Merge tag 'v3.10.106' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/generic_acl.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84 * inode->i_private (with i_mutex making sure that it has only one user at
85 * a time): we would prefer not to enlarge the shmem inode just for that.
86 */
87 struct shmem_falloc {
88 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89 pgoff_t start; /* start of range currently being fallocated */
90 pgoff_t next; /* the next page offset to be fallocated */
91 pgoff_t nr_falloced; /* how many new pages have been fallocated */
92 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97 SGP_READ, /* don't exceed i_size, don't allocate page */
98 SGP_CACHE, /* don't exceed i_size, may allocate page */
99 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
100 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
101 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107 return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125 return shmem_getpage_gfp(inode, index, pagep, sgp,
126 mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131 return sb->s_fs_info;
132 }
133
134 /*
135 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136 * for shared memory and for shared anonymous (/dev/zero) mappings
137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138 * consistent with the pre-accounting of private mappings ...
139 */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142 return (flags & VM_NORESERVE) ?
143 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148 if (!(flags & VM_NORESERVE))
149 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 /*
153 * ... whereas tmpfs objects are accounted incrementally as
154 * pages are allocated, in order to allow huge sparse files.
155 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157 */
158 static inline int shmem_acct_block(unsigned long flags)
159 {
160 return (flags & VM_NORESERVE) ?
161 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162 }
163
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165 {
166 if (flags & VM_NORESERVE)
167 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168 }
169
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
177
178 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
179 .ra_pages = 0, /* No readahead */
180 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181 };
182
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
185
186 static int shmem_reserve_inode(struct super_block *sb)
187 {
188 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189 if (sbinfo->max_inodes) {
190 spin_lock(&sbinfo->stat_lock);
191 if (!sbinfo->free_inodes) {
192 spin_unlock(&sbinfo->stat_lock);
193 return -ENOSPC;
194 }
195 sbinfo->free_inodes--;
196 spin_unlock(&sbinfo->stat_lock);
197 }
198 return 0;
199 }
200
201 static void shmem_free_inode(struct super_block *sb)
202 {
203 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204 if (sbinfo->max_inodes) {
205 spin_lock(&sbinfo->stat_lock);
206 sbinfo->free_inodes++;
207 spin_unlock(&sbinfo->stat_lock);
208 }
209 }
210
211 /**
212 * shmem_recalc_inode - recalculate the block usage of an inode
213 * @inode: inode to recalc
214 *
215 * We have to calculate the free blocks since the mm can drop
216 * undirtied hole pages behind our back.
217 *
218 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220 *
221 * It has to be called with the spinlock held.
222 */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225 struct shmem_inode_info *info = SHMEM_I(inode);
226 long freed;
227
228 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229 if (freed > 0) {
230 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231 if (sbinfo->max_blocks)
232 percpu_counter_add(&sbinfo->used_blocks, -freed);
233 info->alloced -= freed;
234 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235 shmem_unacct_blocks(info->flags, freed);
236 }
237 }
238
239 /*
240 * Replace item expected in radix tree by a new item, while holding tree lock.
241 */
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243 pgoff_t index, void *expected, void *replacement)
244 {
245 void **pslot;
246 void *item = NULL;
247
248 VM_BUG_ON(!expected);
249 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
250 if (pslot)
251 item = radix_tree_deref_slot_protected(pslot,
252 &mapping->tree_lock);
253 if (item != expected)
254 return -ENOENT;
255 if (replacement)
256 radix_tree_replace_slot(pslot, replacement);
257 else
258 radix_tree_delete(&mapping->page_tree, index);
259 return 0;
260 }
261
262 /*
263 * Sometimes, before we decide whether to proceed or to fail, we must check
264 * that an entry was not already brought back from swap by a racing thread.
265 *
266 * Checking page is not enough: by the time a SwapCache page is locked, it
267 * might be reused, and again be SwapCache, using the same swap as before.
268 */
269 static bool shmem_confirm_swap(struct address_space *mapping,
270 pgoff_t index, swp_entry_t swap)
271 {
272 void *item;
273
274 rcu_read_lock();
275 item = radix_tree_lookup(&mapping->page_tree, index);
276 rcu_read_unlock();
277 return item == swp_to_radix_entry(swap);
278 }
279
280 /*
281 * Like add_to_page_cache_locked, but error if expected item has gone.
282 */
283 static int shmem_add_to_page_cache(struct page *page,
284 struct address_space *mapping,
285 pgoff_t index, gfp_t gfp, void *expected)
286 {
287 int error;
288
289 VM_BUG_ON(!PageLocked(page));
290 VM_BUG_ON(!PageSwapBacked(page));
291
292 page_cache_get(page);
293 page->mapping = mapping;
294 page->index = index;
295
296 spin_lock_irq(&mapping->tree_lock);
297 if (!expected)
298 error = radix_tree_insert(&mapping->page_tree, index, page);
299 else
300 error = shmem_radix_tree_replace(mapping, index, expected,
301 page);
302 if (!error) {
303 mapping->nrpages++;
304 __inc_zone_page_state(page, NR_FILE_PAGES);
305 __inc_zone_page_state(page, NR_SHMEM);
306 spin_unlock_irq(&mapping->tree_lock);
307 } else {
308 page->mapping = NULL;
309 spin_unlock_irq(&mapping->tree_lock);
310 page_cache_release(page);
311 }
312 return error;
313 }
314
315 /*
316 * Like delete_from_page_cache, but substitutes swap for page.
317 */
318 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
319 {
320 struct address_space *mapping = page->mapping;
321 int error;
322
323 spin_lock_irq(&mapping->tree_lock);
324 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
325 page->mapping = NULL;
326 mapping->nrpages--;
327 __dec_zone_page_state(page, NR_FILE_PAGES);
328 __dec_zone_page_state(page, NR_SHMEM);
329 spin_unlock_irq(&mapping->tree_lock);
330 page_cache_release(page);
331 BUG_ON(error);
332 }
333
334 /*
335 * Like find_get_pages, but collecting swap entries as well as pages.
336 */
337 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
338 pgoff_t start, unsigned int nr_pages,
339 struct page **pages, pgoff_t *indices)
340 {
341 void **slot;
342 unsigned int ret = 0;
343 struct radix_tree_iter iter;
344
345 if (!nr_pages)
346 return 0;
347
348 rcu_read_lock();
349 restart:
350 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
351 struct page *page;
352 repeat:
353 page = radix_tree_deref_slot(slot);
354 if (unlikely(!page))
355 continue;
356 if (radix_tree_exception(page)) {
357 if (radix_tree_deref_retry(page))
358 goto restart;
359 /*
360 * Otherwise, we must be storing a swap entry
361 * here as an exceptional entry: so return it
362 * without attempting to raise page count.
363 */
364 goto export;
365 }
366 if (!page_cache_get_speculative(page))
367 goto repeat;
368
369 /* Has the page moved? */
370 if (unlikely(page != *slot)) {
371 page_cache_release(page);
372 goto repeat;
373 }
374 export:
375 indices[ret] = iter.index;
376 pages[ret] = page;
377 if (++ret == nr_pages)
378 break;
379 }
380 rcu_read_unlock();
381 return ret;
382 }
383
384 /*
385 * Remove swap entry from radix tree, free the swap and its page cache.
386 */
387 static int shmem_free_swap(struct address_space *mapping,
388 pgoff_t index, void *radswap)
389 {
390 int error;
391
392 spin_lock_irq(&mapping->tree_lock);
393 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
394 spin_unlock_irq(&mapping->tree_lock);
395 if (!error)
396 free_swap_and_cache(radix_to_swp_entry(radswap));
397 return error;
398 }
399
400 /*
401 * Pagevec may contain swap entries, so shuffle up pages before releasing.
402 */
403 static void shmem_deswap_pagevec(struct pagevec *pvec)
404 {
405 int i, j;
406
407 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
408 struct page *page = pvec->pages[i];
409 if (!radix_tree_exceptional_entry(page))
410 pvec->pages[j++] = page;
411 }
412 pvec->nr = j;
413 }
414
415 /*
416 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
417 */
418 void shmem_unlock_mapping(struct address_space *mapping)
419 {
420 struct pagevec pvec;
421 pgoff_t indices[PAGEVEC_SIZE];
422 pgoff_t index = 0;
423
424 pagevec_init(&pvec, 0);
425 /*
426 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
427 */
428 while (!mapping_unevictable(mapping)) {
429 /*
430 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
431 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
432 */
433 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
434 PAGEVEC_SIZE, pvec.pages, indices);
435 if (!pvec.nr)
436 break;
437 index = indices[pvec.nr - 1] + 1;
438 shmem_deswap_pagevec(&pvec);
439 check_move_unevictable_pages(pvec.pages, pvec.nr);
440 pagevec_release(&pvec);
441 cond_resched();
442 }
443 }
444
445 /*
446 * Remove range of pages and swap entries from radix tree, and free them.
447 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
448 */
449 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
450 bool unfalloc)
451 {
452 struct address_space *mapping = inode->i_mapping;
453 struct shmem_inode_info *info = SHMEM_I(inode);
454 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
455 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
456 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
457 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
458 struct pagevec pvec;
459 pgoff_t indices[PAGEVEC_SIZE];
460 long nr_swaps_freed = 0;
461 pgoff_t index;
462 int i;
463
464 if (lend == -1)
465 end = -1; /* unsigned, so actually very big */
466
467 pagevec_init(&pvec, 0);
468 index = start;
469 while (index < end) {
470 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
471 min(end - index, (pgoff_t)PAGEVEC_SIZE),
472 pvec.pages, indices);
473 if (!pvec.nr)
474 break;
475 mem_cgroup_uncharge_start();
476 for (i = 0; i < pagevec_count(&pvec); i++) {
477 struct page *page = pvec.pages[i];
478
479 index = indices[i];
480 if (index >= end)
481 break;
482
483 if (radix_tree_exceptional_entry(page)) {
484 if (unfalloc)
485 continue;
486 nr_swaps_freed += !shmem_free_swap(mapping,
487 index, page);
488 continue;
489 }
490
491 if (!trylock_page(page))
492 continue;
493 if (!unfalloc || !PageUptodate(page)) {
494 if (page->mapping == mapping) {
495 VM_BUG_ON(PageWriteback(page));
496 truncate_inode_page(mapping, page);
497 }
498 }
499 unlock_page(page);
500 }
501 shmem_deswap_pagevec(&pvec);
502 pagevec_release(&pvec);
503 mem_cgroup_uncharge_end();
504 cond_resched();
505 index++;
506 }
507
508 if (partial_start) {
509 struct page *page = NULL;
510 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
511 if (page) {
512 unsigned int top = PAGE_CACHE_SIZE;
513 if (start > end) {
514 top = partial_end;
515 partial_end = 0;
516 }
517 zero_user_segment(page, partial_start, top);
518 set_page_dirty(page);
519 unlock_page(page);
520 page_cache_release(page);
521 }
522 }
523 if (partial_end) {
524 struct page *page = NULL;
525 shmem_getpage(inode, end, &page, SGP_READ, NULL);
526 if (page) {
527 zero_user_segment(page, 0, partial_end);
528 set_page_dirty(page);
529 unlock_page(page);
530 page_cache_release(page);
531 }
532 }
533 if (start >= end)
534 return;
535
536 index = start;
537 while (index < end) {
538 cond_resched();
539 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
540 min(end - index, (pgoff_t)PAGEVEC_SIZE),
541 pvec.pages, indices);
542 if (!pvec.nr) {
543 /* If all gone or hole-punch or unfalloc, we're done */
544 if (index == start || end != -1)
545 break;
546 /* But if truncating, restart to make sure all gone */
547 index = start;
548 continue;
549 }
550 mem_cgroup_uncharge_start();
551 for (i = 0; i < pagevec_count(&pvec); i++) {
552 struct page *page = pvec.pages[i];
553
554 index = indices[i];
555 if (index >= end)
556 break;
557
558 if (radix_tree_exceptional_entry(page)) {
559 if (unfalloc)
560 continue;
561 if (shmem_free_swap(mapping, index, page)) {
562 /* Swap was replaced by page: retry */
563 index--;
564 break;
565 }
566 nr_swaps_freed++;
567 continue;
568 }
569
570 lock_page(page);
571 if (!unfalloc || !PageUptodate(page)) {
572 if (page->mapping == mapping) {
573 VM_BUG_ON(PageWriteback(page));
574 truncate_inode_page(mapping, page);
575 } else {
576 /* Page was replaced by swap: retry */
577 unlock_page(page);
578 index--;
579 break;
580 }
581 }
582 unlock_page(page);
583 }
584 shmem_deswap_pagevec(&pvec);
585 pagevec_release(&pvec);
586 mem_cgroup_uncharge_end();
587 index++;
588 }
589
590 spin_lock(&info->lock);
591 info->swapped -= nr_swaps_freed;
592 shmem_recalc_inode(inode);
593 spin_unlock(&info->lock);
594 }
595
596 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
597 {
598 shmem_undo_range(inode, lstart, lend, false);
599 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
600 }
601 EXPORT_SYMBOL_GPL(shmem_truncate_range);
602
603 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
604 {
605 struct inode *inode = dentry->d_inode;
606 int error;
607
608 error = inode_change_ok(inode, attr);
609 if (error)
610 return error;
611
612 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
613 loff_t oldsize = inode->i_size;
614 loff_t newsize = attr->ia_size;
615
616 if (newsize != oldsize) {
617 i_size_write(inode, newsize);
618 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
619 }
620 if (newsize < oldsize) {
621 loff_t holebegin = round_up(newsize, PAGE_SIZE);
622 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
623 shmem_truncate_range(inode, newsize, (loff_t)-1);
624 /* unmap again to remove racily COWed private pages */
625 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
626 }
627 }
628
629 setattr_copy(inode, attr);
630 #ifdef CONFIG_TMPFS_POSIX_ACL
631 if (attr->ia_valid & ATTR_MODE)
632 error = generic_acl_chmod(inode);
633 #endif
634 return error;
635 }
636
637 static void shmem_evict_inode(struct inode *inode)
638 {
639 struct shmem_inode_info *info = SHMEM_I(inode);
640
641 if (inode->i_mapping->a_ops == &shmem_aops) {
642 shmem_unacct_size(info->flags, inode->i_size);
643 inode->i_size = 0;
644 shmem_truncate_range(inode, 0, (loff_t)-1);
645 if (!list_empty(&info->swaplist)) {
646 mutex_lock(&shmem_swaplist_mutex);
647 list_del_init(&info->swaplist);
648 mutex_unlock(&shmem_swaplist_mutex);
649 }
650 } else
651 kfree(info->symlink);
652
653 simple_xattrs_free(&info->xattrs);
654 WARN_ON(inode->i_blocks);
655 shmem_free_inode(inode->i_sb);
656 clear_inode(inode);
657 }
658
659 /*
660 * If swap found in inode, free it and move page from swapcache to filecache.
661 */
662 static int shmem_unuse_inode(struct shmem_inode_info *info,
663 swp_entry_t swap, struct page **pagep)
664 {
665 struct address_space *mapping = info->vfs_inode.i_mapping;
666 void *radswap;
667 pgoff_t index;
668 gfp_t gfp;
669 int error = 0;
670
671 radswap = swp_to_radix_entry(swap);
672 index = radix_tree_locate_item(&mapping->page_tree, radswap);
673 if (index == -1)
674 return 0;
675
676 /*
677 * Move _head_ to start search for next from here.
678 * But be careful: shmem_evict_inode checks list_empty without taking
679 * mutex, and there's an instant in list_move_tail when info->swaplist
680 * would appear empty, if it were the only one on shmem_swaplist.
681 */
682 if (shmem_swaplist.next != &info->swaplist)
683 list_move_tail(&shmem_swaplist, &info->swaplist);
684
685 gfp = mapping_gfp_mask(mapping);
686 if (shmem_should_replace_page(*pagep, gfp)) {
687 mutex_unlock(&shmem_swaplist_mutex);
688 error = shmem_replace_page(pagep, gfp, info, index);
689 mutex_lock(&shmem_swaplist_mutex);
690 /*
691 * We needed to drop mutex to make that restrictive page
692 * allocation, but the inode might have been freed while we
693 * dropped it: although a racing shmem_evict_inode() cannot
694 * complete without emptying the radix_tree, our page lock
695 * on this swapcache page is not enough to prevent that -
696 * free_swap_and_cache() of our swap entry will only
697 * trylock_page(), removing swap from radix_tree whatever.
698 *
699 * We must not proceed to shmem_add_to_page_cache() if the
700 * inode has been freed, but of course we cannot rely on
701 * inode or mapping or info to check that. However, we can
702 * safely check if our swap entry is still in use (and here
703 * it can't have got reused for another page): if it's still
704 * in use, then the inode cannot have been freed yet, and we
705 * can safely proceed (if it's no longer in use, that tells
706 * nothing about the inode, but we don't need to unuse swap).
707 */
708 if (!page_swapcount(*pagep))
709 error = -ENOENT;
710 }
711
712 /*
713 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
714 * but also to hold up shmem_evict_inode(): so inode cannot be freed
715 * beneath us (pagelock doesn't help until the page is in pagecache).
716 */
717 if (!error)
718 error = shmem_add_to_page_cache(*pagep, mapping, index,
719 GFP_NOWAIT, radswap);
720 if (error != -ENOMEM) {
721 /*
722 * Truncation and eviction use free_swap_and_cache(), which
723 * only does trylock page: if we raced, best clean up here.
724 */
725 delete_from_swap_cache(*pagep);
726 set_page_dirty(*pagep);
727 if (!error) {
728 spin_lock(&info->lock);
729 info->swapped--;
730 spin_unlock(&info->lock);
731 swap_free(swap);
732 }
733 error = 1; /* not an error, but entry was found */
734 }
735 return error;
736 }
737
738 /*
739 * Search through swapped inodes to find and replace swap by page.
740 */
741 int shmem_unuse(swp_entry_t swap, struct page *page)
742 {
743 struct list_head *this, *next;
744 struct shmem_inode_info *info;
745 int found = 0;
746 int error = 0;
747
748 /*
749 * There's a faint possibility that swap page was replaced before
750 * caller locked it: caller will come back later with the right page.
751 */
752 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
753 goto out;
754
755 /*
756 * Charge page using GFP_KERNEL while we can wait, before taking
757 * the shmem_swaplist_mutex which might hold up shmem_writepage().
758 * Charged back to the user (not to caller) when swap account is used.
759 */
760 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
761 if (error)
762 goto out;
763 /* No radix_tree_preload: swap entry keeps a place for page in tree */
764
765 mutex_lock(&shmem_swaplist_mutex);
766 list_for_each_safe(this, next, &shmem_swaplist) {
767 info = list_entry(this, struct shmem_inode_info, swaplist);
768 if (info->swapped)
769 found = shmem_unuse_inode(info, swap, &page);
770 else
771 list_del_init(&info->swaplist);
772 cond_resched();
773 if (found)
774 break;
775 }
776 mutex_unlock(&shmem_swaplist_mutex);
777
778 if (found < 0)
779 error = found;
780 out:
781 unlock_page(page);
782 page_cache_release(page);
783 return error;
784 }
785
786 /*
787 * Move the page from the page cache to the swap cache.
788 */
789 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
790 {
791 struct shmem_inode_info *info;
792 struct address_space *mapping;
793 struct inode *inode;
794 swp_entry_t swap;
795 pgoff_t index;
796
797 BUG_ON(!PageLocked(page));
798 mapping = page->mapping;
799 index = page->index;
800 inode = mapping->host;
801 info = SHMEM_I(inode);
802 if (info->flags & VM_LOCKED)
803 goto redirty;
804 if (!total_swap_pages)
805 goto redirty;
806
807 /*
808 * shmem_backing_dev_info's capabilities prevent regular writeback or
809 * sync from ever calling shmem_writepage; but a stacking filesystem
810 * might use ->writepage of its underlying filesystem, in which case
811 * tmpfs should write out to swap only in response to memory pressure,
812 * and not for the writeback threads or sync.
813 */
814 if (!wbc->for_reclaim) {
815 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
816 goto redirty;
817 }
818
819 /*
820 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
821 * value into swapfile.c, the only way we can correctly account for a
822 * fallocated page arriving here is now to initialize it and write it.
823 *
824 * That's okay for a page already fallocated earlier, but if we have
825 * not yet completed the fallocation, then (a) we want to keep track
826 * of this page in case we have to undo it, and (b) it may not be a
827 * good idea to continue anyway, once we're pushing into swap. So
828 * reactivate the page, and let shmem_fallocate() quit when too many.
829 */
830 if (!PageUptodate(page)) {
831 if (inode->i_private) {
832 struct shmem_falloc *shmem_falloc;
833 spin_lock(&inode->i_lock);
834 shmem_falloc = inode->i_private;
835 if (shmem_falloc &&
836 !shmem_falloc->waitq &&
837 index >= shmem_falloc->start &&
838 index < shmem_falloc->next)
839 shmem_falloc->nr_unswapped++;
840 else
841 shmem_falloc = NULL;
842 spin_unlock(&inode->i_lock);
843 if (shmem_falloc)
844 goto redirty;
845 }
846 clear_highpage(page);
847 flush_dcache_page(page);
848 SetPageUptodate(page);
849 }
850
851 #ifndef CONFIG_MEMCG
852 swap = get_swap_page();
853 #else
854 swap = get_swap_page_by_memcg(page);
855 #endif
856 if (!swap.val)
857 goto redirty;
858
859 /*
860 * Add inode to shmem_unuse()'s list of swapped-out inodes,
861 * if it's not already there. Do it now before the page is
862 * moved to swap cache, when its pagelock no longer protects
863 * the inode from eviction. But don't unlock the mutex until
864 * we've incremented swapped, because shmem_unuse_inode() will
865 * prune a !swapped inode from the swaplist under this mutex.
866 */
867 mutex_lock(&shmem_swaplist_mutex);
868 if (list_empty(&info->swaplist))
869 list_add_tail(&info->swaplist, &shmem_swaplist);
870
871 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
872 swap_shmem_alloc(swap);
873 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
874
875 spin_lock(&info->lock);
876 info->swapped++;
877 shmem_recalc_inode(inode);
878 spin_unlock(&info->lock);
879
880 mutex_unlock(&shmem_swaplist_mutex);
881 BUG_ON(page_mapped(page));
882 swap_writepage(page, wbc);
883 return 0;
884 }
885
886 mutex_unlock(&shmem_swaplist_mutex);
887 swapcache_free(swap, NULL);
888 redirty:
889 set_page_dirty(page);
890 if (wbc->for_reclaim)
891 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
892 unlock_page(page);
893 return 0;
894 }
895
896 #ifdef CONFIG_NUMA
897 #ifdef CONFIG_TMPFS
898 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
899 {
900 char buffer[64];
901
902 if (!mpol || mpol->mode == MPOL_DEFAULT)
903 return; /* show nothing */
904
905 mpol_to_str(buffer, sizeof(buffer), mpol);
906
907 seq_printf(seq, ",mpol=%s", buffer);
908 }
909
910 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
911 {
912 struct mempolicy *mpol = NULL;
913 if (sbinfo->mpol) {
914 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
915 mpol = sbinfo->mpol;
916 mpol_get(mpol);
917 spin_unlock(&sbinfo->stat_lock);
918 }
919 return mpol;
920 }
921 #endif /* CONFIG_TMPFS */
922
923 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
924 struct shmem_inode_info *info, pgoff_t index)
925 {
926 struct vm_area_struct pvma;
927 struct page *page;
928
929 /* Create a pseudo vma that just contains the policy */
930 pvma.vm_start = 0;
931 /* Bias interleave by inode number to distribute better across nodes */
932 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
933 pvma.vm_ops = NULL;
934 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
935
936 page = swapin_readahead(swap, gfp, &pvma, 0);
937
938 /* Drop reference taken by mpol_shared_policy_lookup() */
939 mpol_cond_put(pvma.vm_policy);
940
941 return page;
942 }
943
944 static struct page *shmem_alloc_page(gfp_t gfp,
945 struct shmem_inode_info *info, pgoff_t index)
946 {
947 struct vm_area_struct pvma;
948 struct page *page;
949
950 /* Create a pseudo vma that just contains the policy */
951 pvma.vm_start = 0;
952 /* Bias interleave by inode number to distribute better across nodes */
953 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
954 pvma.vm_ops = NULL;
955 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
956
957 page = alloc_page_vma(gfp, &pvma, 0);
958
959 /* Drop reference taken by mpol_shared_policy_lookup() */
960 mpol_cond_put(pvma.vm_policy);
961
962 return page;
963 }
964 #else /* !CONFIG_NUMA */
965 #ifdef CONFIG_TMPFS
966 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
967 {
968 }
969 #endif /* CONFIG_TMPFS */
970
971 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
972 struct shmem_inode_info *info, pgoff_t index)
973 {
974 return swapin_readahead(swap, gfp, NULL, 0);
975 }
976
977 static inline struct page *shmem_alloc_page(gfp_t gfp,
978 struct shmem_inode_info *info, pgoff_t index)
979 {
980 return alloc_page(gfp);
981 }
982 #endif /* CONFIG_NUMA */
983
984 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
985 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
986 {
987 return NULL;
988 }
989 #endif
990
991 /*
992 * When a page is moved from swapcache to shmem filecache (either by the
993 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
994 * shmem_unuse_inode()), it may have been read in earlier from swap, in
995 * ignorance of the mapping it belongs to. If that mapping has special
996 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
997 * we may need to copy to a suitable page before moving to filecache.
998 *
999 * In a future release, this may well be extended to respect cpuset and
1000 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1001 * but for now it is a simple matter of zone.
1002 */
1003 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1004 {
1005 return page_zonenum(page) > gfp_zone(gfp);
1006 }
1007
1008 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1009 struct shmem_inode_info *info, pgoff_t index)
1010 {
1011 struct page *oldpage, *newpage;
1012 struct address_space *swap_mapping;
1013 pgoff_t swap_index;
1014 int error;
1015
1016 oldpage = *pagep;
1017 swap_index = page_private(oldpage);
1018 swap_mapping = page_mapping(oldpage);
1019
1020 /*
1021 * We have arrived here because our zones are constrained, so don't
1022 * limit chance of success by further cpuset and node constraints.
1023 */
1024 gfp &= ~GFP_CONSTRAINT_MASK;
1025 newpage = shmem_alloc_page(gfp, info, index);
1026 if (!newpage)
1027 return -ENOMEM;
1028
1029 page_cache_get(newpage);
1030 copy_highpage(newpage, oldpage);
1031 flush_dcache_page(newpage);
1032
1033 __set_page_locked(newpage);
1034 SetPageUptodate(newpage);
1035 SetPageSwapBacked(newpage);
1036 set_page_private(newpage, swap_index);
1037 SetPageSwapCache(newpage);
1038
1039 /*
1040 * Our caller will very soon move newpage out of swapcache, but it's
1041 * a nice clean interface for us to replace oldpage by newpage there.
1042 */
1043 spin_lock_irq(&swap_mapping->tree_lock);
1044 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1045 newpage);
1046 if (!error) {
1047 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1048 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1049 }
1050 spin_unlock_irq(&swap_mapping->tree_lock);
1051
1052 if (unlikely(error)) {
1053 /*
1054 * Is this possible? I think not, now that our callers check
1055 * both PageSwapCache and page_private after getting page lock;
1056 * but be defensive. Reverse old to newpage for clear and free.
1057 */
1058 oldpage = newpage;
1059 } else {
1060 mem_cgroup_replace_page_cache(oldpage, newpage);
1061 lru_cache_add_anon(newpage);
1062 *pagep = newpage;
1063 }
1064
1065 ClearPageSwapCache(oldpage);
1066 set_page_private(oldpage, 0);
1067
1068 unlock_page(oldpage);
1069 page_cache_release(oldpage);
1070 page_cache_release(oldpage);
1071 return error;
1072 }
1073
1074 /*
1075 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1076 *
1077 * If we allocate a new one we do not mark it dirty. That's up to the
1078 * vm. If we swap it in we mark it dirty since we also free the swap
1079 * entry since a page cannot live in both the swap and page cache
1080 */
1081 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1082 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1083 {
1084 struct address_space *mapping = inode->i_mapping;
1085 struct shmem_inode_info *info;
1086 struct shmem_sb_info *sbinfo;
1087 struct page *page;
1088 swp_entry_t swap;
1089 int error;
1090 int once = 0;
1091 int alloced = 0;
1092
1093 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1094 return -EFBIG;
1095 repeat:
1096 swap.val = 0;
1097 page = find_lock_page(mapping, index);
1098 if (radix_tree_exceptional_entry(page)) {
1099 swap = radix_to_swp_entry(page);
1100 page = NULL;
1101 }
1102
1103 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1104 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1105 error = -EINVAL;
1106 goto failed;
1107 }
1108
1109 /* fallocated page? */
1110 if (page && !PageUptodate(page)) {
1111 if (sgp != SGP_READ)
1112 goto clear;
1113 unlock_page(page);
1114 page_cache_release(page);
1115 page = NULL;
1116 }
1117 if (page || (sgp == SGP_READ && !swap.val)) {
1118 *pagep = page;
1119 return 0;
1120 }
1121
1122 /*
1123 * Fast cache lookup did not find it:
1124 * bring it back from swap or allocate.
1125 */
1126 info = SHMEM_I(inode);
1127 sbinfo = SHMEM_SB(inode->i_sb);
1128
1129 if (swap.val) {
1130 /* Look it up and read it in.. */
1131 page = lookup_swap_cache(swap);
1132 if (!page) {
1133 /* here we actually do the io */
1134 if (fault_type)
1135 *fault_type |= VM_FAULT_MAJOR;
1136 page = shmem_swapin(swap, gfp, info, index);
1137 if (!page) {
1138 error = -ENOMEM;
1139 goto failed;
1140 }
1141 }
1142
1143 /* We have to do this with page locked to prevent races */
1144 lock_page(page);
1145 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1146 !shmem_confirm_swap(mapping, index, swap)) {
1147 error = -EEXIST; /* try again */
1148 goto unlock;
1149 }
1150 if (!PageUptodate(page)) {
1151 error = -EIO;
1152 goto failed;
1153 }
1154 wait_on_page_writeback(page);
1155
1156 if (shmem_should_replace_page(page, gfp)) {
1157 error = shmem_replace_page(&page, gfp, info, index);
1158 if (error)
1159 goto failed;
1160 }
1161
1162 error = mem_cgroup_cache_charge(page, current->mm,
1163 gfp & GFP_RECLAIM_MASK);
1164 if (!error) {
1165 error = shmem_add_to_page_cache(page, mapping, index,
1166 gfp, swp_to_radix_entry(swap));
1167 /*
1168 * We already confirmed swap under page lock, and make
1169 * no memory allocation here, so usually no possibility
1170 * of error; but free_swap_and_cache() only trylocks a
1171 * page, so it is just possible that the entry has been
1172 * truncated or holepunched since swap was confirmed.
1173 * shmem_undo_range() will have done some of the
1174 * unaccounting, now delete_from_swap_cache() will do
1175 * the rest (including mem_cgroup_uncharge_swapcache).
1176 * Reset swap.val? No, leave it so "failed" goes back to
1177 * "repeat": reading a hole and writing should succeed.
1178 */
1179 if (error)
1180 delete_from_swap_cache(page);
1181 }
1182 if (error)
1183 goto failed;
1184
1185 spin_lock(&info->lock);
1186 info->swapped--;
1187 shmem_recalc_inode(inode);
1188 spin_unlock(&info->lock);
1189
1190 delete_from_swap_cache(page);
1191 set_page_dirty(page);
1192 swap_free(swap);
1193
1194 } else {
1195 if (shmem_acct_block(info->flags)) {
1196 error = -ENOSPC;
1197 goto failed;
1198 }
1199 if (sbinfo->max_blocks) {
1200 if (percpu_counter_compare(&sbinfo->used_blocks,
1201 sbinfo->max_blocks) >= 0) {
1202 error = -ENOSPC;
1203 goto unacct;
1204 }
1205 percpu_counter_inc(&sbinfo->used_blocks);
1206 }
1207
1208 page = shmem_alloc_page(gfp, info, index);
1209 if (!page) {
1210 error = -ENOMEM;
1211 goto decused;
1212 }
1213
1214 SetPageSwapBacked(page);
1215 __set_page_locked(page);
1216 error = mem_cgroup_cache_charge(page, current->mm,
1217 gfp & GFP_RECLAIM_MASK);
1218 if (error)
1219 goto decused;
1220 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1221 if (!error) {
1222 error = shmem_add_to_page_cache(page, mapping, index,
1223 gfp, NULL);
1224 radix_tree_preload_end();
1225 }
1226 if (error) {
1227 mem_cgroup_uncharge_cache_page(page);
1228 goto decused;
1229 }
1230 lru_cache_add_anon(page);
1231
1232 spin_lock(&info->lock);
1233 info->alloced++;
1234 inode->i_blocks += BLOCKS_PER_PAGE;
1235 shmem_recalc_inode(inode);
1236 spin_unlock(&info->lock);
1237 alloced = true;
1238
1239 /*
1240 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1241 */
1242 if (sgp == SGP_FALLOC)
1243 sgp = SGP_WRITE;
1244 clear:
1245 /*
1246 * Let SGP_WRITE caller clear ends if write does not fill page;
1247 * but SGP_FALLOC on a page fallocated earlier must initialize
1248 * it now, lest undo on failure cancel our earlier guarantee.
1249 */
1250 if (sgp != SGP_WRITE) {
1251 clear_highpage(page);
1252 flush_dcache_page(page);
1253 SetPageUptodate(page);
1254 }
1255 if (sgp == SGP_DIRTY)
1256 set_page_dirty(page);
1257 }
1258
1259 /* Perhaps the file has been truncated since we checked */
1260 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1261 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1262 error = -EINVAL;
1263 if (alloced)
1264 goto trunc;
1265 else
1266 goto failed;
1267 }
1268 *pagep = page;
1269 return 0;
1270
1271 /*
1272 * Error recovery.
1273 */
1274 trunc:
1275 info = SHMEM_I(inode);
1276 ClearPageDirty(page);
1277 delete_from_page_cache(page);
1278 spin_lock(&info->lock);
1279 info->alloced--;
1280 inode->i_blocks -= BLOCKS_PER_PAGE;
1281 spin_unlock(&info->lock);
1282 decused:
1283 sbinfo = SHMEM_SB(inode->i_sb);
1284 if (sbinfo->max_blocks)
1285 percpu_counter_add(&sbinfo->used_blocks, -1);
1286 unacct:
1287 shmem_unacct_blocks(info->flags, 1);
1288 failed:
1289 if (swap.val && error != -EINVAL &&
1290 !shmem_confirm_swap(mapping, index, swap))
1291 error = -EEXIST;
1292 unlock:
1293 if (page) {
1294 unlock_page(page);
1295 page_cache_release(page);
1296 }
1297 if (error == -ENOSPC && !once++) {
1298 info = SHMEM_I(inode);
1299 spin_lock(&info->lock);
1300 shmem_recalc_inode(inode);
1301 spin_unlock(&info->lock);
1302 goto repeat;
1303 }
1304 if (error == -EEXIST) /* from above or from radix_tree_insert */
1305 goto repeat;
1306 return error;
1307 }
1308
1309 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1310 {
1311 struct inode *inode = file_inode(vma->vm_file);
1312 int error;
1313 int ret = VM_FAULT_LOCKED;
1314
1315 /*
1316 * Trinity finds that probing a hole which tmpfs is punching can
1317 * prevent the hole-punch from ever completing: which in turn
1318 * locks writers out with its hold on i_mutex. So refrain from
1319 * faulting pages into the hole while it's being punched. Although
1320 * shmem_undo_range() does remove the additions, it may be unable to
1321 * keep up, as each new page needs its own unmap_mapping_range() call,
1322 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1323 *
1324 * It does not matter if we sometimes reach this check just before the
1325 * hole-punch begins, so that one fault then races with the punch:
1326 * we just need to make racing faults a rare case.
1327 *
1328 * The implementation below would be much simpler if we just used a
1329 * standard mutex or completion: but we cannot take i_mutex in fault,
1330 * and bloating every shmem inode for this unlikely case would be sad.
1331 */
1332 if (unlikely(inode->i_private)) {
1333 struct shmem_falloc *shmem_falloc;
1334
1335 spin_lock(&inode->i_lock);
1336 shmem_falloc = inode->i_private;
1337 if (shmem_falloc &&
1338 shmem_falloc->waitq &&
1339 vmf->pgoff >= shmem_falloc->start &&
1340 vmf->pgoff < shmem_falloc->next) {
1341 wait_queue_head_t *shmem_falloc_waitq;
1342 DEFINE_WAIT(shmem_fault_wait);
1343
1344 ret = VM_FAULT_NOPAGE;
1345 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1346 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1347 /* It's polite to up mmap_sem if we can */
1348 up_read(&vma->vm_mm->mmap_sem);
1349 ret = VM_FAULT_RETRY;
1350 }
1351
1352 shmem_falloc_waitq = shmem_falloc->waitq;
1353 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1354 TASK_UNINTERRUPTIBLE);
1355 spin_unlock(&inode->i_lock);
1356 schedule();
1357
1358 /*
1359 * shmem_falloc_waitq points into the shmem_fallocate()
1360 * stack of the hole-punching task: shmem_falloc_waitq
1361 * is usually invalid by the time we reach here, but
1362 * finish_wait() does not dereference it in that case;
1363 * though i_lock needed lest racing with wake_up_all().
1364 */
1365 spin_lock(&inode->i_lock);
1366 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1367 spin_unlock(&inode->i_lock);
1368 return ret;
1369 }
1370 spin_unlock(&inode->i_lock);
1371 }
1372
1373 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1374 if (error)
1375 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1376
1377 if (ret & VM_FAULT_MAJOR) {
1378 count_vm_event(PGMAJFAULT);
1379 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1380 }
1381 return ret;
1382 }
1383
1384 #ifdef CONFIG_NUMA
1385 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1386 {
1387 struct inode *inode = file_inode(vma->vm_file);
1388 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1389 }
1390
1391 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1392 unsigned long addr)
1393 {
1394 struct inode *inode = file_inode(vma->vm_file);
1395 pgoff_t index;
1396
1397 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1398 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1399 }
1400 #endif
1401
1402 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1403 {
1404 struct inode *inode = file_inode(file);
1405 struct shmem_inode_info *info = SHMEM_I(inode);
1406 int retval = -ENOMEM;
1407
1408 spin_lock(&info->lock);
1409 if (lock && !(info->flags & VM_LOCKED)) {
1410 if (!user_shm_lock(inode->i_size, user))
1411 goto out_nomem;
1412 info->flags |= VM_LOCKED;
1413 mapping_set_unevictable(file->f_mapping);
1414 }
1415 if (!lock && (info->flags & VM_LOCKED) && user) {
1416 user_shm_unlock(inode->i_size, user);
1417 info->flags &= ~VM_LOCKED;
1418 mapping_clear_unevictable(file->f_mapping);
1419 }
1420 retval = 0;
1421
1422 out_nomem:
1423 spin_unlock(&info->lock);
1424 return retval;
1425 }
1426
1427 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1428 {
1429 file_accessed(file);
1430 vma->vm_ops = &shmem_vm_ops;
1431 return 0;
1432 }
1433
1434 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1435 umode_t mode, dev_t dev, unsigned long flags, int atomic_copy)
1436 {
1437 struct inode *inode;
1438 struct shmem_inode_info *info;
1439 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1440
1441 if (shmem_reserve_inode(sb))
1442 return NULL;
1443
1444 inode = new_inode(sb);
1445 if (inode) {
1446 /* We don't let shmem use __GFP_SLOWHIGHMEM */
1447 mapping_set_gfp_mask(inode->i_mapping, GFP_HIGHUSER_MOVABLE);
1448 inode->i_ino = get_next_ino();
1449 inode_init_owner(inode, dir, mode);
1450 inode->i_blocks = 0;
1451 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1452 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1453 inode->i_generation = get_seconds();
1454 info = SHMEM_I(inode);
1455 memset(info, 0, (char *)inode - (char *)info);
1456 spin_lock_init(&info->lock);
1457 info->flags = flags & VM_NORESERVE;
1458 if (atomic_copy)
1459 inode->i_flags |= S_ATOMIC_COPY;
1460 INIT_LIST_HEAD(&info->swaplist);
1461 simple_xattrs_init(&info->xattrs);
1462 cache_no_acl(inode);
1463
1464 switch (mode & S_IFMT) {
1465 default:
1466 inode->i_op = &shmem_special_inode_operations;
1467 init_special_inode(inode, mode, dev);
1468 break;
1469 case S_IFREG:
1470 inode->i_mapping->a_ops = &shmem_aops;
1471 inode->i_op = &shmem_inode_operations;
1472 inode->i_fop = &shmem_file_operations;
1473 mpol_shared_policy_init(&info->policy,
1474 shmem_get_sbmpol(sbinfo));
1475 break;
1476 case S_IFDIR:
1477 inc_nlink(inode);
1478 /* Some things misbehave if size == 0 on a directory */
1479 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1480 inode->i_op = &shmem_dir_inode_operations;
1481 inode->i_fop = &simple_dir_operations;
1482 break;
1483 case S_IFLNK:
1484 /*
1485 * Must not load anything in the rbtree,
1486 * mpol_free_shared_policy will not be called.
1487 */
1488 mpol_shared_policy_init(&info->policy, NULL);
1489 break;
1490 }
1491 } else
1492 shmem_free_inode(sb);
1493 return inode;
1494 }
1495
1496 #ifdef CONFIG_TMPFS
1497 static const struct inode_operations shmem_symlink_inode_operations;
1498 static const struct inode_operations shmem_short_symlink_operations;
1499
1500 #ifdef CONFIG_TMPFS_XATTR
1501 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1502 #else
1503 #define shmem_initxattrs NULL
1504 #endif
1505
1506 static int
1507 shmem_write_begin(struct file *file, struct address_space *mapping,
1508 loff_t pos, unsigned len, unsigned flags,
1509 struct page **pagep, void **fsdata)
1510 {
1511 struct inode *inode = mapping->host;
1512 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1513 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1514 }
1515
1516 static int
1517 shmem_write_end(struct file *file, struct address_space *mapping,
1518 loff_t pos, unsigned len, unsigned copied,
1519 struct page *page, void *fsdata)
1520 {
1521 struct inode *inode = mapping->host;
1522
1523 if (pos + copied > inode->i_size)
1524 i_size_write(inode, pos + copied);
1525
1526 if (!PageUptodate(page)) {
1527 if (copied < PAGE_CACHE_SIZE) {
1528 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1529 zero_user_segments(page, 0, from,
1530 from + copied, PAGE_CACHE_SIZE);
1531 }
1532 SetPageUptodate(page);
1533 }
1534 set_page_dirty(page);
1535 unlock_page(page);
1536 page_cache_release(page);
1537
1538 return copied;
1539 }
1540
1541 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1542 {
1543 struct inode *inode = file_inode(filp);
1544 struct address_space *mapping = inode->i_mapping;
1545 pgoff_t index;
1546 unsigned long offset;
1547 enum sgp_type sgp = SGP_READ;
1548
1549 /*
1550 * Might this read be for a stacking filesystem? Then when reading
1551 * holes of a sparse file, we actually need to allocate those pages,
1552 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1553 */
1554 if (segment_eq(get_fs(), KERNEL_DS))
1555 sgp = SGP_DIRTY;
1556
1557 index = *ppos >> PAGE_CACHE_SHIFT;
1558 offset = *ppos & ~PAGE_CACHE_MASK;
1559
1560 for (;;) {
1561 struct page *page = NULL;
1562 pgoff_t end_index;
1563 unsigned long nr, ret;
1564 loff_t i_size = i_size_read(inode);
1565
1566 end_index = i_size >> PAGE_CACHE_SHIFT;
1567 if (index > end_index)
1568 break;
1569 if (index == end_index) {
1570 nr = i_size & ~PAGE_CACHE_MASK;
1571 if (nr <= offset)
1572 break;
1573 }
1574
1575 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1576 if (desc->error) {
1577 if (desc->error == -EINVAL)
1578 desc->error = 0;
1579 break;
1580 }
1581 if (page)
1582 unlock_page(page);
1583
1584 /*
1585 * We must evaluate after, since reads (unlike writes)
1586 * are called without i_mutex protection against truncate
1587 */
1588 nr = PAGE_CACHE_SIZE;
1589 i_size = i_size_read(inode);
1590 end_index = i_size >> PAGE_CACHE_SHIFT;
1591 if (index == end_index) {
1592 nr = i_size & ~PAGE_CACHE_MASK;
1593 if (nr <= offset) {
1594 if (page)
1595 page_cache_release(page);
1596 break;
1597 }
1598 }
1599 nr -= offset;
1600
1601 if (page) {
1602 /*
1603 * If users can be writing to this page using arbitrary
1604 * virtual addresses, take care about potential aliasing
1605 * before reading the page on the kernel side.
1606 */
1607 if (mapping_writably_mapped(mapping))
1608 flush_dcache_page(page);
1609 /*
1610 * Mark the page accessed if we read the beginning.
1611 */
1612 if (!offset)
1613 mark_page_accessed(page);
1614 } else {
1615 page = ZERO_PAGE(0);
1616 page_cache_get(page);
1617 }
1618
1619 /*
1620 * Ok, we have the page, and it's up-to-date, so
1621 * now we can copy it to user space...
1622 *
1623 * The actor routine returns how many bytes were actually used..
1624 * NOTE! This may not be the same as how much of a user buffer
1625 * we filled up (we may be padding etc), so we can only update
1626 * "pos" here (the actor routine has to update the user buffer
1627 * pointers and the remaining count).
1628 */
1629 ret = actor(desc, page, offset, nr);
1630 offset += ret;
1631 index += offset >> PAGE_CACHE_SHIFT;
1632 offset &= ~PAGE_CACHE_MASK;
1633
1634 page_cache_release(page);
1635 if (ret != nr || !desc->count)
1636 break;
1637
1638 cond_resched();
1639 }
1640
1641 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1642 file_accessed(filp);
1643 }
1644
1645 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1646 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1647 {
1648 struct file *filp = iocb->ki_filp;
1649 ssize_t retval;
1650 unsigned long seg;
1651 size_t count;
1652 loff_t *ppos = &iocb->ki_pos;
1653
1654 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1655 if (retval)
1656 return retval;
1657
1658 for (seg = 0; seg < nr_segs; seg++) {
1659 read_descriptor_t desc;
1660
1661 desc.written = 0;
1662 desc.arg.buf = iov[seg].iov_base;
1663 desc.count = iov[seg].iov_len;
1664 if (desc.count == 0)
1665 continue;
1666 desc.error = 0;
1667 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1668 retval += desc.written;
1669 if (desc.error) {
1670 retval = retval ?: desc.error;
1671 break;
1672 }
1673 if (desc.count > 0)
1674 break;
1675 }
1676 return retval;
1677 }
1678
1679 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1680 struct pipe_inode_info *pipe, size_t len,
1681 unsigned int flags)
1682 {
1683 struct address_space *mapping = in->f_mapping;
1684 struct inode *inode = mapping->host;
1685 unsigned int loff, nr_pages, req_pages;
1686 struct page *pages[PIPE_DEF_BUFFERS];
1687 struct partial_page partial[PIPE_DEF_BUFFERS];
1688 struct page *page;
1689 pgoff_t index, end_index;
1690 loff_t isize, left;
1691 int error, page_nr;
1692 struct splice_pipe_desc spd = {
1693 .pages = pages,
1694 .partial = partial,
1695 .nr_pages_max = PIPE_DEF_BUFFERS,
1696 .flags = flags,
1697 .ops = &page_cache_pipe_buf_ops,
1698 .spd_release = spd_release_page,
1699 };
1700
1701 isize = i_size_read(inode);
1702 if (unlikely(*ppos >= isize))
1703 return 0;
1704
1705 left = isize - *ppos;
1706 if (unlikely(left < len))
1707 len = left;
1708
1709 if (splice_grow_spd(pipe, &spd))
1710 return -ENOMEM;
1711
1712 index = *ppos >> PAGE_CACHE_SHIFT;
1713 loff = *ppos & ~PAGE_CACHE_MASK;
1714 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1715 nr_pages = min(req_pages, pipe->buffers);
1716
1717 spd.nr_pages = find_get_pages_contig(mapping, index,
1718 nr_pages, spd.pages);
1719 index += spd.nr_pages;
1720 error = 0;
1721
1722 while (spd.nr_pages < nr_pages) {
1723 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1724 if (error)
1725 break;
1726 unlock_page(page);
1727 spd.pages[spd.nr_pages++] = page;
1728 index++;
1729 }
1730
1731 index = *ppos >> PAGE_CACHE_SHIFT;
1732 nr_pages = spd.nr_pages;
1733 spd.nr_pages = 0;
1734
1735 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1736 unsigned int this_len;
1737
1738 if (!len)
1739 break;
1740
1741 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1742 page = spd.pages[page_nr];
1743
1744 if (!PageUptodate(page) || page->mapping != mapping) {
1745 error = shmem_getpage(inode, index, &page,
1746 SGP_CACHE, NULL);
1747 if (error)
1748 break;
1749 unlock_page(page);
1750 page_cache_release(spd.pages[page_nr]);
1751 spd.pages[page_nr] = page;
1752 }
1753
1754 isize = i_size_read(inode);
1755 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1756 if (unlikely(!isize || index > end_index))
1757 break;
1758
1759 if (end_index == index) {
1760 unsigned int plen;
1761
1762 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1763 if (plen <= loff)
1764 break;
1765
1766 this_len = min(this_len, plen - loff);
1767 len = this_len;
1768 }
1769
1770 spd.partial[page_nr].offset = loff;
1771 spd.partial[page_nr].len = this_len;
1772 len -= this_len;
1773 loff = 0;
1774 spd.nr_pages++;
1775 index++;
1776 }
1777
1778 while (page_nr < nr_pages)
1779 page_cache_release(spd.pages[page_nr++]);
1780
1781 if (spd.nr_pages)
1782 error = splice_to_pipe(pipe, &spd);
1783
1784 splice_shrink_spd(&spd);
1785
1786 if (error > 0) {
1787 *ppos += error;
1788 file_accessed(in);
1789 }
1790 return error;
1791 }
1792
1793 /*
1794 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1795 */
1796 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1797 pgoff_t index, pgoff_t end, int whence)
1798 {
1799 struct page *page;
1800 struct pagevec pvec;
1801 pgoff_t indices[PAGEVEC_SIZE];
1802 bool done = false;
1803 int i;
1804
1805 pagevec_init(&pvec, 0);
1806 pvec.nr = 1; /* start small: we may be there already */
1807 while (!done) {
1808 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1809 pvec.nr, pvec.pages, indices);
1810 if (!pvec.nr) {
1811 if (whence == SEEK_DATA)
1812 index = end;
1813 break;
1814 }
1815 for (i = 0; i < pvec.nr; i++, index++) {
1816 if (index < indices[i]) {
1817 if (whence == SEEK_HOLE) {
1818 done = true;
1819 break;
1820 }
1821 index = indices[i];
1822 }
1823 page = pvec.pages[i];
1824 if (page && !radix_tree_exceptional_entry(page)) {
1825 if (!PageUptodate(page))
1826 page = NULL;
1827 }
1828 if (index >= end ||
1829 (page && whence == SEEK_DATA) ||
1830 (!page && whence == SEEK_HOLE)) {
1831 done = true;
1832 break;
1833 }
1834 }
1835 shmem_deswap_pagevec(&pvec);
1836 pagevec_release(&pvec);
1837 pvec.nr = PAGEVEC_SIZE;
1838 cond_resched();
1839 }
1840 return index;
1841 }
1842
1843 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1844 {
1845 struct address_space *mapping = file->f_mapping;
1846 struct inode *inode = mapping->host;
1847 pgoff_t start, end;
1848 loff_t new_offset;
1849
1850 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1851 return generic_file_llseek_size(file, offset, whence,
1852 MAX_LFS_FILESIZE, i_size_read(inode));
1853 mutex_lock(&inode->i_mutex);
1854 /* We're holding i_mutex so we can access i_size directly */
1855
1856 if (offset < 0)
1857 offset = -EINVAL;
1858 else if (offset >= inode->i_size)
1859 offset = -ENXIO;
1860 else {
1861 start = offset >> PAGE_CACHE_SHIFT;
1862 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1863 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1864 new_offset <<= PAGE_CACHE_SHIFT;
1865 if (new_offset > offset) {
1866 if (new_offset < inode->i_size)
1867 offset = new_offset;
1868 else if (whence == SEEK_DATA)
1869 offset = -ENXIO;
1870 else
1871 offset = inode->i_size;
1872 }
1873 }
1874
1875 if (offset >= 0 && offset != file->f_pos) {
1876 file->f_pos = offset;
1877 file->f_version = 0;
1878 }
1879 mutex_unlock(&inode->i_mutex);
1880 return offset;
1881 }
1882
1883 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1884 loff_t len)
1885 {
1886 struct inode *inode = file_inode(file);
1887 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1888 struct shmem_falloc shmem_falloc;
1889 pgoff_t start, index, end;
1890 int error;
1891
1892 //To avoid nested lock
1893 if (!mutex_trylock(&inode->i_mutex))
1894 return -1;
1895
1896 if (mode & FALLOC_FL_PUNCH_HOLE) {
1897 struct address_space *mapping = file->f_mapping;
1898 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1899 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1900 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1901
1902 shmem_falloc.waitq = &shmem_falloc_waitq;
1903 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1904 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1905 spin_lock(&inode->i_lock);
1906 inode->i_private = &shmem_falloc;
1907 spin_unlock(&inode->i_lock);
1908
1909 if ((u64)unmap_end > (u64)unmap_start)
1910 unmap_mapping_range(mapping, unmap_start,
1911 1 + unmap_end - unmap_start, 0);
1912 shmem_truncate_range(inode, offset, offset + len - 1);
1913 /* No need to unmap again: hole-punching leaves COWed pages */
1914
1915 spin_lock(&inode->i_lock);
1916 inode->i_private = NULL;
1917 wake_up_all(&shmem_falloc_waitq);
1918 spin_unlock(&inode->i_lock);
1919 error = 0;
1920 goto out;
1921 }
1922
1923 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1924 error = inode_newsize_ok(inode, offset + len);
1925 if (error)
1926 goto out;
1927
1928 start = offset >> PAGE_CACHE_SHIFT;
1929 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1930 /* Try to avoid a swapstorm if len is impossible to satisfy */
1931 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1932 error = -ENOSPC;
1933 goto out;
1934 }
1935
1936 shmem_falloc.waitq = NULL;
1937 shmem_falloc.start = start;
1938 shmem_falloc.next = start;
1939 shmem_falloc.nr_falloced = 0;
1940 shmem_falloc.nr_unswapped = 0;
1941 spin_lock(&inode->i_lock);
1942 inode->i_private = &shmem_falloc;
1943 spin_unlock(&inode->i_lock);
1944
1945 for (index = start; index < end; index++) {
1946 struct page *page;
1947
1948 /*
1949 * Good, the fallocate(2) manpage permits EINTR: we may have
1950 * been interrupted because we are using up too much memory.
1951 */
1952 if (signal_pending(current))
1953 error = -EINTR;
1954 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1955 error = -ENOMEM;
1956 else
1957 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1958 NULL);
1959 if (error) {
1960 /* Remove the !PageUptodate pages we added */
1961 if (index > start) {
1962 shmem_undo_range(inode,
1963 (loff_t)start << PAGE_CACHE_SHIFT,
1964 ((loff_t)index << PAGE_CACHE_SHIFT) - 1, true);
1965 }
1966 goto undone;
1967 }
1968
1969 /*
1970 * Inform shmem_writepage() how far we have reached.
1971 * No need for lock or barrier: we have the page lock.
1972 */
1973 shmem_falloc.next++;
1974 if (!PageUptodate(page))
1975 shmem_falloc.nr_falloced++;
1976
1977 /*
1978 * If !PageUptodate, leave it that way so that freeable pages
1979 * can be recognized if we need to rollback on error later.
1980 * But set_page_dirty so that memory pressure will swap rather
1981 * than free the pages we are allocating (and SGP_CACHE pages
1982 * might still be clean: we now need to mark those dirty too).
1983 */
1984 set_page_dirty(page);
1985 unlock_page(page);
1986 page_cache_release(page);
1987 cond_resched();
1988 }
1989
1990 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1991 i_size_write(inode, offset + len);
1992 inode->i_ctime = CURRENT_TIME;
1993 undone:
1994 spin_lock(&inode->i_lock);
1995 inode->i_private = NULL;
1996 spin_unlock(&inode->i_lock);
1997 out:
1998 mutex_unlock(&inode->i_mutex);
1999 return error;
2000 }
2001
2002 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2003 {
2004 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2005
2006 buf->f_type = TMPFS_MAGIC;
2007 buf->f_bsize = PAGE_CACHE_SIZE;
2008 buf->f_namelen = NAME_MAX;
2009 if (sbinfo->max_blocks) {
2010 buf->f_blocks = sbinfo->max_blocks;
2011 buf->f_bavail =
2012 buf->f_bfree = sbinfo->max_blocks -
2013 percpu_counter_sum(&sbinfo->used_blocks);
2014 }
2015 if (sbinfo->max_inodes) {
2016 buf->f_files = sbinfo->max_inodes;
2017 buf->f_ffree = sbinfo->free_inodes;
2018 }
2019 /* else leave those fields 0 like simple_statfs */
2020 return 0;
2021 }
2022
2023 /*
2024 * File creation. Allocate an inode, and we're done..
2025 */
2026 static int
2027 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2028 {
2029 struct inode *inode;
2030 int error = -ENOSPC;
2031
2032 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE, 0);
2033 if (inode) {
2034 error = security_inode_init_security(inode, dir,
2035 &dentry->d_name,
2036 shmem_initxattrs, NULL);
2037 if (error) {
2038 if (error != -EOPNOTSUPP) {
2039 iput(inode);
2040 return error;
2041 }
2042 }
2043 #ifdef CONFIG_TMPFS_POSIX_ACL
2044 error = generic_acl_init(inode, dir);
2045 if (error) {
2046 iput(inode);
2047 return error;
2048 }
2049 #else
2050 error = 0;
2051 #endif
2052 dir->i_size += BOGO_DIRENT_SIZE;
2053 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2054 d_instantiate(dentry, inode);
2055 dget(dentry); /* Extra count - pin the dentry in core */
2056 }
2057 return error;
2058 }
2059
2060 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2061 {
2062 int error;
2063
2064 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2065 return error;
2066 inc_nlink(dir);
2067 return 0;
2068 }
2069
2070 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2071 bool excl)
2072 {
2073 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2074 }
2075
2076 /*
2077 * Link a file..
2078 */
2079 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2080 {
2081 struct inode *inode = old_dentry->d_inode;
2082 int ret;
2083
2084 /*
2085 * No ordinary (disk based) filesystem counts links as inodes;
2086 * but each new link needs a new dentry, pinning lowmem, and
2087 * tmpfs dentries cannot be pruned until they are unlinked.
2088 */
2089 ret = shmem_reserve_inode(inode->i_sb);
2090 if (ret)
2091 goto out;
2092
2093 dir->i_size += BOGO_DIRENT_SIZE;
2094 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2095 inc_nlink(inode);
2096 ihold(inode); /* New dentry reference */
2097 dget(dentry); /* Extra pinning count for the created dentry */
2098 d_instantiate(dentry, inode);
2099 out:
2100 return ret;
2101 }
2102
2103 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2104 {
2105 struct inode *inode = dentry->d_inode;
2106
2107 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2108 shmem_free_inode(inode->i_sb);
2109
2110 dir->i_size -= BOGO_DIRENT_SIZE;
2111 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2112 drop_nlink(inode);
2113 dput(dentry); /* Undo the count from "create" - this does all the work */
2114 return 0;
2115 }
2116
2117 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2118 {
2119 if (!simple_empty(dentry))
2120 return -ENOTEMPTY;
2121
2122 drop_nlink(dentry->d_inode);
2123 drop_nlink(dir);
2124 return shmem_unlink(dir, dentry);
2125 }
2126
2127 /*
2128 * The VFS layer already does all the dentry stuff for rename,
2129 * we just have to decrement the usage count for the target if
2130 * it exists so that the VFS layer correctly free's it when it
2131 * gets overwritten.
2132 */
2133 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2134 {
2135 struct inode *inode = old_dentry->d_inode;
2136 int they_are_dirs = S_ISDIR(inode->i_mode);
2137
2138 if (!simple_empty(new_dentry))
2139 return -ENOTEMPTY;
2140
2141 if (new_dentry->d_inode) {
2142 (void) shmem_unlink(new_dir, new_dentry);
2143 if (they_are_dirs) {
2144 drop_nlink(new_dentry->d_inode);
2145 drop_nlink(old_dir);
2146 }
2147 } else if (they_are_dirs) {
2148 drop_nlink(old_dir);
2149 inc_nlink(new_dir);
2150 }
2151
2152 old_dir->i_size -= BOGO_DIRENT_SIZE;
2153 new_dir->i_size += BOGO_DIRENT_SIZE;
2154 old_dir->i_ctime = old_dir->i_mtime =
2155 new_dir->i_ctime = new_dir->i_mtime =
2156 inode->i_ctime = CURRENT_TIME;
2157 return 0;
2158 }
2159
2160 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2161 {
2162 int error;
2163 int len;
2164 struct inode *inode;
2165 struct page *page;
2166 char *kaddr;
2167 struct shmem_inode_info *info;
2168
2169 len = strlen(symname) + 1;
2170 if (len > PAGE_CACHE_SIZE)
2171 return -ENAMETOOLONG;
2172
2173 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE, 0);
2174 if (!inode)
2175 return -ENOSPC;
2176
2177 error = security_inode_init_security(inode, dir, &dentry->d_name,
2178 shmem_initxattrs, NULL);
2179 if (error) {
2180 if (error != -EOPNOTSUPP) {
2181 iput(inode);
2182 return error;
2183 }
2184 error = 0;
2185 }
2186
2187 info = SHMEM_I(inode);
2188 inode->i_size = len-1;
2189 if (len <= SHORT_SYMLINK_LEN) {
2190 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2191 if (!info->symlink) {
2192 iput(inode);
2193 return -ENOMEM;
2194 }
2195 inode->i_op = &shmem_short_symlink_operations;
2196 } else {
2197 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2198 if (error) {
2199 iput(inode);
2200 return error;
2201 }
2202 inode->i_mapping->a_ops = &shmem_aops;
2203 inode->i_op = &shmem_symlink_inode_operations;
2204 kaddr = kmap_atomic(page);
2205 memcpy(kaddr, symname, len);
2206 kunmap_atomic(kaddr);
2207 SetPageUptodate(page);
2208 set_page_dirty(page);
2209 unlock_page(page);
2210 page_cache_release(page);
2211 }
2212 dir->i_size += BOGO_DIRENT_SIZE;
2213 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2214 d_instantiate(dentry, inode);
2215 dget(dentry);
2216 return 0;
2217 }
2218
2219 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2220 {
2221 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2222 return NULL;
2223 }
2224
2225 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2226 {
2227 struct page *page = NULL;
2228 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2229 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2230 if (page)
2231 unlock_page(page);
2232 return page;
2233 }
2234
2235 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2236 {
2237 if (!IS_ERR(nd_get_link(nd))) {
2238 struct page *page = cookie;
2239 kunmap(page);
2240 mark_page_accessed(page);
2241 page_cache_release(page);
2242 }
2243 }
2244
2245 #ifdef CONFIG_TMPFS_XATTR
2246 /*
2247 * Superblocks without xattr inode operations may get some security.* xattr
2248 * support from the LSM "for free". As soon as we have any other xattrs
2249 * like ACLs, we also need to implement the security.* handlers at
2250 * filesystem level, though.
2251 */
2252
2253 /*
2254 * Callback for security_inode_init_security() for acquiring xattrs.
2255 */
2256 static int shmem_initxattrs(struct inode *inode,
2257 const struct xattr *xattr_array,
2258 void *fs_info)
2259 {
2260 struct shmem_inode_info *info = SHMEM_I(inode);
2261 const struct xattr *xattr;
2262 struct simple_xattr *new_xattr;
2263 size_t len;
2264
2265 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2266 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2267 if (!new_xattr)
2268 return -ENOMEM;
2269
2270 len = strlen(xattr->name) + 1;
2271 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2272 GFP_KERNEL);
2273 if (!new_xattr->name) {
2274 kfree(new_xattr);
2275 return -ENOMEM;
2276 }
2277
2278 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2279 XATTR_SECURITY_PREFIX_LEN);
2280 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2281 xattr->name, len);
2282
2283 simple_xattr_list_add(&info->xattrs, new_xattr);
2284 }
2285
2286 return 0;
2287 }
2288
2289 static const struct xattr_handler *shmem_xattr_handlers[] = {
2290 #ifdef CONFIG_TMPFS_POSIX_ACL
2291 &generic_acl_access_handler,
2292 &generic_acl_default_handler,
2293 #endif
2294 NULL
2295 };
2296
2297 static int shmem_xattr_validate(const char *name)
2298 {
2299 struct { const char *prefix; size_t len; } arr[] = {
2300 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2301 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2302 };
2303 int i;
2304
2305 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2306 size_t preflen = arr[i].len;
2307 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2308 if (!name[preflen])
2309 return -EINVAL;
2310 return 0;
2311 }
2312 }
2313 return -EOPNOTSUPP;
2314 }
2315
2316 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2317 void *buffer, size_t size)
2318 {
2319 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2320 int err;
2321
2322 /*
2323 * If this is a request for a synthetic attribute in the system.*
2324 * namespace use the generic infrastructure to resolve a handler
2325 * for it via sb->s_xattr.
2326 */
2327 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2328 return generic_getxattr(dentry, name, buffer, size);
2329
2330 err = shmem_xattr_validate(name);
2331 if (err)
2332 return err;
2333
2334 return simple_xattr_get(&info->xattrs, name, buffer, size);
2335 }
2336
2337 static int shmem_setxattr(struct dentry *dentry, const char *name,
2338 const void *value, size_t size, int flags)
2339 {
2340 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2341 int err;
2342
2343 /*
2344 * If this is a request for a synthetic attribute in the system.*
2345 * namespace use the generic infrastructure to resolve a handler
2346 * for it via sb->s_xattr.
2347 */
2348 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2349 return generic_setxattr(dentry, name, value, size, flags);
2350
2351 err = shmem_xattr_validate(name);
2352 if (err)
2353 return err;
2354
2355 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2356 }
2357
2358 static int shmem_removexattr(struct dentry *dentry, const char *name)
2359 {
2360 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2361 int err;
2362
2363 /*
2364 * If this is a request for a synthetic attribute in the system.*
2365 * namespace use the generic infrastructure to resolve a handler
2366 * for it via sb->s_xattr.
2367 */
2368 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2369 return generic_removexattr(dentry, name);
2370
2371 err = shmem_xattr_validate(name);
2372 if (err)
2373 return err;
2374
2375 return simple_xattr_remove(&info->xattrs, name);
2376 }
2377
2378 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2379 {
2380 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2381 return simple_xattr_list(&info->xattrs, buffer, size);
2382 }
2383 #endif /* CONFIG_TMPFS_XATTR */
2384
2385 static const struct inode_operations shmem_short_symlink_operations = {
2386 .readlink = generic_readlink,
2387 .follow_link = shmem_follow_short_symlink,
2388 #ifdef CONFIG_TMPFS_XATTR
2389 .setxattr = shmem_setxattr,
2390 .getxattr = shmem_getxattr,
2391 .listxattr = shmem_listxattr,
2392 .removexattr = shmem_removexattr,
2393 #endif
2394 };
2395
2396 static const struct inode_operations shmem_symlink_inode_operations = {
2397 .readlink = generic_readlink,
2398 .follow_link = shmem_follow_link,
2399 .put_link = shmem_put_link,
2400 #ifdef CONFIG_TMPFS_XATTR
2401 .setxattr = shmem_setxattr,
2402 .getxattr = shmem_getxattr,
2403 .listxattr = shmem_listxattr,
2404 .removexattr = shmem_removexattr,
2405 #endif
2406 };
2407
2408 static struct dentry *shmem_get_parent(struct dentry *child)
2409 {
2410 return ERR_PTR(-ESTALE);
2411 }
2412
2413 static int shmem_match(struct inode *ino, void *vfh)
2414 {
2415 __u32 *fh = vfh;
2416 __u64 inum = fh[2];
2417 inum = (inum << 32) | fh[1];
2418 return ino->i_ino == inum && fh[0] == ino->i_generation;
2419 }
2420
2421 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2422 struct fid *fid, int fh_len, int fh_type)
2423 {
2424 struct inode *inode;
2425 struct dentry *dentry = NULL;
2426 u64 inum;
2427
2428 if (fh_len < 3)
2429 return NULL;
2430
2431 inum = fid->raw[2];
2432 inum = (inum << 32) | fid->raw[1];
2433
2434 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2435 shmem_match, fid->raw);
2436 if (inode) {
2437 dentry = d_find_alias(inode);
2438 iput(inode);
2439 }
2440
2441 return dentry;
2442 }
2443
2444 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2445 struct inode *parent)
2446 {
2447 if (*len < 3) {
2448 *len = 3;
2449 return FILEID_INVALID;
2450 }
2451
2452 if (inode_unhashed(inode)) {
2453 /* Unfortunately insert_inode_hash is not idempotent,
2454 * so as we hash inodes here rather than at creation
2455 * time, we need a lock to ensure we only try
2456 * to do it once
2457 */
2458 static DEFINE_SPINLOCK(lock);
2459 spin_lock(&lock);
2460 if (inode_unhashed(inode))
2461 __insert_inode_hash(inode,
2462 inode->i_ino + inode->i_generation);
2463 spin_unlock(&lock);
2464 }
2465
2466 fh[0] = inode->i_generation;
2467 fh[1] = inode->i_ino;
2468 fh[2] = ((__u64)inode->i_ino) >> 32;
2469
2470 *len = 3;
2471 return 1;
2472 }
2473
2474 static const struct export_operations shmem_export_ops = {
2475 .get_parent = shmem_get_parent,
2476 .encode_fh = shmem_encode_fh,
2477 .fh_to_dentry = shmem_fh_to_dentry,
2478 };
2479
2480 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2481 bool remount)
2482 {
2483 char *this_char, *value, *rest;
2484 struct mempolicy *mpol = NULL;
2485 uid_t uid;
2486 gid_t gid;
2487
2488 while (options != NULL) {
2489 this_char = options;
2490 for (;;) {
2491 /*
2492 * NUL-terminate this option: unfortunately,
2493 * mount options form a comma-separated list,
2494 * but mpol's nodelist may also contain commas.
2495 */
2496 options = strchr(options, ',');
2497 if (options == NULL)
2498 break;
2499 options++;
2500 if (!isdigit(*options)) {
2501 options[-1] = '\0';
2502 break;
2503 }
2504 }
2505 if (!*this_char)
2506 continue;
2507 if ((value = strchr(this_char,'=')) != NULL) {
2508 *value++ = 0;
2509 } else {
2510 printk(KERN_ERR
2511 "tmpfs: No value for mount option '%s'\n",
2512 this_char);
2513 goto error;
2514 }
2515
2516 if (!strcmp(this_char,"size")) {
2517 unsigned long long size;
2518 size = memparse(value,&rest);
2519 if (*rest == '%') {
2520 size <<= PAGE_SHIFT;
2521 size *= totalram_pages;
2522 do_div(size, 100);
2523 rest++;
2524 }
2525 if (*rest)
2526 goto bad_val;
2527 sbinfo->max_blocks =
2528 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2529 } else if (!strcmp(this_char,"nr_blocks")) {
2530 sbinfo->max_blocks = memparse(value, &rest);
2531 if (*rest)
2532 goto bad_val;
2533 } else if (!strcmp(this_char,"nr_inodes")) {
2534 sbinfo->max_inodes = memparse(value, &rest);
2535 if (*rest)
2536 goto bad_val;
2537 } else if (!strcmp(this_char,"mode")) {
2538 if (remount)
2539 continue;
2540 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2541 if (*rest)
2542 goto bad_val;
2543 } else if (!strcmp(this_char,"uid")) {
2544 if (remount)
2545 continue;
2546 uid = simple_strtoul(value, &rest, 0);
2547 if (*rest)
2548 goto bad_val;
2549 sbinfo->uid = make_kuid(current_user_ns(), uid);
2550 if (!uid_valid(sbinfo->uid))
2551 goto bad_val;
2552 } else if (!strcmp(this_char,"gid")) {
2553 if (remount)
2554 continue;
2555 gid = simple_strtoul(value, &rest, 0);
2556 if (*rest)
2557 goto bad_val;
2558 sbinfo->gid = make_kgid(current_user_ns(), gid);
2559 if (!gid_valid(sbinfo->gid))
2560 goto bad_val;
2561 } else if (!strcmp(this_char,"mpol")) {
2562 mpol_put(mpol);
2563 mpol = NULL;
2564 if (mpol_parse_str(value, &mpol))
2565 goto bad_val;
2566 } else {
2567 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2568 this_char);
2569 goto error;
2570 }
2571 }
2572 sbinfo->mpol = mpol;
2573 return 0;
2574
2575 bad_val:
2576 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2577 value, this_char);
2578 error:
2579 mpol_put(mpol);
2580 return 1;
2581
2582 }
2583
2584 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2585 {
2586 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2587 struct shmem_sb_info config = *sbinfo;
2588 unsigned long inodes;
2589 int error = -EINVAL;
2590
2591 config.mpol = NULL;
2592 if (shmem_parse_options(data, &config, true))
2593 return error;
2594
2595 spin_lock(&sbinfo->stat_lock);
2596 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2597 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2598 goto out;
2599 if (config.max_inodes < inodes)
2600 goto out;
2601 /*
2602 * Those tests disallow limited->unlimited while any are in use;
2603 * but we must separately disallow unlimited->limited, because
2604 * in that case we have no record of how much is already in use.
2605 */
2606 if (config.max_blocks && !sbinfo->max_blocks)
2607 goto out;
2608 if (config.max_inodes && !sbinfo->max_inodes)
2609 goto out;
2610
2611 error = 0;
2612 sbinfo->max_blocks = config.max_blocks;
2613 sbinfo->max_inodes = config.max_inodes;
2614 sbinfo->free_inodes = config.max_inodes - inodes;
2615
2616 /*
2617 * Preserve previous mempolicy unless mpol remount option was specified.
2618 */
2619 if (config.mpol) {
2620 mpol_put(sbinfo->mpol);
2621 sbinfo->mpol = config.mpol; /* transfers initial ref */
2622 }
2623 out:
2624 spin_unlock(&sbinfo->stat_lock);
2625 return error;
2626 }
2627
2628 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2629 {
2630 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2631
2632 if (sbinfo->max_blocks != shmem_default_max_blocks())
2633 seq_printf(seq, ",size=%luk",
2634 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2635 if (sbinfo->max_inodes != shmem_default_max_inodes())
2636 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2637 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2638 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2639 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2640 seq_printf(seq, ",uid=%u",
2641 from_kuid_munged(&init_user_ns, sbinfo->uid));
2642 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2643 seq_printf(seq, ",gid=%u",
2644 from_kgid_munged(&init_user_ns, sbinfo->gid));
2645 shmem_show_mpol(seq, sbinfo->mpol);
2646 return 0;
2647 }
2648 #endif /* CONFIG_TMPFS */
2649
2650 static void shmem_put_super(struct super_block *sb)
2651 {
2652 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2653
2654 percpu_counter_destroy(&sbinfo->used_blocks);
2655 mpol_put(sbinfo->mpol);
2656 kfree(sbinfo);
2657 sb->s_fs_info = NULL;
2658 }
2659
2660 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2661 {
2662 struct inode *inode;
2663 struct shmem_sb_info *sbinfo;
2664 int err = -ENOMEM;
2665
2666 /* Round up to L1_CACHE_BYTES to resist false sharing */
2667 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2668 L1_CACHE_BYTES), GFP_KERNEL);
2669 if (!sbinfo)
2670 return -ENOMEM;
2671
2672 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2673 sbinfo->uid = current_fsuid();
2674 sbinfo->gid = current_fsgid();
2675 sb->s_fs_info = sbinfo;
2676
2677 #ifdef CONFIG_TMPFS
2678 /*
2679 * Per default we only allow half of the physical ram per
2680 * tmpfs instance, limiting inodes to one per page of lowmem;
2681 * but the internal instance is left unlimited.
2682 */
2683 if (!(sb->s_flags & MS_NOUSER)) {
2684 sbinfo->max_blocks = shmem_default_max_blocks();
2685 sbinfo->max_inodes = shmem_default_max_inodes();
2686 if (shmem_parse_options(data, sbinfo, false)) {
2687 err = -EINVAL;
2688 goto failed;
2689 }
2690 }
2691 sb->s_export_op = &shmem_export_ops;
2692 sb->s_flags |= MS_NOSEC;
2693 #else
2694 sb->s_flags |= MS_NOUSER;
2695 #endif
2696
2697 spin_lock_init(&sbinfo->stat_lock);
2698 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2699 goto failed;
2700 sbinfo->free_inodes = sbinfo->max_inodes;
2701
2702 sb->s_maxbytes = MAX_LFS_FILESIZE;
2703 sb->s_blocksize = PAGE_CACHE_SIZE;
2704 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2705 sb->s_magic = TMPFS_MAGIC;
2706 sb->s_op = &shmem_ops;
2707 sb->s_time_gran = 1;
2708 #ifdef CONFIG_TMPFS_XATTR
2709 sb->s_xattr = shmem_xattr_handlers;
2710 #endif
2711 #ifdef CONFIG_TMPFS_POSIX_ACL
2712 sb->s_flags |= MS_POSIXACL;
2713 #endif
2714
2715 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE, 0);
2716 if (!inode)
2717 goto failed;
2718 inode->i_uid = sbinfo->uid;
2719 inode->i_gid = sbinfo->gid;
2720 sb->s_root = d_make_root(inode);
2721 if (!sb->s_root)
2722 goto failed;
2723 return 0;
2724
2725 failed:
2726 shmem_put_super(sb);
2727 return err;
2728 }
2729
2730 static struct kmem_cache *shmem_inode_cachep;
2731
2732 static struct inode *shmem_alloc_inode(struct super_block *sb)
2733 {
2734 struct shmem_inode_info *info;
2735 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2736 if (!info)
2737 return NULL;
2738 return &info->vfs_inode;
2739 }
2740
2741 static void shmem_destroy_callback(struct rcu_head *head)
2742 {
2743 struct inode *inode = container_of(head, struct inode, i_rcu);
2744 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2745 }
2746
2747 static void shmem_destroy_inode(struct inode *inode)
2748 {
2749 if (S_ISREG(inode->i_mode))
2750 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2751 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2752 }
2753
2754 static void shmem_init_inode(void *foo)
2755 {
2756 struct shmem_inode_info *info = foo;
2757 inode_init_once(&info->vfs_inode);
2758 }
2759
2760 static int shmem_init_inodecache(void)
2761 {
2762 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2763 sizeof(struct shmem_inode_info),
2764 0, SLAB_PANIC, shmem_init_inode);
2765 return 0;
2766 }
2767
2768 static void shmem_destroy_inodecache(void)
2769 {
2770 kmem_cache_destroy(shmem_inode_cachep);
2771 }
2772
2773 static const struct address_space_operations shmem_aops = {
2774 .writepage = shmem_writepage,
2775 .set_page_dirty = __set_page_dirty_no_writeback,
2776 #ifdef CONFIG_TMPFS
2777 .write_begin = shmem_write_begin,
2778 .write_end = shmem_write_end,
2779 #endif
2780 .migratepage = migrate_page,
2781 .error_remove_page = generic_error_remove_page,
2782 };
2783
2784 static const struct file_operations shmem_file_operations = {
2785 .mmap = shmem_mmap,
2786 #ifdef CONFIG_TMPFS
2787 .llseek = shmem_file_llseek,
2788 .read = do_sync_read,
2789 .write = do_sync_write,
2790 .aio_read = shmem_file_aio_read,
2791 .aio_write = generic_file_aio_write,
2792 .fsync = noop_fsync,
2793 .splice_read = shmem_file_splice_read,
2794 .splice_write = generic_file_splice_write,
2795 .fallocate = shmem_fallocate,
2796 #endif
2797 };
2798
2799 static const struct inode_operations shmem_inode_operations = {
2800 .setattr = shmem_setattr,
2801 #ifdef CONFIG_TMPFS_XATTR
2802 .setxattr = shmem_setxattr,
2803 .getxattr = shmem_getxattr,
2804 .listxattr = shmem_listxattr,
2805 .removexattr = shmem_removexattr,
2806 #endif
2807 };
2808
2809 static const struct inode_operations shmem_dir_inode_operations = {
2810 #ifdef CONFIG_TMPFS
2811 .create = shmem_create,
2812 .lookup = simple_lookup,
2813 .link = shmem_link,
2814 .unlink = shmem_unlink,
2815 .symlink = shmem_symlink,
2816 .mkdir = shmem_mkdir,
2817 .rmdir = shmem_rmdir,
2818 .mknod = shmem_mknod,
2819 .rename = shmem_rename,
2820 #endif
2821 #ifdef CONFIG_TMPFS_XATTR
2822 .setxattr = shmem_setxattr,
2823 .getxattr = shmem_getxattr,
2824 .listxattr = shmem_listxattr,
2825 .removexattr = shmem_removexattr,
2826 #endif
2827 #ifdef CONFIG_TMPFS_POSIX_ACL
2828 .setattr = shmem_setattr,
2829 #endif
2830 };
2831
2832 static const struct inode_operations shmem_special_inode_operations = {
2833 #ifdef CONFIG_TMPFS_XATTR
2834 .setxattr = shmem_setxattr,
2835 .getxattr = shmem_getxattr,
2836 .listxattr = shmem_listxattr,
2837 .removexattr = shmem_removexattr,
2838 #endif
2839 #ifdef CONFIG_TMPFS_POSIX_ACL
2840 .setattr = shmem_setattr,
2841 #endif
2842 };
2843
2844 static const struct super_operations shmem_ops = {
2845 .alloc_inode = shmem_alloc_inode,
2846 .destroy_inode = shmem_destroy_inode,
2847 #ifdef CONFIG_TMPFS
2848 .statfs = shmem_statfs,
2849 .remount_fs = shmem_remount_fs,
2850 .show_options = shmem_show_options,
2851 #endif
2852 .evict_inode = shmem_evict_inode,
2853 .drop_inode = generic_delete_inode,
2854 .put_super = shmem_put_super,
2855 };
2856
2857 static const struct vm_operations_struct shmem_vm_ops = {
2858 .fault = shmem_fault,
2859 #ifdef CONFIG_NUMA
2860 .set_policy = shmem_set_policy,
2861 .get_policy = shmem_get_policy,
2862 #endif
2863 .remap_pages = generic_file_remap_pages,
2864 };
2865
2866 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2867 int flags, const char *dev_name, void *data)
2868 {
2869 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2870 }
2871
2872 static struct file_system_type shmem_fs_type = {
2873 .owner = THIS_MODULE,
2874 .name = "tmpfs",
2875 .mount = shmem_mount,
2876 .kill_sb = kill_litter_super,
2877 .fs_flags = FS_USERNS_MOUNT,
2878 };
2879
2880 int __init shmem_init(void)
2881 {
2882 int error;
2883
2884 error = bdi_init(&shmem_backing_dev_info);
2885 if (error)
2886 goto out4;
2887
2888 error = shmem_init_inodecache();
2889 if (error)
2890 goto out3;
2891
2892 error = register_filesystem(&shmem_fs_type);
2893 if (error) {
2894 printk(KERN_ERR "Could not register tmpfs\n");
2895 goto out2;
2896 }
2897
2898 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2899 shmem_fs_type.name, NULL);
2900 if (IS_ERR(shm_mnt)) {
2901 error = PTR_ERR(shm_mnt);
2902 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2903 goto out1;
2904 }
2905 return 0;
2906
2907 out1:
2908 unregister_filesystem(&shmem_fs_type);
2909 out2:
2910 shmem_destroy_inodecache();
2911 out3:
2912 bdi_destroy(&shmem_backing_dev_info);
2913 out4:
2914 shm_mnt = ERR_PTR(error);
2915 return error;
2916 }
2917
2918 #else /* !CONFIG_SHMEM */
2919
2920 /*
2921 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2922 *
2923 * This is intended for small system where the benefits of the full
2924 * shmem code (swap-backed and resource-limited) are outweighed by
2925 * their complexity. On systems without swap this code should be
2926 * effectively equivalent, but much lighter weight.
2927 */
2928
2929 static struct file_system_type shmem_fs_type = {
2930 .name = "tmpfs",
2931 .mount = ramfs_mount,
2932 .kill_sb = kill_litter_super,
2933 .fs_flags = FS_USERNS_MOUNT,
2934 };
2935
2936 int __init shmem_init(void)
2937 {
2938 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2939
2940 shm_mnt = kern_mount(&shmem_fs_type);
2941 BUG_ON(IS_ERR(shm_mnt));
2942
2943 return 0;
2944 }
2945
2946 int shmem_unuse(swp_entry_t swap, struct page *page)
2947 {
2948 return 0;
2949 }
2950
2951 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2952 {
2953 return 0;
2954 }
2955
2956 void shmem_unlock_mapping(struct address_space *mapping)
2957 {
2958 }
2959
2960 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2961 {
2962 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2963 }
2964 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2965
2966 #define shmem_vm_ops generic_file_vm_ops
2967 #define shmem_file_operations ramfs_file_operations
2968 #define shmem_get_inode(sb, dir, mode, dev, flags, atomic_copy) ramfs_get_inode(sb, dir, mode, dev)
2969 #define shmem_acct_size(flags, size) 0
2970 #define shmem_unacct_size(flags, size) do {} while (0)
2971
2972 #endif /* CONFIG_SHMEM */
2973
2974 /* common code */
2975
2976 static struct dentry_operations anon_ops = {
2977 .d_dname = simple_dname
2978 };
2979
2980 /**
2981 * shmem_file_setup - get an unlinked file living in tmpfs
2982 * @name: name for dentry (to be seen in /proc/<pid>/maps
2983 * @size: size to be set for the file
2984 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2985 * @atomic_copy: Atomically copy the area when hibernating?
2986 */
2987 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags,
2988 int atomic_copy)
2989 {
2990 struct file *res;
2991 struct inode *inode;
2992 struct path path;
2993 struct super_block *sb;
2994 struct qstr this;
2995
2996 if (IS_ERR(shm_mnt))
2997 return ERR_CAST(shm_mnt);
2998
2999 if (size < 0 || size > MAX_LFS_FILESIZE)
3000 return ERR_PTR(-EINVAL);
3001
3002 if (shmem_acct_size(flags, size))
3003 return ERR_PTR(-ENOMEM);
3004
3005 res = ERR_PTR(-ENOMEM);
3006 this.name = name;
3007 this.len = strlen(name);
3008 this.hash = 0; /* will go */
3009 sb = shm_mnt->mnt_sb;
3010 path.dentry = d_alloc_pseudo(sb, &this);
3011 if (!path.dentry)
3012 goto put_memory;
3013 d_set_d_op(path.dentry, &anon_ops);
3014 path.mnt = mntget(shm_mnt);
3015
3016 res = ERR_PTR(-ENOSPC);
3017 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags, atomic_copy);
3018 if (!inode)
3019 goto put_dentry;
3020
3021 d_instantiate(path.dentry, inode);
3022 inode->i_size = size;
3023 clear_nlink(inode); /* It is unlinked */
3024 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3025 if (IS_ERR(res))
3026 goto put_dentry;
3027
3028 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3029 &shmem_file_operations);
3030 if (IS_ERR(res))
3031 goto put_dentry;
3032
3033 return res;
3034
3035 put_dentry:
3036 path_put(&path);
3037 put_memory:
3038 shmem_unacct_size(flags, size);
3039 return res;
3040 }
3041 EXPORT_SYMBOL_GPL(shmem_file_setup);
3042
3043 void shmem_set_file(struct vm_area_struct *vma, struct file *file)
3044 {
3045 if (vma->vm_file)
3046 fput(vma->vm_file);
3047 vma->vm_file = file;
3048 vma->vm_ops = &shmem_vm_ops;
3049 }
3050
3051 /**
3052 * shmem_zero_setup - setup a shared anonymous mapping
3053 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3054 */
3055 int shmem_zero_setup(struct vm_area_struct *vma)
3056 {
3057 struct file *file;
3058 loff_t size = vma->vm_end - vma->vm_start;
3059
3060 file = shmem_file_setup("dev/zero", size, vma->vm_flags, 0);
3061 if (IS_ERR(file))
3062 return PTR_ERR(file);
3063
3064 shmem_set_file(vma, file);
3065 return 0;
3066 }
3067
3068 /**
3069 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3070 * @mapping: the page's address_space
3071 * @index: the page index
3072 * @gfp: the page allocator flags to use if allocating
3073 *
3074 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3075 * with any new page allocations done using the specified allocation flags.
3076 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3077 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3078 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3079 *
3080 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3081 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3082 */
3083 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3084 pgoff_t index, gfp_t gfp)
3085 {
3086 #ifdef CONFIG_SHMEM
3087 struct inode *inode = mapping->host;
3088 struct page *page;
3089 int error;
3090
3091 BUG_ON(mapping->a_ops != &shmem_aops);
3092 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3093 if (error)
3094 page = ERR_PTR(error);
3095 else
3096 unlock_page(page);
3097 return page;
3098 #else
3099 /*
3100 * The tiny !SHMEM case uses ramfs without swap
3101 */
3102 return read_cache_page_gfp(mapping, index, gfp);
3103 #endif
3104 }
3105 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);