mm, vmscan: Do not wait for page writeback for GFP_NOFS allocations
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
43 */
44
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60
61 #include <asm/tlbflush.h>
62
63 #include "internal.h"
64
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 /*
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
78 */
79 anon_vma->root = anon_vma;
80 }
81
82 return anon_vma;
83 }
84
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
86 {
87 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88
89 /*
90 * Synchronize against page_lock_anon_vma_read() such that
91 * we can safely hold the lock without the anon_vma getting
92 * freed.
93 *
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
97 *
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
100 * LOCK MB
101 * atomic_read() rwsem_is_locked()
102 *
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
105 */
106 might_sleep();
107 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
108 anon_vma_lock_write(anon_vma);
109 anon_vma_unlock_write(anon_vma);
110 }
111
112 kmem_cache_free(anon_vma_cachep, anon_vma);
113 }
114
115 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
116 {
117 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
118 }
119
120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
121 {
122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123 }
124
125 static void anon_vma_chain_link(struct vm_area_struct *vma,
126 struct anon_vma_chain *avc,
127 struct anon_vma *anon_vma)
128 {
129 avc->vma = vma;
130 avc->anon_vma = anon_vma;
131 list_add(&avc->same_vma, &vma->anon_vma_chain);
132 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
133 }
134
135 /**
136 * anon_vma_prepare - attach an anon_vma to a memory region
137 * @vma: the memory region in question
138 *
139 * This makes sure the memory mapping described by 'vma' has
140 * an 'anon_vma' attached to it, so that we can associate the
141 * anonymous pages mapped into it with that anon_vma.
142 *
143 * The common case will be that we already have one, but if
144 * not we either need to find an adjacent mapping that we
145 * can re-use the anon_vma from (very common when the only
146 * reason for splitting a vma has been mprotect()), or we
147 * allocate a new one.
148 *
149 * Anon-vma allocations are very subtle, because we may have
150 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
151 * and that may actually touch the spinlock even in the newly
152 * allocated vma (it depends on RCU to make sure that the
153 * anon_vma isn't actually destroyed).
154 *
155 * As a result, we need to do proper anon_vma locking even
156 * for the new allocation. At the same time, we do not want
157 * to do any locking for the common case of already having
158 * an anon_vma.
159 *
160 * This must be called with the mmap_sem held for reading.
161 */
162 int anon_vma_prepare(struct vm_area_struct *vma)
163 {
164 struct anon_vma *anon_vma = vma->anon_vma;
165 struct anon_vma_chain *avc;
166
167 might_sleep();
168 if (unlikely(!anon_vma)) {
169 struct mm_struct *mm = vma->vm_mm;
170 struct anon_vma *allocated;
171
172 avc = anon_vma_chain_alloc(GFP_KERNEL);
173 if (!avc)
174 goto out_enomem;
175
176 anon_vma = find_mergeable_anon_vma(vma);
177 allocated = NULL;
178 if (!anon_vma) {
179 anon_vma = anon_vma_alloc();
180 if (unlikely(!anon_vma))
181 goto out_enomem_free_avc;
182 allocated = anon_vma;
183 }
184
185 anon_vma_lock_write(anon_vma);
186 /* page_table_lock to protect against threads */
187 spin_lock(&mm->page_table_lock);
188 if (likely(!vma->anon_vma)) {
189 vma->anon_vma = anon_vma;
190 anon_vma_chain_link(vma, avc, anon_vma);
191 allocated = NULL;
192 avc = NULL;
193 }
194 spin_unlock(&mm->page_table_lock);
195 anon_vma_unlock_write(anon_vma);
196
197 if (unlikely(allocated))
198 put_anon_vma(allocated);
199 if (unlikely(avc))
200 anon_vma_chain_free(avc);
201 }
202 return 0;
203
204 out_enomem_free_avc:
205 anon_vma_chain_free(avc);
206 out_enomem:
207 return -ENOMEM;
208 }
209
210 /*
211 * This is a useful helper function for locking the anon_vma root as
212 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
213 * have the same vma.
214 *
215 * Such anon_vma's should have the same root, so you'd expect to see
216 * just a single mutex_lock for the whole traversal.
217 */
218 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
219 {
220 struct anon_vma *new_root = anon_vma->root;
221 if (new_root != root) {
222 if (WARN_ON_ONCE(root))
223 up_write(&root->rwsem);
224 root = new_root;
225 down_write(&root->rwsem);
226 }
227 return root;
228 }
229
230 static inline void unlock_anon_vma_root(struct anon_vma *root)
231 {
232 if (root)
233 up_write(&root->rwsem);
234 }
235
236 /*
237 * Attach the anon_vmas from src to dst.
238 * Returns 0 on success, -ENOMEM on failure.
239 */
240 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
241 {
242 struct anon_vma_chain *avc, *pavc;
243 struct anon_vma *root = NULL;
244
245 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
246 struct anon_vma *anon_vma;
247
248 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
249 if (unlikely(!avc)) {
250 unlock_anon_vma_root(root);
251 root = NULL;
252 avc = anon_vma_chain_alloc(GFP_KERNEL);
253 if (!avc)
254 goto enomem_failure;
255 }
256 anon_vma = pavc->anon_vma;
257 root = lock_anon_vma_root(root, anon_vma);
258 anon_vma_chain_link(dst, avc, anon_vma);
259 }
260 unlock_anon_vma_root(root);
261 return 0;
262
263 enomem_failure:
264 unlink_anon_vmas(dst);
265 return -ENOMEM;
266 }
267
268 /*
269 * Attach vma to its own anon_vma, as well as to the anon_vmas that
270 * the corresponding VMA in the parent process is attached to.
271 * Returns 0 on success, non-zero on failure.
272 */
273 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
274 {
275 struct anon_vma_chain *avc;
276 struct anon_vma *anon_vma;
277
278 /* Don't bother if the parent process has no anon_vma here. */
279 if (!pvma->anon_vma)
280 return 0;
281
282 /*
283 * First, attach the new VMA to the parent VMA's anon_vmas,
284 * so rmap can find non-COWed pages in child processes.
285 */
286 if (anon_vma_clone(vma, pvma))
287 return -ENOMEM;
288
289 /* Then add our own anon_vma. */
290 anon_vma = anon_vma_alloc();
291 if (!anon_vma)
292 goto out_error;
293 avc = anon_vma_chain_alloc(GFP_KERNEL);
294 if (!avc)
295 goto out_error_free_anon_vma;
296
297 /*
298 * The root anon_vma's spinlock is the lock actually used when we
299 * lock any of the anon_vmas in this anon_vma tree.
300 */
301 anon_vma->root = pvma->anon_vma->root;
302 /*
303 * With refcounts, an anon_vma can stay around longer than the
304 * process it belongs to. The root anon_vma needs to be pinned until
305 * this anon_vma is freed, because the lock lives in the root.
306 */
307 get_anon_vma(anon_vma->root);
308 /* Mark this anon_vma as the one where our new (COWed) pages go. */
309 vma->anon_vma = anon_vma;
310 anon_vma_lock_write(anon_vma);
311 anon_vma_chain_link(vma, avc, anon_vma);
312 anon_vma_unlock_write(anon_vma);
313
314 return 0;
315
316 out_error_free_anon_vma:
317 put_anon_vma(anon_vma);
318 out_error:
319 unlink_anon_vmas(vma);
320 return -ENOMEM;
321 }
322
323 void unlink_anon_vmas(struct vm_area_struct *vma)
324 {
325 struct anon_vma_chain *avc, *next;
326 struct anon_vma *root = NULL;
327
328 /*
329 * Unlink each anon_vma chained to the VMA. This list is ordered
330 * from newest to oldest, ensuring the root anon_vma gets freed last.
331 */
332 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
333 struct anon_vma *anon_vma = avc->anon_vma;
334
335 root = lock_anon_vma_root(root, anon_vma);
336 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
337
338 /*
339 * Leave empty anon_vmas on the list - we'll need
340 * to free them outside the lock.
341 */
342 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
343 continue;
344
345 list_del(&avc->same_vma);
346 anon_vma_chain_free(avc);
347 }
348 unlock_anon_vma_root(root);
349
350 /*
351 * Iterate the list once more, it now only contains empty and unlinked
352 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
353 * needing to write-acquire the anon_vma->root->rwsem.
354 */
355 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
356 struct anon_vma *anon_vma = avc->anon_vma;
357
358 put_anon_vma(anon_vma);
359
360 list_del(&avc->same_vma);
361 anon_vma_chain_free(avc);
362 }
363 }
364
365 static void anon_vma_ctor(void *data)
366 {
367 struct anon_vma *anon_vma = data;
368
369 init_rwsem(&anon_vma->rwsem);
370 atomic_set(&anon_vma->refcount, 0);
371 anon_vma->rb_root = RB_ROOT;
372 }
373
374 void __init anon_vma_init(void)
375 {
376 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
377 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
378 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
379 }
380
381 /*
382 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
383 *
384 * Since there is no serialization what so ever against page_remove_rmap()
385 * the best this function can do is return a locked anon_vma that might
386 * have been relevant to this page.
387 *
388 * The page might have been remapped to a different anon_vma or the anon_vma
389 * returned may already be freed (and even reused).
390 *
391 * In case it was remapped to a different anon_vma, the new anon_vma will be a
392 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
393 * ensure that any anon_vma obtained from the page will still be valid for as
394 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
395 *
396 * All users of this function must be very careful when walking the anon_vma
397 * chain and verify that the page in question is indeed mapped in it
398 * [ something equivalent to page_mapped_in_vma() ].
399 *
400 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
401 * that the anon_vma pointer from page->mapping is valid if there is a
402 * mapcount, we can dereference the anon_vma after observing those.
403 */
404 struct anon_vma *page_get_anon_vma(struct page *page)
405 {
406 struct anon_vma *anon_vma = NULL;
407 unsigned long anon_mapping;
408
409 rcu_read_lock();
410 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
411 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
412 goto out;
413 if (!page_mapped(page))
414 goto out;
415
416 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
417 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
418 anon_vma = NULL;
419 goto out;
420 }
421
422 /*
423 * If this page is still mapped, then its anon_vma cannot have been
424 * freed. But if it has been unmapped, we have no security against the
425 * anon_vma structure being freed and reused (for another anon_vma:
426 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
427 * above cannot corrupt).
428 */
429 if (!page_mapped(page)) {
430 rcu_read_unlock();
431 put_anon_vma(anon_vma);
432 return NULL;
433 }
434 out:
435 rcu_read_unlock();
436
437 return anon_vma;
438 }
439
440 /*
441 * Similar to page_get_anon_vma() except it locks the anon_vma.
442 *
443 * Its a little more complex as it tries to keep the fast path to a single
444 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
445 * reference like with page_get_anon_vma() and then block on the mutex.
446 */
447 struct anon_vma *page_lock_anon_vma_read(struct page *page)
448 {
449 struct anon_vma *anon_vma = NULL;
450 struct anon_vma *root_anon_vma;
451 unsigned long anon_mapping;
452
453 rcu_read_lock();
454 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
455 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
456 goto out;
457 if (!page_mapped(page))
458 goto out;
459
460 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
461 root_anon_vma = ACCESS_ONCE(anon_vma->root);
462 if (down_read_trylock(&root_anon_vma->rwsem)) {
463 /*
464 * If the page is still mapped, then this anon_vma is still
465 * its anon_vma, and holding the mutex ensures that it will
466 * not go away, see anon_vma_free().
467 */
468 if (!page_mapped(page)) {
469 up_read(&root_anon_vma->rwsem);
470 anon_vma = NULL;
471 }
472 goto out;
473 }
474
475 /* trylock failed, we got to sleep */
476 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
477 anon_vma = NULL;
478 goto out;
479 }
480
481 if (!page_mapped(page)) {
482 rcu_read_unlock();
483 put_anon_vma(anon_vma);
484 return NULL;
485 }
486
487 /* we pinned the anon_vma, its safe to sleep */
488 rcu_read_unlock();
489 anon_vma_lock_read(anon_vma);
490
491 if (atomic_dec_and_test(&anon_vma->refcount)) {
492 /*
493 * Oops, we held the last refcount, release the lock
494 * and bail -- can't simply use put_anon_vma() because
495 * we'll deadlock on the anon_vma_lock_write() recursion.
496 */
497 anon_vma_unlock_read(anon_vma);
498 __put_anon_vma(anon_vma);
499 anon_vma = NULL;
500 }
501
502 return anon_vma;
503
504 out:
505 rcu_read_unlock();
506 return anon_vma;
507 }
508
509 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
510 {
511 anon_vma_unlock_read(anon_vma);
512 }
513
514 /*
515 * At what user virtual address is page expected in @vma?
516 */
517 static inline unsigned long
518 __vma_address(struct page *page, struct vm_area_struct *vma)
519 {
520 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
521
522 if (unlikely(is_vm_hugetlb_page(vma)))
523 pgoff = page->index << huge_page_order(page_hstate(page));
524
525 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
526 }
527
528 inline unsigned long
529 vma_address(struct page *page, struct vm_area_struct *vma)
530 {
531 unsigned long address = __vma_address(page, vma);
532
533 /* page should be within @vma mapping range */
534 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
535
536 return address;
537 }
538
539 /*
540 * At what user virtual address is page expected in vma?
541 * Caller should check the page is actually part of the vma.
542 */
543 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
544 {
545 unsigned long address;
546 if (PageAnon(page)) {
547 struct anon_vma *page__anon_vma = page_anon_vma(page);
548 /*
549 * Note: swapoff's unuse_vma() is more efficient with this
550 * check, and needs it to match anon_vma when KSM is active.
551 */
552 if (!vma->anon_vma || !page__anon_vma ||
553 vma->anon_vma->root != page__anon_vma->root)
554 return -EFAULT;
555 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
556 if (!vma->vm_file ||
557 vma->vm_file->f_mapping != page->mapping)
558 return -EFAULT;
559 } else
560 return -EFAULT;
561 address = __vma_address(page, vma);
562 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
563 return -EFAULT;
564 return address;
565 }
566
567 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
568 {
569 pgd_t *pgd;
570 pud_t *pud;
571 pmd_t *pmd = NULL;
572
573 pgd = pgd_offset(mm, address);
574 if (!pgd_present(*pgd))
575 goto out;
576
577 pud = pud_offset(pgd, address);
578 if (!pud_present(*pud))
579 goto out;
580
581 pmd = pmd_offset(pud, address);
582 if (!pmd_present(*pmd))
583 pmd = NULL;
584 out:
585 return pmd;
586 }
587
588 /*
589 * Check that @page is mapped at @address into @mm.
590 *
591 * If @sync is false, page_check_address may perform a racy check to avoid
592 * the page table lock when the pte is not present (helpful when reclaiming
593 * highly shared pages).
594 *
595 * On success returns with pte mapped and locked.
596 */
597 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
598 unsigned long address, spinlock_t **ptlp, int sync)
599 {
600 pmd_t *pmd;
601 pte_t *pte;
602 spinlock_t *ptl;
603
604 if (unlikely(PageHuge(page))) {
605 /* when pud is not present, pte will be NULL */
606 pte = huge_pte_offset(mm, address);
607 if (!pte)
608 return NULL;
609
610 ptl = &mm->page_table_lock;
611 goto check;
612 }
613
614 pmd = mm_find_pmd(mm, address);
615 if (!pmd)
616 return NULL;
617
618 if (pmd_trans_huge(*pmd))
619 return NULL;
620
621 pte = pte_offset_map(pmd, address);
622 /* Make a quick check before getting the lock */
623 if (!sync && !pte_present(*pte)) {
624 pte_unmap(pte);
625 return NULL;
626 }
627
628 ptl = pte_lockptr(mm, pmd);
629 check:
630 spin_lock(ptl);
631 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
632 *ptlp = ptl;
633 return pte;
634 }
635 pte_unmap_unlock(pte, ptl);
636 return NULL;
637 }
638
639 /**
640 * page_mapped_in_vma - check whether a page is really mapped in a VMA
641 * @page: the page to test
642 * @vma: the VMA to test
643 *
644 * Returns 1 if the page is mapped into the page tables of the VMA, 0
645 * if the page is not mapped into the page tables of this VMA. Only
646 * valid for normal file or anonymous VMAs.
647 */
648 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
649 {
650 unsigned long address;
651 pte_t *pte;
652 spinlock_t *ptl;
653
654 address = __vma_address(page, vma);
655 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
656 return 0;
657 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
658 if (!pte) /* the page is not in this mm */
659 return 0;
660 pte_unmap_unlock(pte, ptl);
661
662 return 1;
663 }
664
665 /*
666 * Subfunctions of page_referenced: page_referenced_one called
667 * repeatedly from either page_referenced_anon or page_referenced_file.
668 */
669 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
670 unsigned long address, unsigned int *mapcount,
671 unsigned long *vm_flags)
672 {
673 struct mm_struct *mm = vma->vm_mm;
674 int referenced = 0;
675
676 if (unlikely(PageTransHuge(page))) {
677 pmd_t *pmd;
678
679 spin_lock(&mm->page_table_lock);
680 /*
681 * rmap might return false positives; we must filter
682 * these out using page_check_address_pmd().
683 */
684 pmd = page_check_address_pmd(page, mm, address,
685 PAGE_CHECK_ADDRESS_PMD_FLAG);
686 if (!pmd) {
687 spin_unlock(&mm->page_table_lock);
688 goto out;
689 }
690
691 if (vma->vm_flags & VM_LOCKED) {
692 spin_unlock(&mm->page_table_lock);
693 *mapcount = 0; /* break early from loop */
694 *vm_flags |= VM_LOCKED;
695 goto out;
696 }
697
698 /* go ahead even if the pmd is pmd_trans_splitting() */
699 if (pmdp_clear_flush_young_notify(vma, address, pmd))
700 referenced++;
701 spin_unlock(&mm->page_table_lock);
702 } else {
703 pte_t *pte;
704 spinlock_t *ptl;
705
706 /*
707 * rmap might return false positives; we must filter
708 * these out using page_check_address().
709 */
710 pte = page_check_address(page, mm, address, &ptl, 0);
711 if (!pte)
712 goto out;
713
714 if (vma->vm_flags & VM_LOCKED) {
715 pte_unmap_unlock(pte, ptl);
716 *mapcount = 0; /* break early from loop */
717 *vm_flags |= VM_LOCKED;
718 goto out;
719 }
720
721 if (ptep_clear_flush_young_notify(vma, address, pte)) {
722 /*
723 * Don't treat a reference through a sequentially read
724 * mapping as such. If the page has been used in
725 * another mapping, we will catch it; if this other
726 * mapping is already gone, the unmap path will have
727 * set PG_referenced or activated the page.
728 */
729 if (likely(!VM_SequentialReadHint(vma)))
730 referenced++;
731 }
732 pte_unmap_unlock(pte, ptl);
733 }
734
735 (*mapcount)--;
736
737 if (referenced)
738 *vm_flags |= vma->vm_flags;
739 out:
740 return referenced;
741 }
742
743 static int page_referenced_anon(struct page *page,
744 struct mem_cgroup *memcg,
745 unsigned long *vm_flags)
746 {
747 unsigned int mapcount;
748 struct anon_vma *anon_vma;
749 pgoff_t pgoff;
750 struct anon_vma_chain *avc;
751 int referenced = 0;
752
753 anon_vma = page_lock_anon_vma_read(page);
754 if (!anon_vma)
755 return referenced;
756
757 mapcount = page_mapcount(page);
758 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
759 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
760 struct vm_area_struct *vma = avc->vma;
761 unsigned long address = vma_address(page, vma);
762 /*
763 * If we are reclaiming on behalf of a cgroup, skip
764 * counting on behalf of references from different
765 * cgroups
766 */
767 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
768 continue;
769 referenced += page_referenced_one(page, vma, address,
770 &mapcount, vm_flags);
771 if (!mapcount)
772 break;
773 }
774
775 page_unlock_anon_vma_read(anon_vma);
776 return referenced;
777 }
778
779 /**
780 * page_referenced_file - referenced check for object-based rmap
781 * @page: the page we're checking references on.
782 * @memcg: target memory control group
783 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
784 *
785 * For an object-based mapped page, find all the places it is mapped and
786 * check/clear the referenced flag. This is done by following the page->mapping
787 * pointer, then walking the chain of vmas it holds. It returns the number
788 * of references it found.
789 *
790 * This function is only called from page_referenced for object-based pages.
791 */
792 static int page_referenced_file(struct page *page,
793 struct mem_cgroup *memcg,
794 unsigned long *vm_flags)
795 {
796 unsigned int mapcount;
797 struct address_space *mapping = page->mapping;
798 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
799 struct vm_area_struct *vma;
800 int referenced = 0;
801
802 /*
803 * The caller's checks on page->mapping and !PageAnon have made
804 * sure that this is a file page: the check for page->mapping
805 * excludes the case just before it gets set on an anon page.
806 */
807 BUG_ON(PageAnon(page));
808
809 /*
810 * The page lock not only makes sure that page->mapping cannot
811 * suddenly be NULLified by truncation, it makes sure that the
812 * structure at mapping cannot be freed and reused yet,
813 * so we can safely take mapping->i_mmap_mutex.
814 */
815 BUG_ON(!PageLocked(page));
816
817 mutex_lock(&mapping->i_mmap_mutex);
818
819 /*
820 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
821 * is more likely to be accurate if we note it after spinning.
822 */
823 mapcount = page_mapcount(page);
824
825 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
826 unsigned long address = vma_address(page, vma);
827 /*
828 * If we are reclaiming on behalf of a cgroup, skip
829 * counting on behalf of references from different
830 * cgroups
831 */
832 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
833 continue;
834 referenced += page_referenced_one(page, vma, address,
835 &mapcount, vm_flags);
836 if (!mapcount)
837 break;
838 }
839
840 mutex_unlock(&mapping->i_mmap_mutex);
841 return referenced;
842 }
843
844 /**
845 * page_referenced - test if the page was referenced
846 * @page: the page to test
847 * @is_locked: caller holds lock on the page
848 * @memcg: target memory cgroup
849 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
850 *
851 * Quick test_and_clear_referenced for all mappings to a page,
852 * returns the number of ptes which referenced the page.
853 */
854 int page_referenced(struct page *page,
855 int is_locked,
856 struct mem_cgroup *memcg,
857 unsigned long *vm_flags)
858 {
859 int referenced = 0;
860 int we_locked = 0;
861
862 *vm_flags = 0;
863 if (page_mapped(page) && page_rmapping(page)) {
864 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
865 we_locked = trylock_page(page);
866 if (!we_locked) {
867 referenced++;
868 goto out;
869 }
870 }
871 if (unlikely(PageKsm(page)))
872 referenced += page_referenced_ksm(page, memcg,
873 vm_flags);
874 else if (PageAnon(page))
875 referenced += page_referenced_anon(page, memcg,
876 vm_flags);
877 else if (page->mapping)
878 referenced += page_referenced_file(page, memcg,
879 vm_flags);
880 if (we_locked)
881 unlock_page(page);
882
883 if (page_test_and_clear_young(page_to_pfn(page)))
884 referenced++;
885 }
886 out:
887 return referenced;
888 }
889
890 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
891 unsigned long address)
892 {
893 struct mm_struct *mm = vma->vm_mm;
894 pte_t *pte;
895 spinlock_t *ptl;
896 int ret = 0;
897
898 pte = page_check_address(page, mm, address, &ptl, 1);
899 if (!pte)
900 goto out;
901
902 if (pte_dirty(*pte) || pte_write(*pte)) {
903 pte_t entry;
904
905 flush_cache_page(vma, address, pte_pfn(*pte));
906 entry = ptep_clear_flush(vma, address, pte);
907 entry = pte_wrprotect(entry);
908 entry = pte_mkclean(entry);
909 set_pte_at(mm, address, pte, entry);
910 ret = 1;
911 }
912
913 pte_unmap_unlock(pte, ptl);
914
915 if (ret)
916 mmu_notifier_invalidate_page(mm, address);
917 out:
918 return ret;
919 }
920
921 static int page_mkclean_file(struct address_space *mapping, struct page *page)
922 {
923 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
924 struct vm_area_struct *vma;
925 int ret = 0;
926
927 BUG_ON(PageAnon(page));
928
929 mutex_lock(&mapping->i_mmap_mutex);
930 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
931 if (vma->vm_flags & VM_SHARED) {
932 unsigned long address = vma_address(page, vma);
933 ret += page_mkclean_one(page, vma, address);
934 }
935 }
936 mutex_unlock(&mapping->i_mmap_mutex);
937 return ret;
938 }
939
940 int page_mkclean(struct page *page)
941 {
942 int ret = 0;
943
944 BUG_ON(!PageLocked(page));
945
946 if (page_mapped(page)) {
947 struct address_space *mapping = page_mapping(page);
948 if (mapping)
949 ret = page_mkclean_file(mapping, page);
950 }
951
952 return ret;
953 }
954 EXPORT_SYMBOL_GPL(page_mkclean);
955
956 /**
957 * page_move_anon_rmap - move a page to our anon_vma
958 * @page: the page to move to our anon_vma
959 * @vma: the vma the page belongs to
960 * @address: the user virtual address mapped
961 *
962 * When a page belongs exclusively to one process after a COW event,
963 * that page can be moved into the anon_vma that belongs to just that
964 * process, so the rmap code will not search the parent or sibling
965 * processes.
966 */
967 void page_move_anon_rmap(struct page *page,
968 struct vm_area_struct *vma, unsigned long address)
969 {
970 struct anon_vma *anon_vma = vma->anon_vma;
971
972 VM_BUG_ON(!PageLocked(page));
973 VM_BUG_ON(!anon_vma);
974 VM_BUG_ON(page->index != linear_page_index(vma, address));
975
976 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
977 page->mapping = (struct address_space *) anon_vma;
978 }
979
980 /**
981 * __page_set_anon_rmap - set up new anonymous rmap
982 * @page: Page to add to rmap
983 * @vma: VM area to add page to.
984 * @address: User virtual address of the mapping
985 * @exclusive: the page is exclusively owned by the current process
986 */
987 static void __page_set_anon_rmap(struct page *page,
988 struct vm_area_struct *vma, unsigned long address, int exclusive)
989 {
990 struct anon_vma *anon_vma = vma->anon_vma;
991
992 BUG_ON(!anon_vma);
993
994 if (PageAnon(page))
995 return;
996
997 /*
998 * If the page isn't exclusively mapped into this vma,
999 * we must use the _oldest_ possible anon_vma for the
1000 * page mapping!
1001 */
1002 if (!exclusive)
1003 anon_vma = anon_vma->root;
1004
1005 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1006 page->mapping = (struct address_space *) anon_vma;
1007 page->index = linear_page_index(vma, address);
1008 }
1009
1010 /**
1011 * __page_check_anon_rmap - sanity check anonymous rmap addition
1012 * @page: the page to add the mapping to
1013 * @vma: the vm area in which the mapping is added
1014 * @address: the user virtual address mapped
1015 */
1016 static void __page_check_anon_rmap(struct page *page,
1017 struct vm_area_struct *vma, unsigned long address)
1018 {
1019 #ifdef CONFIG_DEBUG_VM
1020 /*
1021 * The page's anon-rmap details (mapping and index) are guaranteed to
1022 * be set up correctly at this point.
1023 *
1024 * We have exclusion against page_add_anon_rmap because the caller
1025 * always holds the page locked, except if called from page_dup_rmap,
1026 * in which case the page is already known to be setup.
1027 *
1028 * We have exclusion against page_add_new_anon_rmap because those pages
1029 * are initially only visible via the pagetables, and the pte is locked
1030 * over the call to page_add_new_anon_rmap.
1031 */
1032 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1033 BUG_ON(page->index != linear_page_index(vma, address));
1034 #endif
1035 }
1036
1037 /**
1038 * page_add_anon_rmap - add pte mapping to an anonymous page
1039 * @page: the page to add the mapping to
1040 * @vma: the vm area in which the mapping is added
1041 * @address: the user virtual address mapped
1042 *
1043 * The caller needs to hold the pte lock, and the page must be locked in
1044 * the anon_vma case: to serialize mapping,index checking after setting,
1045 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1046 * (but PageKsm is never downgraded to PageAnon).
1047 */
1048 void page_add_anon_rmap(struct page *page,
1049 struct vm_area_struct *vma, unsigned long address)
1050 {
1051 do_page_add_anon_rmap(page, vma, address, 0);
1052 }
1053
1054 /*
1055 * Special version of the above for do_swap_page, which often runs
1056 * into pages that are exclusively owned by the current process.
1057 * Everybody else should continue to use page_add_anon_rmap above.
1058 */
1059 void do_page_add_anon_rmap(struct page *page,
1060 struct vm_area_struct *vma, unsigned long address, int exclusive)
1061 {
1062 int first = atomic_inc_and_test(&page->_mapcount);
1063 if (first) {
1064 if (!PageTransHuge(page))
1065 __inc_zone_page_state(page, NR_ANON_PAGES);
1066 else
1067 __inc_zone_page_state(page,
1068 NR_ANON_TRANSPARENT_HUGEPAGES);
1069 }
1070 if (unlikely(PageKsm(page)))
1071 return;
1072
1073 VM_BUG_ON(!PageLocked(page));
1074 /* address might be in next vma when migration races vma_adjust */
1075 if (first)
1076 __page_set_anon_rmap(page, vma, address, exclusive);
1077 else
1078 __page_check_anon_rmap(page, vma, address);
1079 }
1080
1081 /**
1082 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1083 * @page: the page to add the mapping to
1084 * @vma: the vm area in which the mapping is added
1085 * @address: the user virtual address mapped
1086 *
1087 * Same as page_add_anon_rmap but must only be called on *new* pages.
1088 * This means the inc-and-test can be bypassed.
1089 * Page does not have to be locked.
1090 */
1091 void page_add_new_anon_rmap(struct page *page,
1092 struct vm_area_struct *vma, unsigned long address)
1093 {
1094 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1095 SetPageSwapBacked(page);
1096 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1097 if (!PageTransHuge(page))
1098 __inc_zone_page_state(page, NR_ANON_PAGES);
1099 else
1100 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1101 __page_set_anon_rmap(page, vma, address, 1);
1102 if (!mlocked_vma_newpage(vma, page))
1103 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1104 else
1105 add_page_to_unevictable_list(page);
1106 }
1107
1108 /**
1109 * page_add_file_rmap - add pte mapping to a file page
1110 * @page: the page to add the mapping to
1111 *
1112 * The caller needs to hold the pte lock.
1113 */
1114 void page_add_file_rmap(struct page *page)
1115 {
1116 bool locked;
1117 unsigned long flags;
1118
1119 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1120 if (atomic_inc_and_test(&page->_mapcount)) {
1121 __inc_zone_page_state(page, NR_FILE_MAPPED);
1122 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1123 }
1124 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1125 }
1126
1127 /**
1128 * page_remove_rmap - take down pte mapping from a page
1129 * @page: page to remove mapping from
1130 *
1131 * The caller needs to hold the pte lock.
1132 */
1133 void page_remove_rmap(struct page *page)
1134 {
1135 bool anon = PageAnon(page);
1136 bool locked;
1137 unsigned long flags;
1138
1139 /*
1140 * The anon case has no mem_cgroup page_stat to update; but may
1141 * uncharge_page() below, where the lock ordering can deadlock if
1142 * we hold the lock against page_stat move: so avoid it on anon.
1143 */
1144 if (!anon)
1145 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1146
1147 /* page still mapped by someone else? */
1148 if (!atomic_add_negative(-1, &page->_mapcount))
1149 goto out;
1150
1151 /*
1152 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1153 * and not charged by memcg for now.
1154 */
1155 if (unlikely(PageHuge(page)))
1156 goto out;
1157 if (anon) {
1158 mem_cgroup_uncharge_page(page);
1159 if (!PageTransHuge(page))
1160 __dec_zone_page_state(page, NR_ANON_PAGES);
1161 else
1162 __dec_zone_page_state(page,
1163 NR_ANON_TRANSPARENT_HUGEPAGES);
1164 } else {
1165 __dec_zone_page_state(page, NR_FILE_MAPPED);
1166 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1167 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1168 }
1169 if (unlikely(PageMlocked(page)))
1170 clear_page_mlock(page);
1171 /*
1172 * It would be tidy to reset the PageAnon mapping here,
1173 * but that might overwrite a racing page_add_anon_rmap
1174 * which increments mapcount after us but sets mapping
1175 * before us: so leave the reset to free_hot_cold_page,
1176 * and remember that it's only reliable while mapped.
1177 * Leaving it set also helps swapoff to reinstate ptes
1178 * faster for those pages still in swapcache.
1179 */
1180 return;
1181 out:
1182 if (!anon)
1183 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1184 }
1185
1186 /*
1187 * Subfunctions of try_to_unmap: try_to_unmap_one called
1188 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1189 */
1190 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1191 unsigned long address, enum ttu_flags flags)
1192 {
1193 struct mm_struct *mm = vma->vm_mm;
1194 pte_t *pte;
1195 pte_t pteval;
1196 spinlock_t *ptl;
1197 int ret = SWAP_AGAIN;
1198
1199 pte = page_check_address(page, mm, address, &ptl, 0);
1200 if (!pte)
1201 goto out;
1202
1203 /*
1204 * If the page is mlock()d, we cannot swap it out.
1205 * If it's recently referenced (perhaps page_referenced
1206 * skipped over this mm) then we should reactivate it.
1207 */
1208 if (!(flags & TTU_IGNORE_MLOCK)) {
1209 if (vma->vm_flags & VM_LOCKED)
1210 goto out_mlock;
1211
1212 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1213 goto out_unmap;
1214 }
1215 if (!(flags & TTU_IGNORE_ACCESS)) {
1216 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1217 ret = SWAP_FAIL;
1218 goto out_unmap;
1219 }
1220 }
1221
1222 /* Nuke the page table entry. */
1223 flush_cache_page(vma, address, page_to_pfn(page));
1224 pteval = ptep_clear_flush(vma, address, pte);
1225
1226 /* Move the dirty bit to the physical page now the pte is gone. */
1227 if (pte_dirty(pteval))
1228 set_page_dirty(page);
1229
1230 /* Update high watermark before we lower rss */
1231 update_hiwater_rss(mm);
1232
1233 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1234 if (!PageHuge(page)) {
1235 if (PageAnon(page))
1236 dec_mm_counter(mm, MM_ANONPAGES);
1237 else
1238 dec_mm_counter(mm, MM_FILEPAGES);
1239 }
1240 set_pte_at(mm, address, pte,
1241 swp_entry_to_pte(make_hwpoison_entry(page)));
1242 } else if (PageAnon(page)) {
1243 swp_entry_t entry = { .val = page_private(page) };
1244
1245 if (PageSwapCache(page)) {
1246 /*
1247 * Store the swap location in the pte.
1248 * See handle_pte_fault() ...
1249 */
1250 if (swap_duplicate(entry) < 0) {
1251 set_pte_at(mm, address, pte, pteval);
1252 ret = SWAP_FAIL;
1253 goto out_unmap;
1254 }
1255 if (list_empty(&mm->mmlist)) {
1256 spin_lock(&mmlist_lock);
1257 if (list_empty(&mm->mmlist))
1258 list_add(&mm->mmlist, &init_mm.mmlist);
1259 spin_unlock(&mmlist_lock);
1260 }
1261 dec_mm_counter(mm, MM_ANONPAGES);
1262 inc_mm_counter(mm, MM_SWAPENTS);
1263 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1264 /*
1265 * Store the pfn of the page in a special migration
1266 * pte. do_swap_page() will wait until the migration
1267 * pte is removed and then restart fault handling.
1268 */
1269 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1270 entry = make_migration_entry(page, pte_write(pteval));
1271 }
1272 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1273 BUG_ON(pte_file(*pte));
1274 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1275 (TTU_ACTION(flags) == TTU_MIGRATION)) {
1276 /* Establish migration entry for a file page */
1277 swp_entry_t entry;
1278 entry = make_migration_entry(page, pte_write(pteval));
1279 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1280 } else
1281 dec_mm_counter(mm, MM_FILEPAGES);
1282
1283 page_remove_rmap(page);
1284 page_cache_release(page);
1285
1286 out_unmap:
1287 pte_unmap_unlock(pte, ptl);
1288 if (ret != SWAP_FAIL)
1289 mmu_notifier_invalidate_page(mm, address);
1290 out:
1291 return ret;
1292
1293 out_mlock:
1294 pte_unmap_unlock(pte, ptl);
1295
1296
1297 /*
1298 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1299 * unstable result and race. Plus, We can't wait here because
1300 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1301 * if trylock failed, the page remain in evictable lru and later
1302 * vmscan could retry to move the page to unevictable lru if the
1303 * page is actually mlocked.
1304 */
1305 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1306 if (vma->vm_flags & VM_LOCKED) {
1307 mlock_vma_page(page);
1308 ret = SWAP_MLOCK;
1309 }
1310 up_read(&vma->vm_mm->mmap_sem);
1311 }
1312 return ret;
1313 }
1314
1315 /*
1316 * objrmap doesn't work for nonlinear VMAs because the assumption that
1317 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1318 * Consequently, given a particular page and its ->index, we cannot locate the
1319 * ptes which are mapping that page without an exhaustive linear search.
1320 *
1321 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1322 * maps the file to which the target page belongs. The ->vm_private_data field
1323 * holds the current cursor into that scan. Successive searches will circulate
1324 * around the vma's virtual address space.
1325 *
1326 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1327 * more scanning pressure is placed against them as well. Eventually pages
1328 * will become fully unmapped and are eligible for eviction.
1329 *
1330 * For very sparsely populated VMAs this is a little inefficient - chances are
1331 * there there won't be many ptes located within the scan cluster. In this case
1332 * maybe we could scan further - to the end of the pte page, perhaps.
1333 *
1334 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1335 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1336 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1337 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1338 */
1339 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1340 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1341
1342 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1343 struct vm_area_struct *vma, struct page *check_page)
1344 {
1345 struct mm_struct *mm = vma->vm_mm;
1346 pmd_t *pmd;
1347 pte_t *pte;
1348 pte_t pteval;
1349 spinlock_t *ptl;
1350 struct page *page;
1351 unsigned long address;
1352 unsigned long mmun_start; /* For mmu_notifiers */
1353 unsigned long mmun_end; /* For mmu_notifiers */
1354 unsigned long end;
1355 int ret = SWAP_AGAIN;
1356 int locked_vma = 0;
1357
1358 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1359 end = address + CLUSTER_SIZE;
1360 if (address < vma->vm_start)
1361 address = vma->vm_start;
1362 if (end > vma->vm_end)
1363 end = vma->vm_end;
1364
1365 pmd = mm_find_pmd(mm, address);
1366 if (!pmd)
1367 return ret;
1368
1369 mmun_start = address;
1370 mmun_end = end;
1371 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1372
1373 /*
1374 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1375 * keep the sem while scanning the cluster for mlocking pages.
1376 */
1377 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1378 locked_vma = (vma->vm_flags & VM_LOCKED);
1379 if (!locked_vma)
1380 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1381 }
1382
1383 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1384
1385 /* Update high watermark before we lower rss */
1386 update_hiwater_rss(mm);
1387
1388 for (; address < end; pte++, address += PAGE_SIZE) {
1389 if (!pte_present(*pte))
1390 continue;
1391 page = vm_normal_page(vma, address, *pte);
1392 BUG_ON(!page || PageAnon(page));
1393
1394 if (locked_vma) {
1395 if (page == check_page) {
1396 /* we know we have check_page locked */
1397 mlock_vma_page(page);
1398 ret = SWAP_MLOCK;
1399 } else if (trylock_page(page)) {
1400 /*
1401 * If we can lock the page, perform mlock.
1402 * Otherwise leave the page alone, it will be
1403 * eventually encountered again later.
1404 */
1405 mlock_vma_page(page);
1406 unlock_page(page);
1407 }
1408 continue; /* don't unmap */
1409 }
1410
1411 if (ptep_clear_flush_young_notify(vma, address, pte))
1412 continue;
1413
1414 /* Nuke the page table entry. */
1415 flush_cache_page(vma, address, pte_pfn(*pte));
1416 pteval = ptep_clear_flush(vma, address, pte);
1417
1418 /* If nonlinear, store the file page offset in the pte. */
1419 if (page->index != linear_page_index(vma, address))
1420 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1421
1422 /* Move the dirty bit to the physical page now the pte is gone. */
1423 if (pte_dirty(pteval))
1424 set_page_dirty(page);
1425
1426 page_remove_rmap(page);
1427 page_cache_release(page);
1428 dec_mm_counter(mm, MM_FILEPAGES);
1429 (*mapcount)--;
1430 }
1431 pte_unmap_unlock(pte - 1, ptl);
1432 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1433 if (locked_vma)
1434 up_read(&vma->vm_mm->mmap_sem);
1435 return ret;
1436 }
1437
1438 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1439 {
1440 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1441
1442 if (!maybe_stack)
1443 return false;
1444
1445 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1446 VM_STACK_INCOMPLETE_SETUP)
1447 return true;
1448
1449 return false;
1450 }
1451
1452 /**
1453 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1454 * rmap method
1455 * @page: the page to unmap/unlock
1456 * @flags: action and flags
1457 *
1458 * Find all the mappings of a page using the mapping pointer and the vma chains
1459 * contained in the anon_vma struct it points to.
1460 *
1461 * This function is only called from try_to_unmap/try_to_munlock for
1462 * anonymous pages.
1463 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1464 * where the page was found will be held for write. So, we won't recheck
1465 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1466 * 'LOCKED.
1467 */
1468 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1469 {
1470 struct anon_vma *anon_vma;
1471 pgoff_t pgoff;
1472 struct anon_vma_chain *avc;
1473 int ret = SWAP_AGAIN;
1474
1475 anon_vma = page_lock_anon_vma_read(page);
1476 if (!anon_vma)
1477 return ret;
1478
1479 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1480 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1481 struct vm_area_struct *vma = avc->vma;
1482 unsigned long address;
1483
1484 /*
1485 * During exec, a temporary VMA is setup and later moved.
1486 * The VMA is moved under the anon_vma lock but not the
1487 * page tables leading to a race where migration cannot
1488 * find the migration ptes. Rather than increasing the
1489 * locking requirements of exec(), migration skips
1490 * temporary VMAs until after exec() completes.
1491 */
1492 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1493 is_vma_temporary_stack(vma))
1494 continue;
1495
1496 address = vma_address(page, vma);
1497 ret = try_to_unmap_one(page, vma, address, flags);
1498 if (ret != SWAP_AGAIN || !page_mapped(page))
1499 break;
1500 }
1501
1502 page_unlock_anon_vma_read(anon_vma);
1503 return ret;
1504 }
1505
1506 /**
1507 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1508 * @page: the page to unmap/unlock
1509 * @flags: action and flags
1510 *
1511 * Find all the mappings of a page using the mapping pointer and the vma chains
1512 * contained in the address_space struct it points to.
1513 *
1514 * This function is only called from try_to_unmap/try_to_munlock for
1515 * object-based pages.
1516 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1517 * where the page was found will be held for write. So, we won't recheck
1518 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1519 * 'LOCKED.
1520 */
1521 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1522 {
1523 struct address_space *mapping = page->mapping;
1524 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1525 struct vm_area_struct *vma;
1526 int ret = SWAP_AGAIN;
1527 unsigned long cursor;
1528 unsigned long max_nl_cursor = 0;
1529 unsigned long max_nl_size = 0;
1530 unsigned int mapcount;
1531
1532 if (PageHuge(page))
1533 pgoff = page->index << compound_order(page);
1534
1535 mutex_lock(&mapping->i_mmap_mutex);
1536 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1537 unsigned long address = vma_address(page, vma);
1538 ret = try_to_unmap_one(page, vma, address, flags);
1539 if (ret != SWAP_AGAIN || !page_mapped(page))
1540 goto out;
1541 }
1542
1543 if (list_empty(&mapping->i_mmap_nonlinear))
1544 goto out;
1545
1546 /*
1547 * We don't bother to try to find the munlocked page in nonlinears.
1548 * It's costly. Instead, later, page reclaim logic may call
1549 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1550 */
1551 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1552 goto out;
1553
1554 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1555 shared.nonlinear) {
1556 cursor = (unsigned long) vma->vm_private_data;
1557 if (cursor > max_nl_cursor)
1558 max_nl_cursor = cursor;
1559 cursor = vma->vm_end - vma->vm_start;
1560 if (cursor > max_nl_size)
1561 max_nl_size = cursor;
1562 }
1563
1564 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1565 ret = SWAP_FAIL;
1566 goto out;
1567 }
1568
1569 /*
1570 * We don't try to search for this page in the nonlinear vmas,
1571 * and page_referenced wouldn't have found it anyway. Instead
1572 * just walk the nonlinear vmas trying to age and unmap some.
1573 * The mapcount of the page we came in with is irrelevant,
1574 * but even so use it as a guide to how hard we should try?
1575 */
1576 mapcount = page_mapcount(page);
1577 if (!mapcount)
1578 goto out;
1579 cond_resched();
1580
1581 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1582 if (max_nl_cursor == 0)
1583 max_nl_cursor = CLUSTER_SIZE;
1584
1585 do {
1586 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1587 shared.nonlinear) {
1588 cursor = (unsigned long) vma->vm_private_data;
1589 while ( cursor < max_nl_cursor &&
1590 cursor < vma->vm_end - vma->vm_start) {
1591 if (try_to_unmap_cluster(cursor, &mapcount,
1592 vma, page) == SWAP_MLOCK)
1593 ret = SWAP_MLOCK;
1594 cursor += CLUSTER_SIZE;
1595 vma->vm_private_data = (void *) cursor;
1596 if ((int)mapcount <= 0)
1597 goto out;
1598 }
1599 vma->vm_private_data = (void *) max_nl_cursor;
1600 }
1601 cond_resched();
1602 max_nl_cursor += CLUSTER_SIZE;
1603 } while (max_nl_cursor <= max_nl_size);
1604
1605 /*
1606 * Don't loop forever (perhaps all the remaining pages are
1607 * in locked vmas). Reset cursor on all unreserved nonlinear
1608 * vmas, now forgetting on which ones it had fallen behind.
1609 */
1610 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1611 vma->vm_private_data = NULL;
1612 out:
1613 mutex_unlock(&mapping->i_mmap_mutex);
1614 return ret;
1615 }
1616
1617 /**
1618 * try_to_unmap - try to remove all page table mappings to a page
1619 * @page: the page to get unmapped
1620 * @flags: action and flags
1621 *
1622 * Tries to remove all the page table entries which are mapping this
1623 * page, used in the pageout path. Caller must hold the page lock.
1624 * Return values are:
1625 *
1626 * SWAP_SUCCESS - we succeeded in removing all mappings
1627 * SWAP_AGAIN - we missed a mapping, try again later
1628 * SWAP_FAIL - the page is unswappable
1629 * SWAP_MLOCK - page is mlocked.
1630 */
1631 int try_to_unmap(struct page *page, enum ttu_flags flags)
1632 {
1633 int ret;
1634
1635 BUG_ON(!PageLocked(page));
1636 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1637
1638 if (unlikely(PageKsm(page)))
1639 ret = try_to_unmap_ksm(page, flags);
1640 else if (PageAnon(page))
1641 ret = try_to_unmap_anon(page, flags);
1642 else
1643 ret = try_to_unmap_file(page, flags);
1644 if (ret != SWAP_MLOCK && !page_mapped(page))
1645 ret = SWAP_SUCCESS;
1646 return ret;
1647 }
1648
1649 /**
1650 * try_to_munlock - try to munlock a page
1651 * @page: the page to be munlocked
1652 *
1653 * Called from munlock code. Checks all of the VMAs mapping the page
1654 * to make sure nobody else has this page mlocked. The page will be
1655 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1656 *
1657 * Return values are:
1658 *
1659 * SWAP_AGAIN - no vma is holding page mlocked, or,
1660 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1661 * SWAP_FAIL - page cannot be located at present
1662 * SWAP_MLOCK - page is now mlocked.
1663 */
1664 int try_to_munlock(struct page *page)
1665 {
1666 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1667
1668 if (unlikely(PageKsm(page)))
1669 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1670 else if (PageAnon(page))
1671 return try_to_unmap_anon(page, TTU_MUNLOCK);
1672 else
1673 return try_to_unmap_file(page, TTU_MUNLOCK);
1674 }
1675
1676 void __put_anon_vma(struct anon_vma *anon_vma)
1677 {
1678 struct anon_vma *root = anon_vma->root;
1679
1680 anon_vma_free(anon_vma);
1681 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1682 anon_vma_free(root);
1683 }
1684
1685 #ifdef CONFIG_MIGRATION
1686 /*
1687 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1688 * Called by migrate.c to remove migration ptes, but might be used more later.
1689 */
1690 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1691 struct vm_area_struct *, unsigned long, void *), void *arg)
1692 {
1693 struct anon_vma *anon_vma;
1694 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1695 struct anon_vma_chain *avc;
1696 int ret = SWAP_AGAIN;
1697
1698 /*
1699 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1700 * because that depends on page_mapped(); but not all its usages
1701 * are holding mmap_sem. Users without mmap_sem are required to
1702 * take a reference count to prevent the anon_vma disappearing
1703 */
1704 anon_vma = page_anon_vma(page);
1705 if (!anon_vma)
1706 return ret;
1707 anon_vma_lock_read(anon_vma);
1708 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1709 struct vm_area_struct *vma = avc->vma;
1710 unsigned long address = vma_address(page, vma);
1711 ret = rmap_one(page, vma, address, arg);
1712 if (ret != SWAP_AGAIN)
1713 break;
1714 }
1715 anon_vma_unlock_read(anon_vma);
1716 return ret;
1717 }
1718
1719 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1720 struct vm_area_struct *, unsigned long, void *), void *arg)
1721 {
1722 struct address_space *mapping = page->mapping;
1723 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1724 struct vm_area_struct *vma;
1725 int ret = SWAP_AGAIN;
1726
1727 if (!mapping)
1728 return ret;
1729 mutex_lock(&mapping->i_mmap_mutex);
1730 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1731 unsigned long address = vma_address(page, vma);
1732 ret = rmap_one(page, vma, address, arg);
1733 if (ret != SWAP_AGAIN)
1734 break;
1735 }
1736 /*
1737 * No nonlinear handling: being always shared, nonlinear vmas
1738 * never contain migration ptes. Decide what to do about this
1739 * limitation to linear when we need rmap_walk() on nonlinear.
1740 */
1741 mutex_unlock(&mapping->i_mmap_mutex);
1742 return ret;
1743 }
1744
1745 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1746 struct vm_area_struct *, unsigned long, void *), void *arg)
1747 {
1748 VM_BUG_ON(!PageLocked(page));
1749
1750 if (unlikely(PageKsm(page)))
1751 return rmap_walk_ksm(page, rmap_one, arg);
1752 else if (PageAnon(page))
1753 return rmap_walk_anon(page, rmap_one, arg);
1754 else
1755 return rmap_walk_file(page, rmap_one, arg);
1756 }
1757 #endif /* CONFIG_MIGRATION */
1758
1759 #ifdef CONFIG_HUGETLB_PAGE
1760 /*
1761 * The following three functions are for anonymous (private mapped) hugepages.
1762 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1763 * and no lru code, because we handle hugepages differently from common pages.
1764 */
1765 static void __hugepage_set_anon_rmap(struct page *page,
1766 struct vm_area_struct *vma, unsigned long address, int exclusive)
1767 {
1768 struct anon_vma *anon_vma = vma->anon_vma;
1769
1770 BUG_ON(!anon_vma);
1771
1772 if (PageAnon(page))
1773 return;
1774 if (!exclusive)
1775 anon_vma = anon_vma->root;
1776
1777 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1778 page->mapping = (struct address_space *) anon_vma;
1779 page->index = linear_page_index(vma, address);
1780 }
1781
1782 void hugepage_add_anon_rmap(struct page *page,
1783 struct vm_area_struct *vma, unsigned long address)
1784 {
1785 struct anon_vma *anon_vma = vma->anon_vma;
1786 int first;
1787
1788 BUG_ON(!PageLocked(page));
1789 BUG_ON(!anon_vma);
1790 /* address might be in next vma when migration races vma_adjust */
1791 first = atomic_inc_and_test(&page->_mapcount);
1792 if (first)
1793 __hugepage_set_anon_rmap(page, vma, address, 0);
1794 }
1795
1796 void hugepage_add_new_anon_rmap(struct page *page,
1797 struct vm_area_struct *vma, unsigned long address)
1798 {
1799 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1800 atomic_set(&page->_mapcount, 0);
1801 __hugepage_set_anon_rmap(page, vma, address, 1);
1802 }
1803 #endif /* CONFIG_HUGETLB_PAGE */