Merge commit 'linus/master' into HEAD
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/kmemtrace.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
118
119 #include <asm/cacheflush.h>
120 #include <asm/tlbflush.h>
121 #include <asm/page.h>
122
123 /*
124 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
125 * 0 for faster, smaller code (especially in the critical paths).
126 *
127 * STATS - 1 to collect stats for /proc/slabinfo.
128 * 0 for faster, smaller code (especially in the critical paths).
129 *
130 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
131 */
132
133 #ifdef CONFIG_DEBUG_SLAB
134 #define DEBUG 1
135 #define STATS 1
136 #define FORCED_DEBUG 1
137 #else
138 #define DEBUG 0
139 #define STATS 0
140 #define FORCED_DEBUG 0
141 #endif
142
143 /* Shouldn't this be in a header file somewhere? */
144 #define BYTES_PER_WORD sizeof(void *)
145 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
146
147 #ifndef ARCH_KMALLOC_MINALIGN
148 /*
149 * Enforce a minimum alignment for the kmalloc caches.
150 * Usually, the kmalloc caches are cache_line_size() aligned, except when
151 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
152 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
153 * alignment larger than the alignment of a 64-bit integer.
154 * ARCH_KMALLOC_MINALIGN allows that.
155 * Note that increasing this value may disable some debug features.
156 */
157 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
158 #endif
159
160 #ifndef ARCH_SLAB_MINALIGN
161 /*
162 * Enforce a minimum alignment for all caches.
163 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
164 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
165 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
166 * some debug features.
167 */
168 #define ARCH_SLAB_MINALIGN 0
169 #endif
170
171 #ifndef ARCH_KMALLOC_FLAGS
172 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
173 #endif
174
175 /* Legal flag mask for kmem_cache_create(). */
176 #if DEBUG
177 # define CREATE_MASK (SLAB_RED_ZONE | \
178 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
179 SLAB_CACHE_DMA | \
180 SLAB_STORE_USER | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
183 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
184 #else
185 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
186 SLAB_CACHE_DMA | \
187 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
188 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
189 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
190 #endif
191
192 /*
193 * kmem_bufctl_t:
194 *
195 * Bufctl's are used for linking objs within a slab
196 * linked offsets.
197 *
198 * This implementation relies on "struct page" for locating the cache &
199 * slab an object belongs to.
200 * This allows the bufctl structure to be small (one int), but limits
201 * the number of objects a slab (not a cache) can contain when off-slab
202 * bufctls are used. The limit is the size of the largest general cache
203 * that does not use off-slab slabs.
204 * For 32bit archs with 4 kB pages, is this 56.
205 * This is not serious, as it is only for large objects, when it is unwise
206 * to have too many per slab.
207 * Note: This limit can be raised by introducing a general cache whose size
208 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
209 */
210
211 typedef unsigned int kmem_bufctl_t;
212 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
213 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
214 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
215 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
216
217 /*
218 * struct slab
219 *
220 * Manages the objs in a slab. Placed either at the beginning of mem allocated
221 * for a slab, or allocated from an general cache.
222 * Slabs are chained into three list: fully used, partial, fully free slabs.
223 */
224 struct slab {
225 struct list_head list;
226 unsigned long colouroff;
227 void *s_mem; /* including colour offset */
228 unsigned int inuse; /* num of objs active in slab */
229 kmem_bufctl_t free;
230 unsigned short nodeid;
231 };
232
233 /*
234 * struct slab_rcu
235 *
236 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
237 * arrange for kmem_freepages to be called via RCU. This is useful if
238 * we need to approach a kernel structure obliquely, from its address
239 * obtained without the usual locking. We can lock the structure to
240 * stabilize it and check it's still at the given address, only if we
241 * can be sure that the memory has not been meanwhile reused for some
242 * other kind of object (which our subsystem's lock might corrupt).
243 *
244 * rcu_read_lock before reading the address, then rcu_read_unlock after
245 * taking the spinlock within the structure expected at that address.
246 *
247 * We assume struct slab_rcu can overlay struct slab when destroying.
248 */
249 struct slab_rcu {
250 struct rcu_head head;
251 struct kmem_cache *cachep;
252 void *addr;
253 };
254
255 /*
256 * struct array_cache
257 *
258 * Purpose:
259 * - LIFO ordering, to hand out cache-warm objects from _alloc
260 * - reduce the number of linked list operations
261 * - reduce spinlock operations
262 *
263 * The limit is stored in the per-cpu structure to reduce the data cache
264 * footprint.
265 *
266 */
267 struct array_cache {
268 unsigned int avail;
269 unsigned int limit;
270 unsigned int batchcount;
271 unsigned int touched;
272 spinlock_t lock;
273 void *entry[]; /*
274 * Must have this definition in here for the proper
275 * alignment of array_cache. Also simplifies accessing
276 * the entries.
277 */
278 };
279
280 /*
281 * bootstrap: The caches do not work without cpuarrays anymore, but the
282 * cpuarrays are allocated from the generic caches...
283 */
284 #define BOOT_CPUCACHE_ENTRIES 1
285 struct arraycache_init {
286 struct array_cache cache;
287 void *entries[BOOT_CPUCACHE_ENTRIES];
288 };
289
290 /*
291 * The slab lists for all objects.
292 */
293 struct kmem_list3 {
294 struct list_head slabs_partial; /* partial list first, better asm code */
295 struct list_head slabs_full;
296 struct list_head slabs_free;
297 unsigned long free_objects;
298 unsigned int free_limit;
299 unsigned int colour_next; /* Per-node cache coloring */
300 spinlock_t list_lock;
301 struct array_cache *shared; /* shared per node */
302 struct array_cache **alien; /* on other nodes */
303 unsigned long next_reap; /* updated without locking */
304 int free_touched; /* updated without locking */
305 };
306
307 /*
308 * The slab allocator is initialized with interrupts disabled. Therefore, make
309 * sure early boot allocations don't accidentally enable interrupts.
310 */
311 static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;
312
313 /*
314 * Need this for bootstrapping a per node allocator.
315 */
316 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
317 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
318 #define CACHE_CACHE 0
319 #define SIZE_AC MAX_NUMNODES
320 #define SIZE_L3 (2 * MAX_NUMNODES)
321
322 static int drain_freelist(struct kmem_cache *cache,
323 struct kmem_list3 *l3, int tofree);
324 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
325 int node);
326 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
327 static void cache_reap(struct work_struct *unused);
328
329 /*
330 * This function must be completely optimized away if a constant is passed to
331 * it. Mostly the same as what is in linux/slab.h except it returns an index.
332 */
333 static __always_inline int index_of(const size_t size)
334 {
335 extern void __bad_size(void);
336
337 if (__builtin_constant_p(size)) {
338 int i = 0;
339
340 #define CACHE(x) \
341 if (size <=x) \
342 return i; \
343 else \
344 i++;
345 #include <linux/kmalloc_sizes.h>
346 #undef CACHE
347 __bad_size();
348 } else
349 __bad_size();
350 return 0;
351 }
352
353 static int slab_early_init = 1;
354
355 #define INDEX_AC index_of(sizeof(struct arraycache_init))
356 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
357
358 static void kmem_list3_init(struct kmem_list3 *parent)
359 {
360 INIT_LIST_HEAD(&parent->slabs_full);
361 INIT_LIST_HEAD(&parent->slabs_partial);
362 INIT_LIST_HEAD(&parent->slabs_free);
363 parent->shared = NULL;
364 parent->alien = NULL;
365 parent->colour_next = 0;
366 spin_lock_init(&parent->list_lock);
367 parent->free_objects = 0;
368 parent->free_touched = 0;
369 }
370
371 #define MAKE_LIST(cachep, listp, slab, nodeid) \
372 do { \
373 INIT_LIST_HEAD(listp); \
374 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
375 } while (0)
376
377 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
378 do { \
379 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
380 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
381 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
382 } while (0)
383
384 #define CFLGS_OFF_SLAB (0x80000000UL)
385 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
386
387 #define BATCHREFILL_LIMIT 16
388 /*
389 * Optimization question: fewer reaps means less probability for unnessary
390 * cpucache drain/refill cycles.
391 *
392 * OTOH the cpuarrays can contain lots of objects,
393 * which could lock up otherwise freeable slabs.
394 */
395 #define REAPTIMEOUT_CPUC (2*HZ)
396 #define REAPTIMEOUT_LIST3 (4*HZ)
397
398 #if STATS
399 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
400 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
401 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
402 #define STATS_INC_GROWN(x) ((x)->grown++)
403 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
404 #define STATS_SET_HIGH(x) \
405 do { \
406 if ((x)->num_active > (x)->high_mark) \
407 (x)->high_mark = (x)->num_active; \
408 } while (0)
409 #define STATS_INC_ERR(x) ((x)->errors++)
410 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
411 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
412 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
413 #define STATS_SET_FREEABLE(x, i) \
414 do { \
415 if ((x)->max_freeable < i) \
416 (x)->max_freeable = i; \
417 } while (0)
418 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
419 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
420 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
421 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
422 #else
423 #define STATS_INC_ACTIVE(x) do { } while (0)
424 #define STATS_DEC_ACTIVE(x) do { } while (0)
425 #define STATS_INC_ALLOCED(x) do { } while (0)
426 #define STATS_INC_GROWN(x) do { } while (0)
427 #define STATS_ADD_REAPED(x,y) do { } while (0)
428 #define STATS_SET_HIGH(x) do { } while (0)
429 #define STATS_INC_ERR(x) do { } while (0)
430 #define STATS_INC_NODEALLOCS(x) do { } while (0)
431 #define STATS_INC_NODEFREES(x) do { } while (0)
432 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
433 #define STATS_SET_FREEABLE(x, i) do { } while (0)
434 #define STATS_INC_ALLOCHIT(x) do { } while (0)
435 #define STATS_INC_ALLOCMISS(x) do { } while (0)
436 #define STATS_INC_FREEHIT(x) do { } while (0)
437 #define STATS_INC_FREEMISS(x) do { } while (0)
438 #endif
439
440 #if DEBUG
441
442 /*
443 * memory layout of objects:
444 * 0 : objp
445 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
446 * the end of an object is aligned with the end of the real
447 * allocation. Catches writes behind the end of the allocation.
448 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
449 * redzone word.
450 * cachep->obj_offset: The real object.
451 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
452 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
453 * [BYTES_PER_WORD long]
454 */
455 static int obj_offset(struct kmem_cache *cachep)
456 {
457 return cachep->obj_offset;
458 }
459
460 static int obj_size(struct kmem_cache *cachep)
461 {
462 return cachep->obj_size;
463 }
464
465 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
466 {
467 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
468 return (unsigned long long*) (objp + obj_offset(cachep) -
469 sizeof(unsigned long long));
470 }
471
472 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
473 {
474 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
475 if (cachep->flags & SLAB_STORE_USER)
476 return (unsigned long long *)(objp + cachep->buffer_size -
477 sizeof(unsigned long long) -
478 REDZONE_ALIGN);
479 return (unsigned long long *) (objp + cachep->buffer_size -
480 sizeof(unsigned long long));
481 }
482
483 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
484 {
485 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
486 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
487 }
488
489 #else
490
491 #define obj_offset(x) 0
492 #define obj_size(cachep) (cachep->buffer_size)
493 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
494 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
495 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
496
497 #endif
498
499 #ifdef CONFIG_KMEMTRACE
500 size_t slab_buffer_size(struct kmem_cache *cachep)
501 {
502 return cachep->buffer_size;
503 }
504 EXPORT_SYMBOL(slab_buffer_size);
505 #endif
506
507 /*
508 * Do not go above this order unless 0 objects fit into the slab.
509 */
510 #define BREAK_GFP_ORDER_HI 1
511 #define BREAK_GFP_ORDER_LO 0
512 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
513
514 /*
515 * Functions for storing/retrieving the cachep and or slab from the page
516 * allocator. These are used to find the slab an obj belongs to. With kfree(),
517 * these are used to find the cache which an obj belongs to.
518 */
519 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
520 {
521 page->lru.next = (struct list_head *)cache;
522 }
523
524 static inline struct kmem_cache *page_get_cache(struct page *page)
525 {
526 page = compound_head(page);
527 BUG_ON(!PageSlab(page));
528 return (struct kmem_cache *)page->lru.next;
529 }
530
531 static inline void page_set_slab(struct page *page, struct slab *slab)
532 {
533 page->lru.prev = (struct list_head *)slab;
534 }
535
536 static inline struct slab *page_get_slab(struct page *page)
537 {
538 BUG_ON(!PageSlab(page));
539 return (struct slab *)page->lru.prev;
540 }
541
542 static inline struct kmem_cache *virt_to_cache(const void *obj)
543 {
544 struct page *page = virt_to_head_page(obj);
545 return page_get_cache(page);
546 }
547
548 static inline struct slab *virt_to_slab(const void *obj)
549 {
550 struct page *page = virt_to_head_page(obj);
551 return page_get_slab(page);
552 }
553
554 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
555 unsigned int idx)
556 {
557 return slab->s_mem + cache->buffer_size * idx;
558 }
559
560 /*
561 * We want to avoid an expensive divide : (offset / cache->buffer_size)
562 * Using the fact that buffer_size is a constant for a particular cache,
563 * we can replace (offset / cache->buffer_size) by
564 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
565 */
566 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
567 const struct slab *slab, void *obj)
568 {
569 u32 offset = (obj - slab->s_mem);
570 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
571 }
572
573 /*
574 * These are the default caches for kmalloc. Custom caches can have other sizes.
575 */
576 struct cache_sizes malloc_sizes[] = {
577 #define CACHE(x) { .cs_size = (x) },
578 #include <linux/kmalloc_sizes.h>
579 CACHE(ULONG_MAX)
580 #undef CACHE
581 };
582 EXPORT_SYMBOL(malloc_sizes);
583
584 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
585 struct cache_names {
586 char *name;
587 char *name_dma;
588 };
589
590 static struct cache_names __initdata cache_names[] = {
591 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
592 #include <linux/kmalloc_sizes.h>
593 {NULL,}
594 #undef CACHE
595 };
596
597 static struct arraycache_init initarray_cache __initdata =
598 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
599 static struct arraycache_init initarray_generic =
600 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
601
602 /* internal cache of cache description objs */
603 static struct kmem_cache cache_cache = {
604 .batchcount = 1,
605 .limit = BOOT_CPUCACHE_ENTRIES,
606 .shared = 1,
607 .buffer_size = sizeof(struct kmem_cache),
608 .name = "kmem_cache",
609 };
610
611 #define BAD_ALIEN_MAGIC 0x01020304ul
612
613 #ifdef CONFIG_LOCKDEP
614
615 /*
616 * Slab sometimes uses the kmalloc slabs to store the slab headers
617 * for other slabs "off slab".
618 * The locking for this is tricky in that it nests within the locks
619 * of all other slabs in a few places; to deal with this special
620 * locking we put on-slab caches into a separate lock-class.
621 *
622 * We set lock class for alien array caches which are up during init.
623 * The lock annotation will be lost if all cpus of a node goes down and
624 * then comes back up during hotplug
625 */
626 static struct lock_class_key on_slab_l3_key;
627 static struct lock_class_key on_slab_alc_key;
628
629 static inline void init_lock_keys(void)
630
631 {
632 int q;
633 struct cache_sizes *s = malloc_sizes;
634
635 while (s->cs_size != ULONG_MAX) {
636 for_each_node(q) {
637 struct array_cache **alc;
638 int r;
639 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
640 if (!l3 || OFF_SLAB(s->cs_cachep))
641 continue;
642 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
643 alc = l3->alien;
644 /*
645 * FIXME: This check for BAD_ALIEN_MAGIC
646 * should go away when common slab code is taught to
647 * work even without alien caches.
648 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
649 * for alloc_alien_cache,
650 */
651 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
652 continue;
653 for_each_node(r) {
654 if (alc[r])
655 lockdep_set_class(&alc[r]->lock,
656 &on_slab_alc_key);
657 }
658 }
659 s++;
660 }
661 }
662 #else
663 static inline void init_lock_keys(void)
664 {
665 }
666 #endif
667
668 /*
669 * Guard access to the cache-chain.
670 */
671 static DEFINE_MUTEX(cache_chain_mutex);
672 static struct list_head cache_chain;
673
674 /*
675 * chicken and egg problem: delay the per-cpu array allocation
676 * until the general caches are up.
677 */
678 static enum {
679 NONE,
680 PARTIAL_AC,
681 PARTIAL_L3,
682 EARLY,
683 FULL
684 } g_cpucache_up;
685
686 /*
687 * used by boot code to determine if it can use slab based allocator
688 */
689 int slab_is_available(void)
690 {
691 return g_cpucache_up >= EARLY;
692 }
693
694 static DEFINE_PER_CPU(struct delayed_work, reap_work);
695
696 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
697 {
698 return cachep->array[smp_processor_id()];
699 }
700
701 static inline struct kmem_cache *__find_general_cachep(size_t size,
702 gfp_t gfpflags)
703 {
704 struct cache_sizes *csizep = malloc_sizes;
705
706 #if DEBUG
707 /* This happens if someone tries to call
708 * kmem_cache_create(), or __kmalloc(), before
709 * the generic caches are initialized.
710 */
711 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
712 #endif
713 if (!size)
714 return ZERO_SIZE_PTR;
715
716 while (size > csizep->cs_size)
717 csizep++;
718
719 /*
720 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
721 * has cs_{dma,}cachep==NULL. Thus no special case
722 * for large kmalloc calls required.
723 */
724 #ifdef CONFIG_ZONE_DMA
725 if (unlikely(gfpflags & GFP_DMA))
726 return csizep->cs_dmacachep;
727 #endif
728 return csizep->cs_cachep;
729 }
730
731 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
732 {
733 return __find_general_cachep(size, gfpflags);
734 }
735
736 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
737 {
738 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
739 }
740
741 /*
742 * Calculate the number of objects and left-over bytes for a given buffer size.
743 */
744 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
745 size_t align, int flags, size_t *left_over,
746 unsigned int *num)
747 {
748 int nr_objs;
749 size_t mgmt_size;
750 size_t slab_size = PAGE_SIZE << gfporder;
751
752 /*
753 * The slab management structure can be either off the slab or
754 * on it. For the latter case, the memory allocated for a
755 * slab is used for:
756 *
757 * - The struct slab
758 * - One kmem_bufctl_t for each object
759 * - Padding to respect alignment of @align
760 * - @buffer_size bytes for each object
761 *
762 * If the slab management structure is off the slab, then the
763 * alignment will already be calculated into the size. Because
764 * the slabs are all pages aligned, the objects will be at the
765 * correct alignment when allocated.
766 */
767 if (flags & CFLGS_OFF_SLAB) {
768 mgmt_size = 0;
769 nr_objs = slab_size / buffer_size;
770
771 if (nr_objs > SLAB_LIMIT)
772 nr_objs = SLAB_LIMIT;
773 } else {
774 /*
775 * Ignore padding for the initial guess. The padding
776 * is at most @align-1 bytes, and @buffer_size is at
777 * least @align. In the worst case, this result will
778 * be one greater than the number of objects that fit
779 * into the memory allocation when taking the padding
780 * into account.
781 */
782 nr_objs = (slab_size - sizeof(struct slab)) /
783 (buffer_size + sizeof(kmem_bufctl_t));
784
785 /*
786 * This calculated number will be either the right
787 * amount, or one greater than what we want.
788 */
789 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
790 > slab_size)
791 nr_objs--;
792
793 if (nr_objs > SLAB_LIMIT)
794 nr_objs = SLAB_LIMIT;
795
796 mgmt_size = slab_mgmt_size(nr_objs, align);
797 }
798 *num = nr_objs;
799 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
800 }
801
802 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
803
804 static void __slab_error(const char *function, struct kmem_cache *cachep,
805 char *msg)
806 {
807 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
808 function, cachep->name, msg);
809 dump_stack();
810 }
811
812 /*
813 * By default on NUMA we use alien caches to stage the freeing of
814 * objects allocated from other nodes. This causes massive memory
815 * inefficiencies when using fake NUMA setup to split memory into a
816 * large number of small nodes, so it can be disabled on the command
817 * line
818 */
819
820 static int use_alien_caches __read_mostly = 1;
821 static int numa_platform __read_mostly = 1;
822 static int __init noaliencache_setup(char *s)
823 {
824 use_alien_caches = 0;
825 return 1;
826 }
827 __setup("noaliencache", noaliencache_setup);
828
829 #ifdef CONFIG_NUMA
830 /*
831 * Special reaping functions for NUMA systems called from cache_reap().
832 * These take care of doing round robin flushing of alien caches (containing
833 * objects freed on different nodes from which they were allocated) and the
834 * flushing of remote pcps by calling drain_node_pages.
835 */
836 static DEFINE_PER_CPU(unsigned long, reap_node);
837
838 static void init_reap_node(int cpu)
839 {
840 int node;
841
842 node = next_node(cpu_to_node(cpu), node_online_map);
843 if (node == MAX_NUMNODES)
844 node = first_node(node_online_map);
845
846 per_cpu(reap_node, cpu) = node;
847 }
848
849 static void next_reap_node(void)
850 {
851 int node = __get_cpu_var(reap_node);
852
853 node = next_node(node, node_online_map);
854 if (unlikely(node >= MAX_NUMNODES))
855 node = first_node(node_online_map);
856 __get_cpu_var(reap_node) = node;
857 }
858
859 #else
860 #define init_reap_node(cpu) do { } while (0)
861 #define next_reap_node(void) do { } while (0)
862 #endif
863
864 /*
865 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
866 * via the workqueue/eventd.
867 * Add the CPU number into the expiration time to minimize the possibility of
868 * the CPUs getting into lockstep and contending for the global cache chain
869 * lock.
870 */
871 static void __cpuinit start_cpu_timer(int cpu)
872 {
873 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
874
875 /*
876 * When this gets called from do_initcalls via cpucache_init(),
877 * init_workqueues() has already run, so keventd will be setup
878 * at that time.
879 */
880 if (keventd_up() && reap_work->work.func == NULL) {
881 init_reap_node(cpu);
882 INIT_DELAYED_WORK(reap_work, cache_reap);
883 schedule_delayed_work_on(cpu, reap_work,
884 __round_jiffies_relative(HZ, cpu));
885 }
886 }
887
888 static struct array_cache *alloc_arraycache(int node, int entries,
889 int batchcount, gfp_t gfp)
890 {
891 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
892 struct array_cache *nc = NULL;
893
894 nc = kmalloc_node(memsize, gfp, node);
895 /*
896 * The array_cache structures contain pointers to free object.
897 * However, when such objects are allocated or transfered to another
898 * cache the pointers are not cleared and they could be counted as
899 * valid references during a kmemleak scan. Therefore, kmemleak must
900 * not scan such objects.
901 */
902 kmemleak_no_scan(nc);
903 if (nc) {
904 nc->avail = 0;
905 nc->limit = entries;
906 nc->batchcount = batchcount;
907 nc->touched = 0;
908 spin_lock_init(&nc->lock);
909 }
910 return nc;
911 }
912
913 /*
914 * Transfer objects in one arraycache to another.
915 * Locking must be handled by the caller.
916 *
917 * Return the number of entries transferred.
918 */
919 static int transfer_objects(struct array_cache *to,
920 struct array_cache *from, unsigned int max)
921 {
922 /* Figure out how many entries to transfer */
923 int nr = min(min(from->avail, max), to->limit - to->avail);
924
925 if (!nr)
926 return 0;
927
928 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
929 sizeof(void *) *nr);
930
931 from->avail -= nr;
932 to->avail += nr;
933 to->touched = 1;
934 return nr;
935 }
936
937 #ifndef CONFIG_NUMA
938
939 #define drain_alien_cache(cachep, alien) do { } while (0)
940 #define reap_alien(cachep, l3) do { } while (0)
941
942 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
943 {
944 return (struct array_cache **)BAD_ALIEN_MAGIC;
945 }
946
947 static inline void free_alien_cache(struct array_cache **ac_ptr)
948 {
949 }
950
951 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
952 {
953 return 0;
954 }
955
956 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
957 gfp_t flags)
958 {
959 return NULL;
960 }
961
962 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
963 gfp_t flags, int nodeid)
964 {
965 return NULL;
966 }
967
968 #else /* CONFIG_NUMA */
969
970 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
971 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
972
973 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
974 {
975 struct array_cache **ac_ptr;
976 int memsize = sizeof(void *) * nr_node_ids;
977 int i;
978
979 if (limit > 1)
980 limit = 12;
981 ac_ptr = kmalloc_node(memsize, gfp, node);
982 if (ac_ptr) {
983 for_each_node(i) {
984 if (i == node || !node_online(i)) {
985 ac_ptr[i] = NULL;
986 continue;
987 }
988 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
989 if (!ac_ptr[i]) {
990 for (i--; i >= 0; i--)
991 kfree(ac_ptr[i]);
992 kfree(ac_ptr);
993 return NULL;
994 }
995 }
996 }
997 return ac_ptr;
998 }
999
1000 static void free_alien_cache(struct array_cache **ac_ptr)
1001 {
1002 int i;
1003
1004 if (!ac_ptr)
1005 return;
1006 for_each_node(i)
1007 kfree(ac_ptr[i]);
1008 kfree(ac_ptr);
1009 }
1010
1011 static void __drain_alien_cache(struct kmem_cache *cachep,
1012 struct array_cache *ac, int node)
1013 {
1014 struct kmem_list3 *rl3 = cachep->nodelists[node];
1015
1016 if (ac->avail) {
1017 spin_lock(&rl3->list_lock);
1018 /*
1019 * Stuff objects into the remote nodes shared array first.
1020 * That way we could avoid the overhead of putting the objects
1021 * into the free lists and getting them back later.
1022 */
1023 if (rl3->shared)
1024 transfer_objects(rl3->shared, ac, ac->limit);
1025
1026 free_block(cachep, ac->entry, ac->avail, node);
1027 ac->avail = 0;
1028 spin_unlock(&rl3->list_lock);
1029 }
1030 }
1031
1032 /*
1033 * Called from cache_reap() to regularly drain alien caches round robin.
1034 */
1035 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1036 {
1037 int node = __get_cpu_var(reap_node);
1038
1039 if (l3->alien) {
1040 struct array_cache *ac = l3->alien[node];
1041
1042 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1043 __drain_alien_cache(cachep, ac, node);
1044 spin_unlock_irq(&ac->lock);
1045 }
1046 }
1047 }
1048
1049 static void drain_alien_cache(struct kmem_cache *cachep,
1050 struct array_cache **alien)
1051 {
1052 int i = 0;
1053 struct array_cache *ac;
1054 unsigned long flags;
1055
1056 for_each_online_node(i) {
1057 ac = alien[i];
1058 if (ac) {
1059 spin_lock_irqsave(&ac->lock, flags);
1060 __drain_alien_cache(cachep, ac, i);
1061 spin_unlock_irqrestore(&ac->lock, flags);
1062 }
1063 }
1064 }
1065
1066 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1067 {
1068 struct slab *slabp = virt_to_slab(objp);
1069 int nodeid = slabp->nodeid;
1070 struct kmem_list3 *l3;
1071 struct array_cache *alien = NULL;
1072 int node;
1073
1074 node = numa_node_id();
1075
1076 /*
1077 * Make sure we are not freeing a object from another node to the array
1078 * cache on this cpu.
1079 */
1080 if (likely(slabp->nodeid == node))
1081 return 0;
1082
1083 l3 = cachep->nodelists[node];
1084 STATS_INC_NODEFREES(cachep);
1085 if (l3->alien && l3->alien[nodeid]) {
1086 alien = l3->alien[nodeid];
1087 spin_lock(&alien->lock);
1088 if (unlikely(alien->avail == alien->limit)) {
1089 STATS_INC_ACOVERFLOW(cachep);
1090 __drain_alien_cache(cachep, alien, nodeid);
1091 }
1092 alien->entry[alien->avail++] = objp;
1093 spin_unlock(&alien->lock);
1094 } else {
1095 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1096 free_block(cachep, &objp, 1, nodeid);
1097 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1098 }
1099 return 1;
1100 }
1101 #endif
1102
1103 static void __cpuinit cpuup_canceled(long cpu)
1104 {
1105 struct kmem_cache *cachep;
1106 struct kmem_list3 *l3 = NULL;
1107 int node = cpu_to_node(cpu);
1108 const struct cpumask *mask = cpumask_of_node(node);
1109
1110 list_for_each_entry(cachep, &cache_chain, next) {
1111 struct array_cache *nc;
1112 struct array_cache *shared;
1113 struct array_cache **alien;
1114
1115 /* cpu is dead; no one can alloc from it. */
1116 nc = cachep->array[cpu];
1117 cachep->array[cpu] = NULL;
1118 l3 = cachep->nodelists[node];
1119
1120 if (!l3)
1121 goto free_array_cache;
1122
1123 spin_lock_irq(&l3->list_lock);
1124
1125 /* Free limit for this kmem_list3 */
1126 l3->free_limit -= cachep->batchcount;
1127 if (nc)
1128 free_block(cachep, nc->entry, nc->avail, node);
1129
1130 if (!cpus_empty(*mask)) {
1131 spin_unlock_irq(&l3->list_lock);
1132 goto free_array_cache;
1133 }
1134
1135 shared = l3->shared;
1136 if (shared) {
1137 free_block(cachep, shared->entry,
1138 shared->avail, node);
1139 l3->shared = NULL;
1140 }
1141
1142 alien = l3->alien;
1143 l3->alien = NULL;
1144
1145 spin_unlock_irq(&l3->list_lock);
1146
1147 kfree(shared);
1148 if (alien) {
1149 drain_alien_cache(cachep, alien);
1150 free_alien_cache(alien);
1151 }
1152 free_array_cache:
1153 kfree(nc);
1154 }
1155 /*
1156 * In the previous loop, all the objects were freed to
1157 * the respective cache's slabs, now we can go ahead and
1158 * shrink each nodelist to its limit.
1159 */
1160 list_for_each_entry(cachep, &cache_chain, next) {
1161 l3 = cachep->nodelists[node];
1162 if (!l3)
1163 continue;
1164 drain_freelist(cachep, l3, l3->free_objects);
1165 }
1166 }
1167
1168 static int __cpuinit cpuup_prepare(long cpu)
1169 {
1170 struct kmem_cache *cachep;
1171 struct kmem_list3 *l3 = NULL;
1172 int node = cpu_to_node(cpu);
1173 const int memsize = sizeof(struct kmem_list3);
1174
1175 /*
1176 * We need to do this right in the beginning since
1177 * alloc_arraycache's are going to use this list.
1178 * kmalloc_node allows us to add the slab to the right
1179 * kmem_list3 and not this cpu's kmem_list3
1180 */
1181
1182 list_for_each_entry(cachep, &cache_chain, next) {
1183 /*
1184 * Set up the size64 kmemlist for cpu before we can
1185 * begin anything. Make sure some other cpu on this
1186 * node has not already allocated this
1187 */
1188 if (!cachep->nodelists[node]) {
1189 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1190 if (!l3)
1191 goto bad;
1192 kmem_list3_init(l3);
1193 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1194 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1195
1196 /*
1197 * The l3s don't come and go as CPUs come and
1198 * go. cache_chain_mutex is sufficient
1199 * protection here.
1200 */
1201 cachep->nodelists[node] = l3;
1202 }
1203
1204 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1205 cachep->nodelists[node]->free_limit =
1206 (1 + nr_cpus_node(node)) *
1207 cachep->batchcount + cachep->num;
1208 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1209 }
1210
1211 /*
1212 * Now we can go ahead with allocating the shared arrays and
1213 * array caches
1214 */
1215 list_for_each_entry(cachep, &cache_chain, next) {
1216 struct array_cache *nc;
1217 struct array_cache *shared = NULL;
1218 struct array_cache **alien = NULL;
1219
1220 nc = alloc_arraycache(node, cachep->limit,
1221 cachep->batchcount, GFP_KERNEL);
1222 if (!nc)
1223 goto bad;
1224 if (cachep->shared) {
1225 shared = alloc_arraycache(node,
1226 cachep->shared * cachep->batchcount,
1227 0xbaadf00d, GFP_KERNEL);
1228 if (!shared) {
1229 kfree(nc);
1230 goto bad;
1231 }
1232 }
1233 if (use_alien_caches) {
1234 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1235 if (!alien) {
1236 kfree(shared);
1237 kfree(nc);
1238 goto bad;
1239 }
1240 }
1241 cachep->array[cpu] = nc;
1242 l3 = cachep->nodelists[node];
1243 BUG_ON(!l3);
1244
1245 spin_lock_irq(&l3->list_lock);
1246 if (!l3->shared) {
1247 /*
1248 * We are serialised from CPU_DEAD or
1249 * CPU_UP_CANCELLED by the cpucontrol lock
1250 */
1251 l3->shared = shared;
1252 shared = NULL;
1253 }
1254 #ifdef CONFIG_NUMA
1255 if (!l3->alien) {
1256 l3->alien = alien;
1257 alien = NULL;
1258 }
1259 #endif
1260 spin_unlock_irq(&l3->list_lock);
1261 kfree(shared);
1262 free_alien_cache(alien);
1263 }
1264 return 0;
1265 bad:
1266 cpuup_canceled(cpu);
1267 return -ENOMEM;
1268 }
1269
1270 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1271 unsigned long action, void *hcpu)
1272 {
1273 long cpu = (long)hcpu;
1274 int err = 0;
1275
1276 switch (action) {
1277 case CPU_UP_PREPARE:
1278 case CPU_UP_PREPARE_FROZEN:
1279 mutex_lock(&cache_chain_mutex);
1280 err = cpuup_prepare(cpu);
1281 mutex_unlock(&cache_chain_mutex);
1282 break;
1283 case CPU_ONLINE:
1284 case CPU_ONLINE_FROZEN:
1285 start_cpu_timer(cpu);
1286 break;
1287 #ifdef CONFIG_HOTPLUG_CPU
1288 case CPU_DOWN_PREPARE:
1289 case CPU_DOWN_PREPARE_FROZEN:
1290 /*
1291 * Shutdown cache reaper. Note that the cache_chain_mutex is
1292 * held so that if cache_reap() is invoked it cannot do
1293 * anything expensive but will only modify reap_work
1294 * and reschedule the timer.
1295 */
1296 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1297 /* Now the cache_reaper is guaranteed to be not running. */
1298 per_cpu(reap_work, cpu).work.func = NULL;
1299 break;
1300 case CPU_DOWN_FAILED:
1301 case CPU_DOWN_FAILED_FROZEN:
1302 start_cpu_timer(cpu);
1303 break;
1304 case CPU_DEAD:
1305 case CPU_DEAD_FROZEN:
1306 /*
1307 * Even if all the cpus of a node are down, we don't free the
1308 * kmem_list3 of any cache. This to avoid a race between
1309 * cpu_down, and a kmalloc allocation from another cpu for
1310 * memory from the node of the cpu going down. The list3
1311 * structure is usually allocated from kmem_cache_create() and
1312 * gets destroyed at kmem_cache_destroy().
1313 */
1314 /* fall through */
1315 #endif
1316 case CPU_UP_CANCELED:
1317 case CPU_UP_CANCELED_FROZEN:
1318 mutex_lock(&cache_chain_mutex);
1319 cpuup_canceled(cpu);
1320 mutex_unlock(&cache_chain_mutex);
1321 break;
1322 }
1323 return err ? NOTIFY_BAD : NOTIFY_OK;
1324 }
1325
1326 static struct notifier_block __cpuinitdata cpucache_notifier = {
1327 &cpuup_callback, NULL, 0
1328 };
1329
1330 /*
1331 * swap the static kmem_list3 with kmalloced memory
1332 */
1333 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1334 int nodeid)
1335 {
1336 struct kmem_list3 *ptr;
1337
1338 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1339 BUG_ON(!ptr);
1340
1341 memcpy(ptr, list, sizeof(struct kmem_list3));
1342 /*
1343 * Do not assume that spinlocks can be initialized via memcpy:
1344 */
1345 spin_lock_init(&ptr->list_lock);
1346
1347 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1348 cachep->nodelists[nodeid] = ptr;
1349 }
1350
1351 /*
1352 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1353 * size of kmem_list3.
1354 */
1355 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1356 {
1357 int node;
1358
1359 for_each_online_node(node) {
1360 cachep->nodelists[node] = &initkmem_list3[index + node];
1361 cachep->nodelists[node]->next_reap = jiffies +
1362 REAPTIMEOUT_LIST3 +
1363 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1364 }
1365 }
1366
1367 /*
1368 * Initialisation. Called after the page allocator have been initialised and
1369 * before smp_init().
1370 */
1371 void __init kmem_cache_init(void)
1372 {
1373 size_t left_over;
1374 struct cache_sizes *sizes;
1375 struct cache_names *names;
1376 int i;
1377 int order;
1378 int node;
1379
1380 if (num_possible_nodes() == 1) {
1381 use_alien_caches = 0;
1382 numa_platform = 0;
1383 }
1384
1385 for (i = 0; i < NUM_INIT_LISTS; i++) {
1386 kmem_list3_init(&initkmem_list3[i]);
1387 if (i < MAX_NUMNODES)
1388 cache_cache.nodelists[i] = NULL;
1389 }
1390 set_up_list3s(&cache_cache, CACHE_CACHE);
1391
1392 /*
1393 * Fragmentation resistance on low memory - only use bigger
1394 * page orders on machines with more than 32MB of memory.
1395 */
1396 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1397 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1398
1399 /* Bootstrap is tricky, because several objects are allocated
1400 * from caches that do not exist yet:
1401 * 1) initialize the cache_cache cache: it contains the struct
1402 * kmem_cache structures of all caches, except cache_cache itself:
1403 * cache_cache is statically allocated.
1404 * Initially an __init data area is used for the head array and the
1405 * kmem_list3 structures, it's replaced with a kmalloc allocated
1406 * array at the end of the bootstrap.
1407 * 2) Create the first kmalloc cache.
1408 * The struct kmem_cache for the new cache is allocated normally.
1409 * An __init data area is used for the head array.
1410 * 3) Create the remaining kmalloc caches, with minimally sized
1411 * head arrays.
1412 * 4) Replace the __init data head arrays for cache_cache and the first
1413 * kmalloc cache with kmalloc allocated arrays.
1414 * 5) Replace the __init data for kmem_list3 for cache_cache and
1415 * the other cache's with kmalloc allocated memory.
1416 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1417 */
1418
1419 node = numa_node_id();
1420
1421 /* 1) create the cache_cache */
1422 INIT_LIST_HEAD(&cache_chain);
1423 list_add(&cache_cache.next, &cache_chain);
1424 cache_cache.colour_off = cache_line_size();
1425 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1426 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1427
1428 /*
1429 * struct kmem_cache size depends on nr_node_ids, which
1430 * can be less than MAX_NUMNODES.
1431 */
1432 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1433 nr_node_ids * sizeof(struct kmem_list3 *);
1434 #if DEBUG
1435 cache_cache.obj_size = cache_cache.buffer_size;
1436 #endif
1437 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1438 cache_line_size());
1439 cache_cache.reciprocal_buffer_size =
1440 reciprocal_value(cache_cache.buffer_size);
1441
1442 for (order = 0; order < MAX_ORDER; order++) {
1443 cache_estimate(order, cache_cache.buffer_size,
1444 cache_line_size(), 0, &left_over, &cache_cache.num);
1445 if (cache_cache.num)
1446 break;
1447 }
1448 BUG_ON(!cache_cache.num);
1449 cache_cache.gfporder = order;
1450 cache_cache.colour = left_over / cache_cache.colour_off;
1451 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1452 sizeof(struct slab), cache_line_size());
1453
1454 /* 2+3) create the kmalloc caches */
1455 sizes = malloc_sizes;
1456 names = cache_names;
1457
1458 /*
1459 * Initialize the caches that provide memory for the array cache and the
1460 * kmem_list3 structures first. Without this, further allocations will
1461 * bug.
1462 */
1463
1464 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1465 sizes[INDEX_AC].cs_size,
1466 ARCH_KMALLOC_MINALIGN,
1467 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1468 NULL);
1469
1470 if (INDEX_AC != INDEX_L3) {
1471 sizes[INDEX_L3].cs_cachep =
1472 kmem_cache_create(names[INDEX_L3].name,
1473 sizes[INDEX_L3].cs_size,
1474 ARCH_KMALLOC_MINALIGN,
1475 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1476 NULL);
1477 }
1478
1479 slab_early_init = 0;
1480
1481 while (sizes->cs_size != ULONG_MAX) {
1482 /*
1483 * For performance, all the general caches are L1 aligned.
1484 * This should be particularly beneficial on SMP boxes, as it
1485 * eliminates "false sharing".
1486 * Note for systems short on memory removing the alignment will
1487 * allow tighter packing of the smaller caches.
1488 */
1489 if (!sizes->cs_cachep) {
1490 sizes->cs_cachep = kmem_cache_create(names->name,
1491 sizes->cs_size,
1492 ARCH_KMALLOC_MINALIGN,
1493 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1494 NULL);
1495 }
1496 #ifdef CONFIG_ZONE_DMA
1497 sizes->cs_dmacachep = kmem_cache_create(
1498 names->name_dma,
1499 sizes->cs_size,
1500 ARCH_KMALLOC_MINALIGN,
1501 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1502 SLAB_PANIC,
1503 NULL);
1504 #endif
1505 sizes++;
1506 names++;
1507 }
1508 /* 4) Replace the bootstrap head arrays */
1509 {
1510 struct array_cache *ptr;
1511
1512 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1513
1514 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1515 memcpy(ptr, cpu_cache_get(&cache_cache),
1516 sizeof(struct arraycache_init));
1517 /*
1518 * Do not assume that spinlocks can be initialized via memcpy:
1519 */
1520 spin_lock_init(&ptr->lock);
1521
1522 cache_cache.array[smp_processor_id()] = ptr;
1523
1524 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1525
1526 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1527 != &initarray_generic.cache);
1528 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1529 sizeof(struct arraycache_init));
1530 /*
1531 * Do not assume that spinlocks can be initialized via memcpy:
1532 */
1533 spin_lock_init(&ptr->lock);
1534
1535 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1536 ptr;
1537 }
1538 /* 5) Replace the bootstrap kmem_list3's */
1539 {
1540 int nid;
1541
1542 for_each_online_node(nid) {
1543 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1544
1545 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1546 &initkmem_list3[SIZE_AC + nid], nid);
1547
1548 if (INDEX_AC != INDEX_L3) {
1549 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1550 &initkmem_list3[SIZE_L3 + nid], nid);
1551 }
1552 }
1553 }
1554
1555 g_cpucache_up = EARLY;
1556
1557 /* Annotate slab for lockdep -- annotate the malloc caches */
1558 init_lock_keys();
1559 }
1560
1561 void __init kmem_cache_init_late(void)
1562 {
1563 struct kmem_cache *cachep;
1564
1565 /*
1566 * Interrupts are enabled now so all GFP allocations are safe.
1567 */
1568 slab_gfp_mask = __GFP_BITS_MASK;
1569
1570 /* 6) resize the head arrays to their final sizes */
1571 mutex_lock(&cache_chain_mutex);
1572 list_for_each_entry(cachep, &cache_chain, next)
1573 if (enable_cpucache(cachep, GFP_NOWAIT))
1574 BUG();
1575 mutex_unlock(&cache_chain_mutex);
1576
1577 /* Done! */
1578 g_cpucache_up = FULL;
1579
1580 /*
1581 * Register a cpu startup notifier callback that initializes
1582 * cpu_cache_get for all new cpus
1583 */
1584 register_cpu_notifier(&cpucache_notifier);
1585
1586 /*
1587 * The reap timers are started later, with a module init call: That part
1588 * of the kernel is not yet operational.
1589 */
1590 }
1591
1592 static int __init cpucache_init(void)
1593 {
1594 int cpu;
1595
1596 /*
1597 * Register the timers that return unneeded pages to the page allocator
1598 */
1599 for_each_online_cpu(cpu)
1600 start_cpu_timer(cpu);
1601 return 0;
1602 }
1603 __initcall(cpucache_init);
1604
1605 /*
1606 * Interface to system's page allocator. No need to hold the cache-lock.
1607 *
1608 * If we requested dmaable memory, we will get it. Even if we
1609 * did not request dmaable memory, we might get it, but that
1610 * would be relatively rare and ignorable.
1611 */
1612 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1613 {
1614 struct page *page;
1615 int nr_pages;
1616 int i;
1617
1618 #ifndef CONFIG_MMU
1619 /*
1620 * Nommu uses slab's for process anonymous memory allocations, and thus
1621 * requires __GFP_COMP to properly refcount higher order allocations
1622 */
1623 flags |= __GFP_COMP;
1624 #endif
1625
1626 flags |= cachep->gfpflags;
1627 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1628 flags |= __GFP_RECLAIMABLE;
1629
1630 page = alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1631 if (!page)
1632 return NULL;
1633
1634 nr_pages = (1 << cachep->gfporder);
1635 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1636 add_zone_page_state(page_zone(page),
1637 NR_SLAB_RECLAIMABLE, nr_pages);
1638 else
1639 add_zone_page_state(page_zone(page),
1640 NR_SLAB_UNRECLAIMABLE, nr_pages);
1641 for (i = 0; i < nr_pages; i++)
1642 __SetPageSlab(page + i);
1643
1644 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1645 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1646
1647 if (cachep->ctor)
1648 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1649 else
1650 kmemcheck_mark_unallocated_pages(page, nr_pages);
1651 }
1652
1653 return page_address(page);
1654 }
1655
1656 /*
1657 * Interface to system's page release.
1658 */
1659 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1660 {
1661 unsigned long i = (1 << cachep->gfporder);
1662 struct page *page = virt_to_page(addr);
1663 const unsigned long nr_freed = i;
1664
1665 kmemcheck_free_shadow(page, cachep->gfporder);
1666
1667 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1668 sub_zone_page_state(page_zone(page),
1669 NR_SLAB_RECLAIMABLE, nr_freed);
1670 else
1671 sub_zone_page_state(page_zone(page),
1672 NR_SLAB_UNRECLAIMABLE, nr_freed);
1673 while (i--) {
1674 BUG_ON(!PageSlab(page));
1675 __ClearPageSlab(page);
1676 page++;
1677 }
1678 if (current->reclaim_state)
1679 current->reclaim_state->reclaimed_slab += nr_freed;
1680 free_pages((unsigned long)addr, cachep->gfporder);
1681 }
1682
1683 static void kmem_rcu_free(struct rcu_head *head)
1684 {
1685 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1686 struct kmem_cache *cachep = slab_rcu->cachep;
1687
1688 kmem_freepages(cachep, slab_rcu->addr);
1689 if (OFF_SLAB(cachep))
1690 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1691 }
1692
1693 #if DEBUG
1694
1695 #ifdef CONFIG_DEBUG_PAGEALLOC
1696 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1697 unsigned long caller)
1698 {
1699 int size = obj_size(cachep);
1700
1701 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1702
1703 if (size < 5 * sizeof(unsigned long))
1704 return;
1705
1706 *addr++ = 0x12345678;
1707 *addr++ = caller;
1708 *addr++ = smp_processor_id();
1709 size -= 3 * sizeof(unsigned long);
1710 {
1711 unsigned long *sptr = &caller;
1712 unsigned long svalue;
1713
1714 while (!kstack_end(sptr)) {
1715 svalue = *sptr++;
1716 if (kernel_text_address(svalue)) {
1717 *addr++ = svalue;
1718 size -= sizeof(unsigned long);
1719 if (size <= sizeof(unsigned long))
1720 break;
1721 }
1722 }
1723
1724 }
1725 *addr++ = 0x87654321;
1726 }
1727 #endif
1728
1729 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1730 {
1731 int size = obj_size(cachep);
1732 addr = &((char *)addr)[obj_offset(cachep)];
1733
1734 memset(addr, val, size);
1735 *(unsigned char *)(addr + size - 1) = POISON_END;
1736 }
1737
1738 static void dump_line(char *data, int offset, int limit)
1739 {
1740 int i;
1741 unsigned char error = 0;
1742 int bad_count = 0;
1743
1744 printk(KERN_ERR "%03x:", offset);
1745 for (i = 0; i < limit; i++) {
1746 if (data[offset + i] != POISON_FREE) {
1747 error = data[offset + i];
1748 bad_count++;
1749 }
1750 printk(" %02x", (unsigned char)data[offset + i]);
1751 }
1752 printk("\n");
1753
1754 if (bad_count == 1) {
1755 error ^= POISON_FREE;
1756 if (!(error & (error - 1))) {
1757 printk(KERN_ERR "Single bit error detected. Probably "
1758 "bad RAM.\n");
1759 #ifdef CONFIG_X86
1760 printk(KERN_ERR "Run memtest86+ or a similar memory "
1761 "test tool.\n");
1762 #else
1763 printk(KERN_ERR "Run a memory test tool.\n");
1764 #endif
1765 }
1766 }
1767 }
1768 #endif
1769
1770 #if DEBUG
1771
1772 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1773 {
1774 int i, size;
1775 char *realobj;
1776
1777 if (cachep->flags & SLAB_RED_ZONE) {
1778 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1779 *dbg_redzone1(cachep, objp),
1780 *dbg_redzone2(cachep, objp));
1781 }
1782
1783 if (cachep->flags & SLAB_STORE_USER) {
1784 printk(KERN_ERR "Last user: [<%p>]",
1785 *dbg_userword(cachep, objp));
1786 print_symbol("(%s)",
1787 (unsigned long)*dbg_userword(cachep, objp));
1788 printk("\n");
1789 }
1790 realobj = (char *)objp + obj_offset(cachep);
1791 size = obj_size(cachep);
1792 for (i = 0; i < size && lines; i += 16, lines--) {
1793 int limit;
1794 limit = 16;
1795 if (i + limit > size)
1796 limit = size - i;
1797 dump_line(realobj, i, limit);
1798 }
1799 }
1800
1801 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1802 {
1803 char *realobj;
1804 int size, i;
1805 int lines = 0;
1806
1807 realobj = (char *)objp + obj_offset(cachep);
1808 size = obj_size(cachep);
1809
1810 for (i = 0; i < size; i++) {
1811 char exp = POISON_FREE;
1812 if (i == size - 1)
1813 exp = POISON_END;
1814 if (realobj[i] != exp) {
1815 int limit;
1816 /* Mismatch ! */
1817 /* Print header */
1818 if (lines == 0) {
1819 printk(KERN_ERR
1820 "Slab corruption: %s start=%p, len=%d\n",
1821 cachep->name, realobj, size);
1822 print_objinfo(cachep, objp, 0);
1823 }
1824 /* Hexdump the affected line */
1825 i = (i / 16) * 16;
1826 limit = 16;
1827 if (i + limit > size)
1828 limit = size - i;
1829 dump_line(realobj, i, limit);
1830 i += 16;
1831 lines++;
1832 /* Limit to 5 lines */
1833 if (lines > 5)
1834 break;
1835 }
1836 }
1837 if (lines != 0) {
1838 /* Print some data about the neighboring objects, if they
1839 * exist:
1840 */
1841 struct slab *slabp = virt_to_slab(objp);
1842 unsigned int objnr;
1843
1844 objnr = obj_to_index(cachep, slabp, objp);
1845 if (objnr) {
1846 objp = index_to_obj(cachep, slabp, objnr - 1);
1847 realobj = (char *)objp + obj_offset(cachep);
1848 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1849 realobj, size);
1850 print_objinfo(cachep, objp, 2);
1851 }
1852 if (objnr + 1 < cachep->num) {
1853 objp = index_to_obj(cachep, slabp, objnr + 1);
1854 realobj = (char *)objp + obj_offset(cachep);
1855 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1856 realobj, size);
1857 print_objinfo(cachep, objp, 2);
1858 }
1859 }
1860 }
1861 #endif
1862
1863 #if DEBUG
1864 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1865 {
1866 int i;
1867 for (i = 0; i < cachep->num; i++) {
1868 void *objp = index_to_obj(cachep, slabp, i);
1869
1870 if (cachep->flags & SLAB_POISON) {
1871 #ifdef CONFIG_DEBUG_PAGEALLOC
1872 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1873 OFF_SLAB(cachep))
1874 kernel_map_pages(virt_to_page(objp),
1875 cachep->buffer_size / PAGE_SIZE, 1);
1876 else
1877 check_poison_obj(cachep, objp);
1878 #else
1879 check_poison_obj(cachep, objp);
1880 #endif
1881 }
1882 if (cachep->flags & SLAB_RED_ZONE) {
1883 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1884 slab_error(cachep, "start of a freed object "
1885 "was overwritten");
1886 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1887 slab_error(cachep, "end of a freed object "
1888 "was overwritten");
1889 }
1890 }
1891 }
1892 #else
1893 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1894 {
1895 }
1896 #endif
1897
1898 /**
1899 * slab_destroy - destroy and release all objects in a slab
1900 * @cachep: cache pointer being destroyed
1901 * @slabp: slab pointer being destroyed
1902 *
1903 * Destroy all the objs in a slab, and release the mem back to the system.
1904 * Before calling the slab must have been unlinked from the cache. The
1905 * cache-lock is not held/needed.
1906 */
1907 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1908 {
1909 void *addr = slabp->s_mem - slabp->colouroff;
1910
1911 slab_destroy_debugcheck(cachep, slabp);
1912 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1913 struct slab_rcu *slab_rcu;
1914
1915 slab_rcu = (struct slab_rcu *)slabp;
1916 slab_rcu->cachep = cachep;
1917 slab_rcu->addr = addr;
1918 call_rcu(&slab_rcu->head, kmem_rcu_free);
1919 } else {
1920 kmem_freepages(cachep, addr);
1921 if (OFF_SLAB(cachep))
1922 kmem_cache_free(cachep->slabp_cache, slabp);
1923 }
1924 }
1925
1926 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1927 {
1928 int i;
1929 struct kmem_list3 *l3;
1930
1931 for_each_online_cpu(i)
1932 kfree(cachep->array[i]);
1933
1934 /* NUMA: free the list3 structures */
1935 for_each_online_node(i) {
1936 l3 = cachep->nodelists[i];
1937 if (l3) {
1938 kfree(l3->shared);
1939 free_alien_cache(l3->alien);
1940 kfree(l3);
1941 }
1942 }
1943 kmem_cache_free(&cache_cache, cachep);
1944 }
1945
1946
1947 /**
1948 * calculate_slab_order - calculate size (page order) of slabs
1949 * @cachep: pointer to the cache that is being created
1950 * @size: size of objects to be created in this cache.
1951 * @align: required alignment for the objects.
1952 * @flags: slab allocation flags
1953 *
1954 * Also calculates the number of objects per slab.
1955 *
1956 * This could be made much more intelligent. For now, try to avoid using
1957 * high order pages for slabs. When the gfp() functions are more friendly
1958 * towards high-order requests, this should be changed.
1959 */
1960 static size_t calculate_slab_order(struct kmem_cache *cachep,
1961 size_t size, size_t align, unsigned long flags)
1962 {
1963 unsigned long offslab_limit;
1964 size_t left_over = 0;
1965 int gfporder;
1966
1967 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1968 unsigned int num;
1969 size_t remainder;
1970
1971 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1972 if (!num)
1973 continue;
1974
1975 if (flags & CFLGS_OFF_SLAB) {
1976 /*
1977 * Max number of objs-per-slab for caches which
1978 * use off-slab slabs. Needed to avoid a possible
1979 * looping condition in cache_grow().
1980 */
1981 offslab_limit = size - sizeof(struct slab);
1982 offslab_limit /= sizeof(kmem_bufctl_t);
1983
1984 if (num > offslab_limit)
1985 break;
1986 }
1987
1988 /* Found something acceptable - save it away */
1989 cachep->num = num;
1990 cachep->gfporder = gfporder;
1991 left_over = remainder;
1992
1993 /*
1994 * A VFS-reclaimable slab tends to have most allocations
1995 * as GFP_NOFS and we really don't want to have to be allocating
1996 * higher-order pages when we are unable to shrink dcache.
1997 */
1998 if (flags & SLAB_RECLAIM_ACCOUNT)
1999 break;
2000
2001 /*
2002 * Large number of objects is good, but very large slabs are
2003 * currently bad for the gfp()s.
2004 */
2005 if (gfporder >= slab_break_gfp_order)
2006 break;
2007
2008 /*
2009 * Acceptable internal fragmentation?
2010 */
2011 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2012 break;
2013 }
2014 return left_over;
2015 }
2016
2017 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2018 {
2019 if (g_cpucache_up == FULL)
2020 return enable_cpucache(cachep, gfp);
2021
2022 if (g_cpucache_up == NONE) {
2023 /*
2024 * Note: the first kmem_cache_create must create the cache
2025 * that's used by kmalloc(24), otherwise the creation of
2026 * further caches will BUG().
2027 */
2028 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2029
2030 /*
2031 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2032 * the first cache, then we need to set up all its list3s,
2033 * otherwise the creation of further caches will BUG().
2034 */
2035 set_up_list3s(cachep, SIZE_AC);
2036 if (INDEX_AC == INDEX_L3)
2037 g_cpucache_up = PARTIAL_L3;
2038 else
2039 g_cpucache_up = PARTIAL_AC;
2040 } else {
2041 cachep->array[smp_processor_id()] =
2042 kmalloc(sizeof(struct arraycache_init), gfp);
2043
2044 if (g_cpucache_up == PARTIAL_AC) {
2045 set_up_list3s(cachep, SIZE_L3);
2046 g_cpucache_up = PARTIAL_L3;
2047 } else {
2048 int node;
2049 for_each_online_node(node) {
2050 cachep->nodelists[node] =
2051 kmalloc_node(sizeof(struct kmem_list3),
2052 gfp, node);
2053 BUG_ON(!cachep->nodelists[node]);
2054 kmem_list3_init(cachep->nodelists[node]);
2055 }
2056 }
2057 }
2058 cachep->nodelists[numa_node_id()]->next_reap =
2059 jiffies + REAPTIMEOUT_LIST3 +
2060 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2061
2062 cpu_cache_get(cachep)->avail = 0;
2063 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2064 cpu_cache_get(cachep)->batchcount = 1;
2065 cpu_cache_get(cachep)->touched = 0;
2066 cachep->batchcount = 1;
2067 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2068 return 0;
2069 }
2070
2071 /**
2072 * kmem_cache_create - Create a cache.
2073 * @name: A string which is used in /proc/slabinfo to identify this cache.
2074 * @size: The size of objects to be created in this cache.
2075 * @align: The required alignment for the objects.
2076 * @flags: SLAB flags
2077 * @ctor: A constructor for the objects.
2078 *
2079 * Returns a ptr to the cache on success, NULL on failure.
2080 * Cannot be called within a int, but can be interrupted.
2081 * The @ctor is run when new pages are allocated by the cache.
2082 *
2083 * @name must be valid until the cache is destroyed. This implies that
2084 * the module calling this has to destroy the cache before getting unloaded.
2085 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2086 * therefore applications must manage it themselves.
2087 *
2088 * The flags are
2089 *
2090 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2091 * to catch references to uninitialised memory.
2092 *
2093 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2094 * for buffer overruns.
2095 *
2096 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2097 * cacheline. This can be beneficial if you're counting cycles as closely
2098 * as davem.
2099 */
2100 struct kmem_cache *
2101 kmem_cache_create (const char *name, size_t size, size_t align,
2102 unsigned long flags, void (*ctor)(void *))
2103 {
2104 size_t left_over, slab_size, ralign;
2105 struct kmem_cache *cachep = NULL, *pc;
2106 gfp_t gfp;
2107
2108 /*
2109 * Sanity checks... these are all serious usage bugs.
2110 */
2111 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2112 size > KMALLOC_MAX_SIZE) {
2113 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2114 name);
2115 BUG();
2116 }
2117
2118 /*
2119 * We use cache_chain_mutex to ensure a consistent view of
2120 * cpu_online_mask as well. Please see cpuup_callback
2121 */
2122 if (slab_is_available()) {
2123 get_online_cpus();
2124 mutex_lock(&cache_chain_mutex);
2125 }
2126
2127 list_for_each_entry(pc, &cache_chain, next) {
2128 char tmp;
2129 int res;
2130
2131 /*
2132 * This happens when the module gets unloaded and doesn't
2133 * destroy its slab cache and no-one else reuses the vmalloc
2134 * area of the module. Print a warning.
2135 */
2136 res = probe_kernel_address(pc->name, tmp);
2137 if (res) {
2138 printk(KERN_ERR
2139 "SLAB: cache with size %d has lost its name\n",
2140 pc->buffer_size);
2141 continue;
2142 }
2143
2144 if (!strcmp(pc->name, name)) {
2145 printk(KERN_ERR
2146 "kmem_cache_create: duplicate cache %s\n", name);
2147 dump_stack();
2148 goto oops;
2149 }
2150 }
2151
2152 #if DEBUG
2153 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2154 #if FORCED_DEBUG
2155 /*
2156 * Enable redzoning and last user accounting, except for caches with
2157 * large objects, if the increased size would increase the object size
2158 * above the next power of two: caches with object sizes just above a
2159 * power of two have a significant amount of internal fragmentation.
2160 */
2161 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2162 2 * sizeof(unsigned long long)))
2163 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2164 if (!(flags & SLAB_DESTROY_BY_RCU))
2165 flags |= SLAB_POISON;
2166 #endif
2167 if (flags & SLAB_DESTROY_BY_RCU)
2168 BUG_ON(flags & SLAB_POISON);
2169 #endif
2170 /*
2171 * Always checks flags, a caller might be expecting debug support which
2172 * isn't available.
2173 */
2174 BUG_ON(flags & ~CREATE_MASK);
2175
2176 /*
2177 * Check that size is in terms of words. This is needed to avoid
2178 * unaligned accesses for some archs when redzoning is used, and makes
2179 * sure any on-slab bufctl's are also correctly aligned.
2180 */
2181 if (size & (BYTES_PER_WORD - 1)) {
2182 size += (BYTES_PER_WORD - 1);
2183 size &= ~(BYTES_PER_WORD - 1);
2184 }
2185
2186 /* calculate the final buffer alignment: */
2187
2188 /* 1) arch recommendation: can be overridden for debug */
2189 if (flags & SLAB_HWCACHE_ALIGN) {
2190 /*
2191 * Default alignment: as specified by the arch code. Except if
2192 * an object is really small, then squeeze multiple objects into
2193 * one cacheline.
2194 */
2195 ralign = cache_line_size();
2196 while (size <= ralign / 2)
2197 ralign /= 2;
2198 } else {
2199 ralign = BYTES_PER_WORD;
2200 }
2201
2202 /*
2203 * Redzoning and user store require word alignment or possibly larger.
2204 * Note this will be overridden by architecture or caller mandated
2205 * alignment if either is greater than BYTES_PER_WORD.
2206 */
2207 if (flags & SLAB_STORE_USER)
2208 ralign = BYTES_PER_WORD;
2209
2210 if (flags & SLAB_RED_ZONE) {
2211 ralign = REDZONE_ALIGN;
2212 /* If redzoning, ensure that the second redzone is suitably
2213 * aligned, by adjusting the object size accordingly. */
2214 size += REDZONE_ALIGN - 1;
2215 size &= ~(REDZONE_ALIGN - 1);
2216 }
2217
2218 /* 2) arch mandated alignment */
2219 if (ralign < ARCH_SLAB_MINALIGN) {
2220 ralign = ARCH_SLAB_MINALIGN;
2221 }
2222 /* 3) caller mandated alignment */
2223 if (ralign < align) {
2224 ralign = align;
2225 }
2226 /* disable debug if necessary */
2227 if (ralign > __alignof__(unsigned long long))
2228 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2229 /*
2230 * 4) Store it.
2231 */
2232 align = ralign;
2233
2234 if (slab_is_available())
2235 gfp = GFP_KERNEL;
2236 else
2237 gfp = GFP_NOWAIT;
2238
2239 /* Get cache's description obj. */
2240 cachep = kmem_cache_zalloc(&cache_cache, gfp);
2241 if (!cachep)
2242 goto oops;
2243
2244 #if DEBUG
2245 cachep->obj_size = size;
2246
2247 /*
2248 * Both debugging options require word-alignment which is calculated
2249 * into align above.
2250 */
2251 if (flags & SLAB_RED_ZONE) {
2252 /* add space for red zone words */
2253 cachep->obj_offset += sizeof(unsigned long long);
2254 size += 2 * sizeof(unsigned long long);
2255 }
2256 if (flags & SLAB_STORE_USER) {
2257 /* user store requires one word storage behind the end of
2258 * the real object. But if the second red zone needs to be
2259 * aligned to 64 bits, we must allow that much space.
2260 */
2261 if (flags & SLAB_RED_ZONE)
2262 size += REDZONE_ALIGN;
2263 else
2264 size += BYTES_PER_WORD;
2265 }
2266 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2267 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2268 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2269 cachep->obj_offset += PAGE_SIZE - size;
2270 size = PAGE_SIZE;
2271 }
2272 #endif
2273 #endif
2274
2275 /*
2276 * Determine if the slab management is 'on' or 'off' slab.
2277 * (bootstrapping cannot cope with offslab caches so don't do
2278 * it too early on.)
2279 */
2280 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2281 /*
2282 * Size is large, assume best to place the slab management obj
2283 * off-slab (should allow better packing of objs).
2284 */
2285 flags |= CFLGS_OFF_SLAB;
2286
2287 size = ALIGN(size, align);
2288
2289 left_over = calculate_slab_order(cachep, size, align, flags);
2290
2291 if (!cachep->num) {
2292 printk(KERN_ERR
2293 "kmem_cache_create: couldn't create cache %s.\n", name);
2294 kmem_cache_free(&cache_cache, cachep);
2295 cachep = NULL;
2296 goto oops;
2297 }
2298 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2299 + sizeof(struct slab), align);
2300
2301 /*
2302 * If the slab has been placed off-slab, and we have enough space then
2303 * move it on-slab. This is at the expense of any extra colouring.
2304 */
2305 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2306 flags &= ~CFLGS_OFF_SLAB;
2307 left_over -= slab_size;
2308 }
2309
2310 if (flags & CFLGS_OFF_SLAB) {
2311 /* really off slab. No need for manual alignment */
2312 slab_size =
2313 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2314 }
2315
2316 cachep->colour_off = cache_line_size();
2317 /* Offset must be a multiple of the alignment. */
2318 if (cachep->colour_off < align)
2319 cachep->colour_off = align;
2320 cachep->colour = left_over / cachep->colour_off;
2321 cachep->slab_size = slab_size;
2322 cachep->flags = flags;
2323 cachep->gfpflags = 0;
2324 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2325 cachep->gfpflags |= GFP_DMA;
2326 cachep->buffer_size = size;
2327 cachep->reciprocal_buffer_size = reciprocal_value(size);
2328
2329 if (flags & CFLGS_OFF_SLAB) {
2330 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2331 /*
2332 * This is a possibility for one of the malloc_sizes caches.
2333 * But since we go off slab only for object size greater than
2334 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2335 * this should not happen at all.
2336 * But leave a BUG_ON for some lucky dude.
2337 */
2338 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2339 }
2340 cachep->ctor = ctor;
2341 cachep->name = name;
2342
2343 if (setup_cpu_cache(cachep, gfp)) {
2344 __kmem_cache_destroy(cachep);
2345 cachep = NULL;
2346 goto oops;
2347 }
2348
2349 /* cache setup completed, link it into the list */
2350 list_add(&cachep->next, &cache_chain);
2351 oops:
2352 if (!cachep && (flags & SLAB_PANIC))
2353 panic("kmem_cache_create(): failed to create slab `%s'\n",
2354 name);
2355 if (slab_is_available()) {
2356 mutex_unlock(&cache_chain_mutex);
2357 put_online_cpus();
2358 }
2359 return cachep;
2360 }
2361 EXPORT_SYMBOL(kmem_cache_create);
2362
2363 #if DEBUG
2364 static void check_irq_off(void)
2365 {
2366 BUG_ON(!irqs_disabled());
2367 }
2368
2369 static void check_irq_on(void)
2370 {
2371 BUG_ON(irqs_disabled());
2372 }
2373
2374 static void check_spinlock_acquired(struct kmem_cache *cachep)
2375 {
2376 #ifdef CONFIG_SMP
2377 check_irq_off();
2378 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2379 #endif
2380 }
2381
2382 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2383 {
2384 #ifdef CONFIG_SMP
2385 check_irq_off();
2386 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2387 #endif
2388 }
2389
2390 #else
2391 #define check_irq_off() do { } while(0)
2392 #define check_irq_on() do { } while(0)
2393 #define check_spinlock_acquired(x) do { } while(0)
2394 #define check_spinlock_acquired_node(x, y) do { } while(0)
2395 #endif
2396
2397 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2398 struct array_cache *ac,
2399 int force, int node);
2400
2401 static void do_drain(void *arg)
2402 {
2403 struct kmem_cache *cachep = arg;
2404 struct array_cache *ac;
2405 int node = numa_node_id();
2406
2407 check_irq_off();
2408 ac = cpu_cache_get(cachep);
2409 spin_lock(&cachep->nodelists[node]->list_lock);
2410 free_block(cachep, ac->entry, ac->avail, node);
2411 spin_unlock(&cachep->nodelists[node]->list_lock);
2412 ac->avail = 0;
2413 }
2414
2415 static void drain_cpu_caches(struct kmem_cache *cachep)
2416 {
2417 struct kmem_list3 *l3;
2418 int node;
2419
2420 on_each_cpu(do_drain, cachep, 1);
2421 check_irq_on();
2422 for_each_online_node(node) {
2423 l3 = cachep->nodelists[node];
2424 if (l3 && l3->alien)
2425 drain_alien_cache(cachep, l3->alien);
2426 }
2427
2428 for_each_online_node(node) {
2429 l3 = cachep->nodelists[node];
2430 if (l3)
2431 drain_array(cachep, l3, l3->shared, 1, node);
2432 }
2433 }
2434
2435 /*
2436 * Remove slabs from the list of free slabs.
2437 * Specify the number of slabs to drain in tofree.
2438 *
2439 * Returns the actual number of slabs released.
2440 */
2441 static int drain_freelist(struct kmem_cache *cache,
2442 struct kmem_list3 *l3, int tofree)
2443 {
2444 struct list_head *p;
2445 int nr_freed;
2446 struct slab *slabp;
2447
2448 nr_freed = 0;
2449 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2450
2451 spin_lock_irq(&l3->list_lock);
2452 p = l3->slabs_free.prev;
2453 if (p == &l3->slabs_free) {
2454 spin_unlock_irq(&l3->list_lock);
2455 goto out;
2456 }
2457
2458 slabp = list_entry(p, struct slab, list);
2459 #if DEBUG
2460 BUG_ON(slabp->inuse);
2461 #endif
2462 list_del(&slabp->list);
2463 /*
2464 * Safe to drop the lock. The slab is no longer linked
2465 * to the cache.
2466 */
2467 l3->free_objects -= cache->num;
2468 spin_unlock_irq(&l3->list_lock);
2469 slab_destroy(cache, slabp);
2470 nr_freed++;
2471 }
2472 out:
2473 return nr_freed;
2474 }
2475
2476 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2477 static int __cache_shrink(struct kmem_cache *cachep)
2478 {
2479 int ret = 0, i = 0;
2480 struct kmem_list3 *l3;
2481
2482 drain_cpu_caches(cachep);
2483
2484 check_irq_on();
2485 for_each_online_node(i) {
2486 l3 = cachep->nodelists[i];
2487 if (!l3)
2488 continue;
2489
2490 drain_freelist(cachep, l3, l3->free_objects);
2491
2492 ret += !list_empty(&l3->slabs_full) ||
2493 !list_empty(&l3->slabs_partial);
2494 }
2495 return (ret ? 1 : 0);
2496 }
2497
2498 /**
2499 * kmem_cache_shrink - Shrink a cache.
2500 * @cachep: The cache to shrink.
2501 *
2502 * Releases as many slabs as possible for a cache.
2503 * To help debugging, a zero exit status indicates all slabs were released.
2504 */
2505 int kmem_cache_shrink(struct kmem_cache *cachep)
2506 {
2507 int ret;
2508 BUG_ON(!cachep || in_interrupt());
2509
2510 get_online_cpus();
2511 mutex_lock(&cache_chain_mutex);
2512 ret = __cache_shrink(cachep);
2513 mutex_unlock(&cache_chain_mutex);
2514 put_online_cpus();
2515 return ret;
2516 }
2517 EXPORT_SYMBOL(kmem_cache_shrink);
2518
2519 /**
2520 * kmem_cache_destroy - delete a cache
2521 * @cachep: the cache to destroy
2522 *
2523 * Remove a &struct kmem_cache object from the slab cache.
2524 *
2525 * It is expected this function will be called by a module when it is
2526 * unloaded. This will remove the cache completely, and avoid a duplicate
2527 * cache being allocated each time a module is loaded and unloaded, if the
2528 * module doesn't have persistent in-kernel storage across loads and unloads.
2529 *
2530 * The cache must be empty before calling this function.
2531 *
2532 * The caller must guarantee that noone will allocate memory from the cache
2533 * during the kmem_cache_destroy().
2534 */
2535 void kmem_cache_destroy(struct kmem_cache *cachep)
2536 {
2537 BUG_ON(!cachep || in_interrupt());
2538
2539 /* Find the cache in the chain of caches. */
2540 get_online_cpus();
2541 mutex_lock(&cache_chain_mutex);
2542 /*
2543 * the chain is never empty, cache_cache is never destroyed
2544 */
2545 list_del(&cachep->next);
2546 if (__cache_shrink(cachep)) {
2547 slab_error(cachep, "Can't free all objects");
2548 list_add(&cachep->next, &cache_chain);
2549 mutex_unlock(&cache_chain_mutex);
2550 put_online_cpus();
2551 return;
2552 }
2553
2554 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2555 synchronize_rcu();
2556
2557 __kmem_cache_destroy(cachep);
2558 mutex_unlock(&cache_chain_mutex);
2559 put_online_cpus();
2560 }
2561 EXPORT_SYMBOL(kmem_cache_destroy);
2562
2563 /*
2564 * Get the memory for a slab management obj.
2565 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2566 * always come from malloc_sizes caches. The slab descriptor cannot
2567 * come from the same cache which is getting created because,
2568 * when we are searching for an appropriate cache for these
2569 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2570 * If we are creating a malloc_sizes cache here it would not be visible to
2571 * kmem_find_general_cachep till the initialization is complete.
2572 * Hence we cannot have slabp_cache same as the original cache.
2573 */
2574 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2575 int colour_off, gfp_t local_flags,
2576 int nodeid)
2577 {
2578 struct slab *slabp;
2579
2580 if (OFF_SLAB(cachep)) {
2581 /* Slab management obj is off-slab. */
2582 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2583 local_flags, nodeid);
2584 /*
2585 * If the first object in the slab is leaked (it's allocated
2586 * but no one has a reference to it), we want to make sure
2587 * kmemleak does not treat the ->s_mem pointer as a reference
2588 * to the object. Otherwise we will not report the leak.
2589 */
2590 kmemleak_scan_area(slabp, offsetof(struct slab, list),
2591 sizeof(struct list_head), local_flags);
2592 if (!slabp)
2593 return NULL;
2594 } else {
2595 slabp = objp + colour_off;
2596 colour_off += cachep->slab_size;
2597 }
2598 slabp->inuse = 0;
2599 slabp->colouroff = colour_off;
2600 slabp->s_mem = objp + colour_off;
2601 slabp->nodeid = nodeid;
2602 slabp->free = 0;
2603 return slabp;
2604 }
2605
2606 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2607 {
2608 return (kmem_bufctl_t *) (slabp + 1);
2609 }
2610
2611 static void cache_init_objs(struct kmem_cache *cachep,
2612 struct slab *slabp)
2613 {
2614 int i;
2615
2616 for (i = 0; i < cachep->num; i++) {
2617 void *objp = index_to_obj(cachep, slabp, i);
2618 #if DEBUG
2619 /* need to poison the objs? */
2620 if (cachep->flags & SLAB_POISON)
2621 poison_obj(cachep, objp, POISON_FREE);
2622 if (cachep->flags & SLAB_STORE_USER)
2623 *dbg_userword(cachep, objp) = NULL;
2624
2625 if (cachep->flags & SLAB_RED_ZONE) {
2626 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2627 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2628 }
2629 /*
2630 * Constructors are not allowed to allocate memory from the same
2631 * cache which they are a constructor for. Otherwise, deadlock.
2632 * They must also be threaded.
2633 */
2634 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2635 cachep->ctor(objp + obj_offset(cachep));
2636
2637 if (cachep->flags & SLAB_RED_ZONE) {
2638 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2639 slab_error(cachep, "constructor overwrote the"
2640 " end of an object");
2641 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2642 slab_error(cachep, "constructor overwrote the"
2643 " start of an object");
2644 }
2645 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2646 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2647 kernel_map_pages(virt_to_page(objp),
2648 cachep->buffer_size / PAGE_SIZE, 0);
2649 #else
2650 if (cachep->ctor)
2651 cachep->ctor(objp);
2652 #endif
2653 slab_bufctl(slabp)[i] = i + 1;
2654 }
2655 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2656 }
2657
2658 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2659 {
2660 if (CONFIG_ZONE_DMA_FLAG) {
2661 if (flags & GFP_DMA)
2662 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2663 else
2664 BUG_ON(cachep->gfpflags & GFP_DMA);
2665 }
2666 }
2667
2668 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2669 int nodeid)
2670 {
2671 void *objp = index_to_obj(cachep, slabp, slabp->free);
2672 kmem_bufctl_t next;
2673
2674 slabp->inuse++;
2675 next = slab_bufctl(slabp)[slabp->free];
2676 #if DEBUG
2677 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2678 WARN_ON(slabp->nodeid != nodeid);
2679 #endif
2680 slabp->free = next;
2681
2682 return objp;
2683 }
2684
2685 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2686 void *objp, int nodeid)
2687 {
2688 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2689
2690 #if DEBUG
2691 /* Verify that the slab belongs to the intended node */
2692 WARN_ON(slabp->nodeid != nodeid);
2693
2694 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2695 printk(KERN_ERR "slab: double free detected in cache "
2696 "'%s', objp %p\n", cachep->name, objp);
2697 BUG();
2698 }
2699 #endif
2700 slab_bufctl(slabp)[objnr] = slabp->free;
2701 slabp->free = objnr;
2702 slabp->inuse--;
2703 }
2704
2705 /*
2706 * Map pages beginning at addr to the given cache and slab. This is required
2707 * for the slab allocator to be able to lookup the cache and slab of a
2708 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2709 */
2710 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2711 void *addr)
2712 {
2713 int nr_pages;
2714 struct page *page;
2715
2716 page = virt_to_page(addr);
2717
2718 nr_pages = 1;
2719 if (likely(!PageCompound(page)))
2720 nr_pages <<= cache->gfporder;
2721
2722 do {
2723 page_set_cache(page, cache);
2724 page_set_slab(page, slab);
2725 page++;
2726 } while (--nr_pages);
2727 }
2728
2729 /*
2730 * Grow (by 1) the number of slabs within a cache. This is called by
2731 * kmem_cache_alloc() when there are no active objs left in a cache.
2732 */
2733 static int cache_grow(struct kmem_cache *cachep,
2734 gfp_t flags, int nodeid, void *objp)
2735 {
2736 struct slab *slabp;
2737 size_t offset;
2738 gfp_t local_flags;
2739 struct kmem_list3 *l3;
2740
2741 /*
2742 * Be lazy and only check for valid flags here, keeping it out of the
2743 * critical path in kmem_cache_alloc().
2744 */
2745 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2746 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2747
2748 /* Take the l3 list lock to change the colour_next on this node */
2749 check_irq_off();
2750 l3 = cachep->nodelists[nodeid];
2751 spin_lock(&l3->list_lock);
2752
2753 /* Get colour for the slab, and cal the next value. */
2754 offset = l3->colour_next;
2755 l3->colour_next++;
2756 if (l3->colour_next >= cachep->colour)
2757 l3->colour_next = 0;
2758 spin_unlock(&l3->list_lock);
2759
2760 offset *= cachep->colour_off;
2761
2762 if (local_flags & __GFP_WAIT)
2763 local_irq_enable();
2764
2765 /*
2766 * The test for missing atomic flag is performed here, rather than
2767 * the more obvious place, simply to reduce the critical path length
2768 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2769 * will eventually be caught here (where it matters).
2770 */
2771 kmem_flagcheck(cachep, flags);
2772
2773 /*
2774 * Get mem for the objs. Attempt to allocate a physical page from
2775 * 'nodeid'.
2776 */
2777 if (!objp)
2778 objp = kmem_getpages(cachep, local_flags, nodeid);
2779 if (!objp)
2780 goto failed;
2781
2782 /* Get slab management. */
2783 slabp = alloc_slabmgmt(cachep, objp, offset,
2784 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2785 if (!slabp)
2786 goto opps1;
2787
2788 slab_map_pages(cachep, slabp, objp);
2789
2790 cache_init_objs(cachep, slabp);
2791
2792 if (local_flags & __GFP_WAIT)
2793 local_irq_disable();
2794 check_irq_off();
2795 spin_lock(&l3->list_lock);
2796
2797 /* Make slab active. */
2798 list_add_tail(&slabp->list, &(l3->slabs_free));
2799 STATS_INC_GROWN(cachep);
2800 l3->free_objects += cachep->num;
2801 spin_unlock(&l3->list_lock);
2802 return 1;
2803 opps1:
2804 kmem_freepages(cachep, objp);
2805 failed:
2806 if (local_flags & __GFP_WAIT)
2807 local_irq_disable();
2808 return 0;
2809 }
2810
2811 #if DEBUG
2812
2813 /*
2814 * Perform extra freeing checks:
2815 * - detect bad pointers.
2816 * - POISON/RED_ZONE checking
2817 */
2818 static void kfree_debugcheck(const void *objp)
2819 {
2820 if (!virt_addr_valid(objp)) {
2821 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2822 (unsigned long)objp);
2823 BUG();
2824 }
2825 }
2826
2827 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2828 {
2829 unsigned long long redzone1, redzone2;
2830
2831 redzone1 = *dbg_redzone1(cache, obj);
2832 redzone2 = *dbg_redzone2(cache, obj);
2833
2834 /*
2835 * Redzone is ok.
2836 */
2837 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2838 return;
2839
2840 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2841 slab_error(cache, "double free detected");
2842 else
2843 slab_error(cache, "memory outside object was overwritten");
2844
2845 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2846 obj, redzone1, redzone2);
2847 }
2848
2849 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2850 void *caller)
2851 {
2852 struct page *page;
2853 unsigned int objnr;
2854 struct slab *slabp;
2855
2856 BUG_ON(virt_to_cache(objp) != cachep);
2857
2858 objp -= obj_offset(cachep);
2859 kfree_debugcheck(objp);
2860 page = virt_to_head_page(objp);
2861
2862 slabp = page_get_slab(page);
2863
2864 if (cachep->flags & SLAB_RED_ZONE) {
2865 verify_redzone_free(cachep, objp);
2866 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2867 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2868 }
2869 if (cachep->flags & SLAB_STORE_USER)
2870 *dbg_userword(cachep, objp) = caller;
2871
2872 objnr = obj_to_index(cachep, slabp, objp);
2873
2874 BUG_ON(objnr >= cachep->num);
2875 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2876
2877 #ifdef CONFIG_DEBUG_SLAB_LEAK
2878 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2879 #endif
2880 if (cachep->flags & SLAB_POISON) {
2881 #ifdef CONFIG_DEBUG_PAGEALLOC
2882 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2883 store_stackinfo(cachep, objp, (unsigned long)caller);
2884 kernel_map_pages(virt_to_page(objp),
2885 cachep->buffer_size / PAGE_SIZE, 0);
2886 } else {
2887 poison_obj(cachep, objp, POISON_FREE);
2888 }
2889 #else
2890 poison_obj(cachep, objp, POISON_FREE);
2891 #endif
2892 }
2893 return objp;
2894 }
2895
2896 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2897 {
2898 kmem_bufctl_t i;
2899 int entries = 0;
2900
2901 /* Check slab's freelist to see if this obj is there. */
2902 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2903 entries++;
2904 if (entries > cachep->num || i >= cachep->num)
2905 goto bad;
2906 }
2907 if (entries != cachep->num - slabp->inuse) {
2908 bad:
2909 printk(KERN_ERR "slab: Internal list corruption detected in "
2910 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2911 cachep->name, cachep->num, slabp, slabp->inuse);
2912 for (i = 0;
2913 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2914 i++) {
2915 if (i % 16 == 0)
2916 printk("\n%03x:", i);
2917 printk(" %02x", ((unsigned char *)slabp)[i]);
2918 }
2919 printk("\n");
2920 BUG();
2921 }
2922 }
2923 #else
2924 #define kfree_debugcheck(x) do { } while(0)
2925 #define cache_free_debugcheck(x,objp,z) (objp)
2926 #define check_slabp(x,y) do { } while(0)
2927 #endif
2928
2929 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2930 {
2931 int batchcount;
2932 struct kmem_list3 *l3;
2933 struct array_cache *ac;
2934 int node;
2935
2936 retry:
2937 check_irq_off();
2938 node = numa_node_id();
2939 ac = cpu_cache_get(cachep);
2940 batchcount = ac->batchcount;
2941 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2942 /*
2943 * If there was little recent activity on this cache, then
2944 * perform only a partial refill. Otherwise we could generate
2945 * refill bouncing.
2946 */
2947 batchcount = BATCHREFILL_LIMIT;
2948 }
2949 l3 = cachep->nodelists[node];
2950
2951 BUG_ON(ac->avail > 0 || !l3);
2952 spin_lock(&l3->list_lock);
2953
2954 /* See if we can refill from the shared array */
2955 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2956 goto alloc_done;
2957
2958 while (batchcount > 0) {
2959 struct list_head *entry;
2960 struct slab *slabp;
2961 /* Get slab alloc is to come from. */
2962 entry = l3->slabs_partial.next;
2963 if (entry == &l3->slabs_partial) {
2964 l3->free_touched = 1;
2965 entry = l3->slabs_free.next;
2966 if (entry == &l3->slabs_free)
2967 goto must_grow;
2968 }
2969
2970 slabp = list_entry(entry, struct slab, list);
2971 check_slabp(cachep, slabp);
2972 check_spinlock_acquired(cachep);
2973
2974 /*
2975 * The slab was either on partial or free list so
2976 * there must be at least one object available for
2977 * allocation.
2978 */
2979 BUG_ON(slabp->inuse >= cachep->num);
2980
2981 while (slabp->inuse < cachep->num && batchcount--) {
2982 STATS_INC_ALLOCED(cachep);
2983 STATS_INC_ACTIVE(cachep);
2984 STATS_SET_HIGH(cachep);
2985
2986 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2987 node);
2988 }
2989 check_slabp(cachep, slabp);
2990
2991 /* move slabp to correct slabp list: */
2992 list_del(&slabp->list);
2993 if (slabp->free == BUFCTL_END)
2994 list_add(&slabp->list, &l3->slabs_full);
2995 else
2996 list_add(&slabp->list, &l3->slabs_partial);
2997 }
2998
2999 must_grow:
3000 l3->free_objects -= ac->avail;
3001 alloc_done:
3002 spin_unlock(&l3->list_lock);
3003
3004 if (unlikely(!ac->avail)) {
3005 int x;
3006 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3007
3008 /* cache_grow can reenable interrupts, then ac could change. */
3009 ac = cpu_cache_get(cachep);
3010 if (!x && ac->avail == 0) /* no objects in sight? abort */
3011 return NULL;
3012
3013 if (!ac->avail) /* objects refilled by interrupt? */
3014 goto retry;
3015 }
3016 ac->touched = 1;
3017 return ac->entry[--ac->avail];
3018 }
3019
3020 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3021 gfp_t flags)
3022 {
3023 might_sleep_if(flags & __GFP_WAIT);
3024 #if DEBUG
3025 kmem_flagcheck(cachep, flags);
3026 #endif
3027 }
3028
3029 #if DEBUG
3030 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3031 gfp_t flags, void *objp, void *caller)
3032 {
3033 if (!objp)
3034 return objp;
3035 if (cachep->flags & SLAB_POISON) {
3036 #ifdef CONFIG_DEBUG_PAGEALLOC
3037 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3038 kernel_map_pages(virt_to_page(objp),
3039 cachep->buffer_size / PAGE_SIZE, 1);
3040 else
3041 check_poison_obj(cachep, objp);
3042 #else
3043 check_poison_obj(cachep, objp);
3044 #endif
3045 poison_obj(cachep, objp, POISON_INUSE);
3046 }
3047 if (cachep->flags & SLAB_STORE_USER)
3048 *dbg_userword(cachep, objp) = caller;
3049
3050 if (cachep->flags & SLAB_RED_ZONE) {
3051 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3052 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3053 slab_error(cachep, "double free, or memory outside"
3054 " object was overwritten");
3055 printk(KERN_ERR
3056 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3057 objp, *dbg_redzone1(cachep, objp),
3058 *dbg_redzone2(cachep, objp));
3059 }
3060 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3061 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3062 }
3063 #ifdef CONFIG_DEBUG_SLAB_LEAK
3064 {
3065 struct slab *slabp;
3066 unsigned objnr;
3067
3068 slabp = page_get_slab(virt_to_head_page(objp));
3069 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3070 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3071 }
3072 #endif
3073 objp += obj_offset(cachep);
3074 if (cachep->ctor && cachep->flags & SLAB_POISON)
3075 cachep->ctor(objp);
3076 #if ARCH_SLAB_MINALIGN
3077 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3078 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3079 objp, ARCH_SLAB_MINALIGN);
3080 }
3081 #endif
3082 return objp;
3083 }
3084 #else
3085 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3086 #endif
3087
3088 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3089 {
3090 if (cachep == &cache_cache)
3091 return false;
3092
3093 return should_failslab(obj_size(cachep), flags);
3094 }
3095
3096 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3097 {
3098 void *objp;
3099 struct array_cache *ac;
3100
3101 check_irq_off();
3102
3103 ac = cpu_cache_get(cachep);
3104 if (likely(ac->avail)) {
3105 STATS_INC_ALLOCHIT(cachep);
3106 ac->touched = 1;
3107 objp = ac->entry[--ac->avail];
3108 } else {
3109 STATS_INC_ALLOCMISS(cachep);
3110 objp = cache_alloc_refill(cachep, flags);
3111 }
3112 /*
3113 * To avoid a false negative, if an object that is in one of the
3114 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3115 * treat the array pointers as a reference to the object.
3116 */
3117 kmemleak_erase(&ac->entry[ac->avail]);
3118 return objp;
3119 }
3120
3121 #ifdef CONFIG_NUMA
3122 /*
3123 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3124 *
3125 * If we are in_interrupt, then process context, including cpusets and
3126 * mempolicy, may not apply and should not be used for allocation policy.
3127 */
3128 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3129 {
3130 int nid_alloc, nid_here;
3131
3132 if (in_interrupt() || (flags & __GFP_THISNODE))
3133 return NULL;
3134 nid_alloc = nid_here = numa_node_id();
3135 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3136 nid_alloc = cpuset_mem_spread_node();
3137 else if (current->mempolicy)
3138 nid_alloc = slab_node(current->mempolicy);
3139 if (nid_alloc != nid_here)
3140 return ____cache_alloc_node(cachep, flags, nid_alloc);
3141 return NULL;
3142 }
3143
3144 /*
3145 * Fallback function if there was no memory available and no objects on a
3146 * certain node and fall back is permitted. First we scan all the
3147 * available nodelists for available objects. If that fails then we
3148 * perform an allocation without specifying a node. This allows the page
3149 * allocator to do its reclaim / fallback magic. We then insert the
3150 * slab into the proper nodelist and then allocate from it.
3151 */
3152 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3153 {
3154 struct zonelist *zonelist;
3155 gfp_t local_flags;
3156 struct zoneref *z;
3157 struct zone *zone;
3158 enum zone_type high_zoneidx = gfp_zone(flags);
3159 void *obj = NULL;
3160 int nid;
3161
3162 if (flags & __GFP_THISNODE)
3163 return NULL;
3164
3165 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3166 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3167
3168 retry:
3169 /*
3170 * Look through allowed nodes for objects available
3171 * from existing per node queues.
3172 */
3173 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3174 nid = zone_to_nid(zone);
3175
3176 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3177 cache->nodelists[nid] &&
3178 cache->nodelists[nid]->free_objects) {
3179 obj = ____cache_alloc_node(cache,
3180 flags | GFP_THISNODE, nid);
3181 if (obj)
3182 break;
3183 }
3184 }
3185
3186 if (!obj) {
3187 /*
3188 * This allocation will be performed within the constraints
3189 * of the current cpuset / memory policy requirements.
3190 * We may trigger various forms of reclaim on the allowed
3191 * set and go into memory reserves if necessary.
3192 */
3193 if (local_flags & __GFP_WAIT)
3194 local_irq_enable();
3195 kmem_flagcheck(cache, flags);
3196 obj = kmem_getpages(cache, local_flags, -1);
3197 if (local_flags & __GFP_WAIT)
3198 local_irq_disable();
3199 if (obj) {
3200 /*
3201 * Insert into the appropriate per node queues
3202 */
3203 nid = page_to_nid(virt_to_page(obj));
3204 if (cache_grow(cache, flags, nid, obj)) {
3205 obj = ____cache_alloc_node(cache,
3206 flags | GFP_THISNODE, nid);
3207 if (!obj)
3208 /*
3209 * Another processor may allocate the
3210 * objects in the slab since we are
3211 * not holding any locks.
3212 */
3213 goto retry;
3214 } else {
3215 /* cache_grow already freed obj */
3216 obj = NULL;
3217 }
3218 }
3219 }
3220 return obj;
3221 }
3222
3223 /*
3224 * A interface to enable slab creation on nodeid
3225 */
3226 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3227 int nodeid)
3228 {
3229 struct list_head *entry;
3230 struct slab *slabp;
3231 struct kmem_list3 *l3;
3232 void *obj;
3233 int x;
3234
3235 l3 = cachep->nodelists[nodeid];
3236 BUG_ON(!l3);
3237
3238 retry:
3239 check_irq_off();
3240 spin_lock(&l3->list_lock);
3241 entry = l3->slabs_partial.next;
3242 if (entry == &l3->slabs_partial) {
3243 l3->free_touched = 1;
3244 entry = l3->slabs_free.next;
3245 if (entry == &l3->slabs_free)
3246 goto must_grow;
3247 }
3248
3249 slabp = list_entry(entry, struct slab, list);
3250 check_spinlock_acquired_node(cachep, nodeid);
3251 check_slabp(cachep, slabp);
3252
3253 STATS_INC_NODEALLOCS(cachep);
3254 STATS_INC_ACTIVE(cachep);
3255 STATS_SET_HIGH(cachep);
3256
3257 BUG_ON(slabp->inuse == cachep->num);
3258
3259 obj = slab_get_obj(cachep, slabp, nodeid);
3260 check_slabp(cachep, slabp);
3261 l3->free_objects--;
3262 /* move slabp to correct slabp list: */
3263 list_del(&slabp->list);
3264
3265 if (slabp->free == BUFCTL_END)
3266 list_add(&slabp->list, &l3->slabs_full);
3267 else
3268 list_add(&slabp->list, &l3->slabs_partial);
3269
3270 spin_unlock(&l3->list_lock);
3271 goto done;
3272
3273 must_grow:
3274 spin_unlock(&l3->list_lock);
3275 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3276 if (x)
3277 goto retry;
3278
3279 return fallback_alloc(cachep, flags);
3280
3281 done:
3282 return obj;
3283 }
3284
3285 /**
3286 * kmem_cache_alloc_node - Allocate an object on the specified node
3287 * @cachep: The cache to allocate from.
3288 * @flags: See kmalloc().
3289 * @nodeid: node number of the target node.
3290 * @caller: return address of caller, used for debug information
3291 *
3292 * Identical to kmem_cache_alloc but it will allocate memory on the given
3293 * node, which can improve the performance for cpu bound structures.
3294 *
3295 * Fallback to other node is possible if __GFP_THISNODE is not set.
3296 */
3297 static __always_inline void *
3298 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3299 void *caller)
3300 {
3301 unsigned long save_flags;
3302 void *ptr;
3303
3304 flags &= slab_gfp_mask;
3305
3306 lockdep_trace_alloc(flags);
3307
3308 if (slab_should_failslab(cachep, flags))
3309 return NULL;
3310
3311 cache_alloc_debugcheck_before(cachep, flags);
3312 local_irq_save(save_flags);
3313
3314 if (unlikely(nodeid == -1))
3315 nodeid = numa_node_id();
3316
3317 if (unlikely(!cachep->nodelists[nodeid])) {
3318 /* Node not bootstrapped yet */
3319 ptr = fallback_alloc(cachep, flags);
3320 goto out;
3321 }
3322
3323 if (nodeid == numa_node_id()) {
3324 /*
3325 * Use the locally cached objects if possible.
3326 * However ____cache_alloc does not allow fallback
3327 * to other nodes. It may fail while we still have
3328 * objects on other nodes available.
3329 */
3330 ptr = ____cache_alloc(cachep, flags);
3331 if (ptr)
3332 goto out;
3333 }
3334 /* ___cache_alloc_node can fall back to other nodes */
3335 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3336 out:
3337 local_irq_restore(save_flags);
3338 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3339 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3340 flags);
3341
3342 if (likely(ptr))
3343 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3344
3345 if (unlikely((flags & __GFP_ZERO) && ptr))
3346 memset(ptr, 0, obj_size(cachep));
3347
3348 return ptr;
3349 }
3350
3351 static __always_inline void *
3352 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3353 {
3354 void *objp;
3355
3356 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3357 objp = alternate_node_alloc(cache, flags);
3358 if (objp)
3359 goto out;
3360 }
3361 objp = ____cache_alloc(cache, flags);
3362
3363 /*
3364 * We may just have run out of memory on the local node.
3365 * ____cache_alloc_node() knows how to locate memory on other nodes
3366 */
3367 if (!objp)
3368 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3369
3370 out:
3371 return objp;
3372 }
3373 #else
3374
3375 static __always_inline void *
3376 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3377 {
3378 return ____cache_alloc(cachep, flags);
3379 }
3380
3381 #endif /* CONFIG_NUMA */
3382
3383 static __always_inline void *
3384 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3385 {
3386 unsigned long save_flags;
3387 void *objp;
3388
3389 flags &= slab_gfp_mask;
3390
3391 lockdep_trace_alloc(flags);
3392
3393 if (slab_should_failslab(cachep, flags))
3394 return NULL;
3395
3396 cache_alloc_debugcheck_before(cachep, flags);
3397 local_irq_save(save_flags);
3398 objp = __do_cache_alloc(cachep, flags);
3399 local_irq_restore(save_flags);
3400 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3401 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3402 flags);
3403 prefetchw(objp);
3404
3405 if (likely(objp))
3406 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3407
3408 if (unlikely((flags & __GFP_ZERO) && objp))
3409 memset(objp, 0, obj_size(cachep));
3410
3411 return objp;
3412 }
3413
3414 /*
3415 * Caller needs to acquire correct kmem_list's list_lock
3416 */
3417 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3418 int node)
3419 {
3420 int i;
3421 struct kmem_list3 *l3;
3422
3423 for (i = 0; i < nr_objects; i++) {
3424 void *objp = objpp[i];
3425 struct slab *slabp;
3426
3427 slabp = virt_to_slab(objp);
3428 l3 = cachep->nodelists[node];
3429 list_del(&slabp->list);
3430 check_spinlock_acquired_node(cachep, node);
3431 check_slabp(cachep, slabp);
3432 slab_put_obj(cachep, slabp, objp, node);
3433 STATS_DEC_ACTIVE(cachep);
3434 l3->free_objects++;
3435 check_slabp(cachep, slabp);
3436
3437 /* fixup slab chains */
3438 if (slabp->inuse == 0) {
3439 if (l3->free_objects > l3->free_limit) {
3440 l3->free_objects -= cachep->num;
3441 /* No need to drop any previously held
3442 * lock here, even if we have a off-slab slab
3443 * descriptor it is guaranteed to come from
3444 * a different cache, refer to comments before
3445 * alloc_slabmgmt.
3446 */
3447 slab_destroy(cachep, slabp);
3448 } else {
3449 list_add(&slabp->list, &l3->slabs_free);
3450 }
3451 } else {
3452 /* Unconditionally move a slab to the end of the
3453 * partial list on free - maximum time for the
3454 * other objects to be freed, too.
3455 */
3456 list_add_tail(&slabp->list, &l3->slabs_partial);
3457 }
3458 }
3459 }
3460
3461 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3462 {
3463 int batchcount;
3464 struct kmem_list3 *l3;
3465 int node = numa_node_id();
3466
3467 batchcount = ac->batchcount;
3468 #if DEBUG
3469 BUG_ON(!batchcount || batchcount > ac->avail);
3470 #endif
3471 check_irq_off();
3472 l3 = cachep->nodelists[node];
3473 spin_lock(&l3->list_lock);
3474 if (l3->shared) {
3475 struct array_cache *shared_array = l3->shared;
3476 int max = shared_array->limit - shared_array->avail;
3477 if (max) {
3478 if (batchcount > max)
3479 batchcount = max;
3480 memcpy(&(shared_array->entry[shared_array->avail]),
3481 ac->entry, sizeof(void *) * batchcount);
3482 shared_array->avail += batchcount;
3483 goto free_done;
3484 }
3485 }
3486
3487 free_block(cachep, ac->entry, batchcount, node);
3488 free_done:
3489 #if STATS
3490 {
3491 int i = 0;
3492 struct list_head *p;
3493
3494 p = l3->slabs_free.next;
3495 while (p != &(l3->slabs_free)) {
3496 struct slab *slabp;
3497
3498 slabp = list_entry(p, struct slab, list);
3499 BUG_ON(slabp->inuse);
3500
3501 i++;
3502 p = p->next;
3503 }
3504 STATS_SET_FREEABLE(cachep, i);
3505 }
3506 #endif
3507 spin_unlock(&l3->list_lock);
3508 ac->avail -= batchcount;
3509 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3510 }
3511
3512 /*
3513 * Release an obj back to its cache. If the obj has a constructed state, it must
3514 * be in this state _before_ it is released. Called with disabled ints.
3515 */
3516 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3517 {
3518 struct array_cache *ac = cpu_cache_get(cachep);
3519
3520 check_irq_off();
3521 kmemleak_free_recursive(objp, cachep->flags);
3522 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3523
3524 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3525
3526 /*
3527 * Skip calling cache_free_alien() when the platform is not numa.
3528 * This will avoid cache misses that happen while accessing slabp (which
3529 * is per page memory reference) to get nodeid. Instead use a global
3530 * variable to skip the call, which is mostly likely to be present in
3531 * the cache.
3532 */
3533 if (numa_platform && cache_free_alien(cachep, objp))
3534 return;
3535
3536 if (likely(ac->avail < ac->limit)) {
3537 STATS_INC_FREEHIT(cachep);
3538 ac->entry[ac->avail++] = objp;
3539 return;
3540 } else {
3541 STATS_INC_FREEMISS(cachep);
3542 cache_flusharray(cachep, ac);
3543 ac->entry[ac->avail++] = objp;
3544 }
3545 }
3546
3547 /**
3548 * kmem_cache_alloc - Allocate an object
3549 * @cachep: The cache to allocate from.
3550 * @flags: See kmalloc().
3551 *
3552 * Allocate an object from this cache. The flags are only relevant
3553 * if the cache has no available objects.
3554 */
3555 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3556 {
3557 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3558
3559 trace_kmem_cache_alloc(_RET_IP_, ret,
3560 obj_size(cachep), cachep->buffer_size, flags);
3561
3562 return ret;
3563 }
3564 EXPORT_SYMBOL(kmem_cache_alloc);
3565
3566 #ifdef CONFIG_KMEMTRACE
3567 void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3568 {
3569 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3570 }
3571 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3572 #endif
3573
3574 /**
3575 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3576 * @cachep: the cache we're checking against
3577 * @ptr: pointer to validate
3578 *
3579 * This verifies that the untrusted pointer looks sane;
3580 * it is _not_ a guarantee that the pointer is actually
3581 * part of the slab cache in question, but it at least
3582 * validates that the pointer can be dereferenced and
3583 * looks half-way sane.
3584 *
3585 * Currently only used for dentry validation.
3586 */
3587 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3588 {
3589 unsigned long addr = (unsigned long)ptr;
3590 unsigned long min_addr = PAGE_OFFSET;
3591 unsigned long align_mask = BYTES_PER_WORD - 1;
3592 unsigned long size = cachep->buffer_size;
3593 struct page *page;
3594
3595 if (unlikely(addr < min_addr))
3596 goto out;
3597 if (unlikely(addr > (unsigned long)high_memory - size))
3598 goto out;
3599 if (unlikely(addr & align_mask))
3600 goto out;
3601 if (unlikely(!kern_addr_valid(addr)))
3602 goto out;
3603 if (unlikely(!kern_addr_valid(addr + size - 1)))
3604 goto out;
3605 page = virt_to_page(ptr);
3606 if (unlikely(!PageSlab(page)))
3607 goto out;
3608 if (unlikely(page_get_cache(page) != cachep))
3609 goto out;
3610 return 1;
3611 out:
3612 return 0;
3613 }
3614
3615 #ifdef CONFIG_NUMA
3616 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3617 {
3618 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3619 __builtin_return_address(0));
3620
3621 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3622 obj_size(cachep), cachep->buffer_size,
3623 flags, nodeid);
3624
3625 return ret;
3626 }
3627 EXPORT_SYMBOL(kmem_cache_alloc_node);
3628
3629 #ifdef CONFIG_KMEMTRACE
3630 void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3631 gfp_t flags,
3632 int nodeid)
3633 {
3634 return __cache_alloc_node(cachep, flags, nodeid,
3635 __builtin_return_address(0));
3636 }
3637 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3638 #endif
3639
3640 static __always_inline void *
3641 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3642 {
3643 struct kmem_cache *cachep;
3644 void *ret;
3645
3646 cachep = kmem_find_general_cachep(size, flags);
3647 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3648 return cachep;
3649 ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3650
3651 trace_kmalloc_node((unsigned long) caller, ret,
3652 size, cachep->buffer_size, flags, node);
3653
3654 return ret;
3655 }
3656
3657 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3658 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3659 {
3660 return __do_kmalloc_node(size, flags, node,
3661 __builtin_return_address(0));
3662 }
3663 EXPORT_SYMBOL(__kmalloc_node);
3664
3665 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3666 int node, unsigned long caller)
3667 {
3668 return __do_kmalloc_node(size, flags, node, (void *)caller);
3669 }
3670 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3671 #else
3672 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3673 {
3674 return __do_kmalloc_node(size, flags, node, NULL);
3675 }
3676 EXPORT_SYMBOL(__kmalloc_node);
3677 #endif /* CONFIG_DEBUG_SLAB */
3678 #endif /* CONFIG_NUMA */
3679
3680 /**
3681 * __do_kmalloc - allocate memory
3682 * @size: how many bytes of memory are required.
3683 * @flags: the type of memory to allocate (see kmalloc).
3684 * @caller: function caller for debug tracking of the caller
3685 */
3686 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3687 void *caller)
3688 {
3689 struct kmem_cache *cachep;
3690 void *ret;
3691
3692 /* If you want to save a few bytes .text space: replace
3693 * __ with kmem_.
3694 * Then kmalloc uses the uninlined functions instead of the inline
3695 * functions.
3696 */
3697 cachep = __find_general_cachep(size, flags);
3698 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3699 return cachep;
3700 ret = __cache_alloc(cachep, flags, caller);
3701
3702 trace_kmalloc((unsigned long) caller, ret,
3703 size, cachep->buffer_size, flags);
3704
3705 return ret;
3706 }
3707
3708
3709 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3710 void *__kmalloc(size_t size, gfp_t flags)
3711 {
3712 return __do_kmalloc(size, flags, __builtin_return_address(0));
3713 }
3714 EXPORT_SYMBOL(__kmalloc);
3715
3716 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3717 {
3718 return __do_kmalloc(size, flags, (void *)caller);
3719 }
3720 EXPORT_SYMBOL(__kmalloc_track_caller);
3721
3722 #else
3723 void *__kmalloc(size_t size, gfp_t flags)
3724 {
3725 return __do_kmalloc(size, flags, NULL);
3726 }
3727 EXPORT_SYMBOL(__kmalloc);
3728 #endif
3729
3730 /**
3731 * kmem_cache_free - Deallocate an object
3732 * @cachep: The cache the allocation was from.
3733 * @objp: The previously allocated object.
3734 *
3735 * Free an object which was previously allocated from this
3736 * cache.
3737 */
3738 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3739 {
3740 unsigned long flags;
3741
3742 local_irq_save(flags);
3743 debug_check_no_locks_freed(objp, obj_size(cachep));
3744 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3745 debug_check_no_obj_freed(objp, obj_size(cachep));
3746 __cache_free(cachep, objp);
3747 local_irq_restore(flags);
3748
3749 trace_kmem_cache_free(_RET_IP_, objp);
3750 }
3751 EXPORT_SYMBOL(kmem_cache_free);
3752
3753 /**
3754 * kfree - free previously allocated memory
3755 * @objp: pointer returned by kmalloc.
3756 *
3757 * If @objp is NULL, no operation is performed.
3758 *
3759 * Don't free memory not originally allocated by kmalloc()
3760 * or you will run into trouble.
3761 */
3762 void kfree(const void *objp)
3763 {
3764 struct kmem_cache *c;
3765 unsigned long flags;
3766
3767 trace_kfree(_RET_IP_, objp);
3768
3769 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3770 return;
3771 local_irq_save(flags);
3772 kfree_debugcheck(objp);
3773 c = virt_to_cache(objp);
3774 debug_check_no_locks_freed(objp, obj_size(c));
3775 debug_check_no_obj_freed(objp, obj_size(c));
3776 __cache_free(c, (void *)objp);
3777 local_irq_restore(flags);
3778 }
3779 EXPORT_SYMBOL(kfree);
3780
3781 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3782 {
3783 return obj_size(cachep);
3784 }
3785 EXPORT_SYMBOL(kmem_cache_size);
3786
3787 const char *kmem_cache_name(struct kmem_cache *cachep)
3788 {
3789 return cachep->name;
3790 }
3791 EXPORT_SYMBOL_GPL(kmem_cache_name);
3792
3793 /*
3794 * This initializes kmem_list3 or resizes various caches for all nodes.
3795 */
3796 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3797 {
3798 int node;
3799 struct kmem_list3 *l3;
3800 struct array_cache *new_shared;
3801 struct array_cache **new_alien = NULL;
3802
3803 for_each_online_node(node) {
3804
3805 if (use_alien_caches) {
3806 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3807 if (!new_alien)
3808 goto fail;
3809 }
3810
3811 new_shared = NULL;
3812 if (cachep->shared) {
3813 new_shared = alloc_arraycache(node,
3814 cachep->shared*cachep->batchcount,
3815 0xbaadf00d, gfp);
3816 if (!new_shared) {
3817 free_alien_cache(new_alien);
3818 goto fail;
3819 }
3820 }
3821
3822 l3 = cachep->nodelists[node];
3823 if (l3) {
3824 struct array_cache *shared = l3->shared;
3825
3826 spin_lock_irq(&l3->list_lock);
3827
3828 if (shared)
3829 free_block(cachep, shared->entry,
3830 shared->avail, node);
3831
3832 l3->shared = new_shared;
3833 if (!l3->alien) {
3834 l3->alien = new_alien;
3835 new_alien = NULL;
3836 }
3837 l3->free_limit = (1 + nr_cpus_node(node)) *
3838 cachep->batchcount + cachep->num;
3839 spin_unlock_irq(&l3->list_lock);
3840 kfree(shared);
3841 free_alien_cache(new_alien);
3842 continue;
3843 }
3844 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3845 if (!l3) {
3846 free_alien_cache(new_alien);
3847 kfree(new_shared);
3848 goto fail;
3849 }
3850
3851 kmem_list3_init(l3);
3852 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3853 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3854 l3->shared = new_shared;
3855 l3->alien = new_alien;
3856 l3->free_limit = (1 + nr_cpus_node(node)) *
3857 cachep->batchcount + cachep->num;
3858 cachep->nodelists[node] = l3;
3859 }
3860 return 0;
3861
3862 fail:
3863 if (!cachep->next.next) {
3864 /* Cache is not active yet. Roll back what we did */
3865 node--;
3866 while (node >= 0) {
3867 if (cachep->nodelists[node]) {
3868 l3 = cachep->nodelists[node];
3869
3870 kfree(l3->shared);
3871 free_alien_cache(l3->alien);
3872 kfree(l3);
3873 cachep->nodelists[node] = NULL;
3874 }
3875 node--;
3876 }
3877 }
3878 return -ENOMEM;
3879 }
3880
3881 struct ccupdate_struct {
3882 struct kmem_cache *cachep;
3883 struct array_cache *new[NR_CPUS];
3884 };
3885
3886 static void do_ccupdate_local(void *info)
3887 {
3888 struct ccupdate_struct *new = info;
3889 struct array_cache *old;
3890
3891 check_irq_off();
3892 old = cpu_cache_get(new->cachep);
3893
3894 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3895 new->new[smp_processor_id()] = old;
3896 }
3897
3898 /* Always called with the cache_chain_mutex held */
3899 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3900 int batchcount, int shared, gfp_t gfp)
3901 {
3902 struct ccupdate_struct *new;
3903 int i;
3904
3905 new = kzalloc(sizeof(*new), gfp);
3906 if (!new)
3907 return -ENOMEM;
3908
3909 for_each_online_cpu(i) {
3910 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3911 batchcount, gfp);
3912 if (!new->new[i]) {
3913 for (i--; i >= 0; i--)
3914 kfree(new->new[i]);
3915 kfree(new);
3916 return -ENOMEM;
3917 }
3918 }
3919 new->cachep = cachep;
3920
3921 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3922
3923 check_irq_on();
3924 cachep->batchcount = batchcount;
3925 cachep->limit = limit;
3926 cachep->shared = shared;
3927
3928 for_each_online_cpu(i) {
3929 struct array_cache *ccold = new->new[i];
3930 if (!ccold)
3931 continue;
3932 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3933 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3934 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3935 kfree(ccold);
3936 }
3937 kfree(new);
3938 return alloc_kmemlist(cachep, gfp);
3939 }
3940
3941 /* Called with cache_chain_mutex held always */
3942 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3943 {
3944 int err;
3945 int limit, shared;
3946
3947 /*
3948 * The head array serves three purposes:
3949 * - create a LIFO ordering, i.e. return objects that are cache-warm
3950 * - reduce the number of spinlock operations.
3951 * - reduce the number of linked list operations on the slab and
3952 * bufctl chains: array operations are cheaper.
3953 * The numbers are guessed, we should auto-tune as described by
3954 * Bonwick.
3955 */
3956 if (cachep->buffer_size > 131072)
3957 limit = 1;
3958 else if (cachep->buffer_size > PAGE_SIZE)
3959 limit = 8;
3960 else if (cachep->buffer_size > 1024)
3961 limit = 24;
3962 else if (cachep->buffer_size > 256)
3963 limit = 54;
3964 else
3965 limit = 120;
3966
3967 /*
3968 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3969 * allocation behaviour: Most allocs on one cpu, most free operations
3970 * on another cpu. For these cases, an efficient object passing between
3971 * cpus is necessary. This is provided by a shared array. The array
3972 * replaces Bonwick's magazine layer.
3973 * On uniprocessor, it's functionally equivalent (but less efficient)
3974 * to a larger limit. Thus disabled by default.
3975 */
3976 shared = 0;
3977 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
3978 shared = 8;
3979
3980 #if DEBUG
3981 /*
3982 * With debugging enabled, large batchcount lead to excessively long
3983 * periods with disabled local interrupts. Limit the batchcount
3984 */
3985 if (limit > 32)
3986 limit = 32;
3987 #endif
3988 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
3989 if (err)
3990 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3991 cachep->name, -err);
3992 return err;
3993 }
3994
3995 /*
3996 * Drain an array if it contains any elements taking the l3 lock only if
3997 * necessary. Note that the l3 listlock also protects the array_cache
3998 * if drain_array() is used on the shared array.
3999 */
4000 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4001 struct array_cache *ac, int force, int node)
4002 {
4003 int tofree;
4004
4005 if (!ac || !ac->avail)
4006 return;
4007 if (ac->touched && !force) {
4008 ac->touched = 0;
4009 } else {
4010 spin_lock_irq(&l3->list_lock);
4011 if (ac->avail) {
4012 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4013 if (tofree > ac->avail)
4014 tofree = (ac->avail + 1) / 2;
4015 free_block(cachep, ac->entry, tofree, node);
4016 ac->avail -= tofree;
4017 memmove(ac->entry, &(ac->entry[tofree]),
4018 sizeof(void *) * ac->avail);
4019 }
4020 spin_unlock_irq(&l3->list_lock);
4021 }
4022 }
4023
4024 /**
4025 * cache_reap - Reclaim memory from caches.
4026 * @w: work descriptor
4027 *
4028 * Called from workqueue/eventd every few seconds.
4029 * Purpose:
4030 * - clear the per-cpu caches for this CPU.
4031 * - return freeable pages to the main free memory pool.
4032 *
4033 * If we cannot acquire the cache chain mutex then just give up - we'll try
4034 * again on the next iteration.
4035 */
4036 static void cache_reap(struct work_struct *w)
4037 {
4038 struct kmem_cache *searchp;
4039 struct kmem_list3 *l3;
4040 int node = numa_node_id();
4041 struct delayed_work *work = to_delayed_work(w);
4042
4043 if (!mutex_trylock(&cache_chain_mutex))
4044 /* Give up. Setup the next iteration. */
4045 goto out;
4046
4047 list_for_each_entry(searchp, &cache_chain, next) {
4048 check_irq_on();
4049
4050 /*
4051 * We only take the l3 lock if absolutely necessary and we
4052 * have established with reasonable certainty that
4053 * we can do some work if the lock was obtained.
4054 */
4055 l3 = searchp->nodelists[node];
4056
4057 reap_alien(searchp, l3);
4058
4059 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4060
4061 /*
4062 * These are racy checks but it does not matter
4063 * if we skip one check or scan twice.
4064 */
4065 if (time_after(l3->next_reap, jiffies))
4066 goto next;
4067
4068 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4069
4070 drain_array(searchp, l3, l3->shared, 0, node);
4071
4072 if (l3->free_touched)
4073 l3->free_touched = 0;
4074 else {
4075 int freed;
4076
4077 freed = drain_freelist(searchp, l3, (l3->free_limit +
4078 5 * searchp->num - 1) / (5 * searchp->num));
4079 STATS_ADD_REAPED(searchp, freed);
4080 }
4081 next:
4082 cond_resched();
4083 }
4084 check_irq_on();
4085 mutex_unlock(&cache_chain_mutex);
4086 next_reap_node();
4087 out:
4088 /* Set up the next iteration */
4089 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4090 }
4091
4092 #ifdef CONFIG_SLABINFO
4093
4094 static void print_slabinfo_header(struct seq_file *m)
4095 {
4096 /*
4097 * Output format version, so at least we can change it
4098 * without _too_ many complaints.
4099 */
4100 #if STATS
4101 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4102 #else
4103 seq_puts(m, "slabinfo - version: 2.1\n");
4104 #endif
4105 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4106 "<objperslab> <pagesperslab>");
4107 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4108 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4109 #if STATS
4110 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4111 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4112 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4113 #endif
4114 seq_putc(m, '\n');
4115 }
4116
4117 static void *s_start(struct seq_file *m, loff_t *pos)
4118 {
4119 loff_t n = *pos;
4120
4121 mutex_lock(&cache_chain_mutex);
4122 if (!n)
4123 print_slabinfo_header(m);
4124
4125 return seq_list_start(&cache_chain, *pos);
4126 }
4127
4128 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4129 {
4130 return seq_list_next(p, &cache_chain, pos);
4131 }
4132
4133 static void s_stop(struct seq_file *m, void *p)
4134 {
4135 mutex_unlock(&cache_chain_mutex);
4136 }
4137
4138 static int s_show(struct seq_file *m, void *p)
4139 {
4140 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4141 struct slab *slabp;
4142 unsigned long active_objs;
4143 unsigned long num_objs;
4144 unsigned long active_slabs = 0;
4145 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4146 const char *name;
4147 char *error = NULL;
4148 int node;
4149 struct kmem_list3 *l3;
4150
4151 active_objs = 0;
4152 num_slabs = 0;
4153 for_each_online_node(node) {
4154 l3 = cachep->nodelists[node];
4155 if (!l3)
4156 continue;
4157
4158 check_irq_on();
4159 spin_lock_irq(&l3->list_lock);
4160
4161 list_for_each_entry(slabp, &l3->slabs_full, list) {
4162 if (slabp->inuse != cachep->num && !error)
4163 error = "slabs_full accounting error";
4164 active_objs += cachep->num;
4165 active_slabs++;
4166 }
4167 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4168 if (slabp->inuse == cachep->num && !error)
4169 error = "slabs_partial inuse accounting error";
4170 if (!slabp->inuse && !error)
4171 error = "slabs_partial/inuse accounting error";
4172 active_objs += slabp->inuse;
4173 active_slabs++;
4174 }
4175 list_for_each_entry(slabp, &l3->slabs_free, list) {
4176 if (slabp->inuse && !error)
4177 error = "slabs_free/inuse accounting error";
4178 num_slabs++;
4179 }
4180 free_objects += l3->free_objects;
4181 if (l3->shared)
4182 shared_avail += l3->shared->avail;
4183
4184 spin_unlock_irq(&l3->list_lock);
4185 }
4186 num_slabs += active_slabs;
4187 num_objs = num_slabs * cachep->num;
4188 if (num_objs - active_objs != free_objects && !error)
4189 error = "free_objects accounting error";
4190
4191 name = cachep->name;
4192 if (error)
4193 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4194
4195 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4196 name, active_objs, num_objs, cachep->buffer_size,
4197 cachep->num, (1 << cachep->gfporder));
4198 seq_printf(m, " : tunables %4u %4u %4u",
4199 cachep->limit, cachep->batchcount, cachep->shared);
4200 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4201 active_slabs, num_slabs, shared_avail);
4202 #if STATS
4203 { /* list3 stats */
4204 unsigned long high = cachep->high_mark;
4205 unsigned long allocs = cachep->num_allocations;
4206 unsigned long grown = cachep->grown;
4207 unsigned long reaped = cachep->reaped;
4208 unsigned long errors = cachep->errors;
4209 unsigned long max_freeable = cachep->max_freeable;
4210 unsigned long node_allocs = cachep->node_allocs;
4211 unsigned long node_frees = cachep->node_frees;
4212 unsigned long overflows = cachep->node_overflow;
4213
4214 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4215 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4216 reaped, errors, max_freeable, node_allocs,
4217 node_frees, overflows);
4218 }
4219 /* cpu stats */
4220 {
4221 unsigned long allochit = atomic_read(&cachep->allochit);
4222 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4223 unsigned long freehit = atomic_read(&cachep->freehit);
4224 unsigned long freemiss = atomic_read(&cachep->freemiss);
4225
4226 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4227 allochit, allocmiss, freehit, freemiss);
4228 }
4229 #endif
4230 seq_putc(m, '\n');
4231 return 0;
4232 }
4233
4234 /*
4235 * slabinfo_op - iterator that generates /proc/slabinfo
4236 *
4237 * Output layout:
4238 * cache-name
4239 * num-active-objs
4240 * total-objs
4241 * object size
4242 * num-active-slabs
4243 * total-slabs
4244 * num-pages-per-slab
4245 * + further values on SMP and with statistics enabled
4246 */
4247
4248 static const struct seq_operations slabinfo_op = {
4249 .start = s_start,
4250 .next = s_next,
4251 .stop = s_stop,
4252 .show = s_show,
4253 };
4254
4255 #define MAX_SLABINFO_WRITE 128
4256 /**
4257 * slabinfo_write - Tuning for the slab allocator
4258 * @file: unused
4259 * @buffer: user buffer
4260 * @count: data length
4261 * @ppos: unused
4262 */
4263 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4264 size_t count, loff_t *ppos)
4265 {
4266 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4267 int limit, batchcount, shared, res;
4268 struct kmem_cache *cachep;
4269
4270 if (count > MAX_SLABINFO_WRITE)
4271 return -EINVAL;
4272 if (copy_from_user(&kbuf, buffer, count))
4273 return -EFAULT;
4274 kbuf[MAX_SLABINFO_WRITE] = '\0';
4275
4276 tmp = strchr(kbuf, ' ');
4277 if (!tmp)
4278 return -EINVAL;
4279 *tmp = '\0';
4280 tmp++;
4281 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4282 return -EINVAL;
4283
4284 /* Find the cache in the chain of caches. */
4285 mutex_lock(&cache_chain_mutex);
4286 res = -EINVAL;
4287 list_for_each_entry(cachep, &cache_chain, next) {
4288 if (!strcmp(cachep->name, kbuf)) {
4289 if (limit < 1 || batchcount < 1 ||
4290 batchcount > limit || shared < 0) {
4291 res = 0;
4292 } else {
4293 res = do_tune_cpucache(cachep, limit,
4294 batchcount, shared,
4295 GFP_KERNEL);
4296 }
4297 break;
4298 }
4299 }
4300 mutex_unlock(&cache_chain_mutex);
4301 if (res >= 0)
4302 res = count;
4303 return res;
4304 }
4305
4306 static int slabinfo_open(struct inode *inode, struct file *file)
4307 {
4308 return seq_open(file, &slabinfo_op);
4309 }
4310
4311 static const struct file_operations proc_slabinfo_operations = {
4312 .open = slabinfo_open,
4313 .read = seq_read,
4314 .write = slabinfo_write,
4315 .llseek = seq_lseek,
4316 .release = seq_release,
4317 };
4318
4319 #ifdef CONFIG_DEBUG_SLAB_LEAK
4320
4321 static void *leaks_start(struct seq_file *m, loff_t *pos)
4322 {
4323 mutex_lock(&cache_chain_mutex);
4324 return seq_list_start(&cache_chain, *pos);
4325 }
4326
4327 static inline int add_caller(unsigned long *n, unsigned long v)
4328 {
4329 unsigned long *p;
4330 int l;
4331 if (!v)
4332 return 1;
4333 l = n[1];
4334 p = n + 2;
4335 while (l) {
4336 int i = l/2;
4337 unsigned long *q = p + 2 * i;
4338 if (*q == v) {
4339 q[1]++;
4340 return 1;
4341 }
4342 if (*q > v) {
4343 l = i;
4344 } else {
4345 p = q + 2;
4346 l -= i + 1;
4347 }
4348 }
4349 if (++n[1] == n[0])
4350 return 0;
4351 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4352 p[0] = v;
4353 p[1] = 1;
4354 return 1;
4355 }
4356
4357 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4358 {
4359 void *p;
4360 int i;
4361 if (n[0] == n[1])
4362 return;
4363 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4364 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4365 continue;
4366 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4367 return;
4368 }
4369 }
4370
4371 static void show_symbol(struct seq_file *m, unsigned long address)
4372 {
4373 #ifdef CONFIG_KALLSYMS
4374 unsigned long offset, size;
4375 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4376
4377 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4378 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4379 if (modname[0])
4380 seq_printf(m, " [%s]", modname);
4381 return;
4382 }
4383 #endif
4384 seq_printf(m, "%p", (void *)address);
4385 }
4386
4387 static int leaks_show(struct seq_file *m, void *p)
4388 {
4389 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4390 struct slab *slabp;
4391 struct kmem_list3 *l3;
4392 const char *name;
4393 unsigned long *n = m->private;
4394 int node;
4395 int i;
4396
4397 if (!(cachep->flags & SLAB_STORE_USER))
4398 return 0;
4399 if (!(cachep->flags & SLAB_RED_ZONE))
4400 return 0;
4401
4402 /* OK, we can do it */
4403
4404 n[1] = 0;
4405
4406 for_each_online_node(node) {
4407 l3 = cachep->nodelists[node];
4408 if (!l3)
4409 continue;
4410
4411 check_irq_on();
4412 spin_lock_irq(&l3->list_lock);
4413
4414 list_for_each_entry(slabp, &l3->slabs_full, list)
4415 handle_slab(n, cachep, slabp);
4416 list_for_each_entry(slabp, &l3->slabs_partial, list)
4417 handle_slab(n, cachep, slabp);
4418 spin_unlock_irq(&l3->list_lock);
4419 }
4420 name = cachep->name;
4421 if (n[0] == n[1]) {
4422 /* Increase the buffer size */
4423 mutex_unlock(&cache_chain_mutex);
4424 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4425 if (!m->private) {
4426 /* Too bad, we are really out */
4427 m->private = n;
4428 mutex_lock(&cache_chain_mutex);
4429 return -ENOMEM;
4430 }
4431 *(unsigned long *)m->private = n[0] * 2;
4432 kfree(n);
4433 mutex_lock(&cache_chain_mutex);
4434 /* Now make sure this entry will be retried */
4435 m->count = m->size;
4436 return 0;
4437 }
4438 for (i = 0; i < n[1]; i++) {
4439 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4440 show_symbol(m, n[2*i+2]);
4441 seq_putc(m, '\n');
4442 }
4443
4444 return 0;
4445 }
4446
4447 static const struct seq_operations slabstats_op = {
4448 .start = leaks_start,
4449 .next = s_next,
4450 .stop = s_stop,
4451 .show = leaks_show,
4452 };
4453
4454 static int slabstats_open(struct inode *inode, struct file *file)
4455 {
4456 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4457 int ret = -ENOMEM;
4458 if (n) {
4459 ret = seq_open(file, &slabstats_op);
4460 if (!ret) {
4461 struct seq_file *m = file->private_data;
4462 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4463 m->private = n;
4464 n = NULL;
4465 }
4466 kfree(n);
4467 }
4468 return ret;
4469 }
4470
4471 static const struct file_operations proc_slabstats_operations = {
4472 .open = slabstats_open,
4473 .read = seq_read,
4474 .llseek = seq_lseek,
4475 .release = seq_release_private,
4476 };
4477 #endif
4478
4479 static int __init slab_proc_init(void)
4480 {
4481 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4482 #ifdef CONFIG_DEBUG_SLAB_LEAK
4483 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4484 #endif
4485 return 0;
4486 }
4487 module_init(slab_proc_init);
4488 #endif
4489
4490 /**
4491 * ksize - get the actual amount of memory allocated for a given object
4492 * @objp: Pointer to the object
4493 *
4494 * kmalloc may internally round up allocations and return more memory
4495 * than requested. ksize() can be used to determine the actual amount of
4496 * memory allocated. The caller may use this additional memory, even though
4497 * a smaller amount of memory was initially specified with the kmalloc call.
4498 * The caller must guarantee that objp points to a valid object previously
4499 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4500 * must not be freed during the duration of the call.
4501 */
4502 size_t ksize(const void *objp)
4503 {
4504 BUG_ON(!objp);
4505 if (unlikely(objp == ZERO_SIZE_PTR))
4506 return 0;
4507
4508 return obj_size(virt_to_cache(objp));
4509 }
4510 EXPORT_SYMBOL(ksize);