hw_breakpoint: Use cpu_possible_mask in {reserve,release}_bp_slot()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slab_common.c
1 /*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6 #include <linux/slab.h>
7
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22
23 #include "slab.h"
24
25 enum slab_state slab_state;
26 LIST_HEAD(slab_caches);
27 DEFINE_MUTEX(slab_mutex);
28 struct kmem_cache *kmem_cache;
29
30 #ifdef CONFIG_DEBUG_VM
31 static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name,
32 size_t size)
33 {
34 struct kmem_cache *s = NULL;
35
36 if (!name || in_interrupt() || size < sizeof(void *) ||
37 size > KMALLOC_MAX_SIZE) {
38 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
39 return -EINVAL;
40 }
41
42 list_for_each_entry(s, &slab_caches, list) {
43 char tmp;
44 int res;
45
46 /*
47 * This happens when the module gets unloaded and doesn't
48 * destroy its slab cache and no-one else reuses the vmalloc
49 * area of the module. Print a warning.
50 */
51 res = probe_kernel_address(s->name, tmp);
52 if (res) {
53 pr_err("Slab cache with size %d has lost its name\n",
54 s->object_size);
55 continue;
56 }
57
58 /*
59 * For simplicity, we won't check this in the list of memcg
60 * caches. We have control over memcg naming, and if there
61 * aren't duplicates in the global list, there won't be any
62 * duplicates in the memcg lists as well.
63 */
64 if (!memcg && !strcmp(s->name, name)) {
65 pr_err("%s (%s): Cache name already exists.\n",
66 __func__, name);
67 dump_stack();
68 s = NULL;
69 return -EINVAL;
70 }
71 }
72
73 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
74 return 0;
75 }
76 #else
77 static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg,
78 const char *name, size_t size)
79 {
80 return 0;
81 }
82 #endif
83
84 #ifdef CONFIG_MEMCG_KMEM
85 int memcg_update_all_caches(int num_memcgs)
86 {
87 struct kmem_cache *s;
88 int ret = 0;
89 mutex_lock(&slab_mutex);
90
91 list_for_each_entry(s, &slab_caches, list) {
92 if (!is_root_cache(s))
93 continue;
94
95 ret = memcg_update_cache_size(s, num_memcgs);
96 /*
97 * See comment in memcontrol.c, memcg_update_cache_size:
98 * Instead of freeing the memory, we'll just leave the caches
99 * up to this point in an updated state.
100 */
101 if (ret)
102 goto out;
103 }
104
105 memcg_update_array_size(num_memcgs);
106 out:
107 mutex_unlock(&slab_mutex);
108 return ret;
109 }
110 #endif
111
112 /*
113 * Figure out what the alignment of the objects will be given a set of
114 * flags, a user specified alignment and the size of the objects.
115 */
116 unsigned long calculate_alignment(unsigned long flags,
117 unsigned long align, unsigned long size)
118 {
119 /*
120 * If the user wants hardware cache aligned objects then follow that
121 * suggestion if the object is sufficiently large.
122 *
123 * The hardware cache alignment cannot override the specified
124 * alignment though. If that is greater then use it.
125 */
126 if (flags & SLAB_HWCACHE_ALIGN) {
127 unsigned long ralign = cache_line_size();
128 while (size <= ralign / 2)
129 ralign /= 2;
130 align = max(align, ralign);
131 }
132
133 if (align < ARCH_SLAB_MINALIGN)
134 align = ARCH_SLAB_MINALIGN;
135
136 return ALIGN(align, sizeof(void *));
137 }
138
139
140 /*
141 * kmem_cache_create - Create a cache.
142 * @name: A string which is used in /proc/slabinfo to identify this cache.
143 * @size: The size of objects to be created in this cache.
144 * @align: The required alignment for the objects.
145 * @flags: SLAB flags
146 * @ctor: A constructor for the objects.
147 *
148 * Returns a ptr to the cache on success, NULL on failure.
149 * Cannot be called within a interrupt, but can be interrupted.
150 * The @ctor is run when new pages are allocated by the cache.
151 *
152 * The flags are
153 *
154 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
155 * to catch references to uninitialised memory.
156 *
157 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
158 * for buffer overruns.
159 *
160 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
161 * cacheline. This can be beneficial if you're counting cycles as closely
162 * as davem.
163 */
164
165 struct kmem_cache *
166 kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size,
167 size_t align, unsigned long flags, void (*ctor)(void *),
168 struct kmem_cache *parent_cache)
169 {
170 struct kmem_cache *s = NULL;
171 int err = 0;
172
173 get_online_cpus();
174 mutex_lock(&slab_mutex);
175
176 if (!kmem_cache_sanity_check(memcg, name, size) == 0)
177 goto out_locked;
178
179 /*
180 * Some allocators will constraint the set of valid flags to a subset
181 * of all flags. We expect them to define CACHE_CREATE_MASK in this
182 * case, and we'll just provide them with a sanitized version of the
183 * passed flags.
184 */
185 flags &= CACHE_CREATE_MASK;
186
187 s = __kmem_cache_alias(memcg, name, size, align, flags, ctor);
188 if (s)
189 goto out_locked;
190
191 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
192 if (s) {
193 s->object_size = s->size = size;
194 s->align = calculate_alignment(flags, align, size);
195 s->ctor = ctor;
196
197 if (memcg_register_cache(memcg, s, parent_cache)) {
198 kmem_cache_free(kmem_cache, s);
199 err = -ENOMEM;
200 goto out_locked;
201 }
202
203 s->name = kstrdup(name, GFP_KERNEL);
204 if (!s->name) {
205 kmem_cache_free(kmem_cache, s);
206 err = -ENOMEM;
207 goto out_locked;
208 }
209
210 err = __kmem_cache_create(s, flags);
211 if (!err) {
212 s->refcount = 1;
213 list_add(&s->list, &slab_caches);
214 memcg_cache_list_add(memcg, s);
215 } else {
216 kfree(s->name);
217 kmem_cache_free(kmem_cache, s);
218 }
219 } else
220 err = -ENOMEM;
221
222 out_locked:
223 mutex_unlock(&slab_mutex);
224 put_online_cpus();
225
226 if (err) {
227
228 if (flags & SLAB_PANIC)
229 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
230 name, err);
231 else {
232 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
233 name, err);
234 dump_stack();
235 }
236
237 return NULL;
238 }
239
240 return s;
241 }
242
243 struct kmem_cache *
244 kmem_cache_create(const char *name, size_t size, size_t align,
245 unsigned long flags, void (*ctor)(void *))
246 {
247 return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor, NULL);
248 }
249 EXPORT_SYMBOL(kmem_cache_create);
250
251 void kmem_cache_destroy(struct kmem_cache *s)
252 {
253 /* Destroy all the children caches if we aren't a memcg cache */
254 kmem_cache_destroy_memcg_children(s);
255
256 get_online_cpus();
257 mutex_lock(&slab_mutex);
258 s->refcount--;
259 if (!s->refcount) {
260 list_del(&s->list);
261
262 if (!__kmem_cache_shutdown(s)) {
263 mutex_unlock(&slab_mutex);
264 if (s->flags & SLAB_DESTROY_BY_RCU)
265 rcu_barrier();
266
267 memcg_release_cache(s);
268 kfree(s->name);
269 kmem_cache_free(kmem_cache, s);
270 } else {
271 list_add(&s->list, &slab_caches);
272 mutex_unlock(&slab_mutex);
273 printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
274 s->name);
275 dump_stack();
276 }
277 } else {
278 mutex_unlock(&slab_mutex);
279 }
280 put_online_cpus();
281 }
282 EXPORT_SYMBOL(kmem_cache_destroy);
283
284 int slab_is_available(void)
285 {
286 return slab_state >= UP;
287 }
288
289 #ifndef CONFIG_SLOB
290 /* Create a cache during boot when no slab services are available yet */
291 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
292 unsigned long flags)
293 {
294 int err;
295
296 s->name = name;
297 s->size = s->object_size = size;
298 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
299 err = __kmem_cache_create(s, flags);
300
301 if (err)
302 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
303 name, size, err);
304
305 s->refcount = -1; /* Exempt from merging for now */
306 }
307
308 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
309 unsigned long flags)
310 {
311 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
312
313 if (!s)
314 panic("Out of memory when creating slab %s\n", name);
315
316 create_boot_cache(s, name, size, flags);
317 list_add(&s->list, &slab_caches);
318 s->refcount = 1;
319 return s;
320 }
321
322 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
323 EXPORT_SYMBOL(kmalloc_caches);
324
325 #ifdef CONFIG_ZONE_DMA
326 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
327 EXPORT_SYMBOL(kmalloc_dma_caches);
328 #endif
329
330 /*
331 * Conversion table for small slabs sizes / 8 to the index in the
332 * kmalloc array. This is necessary for slabs < 192 since we have non power
333 * of two cache sizes there. The size of larger slabs can be determined using
334 * fls.
335 */
336 static s8 size_index[24] = {
337 3, /* 8 */
338 4, /* 16 */
339 5, /* 24 */
340 5, /* 32 */
341 6, /* 40 */
342 6, /* 48 */
343 6, /* 56 */
344 6, /* 64 */
345 1, /* 72 */
346 1, /* 80 */
347 1, /* 88 */
348 1, /* 96 */
349 7, /* 104 */
350 7, /* 112 */
351 7, /* 120 */
352 7, /* 128 */
353 2, /* 136 */
354 2, /* 144 */
355 2, /* 152 */
356 2, /* 160 */
357 2, /* 168 */
358 2, /* 176 */
359 2, /* 184 */
360 2 /* 192 */
361 };
362
363 static inline int size_index_elem(size_t bytes)
364 {
365 return (bytes - 1) / 8;
366 }
367
368 /*
369 * Find the kmem_cache structure that serves a given size of
370 * allocation
371 */
372 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
373 {
374 int index;
375
376 if (WARN_ON_ONCE(size > KMALLOC_MAX_SIZE))
377 return NULL;
378
379 if (size <= 192) {
380 if (!size)
381 return ZERO_SIZE_PTR;
382
383 index = size_index[size_index_elem(size)];
384 } else
385 index = fls(size - 1);
386
387 #ifdef CONFIG_ZONE_DMA
388 if (unlikely((flags & GFP_DMA)))
389 return kmalloc_dma_caches[index];
390
391 #endif
392 return kmalloc_caches[index];
393 }
394
395 /*
396 * Create the kmalloc array. Some of the regular kmalloc arrays
397 * may already have been created because they were needed to
398 * enable allocations for slab creation.
399 */
400 void __init create_kmalloc_caches(unsigned long flags)
401 {
402 int i;
403
404 /*
405 * Patch up the size_index table if we have strange large alignment
406 * requirements for the kmalloc array. This is only the case for
407 * MIPS it seems. The standard arches will not generate any code here.
408 *
409 * Largest permitted alignment is 256 bytes due to the way we
410 * handle the index determination for the smaller caches.
411 *
412 * Make sure that nothing crazy happens if someone starts tinkering
413 * around with ARCH_KMALLOC_MINALIGN
414 */
415 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
416 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
417
418 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
419 int elem = size_index_elem(i);
420
421 if (elem >= ARRAY_SIZE(size_index))
422 break;
423 size_index[elem] = KMALLOC_SHIFT_LOW;
424 }
425
426 if (KMALLOC_MIN_SIZE >= 64) {
427 /*
428 * The 96 byte size cache is not used if the alignment
429 * is 64 byte.
430 */
431 for (i = 64 + 8; i <= 96; i += 8)
432 size_index[size_index_elem(i)] = 7;
433
434 }
435
436 if (KMALLOC_MIN_SIZE >= 128) {
437 /*
438 * The 192 byte sized cache is not used if the alignment
439 * is 128 byte. Redirect kmalloc to use the 256 byte cache
440 * instead.
441 */
442 for (i = 128 + 8; i <= 192; i += 8)
443 size_index[size_index_elem(i)] = 8;
444 }
445 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
446 if (!kmalloc_caches[i]) {
447 kmalloc_caches[i] = create_kmalloc_cache(NULL,
448 1 << i, flags);
449 }
450
451 /*
452 * Caches that are not of the two-to-the-power-of size.
453 * These have to be created immediately after the
454 * earlier power of two caches
455 */
456 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
457 kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
458
459 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
460 kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
461 }
462
463 /* Kmalloc array is now usable */
464 slab_state = UP;
465
466 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
467 struct kmem_cache *s = kmalloc_caches[i];
468 char *n;
469
470 if (s) {
471 n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
472
473 BUG_ON(!n);
474 s->name = n;
475 }
476 }
477
478 #ifdef CONFIG_ZONE_DMA
479 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
480 struct kmem_cache *s = kmalloc_caches[i];
481
482 if (s) {
483 int size = kmalloc_size(i);
484 char *n = kasprintf(GFP_NOWAIT,
485 "dma-kmalloc-%d", size);
486
487 BUG_ON(!n);
488 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
489 size, SLAB_CACHE_DMA | flags);
490 }
491 }
492 #endif
493 }
494 #endif /* !CONFIG_SLOB */
495
496
497 #ifdef CONFIG_SLABINFO
498 void print_slabinfo_header(struct seq_file *m)
499 {
500 /*
501 * Output format version, so at least we can change it
502 * without _too_ many complaints.
503 */
504 #ifdef CONFIG_DEBUG_SLAB
505 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
506 #else
507 seq_puts(m, "slabinfo - version: 2.1\n");
508 #endif
509 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
510 "<objperslab> <pagesperslab>");
511 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
512 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
513 #ifdef CONFIG_DEBUG_SLAB
514 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
515 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
516 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
517 #endif
518 seq_putc(m, '\n');
519 }
520
521 static void *s_start(struct seq_file *m, loff_t *pos)
522 {
523 loff_t n = *pos;
524
525 mutex_lock(&slab_mutex);
526 if (!n)
527 print_slabinfo_header(m);
528
529 return seq_list_start(&slab_caches, *pos);
530 }
531
532 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
533 {
534 return seq_list_next(p, &slab_caches, pos);
535 }
536
537 static void s_stop(struct seq_file *m, void *p)
538 {
539 mutex_unlock(&slab_mutex);
540 }
541
542 static void
543 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
544 {
545 struct kmem_cache *c;
546 struct slabinfo sinfo;
547 int i;
548
549 if (!is_root_cache(s))
550 return;
551
552 for_each_memcg_cache_index(i) {
553 c = cache_from_memcg(s, i);
554 if (!c)
555 continue;
556
557 memset(&sinfo, 0, sizeof(sinfo));
558 get_slabinfo(c, &sinfo);
559
560 info->active_slabs += sinfo.active_slabs;
561 info->num_slabs += sinfo.num_slabs;
562 info->shared_avail += sinfo.shared_avail;
563 info->active_objs += sinfo.active_objs;
564 info->num_objs += sinfo.num_objs;
565 }
566 }
567
568 int cache_show(struct kmem_cache *s, struct seq_file *m)
569 {
570 struct slabinfo sinfo;
571
572 memset(&sinfo, 0, sizeof(sinfo));
573 get_slabinfo(s, &sinfo);
574
575 memcg_accumulate_slabinfo(s, &sinfo);
576
577 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
578 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
579 sinfo.objects_per_slab, (1 << sinfo.cache_order));
580
581 seq_printf(m, " : tunables %4u %4u %4u",
582 sinfo.limit, sinfo.batchcount, sinfo.shared);
583 seq_printf(m, " : slabdata %6lu %6lu %6lu",
584 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
585 slabinfo_show_stats(m, s);
586 seq_putc(m, '\n');
587 return 0;
588 }
589
590 static int s_show(struct seq_file *m, void *p)
591 {
592 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
593
594 if (!is_root_cache(s))
595 return 0;
596 return cache_show(s, m);
597 }
598
599 /*
600 * slabinfo_op - iterator that generates /proc/slabinfo
601 *
602 * Output layout:
603 * cache-name
604 * num-active-objs
605 * total-objs
606 * object size
607 * num-active-slabs
608 * total-slabs
609 * num-pages-per-slab
610 * + further values on SMP and with statistics enabled
611 */
612 static const struct seq_operations slabinfo_op = {
613 .start = s_start,
614 .next = s_next,
615 .stop = s_stop,
616 .show = s_show,
617 };
618
619 static int slabinfo_open(struct inode *inode, struct file *file)
620 {
621 return seq_open(file, &slabinfo_op);
622 }
623
624 static const struct file_operations proc_slabinfo_operations = {
625 .open = slabinfo_open,
626 .read = seq_read,
627 .write = slabinfo_write,
628 .llseek = seq_lseek,
629 .release = seq_release,
630 };
631
632 static int __init slab_proc_init(void)
633 {
634 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
635 return 0;
636 }
637 module_init(slab_proc_init);
638 #endif /* CONFIG_SLABINFO */