import PULS_20180308
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
43 */
44
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60
61 #include <asm/tlbflush.h>
62
63 #include "internal.h"
64
65 #define MUTEX_RETRY_COUNT (65536)
66 #define MUTEX_RETRY_RESCHED (1024)
67
68
69
70 static struct kmem_cache *anon_vma_cachep;
71 static struct kmem_cache *anon_vma_chain_cachep;
72
73 static inline struct anon_vma *anon_vma_alloc(void)
74 {
75 struct anon_vma *anon_vma;
76
77 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
78 if (anon_vma) {
79 atomic_set(&anon_vma->refcount, 1);
80 /*
81 * Initialise the anon_vma root to point to itself. If called
82 * from fork, the root will be reset to the parents anon_vma.
83 */
84 anon_vma->root = anon_vma;
85 }
86
87 return anon_vma;
88 }
89
90 static inline void anon_vma_free(struct anon_vma *anon_vma)
91 {
92 VM_BUG_ON(atomic_read(&anon_vma->refcount));
93
94 /*
95 * Synchronize against page_lock_anon_vma_read() such that
96 * we can safely hold the lock without the anon_vma getting
97 * freed.
98 *
99 * Relies on the full mb implied by the atomic_dec_and_test() from
100 * put_anon_vma() against the acquire barrier implied by
101 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
102 *
103 * page_lock_anon_vma_read() VS put_anon_vma()
104 * down_read_trylock() atomic_dec_and_test()
105 * LOCK MB
106 * atomic_read() rwsem_is_locked()
107 *
108 * LOCK should suffice since the actual taking of the lock must
109 * happen _before_ what follows.
110 */
111 might_sleep();
112 if (anon_vma->root && rwsem_is_locked(&anon_vma->root->rwsem)) {
113 anon_vma_lock_write(anon_vma);
114 anon_vma_unlock_write(anon_vma);
115 }
116
117 kmem_cache_free(anon_vma_cachep, anon_vma);
118 }
119
120 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
121 {
122 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
123 }
124
125 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
126 {
127 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
128 }
129
130 static void anon_vma_chain_link(struct vm_area_struct *vma,
131 struct anon_vma_chain *avc,
132 struct anon_vma *anon_vma)
133 {
134 avc->vma = vma;
135 avc->anon_vma = anon_vma;
136 list_add(&avc->same_vma, &vma->anon_vma_chain);
137 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
138 }
139
140 /**
141 * anon_vma_prepare - attach an anon_vma to a memory region
142 * @vma: the memory region in question
143 *
144 * This makes sure the memory mapping described by 'vma' has
145 * an 'anon_vma' attached to it, so that we can associate the
146 * anonymous pages mapped into it with that anon_vma.
147 *
148 * The common case will be that we already have one, but if
149 * not we either need to find an adjacent mapping that we
150 * can re-use the anon_vma from (very common when the only
151 * reason for splitting a vma has been mprotect()), or we
152 * allocate a new one.
153 *
154 * Anon-vma allocations are very subtle, because we may have
155 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
156 * and that may actually touch the spinlock even in the newly
157 * allocated vma (it depends on RCU to make sure that the
158 * anon_vma isn't actually destroyed).
159 *
160 * As a result, we need to do proper anon_vma locking even
161 * for the new allocation. At the same time, we do not want
162 * to do any locking for the common case of already having
163 * an anon_vma.
164 *
165 * This must be called with the mmap_sem held for reading.
166 */
167 int anon_vma_prepare(struct vm_area_struct *vma)
168 {
169 struct anon_vma *anon_vma = vma->anon_vma;
170 struct anon_vma_chain *avc;
171
172 might_sleep();
173 if (unlikely(!anon_vma)) {
174 struct mm_struct *mm = vma->vm_mm;
175 struct anon_vma *allocated;
176
177 avc = anon_vma_chain_alloc(GFP_KERNEL);
178 if (!avc)
179 goto out_enomem;
180
181 anon_vma = find_mergeable_anon_vma(vma);
182 allocated = NULL;
183 if (!anon_vma) {
184 anon_vma = anon_vma_alloc();
185 if (unlikely(!anon_vma))
186 goto out_enomem_free_avc;
187 allocated = anon_vma;
188 }
189
190 anon_vma_lock_write(anon_vma);
191 /* page_table_lock to protect against threads */
192 spin_lock(&mm->page_table_lock);
193 if (likely(!vma->anon_vma)) {
194 vma->anon_vma = anon_vma;
195 anon_vma_chain_link(vma, avc, anon_vma);
196 allocated = NULL;
197 avc = NULL;
198 }
199 spin_unlock(&mm->page_table_lock);
200 anon_vma_unlock_write(anon_vma);
201
202 if (unlikely(allocated))
203 put_anon_vma(allocated);
204 if (unlikely(avc))
205 anon_vma_chain_free(avc);
206 }
207 return 0;
208
209 out_enomem_free_avc:
210 anon_vma_chain_free(avc);
211 out_enomem:
212 return -ENOMEM;
213 }
214
215 /*
216 * This is a useful helper function for locking the anon_vma root as
217 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
218 * have the same vma.
219 *
220 * Such anon_vma's should have the same root, so you'd expect to see
221 * just a single mutex_lock for the whole traversal.
222 */
223 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
224 {
225 struct anon_vma *new_root = anon_vma->root;
226 if (new_root != root) {
227 if (WARN_ON_ONCE(root))
228 up_write(&root->rwsem);
229 root = new_root;
230 down_write(&root->rwsem);
231 }
232 return root;
233 }
234
235 static inline void unlock_anon_vma_root(struct anon_vma *root)
236 {
237 if (root)
238 up_write(&root->rwsem);
239 }
240
241 /*
242 * Attach the anon_vmas from src to dst.
243 * Returns 0 on success, -ENOMEM on failure.
244 */
245 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
246 {
247 struct anon_vma_chain *avc, *pavc;
248 struct anon_vma *root = NULL;
249
250 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
251 struct anon_vma *anon_vma;
252
253 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
254 if (unlikely(!avc)) {
255 unlock_anon_vma_root(root);
256 root = NULL;
257 avc = anon_vma_chain_alloc(GFP_KERNEL);
258 if (!avc)
259 goto enomem_failure;
260 }
261 anon_vma = pavc->anon_vma;
262 root = lock_anon_vma_root(root, anon_vma);
263 anon_vma_chain_link(dst, avc, anon_vma);
264 }
265 unlock_anon_vma_root(root);
266 return 0;
267
268 enomem_failure:
269 unlink_anon_vmas(dst);
270 return -ENOMEM;
271 }
272
273 /*
274 * Attach vma to its own anon_vma, as well as to the anon_vmas that
275 * the corresponding VMA in the parent process is attached to.
276 * Returns 0 on success, non-zero on failure.
277 */
278 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
279 {
280 struct anon_vma_chain *avc;
281 struct anon_vma *anon_vma;
282
283 /* Don't bother if the parent process has no anon_vma here. */
284 if (!pvma->anon_vma)
285 return 0;
286
287 /*
288 * First, attach the new VMA to the parent VMA's anon_vmas,
289 * so rmap can find non-COWed pages in child processes.
290 */
291 if (anon_vma_clone(vma, pvma))
292 return -ENOMEM;
293
294 /* Then add our own anon_vma. */
295 anon_vma = anon_vma_alloc();
296 if (!anon_vma)
297 goto out_error;
298 avc = anon_vma_chain_alloc(GFP_KERNEL);
299 if (!avc)
300 goto out_error_free_anon_vma;
301
302 /*
303 * The root anon_vma's spinlock is the lock actually used when we
304 * lock any of the anon_vmas in this anon_vma tree.
305 */
306 anon_vma->root = pvma->anon_vma->root;
307 /*
308 * With refcounts, an anon_vma can stay around longer than the
309 * process it belongs to. The root anon_vma needs to be pinned until
310 * this anon_vma is freed, because the lock lives in the root.
311 */
312 get_anon_vma(anon_vma->root);
313 /* Mark this anon_vma as the one where our new (COWed) pages go. */
314 vma->anon_vma = anon_vma;
315 anon_vma_lock_write(anon_vma);
316 anon_vma_chain_link(vma, avc, anon_vma);
317 anon_vma_unlock_write(anon_vma);
318
319 return 0;
320
321 out_error_free_anon_vma:
322 put_anon_vma(anon_vma);
323 out_error:
324 unlink_anon_vmas(vma);
325 return -ENOMEM;
326 }
327
328 void unlink_anon_vmas(struct vm_area_struct *vma)
329 {
330 struct anon_vma_chain *avc, *next;
331 struct anon_vma *root = NULL;
332
333 /*
334 * Unlink each anon_vma chained to the VMA. This list is ordered
335 * from newest to oldest, ensuring the root anon_vma gets freed last.
336 */
337 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
338 struct anon_vma *anon_vma = avc->anon_vma;
339
340 root = lock_anon_vma_root(root, anon_vma);
341 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
342
343 /*
344 * Leave empty anon_vmas on the list - we'll need
345 * to free them outside the lock.
346 */
347 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
348 continue;
349
350 list_del(&avc->same_vma);
351 anon_vma_chain_free(avc);
352 }
353 unlock_anon_vma_root(root);
354
355 /*
356 * Iterate the list once more, it now only contains empty and unlinked
357 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
358 * needing to write-acquire the anon_vma->root->rwsem.
359 */
360 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
361 struct anon_vma *anon_vma = avc->anon_vma;
362
363 put_anon_vma(anon_vma);
364
365 list_del(&avc->same_vma);
366 anon_vma_chain_free(avc);
367 }
368 }
369
370 static void anon_vma_ctor(void *data)
371 {
372 struct anon_vma *anon_vma = data;
373
374 init_rwsem(&anon_vma->rwsem);
375 atomic_set(&anon_vma->refcount, 0);
376 anon_vma->rb_root = RB_ROOT;
377 }
378
379 void __init anon_vma_init(void)
380 {
381 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
382 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
383 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
384 }
385
386 /*
387 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
388 *
389 * Since there is no serialization what so ever against page_remove_rmap()
390 * the best this function can do is return a locked anon_vma that might
391 * have been relevant to this page.
392 *
393 * The page might have been remapped to a different anon_vma or the anon_vma
394 * returned may already be freed (and even reused).
395 *
396 * In case it was remapped to a different anon_vma, the new anon_vma will be a
397 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
398 * ensure that any anon_vma obtained from the page will still be valid for as
399 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
400 *
401 * All users of this function must be very careful when walking the anon_vma
402 * chain and verify that the page in question is indeed mapped in it
403 * [ something equivalent to page_mapped_in_vma() ].
404 *
405 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
406 * that the anon_vma pointer from page->mapping is valid if there is a
407 * mapcount, we can dereference the anon_vma after observing those.
408 */
409 struct anon_vma *page_get_anon_vma(struct page *page)
410 {
411 struct anon_vma *anon_vma = NULL;
412 unsigned long anon_mapping;
413
414 rcu_read_lock();
415 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
416 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
417 goto out;
418 if (!page_mapped(page))
419 goto out;
420
421 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
422 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
423 anon_vma = NULL;
424 goto out;
425 }
426
427 /*
428 * If this page is still mapped, then its anon_vma cannot have been
429 * freed. But if it has been unmapped, we have no security against the
430 * anon_vma structure being freed and reused (for another anon_vma:
431 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
432 * above cannot corrupt).
433 */
434 if (!page_mapped(page)) {
435 rcu_read_unlock();
436 put_anon_vma(anon_vma);
437 return NULL;
438 }
439 out:
440 rcu_read_unlock();
441
442 return anon_vma;
443 }
444
445 /*
446 * Similar to page_get_anon_vma() except it locks the anon_vma.
447 *
448 * Its a little more complex as it tries to keep the fast path to a single
449 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
450 * reference like with page_get_anon_vma() and then block on the mutex.
451 */
452 struct anon_vma *page_lock_anon_vma_read(struct page *page)
453 {
454 struct anon_vma *anon_vma = NULL;
455 struct anon_vma *root_anon_vma;
456 unsigned long anon_mapping;
457
458 rcu_read_lock();
459 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
460 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
461 goto out;
462 if (!page_mapped(page))
463 goto out;
464
465 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
466 root_anon_vma = ACCESS_ONCE(anon_vma->root);
467 if (down_read_trylock(&root_anon_vma->rwsem)) {
468 /*
469 * If the page is still mapped, then this anon_vma is still
470 * its anon_vma, and holding the mutex ensures that it will
471 * not go away, see anon_vma_free().
472 */
473 if (!page_mapped(page)) {
474 up_read(&root_anon_vma->rwsem);
475 anon_vma = NULL;
476 }
477 goto out;
478 }
479
480 /* trylock failed, we got to sleep */
481 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
482 anon_vma = NULL;
483 goto out;
484 }
485
486 if (!page_mapped(page)) {
487 rcu_read_unlock();
488 put_anon_vma(anon_vma);
489 return NULL;
490 }
491
492 /* we pinned the anon_vma, its safe to sleep */
493 rcu_read_unlock();
494 anon_vma_lock_read(anon_vma);
495
496 if (atomic_dec_and_test(&anon_vma->refcount)) {
497 /*
498 * Oops, we held the last refcount, release the lock
499 * and bail -- can't simply use put_anon_vma() because
500 * we'll deadlock on the anon_vma_lock_write() recursion.
501 */
502 anon_vma_unlock_read(anon_vma);
503 __put_anon_vma(anon_vma);
504 anon_vma = NULL;
505 }
506
507 return anon_vma;
508
509 out:
510 rcu_read_unlock();
511 return anon_vma;
512 }
513
514 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
515 {
516 anon_vma_unlock_read(anon_vma);
517 }
518
519 /*
520 * At what user virtual address is page expected in @vma?
521 */
522 static inline unsigned long
523 __vma_address(struct page *page, struct vm_area_struct *vma)
524 {
525 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
526
527 if (unlikely(is_vm_hugetlb_page(vma)))
528 pgoff = page->index << huge_page_order(page_hstate(page));
529
530 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
531 }
532
533 inline unsigned long
534 vma_address(struct page *page, struct vm_area_struct *vma)
535 {
536 unsigned long address = __vma_address(page, vma);
537
538 /* page should be within @vma mapping range */
539 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
540
541 return address;
542 }
543
544 /*
545 * At what user virtual address is page expected in vma?
546 * Caller should check the page is actually part of the vma.
547 */
548 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
549 {
550 unsigned long address;
551 if (PageAnon(page)) {
552 struct anon_vma *page__anon_vma = page_anon_vma(page);
553 /*
554 * Note: swapoff's unuse_vma() is more efficient with this
555 * check, and needs it to match anon_vma when KSM is active.
556 */
557 if (!vma->anon_vma || !page__anon_vma ||
558 vma->anon_vma->root != page__anon_vma->root)
559 return -EFAULT;
560 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
561 if (!vma->vm_file ||
562 vma->vm_file->f_mapping != page->mapping)
563 return -EFAULT;
564 } else
565 return -EFAULT;
566 address = __vma_address(page, vma);
567 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
568 return -EFAULT;
569 return address;
570 }
571
572 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
573 {
574 pgd_t *pgd;
575 pud_t *pud;
576 pmd_t *pmd = NULL;
577
578 pgd = pgd_offset(mm, address);
579 if (!pgd_present(*pgd))
580 goto out;
581
582 pud = pud_offset(pgd, address);
583 if (!pud_present(*pud))
584 goto out;
585
586 pmd = pmd_offset(pud, address);
587 if (!pmd_present(*pmd))
588 pmd = NULL;
589 out:
590 return pmd;
591 }
592
593 /*
594 * Check that @page is mapped at @address into @mm.
595 *
596 * If @sync is false, page_check_address may perform a racy check to avoid
597 * the page table lock when the pte is not present (helpful when reclaiming
598 * highly shared pages).
599 *
600 * On success returns with pte mapped and locked.
601 */
602 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
603 unsigned long address, spinlock_t **ptlp, int sync)
604 {
605 pmd_t *pmd;
606 pte_t *pte;
607 spinlock_t *ptl;
608
609 if (unlikely(PageHuge(page))) {
610 /* when pud is not present, pte will be NULL */
611 pte = huge_pte_offset(mm, address);
612 if (!pte)
613 return NULL;
614
615 ptl = &mm->page_table_lock;
616 goto check;
617 }
618
619 pmd = mm_find_pmd(mm, address);
620 if (!pmd)
621 return NULL;
622
623 if (pmd_trans_huge(*pmd))
624 return NULL;
625
626 pte = pte_offset_map(pmd, address);
627 /* Make a quick check before getting the lock */
628 if (!sync && !pte_present(*pte)) {
629 pte_unmap(pte);
630 return NULL;
631 }
632
633 ptl = pte_lockptr(mm, pmd);
634 check:
635 spin_lock(ptl);
636 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
637 *ptlp = ptl;
638 return pte;
639 }
640 pte_unmap_unlock(pte, ptl);
641 return NULL;
642 }
643
644 /**
645 * page_mapped_in_vma - check whether a page is really mapped in a VMA
646 * @page: the page to test
647 * @vma: the VMA to test
648 *
649 * Returns 1 if the page is mapped into the page tables of the VMA, 0
650 * if the page is not mapped into the page tables of this VMA. Only
651 * valid for normal file or anonymous VMAs.
652 */
653 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
654 {
655 unsigned long address;
656 pte_t *pte;
657 spinlock_t *ptl;
658
659 address = __vma_address(page, vma);
660 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
661 return 0;
662 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
663 if (!pte) /* the page is not in this mm */
664 return 0;
665 pte_unmap_unlock(pte, ptl);
666
667 return 1;
668 }
669
670 /*
671 * Subfunctions of page_referenced: page_referenced_one called
672 * repeatedly from either page_referenced_anon or page_referenced_file.
673 */
674 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
675 unsigned long address, unsigned int *mapcount,
676 unsigned long *vm_flags)
677 {
678 struct mm_struct *mm = vma->vm_mm;
679 int referenced = 0;
680
681 if (unlikely(PageTransHuge(page))) {
682 pmd_t *pmd;
683
684 spin_lock(&mm->page_table_lock);
685 /*
686 * rmap might return false positives; we must filter
687 * these out using page_check_address_pmd().
688 */
689 pmd = page_check_address_pmd(page, mm, address,
690 PAGE_CHECK_ADDRESS_PMD_FLAG);
691 if (!pmd) {
692 spin_unlock(&mm->page_table_lock);
693 goto out;
694 }
695
696 if (vma->vm_flags & VM_LOCKED) {
697 spin_unlock(&mm->page_table_lock);
698 *mapcount = 0; /* break early from loop */
699 *vm_flags |= VM_LOCKED;
700 goto out;
701 }
702
703 /* go ahead even if the pmd is pmd_trans_splitting() */
704 if (pmdp_clear_flush_young_notify(vma, address, pmd))
705 referenced++;
706 spin_unlock(&mm->page_table_lock);
707 } else {
708 pte_t *pte;
709 spinlock_t *ptl;
710
711 /*
712 * rmap might return false positives; we must filter
713 * these out using page_check_address().
714 */
715 pte = page_check_address(page, mm, address, &ptl, 0);
716 if (!pte)
717 goto out;
718
719 if (vma->vm_flags & VM_LOCKED) {
720 pte_unmap_unlock(pte, ptl);
721 *mapcount = 0; /* break early from loop */
722 *vm_flags |= VM_LOCKED;
723 goto out;
724 }
725
726 if (ptep_clear_flush_young_notify(vma, address, pte)) {
727 /*
728 * Don't treat a reference through a sequentially read
729 * mapping as such. If the page has been used in
730 * another mapping, we will catch it; if this other
731 * mapping is already gone, the unmap path will have
732 * set PG_referenced or activated the page.
733 */
734 if (likely(!VM_SequentialReadHint(vma)))
735 referenced++;
736 }
737 pte_unmap_unlock(pte, ptl);
738 }
739
740 (*mapcount)--;
741
742 if (referenced)
743 *vm_flags |= vma->vm_flags;
744 out:
745 return referenced;
746 }
747
748 static int page_referenced_anon(struct page *page,
749 struct mem_cgroup *memcg,
750 unsigned long *vm_flags)
751 {
752 unsigned int mapcount;
753 struct anon_vma *anon_vma;
754 pgoff_t pgoff;
755 struct anon_vma_chain *avc;
756 int referenced = 0;
757
758 anon_vma = page_lock_anon_vma_read(page);
759 if (!anon_vma)
760 return referenced;
761
762 mapcount = page_mapcount(page);
763 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
764 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
765 struct vm_area_struct *vma = avc->vma;
766 unsigned long address = vma_address(page, vma);
767 /*
768 * If we are reclaiming on behalf of a cgroup, skip
769 * counting on behalf of references from different
770 * cgroups
771 */
772 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
773 continue;
774 referenced += page_referenced_one(page, vma, address,
775 &mapcount, vm_flags);
776 if (!mapcount)
777 break;
778 }
779
780 page_unlock_anon_vma_read(anon_vma);
781 return referenced;
782 }
783
784 /**
785 * page_referenced_file - referenced check for object-based rmap
786 * @page: the page we're checking references on.
787 * @memcg: target memory control group
788 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
789 *
790 * For an object-based mapped page, find all the places it is mapped and
791 * check/clear the referenced flag. This is done by following the page->mapping
792 * pointer, then walking the chain of vmas it holds. It returns the number
793 * of references it found.
794 *
795 * This function is only called from page_referenced for object-based pages.
796 */
797 static int page_referenced_file(struct page *page,
798 struct mem_cgroup *memcg,
799 unsigned long *vm_flags)
800 {
801 unsigned int mapcount;
802 struct address_space *mapping = page->mapping;
803 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
804 struct vm_area_struct *vma;
805 int referenced = 0;
806
807 /*
808 * The caller's checks on page->mapping and !PageAnon have made
809 * sure that this is a file page: the check for page->mapping
810 * excludes the case just before it gets set on an anon page.
811 */
812 BUG_ON(PageAnon(page));
813
814 /*
815 * The page lock not only makes sure that page->mapping cannot
816 * suddenly be NULLified by truncation, it makes sure that the
817 * structure at mapping cannot be freed and reused yet,
818 * so we can safely take mapping->i_mmap_mutex.
819 */
820 BUG_ON(!PageLocked(page));
821
822 //To avoid deadlock
823 if (!mutex_trylock(&mapping->i_mmap_mutex))
824 return 1; //put in active list
825
826 /*
827 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
828 * is more likely to be accurate if we note it after spinning.
829 */
830 mapcount = page_mapcount(page);
831
832 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
833 unsigned long address = vma_address(page, vma);
834 /*
835 * If we are reclaiming on behalf of a cgroup, skip
836 * counting on behalf of references from different
837 * cgroups
838 */
839 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
840 continue;
841 referenced += page_referenced_one(page, vma, address,
842 &mapcount, vm_flags);
843 if (!mapcount)
844 break;
845 }
846
847 mutex_unlock(&mapping->i_mmap_mutex);
848 return referenced;
849 }
850
851 /**
852 * page_referenced - test if the page was referenced
853 * @page: the page to test
854 * @is_locked: caller holds lock on the page
855 * @memcg: target memory cgroup
856 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
857 *
858 * Quick test_and_clear_referenced for all mappings to a page,
859 * returns the number of ptes which referenced the page.
860 */
861 int page_referenced(struct page *page,
862 int is_locked,
863 struct mem_cgroup *memcg,
864 unsigned long *vm_flags)
865 {
866 int referenced = 0;
867 int we_locked = 0;
868
869 *vm_flags = 0;
870 if (page_mapped(page) && page_rmapping(page)) {
871 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
872 we_locked = trylock_page(page);
873 if (!we_locked) {
874 referenced++;
875 goto out;
876 }
877 }
878 if (unlikely(PageKsm(page)))
879 referenced += page_referenced_ksm(page, memcg,
880 vm_flags);
881 else if (PageAnon(page))
882 referenced += page_referenced_anon(page, memcg,
883 vm_flags);
884 else if (page->mapping)
885 referenced += page_referenced_file(page, memcg,
886 vm_flags);
887 if (we_locked)
888 unlock_page(page);
889
890 if (page_test_and_clear_young(page_to_pfn(page)))
891 referenced++;
892 }
893 out:
894 return referenced;
895 }
896
897 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
898 unsigned long address)
899 {
900 struct mm_struct *mm = vma->vm_mm;
901 pte_t *pte;
902 spinlock_t *ptl;
903 int ret = 0;
904
905 pte = page_check_address(page, mm, address, &ptl, 1);
906 if (!pte)
907 goto out;
908
909 if (pte_dirty(*pte) || pte_write(*pte)) {
910 pte_t entry;
911
912 flush_cache_page(vma, address, pte_pfn(*pte));
913 entry = ptep_clear_flush(vma, address, pte);
914 entry = pte_wrprotect(entry);
915 entry = pte_mkclean(entry);
916 set_pte_at(mm, address, pte, entry);
917 ret = 1;
918 }
919
920 pte_unmap_unlock(pte, ptl);
921
922 if (ret)
923 mmu_notifier_invalidate_page(mm, address);
924 out:
925 return ret;
926 }
927
928 static int page_mkclean_file(struct address_space *mapping, struct page *page)
929 {
930 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
931 struct vm_area_struct *vma;
932 int ret = 0;
933
934 BUG_ON(PageAnon(page));
935
936 mutex_lock(&mapping->i_mmap_mutex);
937 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
938 if (vma->vm_flags & VM_SHARED) {
939 unsigned long address = vma_address(page, vma);
940 ret += page_mkclean_one(page, vma, address);
941 }
942 }
943 mutex_unlock(&mapping->i_mmap_mutex);
944 return ret;
945 }
946
947 int page_mkclean(struct page *page)
948 {
949 int ret = 0;
950
951 BUG_ON(!PageLocked(page));
952
953 if (page_mapped(page)) {
954 struct address_space *mapping = page_mapping(page);
955 if (mapping)
956 ret = page_mkclean_file(mapping, page);
957 }
958
959 return ret;
960 }
961 EXPORT_SYMBOL_GPL(page_mkclean);
962
963 /**
964 * page_move_anon_rmap - move a page to our anon_vma
965 * @page: the page to move to our anon_vma
966 * @vma: the vma the page belongs to
967 * @address: the user virtual address mapped
968 *
969 * When a page belongs exclusively to one process after a COW event,
970 * that page can be moved into the anon_vma that belongs to just that
971 * process, so the rmap code will not search the parent or sibling
972 * processes.
973 */
974 void page_move_anon_rmap(struct page *page,
975 struct vm_area_struct *vma, unsigned long address)
976 {
977 struct anon_vma *anon_vma = vma->anon_vma;
978
979 VM_BUG_ON(!PageLocked(page));
980 VM_BUG_ON(!anon_vma);
981 VM_BUG_ON(page->index != linear_page_index(vma, address));
982
983 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
984 page->mapping = (struct address_space *) anon_vma;
985 }
986
987 /**
988 * __page_set_anon_rmap - set up new anonymous rmap
989 * @page: Page to add to rmap
990 * @vma: VM area to add page to.
991 * @address: User virtual address of the mapping
992 * @exclusive: the page is exclusively owned by the current process
993 */
994 static void __page_set_anon_rmap(struct page *page,
995 struct vm_area_struct *vma, unsigned long address, int exclusive)
996 {
997 struct anon_vma *anon_vma = vma->anon_vma;
998
999 BUG_ON(!anon_vma);
1000
1001 if (PageAnon(page))
1002 return;
1003
1004 /*
1005 * If the page isn't exclusively mapped into this vma,
1006 * we must use the _oldest_ possible anon_vma for the
1007 * page mapping!
1008 */
1009 if (!exclusive)
1010 anon_vma = anon_vma->root;
1011
1012 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1013 page->mapping = (struct address_space *) anon_vma;
1014 page->index = linear_page_index(vma, address);
1015 }
1016
1017 /**
1018 * __page_check_anon_rmap - sanity check anonymous rmap addition
1019 * @page: the page to add the mapping to
1020 * @vma: the vm area in which the mapping is added
1021 * @address: the user virtual address mapped
1022 */
1023 static void __page_check_anon_rmap(struct page *page,
1024 struct vm_area_struct *vma, unsigned long address)
1025 {
1026 #ifdef CONFIG_DEBUG_VM
1027 /*
1028 * The page's anon-rmap details (mapping and index) are guaranteed to
1029 * be set up correctly at this point.
1030 *
1031 * We have exclusion against page_add_anon_rmap because the caller
1032 * always holds the page locked, except if called from page_dup_rmap,
1033 * in which case the page is already known to be setup.
1034 *
1035 * We have exclusion against page_add_new_anon_rmap because those pages
1036 * are initially only visible via the pagetables, and the pte is locked
1037 * over the call to page_add_new_anon_rmap.
1038 */
1039 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1040 BUG_ON(page->index != linear_page_index(vma, address));
1041 #endif
1042 }
1043
1044 /**
1045 * page_add_anon_rmap - add pte mapping to an anonymous page
1046 * @page: the page to add the mapping to
1047 * @vma: the vm area in which the mapping is added
1048 * @address: the user virtual address mapped
1049 *
1050 * The caller needs to hold the pte lock, and the page must be locked in
1051 * the anon_vma case: to serialize mapping,index checking after setting,
1052 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1053 * (but PageKsm is never downgraded to PageAnon).
1054 */
1055 void page_add_anon_rmap(struct page *page,
1056 struct vm_area_struct *vma, unsigned long address)
1057 {
1058 do_page_add_anon_rmap(page, vma, address, 0);
1059 }
1060
1061 /*
1062 * Special version of the above for do_swap_page, which often runs
1063 * into pages that are exclusively owned by the current process.
1064 * Everybody else should continue to use page_add_anon_rmap above.
1065 */
1066 void do_page_add_anon_rmap(struct page *page,
1067 struct vm_area_struct *vma, unsigned long address, int exclusive)
1068 {
1069 int first = atomic_inc_and_test(&page->_mapcount);
1070 if (first) {
1071 if (!PageTransHuge(page))
1072 __inc_zone_page_state(page, NR_ANON_PAGES);
1073 else
1074 __inc_zone_page_state(page,
1075 NR_ANON_TRANSPARENT_HUGEPAGES);
1076 }
1077 if (unlikely(PageKsm(page)))
1078 return;
1079
1080 VM_BUG_ON(!PageLocked(page));
1081 /* address might be in next vma when migration races vma_adjust */
1082 if (first)
1083 __page_set_anon_rmap(page, vma, address, exclusive);
1084 else
1085 __page_check_anon_rmap(page, vma, address);
1086 }
1087
1088 /**
1089 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1090 * @page: the page to add the mapping to
1091 * @vma: the vm area in which the mapping is added
1092 * @address: the user virtual address mapped
1093 *
1094 * Same as page_add_anon_rmap but must only be called on *new* pages.
1095 * This means the inc-and-test can be bypassed.
1096 * Page does not have to be locked.
1097 */
1098 void page_add_new_anon_rmap(struct page *page,
1099 struct vm_area_struct *vma, unsigned long address)
1100 {
1101 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1102 SetPageSwapBacked(page);
1103 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1104 if (!PageTransHuge(page))
1105 __inc_zone_page_state(page, NR_ANON_PAGES);
1106 else
1107 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1108 __page_set_anon_rmap(page, vma, address, 1);
1109 if (!mlocked_vma_newpage(vma, page))
1110 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1111 else
1112 add_page_to_unevictable_list(page);
1113 }
1114
1115 /**
1116 * page_add_file_rmap - add pte mapping to a file page
1117 * @page: the page to add the mapping to
1118 *
1119 * The caller needs to hold the pte lock.
1120 */
1121 void page_add_file_rmap(struct page *page)
1122 {
1123 bool locked;
1124 unsigned long flags;
1125
1126 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1127 if (atomic_inc_and_test(&page->_mapcount)) {
1128 __inc_zone_page_state(page, NR_FILE_MAPPED);
1129 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1130 }
1131 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1132 }
1133
1134 /**
1135 * page_remove_rmap - take down pte mapping from a page
1136 * @page: page to remove mapping from
1137 *
1138 * The caller needs to hold the pte lock.
1139 */
1140 void page_remove_rmap(struct page *page)
1141 {
1142 bool anon = PageAnon(page);
1143 bool locked;
1144 unsigned long flags;
1145
1146 /*
1147 * The anon case has no mem_cgroup page_stat to update; but may
1148 * uncharge_page() below, where the lock ordering can deadlock if
1149 * we hold the lock against page_stat move: so avoid it on anon.
1150 */
1151 if (!anon)
1152 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1153
1154 /* page still mapped by someone else? */
1155 if (!atomic_add_negative(-1, &page->_mapcount))
1156 goto out;
1157
1158 /*
1159 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1160 * and not charged by memcg for now.
1161 */
1162 if (unlikely(PageHuge(page)))
1163 goto out;
1164 if (anon) {
1165 mem_cgroup_uncharge_page(page);
1166 if (!PageTransHuge(page))
1167 __dec_zone_page_state(page, NR_ANON_PAGES);
1168 else
1169 __dec_zone_page_state(page,
1170 NR_ANON_TRANSPARENT_HUGEPAGES);
1171 } else {
1172 __dec_zone_page_state(page, NR_FILE_MAPPED);
1173 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1174 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1175 }
1176 if (unlikely(PageMlocked(page)))
1177 clear_page_mlock(page);
1178 /*
1179 * It would be tidy to reset the PageAnon mapping here,
1180 * but that might overwrite a racing page_add_anon_rmap
1181 * which increments mapcount after us but sets mapping
1182 * before us: so leave the reset to free_hot_cold_page,
1183 * and remember that it's only reliable while mapped.
1184 * Leaving it set also helps swapoff to reinstate ptes
1185 * faster for those pages still in swapcache.
1186 */
1187 return;
1188 out:
1189 if (!anon)
1190 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1191 }
1192
1193 /*
1194 * Subfunctions of try_to_unmap: try_to_unmap_one called
1195 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1196 */
1197 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1198 unsigned long address, enum ttu_flags flags)
1199 {
1200 struct mm_struct *mm = vma->vm_mm;
1201 pte_t *pte;
1202 pte_t pteval;
1203 spinlock_t *ptl;
1204 int ret = SWAP_AGAIN;
1205
1206 pte = page_check_address(page, mm, address, &ptl, 0);
1207 if (!pte)
1208 goto out;
1209
1210 /*
1211 * If the page is mlock()d, we cannot swap it out.
1212 * If it's recently referenced (perhaps page_referenced
1213 * skipped over this mm) then we should reactivate it.
1214 */
1215 if (!(flags & TTU_IGNORE_MLOCK)) {
1216 if (vma->vm_flags & VM_LOCKED)
1217 goto out_mlock;
1218
1219 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1220 goto out_unmap;
1221 }
1222 if (!(flags & TTU_IGNORE_ACCESS)) {
1223 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1224 ret = SWAP_FAIL;
1225 goto out_unmap;
1226 }
1227 }
1228
1229 /* Nuke the page table entry. */
1230 flush_cache_page(vma, address, page_to_pfn(page));
1231 pteval = ptep_clear_flush(vma, address, pte);
1232
1233 /* Move the dirty bit to the physical page now the pte is gone. */
1234 if (pte_dirty(pteval))
1235 set_page_dirty(page);
1236
1237 /* Update high watermark before we lower rss */
1238 update_hiwater_rss(mm);
1239
1240 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1241 if (!PageHuge(page)) {
1242 if (PageAnon(page))
1243 dec_mm_counter(mm, MM_ANONPAGES);
1244 else
1245 dec_mm_counter(mm, MM_FILEPAGES);
1246 }
1247 set_pte_at(mm, address, pte,
1248 swp_entry_to_pte(make_hwpoison_entry(page)));
1249 } else if (PageAnon(page)) {
1250 swp_entry_t entry = { .val = page_private(page) };
1251
1252 if (PageSwapCache(page)) {
1253 /*
1254 * Store the swap location in the pte.
1255 * See handle_pte_fault() ...
1256 */
1257 if (swap_duplicate(entry) < 0) {
1258 set_pte_at(mm, address, pte, pteval);
1259 ret = SWAP_FAIL;
1260 goto out_unmap;
1261 }
1262 if (list_empty(&mm->mmlist)) {
1263 spin_lock(&mmlist_lock);
1264 if (list_empty(&mm->mmlist))
1265 list_add(&mm->mmlist, &init_mm.mmlist);
1266 spin_unlock(&mmlist_lock);
1267 }
1268 dec_mm_counter(mm, MM_ANONPAGES);
1269 inc_mm_counter(mm, MM_SWAPENTS);
1270 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1271 /*
1272 * Store the pfn of the page in a special migration
1273 * pte. do_swap_page() will wait until the migration
1274 * pte is removed and then restart fault handling.
1275 */
1276 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1277 entry = make_migration_entry(page, pte_write(pteval));
1278 }
1279 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1280 BUG_ON(pte_file(*pte));
1281 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1282 (TTU_ACTION(flags) == TTU_MIGRATION)) {
1283 /* Establish migration entry for a file page */
1284 swp_entry_t entry;
1285 entry = make_migration_entry(page, pte_write(pteval));
1286 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1287 } else
1288 dec_mm_counter(mm, MM_FILEPAGES);
1289
1290 page_remove_rmap(page);
1291 page_cache_release(page);
1292
1293 out_unmap:
1294 pte_unmap_unlock(pte, ptl);
1295 if (ret != SWAP_FAIL)
1296 mmu_notifier_invalidate_page(mm, address);
1297 out:
1298 return ret;
1299
1300 out_mlock:
1301 pte_unmap_unlock(pte, ptl);
1302
1303
1304 /*
1305 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1306 * unstable result and race. Plus, We can't wait here because
1307 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1308 * if trylock failed, the page remain in evictable lru and later
1309 * vmscan could retry to move the page to unevictable lru if the
1310 * page is actually mlocked.
1311 */
1312 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1313 if (vma->vm_flags & VM_LOCKED) {
1314 mlock_vma_page(page);
1315 ret = SWAP_MLOCK;
1316 }
1317 up_read(&vma->vm_mm->mmap_sem);
1318 }
1319 return ret;
1320 }
1321
1322 /*
1323 * objrmap doesn't work for nonlinear VMAs because the assumption that
1324 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1325 * Consequently, given a particular page and its ->index, we cannot locate the
1326 * ptes which are mapping that page without an exhaustive linear search.
1327 *
1328 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1329 * maps the file to which the target page belongs. The ->vm_private_data field
1330 * holds the current cursor into that scan. Successive searches will circulate
1331 * around the vma's virtual address space.
1332 *
1333 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1334 * more scanning pressure is placed against them as well. Eventually pages
1335 * will become fully unmapped and are eligible for eviction.
1336 *
1337 * For very sparsely populated VMAs this is a little inefficient - chances are
1338 * there there won't be many ptes located within the scan cluster. In this case
1339 * maybe we could scan further - to the end of the pte page, perhaps.
1340 *
1341 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1342 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1343 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1344 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1345 */
1346 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1347 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1348
1349 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1350 struct vm_area_struct *vma, struct page *check_page)
1351 {
1352 struct mm_struct *mm = vma->vm_mm;
1353 pmd_t *pmd;
1354 pte_t *pte;
1355 pte_t pteval;
1356 spinlock_t *ptl;
1357 struct page *page;
1358 unsigned long address;
1359 unsigned long mmun_start; /* For mmu_notifiers */
1360 unsigned long mmun_end; /* For mmu_notifiers */
1361 unsigned long end;
1362 int ret = SWAP_AGAIN;
1363 int locked_vma = 0;
1364
1365 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1366 end = address + CLUSTER_SIZE;
1367 if (address < vma->vm_start)
1368 address = vma->vm_start;
1369 if (end > vma->vm_end)
1370 end = vma->vm_end;
1371
1372 pmd = mm_find_pmd(mm, address);
1373 if (!pmd)
1374 return ret;
1375
1376 mmun_start = address;
1377 mmun_end = end;
1378 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1379
1380 /*
1381 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1382 * keep the sem while scanning the cluster for mlocking pages.
1383 */
1384 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1385 locked_vma = (vma->vm_flags & VM_LOCKED);
1386 if (!locked_vma)
1387 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1388 }
1389
1390 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1391
1392 /* Update high watermark before we lower rss */
1393 update_hiwater_rss(mm);
1394
1395 for (; address < end; pte++, address += PAGE_SIZE) {
1396 if (!pte_present(*pte))
1397 continue;
1398 page = vm_normal_page(vma, address, *pte);
1399 BUG_ON(!page || PageAnon(page));
1400
1401 if (locked_vma) {
1402 if (page == check_page) {
1403 /* we know we have check_page locked */
1404 mlock_vma_page(page);
1405 ret = SWAP_MLOCK;
1406 } else if (trylock_page(page)) {
1407 /*
1408 * If we can lock the page, perform mlock.
1409 * Otherwise leave the page alone, it will be
1410 * eventually encountered again later.
1411 */
1412 mlock_vma_page(page);
1413 unlock_page(page);
1414 }
1415 continue; /* don't unmap */
1416 }
1417
1418 if (ptep_clear_flush_young_notify(vma, address, pte))
1419 continue;
1420
1421 /* Nuke the page table entry. */
1422 flush_cache_page(vma, address, pte_pfn(*pte));
1423 pteval = ptep_clear_flush(vma, address, pte);
1424
1425 /* If nonlinear, store the file page offset in the pte. */
1426 if (page->index != linear_page_index(vma, address))
1427 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1428
1429 /* Move the dirty bit to the physical page now the pte is gone. */
1430 if (pte_dirty(pteval))
1431 set_page_dirty(page);
1432
1433 page_remove_rmap(page);
1434 page_cache_release(page);
1435 dec_mm_counter(mm, MM_FILEPAGES);
1436 (*mapcount)--;
1437 }
1438 pte_unmap_unlock(pte - 1, ptl);
1439 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1440 if (locked_vma)
1441 up_read(&vma->vm_mm->mmap_sem);
1442 return ret;
1443 }
1444
1445 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1446 {
1447 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1448
1449 if (!maybe_stack)
1450 return false;
1451
1452 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1453 VM_STACK_INCOMPLETE_SETUP)
1454 return true;
1455
1456 return false;
1457 }
1458
1459 /**
1460 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1461 * rmap method
1462 * @page: the page to unmap/unlock
1463 * @flags: action and flags
1464 *
1465 * Find all the mappings of a page using the mapping pointer and the vma chains
1466 * contained in the anon_vma struct it points to.
1467 *
1468 * This function is only called from try_to_unmap/try_to_munlock for
1469 * anonymous pages.
1470 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1471 * where the page was found will be held for write. So, we won't recheck
1472 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1473 * 'LOCKED.
1474 */
1475 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1476 {
1477 struct anon_vma *anon_vma;
1478 pgoff_t pgoff;
1479 struct anon_vma_chain *avc;
1480 int ret = SWAP_AGAIN;
1481
1482 anon_vma = page_lock_anon_vma_read(page);
1483 if (!anon_vma)
1484 return ret;
1485
1486 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1487 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1488 struct vm_area_struct *vma = avc->vma;
1489 unsigned long address;
1490
1491 /*
1492 * During exec, a temporary VMA is setup and later moved.
1493 * The VMA is moved under the anon_vma lock but not the
1494 * page tables leading to a race where migration cannot
1495 * find the migration ptes. Rather than increasing the
1496 * locking requirements of exec(), migration skips
1497 * temporary VMAs until after exec() completes.
1498 */
1499 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1500 is_vma_temporary_stack(vma))
1501 continue;
1502
1503 address = vma_address(page, vma);
1504 ret = try_to_unmap_one(page, vma, address, flags);
1505 if (ret != SWAP_AGAIN || !page_mapped(page))
1506 break;
1507 }
1508
1509 page_unlock_anon_vma_read(anon_vma);
1510 return ret;
1511 }
1512
1513 /**
1514 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1515 * @page: the page to unmap/unlock
1516 * @flags: action and flags
1517 *
1518 * Find all the mappings of a page using the mapping pointer and the vma chains
1519 * contained in the address_space struct it points to.
1520 *
1521 * This function is only called from try_to_unmap/try_to_munlock for
1522 * object-based pages.
1523 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1524 * where the page was found will be held for write. So, we won't recheck
1525 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1526 * 'LOCKED.
1527 */
1528 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1529 {
1530 struct address_space *mapping = page->mapping;
1531 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1532 struct vm_area_struct *vma;
1533 int ret = SWAP_AGAIN;
1534 unsigned long cursor;
1535 unsigned long max_nl_cursor = 0;
1536 unsigned long max_nl_size = 0;
1537 unsigned int mapcount;
1538 int retry = 0;
1539
1540
1541 if (PageHuge(page))
1542 pgoff = page->index << compound_order(page);
1543
1544 while (!mutex_trylock(&mapping->i_mmap_mutex)) {
1545 retry++;
1546 if (!(retry % MUTEX_RETRY_RESCHED))
1547 cond_resched();
1548 if (retry > MUTEX_RETRY_COUNT) {
1549 printk(KERN_ERR ">> failed to lock i_mmap_mutex in try_to_unmap_file <<\n");
1550 return SWAP_FAIL;
1551 }
1552 }
1553
1554
1555 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1556 unsigned long address = vma_address(page, vma);
1557 ret = try_to_unmap_one(page, vma, address, flags);
1558 if (ret != SWAP_AGAIN || !page_mapped(page))
1559 goto out;
1560 }
1561
1562 if (list_empty(&mapping->i_mmap_nonlinear))
1563 goto out;
1564
1565 /*
1566 * We don't bother to try to find the munlocked page in nonlinears.
1567 * It's costly. Instead, later, page reclaim logic may call
1568 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1569 */
1570 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1571 goto out;
1572
1573 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1574 shared.nonlinear) {
1575 cursor = (unsigned long) vma->vm_private_data;
1576 if (cursor > max_nl_cursor)
1577 max_nl_cursor = cursor;
1578 cursor = vma->vm_end - vma->vm_start;
1579 if (cursor > max_nl_size)
1580 max_nl_size = cursor;
1581 }
1582
1583 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1584 ret = SWAP_FAIL;
1585 goto out;
1586 }
1587
1588 /*
1589 * We don't try to search for this page in the nonlinear vmas,
1590 * and page_referenced wouldn't have found it anyway. Instead
1591 * just walk the nonlinear vmas trying to age and unmap some.
1592 * The mapcount of the page we came in with is irrelevant,
1593 * but even so use it as a guide to how hard we should try?
1594 */
1595 mapcount = page_mapcount(page);
1596 if (!mapcount)
1597 goto out;
1598 cond_resched();
1599
1600 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1601 if (max_nl_cursor == 0)
1602 max_nl_cursor = CLUSTER_SIZE;
1603
1604 do {
1605 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1606 shared.nonlinear) {
1607 cursor = (unsigned long) vma->vm_private_data;
1608 while ( cursor < max_nl_cursor &&
1609 cursor < vma->vm_end - vma->vm_start) {
1610 if (try_to_unmap_cluster(cursor, &mapcount,
1611 vma, page) == SWAP_MLOCK)
1612 ret = SWAP_MLOCK;
1613 cursor += CLUSTER_SIZE;
1614 vma->vm_private_data = (void *) cursor;
1615 if ((int)mapcount <= 0)
1616 goto out;
1617 }
1618 vma->vm_private_data = (void *) max_nl_cursor;
1619 }
1620 cond_resched();
1621 max_nl_cursor += CLUSTER_SIZE;
1622 } while (max_nl_cursor <= max_nl_size);
1623
1624 /*
1625 * Don't loop forever (perhaps all the remaining pages are
1626 * in locked vmas). Reset cursor on all unreserved nonlinear
1627 * vmas, now forgetting on which ones it had fallen behind.
1628 */
1629 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1630 vma->vm_private_data = NULL;
1631 out:
1632 mutex_unlock(&mapping->i_mmap_mutex);
1633 return ret;
1634 }
1635
1636 /**
1637 * try_to_unmap - try to remove all page table mappings to a page
1638 * @page: the page to get unmapped
1639 * @flags: action and flags
1640 *
1641 * Tries to remove all the page table entries which are mapping this
1642 * page, used in the pageout path. Caller must hold the page lock.
1643 * Return values are:
1644 *
1645 * SWAP_SUCCESS - we succeeded in removing all mappings
1646 * SWAP_AGAIN - we missed a mapping, try again later
1647 * SWAP_FAIL - the page is unswappable
1648 * SWAP_MLOCK - page is mlocked.
1649 */
1650 int try_to_unmap(struct page *page, enum ttu_flags flags)
1651 {
1652 int ret;
1653
1654 BUG_ON(!PageLocked(page));
1655 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1656
1657 if (unlikely(PageKsm(page)))
1658 ret = try_to_unmap_ksm(page, flags);
1659 else if (PageAnon(page))
1660 ret = try_to_unmap_anon(page, flags);
1661 else
1662 ret = try_to_unmap_file(page, flags);
1663 if (ret != SWAP_MLOCK && !page_mapped(page))
1664 ret = SWAP_SUCCESS;
1665 return ret;
1666 }
1667
1668 /**
1669 * try_to_munlock - try to munlock a page
1670 * @page: the page to be munlocked
1671 *
1672 * Called from munlock code. Checks all of the VMAs mapping the page
1673 * to make sure nobody else has this page mlocked. The page will be
1674 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1675 *
1676 * Return values are:
1677 *
1678 * SWAP_AGAIN - no vma is holding page mlocked, or,
1679 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1680 * SWAP_FAIL - page cannot be located at present
1681 * SWAP_MLOCK - page is now mlocked.
1682 */
1683 int try_to_munlock(struct page *page)
1684 {
1685 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1686
1687 if (unlikely(PageKsm(page)))
1688 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1689 else if (PageAnon(page))
1690 return try_to_unmap_anon(page, TTU_MUNLOCK);
1691 else
1692 return try_to_unmap_file(page, TTU_MUNLOCK);
1693 }
1694
1695 void __put_anon_vma(struct anon_vma *anon_vma)
1696 {
1697 struct anon_vma *root = anon_vma->root;
1698
1699 anon_vma_free(anon_vma);
1700 if (root && root != anon_vma && atomic_dec_and_test(&root->refcount))
1701 anon_vma_free(root);
1702 }
1703
1704 #ifdef CONFIG_MIGRATION
1705 /*
1706 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1707 * Called by migrate.c to remove migration ptes, but might be used more later.
1708 */
1709 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1710 struct vm_area_struct *, unsigned long, void *), void *arg)
1711 {
1712 struct anon_vma *anon_vma;
1713 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1714 struct anon_vma_chain *avc;
1715 int ret = SWAP_AGAIN;
1716
1717 /*
1718 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1719 * because that depends on page_mapped(); but not all its usages
1720 * are holding mmap_sem. Users without mmap_sem are required to
1721 * take a reference count to prevent the anon_vma disappearing
1722 */
1723 anon_vma = page_anon_vma(page);
1724 if (!anon_vma)
1725 return ret;
1726 anon_vma_lock_read(anon_vma);
1727 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1728 struct vm_area_struct *vma = avc->vma;
1729 unsigned long address = vma_address(page, vma);
1730 ret = rmap_one(page, vma, address, arg);
1731 if (ret != SWAP_AGAIN)
1732 break;
1733 }
1734 anon_vma_unlock_read(anon_vma);
1735 return ret;
1736 }
1737
1738 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1739 struct vm_area_struct *, unsigned long, void *), void *arg)
1740 {
1741 struct address_space *mapping = page->mapping;
1742 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1743 struct vm_area_struct *vma;
1744 int ret = SWAP_AGAIN;
1745
1746 if (!mapping)
1747 return ret;
1748 mutex_lock(&mapping->i_mmap_mutex);
1749 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1750 unsigned long address = vma_address(page, vma);
1751 ret = rmap_one(page, vma, address, arg);
1752 if (ret != SWAP_AGAIN)
1753 break;
1754 }
1755 /*
1756 * No nonlinear handling: being always shared, nonlinear vmas
1757 * never contain migration ptes. Decide what to do about this
1758 * limitation to linear when we need rmap_walk() on nonlinear.
1759 */
1760 mutex_unlock(&mapping->i_mmap_mutex);
1761 return ret;
1762 }
1763
1764 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1765 struct vm_area_struct *, unsigned long, void *), void *arg)
1766 {
1767 VM_BUG_ON(!PageLocked(page));
1768
1769 if (unlikely(PageKsm(page)))
1770 return rmap_walk_ksm(page, rmap_one, arg);
1771 else if (PageAnon(page))
1772 return rmap_walk_anon(page, rmap_one, arg);
1773 else
1774 return rmap_walk_file(page, rmap_one, arg);
1775 }
1776 #endif /* CONFIG_MIGRATION */
1777
1778 #ifdef CONFIG_HUGETLB_PAGE
1779 /*
1780 * The following three functions are for anonymous (private mapped) hugepages.
1781 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1782 * and no lru code, because we handle hugepages differently from common pages.
1783 */
1784 static void __hugepage_set_anon_rmap(struct page *page,
1785 struct vm_area_struct *vma, unsigned long address, int exclusive)
1786 {
1787 struct anon_vma *anon_vma = vma->anon_vma;
1788
1789 BUG_ON(!anon_vma);
1790
1791 if (PageAnon(page))
1792 return;
1793 if (!exclusive)
1794 anon_vma = anon_vma->root;
1795
1796 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1797 page->mapping = (struct address_space *) anon_vma;
1798 page->index = linear_page_index(vma, address);
1799 }
1800
1801 void hugepage_add_anon_rmap(struct page *page,
1802 struct vm_area_struct *vma, unsigned long address)
1803 {
1804 struct anon_vma *anon_vma = vma->anon_vma;
1805 int first;
1806
1807 BUG_ON(!PageLocked(page));
1808 BUG_ON(!anon_vma);
1809 /* address might be in next vma when migration races vma_adjust */
1810 first = atomic_inc_and_test(&page->_mapcount);
1811 if (first)
1812 __hugepage_set_anon_rmap(page, vma, address, 0);
1813 }
1814
1815 void hugepage_add_new_anon_rmap(struct page *page,
1816 struct vm_area_struct *vma, unsigned long address)
1817 {
1818 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1819 atomic_set(&page->_mapcount, 0);
1820 __hugepage_set_anon_rmap(page, vma, address, 1);
1821 }
1822 #endif /* CONFIG_HUGETLB_PAGE */