Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slab_common.c
1 /*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6 #include <linux/slab.h>
7
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22
23 #include "slab.h"
24
25 enum slab_state slab_state;
26 LIST_HEAD(slab_caches);
27 DEFINE_MUTEX(slab_mutex);
28 struct kmem_cache *kmem_cache;
29
30 #ifdef CONFIG_DEBUG_VM
31 static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name,
32 size_t size)
33 {
34 struct kmem_cache *s = NULL;
35
36 if (!name || in_interrupt() || size < sizeof(void *) ||
37 size > KMALLOC_MAX_SIZE) {
38 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
39 return -EINVAL;
40 }
41
42 list_for_each_entry(s, &slab_caches, list) {
43 char tmp;
44 int res;
45
46 /*
47 * This happens when the module gets unloaded and doesn't
48 * destroy its slab cache and no-one else reuses the vmalloc
49 * area of the module. Print a warning.
50 */
51 res = probe_kernel_address(s->name, tmp);
52 if (res) {
53 pr_err("Slab cache with size %d has lost its name\n",
54 s->object_size);
55 continue;
56 }
57
58 #if !defined(CONFIG_SLUB)
59 /*
60 * For simplicity, we won't check this in the list of memcg
61 * caches. We have control over memcg naming, and if there
62 * aren't duplicates in the global list, there won't be any
63 * duplicates in the memcg lists as well.
64 */
65 if (!memcg && !strcmp(s->name, name)) {
66 pr_err("%s (%s): Cache name already exists.\n",
67 __func__, name);
68 dump_stack();
69 s = NULL;
70 return -EINVAL;
71 }
72 #endif
73 }
74
75 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
76 return 0;
77 }
78 #else
79 static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg,
80 const char *name, size_t size)
81 {
82 return 0;
83 }
84 #endif
85
86 #ifdef CONFIG_MEMCG_KMEM
87 int memcg_update_all_caches(int num_memcgs)
88 {
89 struct kmem_cache *s;
90 int ret = 0;
91 mutex_lock(&slab_mutex);
92
93 list_for_each_entry(s, &slab_caches, list) {
94 if (!is_root_cache(s))
95 continue;
96
97 ret = memcg_update_cache_size(s, num_memcgs);
98 /*
99 * See comment in memcontrol.c, memcg_update_cache_size:
100 * Instead of freeing the memory, we'll just leave the caches
101 * up to this point in an updated state.
102 */
103 if (ret)
104 goto out;
105 }
106
107 memcg_update_array_size(num_memcgs);
108 out:
109 mutex_unlock(&slab_mutex);
110 return ret;
111 }
112 #endif
113
114 /*
115 * Figure out what the alignment of the objects will be given a set of
116 * flags, a user specified alignment and the size of the objects.
117 */
118 unsigned long calculate_alignment(unsigned long flags,
119 unsigned long align, unsigned long size)
120 {
121 /*
122 * If the user wants hardware cache aligned objects then follow that
123 * suggestion if the object is sufficiently large.
124 *
125 * The hardware cache alignment cannot override the specified
126 * alignment though. If that is greater then use it.
127 */
128 if (flags & SLAB_HWCACHE_ALIGN) {
129 unsigned long ralign = cache_line_size();
130 while (size <= ralign / 2)
131 ralign /= 2;
132 align = max(align, ralign);
133 }
134
135 if (align < ARCH_SLAB_MINALIGN)
136 align = ARCH_SLAB_MINALIGN;
137
138 return ALIGN(align, sizeof(void *));
139 }
140
141
142 /*
143 * kmem_cache_create - Create a cache.
144 * @name: A string which is used in /proc/slabinfo to identify this cache.
145 * @size: The size of objects to be created in this cache.
146 * @align: The required alignment for the objects.
147 * @flags: SLAB flags
148 * @ctor: A constructor for the objects.
149 *
150 * Returns a ptr to the cache on success, NULL on failure.
151 * Cannot be called within a interrupt, but can be interrupted.
152 * The @ctor is run when new pages are allocated by the cache.
153 *
154 * The flags are
155 *
156 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
157 * to catch references to uninitialised memory.
158 *
159 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
160 * for buffer overruns.
161 *
162 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
163 * cacheline. This can be beneficial if you're counting cycles as closely
164 * as davem.
165 */
166
167 struct kmem_cache *
168 kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size,
169 size_t align, unsigned long flags, void (*ctor)(void *),
170 struct kmem_cache *parent_cache)
171 {
172 struct kmem_cache *s = NULL;
173 int err = 0;
174
175 get_online_cpus();
176 mutex_lock(&slab_mutex);
177
178 if (!kmem_cache_sanity_check(memcg, name, size) == 0)
179 goto out_locked;
180
181 /*
182 * Some allocators will constraint the set of valid flags to a subset
183 * of all flags. We expect them to define CACHE_CREATE_MASK in this
184 * case, and we'll just provide them with a sanitized version of the
185 * passed flags.
186 */
187 flags &= CACHE_CREATE_MASK;
188
189 s = __kmem_cache_alias(memcg, name, size, align, flags, ctor);
190 if (s)
191 goto out_locked;
192
193 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
194 if (s) {
195 s->object_size = s->size = size;
196 s->align = calculate_alignment(flags, align, size);
197 s->ctor = ctor;
198
199 if (memcg_register_cache(memcg, s, parent_cache)) {
200 kmem_cache_free(kmem_cache, s);
201 err = -ENOMEM;
202 goto out_locked;
203 }
204
205 s->name = kstrdup(name, GFP_KERNEL);
206 if (!s->name) {
207 kmem_cache_free(kmem_cache, s);
208 err = -ENOMEM;
209 goto out_locked;
210 }
211
212 err = __kmem_cache_create(s, flags);
213 if (!err) {
214 s->refcount = 1;
215 list_add(&s->list, &slab_caches);
216 memcg_cache_list_add(memcg, s);
217 } else {
218 kfree(s->name);
219 kmem_cache_free(kmem_cache, s);
220 }
221 } else
222 err = -ENOMEM;
223
224 out_locked:
225 mutex_unlock(&slab_mutex);
226 put_online_cpus();
227
228 if (err) {
229
230 if (flags & SLAB_PANIC)
231 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
232 name, err);
233 else {
234 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
235 name, err);
236 dump_stack();
237 }
238
239 return NULL;
240 }
241
242 return s;
243 }
244
245 struct kmem_cache *
246 kmem_cache_create(const char *name, size_t size, size_t align,
247 unsigned long flags, void (*ctor)(void *))
248 {
249 return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor, NULL);
250 }
251 EXPORT_SYMBOL(kmem_cache_create);
252
253 void kmem_cache_destroy(struct kmem_cache *s)
254 {
255 /* Destroy all the children caches if we aren't a memcg cache */
256 kmem_cache_destroy_memcg_children(s);
257
258 get_online_cpus();
259 mutex_lock(&slab_mutex);
260 s->refcount--;
261 if (!s->refcount) {
262 list_del(&s->list);
263
264 if (!__kmem_cache_shutdown(s)) {
265 mutex_unlock(&slab_mutex);
266 if (s->flags & SLAB_DESTROY_BY_RCU)
267 rcu_barrier();
268
269 memcg_release_cache(s);
270 kfree(s->name);
271 kmem_cache_free(kmem_cache, s);
272 } else {
273 list_add(&s->list, &slab_caches);
274 mutex_unlock(&slab_mutex);
275 printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
276 s->name);
277 dump_stack();
278 }
279 } else {
280 mutex_unlock(&slab_mutex);
281 }
282 put_online_cpus();
283 }
284 EXPORT_SYMBOL(kmem_cache_destroy);
285
286 int slab_is_available(void)
287 {
288 return slab_state >= UP;
289 }
290
291 #ifndef CONFIG_SLOB
292 /* Create a cache during boot when no slab services are available yet */
293 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
294 unsigned long flags)
295 {
296 int err;
297
298 s->name = name;
299 s->size = s->object_size = size;
300 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
301 err = __kmem_cache_create(s, flags);
302
303 if (err)
304 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
305 name, size, err);
306
307 s->refcount = -1; /* Exempt from merging for now */
308 }
309
310 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
311 unsigned long flags)
312 {
313 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
314
315 if (!s)
316 panic("Out of memory when creating slab %s\n", name);
317
318 create_boot_cache(s, name, size, flags);
319 list_add(&s->list, &slab_caches);
320 s->refcount = 1;
321 return s;
322 }
323
324 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
325 EXPORT_SYMBOL(kmalloc_caches);
326
327 #ifdef CONFIG_ZONE_DMA
328 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
329 EXPORT_SYMBOL(kmalloc_dma_caches);
330 #endif
331
332 /*
333 * Conversion table for small slabs sizes / 8 to the index in the
334 * kmalloc array. This is necessary for slabs < 192 since we have non power
335 * of two cache sizes there. The size of larger slabs can be determined using
336 * fls.
337 */
338 static s8 size_index[24] = {
339 3, /* 8 */
340 4, /* 16 */
341 5, /* 24 */
342 5, /* 32 */
343 6, /* 40 */
344 6, /* 48 */
345 6, /* 56 */
346 6, /* 64 */
347 1, /* 72 */
348 1, /* 80 */
349 1, /* 88 */
350 1, /* 96 */
351 7, /* 104 */
352 7, /* 112 */
353 7, /* 120 */
354 7, /* 128 */
355 2, /* 136 */
356 2, /* 144 */
357 2, /* 152 */
358 2, /* 160 */
359 2, /* 168 */
360 2, /* 176 */
361 2, /* 184 */
362 2 /* 192 */
363 };
364
365 static inline int size_index_elem(size_t bytes)
366 {
367 return (bytes - 1) / 8;
368 }
369
370 /*
371 * Find the kmem_cache structure that serves a given size of
372 * allocation
373 */
374 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
375 {
376 int index;
377
378 if (size > KMALLOC_MAX_SIZE) {
379 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
380 return NULL;
381 }
382
383 if (size <= 192) {
384 if (!size)
385 return ZERO_SIZE_PTR;
386
387 index = size_index[size_index_elem(size)];
388 } else
389 index = fls(size - 1);
390
391 #ifdef CONFIG_ZONE_DMA
392 if (unlikely((flags & GFP_DMA)))
393 return kmalloc_dma_caches[index];
394
395 #endif
396 return kmalloc_caches[index];
397 }
398
399 /*
400 * Create the kmalloc array. Some of the regular kmalloc arrays
401 * may already have been created because they were needed to
402 * enable allocations for slab creation.
403 */
404 void __init create_kmalloc_caches(unsigned long flags)
405 {
406 int i;
407
408 /*
409 * Patch up the size_index table if we have strange large alignment
410 * requirements for the kmalloc array. This is only the case for
411 * MIPS it seems. The standard arches will not generate any code here.
412 *
413 * Largest permitted alignment is 256 bytes due to the way we
414 * handle the index determination for the smaller caches.
415 *
416 * Make sure that nothing crazy happens if someone starts tinkering
417 * around with ARCH_KMALLOC_MINALIGN
418 */
419 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
420 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
421
422 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
423 int elem = size_index_elem(i);
424
425 if (elem >= ARRAY_SIZE(size_index))
426 break;
427 size_index[elem] = KMALLOC_SHIFT_LOW;
428 }
429
430 if (KMALLOC_MIN_SIZE >= 64) {
431 /*
432 * The 96 byte size cache is not used if the alignment
433 * is 64 byte.
434 */
435 for (i = 64 + 8; i <= 96; i += 8)
436 size_index[size_index_elem(i)] = 7;
437
438 }
439
440 if (KMALLOC_MIN_SIZE >= 128) {
441 /*
442 * The 192 byte sized cache is not used if the alignment
443 * is 128 byte. Redirect kmalloc to use the 256 byte cache
444 * instead.
445 */
446 for (i = 128 + 8; i <= 192; i += 8)
447 size_index[size_index_elem(i)] = 8;
448 }
449 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
450 if (!kmalloc_caches[i]) {
451 kmalloc_caches[i] = create_kmalloc_cache(NULL,
452 1 << i, flags);
453 }
454
455 /*
456 * Caches that are not of the two-to-the-power-of size.
457 * These have to be created immediately after the
458 * earlier power of two caches
459 */
460 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
461 kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
462
463 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
464 kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
465 }
466
467 /* Kmalloc array is now usable */
468 slab_state = UP;
469
470 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
471 struct kmem_cache *s = kmalloc_caches[i];
472 char *n;
473
474 if (s) {
475 n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
476
477 BUG_ON(!n);
478 s->name = n;
479 }
480 }
481
482 #ifdef CONFIG_ZONE_DMA
483 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
484 struct kmem_cache *s = kmalloc_caches[i];
485
486 if (s) {
487 int size = kmalloc_size(i);
488 char *n = kasprintf(GFP_NOWAIT,
489 "dma-kmalloc-%d", size);
490
491 BUG_ON(!n);
492 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
493 size, SLAB_CACHE_DMA | flags);
494 }
495 }
496 #endif
497 }
498 #endif /* !CONFIG_SLOB */
499
500
501 #ifdef CONFIG_SLABINFO
502 void print_slabinfo_header(struct seq_file *m)
503 {
504 /*
505 * Output format version, so at least we can change it
506 * without _too_ many complaints.
507 */
508 #ifdef CONFIG_DEBUG_SLAB
509 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
510 #else
511 seq_puts(m, "slabinfo - version: 2.1\n");
512 #endif
513 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
514 "<objperslab> <pagesperslab>");
515 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
516 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
517 #ifdef CONFIG_DEBUG_SLAB
518 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
519 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
520 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
521 #endif
522 seq_putc(m, '\n');
523 }
524
525 static void *s_start(struct seq_file *m, loff_t *pos)
526 {
527 loff_t n = *pos;
528
529 mutex_lock(&slab_mutex);
530 if (!n)
531 print_slabinfo_header(m);
532
533 return seq_list_start(&slab_caches, *pos);
534 }
535
536 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
537 {
538 return seq_list_next(p, &slab_caches, pos);
539 }
540
541 static void s_stop(struct seq_file *m, void *p)
542 {
543 mutex_unlock(&slab_mutex);
544 }
545
546 static void
547 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
548 {
549 struct kmem_cache *c;
550 struct slabinfo sinfo;
551 int i;
552
553 if (!is_root_cache(s))
554 return;
555
556 for_each_memcg_cache_index(i) {
557 c = cache_from_memcg(s, i);
558 if (!c)
559 continue;
560
561 memset(&sinfo, 0, sizeof(sinfo));
562 get_slabinfo(c, &sinfo);
563
564 info->active_slabs += sinfo.active_slabs;
565 info->num_slabs += sinfo.num_slabs;
566 info->shared_avail += sinfo.shared_avail;
567 info->active_objs += sinfo.active_objs;
568 info->num_objs += sinfo.num_objs;
569 }
570 }
571
572 int cache_show(struct kmem_cache *s, struct seq_file *m)
573 {
574 struct slabinfo sinfo;
575
576 memset(&sinfo, 0, sizeof(sinfo));
577 get_slabinfo(s, &sinfo);
578
579 memcg_accumulate_slabinfo(s, &sinfo);
580
581 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
582 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
583 sinfo.objects_per_slab, (1 << sinfo.cache_order));
584
585 seq_printf(m, " : tunables %4u %4u %4u",
586 sinfo.limit, sinfo.batchcount, sinfo.shared);
587 seq_printf(m, " : slabdata %6lu %6lu %6lu",
588 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
589 slabinfo_show_stats(m, s);
590 seq_putc(m, '\n');
591 return 0;
592 }
593
594 static int s_show(struct seq_file *m, void *p)
595 {
596 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
597
598 if (!is_root_cache(s))
599 return 0;
600 return cache_show(s, m);
601 }
602
603 /*
604 * slabinfo_op - iterator that generates /proc/slabinfo
605 *
606 * Output layout:
607 * cache-name
608 * num-active-objs
609 * total-objs
610 * object size
611 * num-active-slabs
612 * total-slabs
613 * num-pages-per-slab
614 * + further values on SMP and with statistics enabled
615 */
616 static const struct seq_operations slabinfo_op = {
617 .start = s_start,
618 .next = s_next,
619 .stop = s_stop,
620 .show = s_show,
621 };
622
623 static int slabinfo_open(struct inode *inode, struct file *file)
624 {
625 return seq_open(file, &slabinfo_op);
626 }
627
628 static const struct file_operations proc_slabinfo_operations = {
629 .open = slabinfo_open,
630 .read = seq_read,
631 .write = slabinfo_write,
632 .llseek = seq_lseek,
633 .release = seq_release,
634 };
635
636 static int __init slab_proc_init(void)
637 {
638 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
639 return 0;
640 }
641 module_init(slab_proc_init);
642 #endif /* CONFIG_SLABINFO */