return 1;
2519 }
2520 free_kmem_cache_nodes(s);
2521 return 0;
2522 }
2523
2524 /*
2525 * Close a cache and release the kmem_cache structure
2526 * (must be used for caches created using kmem_cache_create)
2527 */
2528 void kmem_cache_destroy(struct kmem_cache *s)
2529 {
2530 down_write(&slub_lock);
2531 s->refcount--;
2532 if (!s->refcount) {
2533 list_del(&s->list);
2534 up_write(&slub_lock);
2535 if (kmem_cache_close(s)) {
2536 printk(KERN_ERR "SLUB %s: %s called for cache that "
2537 "still has objects.\n", s->name, __func__);
2538 dump_stack();
2539 }
2540 sysfs_slab_remove(s);
2541 } else
2542 up_write(&slub_lock);
2543 }
2544 EXPORT_SYMBOL(kmem_cache_destroy);
2545
2546 /********************************************************************
2547 * Kmalloc subsystem
2548 *******************************************************************/
2549
2550 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2551 EXPORT_SYMBOL(kmalloc_caches);
2552
2553 static int __init setup_slub_min_order(char *str)
2554 {
2555 get_option(&str, &slub_min_order);
2556
2557 return 1;
2558 }
2559
2560 __setup("slub_min_order=", setup_slub_min_order);
2561
2562 static int __init setup_slub_max_order(char *str)
2563 {
2564 get_option(&str, &slub_max_order);
2565 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2566
2567 return 1;
2568 }
2569
2570 __setup("slub_max_order=", setup_slub_max_order);
2571
2572 static int __init setup_slub_min_objects(char *str)
2573 {
2574 get_option(&str, &slub_min_objects);
2575
2576 return 1;
2577 }
2578
2579 __setup("slub_min_objects=", setup_slub_min_objects);
2580
2581 static int __init setup_slub_nomerge(char *str)
2582 {
2583 slub_nomerge = 1;
2584 return 1;
2585 }
2586
2587 __setup("slub_nomerge", setup_slub_nomerge);
2588
2589 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2590 const char *name, int size, gfp_t gfp_flags)
2591 {
2592 unsigned int flags = 0;
2593
2594 if (gfp_flags & SLUB_DMA)
2595 flags = SLAB_CACHE_DMA;
2596
2597 /*
2598 * This function is called with IRQs disabled during early-boot on
2599 * single CPU so there's no need to take slub_lock here.
2600 */
2601 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2602 flags, NULL))
2603 goto panic;
2604
2605 list_add(&s->list, &slab_caches);
2606
2607 if (sysfs_slab_add(s))
2608 goto panic;
2609 return s;
2610
2611 panic:
2612 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2613 }
2614
2615 #ifdef CONFIG_ZONE_DMA
2616 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2617
2618 static void sysfs_add_func(struct work_struct *w)
2619 {
2620 struct kmem_cache *s;
2621
2622 down_write(&slub_lock);
2623 list_for_each_entry(s, &slab_caches, list) {
2624 if (s->flags & __SYSFS_ADD_DEFERRED) {
2625 s->flags &= ~__SYSFS_ADD_DEFERRED;
2626 sysfs_slab_add(s);
2627 }
2628 }
2629 up_write(&slub_lock);
2630 }
2631
2632 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2633
2634 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2635 {
2636 struct kmem_cache *s;
2637 char *text;
2638 size_t realsize;
2639
2640 s = kmalloc_caches_dma[index];
2641 if (s)
2642 return s;
2643
2644 /* Dynamically create dma cache */
2645 if (flags & __GFP_WAIT)
2646 down_write(&slub_lock);
2647 else {
2648 if (!down_write_trylock(&slub_lock))
2649 goto out;
2650 }
2651
2652 if (kmalloc_caches_dma[index])
2653 goto unlock_out;
2654
2655 realsize = kmalloc_caches[index].objsize;
2656 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2657 (unsigned int)realsize);
2658 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2659
2660 if (!s || !text || !kmem_cache_open(s, flags, text,
2661 realsize, ARCH_KMALLOC_MINALIGN,
2662 SLAB_CACHE_DMA|SLAB_NOTRACK|__SYSFS_ADD_DEFERRED,
2663 NULL)) {
2664 kfree(s);
2665 kfree(text);
2666 goto unlock_out;
2667 }
2668
2669 list_add(&s->list, &slab_caches);
2670 kmalloc_caches_dma[index] = s;
2671
2672 schedule_work(&sysfs_add_work);
2673
2674 unlock_out:
2675 up_write(&slub_lock);
2676 out:
2677 return kmalloc_caches_dma[index];
2678 }
2679 #endif
2680
2681 /*
2682 * Conversion table for small slabs sizes / 8 to the index in the
2683 * kmalloc array. This is necessary for slabs < 192 since we have non power
2684 * of two cache sizes there. The size of larger slabs can be determined using
2685 * fls.
2686 */
2687 static s8 size_index[24] = {
2688 3, /* 8 */
2689 4, /* 16 */
2690 5, /* 24 */
2691 5, /* 32 */
2692 6, /* 40 */
2693 6, /* 48 */
2694 6, /* 56 */
2695 6, /* 64 */
2696 1, /* 72 */
2697 1, /* 80 */
2698 1, /* 88 */
2699 1, /* 96 */
2700 7, /* 104 */
2701 7, /* 112 */
2702 7, /* 120 */
2703 7, /* 128 */
2704 2, /* 136 */
2705 2, /* 144 */
2706 2, /* 152 */
2707 2, /* 160 */
2708 2, /* 168 */
2709 2, /* 176 */
2710 2, /* 184 */
2711 2 /* 192 */
2712 };
2713
2714 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2715 {
2716 int index;
2717
2718 if (size <= 192) {
2719 if (!size)
2720 return ZERO_SIZE_PTR;
2721
2722 index = size_index[(size - 1) / 8];
2723 } else
2724 index = fls(size - 1);
2725
2726 #ifdef CONFIG_ZONE_DMA
2727 if (unlikely((flags & SLUB_DMA)))
2728 return dma_kmalloc_cache(index, flags);
2729
2730 #endif
2731 return &kmalloc_caches[index];
2732 }
2733
2734 void *__kmalloc(size_t size, gfp_t flags)
2735 {
2736 struct kmem_cache *s;
2737 void *ret;
2738
2739 if (unlikely(size > SLUB_MAX_SIZE))
2740 return kmalloc_large(size, flags);
2741
2742 s = get_slab(size, flags);
2743
2744 if (unlikely(ZERO_OR_NULL_PTR(s)))
2745 return s;
2746
2747 ret = slab_alloc(s, flags, -1, _RET_IP_);
2748
2749 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2750
2751 return ret;
2752 }
2753 EXPORT_SYMBOL(__kmalloc);
2754
2755 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2756 {
2757 struct page *page;
2758
2759 flags |= __GFP_COMP | __GFP_NOTRACK;
2760 page = alloc_pages_node(node, flags, get_order(size));
2761 if (page)
2762 return page_address(page);
2763 else
2764 return NULL;
2765 }
2766
2767 #ifdef CONFIG_NUMA
2768 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2769 {
2770 struct kmem_cache *s;
2771 void *ret;
2772
2773 if (unlikely(size > SLUB_MAX_SIZE)) {
2774 ret = kmalloc_large_node(size, flags, node);
2775
2776 trace_kmalloc_node(_RET_IP_, ret,
2777 size, PAGE_SIZE << get_order(size),
2778 flags, node);
2779
2780 return ret;
2781 }
2782
2783 s = get_slab(size, flags);
2784
2785 if (unlikely(ZERO_OR_NULL_PTR(s)))
2786 return s;
2787
2788 ret = slab_alloc(s, flags, node, _RET_IP_);
2789
2790 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2791
2792 return ret;
2793 }
2794 EXPORT_SYMBOL(__kmalloc_node);
2795 #endif
2796
2797 size_t ksize(const void *object)
2798 {
2799 struct page *page;
2800 struct kmem_cache *s;
2801
2802 if (unlikely(object == ZERO_SIZE_PTR))
2803 return 0;
2804
2805 page = virt_to_head_page(object);
2806
2807 if (unlikely(!PageSlab(page))) {
2808 WARN_ON(!PageCompound(page));
2809 return PAGE_SIZE << compound_order(page);
2810 }
2811 s = page->slab;
2812
2813 #ifdef CONFIG_SLUB_DEBUG
2814 /*
2815 * Debugging requires use of the padding between object
2816 * and whatever may come after it.
2817 */
2818 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2819 return s->objsize;
2820
2821 #endif
2822 /*
2823 * If we have the need to store the freelist pointer
2824 * back there or track user information then we can
2825 * only use the space before that information.
2826 */
2827 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2828 return s->inuse;
2829 /*
2830 * Else we can use all the padding etc for the allocation
2831 */
2832 return s->size;
2833 }
2834 EXPORT_SYMBOL(ksize);
2835
2836 void kfree(const void *x)
2837 {
2838 struct page *page;
2839 void *object = (void *)x;
2840
2841 trace_kfree(_RET_IP_, x);
2842
2843 if (unlikely(ZERO_OR_NULL_PTR(x)))
2844 return;
2845
2846 page = virt_to_head_page(x);
2847 if (unlikely(!PageSlab(page))) {
2848 BUG_ON(!PageCompound(page));
2849 put_page(page);
2850 return;
2851 }
2852 slab_free(page->slab, page, object, _RET_IP_);
2853 }
2854 EXPORT_SYMBOL(kfree);
2855
2856 /*
2857 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2858 * the remaining slabs by the number of items in use. The slabs with the
2859 * most items in use come first. New allocations will then fill those up
2860 * and thus they can be removed from the partial lists.
2861 *
2862 * The slabs with the least items are placed last. This results in them
2863 * being allocated from last increasing the chance that the last objects
2864 * are freed in them.
2865 */
2866 int kmem_cache_shrink(struct kmem_cache *s)
2867 {
2868 int node;
2869 int i;
2870 struct kmem_cache_node *n;
2871 struct page *page;
2872 struct page *t;
2873 int objects = oo_objects(s->max);
2874 struct list_head *slabs_by_inuse =
2875 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2876 unsigned long flags;
2877
2878 if (!slabs_by_inuse)
2879 return -ENOMEM;
2880
2881 flush_all(s);
2882 for_each_node_state(node, N_NORMAL_MEMORY) {
2883 n = get_node(s, node);
2884
2885 if (!n->nr_partial)
2886 continue;
2887
2888 for (i = 0; i < objects; i++)
2889 INIT_LIST_HEAD(slabs_by_inuse + i);
2890
2891 spin_lock_irqsave(&n->list_lock, flags);
2892
2893 /*
2894 * Build lists indexed by the items in use in each slab.
2895 *
2896 * Note that concurrent frees may occur while we hold the
2897 * list_lock. page->inuse here is the upper limit.
2898 */
2899 list_for_each_entry_safe(page, t, &n->partial, lru) {
2900 if (!page->inuse && slab_trylock(page)) {
2901 /*
2902 * Must hold slab lock here because slab_free
2903 * may have freed the last object and be
2904 * waiting to release the slab.
2905 */
2906 list_del(&page->lru);
2907 n->nr_partial--;
2908 slab_unlock(page);
2909 discard_slab(s, page);
2910 } else {
2911 list_move(&page->lru,
2912 slabs_by_inuse + page->inuse);
2913 }
2914 }
2915
2916 /*
2917 * Rebuild the partial list with the slabs filled up most
2918 * first and the least used slabs at the end.
2919 */
2920 for (i = objects - 1; i >= 0; i--)
2921 list_splice(slabs_by_inuse + i, n->partial.prev);
2922
2923 spin_unlock_irqrestore(&n->list_lock, flags);
2924 }
2925
2926 kfree(slabs_by_inuse);
2927 return 0;
2928 }
2929 EXPORT_SYMBOL(kmem_cache_shrink);
2930
2931 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2932 static int slab_mem_going_offline_callback(void *arg)
2933 {
2934 struct kmem_cache *s;
2935
2936 down_read(&slub_lock);
2937 list_for_each_entry(s, &slab_caches, list)
2938 kmem_cache_shrink(s);
2939 up_read(&slub_lock);
2940
2941 return 0;
2942 }
2943
2944 static void slab_mem_offline_callback(void *arg)
2945 {
2946 struct kmem_cache_node *n;
2947 struct kmem_cache *s;
2948 struct memory_notify *marg = arg;
2949 int offline_node;
2950
2951 offline_node = marg->status_change_nid;
2952
2953 /*
2954 * If the node still has available memory. we need kmem_cache_node
2955 * for it yet.
2956 */
2957 if (offline_node < 0)
2958 return;
2959
2960 down_read(&slub_lock);
2961 list_for_each_entry(s, &slab_caches, list) {
2962 n = get_node(s, offline_node);
2963 if (n) {
2964 /*
2965 * if n->nr_slabs > 0, slabs still exist on the node
2966 * that is going down. We were unable to free them,
2967 * and offline_pages() function shoudn't call this
2968 * callback. So, we must fail.
2969 */
2970 BUG_ON(slabs_node(s, offline_node));
2971
2972 s->node[offline_node] = NULL;
2973 kmem_cache_free(kmalloc_caches, n);
2974 }
2975 }
2976 up_read(&slub_lock);
2977 }
2978
2979 static int slab_mem_going_online_callback(void *arg)
2980 {
2981 struct kmem_cache_node *n;
2982 struct kmem_cache *s;
2983 struct memory_notify *marg = arg;
2984 int nid = marg->status_change_nid;
2985 int ret = 0;
2986
2987 /*
2988 * If the node's memory is already available, then kmem_cache_node is
2989 * already created. Nothing to do.
2990 */
2991 if (nid < 0)
2992 return 0;
2993
2994 /*
2995 * We are bringing a node online. No memory is available yet. We must
2996 * allocate a kmem_cache_node structure in order to bring the node
2997 * online.
2998 */
2999 down_read(&slub_lock);
3000 list_for_each_entry(s, &slab_caches, list) {
3001 /*
3002 * XXX: kmem_cache_alloc_node will fallback to other nodes
3003 * since memory is not yet available from the node that
3004 * is brought up.
3005 */
3006 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3007 if (!n) {
3008 ret = -ENOMEM;
3009 goto out;
3010 }
3011 init_kmem_cache_node(n, s);
3012 s->node[nid] = n;
3013 }
3014 out:
3015 up_read(&slub_lock);
3016 return ret;
3017 }
3018
3019 static int slab_memory_callback(struct notifier_block *self,
3020 unsigned long action, void *arg)
3021 {
3022 int ret = 0;
3023
3024 switch (action) {
3025 case MEM_GOING_ONLINE:
3026 ret = slab_mem_going_online_callback(arg);
3027 break;
3028 case MEM_GOING_OFFLINE:
3029 ret = slab_mem_going_offline_callback(arg);
3030 break;
3031 case MEM_OFFLINE:
3032 case MEM_CANCEL_ONLINE:
3033 slab_mem_offline_callback(arg);
3034 break;
3035 case MEM_ONLINE:
3036 case MEM_CANCEL_OFFLINE:
3037 break;
3038 }
3039 if (ret)
3040 ret = notifier_from_errno(ret);
3041 else
3042 ret = NOTIFY_OK;
3043 return ret;
3044 }
3045
3046 #endif /* CONFIG_MEMORY_HOTPLUG */
3047
3048 /********************************************************************
3049 * Basic setup of slabs
3050 *******************************************************************/
3051
3052 void __init kmem_cache_init(void)
3053 {
3054 int i;
3055 int caches = 0;
3056
3057 init_alloc_cpu();
3058
3059 #ifdef CONFIG_NUMA
3060 /*
3061 * Must first have the slab cache available for the allocations of the
3062 * struct kmem_cache_node's. There is special bootstrap code in
3063 * kmem_cache_open for slab_state == DOWN.
3064 */
3065 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3066 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3067 kmalloc_caches[0].refcount = -1;
3068 caches++;
3069
3070 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3071 #endif
3072
3073 /* Able to allocate the per node structures */
3074 slab_state = PARTIAL;
3075
3076 /* Caches that are not of the two-to-the-power-of size */
3077 if (KMALLOC_MIN_SIZE <= 64) {
3078 create_kmalloc_cache(&kmalloc_caches[1],
3079 "kmalloc-96", 96, GFP_NOWAIT);
3080 caches++;
3081 create_kmalloc_cache(&kmalloc_caches[2],
3082 "kmalloc-192", 192, GFP_NOWAIT);
3083 caches++;
3084 }
3085
3086 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3087 create_kmalloc_cache(&kmalloc_caches[i],
3088 "kmalloc", 1 << i, GFP_NOWAIT);
3089 caches++;
3090 }
3091
3092
3093 /*
3094 * Patch up the size_index table if we have strange large alignment
3095 * requirements for the kmalloc array. This is only the case for
3096 * MIPS it seems. The standard arches will not generate any code here.
3097 *
3098 * Largest permitted alignment is 256 bytes due to the way we
3099 * handle the index determination for the smaller caches.
3100 *
3101 * Make sure that nothing crazy happens if someone starts tinkering
3102 * around with ARCH_KMALLOC_MINALIGN
3103 */
3104 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3105 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3106
3107 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3108 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3109
3110 if (KMALLOC_MIN_SIZE == 128) {
3111 /*
3112 * The 192 byte sized cache is not used if the alignment
3113 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3114 * instead.
3115 */
3116 for (i = 128 + 8; i <= 192; i += 8)
3117 size_index[(i - 1) / 8] = 8;
3118 }
3119
3120 slab_state = UP;
3121
3122 /* Provide the correct kmalloc names now that the caches are up */
3123 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3124 kmalloc_caches[i]. name =
3125 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3126
3127 #ifdef CONFIG_SMP
3128 register_cpu_notifier(&slab_notifier);
3129 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3130 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3131 #else
3132 kmem_size = sizeof(struct kmem_cache);
3133 #endif
3134
3135 printk(KERN_INFO
3136 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3137 " CPUs=%d, Nodes=%d\n",
3138 caches, cache_line_size(),
3139 slub_min_order, slub_max_order, slub_min_objects,
3140 nr_cpu_ids, nr_node_ids);
3141 }
3142
3143 void __init kmem_cache_init_late(void)
3144 {
3145 /*
3146 * Interrupts are enabled now so all GFP allocations are safe.
3147 */
3148 slab_gfp_mask = __GFP_BITS_MASK;
3149 }
3150
3151 /*
3152 * Find a mergeable slab cache
3153 */
3154 static int slab_unmergeable(struct kmem_cache *s)
3155 {
3156 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3157 return 1;
3158
3159 if (s->ctor)
3160 return 1;
3161
3162 /*
3163 * We may have set a slab to be unmergeable during bootstrap.
3164 */
3165 if (s->refcount < 0)
3166 return 1;
3167
3168 return 0;
3169 }
3170
3171 static struct kmem_cache *find_mergeable(size_t size,
3172 size_t align, unsigned long flags, const char *name,
3173 void (*ctor)(void *))
3174 {
3175 struct kmem_cache *s;
3176
3177 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3178 return NULL;
3179
3180 if (ctor)
3181 return NULL;
3182
3183 size = ALIGN(size, sizeof(void *));
3184 align = calculate_alignment(flags, align, size);
3185 size = ALIGN(size, align);
3186 flags = kmem_cache_flags(size, flags, name, NULL);
3187
3188 list_for_each_entry(s, &slab_caches, list) {
3189 if (slab_unmergeable(s))
3190 continue;
3191
3192 if (size > s->size)
3193 continue;
3194
3195 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3196 continue;
3197 /*
3198 * Check if alignment is compatible.
3199 * Courtesy of Adrian Drzewiecki
3200 */
3201 if ((s->size & ~(align - 1)) != s->size)
3202 continue;
3203
3204 if (s->size - size >= sizeof(void *))
3205 continue;
3206
3207 return s;
3208 }
3209 return NULL;
3210 }
3211
3212 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3213 size_t align, unsigned long flags, void (*ctor)(void *))
3214 {
3215 struct kmem_cache *s;
3216
3217 down_write(&slub_lock);
3218 s = find_mergeable(size, align, flags, name, ctor);
3219 if (s) {
3220 int cpu;
3221
3222 s->refcount++;
3223 /*
3224 * Adjust the object sizes so that we clear
3225 * the complete object on kzalloc.
3226 */
3227 s->objsize = max(s->objsize, (int)size);
3228
3229 /*
3230 * And then we need to update the object size in the
3231 * per cpu structures
3232 */
3233 for_each_online_cpu(cpu)
3234 get_cpu_slab(s, cpu)->objsize = s->objsize;
3235
3236 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3237 up_write(&slub_lock);
3238
3239 if (sysfs_slab_alias(s, name)) {
3240 down_write(&slub_lock);
3241 s->refcount--;
3242 up_write(&slub_lock);
3243 goto err;
3244 }
3245 return s;
3246 }
3247
3248 s = kmalloc(kmem_size, GFP_KERNEL);
3249 if (s) {
3250 if (kmem_cache_open(s, GFP_KERNEL, name,
3251 size, align, flags, ctor)) {
3252 list_add(&s->list, &slab_caches);
3253 up_write(&slub_lock);
3254 if (sysfs_slab_add(s)) {
3255 down_write(&slub_lock);
3256 list_del(&s->list);
3257 up_write(&slub_lock);
3258 kfree(s);
3259 goto err;
3260 }
3261 return s;
3262 }
3263 kfree(s);
3264 }
3265 up_write(&slub_lock);
3266
3267 err:
3268 if (flags & SLAB_PANIC)
3269 panic("Cannot create slabcache %s\n", name);
3270 else
3271 s = NULL;
3272 return s;
3273 }
3274 EXPORT_SYMBOL(kmem_cache_create);
3275
3276 #ifdef CONFIG_SMP
3277 /*
3278 * Use the cpu notifier to insure that the cpu slabs are flushed when
3279 * necessary.
3280 */
3281 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3282 unsigned long action, void *hcpu)
3283 {
3284 long cpu = (long)hcpu;
3285 struct kmem_cache *s;
3286 unsigned long flags;
3287
3288 switch (action) {
3289 case CPU_UP_PREPARE:
3290 case CPU_UP_PREPARE_FROZEN:
3291 init_alloc_cpu_cpu(cpu);
3292 down_read(&slub_lock);
3293 list_for_each_entry(s, &slab_caches, list)
3294 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3295 GFP_KERNEL);
3296 up_read(&slub_lock);
3297 break;
3298
3299 case CPU_UP_CANCELED:
3300 case CPU_UP_CANCELED_FROZEN:
3301 case CPU_DEAD:
3302 case CPU_DEAD_FROZEN:
3303 down_read(&slub_lock);
3304 list_for_each_entry(s, &slab_caches, list) {
3305 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3306
3307 local_irq_save(flags);
3308 __flush_cpu_slab(s, cpu);
3309 local_irq_restore(flags);
3310 free_kmem_cache_cpu(c, cpu);
3311 s->cpu_slab[cpu] = NULL;
3312 }
3313 up_read(&slub_lock);
3314 break;
3315 default:
3316 break;
3317 }
3318 return NOTIFY_OK;
3319 }
3320
3321 static struct notifier_block __cpuinitdata slab_notifier = {
3322 .notifier_call = slab_cpuup_callback
3323 };
3324
3325 #endif
3326
3327 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3328 {
3329 struct kmem_cache *s;
3330 void *ret;
3331
3332 if (unlikely(size > SLUB_MAX_SIZE))
3333 return kmalloc_large(size, gfpflags);
3334
3335 s = get_slab(size, gfpflags);
3336
3337 if (unlikely(ZERO_OR_NULL_PTR(s)))
3338 return s;
3339
3340 ret = slab_alloc(s, gfpflags, -1, caller);
3341
3342 /* Honor the call site pointer we recieved. */
3343 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3344
3345 return ret;
3346 }
3347
3348 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3349 int node, unsigned long caller)
3350 {
3351 struct kmem_cache *s;
3352 void *ret;
3353
3354 if (unlikely(size > SLUB_MAX_SIZE))
3355 return kmalloc_large_node(size, gfpflags, node);
3356
3357 s = get_slab(size, gfpflags);
3358
3359 if (unlikely(ZERO_OR_NULL_PTR(s)))
3360 return s;
3361
3362 ret = slab_alloc(s, gfpflags, node, caller);
3363
3364 /* Honor the call site pointer we recieved. */
3365 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3366
3367 return ret;
3368 }
3369
3370 #ifdef CONFIG_SLUB_DEBUG
3371 static unsigned long count_partial(struct kmem_cache_node *n,
3372 int (*get_count)(struct page *))
3373 {
3374 unsigned long flags;
3375 unsigned long x = 0;
3376 struct page *page;
3377
3378 spin_lock_irqsave(&n->list_lock, flags);
3379 list_for_each_entry(page, &n->partial, lru)
3380 x += get_count(page);
3381 spin_unlock_irqrestore(&n->list_lock, flags);
3382 return x;
3383 }
3384
3385 static int count_inuse(struct page *page)
3386 {
3387 return page->inuse;
3388 }
3389
3390 static int count_total(struct page *page)
3391 {
3392 return page->objects;
3393 }
3394
3395 static int count_free(struct page *page)
3396 {
3397 return page->objects - page->inuse;
3398 }
3399
3400 static int validate_slab(struct kmem_cache *s, struct page *page,
3401 unsigned long *map)
3402 {
3403 void *p;
3404 void *addr = page_address(page);
3405
3406 if (!check_slab(s, page) ||
3407 !on_freelist(s, page, NULL))
3408 return 0;
3409
3410 /* Now we know that a valid freelist exists */
3411 bitmap_zero(map, page->objects);
3412
3413 for_each_free_object(p, s, page->freelist) {
3414 set_bit(slab_index(p, s, addr), map);
3415 if (!check_object(s, page, p, 0))
3416 return 0;
3417 }
3418
3419 for_each_object(p, s, addr, page->objects)
3420 if (!test_bit(slab_index(p, s, addr), map))
3421 if (!check_object(s, page, p, 1))
3422 return 0;
3423 return 1;
3424 }
3425
3426 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3427 unsigned long *map)
3428 {
3429 if (slab_trylock(page)) {
3430 validate_slab(s, page, map);
3431 slab_unlock(page);
3432 } else
3433 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3434 s->name, page);
3435
3436 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3437 if (!PageSlubDebug(page))
3438 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3439 "on slab 0x%p\n", s->name, page);
3440 } else {
3441 if (PageSlubDebug(page))
3442 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3443 "slab 0x%p\n", s->name, page);
3444 }
3445 }
3446
3447 static int validate_slab_node(struct kmem_cache *s,
3448 struct kmem_cache_node *n, unsigned long *map)
3449 {
3450 unsigned long count = 0;
3451 struct page *page;
3452 unsigned long flags;
3453
3454 spin_lock_irqsave(&n->list_lock, flags);
3455
3456 list_for_each_entry(page, &n->partial, lru) {
3457 validate_slab_slab(s, page, map);
3458 count++;
3459 }
3460 if (count != n->nr_partial)
3461 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3462 "counter=%ld\n", s->name, count, n->nr_partial);
3463
3464 if (!(s->flags & SLAB_STORE_USER))
3465 goto out;
3466
3467 list_for_each_entry(page, &n->full, lru) {
3468 validate_slab_slab(s, page, map);
3469 count++;
3470 }
3471 if (count != atomic_long_read(&n->nr_slabs))
3472 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3473 "counter=%ld\n", s->name, count,
3474 atomic_long_read(&n->nr_slabs));
3475
3476 out:
3477 spin_unlock_irqrestore(&n->list_lock, flags);
3478 return count;
3479 }
3480
3481 static long validate_slab_cache(struct kmem_cache *s)
3482 {
3483 int node;
3484 unsigned long count = 0;
3485 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3486 sizeof(unsigned long), GFP_KERNEL);
3487
3488 if (!map)
3489 return -ENOMEM;
3490
3491 flush_all(s);
3492 for_each_node_state(node, N_NORMAL_MEMORY) {
3493 struct kmem_cache_node *n = get_node(s, node);
3494
3495 count += validate_slab_node(s, n, map);
3496 }
3497 kfree(map);
3498 return count;
3499 }
3500
3501 #ifdef SLUB_RESILIENCY_TEST
3502 static void resiliency_test(void)
3503 {
3504 u8 *p;
3505
3506 printk(KERN_ERR "SLUB resiliency testing\n");
3507 printk(KERN_ERR "-----------------------\n");
3508 printk(KERN_ERR "A. Corruption after allocation\n");
3509
3510 p = kzalloc(16, GFP_KERNEL);
3511 p[16] = 0x12;
3512 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3513 " 0x12->0x%p\n\n", p + 16);
3514
3515 validate_slab_cache(kmalloc_caches + 4);
3516
3517 /* Hmmm... The next two are dangerous */
3518 p = kzalloc(32, GFP_KERNEL);
3519 p[32 + sizeof(void *)] = 0x34;
3520 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3521 " 0x34 -> -0x%p\n", p);
3522 printk(KERN_ERR
3523 "If allocated object is overwritten then not detectable\n\n");
3524
3525 validate_slab_cache(kmalloc_caches + 5);
3526 p = kzalloc(64, GFP_KERNEL);
3527 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3528 *p = 0x56;
3529 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3530 p);
3531 printk(KERN_ERR
3532 "If allocated object is overwritten then not detectable\n\n");
3533 validate_slab_cache(kmalloc_caches + 6);
3534
3535 printk(KERN_ERR "\nB. Corruption after free\n");
3536 p = kzalloc(128, GFP_KERNEL);
3537 kfree(p);
3538 *p = 0x78;
3539 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3540 validate_slab_cache(kmalloc_caches + 7);
3541
3542 p = kzalloc(256, GFP_KERNEL);
3543 kfree(p);
3544 p[50] = 0x9a;
3545 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3546 p);
3547 validate_slab_cache(kmalloc_caches + 8);
3548
3549 p = kzalloc(512, GFP_KERNEL);
3550 kfree(p);
3551 p[512] = 0xab;
3552 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3553 validate_slab_cache(kmalloc_caches + 9);
3554 }
3555 #else
3556 static void resiliency_test(void) {};
3557 #endif
3558
3559 /*
3560 * Generate lists of code addresses where slabcache objects are allocated
3561 * and freed.
3562 */
3563
3564 struct location {
3565 unsigned long count;
3566 unsigned long addr;
3567 long long sum_time;
3568 long min_time;
3569 long max_time;
3570 long min_pid;
3571 long max_pid;
3572 DECLARE_BITMAP(cpus, NR_CPUS);
3573 nodemask_t nodes;
3574 };
3575
3576 struct loc_track {
3577 unsigned long max;
3578 unsigned long count;
3579 struct location *loc;
3580 };
3581
3582 static void free_loc_track(struct loc_track *t)
3583 {
3584 if (t->max)
3585 free_pages((unsigned long)t->loc,
3586 get_order(sizeof(struct location) * t->max));
3587 }
3588
3589 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3590 {
3591 struct location *l;
3592 int order;
3593
3594 order = get_order(sizeof(struct location) * max);
3595
3596 l = (void *)__get_free_pages(flags, order);
3597 if (!l)
3598 return 0;
3599
3600 if (t->count) {
3601 memcpy(l, t->loc, sizeof(struct location) * t->count);
3602 free_loc_track(t);
3603 }
3604 t->max = max;
3605 t->loc = l;
3606 return 1;
3607 }
3608
3609 static int add_location(struct loc_track *t, struct kmem_cache *s,
3610 const struct track *track)
3611 {
3612 long start, end, pos;
3613 struct location *l;
3614 unsigned long caddr;
3615 unsigned long age = jiffies - track->when;
3616
3617 start = -1;
3618 end = t->count;
3619
3620 for ( ; ; ) {
3621 pos = start + (end - start + 1) / 2;
3622
3623 /*
3624 * There is nothing at "end". If we end up there
3625 * we need to add something to before end.
3626 */
3627 if (pos == end)
3628 break;
3629
3630 caddr = t->loc[pos].addr;
3631 if (track->addr == caddr) {
3632
3633 l = &t->loc[pos];
3634 l->count++;
3635 if (track->when) {
3636 l->sum_time += age;
3637 if (age < l->min_time)
3638 l->min_time = age;
3639 if (age > l->max_time)
3640 l->max_time = age;
3641
3642 if (track->pid < l->min_pid)
3643 l->min_pid = track->pid;
3644 if (track->pid > l->max_pid)
3645 l->max_pid = track->pid;
3646
3647 cpumask_set_cpu(track->cpu,
3648 to_cpumask(l->cpus));
3649 }
3650 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3651 return 1;
3652 }
3653
3654 if (track->addr < caddr)
3655 end = pos;
3656 else
3657 start = pos;
3658 }
3659
3660 /*
3661 * Not found. Insert new tracking element.
3662 */
3663 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3664 return 0;
3665
3666 l = t->loc + pos;
3667 if (pos < t->count)
3668 memmove(l + 1, l,
3669 (t->count - pos) * sizeof(struct location));
3670 t->count++;
3671 l->count = 1;
3672 l->addr = track->addr;
3673 l->sum_time = age;
3674 l->min_time = age;
3675 l->max_time = age;
3676 l->min_pid = track->pid;
3677 l->max_pid = track->pid;
3678 cpumask_clear(to_cpumask(l->cpus));
3679 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3680 nodes_clear(l->nodes);
3681 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3682 return 1;
3683 }
3684
3685 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3686 struct page *page, enum track_item alloc)
3687 {
3688 void *addr = page_address(page);
3689 DECLARE_BITMAP(map, page->objects);
3690 void *p;
3691
3692 bitmap_zero(map, page->objects);
3693 for_each_free_object(p, s, page->freelist)
3694 set_bit(slab_index(p, s, addr), map);
3695
3696 for_each_object(p, s, addr, page->objects)
3697 if (!test_bit(slab_index(p, s, addr), map))
3698 add_location(t, s, get_track(s, p, alloc));
3699 }
3700
3701 static int list_locations(struct kmem_cache *s, char *buf,
3702 enum track_item alloc)
3703 {
3704 int len = 0;
3705 unsigned long i;
3706 struct loc_track t = { 0, 0, NULL };
3707 int node;
3708
3709 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3710 GFP_TEMPORARY))
3711 return sprintf(buf, "Out of memory\n");
3712
3713 /* Push back cpu slabs */
3714 flush_all(s);
3715
3716 for_each_node_state(node, N_NORMAL_MEMORY) {
3717 struct kmem_cache_node *n = get_node(s, node);
3718 unsigned long flags;
3719 struct page *page;
3720
3721 if (!atomic_long_read(&n->nr_slabs))
3722 continue;
3723
3724 spin_lock_irqsave(&n->list_lock, flags);
3725 list_for_each_entry(page, &n->partial, lru)
3726 process_slab(&t, s, page, alloc);
3727 list_for_each_entry(page, &n->full, lru)
3728 process_slab(&t, s, page, alloc);
3729 spin_unlock_irqrestore(&n->list_lock, flags);
3730 }
3731
3732 for (i = 0; i < t.count; i++) {
3733 struct location *l = &t.loc[i];
3734
3735 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3736 break;
3737 len += sprintf(buf + len, "%7ld ", l->count);
3738
3739 if (l->addr)
3740 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3741 else
3742 len += sprintf(buf + len, "<not-available>");
3743
3744 if (l->sum_time != l->min_time) {
3745 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3746 l->min_time,
3747 (long)div_u64(l->sum_time, l->count),
3748 l->max_time);
3749 } else
3750 len += sprintf(buf + len, " age=%ld",
3751 l->min_time);
3752
3753 if (l->min_pid != l->max_pid)
3754 len += sprintf(buf + len, " pid=%ld-%ld",
3755 l->min_pid, l->max_pid);
3756 else
3757 len += sprintf(buf + len, " pid=%ld",
3758 l->min_pid);
3759
3760 if (num_online_cpus() > 1 &&
3761 !cpumask_empty(to_cpumask(l->cpus)) &&
3762 len < PAGE_SIZE - 60) {
3763 len += sprintf(buf + len, " cpus=");
3764 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3765 to_cpumask(l->cpus));
3766 }
3767
3768 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3769 len < PAGE_SIZE - 60) {
3770 len += sprintf(buf + len, " nodes=");
3771 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3772 l->nodes);
3773 }
3774
3775 len += sprintf(buf + len, "\n");
3776 }
3777
3778 free_loc_track(&t);
3779 if (!t.count)
3780 len += sprintf(buf, "No data\n");
3781 return len;
3782 }
3783
3784 enum slab_stat_type {
3785 SL_ALL, /* All slabs */
3786 SL_PARTIAL, /* Only partially allocated slabs */
3787 SL_CPU, /* Only slabs used for cpu caches */
3788 SL_OBJECTS, /* Determine allocated objects not slabs */
3789 SL_TOTAL /* Determine object capacity not slabs */
3790 };
3791
3792 #define SO_ALL (1 << SL_ALL)
3793 #define SO_PARTIAL (1 << SL_PARTIAL)
3794 #define SO_CPU (1 << SL_CPU)
3795 #define SO_OBJECTS (1 << SL_OBJECTS)
3796 #define SO_TOTAL (1 << SL_TOTAL)
3797
3798 static ssize_t show_slab_objects(struct kmem_cache *s,
3799 char *buf, unsigned long flags)
3800 {
3801 unsigned long total = 0;
3802 int node;
3803 int x;
3804 unsigned long *nodes;
3805 unsigned long *per_cpu;
3806
3807 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3808 if (!nodes)
3809 return -ENOMEM;
3810 per_cpu = nodes + nr_node_ids;
3811
3812 if (flags & SO_CPU) {
3813 int cpu;
3814
3815 for_each_possible_cpu(cpu) {
3816 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3817
3818 if (!c || c->node < 0)
3819 continue;
3820
3821 if (c->page) {
3822 if (flags & SO_TOTAL)
3823 x = c->page->objects;
3824 else if (flags & SO_OBJECTS)
3825 x = c->page->inuse;
3826 else
3827 x = 1;
3828
3829 total += x;
3830 nodes[c->node] += x;
3831 }
3832 per_cpu[c->node]++;
3833 }
3834 }
3835
3836 if (flags & SO_ALL) {
3837 for_each_node_state(node, N_NORMAL_MEMORY) {
3838 struct kmem_cache_node *n = get_node(s, node);
3839
3840 if (flags & SO_TOTAL)
3841 x = atomic_long_read(&n->total_objects);
3842 else if (flags & SO_OBJECTS)
3843 x = atomic_long_read(&n->total_objects) -
3844 count_partial(n, count_free);
3845
3846 else
3847 x = atomic_long_read(&n->nr_slabs);
3848 total += x;
3849 nodes[node] += x;
3850 }
3851
3852 } else if (flags & SO_PARTIAL) {
3853 for_each_node_state(node, N_NORMAL_MEMORY) {
3854 struct kmem_cache_node *n = get_node(s, node);
3855
3856 if (flags & SO_TOTAL)
3857 x = count_partial(n, count_total);
3858 else if (flags & SO_OBJECTS)
3859 x = count_partial(n, count_inuse);
3860 else
3861 x = n->nr_partial;
3862 total += x;
3863 nodes[node] += x;
3864 }
3865 }
3866 x = sprintf(buf, "%lu", total);
3867 #ifdef CONFIG_NUMA
3868 for_each_node_state(node, N_NORMAL_MEMORY)
3869 if (nodes[node])
3870 x += sprintf(buf + x, " N%d=%lu",
3871 node, nodes[node]);
3872 #endif
3873 kfree(nodes);
3874 return x + sprintf(buf + x, "\n");
3875 }
3876
3877 static int any_slab_objects(struct kmem_cache *s)
3878 {
3879 int node;
3880
3881 for_each_online_node(node) {
3882 struct kmem_cache_node *n = get_node(s, node);
3883
3884 if (!n)
3885 continue;
3886
3887 if (atomic_long_read(&n->total_objects))
3888 return 1;
3889 }
3890 return 0;
3891 }
3892
3893 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3894 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3895
3896 struct slab_attribute {
3897 struct attribute attr;
3898 ssize_t (*show)(struct kmem_cache *s, char *buf);
3899 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3900 };
3901
3902 #define SLAB_ATTR_RO(_name) \
3903 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3904
3905 #define SLAB_ATTR(_name) \
3906 static struct slab_attribute _name##_attr = \
3907 __ATTR(_name, 0644, _name##_show, _name##_store)
3908
3909 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3910 {
3911 return sprintf(buf, "%d\n", s->size);
3912 }
3913 SLAB_ATTR_RO(slab_size);
3914
3915 static ssize_t align_show(struct kmem_cache *s, char *buf)
3916 {
3917 return sprintf(buf, "%d\n", s->align);
3918 }
3919 SLAB_ATTR_RO(align);
3920
3921 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3922 {
3923 return sprintf(buf, "%d\n", s->objsize);
3924 }
3925 SLAB_ATTR_RO(object_size);
3926
3927 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3928 {
3929 return sprintf(buf, "%d\n", oo_objects(s->oo));
3930 }
3931 SLAB_ATTR_RO(objs_per_slab);
3932
3933 static ssize_t order_store(struct kmem_cache *s,
3934 const char *buf, size_t length)
3935 {
3936 unsigned long order;
3937 int err;
3938
3939 err = strict_strtoul(buf, 10, &order);
3940 if (err)
3941 return err;
3942
3943 if (order > slub_max_order || order < slub_min_order)
3944 return -EINVAL;
3945
3946 calculate_sizes(s, order);
3947 return length;
3948 }
3949
3950 static ssize_t order_show(struct kmem_cache *s, char *buf)
3951 {
3952 return sprintf(buf, "%d\n", oo_order(s->oo));
3953 }
3954 SLAB_ATTR(order);
3955
3956 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3957 {
3958 return sprintf(buf, "%lu\n", s->min_partial);
3959 }
3960
3961 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3962 size_t length)
3963 {
3964 unsigned long min;
3965 int err;
3966
3967 err = strict_strtoul(buf, 10, &min);
3968 if (err)
3969 return err;
3970
3971 set_min_partial(s, min);
3972 return length;
3973 }
3974 SLAB_ATTR(min_partial);
3975
3976 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3977 {
3978 if (s->ctor) {
3979 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3980
3981 return n + sprintf(buf + n, "\n");
3982 }
3983 return 0;
3984 }
3985 SLAB_ATTR_RO(ctor);
3986
3987 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3988 {
3989 return sprintf(buf, "%d\n", s->refcount - 1);
3990 }
3991 SLAB_ATTR_RO(aliases);
3992
3993 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3994 {
3995 return show_slab_objects(s, buf, SO_ALL);
3996 }
3997 SLAB_ATTR_RO(slabs);
3998
3999 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4000 {
4001 return show_slab_objects(s, buf, SO_PARTIAL);
4002 }
4003 SLAB_ATTR_RO(partial);
4004
4005 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4006 {
4007 return show_slab_objects(s, buf, SO_CPU);
4008 }
4009 SLAB_ATTR_RO(cpu_slabs);
4010
4011 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4012 {
4013 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4014 }
4015 SLAB_ATTR_RO(objects);
4016
4017 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4018 {
4019 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4020 }
4021 SLAB_ATTR_RO(objects_partial);
4022
4023 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4024 {
4025 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4026 }
4027 SLAB_ATTR_RO(total_objects);
4028
4029 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4030 {
4031 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4032 }
4033
4034 static ssize_t sanity_checks_store(struct kmem_cache *s,
4035 const char *buf, size_t length)
4036 {
4037 s->flags &= ~SLAB_DEBUG_FREE;
4038 if (buf[0] == '1')
4039 s->flags |= SLAB_DEBUG_FREE;
4040 return length;
4041 }
4042 SLAB_ATTR(sanity_checks);
4043
4044 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4045 {
4046 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4047 }
4048
4049 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4050 size_t length)
4051 {
4052 s->flags &= ~SLAB_TRACE;
4053 if (buf[0] == '1')
4054 s->flags |= SLAB_TRACE;
4055 return length;
4056 }
4057 SLAB_ATTR(trace);
4058
4059 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4060 {
4061 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4062 }
4063
4064 static ssize_t reclaim_account_store(struct kmem_cache *s,
4065 const char *buf, size_t length)
4066 {
4067 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4068 if (buf[0] == '1')
4069 s->flags |= SLAB_RECLAIM_ACCOUNT;
4070 return length;
4071 }
4072 SLAB_ATTR(reclaim_account);
4073
4074 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4075 {
4076 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4077 }
4078 SLAB_ATTR_RO(hwcache_align);
4079
4080 #ifdef CONFIG_ZONE_DMA
4081 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4082 {
4083 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4084 }
4085 SLAB_ATTR_RO(cache_dma);
4086 #endif
4087
4088 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4089 {
4090 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4091 }
4092 SLAB_ATTR_RO(destroy_by_rcu);
4093
4094 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4095 {
4096 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4097 }
4098
4099 static ssize_t red_zone_store(struct kmem_cache *s,
4100 const char *buf, size_t length)
4101 {
4102 if (any_slab_objects(s))
4103 return -EBUSY;
4104
4105 s->flags &= ~SLAB_RED_ZONE;
4106 if (buf[0] == '1')
4107 s->flags |= SLAB_RED_ZONE;
4108 calculate_sizes(s, -1);
4109 return length;
4110 }
4111 SLAB_ATTR(red_zone);
4112
4113 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4114 {
4115 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4116 }
4117
4118 static ssize_t poison_store(struct kmem_cache *s,
4119 const char *buf, size_t length)
4120 {
4121 if (any_slab_objects(s))
4122 return -EBUSY;
4123
4124 s->flags &= ~SLAB_POISON;
4125 if (buf[0] == '1')
4126 s->flags |= SLAB_POISON;
4127 calculate_sizes(s, -1);
4128 return length;
4129 }
4130 SLAB_ATTR(poison);
4131
4132 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4133 {
4134 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4135 }
4136
4137 static ssize_t store_user_store(struct kmem_cache *s,
4138 const char *buf, size_t length)
4139 {
4140 if (any_slab_objects(s))
4141 return -EBUSY;
4142
4143 s->flags &= ~SLAB_STORE_USER;
4144 if (buf[0] == '1')
4145 s->flags |= SLAB_STORE_USER;
4146 calculate_sizes(s, -1);
4147 return length;
4148 }
4149 SLAB_ATTR(store_user);
4150
4151 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4152 {
4153 return 0;
4154 }
4155
4156 static ssize_t validate_store(struct kmem_cache *s,
4157 const char *buf, size_t length)
4158 {
4159 int ret = -EINVAL;
4160
4161 if (buf[0] == '1') {
4162 ret = validate_slab_cache(s);
4163 if (ret >= 0)
4164 ret = length;
4165 }
4166 return ret;
4167 }
4168 SLAB_ATTR(validate);
4169
4170 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4171 {
4172 return 0;
4173 }
4174
4175 static ssize_t shrink_store(struct kmem_cache *s,
4176 const char *buf, size_t length)
4177 {
4178 if (buf[0] == '1') {
4179 int rc = kmem_cache_shrink(s);
4180
4181 if (rc)
4182 return rc;
4183 } else
4184 return -EINVAL;
4185 return length;
4186 }
4187 SLAB_ATTR(shrink);
4188
4189 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4190 {
4191 if (!(s->flags & SLAB_STORE_USER))
4192 return -ENOSYS;
4193 return list_locations(s, buf, TRACK_ALLOC);
4194 }
4195 SLAB_ATTR_RO(alloc_calls);
4196
4197 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4198 {
4199 if (!(s->flags & SLAB_STORE_USER))
4200 return -ENOSYS;
4201 return list_locations(s, buf, TRACK_FREE);
4202 }
4203 SLAB_ATTR_RO(free_calls);
4204
4205 #ifdef CONFIG_NUMA
4206 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4207 {
4208 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4209 }
4210
4211 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4212 const char *buf, size_t length)
4213 {
4214 unsigned long ratio;
4215 int err;
4216
4217 err = strict_strtoul(buf, 10, &ratio);
4218 if (err)
4219 return err;
4220
4221 if (ratio <= 100)
4222 s->remote_node_defrag_ratio = ratio * 10;
4223
4224 return length;
4225 }
4226 SLAB_ATTR(remote_node_defrag_ratio);
4227 #endif
4228
4229 #ifdef CONFIG_SLUB_STATS
4230 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4231 {
4232 unsigned long sum = 0;
4233 int cpu;
4234 int len;
4235 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4236
4237 if (!data)
4238 return -ENOMEM;
4239
4240 for_each_online_cpu(cpu) {
4241 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4242
4243 data[cpu] = x;
4244 sum += x;
4245 }
4246
4247 len = sprintf(buf, "%lu", sum);
4248
4249 #ifdef CONFIG_SMP
4250 for_each_online_cpu(cpu) {
4251 if (data[cpu] && len < PAGE_SIZE - 20)
4252 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4253 }
4254 #endif
4255 kfree(data);
4256 return len + sprintf(buf + len, "\n");
4257 }
4258
4259 #define STAT_ATTR(si, text) \
4260 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4261 { \
4262 return show_stat(s, buf, si); \
4263 } \
4264 SLAB_ATTR_RO(text); \
4265
4266 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4267 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4268 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4269 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4270 STAT_ATTR(FREE_FROZEN, free_frozen);
4271 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4272 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4273 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4274 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4275 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4276 STAT_ATTR(FREE_SLAB, free_slab);
4277 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4278 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4279 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4280 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4281 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4282 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4283 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4284 #endif
4285
4286 static struct attribute *slab_attrs[] = {
4287 &slab_size_attr.attr,
4288 &object_size_attr.attr,
4289 &objs_per_slab_attr.attr,
4290 &order_attr.attr,
4291 &min_partial_attr.attr,
4292 &objects_attr.attr,
4293 &objects_partial_attr.attr,
4294 &total_objects_attr.attr,
4295 &slabs_attr.attr,
4296 &partial_attr.attr,
4297 &cpu_slabs_attr.attr,
4298 &ctor_attr.attr,
4299 &aliases_attr.attr,
4300 &align_attr.attr,
4301 &sanity_checks_attr.attr,
4302 &trace_attr.attr,
4303 &hwcache_align_attr.attr,
4304 &reclaim_account_attr.attr,
4305 &destroy_by_rcu_attr.attr,
4306 &red_zone_attr.attr,
4307 &poison_attr.attr,
4308 &store_user_attr.attr,
4309 &validate_attr.attr,
4310 &shrink_attr.attr,
4311 &alloc_calls_attr.attr,
4312 &free_calls_attr.attr,
4313 #ifdef CONFIG_ZONE_DMA
4314 &cache_dma_attr.attr,
4315 #endif
4316 #ifdef CONFIG_NUMA
4317 &remote_node_defrag_ratio_attr.attr,
4318 #endif
4319 #ifdef CONFIG_SLUB_STATS
4320 &alloc_fastpath_attr.attr,
4321 &alloc_slowpath_attr.attr,
4322 &free_fastpath_attr.attr,
4323 &free_slowpath_attr.attr,
4324 &free_frozen_attr.attr,
4325 &free_add_partial_attr.attr,
4326 &free_remove_partial_attr.attr,
4327 &alloc_from_partial_attr.attr,
4328 &alloc_slab_attr.attr,
4329 &alloc_refill_attr.attr,
4330 &free_slab_attr.attr,
4331 &cpuslab_flush_attr.attr,
4332 &deactivate_full_attr.attr,
4333 &deactivate_empty_attr.attr,
4334 &deactivate_to_head_attr.attr,
4335 &deactivate_to_tail_attr.attr,
4336 &deactivate_remote_frees_attr.attr,
4337 &order_fallback_attr.attr,
4338 #endif
4339 NULL
4340 };
4341
4342 static struct attribute_group slab_attr_group = {
4343 .attrs = slab_attrs,
4344 };
4345
4346 static ssize_t slab_attr_show(struct kobject *kobj,
4347 struct attribute *attr,
4348 char *buf)
4349 {
4350 struct slab_attribute *attribute;
4351 struct kmem_cache *s;
4352 int err;
4353
4354 attribute = to_slab_attr(attr);
4355 s = to_slab(kobj);
4356
4357 if (!attribute->show)
4358 return -EIO;
4359
4360 err = attribute->show(s, buf);
4361
4362 return err;
4363 }
4364
4365 static ssize_t slab_attr_store(struct kobject *kobj,
4366 struct attribute *attr,
4367 const char *buf, size_t len)
4368 {
4369 struct slab_attribute *attribute;
4370 struct kmem_cache *s;
4371 int err;
4372
4373 attribute = to_slab_attr(attr);
4374 s = to_slab(kobj);
4375
4376 if (!attribute->store)
4377 return -EIO;
4378
4379 err = attribute->store(s, buf, len);
4380
4381 return err;
4382 }
4383
4384 static void kmem_cache_release(struct kobject *kobj)
4385 {
4386 struct kmem_cache *s = to_slab(kobj);
4387
4388 kfree(s);
4389 }
4390
4391 static struct sysfs_ops slab_sysfs_ops = {
4392 .show = slab_attr_show,
4393 .store = slab_attr_store,
4394 };
4395
4396 static struct kobj_type slab_ktype = {
4397 .sysfs_ops = &slab_sysfs_ops,
4398 .release = kmem_cache_release
4399 };
4400
4401 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4402 {
4403 struct kobj_type *ktype = get_ktype(kobj);
4404
4405 if (ktype == &slab_ktype)
4406 return 1;
4407 return 0;
4408 }
4409
4410 static struct kset_uevent_ops slab_uevent_ops = {
4411 .filter = uevent_filter,
4412 };
4413
4414 static struct kset *slab_kset;
4415
4416 #define ID_STR_LENGTH 64
4417
4418 /* Create a unique string id for a slab cache:
4419 *
4420 * Format :[flags-]size
4421 */
4422 static char *create_unique_id(struct kmem_cache *s)
4423 {
4424 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4425 char *p = name;
4426
4427 BUG_ON(!name);
4428
4429 *p++ = ':';
4430 /*
4431 * First flags affecting slabcache operations. We will only
4432 * get here for aliasable slabs so we do not need to support
4433 * too many flags. The flags here must cover all flags that
4434 * are matched during merging to guarantee that the id is
4435 * unique.
4436 */
4437 if (s->flags & SLAB_CACHE_DMA)
4438 *p++ = 'd';
4439 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4440 *p++ = 'a';
4441 if (s->flags & SLAB_DEBUG_FREE)
4442 *p++ = 'F';
4443 if (!(s->flags & SLAB_NOTRACK))
4444 *p++ = 't';
4445 if (p != name + 1)
4446 *p++ = '-';
4447 p += sprintf(p, "%07d", s->size);
4448 BUG_ON(p > name + ID_STR_LENGTH - 1);
4449 return name;
4450 }
4451
4452 static int sysfs_slab_add(struct kmem_cache *s)
4453 {
4454 int err;
4455 const char *name;
4456 int unmergeable;
4457
4458 if (slab_state < SYSFS)
4459 /* Defer until later */
4460 return 0;
4461
4462 unmergeable = slab_unmergeable(s);
4463 if (unmergeable) {
4464 /*
4465 * Slabcache can never be merged so we can use the name proper.
4466 * This is typically the case for debug situations. In that
4467 * case we can catch duplicate names easily.
4468 */
4469 sysfs_remove_link(&slab_kset->kobj, s->name);
4470 name = s->name;
4471 } else {
4472 /*
4473 * Create a unique name for the slab as a target
4474 * for the symlinks.
4475 */
4476 name = create_unique_id(s);
4477 }
4478
4479 s->kobj.kset = slab_kset;
4480 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4481 if (err) {
4482 kobject_put(&s->kobj);
4483 return err;
4484 }
4485
4486 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4487 if (err)
4488 return err;
4489 kobject_uevent(&s->kobj, KOBJ_ADD);
4490 if (!unmergeable) {
4491 /* Setup first alias */
4492 sysfs_slab_alias(s, s->name);
4493 kfree(name);
4494 }
4495 return 0;
4496 }
4497
4498 static void sysfs_slab_remove(struct kmem_cache *s)
4499 {
4500 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4501 kobject_del(&s->kobj);
4502 kobject_put(&s->kobj);
4503 }
4504
4505 /*
4506 * Need to buffer aliases during bootup until sysfs becomes
4507 * available lest we lose that information.
4508 */
4509 struct saved_alias {
4510 struct kmem_cache *s;
4511 const char *name;
4512 struct saved_alias *next;
4513 };
4514
4515 static struct saved_alias *alias_list;
4516
4517 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4518 {
4519 struct saved_alias *al;
4520
4521 if (slab_state == SYSFS) {
4522 /*
4523 * If we have a leftover link then remove it.
4524 */
4525 sysfs_remove_link(&slab_kset->kobj, name);
4526 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4527 }
4528
4529 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4530 if (!al)
4531 return -ENOMEM;
4532
4533 al->s = s;
4534 al->name = name;
4535 al->next = alias_list;
4536 alias_list = al;
4537 return 0;
4538 }
4539
4540 static int __init slab_sysfs_init(void)
4541 {
4542 struct kmem_cache *s;
4543 int err;
4544
4545 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4546 if (!slab_kset) {
4547 printk(KERN_ERR "Cannot register slab subsystem.\n");
4548 return -ENOSYS;
4549 }
4550
4551 slab_state = SYSFS;
4552
4553 list_for_each_entry(s, &slab_caches, list) {
4554 err = sysfs_slab_add(s);
4555 if (err)
4556 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4557 " to sysfs\n", s->name);
4558 }
4559
4560 while (alias_list) {
4561 struct saved_alias *al = alias_list;
4562
4563 alias_list = alias_list->next;
4564 err = sysfs_slab_alias(al->s, al->name);
4565 if (err)
4566 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4567 " %s to sysfs\n", s->name);
4568 kfree(al);
4569 }
4570
4571 resiliency_test();
4572 return 0;
4573 }
4574
4575 __initcall(slab_sysfs_init);
4576 #endif
4577
4578 /*
4579 * The /proc/slabinfo ABI
4580 */
4581 #ifdef CONFIG_SLABINFO
4582 static void print_slabinfo_header(struct seq_file *m)
4583 {
4584 seq_puts(m, "slabinfo - version: 2.1\n");
4585 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4586 "<objperslab> <pagesperslab>");
4587 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4588 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4589 seq_putc(m, '\n');
4590 }
4591
4592 static void *s_start(struct seq_file *m, loff_t *pos)
4593 {
4594 loff_t n = *pos;
4595
4596 down_read(&slub_lock);
4597 if (!n)
4598 print_slabinfo_header(m);
4599
4600 return seq_list_start(&slab_caches, *pos);
4601 }
4602
4603 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4604 {
4605 return seq_list_next(p, &slab_caches, pos);
4606 }
4607
4608 static void s_stop(struct seq_file *m, void *p)
4609 {
4610 up_read(&slub_lock);
4611 }
4612
4613 static int s_show(struct seq_file *m, void *p)
4614 {
4615 unsigned long nr_partials = 0;
4616 unsigned long nr_slabs = 0;
4617 unsigned long nr_inuse = 0;
4618 unsigned long nr_objs = 0;
4619 unsigned long nr_free = 0;
4620 struct kmem_cache *s;
4621 int node;
4622
4623 s = list_entry(p, struct kmem_cache, list);
4624
4625 for_each_online_node(node) {
4626 struct kmem_cache_node *n = get_node(s, node);
4627
4628 if (!n)
4629 continue;
4630
4631 nr_partials += n->nr_partial;
4632 nr_slabs += atomic_long_read(&n->nr_slabs);
4633 nr_objs += atomic_long_read(&n->total_objects);
4634 nr_free += count_partial(n, count_free);
4635 }
4636
4637 nr_inuse = nr_objs - nr_free;
4638
4639 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4640 nr_objs, s->size, oo_objects(s->oo),
4641 (1 << oo_order(s->oo)));
4642 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4643 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4644 0UL);
4645 seq_putc(m, '\n');
4646 return 0;
4647 }
4648
4649 static const struct seq_operations slabinfo_op = {
4650 .start = s_start,
4651 .next = s_next,
4652 .stop = s_stop,
4653 .show = s_show,
4654 };
4655
4656 static int slabinfo_open(struct inode *inode, struct file *file)
4657 {
4658 return seq_open(file, &slabinfo_op);
4659 }
4660
4661 static const struct file_operations proc_slabinfo_operations = {
4662 .open = slabinfo_open,
4663 .read = seq_read,
4664 .llseek = seq_lseek,
4665 .release = seq_release,
4666 };
4667
4668 static int __init slab_proc_init(void)
4669 {
4670 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4671 return 0;
4672 }
4673 module_init(slab_proc_init);
4674 #endif /* CONFIG_SLABINFO */