2ee0fd313f036e8bab7af2b4d6e0ae6a8ce93378
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63
64 #include <asm/tlbflush.h>
65 #include <asm/div64.h>
66 #include "internal.h"
67
68 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
69 DEFINE_PER_CPU(int, numa_node);
70 EXPORT_PER_CPU_SYMBOL(numa_node);
71 #endif
72
73 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
74 /*
75 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
76 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
77 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
78 * defined in <linux/topology.h>.
79 */
80 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
81 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
82 #endif
83
84 /*
85 * Array of node states.
86 */
87 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
88 [N_POSSIBLE] = NODE_MASK_ALL,
89 [N_ONLINE] = { { [0] = 1UL } },
90 #ifndef CONFIG_NUMA
91 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
92 #ifdef CONFIG_HIGHMEM
93 [N_HIGH_MEMORY] = { { [0] = 1UL } },
94 #endif
95 #ifdef CONFIG_MOVABLE_NODE
96 [N_MEMORY] = { { [0] = 1UL } },
97 #endif
98 [N_CPU] = { { [0] = 1UL } },
99 #endif /* NUMA */
100 };
101 EXPORT_SYMBOL(node_states);
102
103 unsigned long totalram_pages __read_mostly;
104 unsigned long totalreserve_pages __read_mostly;
105 /*
106 * When calculating the number of globally allowed dirty pages, there
107 * is a certain number of per-zone reserves that should not be
108 * considered dirtyable memory. This is the sum of those reserves
109 * over all existing zones that contribute dirtyable memory.
110 */
111 unsigned long dirty_balance_reserve __read_mostly;
112
113 int percpu_pagelist_fraction;
114 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
115
116 #ifdef CONFIG_PM_SLEEP
117 /*
118 * The following functions are used by the suspend/hibernate code to temporarily
119 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
120 * while devices are suspended. To avoid races with the suspend/hibernate code,
121 * they should always be called with pm_mutex held (gfp_allowed_mask also should
122 * only be modified with pm_mutex held, unless the suspend/hibernate code is
123 * guaranteed not to run in parallel with that modification).
124 */
125
126 static gfp_t saved_gfp_mask;
127
128 void pm_restore_gfp_mask(void)
129 {
130 WARN_ON(!mutex_is_locked(&pm_mutex));
131 if (saved_gfp_mask) {
132 gfp_allowed_mask = saved_gfp_mask;
133 saved_gfp_mask = 0;
134 }
135 }
136
137 void pm_restrict_gfp_mask(void)
138 {
139 WARN_ON(!mutex_is_locked(&pm_mutex));
140 WARN_ON(saved_gfp_mask);
141 saved_gfp_mask = gfp_allowed_mask;
142 gfp_allowed_mask &= ~GFP_IOFS;
143 }
144
145 bool pm_suspended_storage(void)
146 {
147 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
148 return false;
149 return true;
150 }
151 #endif /* CONFIG_PM_SLEEP */
152
153 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
154 int pageblock_order __read_mostly;
155 #endif
156
157 static void __free_pages_ok(struct page *page, unsigned int order);
158
159 /*
160 * results with 256, 32 in the lowmem_reserve sysctl:
161 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
162 * 1G machine -> (16M dma, 784M normal, 224M high)
163 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
164 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
165 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
166 *
167 * TBD: should special case ZONE_DMA32 machines here - in those we normally
168 * don't need any ZONE_NORMAL reservation
169 */
170 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
171 #ifdef CONFIG_ZONE_DMA
172 256,
173 #endif
174 #ifdef CONFIG_ZONE_DMA32
175 256,
176 #endif
177 #ifdef CONFIG_HIGHMEM
178 32,
179 #endif
180 32,
181 };
182
183 EXPORT_SYMBOL(totalram_pages);
184
185 static char * const zone_names[MAX_NR_ZONES] = {
186 #ifdef CONFIG_ZONE_DMA
187 "DMA",
188 #endif
189 #ifdef CONFIG_ZONE_DMA32
190 "DMA32",
191 #endif
192 "Normal",
193 #ifdef CONFIG_HIGHMEM
194 "HighMem",
195 #endif
196 "Movable",
197 };
198
199 int min_free_kbytes = 1024;
200
201 static unsigned long __meminitdata nr_kernel_pages;
202 static unsigned long __meminitdata nr_all_pages;
203 static unsigned long __meminitdata dma_reserve;
204
205 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
206 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
207 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
208 static unsigned long __initdata required_kernelcore;
209 static unsigned long __initdata required_movablecore;
210 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
211
212 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
213 int movable_zone;
214 EXPORT_SYMBOL(movable_zone);
215 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
216
217 #if MAX_NUMNODES > 1
218 int nr_node_ids __read_mostly = MAX_NUMNODES;
219 int nr_online_nodes __read_mostly = 1;
220 EXPORT_SYMBOL(nr_node_ids);
221 EXPORT_SYMBOL(nr_online_nodes);
222 #endif
223
224 int page_group_by_mobility_disabled __read_mostly;
225
226 void set_pageblock_migratetype(struct page *page, int migratetype)
227 {
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234 }
235
236 bool oom_killer_disabled __read_mostly;
237
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
240 {
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
244 unsigned long sp, start_pfn;
245
246 do {
247 seq = zone_span_seqbegin(zone);
248 start_pfn = zone->zone_start_pfn;
249 sp = zone->spanned_pages;
250 if (!zone_spans_pfn(zone, pfn))
251 ret = 1;
252 } while (zone_span_seqretry(zone, seq));
253
254 if (ret)
255 pr_err("page %lu outside zone [ %lu - %lu ]\n",
256 pfn, start_pfn, start_pfn + sp);
257
258 return ret;
259 }
260
261 static int page_is_consistent(struct zone *zone, struct page *page)
262 {
263 if (!pfn_valid_within(page_to_pfn(page)))
264 return 0;
265 if (zone != page_zone(page))
266 return 0;
267
268 return 1;
269 }
270 /*
271 * Temporary debugging check for pages not lying within a given zone.
272 */
273 static int bad_range(struct zone *zone, struct page *page)
274 {
275 if (page_outside_zone_boundaries(zone, page))
276 return 1;
277 if (!page_is_consistent(zone, page))
278 return 1;
279
280 return 0;
281 }
282 #else
283 static inline int bad_range(struct zone *zone, struct page *page)
284 {
285 return 0;
286 }
287 #endif
288
289 static void bad_page(struct page *page)
290 {
291 static unsigned long resume;
292 static unsigned long nr_shown;
293 static unsigned long nr_unshown;
294
295 /* Don't complain about poisoned pages */
296 if (PageHWPoison(page)) {
297 page_mapcount_reset(page); /* remove PageBuddy */
298 return;
299 }
300
301 /*
302 * Allow a burst of 60 reports, then keep quiet for that minute;
303 * or allow a steady drip of one report per second.
304 */
305 if (nr_shown == 60) {
306 if (time_before(jiffies, resume)) {
307 nr_unshown++;
308 goto out;
309 }
310 if (nr_unshown) {
311 printk(KERN_ALERT
312 "BUG: Bad page state: %lu messages suppressed\n",
313 nr_unshown);
314 nr_unshown = 0;
315 }
316 nr_shown = 0;
317 }
318 if (nr_shown++ == 0)
319 resume = jiffies + 60 * HZ;
320
321 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
322 current->comm, page_to_pfn(page));
323 dump_page(page);
324
325 print_modules();
326 dump_stack();
327 out:
328 /* Leave bad fields for debug, except PageBuddy could make trouble */
329 page_mapcount_reset(page); /* remove PageBuddy */
330 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
331 }
332
333 /*
334 * Higher-order pages are called "compound pages". They are structured thusly:
335 *
336 * The first PAGE_SIZE page is called the "head page".
337 *
338 * The remaining PAGE_SIZE pages are called "tail pages".
339 *
340 * All pages have PG_compound set. All tail pages have their ->first_page
341 * pointing at the head page.
342 *
343 * The first tail page's ->lru.next holds the address of the compound page's
344 * put_page() function. Its ->lru.prev holds the order of allocation.
345 * This usage means that zero-order pages may not be compound.
346 */
347
348 static void free_compound_page(struct page *page)
349 {
350 __free_pages_ok(page, compound_order(page));
351 }
352
353 void prep_compound_page(struct page *page, unsigned long order)
354 {
355 int i;
356 int nr_pages = 1 << order;
357
358 set_compound_page_dtor(page, free_compound_page);
359 set_compound_order(page, order);
360 __SetPageHead(page);
361 for (i = 1; i < nr_pages; i++) {
362 struct page *p = page + i;
363 __SetPageTail(p);
364 set_page_count(p, 0);
365 p->first_page = page;
366 }
367 }
368
369 /* update __split_huge_page_refcount if you change this function */
370 static int destroy_compound_page(struct page *page, unsigned long order)
371 {
372 int i;
373 int nr_pages = 1 << order;
374 int bad = 0;
375
376 if (unlikely(compound_order(page) != order)) {
377 bad_page(page);
378 bad++;
379 }
380
381 __ClearPageHead(page);
382
383 for (i = 1; i < nr_pages; i++) {
384 struct page *p = page + i;
385
386 if (unlikely(!PageTail(p) || (p->first_page != page))) {
387 bad_page(page);
388 bad++;
389 }
390 __ClearPageTail(p);
391 }
392
393 return bad;
394 }
395
396 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
397 {
398 int i;
399
400 /*
401 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
402 * and __GFP_HIGHMEM from hard or soft interrupt context.
403 */
404 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
405 for (i = 0; i < (1 << order); i++)
406 clear_highpage(page + i);
407 }
408
409 #ifdef CONFIG_DEBUG_PAGEALLOC
410 unsigned int _debug_guardpage_minorder;
411
412 static int __init debug_guardpage_minorder_setup(char *buf)
413 {
414 unsigned long res;
415
416 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
417 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
418 return 0;
419 }
420 _debug_guardpage_minorder = res;
421 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
422 return 0;
423 }
424 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
425
426 static inline void set_page_guard_flag(struct page *page)
427 {
428 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
429 }
430
431 static inline void clear_page_guard_flag(struct page *page)
432 {
433 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
434 }
435 #else
436 static inline void set_page_guard_flag(struct page *page) { }
437 static inline void clear_page_guard_flag(struct page *page) { }
438 #endif
439
440 static inline void set_page_order(struct page *page, int order)
441 {
442 set_page_private(page, order);
443 __SetPageBuddy(page);
444 }
445
446 static inline void rmv_page_order(struct page *page)
447 {
448 __ClearPageBuddy(page);
449 set_page_private(page, 0);
450 }
451
452 /*
453 * Locate the struct page for both the matching buddy in our
454 * pair (buddy1) and the combined O(n+1) page they form (page).
455 *
456 * 1) Any buddy B1 will have an order O twin B2 which satisfies
457 * the following equation:
458 * B2 = B1 ^ (1 << O)
459 * For example, if the starting buddy (buddy2) is #8 its order
460 * 1 buddy is #10:
461 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
462 *
463 * 2) Any buddy B will have an order O+1 parent P which
464 * satisfies the following equation:
465 * P = B & ~(1 << O)
466 *
467 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
468 */
469 static inline unsigned long
470 __find_buddy_index(unsigned long page_idx, unsigned int order)
471 {
472 return page_idx ^ (1 << order);
473 }
474
475 /*
476 * This function checks whether a page is free && is the buddy
477 * we can do coalesce a page and its buddy if
478 * (a) the buddy is not in a hole &&
479 * (b) the buddy is in the buddy system &&
480 * (c) a page and its buddy have the same order &&
481 * (d) a page and its buddy are in the same zone.
482 *
483 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
484 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
485 *
486 * For recording page's order, we use page_private(page).
487 */
488 static inline int page_is_buddy(struct page *page, struct page *buddy,
489 int order)
490 {
491 if (!pfn_valid_within(page_to_pfn(buddy)))
492 return 0;
493
494 if (page_zone_id(page) != page_zone_id(buddy))
495 return 0;
496
497 if (page_is_guard(buddy) && page_order(buddy) == order) {
498 VM_BUG_ON(page_count(buddy) != 0);
499 return 1;
500 }
501
502 if (PageBuddy(buddy) && page_order(buddy) == order) {
503 VM_BUG_ON(page_count(buddy) != 0);
504 return 1;
505 }
506 return 0;
507 }
508
509 /*
510 * Freeing function for a buddy system allocator.
511 *
512 * The concept of a buddy system is to maintain direct-mapped table
513 * (containing bit values) for memory blocks of various "orders".
514 * The bottom level table contains the map for the smallest allocatable
515 * units of memory (here, pages), and each level above it describes
516 * pairs of units from the levels below, hence, "buddies".
517 * At a high level, all that happens here is marking the table entry
518 * at the bottom level available, and propagating the changes upward
519 * as necessary, plus some accounting needed to play nicely with other
520 * parts of the VM system.
521 * At each level, we keep a list of pages, which are heads of continuous
522 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
523 * order is recorded in page_private(page) field.
524 * So when we are allocating or freeing one, we can derive the state of the
525 * other. That is, if we allocate a small block, and both were
526 * free, the remainder of the region must be split into blocks.
527 * If a block is freed, and its buddy is also free, then this
528 * triggers coalescing into a block of larger size.
529 *
530 * -- nyc
531 */
532
533 static inline void __free_one_page(struct page *page,
534 struct zone *zone, unsigned int order,
535 int migratetype)
536 {
537 unsigned long page_idx;
538 unsigned long combined_idx;
539 unsigned long uninitialized_var(buddy_idx);
540 struct page *buddy;
541
542 VM_BUG_ON(!zone_is_initialized(zone));
543
544 if (unlikely(PageCompound(page)))
545 if (unlikely(destroy_compound_page(page, order)))
546 return;
547
548 VM_BUG_ON(migratetype == -1);
549
550 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
551
552 VM_BUG_ON(page_idx & ((1 << order) - 1));
553 VM_BUG_ON(bad_range(zone, page));
554
555 while (order < MAX_ORDER-1) {
556 buddy_idx = __find_buddy_index(page_idx, order);
557 buddy = page + (buddy_idx - page_idx);
558 if (!page_is_buddy(page, buddy, order))
559 break;
560 /*
561 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
562 * merge with it and move up one order.
563 */
564 if (page_is_guard(buddy)) {
565 clear_page_guard_flag(buddy);
566 set_page_private(page, 0);
567 __mod_zone_freepage_state(zone, 1 << order,
568 migratetype);
569 } else {
570 list_del(&buddy->lru);
571 zone->free_area[order].nr_free--;
572 rmv_page_order(buddy);
573 }
574 combined_idx = buddy_idx & page_idx;
575 page = page + (combined_idx - page_idx);
576 page_idx = combined_idx;
577 order++;
578 }
579 set_page_order(page, order);
580
581 /*
582 * If this is not the largest possible page, check if the buddy
583 * of the next-highest order is free. If it is, it's possible
584 * that pages are being freed that will coalesce soon. In case,
585 * that is happening, add the free page to the tail of the list
586 * so it's less likely to be used soon and more likely to be merged
587 * as a higher order page
588 */
589 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
590 struct page *higher_page, *higher_buddy;
591 combined_idx = buddy_idx & page_idx;
592 higher_page = page + (combined_idx - page_idx);
593 buddy_idx = __find_buddy_index(combined_idx, order + 1);
594 higher_buddy = higher_page + (buddy_idx - combined_idx);
595 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
596 list_add_tail(&page->lru,
597 &zone->free_area[order].free_list[migratetype]);
598 goto out;
599 }
600 }
601
602 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
603 out:
604 zone->free_area[order].nr_free++;
605 }
606
607 static inline int free_pages_check(struct page *page)
608 {
609 if (unlikely(page_mapcount(page) |
610 (page->mapping != NULL) |
611 (atomic_read(&page->_count) != 0) |
612 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
613 (mem_cgroup_bad_page_check(page)))) {
614 bad_page(page);
615 return 1;
616 }
617 page_nid_reset_last(page);
618 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
619 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
620 return 0;
621 }
622
623 /*
624 * Frees a number of pages from the PCP lists
625 * Assumes all pages on list are in same zone, and of same order.
626 * count is the number of pages to free.
627 *
628 * If the zone was previously in an "all pages pinned" state then look to
629 * see if this freeing clears that state.
630 *
631 * And clear the zone's pages_scanned counter, to hold off the "all pages are
632 * pinned" detection logic.
633 */
634 static void free_pcppages_bulk(struct zone *zone, int count,
635 struct per_cpu_pages *pcp)
636 {
637 int migratetype = 0;
638 int batch_free = 0;
639 int to_free = count;
640
641 spin_lock(&zone->lock);
642 zone->all_unreclaimable = 0;
643 zone->pages_scanned = 0;
644
645 while (to_free) {
646 struct page *page;
647 struct list_head *list;
648
649 /*
650 * Remove pages from lists in a round-robin fashion. A
651 * batch_free count is maintained that is incremented when an
652 * empty list is encountered. This is so more pages are freed
653 * off fuller lists instead of spinning excessively around empty
654 * lists
655 */
656 do {
657 batch_free++;
658 if (++migratetype == MIGRATE_PCPTYPES)
659 migratetype = 0;
660 list = &pcp->lists[migratetype];
661 } while (list_empty(list));
662
663 /* This is the only non-empty list. Free them all. */
664 if (batch_free == MIGRATE_PCPTYPES)
665 batch_free = to_free;
666
667 do {
668 int mt; /* migratetype of the to-be-freed page */
669
670 page = list_entry(list->prev, struct page, lru);
671 /* must delete as __free_one_page list manipulates */
672 list_del(&page->lru);
673 mt = get_freepage_migratetype(page);
674 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
675 __free_one_page(page, zone, 0, mt);
676 trace_mm_page_pcpu_drain(page, 0, mt);
677 if (likely(!is_migrate_isolate_page(page))) {
678 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
679 if (is_migrate_cma(mt))
680 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
681 }
682 } while (--to_free && --batch_free && !list_empty(list));
683 }
684 spin_unlock(&zone->lock);
685 }
686
687 static void free_one_page(struct zone *zone, struct page *page, int order,
688 int migratetype)
689 {
690 spin_lock(&zone->lock);
691 zone->all_unreclaimable = 0;
692 zone->pages_scanned = 0;
693
694 __free_one_page(page, zone, order, migratetype);
695 if (unlikely(!is_migrate_isolate(migratetype)))
696 __mod_zone_freepage_state(zone, 1 << order, migratetype);
697 spin_unlock(&zone->lock);
698 }
699
700 static bool free_pages_prepare(struct page *page, unsigned int order)
701 {
702 int i;
703 int bad = 0;
704
705 trace_mm_page_free(page, order);
706 kmemcheck_free_shadow(page, order);
707
708 if (PageAnon(page))
709 page->mapping = NULL;
710 for (i = 0; i < (1 << order); i++)
711 bad += free_pages_check(page + i);
712 if (bad)
713 return false;
714
715 if (!PageHighMem(page)) {
716 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
717 debug_check_no_obj_freed(page_address(page),
718 PAGE_SIZE << order);
719 }
720 arch_free_page(page, order);
721 kernel_map_pages(page, 1 << order, 0);
722
723 return true;
724 }
725
726 static void __free_pages_ok(struct page *page, unsigned int order)
727 {
728 unsigned long flags;
729 int migratetype;
730
731 if (!free_pages_prepare(page, order))
732 return;
733
734 local_irq_save(flags);
735 __count_vm_events(PGFREE, 1 << order);
736 migratetype = get_pageblock_migratetype(page);
737 set_freepage_migratetype(page, migratetype);
738 free_one_page(page_zone(page), page, order, migratetype);
739 local_irq_restore(flags);
740 }
741
742 /*
743 * Read access to zone->managed_pages is safe because it's unsigned long,
744 * but we still need to serialize writers. Currently all callers of
745 * __free_pages_bootmem() except put_page_bootmem() should only be used
746 * at boot time. So for shorter boot time, we shift the burden to
747 * put_page_bootmem() to serialize writers.
748 */
749 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
750 {
751 unsigned int nr_pages = 1 << order;
752 unsigned int loop;
753
754 prefetchw(page);
755 for (loop = 0; loop < nr_pages; loop++) {
756 struct page *p = &page[loop];
757
758 if (loop + 1 < nr_pages)
759 prefetchw(p + 1);
760 __ClearPageReserved(p);
761 set_page_count(p, 0);
762 }
763
764 page_zone(page)->managed_pages += 1 << order;
765 set_page_refcounted(page);
766 __free_pages(page, order);
767 }
768
769 #ifdef CONFIG_CMA
770 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
771 void __init init_cma_reserved_pageblock(struct page *page)
772 {
773 unsigned i = pageblock_nr_pages;
774 struct page *p = page;
775
776 do {
777 __ClearPageReserved(p);
778 set_page_count(p, 0);
779 } while (++p, --i);
780
781 set_page_refcounted(page);
782 set_pageblock_migratetype(page, MIGRATE_CMA);
783 __free_pages(page, pageblock_order);
784 totalram_pages += pageblock_nr_pages;
785 #ifdef CONFIG_HIGHMEM
786 if (PageHighMem(page))
787 totalhigh_pages += pageblock_nr_pages;
788 #endif
789 }
790 #endif
791
792 /*
793 * The order of subdivision here is critical for the IO subsystem.
794 * Please do not alter this order without good reasons and regression
795 * testing. Specifically, as large blocks of memory are subdivided,
796 * the order in which smaller blocks are delivered depends on the order
797 * they're subdivided in this function. This is the primary factor
798 * influencing the order in which pages are delivered to the IO
799 * subsystem according to empirical testing, and this is also justified
800 * by considering the behavior of a buddy system containing a single
801 * large block of memory acted on by a series of small allocations.
802 * This behavior is a critical factor in sglist merging's success.
803 *
804 * -- nyc
805 */
806 static inline void expand(struct zone *zone, struct page *page,
807 int low, int high, struct free_area *area,
808 int migratetype)
809 {
810 unsigned long size = 1 << high;
811
812 while (high > low) {
813 area--;
814 high--;
815 size >>= 1;
816 VM_BUG_ON(bad_range(zone, &page[size]));
817
818 #ifdef CONFIG_DEBUG_PAGEALLOC
819 if (high < debug_guardpage_minorder()) {
820 /*
821 * Mark as guard pages (or page), that will allow to
822 * merge back to allocator when buddy will be freed.
823 * Corresponding page table entries will not be touched,
824 * pages will stay not present in virtual address space
825 */
826 INIT_LIST_HEAD(&page[size].lru);
827 set_page_guard_flag(&page[size]);
828 set_page_private(&page[size], high);
829 /* Guard pages are not available for any usage */
830 __mod_zone_freepage_state(zone, -(1 << high),
831 migratetype);
832 continue;
833 }
834 #endif
835 list_add(&page[size].lru, &area->free_list[migratetype]);
836 area->nr_free++;
837 set_page_order(&page[size], high);
838 }
839 }
840
841 /*
842 * This page is about to be returned from the page allocator
843 */
844 static inline int check_new_page(struct page *page)
845 {
846 if (unlikely(page_mapcount(page) |
847 (page->mapping != NULL) |
848 (atomic_read(&page->_count) != 0) |
849 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
850 (mem_cgroup_bad_page_check(page)))) {
851 bad_page(page);
852 return 1;
853 }
854 return 0;
855 }
856
857 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
858 {
859 int i;
860
861 for (i = 0; i < (1 << order); i++) {
862 struct page *p = page + i;
863 if (unlikely(check_new_page(p)))
864 return 1;
865 }
866
867 set_page_private(page, 0);
868 set_page_refcounted(page);
869
870 arch_alloc_page(page, order);
871 kernel_map_pages(page, 1 << order, 1);
872
873 if (gfp_flags & __GFP_ZERO)
874 prep_zero_page(page, order, gfp_flags);
875
876 if (order && (gfp_flags & __GFP_COMP))
877 prep_compound_page(page, order);
878
879 return 0;
880 }
881
882 /*
883 * Go through the free lists for the given migratetype and remove
884 * the smallest available page from the freelists
885 */
886 static inline
887 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
888 int migratetype)
889 {
890 unsigned int current_order;
891 struct free_area * area;
892 struct page *page;
893
894 /* Find a page of the appropriate size in the preferred list */
895 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
896 area = &(zone->free_area[current_order]);
897 if (list_empty(&area->free_list[migratetype]))
898 continue;
899
900 page = list_entry(area->free_list[migratetype].next,
901 struct page, lru);
902 list_del(&page->lru);
903 rmv_page_order(page);
904 area->nr_free--;
905 expand(zone, page, order, current_order, area, migratetype);
906 return page;
907 }
908
909 return NULL;
910 }
911
912
913 /*
914 * This array describes the order lists are fallen back to when
915 * the free lists for the desirable migrate type are depleted
916 */
917 static int fallbacks[MIGRATE_TYPES][4] = {
918 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
919 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
920 #ifdef CONFIG_CMA
921 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
922 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
923 #else
924 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
925 #endif
926 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
927 #ifdef CONFIG_MEMORY_ISOLATION
928 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
929 #endif
930 };
931
932 /*
933 * Move the free pages in a range to the free lists of the requested type.
934 * Note that start_page and end_pages are not aligned on a pageblock
935 * boundary. If alignment is required, use move_freepages_block()
936 */
937 int move_freepages(struct zone *zone,
938 struct page *start_page, struct page *end_page,
939 int migratetype)
940 {
941 struct page *page;
942 unsigned long order;
943 int pages_moved = 0;
944
945 #ifndef CONFIG_HOLES_IN_ZONE
946 /*
947 * page_zone is not safe to call in this context when
948 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
949 * anyway as we check zone boundaries in move_freepages_block().
950 * Remove at a later date when no bug reports exist related to
951 * grouping pages by mobility
952 */
953 BUG_ON(page_zone(start_page) != page_zone(end_page));
954 #endif
955
956 for (page = start_page; page <= end_page;) {
957 /* Make sure we are not inadvertently changing nodes */
958 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
959
960 if (!pfn_valid_within(page_to_pfn(page))) {
961 page++;
962 continue;
963 }
964
965 if (!PageBuddy(page)) {
966 page++;
967 continue;
968 }
969
970 order = page_order(page);
971 list_move(&page->lru,
972 &zone->free_area[order].free_list[migratetype]);
973 set_freepage_migratetype(page, migratetype);
974 page += 1 << order;
975 pages_moved += 1 << order;
976 }
977
978 return pages_moved;
979 }
980
981 int move_freepages_block(struct zone *zone, struct page *page,
982 int migratetype)
983 {
984 unsigned long start_pfn, end_pfn;
985 struct page *start_page, *end_page;
986
987 start_pfn = page_to_pfn(page);
988 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
989 start_page = pfn_to_page(start_pfn);
990 end_page = start_page + pageblock_nr_pages - 1;
991 end_pfn = start_pfn + pageblock_nr_pages - 1;
992
993 /* Do not cross zone boundaries */
994 if (!zone_spans_pfn(zone, start_pfn))
995 start_page = page;
996 if (!zone_spans_pfn(zone, end_pfn))
997 return 0;
998
999 return move_freepages(zone, start_page, end_page, migratetype);
1000 }
1001
1002 static void change_pageblock_range(struct page *pageblock_page,
1003 int start_order, int migratetype)
1004 {
1005 int nr_pageblocks = 1 << (start_order - pageblock_order);
1006
1007 while (nr_pageblocks--) {
1008 set_pageblock_migratetype(pageblock_page, migratetype);
1009 pageblock_page += pageblock_nr_pages;
1010 }
1011 }
1012
1013 /* Remove an element from the buddy allocator from the fallback list */
1014 static inline struct page *
1015 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1016 {
1017 struct free_area * area;
1018 int current_order;
1019 struct page *page;
1020 int migratetype, i;
1021
1022 /* Find the largest possible block of pages in the other list */
1023 for (current_order = MAX_ORDER-1; current_order >= order;
1024 --current_order) {
1025 for (i = 0;; i++) {
1026 migratetype = fallbacks[start_migratetype][i];
1027
1028 /* MIGRATE_RESERVE handled later if necessary */
1029 if (migratetype == MIGRATE_RESERVE)
1030 break;
1031
1032 area = &(zone->free_area[current_order]);
1033 if (list_empty(&area->free_list[migratetype]))
1034 continue;
1035
1036 page = list_entry(area->free_list[migratetype].next,
1037 struct page, lru);
1038 area->nr_free--;
1039
1040 /*
1041 * If breaking a large block of pages, move all free
1042 * pages to the preferred allocation list. If falling
1043 * back for a reclaimable kernel allocation, be more
1044 * aggressive about taking ownership of free pages
1045 *
1046 * On the other hand, never change migration
1047 * type of MIGRATE_CMA pageblocks nor move CMA
1048 * pages on different free lists. We don't
1049 * want unmovable pages to be allocated from
1050 * MIGRATE_CMA areas.
1051 */
1052 if (!is_migrate_cma(migratetype) &&
1053 (unlikely(current_order >= pageblock_order / 2) ||
1054 start_migratetype == MIGRATE_RECLAIMABLE ||
1055 page_group_by_mobility_disabled)) {
1056 int pages;
1057 pages = move_freepages_block(zone, page,
1058 start_migratetype);
1059
1060 /* Claim the whole block if over half of it is free */
1061 if (pages >= (1 << (pageblock_order-1)) ||
1062 page_group_by_mobility_disabled)
1063 set_pageblock_migratetype(page,
1064 start_migratetype);
1065
1066 migratetype = start_migratetype;
1067 }
1068
1069 /* Remove the page from the freelists */
1070 list_del(&page->lru);
1071 rmv_page_order(page);
1072
1073 /* Take ownership for orders >= pageblock_order */
1074 if (current_order >= pageblock_order &&
1075 !is_migrate_cma(migratetype))
1076 change_pageblock_range(page, current_order,
1077 start_migratetype);
1078
1079 expand(zone, page, order, current_order, area,
1080 is_migrate_cma(migratetype)
1081 ? migratetype : start_migratetype);
1082
1083 trace_mm_page_alloc_extfrag(page, order, current_order,
1084 start_migratetype, migratetype);
1085
1086 return page;
1087 }
1088 }
1089
1090 return NULL;
1091 }
1092
1093 /*
1094 * Do the hard work of removing an element from the buddy allocator.
1095 * Call me with the zone->lock already held.
1096 */
1097 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1098 int migratetype)
1099 {
1100 struct page *page;
1101
1102 retry_reserve:
1103 page = __rmqueue_smallest(zone, order, migratetype);
1104
1105 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1106 page = __rmqueue_fallback(zone, order, migratetype);
1107
1108 /*
1109 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1110 * is used because __rmqueue_smallest is an inline function
1111 * and we want just one call site
1112 */
1113 if (!page) {
1114 migratetype = MIGRATE_RESERVE;
1115 goto retry_reserve;
1116 }
1117 }
1118
1119 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1120 return page;
1121 }
1122
1123 /*
1124 * Obtain a specified number of elements from the buddy allocator, all under
1125 * a single hold of the lock, for efficiency. Add them to the supplied list.
1126 * Returns the number of new pages which were placed at *list.
1127 */
1128 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1129 unsigned long count, struct list_head *list,
1130 int migratetype, int cold)
1131 {
1132 int mt = migratetype, i;
1133
1134 spin_lock(&zone->lock);
1135 for (i = 0; i < count; ++i) {
1136 struct page *page = __rmqueue(zone, order, migratetype);
1137 if (unlikely(page == NULL))
1138 break;
1139
1140 /*
1141 * Split buddy pages returned by expand() are received here
1142 * in physical page order. The page is added to the callers and
1143 * list and the list head then moves forward. From the callers
1144 * perspective, the linked list is ordered by page number in
1145 * some conditions. This is useful for IO devices that can
1146 * merge IO requests if the physical pages are ordered
1147 * properly.
1148 */
1149 if (likely(cold == 0))
1150 list_add(&page->lru, list);
1151 else
1152 list_add_tail(&page->lru, list);
1153 if (IS_ENABLED(CONFIG_CMA)) {
1154 mt = get_pageblock_migratetype(page);
1155 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1156 mt = migratetype;
1157 }
1158 set_freepage_migratetype(page, mt);
1159 list = &page->lru;
1160 if (is_migrate_cma(mt))
1161 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1162 -(1 << order));
1163 }
1164 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1165 spin_unlock(&zone->lock);
1166 return i;
1167 }
1168
1169 #ifdef CONFIG_NUMA
1170 /*
1171 * Called from the vmstat counter updater to drain pagesets of this
1172 * currently executing processor on remote nodes after they have
1173 * expired.
1174 *
1175 * Note that this function must be called with the thread pinned to
1176 * a single processor.
1177 */
1178 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1179 {
1180 unsigned long flags;
1181 int to_drain;
1182
1183 local_irq_save(flags);
1184 if (pcp->count >= pcp->batch)
1185 to_drain = pcp->batch;
1186 else
1187 to_drain = pcp->count;
1188 if (to_drain > 0) {
1189 free_pcppages_bulk(zone, to_drain, pcp);
1190 pcp->count -= to_drain;
1191 }
1192 local_irq_restore(flags);
1193 }
1194 #endif
1195
1196 /*
1197 * Drain pages of the indicated processor.
1198 *
1199 * The processor must either be the current processor and the
1200 * thread pinned to the current processor or a processor that
1201 * is not online.
1202 */
1203 static void drain_pages(unsigned int cpu)
1204 {
1205 unsigned long flags;
1206 struct zone *zone;
1207
1208 for_each_populated_zone(zone) {
1209 struct per_cpu_pageset *pset;
1210 struct per_cpu_pages *pcp;
1211
1212 local_irq_save(flags);
1213 pset = per_cpu_ptr(zone->pageset, cpu);
1214
1215 pcp = &pset->pcp;
1216 if (pcp->count) {
1217 free_pcppages_bulk(zone, pcp->count, pcp);
1218 pcp->count = 0;
1219 }
1220 local_irq_restore(flags);
1221 }
1222 }
1223
1224 /*
1225 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1226 */
1227 void drain_local_pages(void *arg)
1228 {
1229 drain_pages(smp_processor_id());
1230 }
1231
1232 /*
1233 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1234 *
1235 * Note that this code is protected against sending an IPI to an offline
1236 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1237 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1238 * nothing keeps CPUs from showing up after we populated the cpumask and
1239 * before the call to on_each_cpu_mask().
1240 */
1241 void drain_all_pages(void)
1242 {
1243 int cpu;
1244 struct per_cpu_pageset *pcp;
1245 struct zone *zone;
1246
1247 /*
1248 * Allocate in the BSS so we wont require allocation in
1249 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1250 */
1251 static cpumask_t cpus_with_pcps;
1252
1253 /*
1254 * We don't care about racing with CPU hotplug event
1255 * as offline notification will cause the notified
1256 * cpu to drain that CPU pcps and on_each_cpu_mask
1257 * disables preemption as part of its processing
1258 */
1259 for_each_online_cpu(cpu) {
1260 bool has_pcps = false;
1261 for_each_populated_zone(zone) {
1262 pcp = per_cpu_ptr(zone->pageset, cpu);
1263 if (pcp->pcp.count) {
1264 has_pcps = true;
1265 break;
1266 }
1267 }
1268 if (has_pcps)
1269 cpumask_set_cpu(cpu, &cpus_with_pcps);
1270 else
1271 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1272 }
1273 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1274 }
1275
1276 #ifdef CONFIG_HIBERNATION
1277
1278 void mark_free_pages(struct zone *zone)
1279 {
1280 unsigned long pfn, max_zone_pfn;
1281 unsigned long flags;
1282 int order, t;
1283 struct list_head *curr;
1284
1285 if (!zone->spanned_pages)
1286 return;
1287
1288 spin_lock_irqsave(&zone->lock, flags);
1289
1290 max_zone_pfn = zone_end_pfn(zone);
1291 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1292 if (pfn_valid(pfn)) {
1293 struct page *page = pfn_to_page(pfn);
1294
1295 if (!swsusp_page_is_forbidden(page))
1296 swsusp_unset_page_free(page);
1297 }
1298
1299 for_each_migratetype_order(order, t) {
1300 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1301 unsigned long i;
1302
1303 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1304 for (i = 0; i < (1UL << order); i++)
1305 swsusp_set_page_free(pfn_to_page(pfn + i));
1306 }
1307 }
1308 spin_unlock_irqrestore(&zone->lock, flags);
1309 }
1310 #endif /* CONFIG_PM */
1311
1312 /*
1313 * Free a 0-order page
1314 * cold == 1 ? free a cold page : free a hot page
1315 */
1316 void free_hot_cold_page(struct page *page, int cold)
1317 {
1318 struct zone *zone = page_zone(page);
1319 struct per_cpu_pages *pcp;
1320 unsigned long flags;
1321 int migratetype;
1322
1323 if (!free_pages_prepare(page, 0))
1324 return;
1325
1326 migratetype = get_pageblock_migratetype(page);
1327 set_freepage_migratetype(page, migratetype);
1328 local_irq_save(flags);
1329 __count_vm_event(PGFREE);
1330
1331 /*
1332 * We only track unmovable, reclaimable and movable on pcp lists.
1333 * Free ISOLATE pages back to the allocator because they are being
1334 * offlined but treat RESERVE as movable pages so we can get those
1335 * areas back if necessary. Otherwise, we may have to free
1336 * excessively into the page allocator
1337 */
1338 if (migratetype >= MIGRATE_PCPTYPES) {
1339 if (unlikely(is_migrate_isolate(migratetype))) {
1340 free_one_page(zone, page, 0, migratetype);
1341 goto out;
1342 }
1343 migratetype = MIGRATE_MOVABLE;
1344 }
1345
1346 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1347 if (cold)
1348 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1349 else
1350 list_add(&page->lru, &pcp->lists[migratetype]);
1351 pcp->count++;
1352 if (pcp->count >= pcp->high) {
1353 free_pcppages_bulk(zone, pcp->batch, pcp);
1354 pcp->count -= pcp->batch;
1355 }
1356
1357 out:
1358 local_irq_restore(flags);
1359 }
1360
1361 /*
1362 * Free a list of 0-order pages
1363 */
1364 void free_hot_cold_page_list(struct list_head *list, int cold)
1365 {
1366 struct page *page, *next;
1367
1368 list_for_each_entry_safe(page, next, list, lru) {
1369 trace_mm_page_free_batched(page, cold);
1370 free_hot_cold_page(page, cold);
1371 }
1372 }
1373
1374 /*
1375 * split_page takes a non-compound higher-order page, and splits it into
1376 * n (1<<order) sub-pages: page[0..n]
1377 * Each sub-page must be freed individually.
1378 *
1379 * Note: this is probably too low level an operation for use in drivers.
1380 * Please consult with lkml before using this in your driver.
1381 */
1382 void split_page(struct page *page, unsigned int order)
1383 {
1384 int i;
1385
1386 VM_BUG_ON(PageCompound(page));
1387 VM_BUG_ON(!page_count(page));
1388
1389 #ifdef CONFIG_KMEMCHECK
1390 /*
1391 * Split shadow pages too, because free(page[0]) would
1392 * otherwise free the whole shadow.
1393 */
1394 if (kmemcheck_page_is_tracked(page))
1395 split_page(virt_to_page(page[0].shadow), order);
1396 #endif
1397
1398 for (i = 1; i < (1 << order); i++)
1399 set_page_refcounted(page + i);
1400 }
1401 EXPORT_SYMBOL_GPL(split_page);
1402
1403 static int __isolate_free_page(struct page *page, unsigned int order)
1404 {
1405 unsigned long watermark;
1406 struct zone *zone;
1407 int mt;
1408
1409 BUG_ON(!PageBuddy(page));
1410
1411 zone = page_zone(page);
1412 mt = get_pageblock_migratetype(page);
1413
1414 if (!is_migrate_isolate(mt)) {
1415 /* Obey watermarks as if the page was being allocated */
1416 watermark = low_wmark_pages(zone) + (1 << order);
1417 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1418 return 0;
1419
1420 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1421 }
1422
1423 /* Remove page from free list */
1424 list_del(&page->lru);
1425 zone->free_area[order].nr_free--;
1426 rmv_page_order(page);
1427
1428 /* Set the pageblock if the isolated page is at least a pageblock */
1429 if (order >= pageblock_order - 1) {
1430 struct page *endpage = page + (1 << order) - 1;
1431 for (; page < endpage; page += pageblock_nr_pages) {
1432 int mt = get_pageblock_migratetype(page);
1433 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1434 set_pageblock_migratetype(page,
1435 MIGRATE_MOVABLE);
1436 }
1437 }
1438
1439 return 1UL << order;
1440 }
1441
1442 /*
1443 * Similar to split_page except the page is already free. As this is only
1444 * being used for migration, the migratetype of the block also changes.
1445 * As this is called with interrupts disabled, the caller is responsible
1446 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1447 * are enabled.
1448 *
1449 * Note: this is probably too low level an operation for use in drivers.
1450 * Please consult with lkml before using this in your driver.
1451 */
1452 int split_free_page(struct page *page)
1453 {
1454 unsigned int order;
1455 int nr_pages;
1456
1457 order = page_order(page);
1458
1459 nr_pages = __isolate_free_page(page, order);
1460 if (!nr_pages)
1461 return 0;
1462
1463 /* Split into individual pages */
1464 set_page_refcounted(page);
1465 split_page(page, order);
1466 return nr_pages;
1467 }
1468
1469 /*
1470 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1471 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1472 * or two.
1473 */
1474 static inline
1475 struct page *buffered_rmqueue(struct zone *preferred_zone,
1476 struct zone *zone, int order, gfp_t gfp_flags,
1477 int migratetype)
1478 {
1479 unsigned long flags;
1480 struct page *page;
1481 int cold = !!(gfp_flags & __GFP_COLD);
1482
1483 again:
1484 if (likely(order == 0)) {
1485 struct per_cpu_pages *pcp;
1486 struct list_head *list;
1487
1488 local_irq_save(flags);
1489 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1490 list = &pcp->lists[migratetype];
1491 if (list_empty(list)) {
1492 pcp->count += rmqueue_bulk(zone, 0,
1493 pcp->batch, list,
1494 migratetype, cold);
1495 if (unlikely(list_empty(list)))
1496 goto failed;
1497 }
1498
1499 if (cold)
1500 page = list_entry(list->prev, struct page, lru);
1501 else
1502 page = list_entry(list->next, struct page, lru);
1503
1504 list_del(&page->lru);
1505 pcp->count--;
1506 } else {
1507 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1508 /*
1509 * __GFP_NOFAIL is not to be used in new code.
1510 *
1511 * All __GFP_NOFAIL callers should be fixed so that they
1512 * properly detect and handle allocation failures.
1513 *
1514 * We most definitely don't want callers attempting to
1515 * allocate greater than order-1 page units with
1516 * __GFP_NOFAIL.
1517 */
1518 WARN_ON_ONCE(order > 1);
1519 }
1520 spin_lock_irqsave(&zone->lock, flags);
1521 page = __rmqueue(zone, order, migratetype);
1522 spin_unlock(&zone->lock);
1523 if (!page)
1524 goto failed;
1525 __mod_zone_freepage_state(zone, -(1 << order),
1526 get_pageblock_migratetype(page));
1527 }
1528
1529 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1530 zone_statistics(preferred_zone, zone, gfp_flags);
1531 local_irq_restore(flags);
1532
1533 VM_BUG_ON(bad_range(zone, page));
1534 if (prep_new_page(page, order, gfp_flags))
1535 goto again;
1536 return page;
1537
1538 failed:
1539 local_irq_restore(flags);
1540 return NULL;
1541 }
1542
1543 #ifdef CONFIG_FAIL_PAGE_ALLOC
1544
1545 static struct {
1546 struct fault_attr attr;
1547
1548 u32 ignore_gfp_highmem;
1549 u32 ignore_gfp_wait;
1550 u32 min_order;
1551 } fail_page_alloc = {
1552 .attr = FAULT_ATTR_INITIALIZER,
1553 .ignore_gfp_wait = 1,
1554 .ignore_gfp_highmem = 1,
1555 .min_order = 1,
1556 };
1557
1558 static int __init setup_fail_page_alloc(char *str)
1559 {
1560 return setup_fault_attr(&fail_page_alloc.attr, str);
1561 }
1562 __setup("fail_page_alloc=", setup_fail_page_alloc);
1563
1564 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1565 {
1566 if (order < fail_page_alloc.min_order)
1567 return false;
1568 if (gfp_mask & __GFP_NOFAIL)
1569 return false;
1570 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1571 return false;
1572 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1573 return false;
1574
1575 return should_fail(&fail_page_alloc.attr, 1 << order);
1576 }
1577
1578 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1579
1580 static int __init fail_page_alloc_debugfs(void)
1581 {
1582 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1583 struct dentry *dir;
1584
1585 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1586 &fail_page_alloc.attr);
1587 if (IS_ERR(dir))
1588 return PTR_ERR(dir);
1589
1590 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1591 &fail_page_alloc.ignore_gfp_wait))
1592 goto fail;
1593 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1594 &fail_page_alloc.ignore_gfp_highmem))
1595 goto fail;
1596 if (!debugfs_create_u32("min-order", mode, dir,
1597 &fail_page_alloc.min_order))
1598 goto fail;
1599
1600 return 0;
1601 fail:
1602 debugfs_remove_recursive(dir);
1603
1604 return -ENOMEM;
1605 }
1606
1607 late_initcall(fail_page_alloc_debugfs);
1608
1609 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1610
1611 #else /* CONFIG_FAIL_PAGE_ALLOC */
1612
1613 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1614 {
1615 return false;
1616 }
1617
1618 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1619
1620 /*
1621 * Return true if free pages are above 'mark'. This takes into account the order
1622 * of the allocation.
1623 */
1624 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1625 int classzone_idx, int alloc_flags, long free_pages)
1626 {
1627 /* free_pages my go negative - that's OK */
1628 long min = mark;
1629 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1630 int o;
1631 long free_cma = 0;
1632
1633 free_pages -= (1 << order) - 1;
1634 if (alloc_flags & ALLOC_HIGH)
1635 min -= min / 2;
1636 if (alloc_flags & ALLOC_HARDER)
1637 min -= min / 4;
1638 #ifdef CONFIG_CMA
1639 /* If allocation can't use CMA areas don't use free CMA pages */
1640 if (!(alloc_flags & ALLOC_CMA))
1641 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1642 #endif
1643
1644 if (free_pages - free_cma <= min + lowmem_reserve)
1645 return false;
1646 for (o = 0; o < order; o++) {
1647 /* At the next order, this order's pages become unavailable */
1648 free_pages -= z->free_area[o].nr_free << o;
1649
1650 /* Require fewer higher order pages to be free */
1651 min >>= 1;
1652
1653 if (free_pages <= min)
1654 return false;
1655 }
1656 return true;
1657 }
1658
1659 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1660 int classzone_idx, int alloc_flags)
1661 {
1662 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1663 zone_page_state(z, NR_FREE_PAGES));
1664 }
1665
1666 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1667 int classzone_idx, int alloc_flags)
1668 {
1669 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1670
1671 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1672 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1673
1674 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1675 free_pages);
1676 }
1677
1678 #ifdef CONFIG_NUMA
1679 /*
1680 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1681 * skip over zones that are not allowed by the cpuset, or that have
1682 * been recently (in last second) found to be nearly full. See further
1683 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1684 * that have to skip over a lot of full or unallowed zones.
1685 *
1686 * If the zonelist cache is present in the passed in zonelist, then
1687 * returns a pointer to the allowed node mask (either the current
1688 * tasks mems_allowed, or node_states[N_MEMORY].)
1689 *
1690 * If the zonelist cache is not available for this zonelist, does
1691 * nothing and returns NULL.
1692 *
1693 * If the fullzones BITMAP in the zonelist cache is stale (more than
1694 * a second since last zap'd) then we zap it out (clear its bits.)
1695 *
1696 * We hold off even calling zlc_setup, until after we've checked the
1697 * first zone in the zonelist, on the theory that most allocations will
1698 * be satisfied from that first zone, so best to examine that zone as
1699 * quickly as we can.
1700 */
1701 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1702 {
1703 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1704 nodemask_t *allowednodes; /* zonelist_cache approximation */
1705
1706 zlc = zonelist->zlcache_ptr;
1707 if (!zlc)
1708 return NULL;
1709
1710 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1711 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1712 zlc->last_full_zap = jiffies;
1713 }
1714
1715 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1716 &cpuset_current_mems_allowed :
1717 &node_states[N_MEMORY];
1718 return allowednodes;
1719 }
1720
1721 /*
1722 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1723 * if it is worth looking at further for free memory:
1724 * 1) Check that the zone isn't thought to be full (doesn't have its
1725 * bit set in the zonelist_cache fullzones BITMAP).
1726 * 2) Check that the zones node (obtained from the zonelist_cache
1727 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1728 * Return true (non-zero) if zone is worth looking at further, or
1729 * else return false (zero) if it is not.
1730 *
1731 * This check -ignores- the distinction between various watermarks,
1732 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1733 * found to be full for any variation of these watermarks, it will
1734 * be considered full for up to one second by all requests, unless
1735 * we are so low on memory on all allowed nodes that we are forced
1736 * into the second scan of the zonelist.
1737 *
1738 * In the second scan we ignore this zonelist cache and exactly
1739 * apply the watermarks to all zones, even it is slower to do so.
1740 * We are low on memory in the second scan, and should leave no stone
1741 * unturned looking for a free page.
1742 */
1743 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1744 nodemask_t *allowednodes)
1745 {
1746 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1747 int i; /* index of *z in zonelist zones */
1748 int n; /* node that zone *z is on */
1749
1750 zlc = zonelist->zlcache_ptr;
1751 if (!zlc)
1752 return 1;
1753
1754 i = z - zonelist->_zonerefs;
1755 n = zlc->z_to_n[i];
1756
1757 /* This zone is worth trying if it is allowed but not full */
1758 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1759 }
1760
1761 /*
1762 * Given 'z' scanning a zonelist, set the corresponding bit in
1763 * zlc->fullzones, so that subsequent attempts to allocate a page
1764 * from that zone don't waste time re-examining it.
1765 */
1766 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1767 {
1768 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1769 int i; /* index of *z in zonelist zones */
1770
1771 zlc = zonelist->zlcache_ptr;
1772 if (!zlc)
1773 return;
1774
1775 i = z - zonelist->_zonerefs;
1776
1777 set_bit(i, zlc->fullzones);
1778 }
1779
1780 /*
1781 * clear all zones full, called after direct reclaim makes progress so that
1782 * a zone that was recently full is not skipped over for up to a second
1783 */
1784 static void zlc_clear_zones_full(struct zonelist *zonelist)
1785 {
1786 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1787
1788 zlc = zonelist->zlcache_ptr;
1789 if (!zlc)
1790 return;
1791
1792 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1793 }
1794
1795 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1796 {
1797 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1798 }
1799
1800 static void __paginginit init_zone_allows_reclaim(int nid)
1801 {
1802 int i;
1803
1804 for_each_online_node(i)
1805 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1806 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1807 else
1808 zone_reclaim_mode = 1;
1809 }
1810
1811 #else /* CONFIG_NUMA */
1812
1813 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1814 {
1815 return NULL;
1816 }
1817
1818 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1819 nodemask_t *allowednodes)
1820 {
1821 return 1;
1822 }
1823
1824 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1825 {
1826 }
1827
1828 static void zlc_clear_zones_full(struct zonelist *zonelist)
1829 {
1830 }
1831
1832 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1833 {
1834 return true;
1835 }
1836
1837 static inline void init_zone_allows_reclaim(int nid)
1838 {
1839 }
1840 #endif /* CONFIG_NUMA */
1841
1842 /*
1843 * get_page_from_freelist goes through the zonelist trying to allocate
1844 * a page.
1845 */
1846 static struct page *
1847 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1848 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1849 struct zone *preferred_zone, int migratetype)
1850 {
1851 struct zoneref *z;
1852 struct page *page = NULL;
1853 int classzone_idx;
1854 struct zone *zone;
1855 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1856 int zlc_active = 0; /* set if using zonelist_cache */
1857 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1858
1859 classzone_idx = zone_idx(preferred_zone);
1860 zonelist_scan:
1861 /*
1862 * Scan zonelist, looking for a zone with enough free.
1863 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1864 */
1865 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1866 high_zoneidx, nodemask) {
1867 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1868 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1869 continue;
1870 if ((alloc_flags & ALLOC_CPUSET) &&
1871 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1872 continue;
1873 /*
1874 * When allocating a page cache page for writing, we
1875 * want to get it from a zone that is within its dirty
1876 * limit, such that no single zone holds more than its
1877 * proportional share of globally allowed dirty pages.
1878 * The dirty limits take into account the zone's
1879 * lowmem reserves and high watermark so that kswapd
1880 * should be able to balance it without having to
1881 * write pages from its LRU list.
1882 *
1883 * This may look like it could increase pressure on
1884 * lower zones by failing allocations in higher zones
1885 * before they are full. But the pages that do spill
1886 * over are limited as the lower zones are protected
1887 * by this very same mechanism. It should not become
1888 * a practical burden to them.
1889 *
1890 * XXX: For now, allow allocations to potentially
1891 * exceed the per-zone dirty limit in the slowpath
1892 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1893 * which is important when on a NUMA setup the allowed
1894 * zones are together not big enough to reach the
1895 * global limit. The proper fix for these situations
1896 * will require awareness of zones in the
1897 * dirty-throttling and the flusher threads.
1898 */
1899 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1900 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1901 goto this_zone_full;
1902
1903 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1904 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1905 unsigned long mark;
1906 int ret;
1907
1908 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1909 if (zone_watermark_ok(zone, order, mark,
1910 classzone_idx, alloc_flags))
1911 goto try_this_zone;
1912
1913 if (IS_ENABLED(CONFIG_NUMA) &&
1914 !did_zlc_setup && nr_online_nodes > 1) {
1915 /*
1916 * we do zlc_setup if there are multiple nodes
1917 * and before considering the first zone allowed
1918 * by the cpuset.
1919 */
1920 allowednodes = zlc_setup(zonelist, alloc_flags);
1921 zlc_active = 1;
1922 did_zlc_setup = 1;
1923 }
1924
1925 if (zone_reclaim_mode == 0 ||
1926 !zone_allows_reclaim(preferred_zone, zone))
1927 goto this_zone_full;
1928
1929 /*
1930 * As we may have just activated ZLC, check if the first
1931 * eligible zone has failed zone_reclaim recently.
1932 */
1933 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1934 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1935 continue;
1936
1937 ret = zone_reclaim(zone, gfp_mask, order);
1938 switch (ret) {
1939 case ZONE_RECLAIM_NOSCAN:
1940 /* did not scan */
1941 continue;
1942 case ZONE_RECLAIM_FULL:
1943 /* scanned but unreclaimable */
1944 continue;
1945 default:
1946 /* did we reclaim enough */
1947 if (zone_watermark_ok(zone, order, mark,
1948 classzone_idx, alloc_flags))
1949 goto try_this_zone;
1950
1951 /*
1952 * Failed to reclaim enough to meet watermark.
1953 * Only mark the zone full if checking the min
1954 * watermark or if we failed to reclaim just
1955 * 1<<order pages or else the page allocator
1956 * fastpath will prematurely mark zones full
1957 * when the watermark is between the low and
1958 * min watermarks.
1959 */
1960 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
1961 ret == ZONE_RECLAIM_SOME)
1962 goto this_zone_full;
1963
1964 continue;
1965 }
1966 }
1967
1968 try_this_zone:
1969 page = buffered_rmqueue(preferred_zone, zone, order,
1970 gfp_mask, migratetype);
1971 if (page)
1972 break;
1973 this_zone_full:
1974 if (IS_ENABLED(CONFIG_NUMA))
1975 zlc_mark_zone_full(zonelist, z);
1976 }
1977
1978 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1979 /* Disable zlc cache for second zonelist scan */
1980 zlc_active = 0;
1981 goto zonelist_scan;
1982 }
1983
1984 if (page)
1985 /*
1986 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1987 * necessary to allocate the page. The expectation is
1988 * that the caller is taking steps that will free more
1989 * memory. The caller should avoid the page being used
1990 * for !PFMEMALLOC purposes.
1991 */
1992 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1993
1994 return page;
1995 }
1996
1997 /*
1998 * Large machines with many possible nodes should not always dump per-node
1999 * meminfo in irq context.
2000 */
2001 static inline bool should_suppress_show_mem(void)
2002 {
2003 bool ret = false;
2004
2005 #if NODES_SHIFT > 8
2006 ret = in_interrupt();
2007 #endif
2008 return ret;
2009 }
2010
2011 static DEFINE_RATELIMIT_STATE(nopage_rs,
2012 DEFAULT_RATELIMIT_INTERVAL,
2013 DEFAULT_RATELIMIT_BURST);
2014
2015 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2016 {
2017 unsigned int filter = SHOW_MEM_FILTER_NODES;
2018
2019 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2020 debug_guardpage_minorder() > 0)
2021 return;
2022
2023 /*
2024 * Walking all memory to count page types is very expensive and should
2025 * be inhibited in non-blockable contexts.
2026 */
2027 if (!(gfp_mask & __GFP_WAIT))
2028 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2029
2030 /*
2031 * This documents exceptions given to allocations in certain
2032 * contexts that are allowed to allocate outside current's set
2033 * of allowed nodes.
2034 */
2035 if (!(gfp_mask & __GFP_NOMEMALLOC))
2036 if (test_thread_flag(TIF_MEMDIE) ||
2037 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2038 filter &= ~SHOW_MEM_FILTER_NODES;
2039 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2040 filter &= ~SHOW_MEM_FILTER_NODES;
2041
2042 if (fmt) {
2043 struct va_format vaf;
2044 va_list args;
2045
2046 va_start(args, fmt);
2047
2048 vaf.fmt = fmt;
2049 vaf.va = &args;
2050
2051 pr_warn("%pV", &vaf);
2052
2053 va_end(args);
2054 }
2055
2056 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2057 current->comm, order, gfp_mask);
2058
2059 dump_stack();
2060 if (!should_suppress_show_mem())
2061 show_mem(filter);
2062 }
2063
2064 static inline int
2065 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2066 unsigned long did_some_progress,
2067 unsigned long pages_reclaimed)
2068 {
2069 /* Do not loop if specifically requested */
2070 if (gfp_mask & __GFP_NORETRY)
2071 return 0;
2072
2073 /* Always retry if specifically requested */
2074 if (gfp_mask & __GFP_NOFAIL)
2075 return 1;
2076
2077 /*
2078 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2079 * making forward progress without invoking OOM. Suspend also disables
2080 * storage devices so kswapd will not help. Bail if we are suspending.
2081 */
2082 if (!did_some_progress && pm_suspended_storage())
2083 return 0;
2084
2085 /*
2086 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2087 * means __GFP_NOFAIL, but that may not be true in other
2088 * implementations.
2089 */
2090 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2091 return 1;
2092
2093 /*
2094 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2095 * specified, then we retry until we no longer reclaim any pages
2096 * (above), or we've reclaimed an order of pages at least as
2097 * large as the allocation's order. In both cases, if the
2098 * allocation still fails, we stop retrying.
2099 */
2100 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2101 return 1;
2102
2103 return 0;
2104 }
2105
2106 static inline struct page *
2107 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2108 struct zonelist *zonelist, enum zone_type high_zoneidx,
2109 nodemask_t *nodemask, struct zone *preferred_zone,
2110 int migratetype)
2111 {
2112 struct page *page;
2113
2114 /* Acquire the OOM killer lock for the zones in zonelist */
2115 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2116 schedule_timeout_uninterruptible(1);
2117 return NULL;
2118 }
2119
2120 /*
2121 * Go through the zonelist yet one more time, keep very high watermark
2122 * here, this is only to catch a parallel oom killing, we must fail if
2123 * we're still under heavy pressure.
2124 */
2125 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2126 order, zonelist, high_zoneidx,
2127 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2128 preferred_zone, migratetype);
2129 if (page)
2130 goto out;
2131
2132 if (!(gfp_mask & __GFP_NOFAIL)) {
2133 /* The OOM killer will not help higher order allocs */
2134 if (order > PAGE_ALLOC_COSTLY_ORDER)
2135 goto out;
2136 /* The OOM killer does not needlessly kill tasks for lowmem */
2137 if (high_zoneidx < ZONE_NORMAL)
2138 goto out;
2139 /*
2140 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2141 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2142 * The caller should handle page allocation failure by itself if
2143 * it specifies __GFP_THISNODE.
2144 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2145 */
2146 if (gfp_mask & __GFP_THISNODE)
2147 goto out;
2148 }
2149 /* Exhausted what can be done so it's blamo time */
2150 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2151
2152 out:
2153 clear_zonelist_oom(zonelist, gfp_mask);
2154 return page;
2155 }
2156
2157 #ifdef CONFIG_COMPACTION
2158 /* Try memory compaction for high-order allocations before reclaim */
2159 static struct page *
2160 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2161 struct zonelist *zonelist, enum zone_type high_zoneidx,
2162 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2163 int migratetype, bool sync_migration,
2164 bool *contended_compaction, bool *deferred_compaction,
2165 unsigned long *did_some_progress)
2166 {
2167 if (!order)
2168 return NULL;
2169
2170 if (compaction_deferred(preferred_zone, order)) {
2171 *deferred_compaction = true;
2172 return NULL;
2173 }
2174
2175 current->flags |= PF_MEMALLOC;
2176 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2177 nodemask, sync_migration,
2178 contended_compaction);
2179 current->flags &= ~PF_MEMALLOC;
2180
2181 if (*did_some_progress != COMPACT_SKIPPED) {
2182 struct page *page;
2183
2184 /* Page migration frees to the PCP lists but we want merging */
2185 drain_pages(get_cpu());
2186 put_cpu();
2187
2188 page = get_page_from_freelist(gfp_mask, nodemask,
2189 order, zonelist, high_zoneidx,
2190 alloc_flags & ~ALLOC_NO_WATERMARKS,
2191 preferred_zone, migratetype);
2192 if (page) {
2193 preferred_zone->compact_blockskip_flush = false;
2194 preferred_zone->compact_considered = 0;
2195 preferred_zone->compact_defer_shift = 0;
2196 if (order >= preferred_zone->compact_order_failed)
2197 preferred_zone->compact_order_failed = order + 1;
2198 count_vm_event(COMPACTSUCCESS);
2199 return page;
2200 }
2201
2202 /*
2203 * It's bad if compaction run occurs and fails.
2204 * The most likely reason is that pages exist,
2205 * but not enough to satisfy watermarks.
2206 */
2207 count_vm_event(COMPACTFAIL);
2208
2209 /*
2210 * As async compaction considers a subset of pageblocks, only
2211 * defer if the failure was a sync compaction failure.
2212 */
2213 if (sync_migration)
2214 defer_compaction(preferred_zone, order);
2215
2216 cond_resched();
2217 }
2218
2219 return NULL;
2220 }
2221 #else
2222 static inline struct page *
2223 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2224 struct zonelist *zonelist, enum zone_type high_zoneidx,
2225 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2226 int migratetype, bool sync_migration,
2227 bool *contended_compaction, bool *deferred_compaction,
2228 unsigned long *did_some_progress)
2229 {
2230 return NULL;
2231 }
2232 #endif /* CONFIG_COMPACTION */
2233
2234 /* Perform direct synchronous page reclaim */
2235 static int
2236 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2237 nodemask_t *nodemask)
2238 {
2239 struct reclaim_state reclaim_state;
2240 int progress;
2241
2242 cond_resched();
2243
2244 /* We now go into synchronous reclaim */
2245 cpuset_memory_pressure_bump();
2246 current->flags |= PF_MEMALLOC;
2247 lockdep_set_current_reclaim_state(gfp_mask);
2248 reclaim_state.reclaimed_slab = 0;
2249 current->reclaim_state = &reclaim_state;
2250
2251 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2252
2253 current->reclaim_state = NULL;
2254 lockdep_clear_current_reclaim_state();
2255 current->flags &= ~PF_MEMALLOC;
2256
2257 cond_resched();
2258
2259 return progress;
2260 }
2261
2262 /* The really slow allocator path where we enter direct reclaim */
2263 static inline struct page *
2264 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2265 struct zonelist *zonelist, enum zone_type high_zoneidx,
2266 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2267 int migratetype, unsigned long *did_some_progress)
2268 {
2269 struct page *page = NULL;
2270 bool drained = false;
2271
2272 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2273 nodemask);
2274 if (unlikely(!(*did_some_progress)))
2275 return NULL;
2276
2277 /* After successful reclaim, reconsider all zones for allocation */
2278 if (IS_ENABLED(CONFIG_NUMA))
2279 zlc_clear_zones_full(zonelist);
2280
2281 retry:
2282 page = get_page_from_freelist(gfp_mask, nodemask, order,
2283 zonelist, high_zoneidx,
2284 alloc_flags & ~ALLOC_NO_WATERMARKS,
2285 preferred_zone, migratetype);
2286
2287 /*
2288 * If an allocation failed after direct reclaim, it could be because
2289 * pages are pinned on the per-cpu lists. Drain them and try again
2290 */
2291 if (!page && !drained) {
2292 drain_all_pages();
2293 drained = true;
2294 goto retry;
2295 }
2296
2297 return page;
2298 }
2299
2300 /*
2301 * This is called in the allocator slow-path if the allocation request is of
2302 * sufficient urgency to ignore watermarks and take other desperate measures
2303 */
2304 static inline struct page *
2305 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2306 struct zonelist *zonelist, enum zone_type high_zoneidx,
2307 nodemask_t *nodemask, struct zone *preferred_zone,
2308 int migratetype)
2309 {
2310 struct page *page;
2311
2312 do {
2313 page = get_page_from_freelist(gfp_mask, nodemask, order,
2314 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2315 preferred_zone, migratetype);
2316
2317 if (!page && gfp_mask & __GFP_NOFAIL)
2318 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2319 } while (!page && (gfp_mask & __GFP_NOFAIL));
2320
2321 return page;
2322 }
2323
2324 static inline
2325 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2326 enum zone_type high_zoneidx,
2327 enum zone_type classzone_idx)
2328 {
2329 struct zoneref *z;
2330 struct zone *zone;
2331
2332 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2333 wakeup_kswapd(zone, order, classzone_idx);
2334 }
2335
2336 static inline int
2337 gfp_to_alloc_flags(gfp_t gfp_mask)
2338 {
2339 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2340 const gfp_t wait = gfp_mask & __GFP_WAIT;
2341
2342 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2343 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2344
2345 /*
2346 * The caller may dip into page reserves a bit more if the caller
2347 * cannot run direct reclaim, or if the caller has realtime scheduling
2348 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2349 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2350 */
2351 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2352
2353 if (!wait) {
2354 /*
2355 * Not worth trying to allocate harder for
2356 * __GFP_NOMEMALLOC even if it can't schedule.
2357 */
2358 if (!(gfp_mask & __GFP_NOMEMALLOC))
2359 alloc_flags |= ALLOC_HARDER;
2360 /*
2361 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2362 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2363 */
2364 alloc_flags &= ~ALLOC_CPUSET;
2365 } else if (unlikely(rt_task(current)) && !in_interrupt())
2366 alloc_flags |= ALLOC_HARDER;
2367
2368 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2369 if (gfp_mask & __GFP_MEMALLOC)
2370 alloc_flags |= ALLOC_NO_WATERMARKS;
2371 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2372 alloc_flags |= ALLOC_NO_WATERMARKS;
2373 else if (!in_interrupt() &&
2374 ((current->flags & PF_MEMALLOC) ||
2375 unlikely(test_thread_flag(TIF_MEMDIE))))
2376 alloc_flags |= ALLOC_NO_WATERMARKS;
2377 }
2378 #ifdef CONFIG_CMA
2379 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2380 alloc_flags |= ALLOC_CMA;
2381 #endif
2382 return alloc_flags;
2383 }
2384
2385 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2386 {
2387 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2388 }
2389
2390 static inline struct page *
2391 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2392 struct zonelist *zonelist, enum zone_type high_zoneidx,
2393 nodemask_t *nodemask, struct zone *preferred_zone,
2394 int migratetype)
2395 {
2396 const gfp_t wait = gfp_mask & __GFP_WAIT;
2397 struct page *page = NULL;
2398 int alloc_flags;
2399 unsigned long pages_reclaimed = 0;
2400 unsigned long did_some_progress;
2401 bool sync_migration = false;
2402 bool deferred_compaction = false;
2403 bool contended_compaction = false;
2404
2405 /*
2406 * In the slowpath, we sanity check order to avoid ever trying to
2407 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2408 * be using allocators in order of preference for an area that is
2409 * too large.
2410 */
2411 if (order >= MAX_ORDER) {
2412 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2413 return NULL;
2414 }
2415
2416 /*
2417 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2418 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2419 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2420 * using a larger set of nodes after it has established that the
2421 * allowed per node queues are empty and that nodes are
2422 * over allocated.
2423 */
2424 if (IS_ENABLED(CONFIG_NUMA) &&
2425 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2426 goto nopage;
2427
2428 restart:
2429 if (!(gfp_mask & __GFP_NO_KSWAPD))
2430 wake_all_kswapd(order, zonelist, high_zoneidx,
2431 zone_idx(preferred_zone));
2432
2433 /*
2434 * OK, we're below the kswapd watermark and have kicked background
2435 * reclaim. Now things get more complex, so set up alloc_flags according
2436 * to how we want to proceed.
2437 */
2438 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2439
2440 /*
2441 * Find the true preferred zone if the allocation is unconstrained by
2442 * cpusets.
2443 */
2444 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2445 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2446 &preferred_zone);
2447
2448 rebalance:
2449 /* This is the last chance, in general, before the goto nopage. */
2450 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2451 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2452 preferred_zone, migratetype);
2453 if (page)
2454 goto got_pg;
2455
2456 /* Allocate without watermarks if the context allows */
2457 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2458 /*
2459 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2460 * the allocation is high priority and these type of
2461 * allocations are system rather than user orientated
2462 */
2463 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2464
2465 page = __alloc_pages_high_priority(gfp_mask, order,
2466 zonelist, high_zoneidx, nodemask,
2467 preferred_zone, migratetype);
2468 if (page) {
2469 goto got_pg;
2470 }
2471 }
2472
2473 /* Atomic allocations - we can't balance anything */
2474 if (!wait)
2475 goto nopage;
2476
2477 /* Avoid recursion of direct reclaim */
2478 if (current->flags & PF_MEMALLOC)
2479 goto nopage;
2480
2481 /* Avoid allocations with no watermarks from looping endlessly */
2482 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2483 goto nopage;
2484
2485 /*
2486 * Try direct compaction. The first pass is asynchronous. Subsequent
2487 * attempts after direct reclaim are synchronous
2488 */
2489 page = __alloc_pages_direct_compact(gfp_mask, order,
2490 zonelist, high_zoneidx,
2491 nodemask,
2492 alloc_flags, preferred_zone,
2493 migratetype, sync_migration,
2494 &contended_compaction,
2495 &deferred_compaction,
2496 &did_some_progress);
2497 if (page)
2498 goto got_pg;
2499 sync_migration = true;
2500
2501 /*
2502 * If compaction is deferred for high-order allocations, it is because
2503 * sync compaction recently failed. In this is the case and the caller
2504 * requested a movable allocation that does not heavily disrupt the
2505 * system then fail the allocation instead of entering direct reclaim.
2506 */
2507 if ((deferred_compaction || contended_compaction) &&
2508 (gfp_mask & __GFP_NO_KSWAPD))
2509 goto nopage;
2510
2511 /* Try direct reclaim and then allocating */
2512 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2513 zonelist, high_zoneidx,
2514 nodemask,
2515 alloc_flags, preferred_zone,
2516 migratetype, &did_some_progress);
2517 if (page)
2518 goto got_pg;
2519
2520 /*
2521 * If we failed to make any progress reclaiming, then we are
2522 * running out of options and have to consider going OOM
2523 */
2524 if (!did_some_progress) {
2525 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2526 if (oom_killer_disabled)
2527 goto nopage;
2528 /* Coredumps can quickly deplete all memory reserves */
2529 if ((current->flags & PF_DUMPCORE) &&
2530 !(gfp_mask & __GFP_NOFAIL))
2531 goto nopage;
2532 page = __alloc_pages_may_oom(gfp_mask, order,
2533 zonelist, high_zoneidx,
2534 nodemask, preferred_zone,
2535 migratetype);
2536 if (page)
2537 goto got_pg;
2538
2539 if (!(gfp_mask & __GFP_NOFAIL)) {
2540 /*
2541 * The oom killer is not called for high-order
2542 * allocations that may fail, so if no progress
2543 * is being made, there are no other options and
2544 * retrying is unlikely to help.
2545 */
2546 if (order > PAGE_ALLOC_COSTLY_ORDER)
2547 goto nopage;
2548 /*
2549 * The oom killer is not called for lowmem
2550 * allocations to prevent needlessly killing
2551 * innocent tasks.
2552 */
2553 if (high_zoneidx < ZONE_NORMAL)
2554 goto nopage;
2555 }
2556
2557 goto restart;
2558 }
2559 }
2560
2561 /* Check if we should retry the allocation */
2562 pages_reclaimed += did_some_progress;
2563 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2564 pages_reclaimed)) {
2565 /* Wait for some write requests to complete then retry */
2566 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2567 goto rebalance;
2568 } else {
2569 /*
2570 * High-order allocations do not necessarily loop after
2571 * direct reclaim and reclaim/compaction depends on compaction
2572 * being called after reclaim so call directly if necessary
2573 */
2574 page = __alloc_pages_direct_compact(gfp_mask, order,
2575 zonelist, high_zoneidx,
2576 nodemask,
2577 alloc_flags, preferred_zone,
2578 migratetype, sync_migration,
2579 &contended_compaction,
2580 &deferred_compaction,
2581 &did_some_progress);
2582 if (page)
2583 goto got_pg;
2584 }
2585
2586 nopage:
2587 warn_alloc_failed(gfp_mask, order, NULL);
2588 return page;
2589 got_pg:
2590 if (kmemcheck_enabled)
2591 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2592
2593 return page;
2594 }
2595
2596 /*
2597 * This is the 'heart' of the zoned buddy allocator.
2598 */
2599 struct page *
2600 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2601 struct zonelist *zonelist, nodemask_t *nodemask)
2602 {
2603 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2604 struct zone *preferred_zone;
2605 struct page *page = NULL;
2606 int migratetype = allocflags_to_migratetype(gfp_mask);
2607 unsigned int cpuset_mems_cookie;
2608 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2609 struct mem_cgroup *memcg = NULL;
2610
2611 gfp_mask &= gfp_allowed_mask;
2612
2613 lockdep_trace_alloc(gfp_mask);
2614
2615 might_sleep_if(gfp_mask & __GFP_WAIT);
2616
2617 if (should_fail_alloc_page(gfp_mask, order))
2618 return NULL;
2619
2620 /*
2621 * Check the zones suitable for the gfp_mask contain at least one
2622 * valid zone. It's possible to have an empty zonelist as a result
2623 * of GFP_THISNODE and a memoryless node
2624 */
2625 if (unlikely(!zonelist->_zonerefs->zone))
2626 return NULL;
2627
2628 /*
2629 * Will only have any effect when __GFP_KMEMCG is set. This is
2630 * verified in the (always inline) callee
2631 */
2632 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2633 return NULL;
2634
2635 retry_cpuset:
2636 cpuset_mems_cookie = get_mems_allowed();
2637
2638 /* The preferred zone is used for statistics later */
2639 first_zones_zonelist(zonelist, high_zoneidx,
2640 nodemask ? : &cpuset_current_mems_allowed,
2641 &preferred_zone);
2642 if (!preferred_zone)
2643 goto out;
2644
2645 #ifdef CONFIG_CMA
2646 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2647 alloc_flags |= ALLOC_CMA;
2648 #endif
2649 /* First allocation attempt */
2650 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2651 zonelist, high_zoneidx, alloc_flags,
2652 preferred_zone, migratetype);
2653 if (unlikely(!page)) {
2654 /*
2655 * Runtime PM, block IO and its error handling path
2656 * can deadlock because I/O on the device might not
2657 * complete.
2658 */
2659 gfp_mask = memalloc_noio_flags(gfp_mask);
2660 page = __alloc_pages_slowpath(gfp_mask, order,
2661 zonelist, high_zoneidx, nodemask,
2662 preferred_zone, migratetype);
2663 }
2664
2665 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2666
2667 out:
2668 /*
2669 * When updating a task's mems_allowed, it is possible to race with
2670 * parallel threads in such a way that an allocation can fail while
2671 * the mask is being updated. If a page allocation is about to fail,
2672 * check if the cpuset changed during allocation and if so, retry.
2673 */
2674 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2675 goto retry_cpuset;
2676
2677 memcg_kmem_commit_charge(page, memcg, order);
2678
2679 return page;
2680 }
2681 EXPORT_SYMBOL(__alloc_pages_nodemask);
2682
2683 /*
2684 * Common helper functions.
2685 */
2686 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2687 {
2688 struct page *page;
2689
2690 /*
2691 * __get_free_pages() returns a 32-bit address, which cannot represent
2692 * a highmem page
2693 */
2694 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2695
2696 page = alloc_pages(gfp_mask, order);
2697 if (!page)
2698 return 0;
2699 return (unsigned long) page_address(page);
2700 }
2701 EXPORT_SYMBOL(__get_free_pages);
2702
2703 unsigned long get_zeroed_page(gfp_t gfp_mask)
2704 {
2705 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2706 }
2707 EXPORT_SYMBOL(get_zeroed_page);
2708
2709 void __free_pages(struct page *page, unsigned int order)
2710 {
2711 if (put_page_testzero(page)) {
2712 if (order == 0)
2713 free_hot_cold_page(page, 0);
2714 else
2715 __free_pages_ok(page, order);
2716 }
2717 }
2718
2719 EXPORT_SYMBOL(__free_pages);
2720
2721 void free_pages(unsigned long addr, unsigned int order)
2722 {
2723 if (addr != 0) {
2724 VM_BUG_ON(!virt_addr_valid((void *)addr));
2725 __free_pages(virt_to_page((void *)addr), order);
2726 }
2727 }
2728
2729 EXPORT_SYMBOL(free_pages);
2730
2731 /*
2732 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2733 * pages allocated with __GFP_KMEMCG.
2734 *
2735 * Those pages are accounted to a particular memcg, embedded in the
2736 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2737 * for that information only to find out that it is NULL for users who have no
2738 * interest in that whatsoever, we provide these functions.
2739 *
2740 * The caller knows better which flags it relies on.
2741 */
2742 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2743 {
2744 memcg_kmem_uncharge_pages(page, order);
2745 __free_pages(page, order);
2746 }
2747
2748 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2749 {
2750 if (addr != 0) {
2751 VM_BUG_ON(!virt_addr_valid((void *)addr));
2752 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2753 }
2754 }
2755
2756 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2757 {
2758 if (addr) {
2759 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2760 unsigned long used = addr + PAGE_ALIGN(size);
2761
2762 split_page(virt_to_page((void *)addr), order);
2763 while (used < alloc_end) {
2764 free_page(used);
2765 used += PAGE_SIZE;
2766 }
2767 }
2768 return (void *)addr;
2769 }
2770
2771 /**
2772 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2773 * @size: the number of bytes to allocate
2774 * @gfp_mask: GFP flags for the allocation
2775 *
2776 * This function is similar to alloc_pages(), except that it allocates the
2777 * minimum number of pages to satisfy the request. alloc_pages() can only
2778 * allocate memory in power-of-two pages.
2779 *
2780 * This function is also limited by MAX_ORDER.
2781 *
2782 * Memory allocated by this function must be released by free_pages_exact().
2783 */
2784 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2785 {
2786 unsigned int order = get_order(size);
2787 unsigned long addr;
2788
2789 addr = __get_free_pages(gfp_mask, order);
2790 return make_alloc_exact(addr, order, size);
2791 }
2792 EXPORT_SYMBOL(alloc_pages_exact);
2793
2794 /**
2795 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2796 * pages on a node.
2797 * @nid: the preferred node ID where memory should be allocated
2798 * @size: the number of bytes to allocate
2799 * @gfp_mask: GFP flags for the allocation
2800 *
2801 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2802 * back.
2803 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2804 * but is not exact.
2805 */
2806 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2807 {
2808 unsigned order = get_order(size);
2809 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2810 if (!p)
2811 return NULL;
2812 return make_alloc_exact((unsigned long)page_address(p), order, size);
2813 }
2814 EXPORT_SYMBOL(alloc_pages_exact_nid);
2815
2816 /**
2817 * free_pages_exact - release memory allocated via alloc_pages_exact()
2818 * @virt: the value returned by alloc_pages_exact.
2819 * @size: size of allocation, same value as passed to alloc_pages_exact().
2820 *
2821 * Release the memory allocated by a previous call to alloc_pages_exact.
2822 */
2823 void free_pages_exact(void *virt, size_t size)
2824 {
2825 unsigned long addr = (unsigned long)virt;
2826 unsigned long end = addr + PAGE_ALIGN(size);
2827
2828 while (addr < end) {
2829 free_page(addr);
2830 addr += PAGE_SIZE;
2831 }
2832 }
2833 EXPORT_SYMBOL(free_pages_exact);
2834
2835 /**
2836 * nr_free_zone_pages - count number of pages beyond high watermark
2837 * @offset: The zone index of the highest zone
2838 *
2839 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2840 * high watermark within all zones at or below a given zone index. For each
2841 * zone, the number of pages is calculated as:
2842 * present_pages - high_pages
2843 */
2844 static unsigned long nr_free_zone_pages(int offset)
2845 {
2846 struct zoneref *z;
2847 struct zone *zone;
2848
2849 /* Just pick one node, since fallback list is circular */
2850 unsigned long sum = 0;
2851
2852 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2853
2854 for_each_zone_zonelist(zone, z, zonelist, offset) {
2855 unsigned long size = zone->managed_pages;
2856 unsigned long high = high_wmark_pages(zone);
2857 if (size > high)
2858 sum += size - high;
2859 }
2860
2861 return sum;
2862 }
2863
2864 /**
2865 * nr_free_buffer_pages - count number of pages beyond high watermark
2866 *
2867 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2868 * watermark within ZONE_DMA and ZONE_NORMAL.
2869 */
2870 unsigned long nr_free_buffer_pages(void)
2871 {
2872 return nr_free_zone_pages(gfp_zone(GFP_USER));
2873 }
2874 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2875
2876 /**
2877 * nr_free_pagecache_pages - count number of pages beyond high watermark
2878 *
2879 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2880 * high watermark within all zones.
2881 */
2882 unsigned long nr_free_pagecache_pages(void)
2883 {
2884 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2885 }
2886
2887 static inline void show_node(struct zone *zone)
2888 {
2889 if (IS_ENABLED(CONFIG_NUMA))
2890 printk("Node %d ", zone_to_nid(zone));
2891 }
2892
2893 void si_meminfo(struct sysinfo *val)
2894 {
2895 val->totalram = totalram_pages;
2896 val->sharedram = 0;
2897 val->freeram = global_page_state(NR_FREE_PAGES);
2898 val->bufferram = nr_blockdev_pages();
2899 val->totalhigh = totalhigh_pages;
2900 val->freehigh = nr_free_highpages();
2901 val->mem_unit = PAGE_SIZE;
2902 }
2903
2904 EXPORT_SYMBOL(si_meminfo);
2905
2906 #ifdef CONFIG_NUMA
2907 void si_meminfo_node(struct sysinfo *val, int nid)
2908 {
2909 pg_data_t *pgdat = NODE_DATA(nid);
2910
2911 val->totalram = pgdat->node_present_pages;
2912 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2913 #ifdef CONFIG_HIGHMEM
2914 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2915 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2916 NR_FREE_PAGES);
2917 #else
2918 val->totalhigh = 0;
2919 val->freehigh = 0;
2920 #endif
2921 val->mem_unit = PAGE_SIZE;
2922 }
2923 #endif
2924
2925 /*
2926 * Determine whether the node should be displayed or not, depending on whether
2927 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2928 */
2929 bool skip_free_areas_node(unsigned int flags, int nid)
2930 {
2931 bool ret = false;
2932 unsigned int cpuset_mems_cookie;
2933
2934 if (!(flags & SHOW_MEM_FILTER_NODES))
2935 goto out;
2936
2937 do {
2938 cpuset_mems_cookie = get_mems_allowed();
2939 ret = !node_isset(nid, cpuset_current_mems_allowed);
2940 } while (!put_mems_allowed(cpuset_mems_cookie));
2941 out:
2942 return ret;
2943 }
2944
2945 #define K(x) ((x) << (PAGE_SHIFT-10))
2946
2947 static void show_migration_types(unsigned char type)
2948 {
2949 static const char types[MIGRATE_TYPES] = {
2950 [MIGRATE_UNMOVABLE] = 'U',
2951 [MIGRATE_RECLAIMABLE] = 'E',
2952 [MIGRATE_MOVABLE] = 'M',
2953 [MIGRATE_RESERVE] = 'R',
2954 #ifdef CONFIG_CMA
2955 [MIGRATE_CMA] = 'C',
2956 #endif
2957 #ifdef CONFIG_MEMORY_ISOLATION
2958 [MIGRATE_ISOLATE] = 'I',
2959 #endif
2960 };
2961 char tmp[MIGRATE_TYPES + 1];
2962 char *p = tmp;
2963 int i;
2964
2965 for (i = 0; i < MIGRATE_TYPES; i++) {
2966 if (type & (1 << i))
2967 *p++ = types[i];
2968 }
2969
2970 *p = '\0';
2971 printk("(%s) ", tmp);
2972 }
2973
2974 /*
2975 * Show free area list (used inside shift_scroll-lock stuff)
2976 * We also calculate the percentage fragmentation. We do this by counting the
2977 * memory on each free list with the exception of the first item on the list.
2978 * Suppresses nodes that are not allowed by current's cpuset if
2979 * SHOW_MEM_FILTER_NODES is passed.
2980 */
2981 void show_free_areas(unsigned int filter)
2982 {
2983 int cpu;
2984 struct zone *zone;
2985
2986 for_each_populated_zone(zone) {
2987 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2988 continue;
2989 show_node(zone);
2990 printk("%s per-cpu:\n", zone->name);
2991
2992 for_each_online_cpu(cpu) {
2993 struct per_cpu_pageset *pageset;
2994
2995 pageset = per_cpu_ptr(zone->pageset, cpu);
2996
2997 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2998 cpu, pageset->pcp.high,
2999 pageset->pcp.batch, pageset->pcp.count);
3000 }
3001 }
3002
3003 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3004 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3005 " unevictable:%lu"
3006 " dirty:%lu writeback:%lu unstable:%lu\n"
3007 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3008 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3009 " free_cma:%lu\n",
3010 global_page_state(NR_ACTIVE_ANON),
3011 global_page_state(NR_INACTIVE_ANON),
3012 global_page_state(NR_ISOLATED_ANON),
3013 global_page_state(NR_ACTIVE_FILE),
3014 global_page_state(NR_INACTIVE_FILE),
3015 global_page_state(NR_ISOLATED_FILE),
3016 global_page_state(NR_UNEVICTABLE),
3017 global_page_state(NR_FILE_DIRTY),
3018 global_page_state(NR_WRITEBACK),
3019 global_page_state(NR_UNSTABLE_NFS),
3020 global_page_state(NR_FREE_PAGES),
3021 global_page_state(NR_SLAB_RECLAIMABLE),
3022 global_page_state(NR_SLAB_UNRECLAIMABLE),
3023 global_page_state(NR_FILE_MAPPED),
3024 global_page_state(NR_SHMEM),
3025 global_page_state(NR_PAGETABLE),
3026 global_page_state(NR_BOUNCE),
3027 global_page_state(NR_FREE_CMA_PAGES));
3028
3029 for_each_populated_zone(zone) {
3030 int i;
3031
3032 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3033 continue;
3034 show_node(zone);
3035 printk("%s"
3036 " free:%lukB"
3037 " min:%lukB"
3038 " low:%lukB"
3039 " high:%lukB"
3040 " active_anon:%lukB"
3041 " inactive_anon:%lukB"
3042 " active_file:%lukB"
3043 " inactive_file:%lukB"
3044 " unevictable:%lukB"
3045 " isolated(anon):%lukB"
3046 " isolated(file):%lukB"
3047 " present:%lukB"
3048 " managed:%lukB"
3049 " mlocked:%lukB"
3050 " dirty:%lukB"
3051 " writeback:%lukB"
3052 " mapped:%lukB"
3053 " shmem:%lukB"
3054 " slab_reclaimable:%lukB"
3055 " slab_unreclaimable:%lukB"
3056 " kernel_stack:%lukB"
3057 " pagetables:%lukB"
3058 " unstable:%lukB"
3059 " bounce:%lukB"
3060 " free_cma:%lukB"
3061 " writeback_tmp:%lukB"
3062 " pages_scanned:%lu"
3063 " all_unreclaimable? %s"
3064 "\n",
3065 zone->name,
3066 K(zone_page_state(zone, NR_FREE_PAGES)),
3067 K(min_wmark_pages(zone)),
3068 K(low_wmark_pages(zone)),
3069 K(high_wmark_pages(zone)),
3070 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3071 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3072 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3073 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3074 K(zone_page_state(zone, NR_UNEVICTABLE)),
3075 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3076 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3077 K(zone->present_pages),
3078 K(zone->managed_pages),
3079 K(zone_page_state(zone, NR_MLOCK)),
3080 K(zone_page_state(zone, NR_FILE_DIRTY)),
3081 K(zone_page_state(zone, NR_WRITEBACK)),
3082 K(zone_page_state(zone, NR_FILE_MAPPED)),
3083 K(zone_page_state(zone, NR_SHMEM)),
3084 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3085 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3086 zone_page_state(zone, NR_KERNEL_STACK) *
3087 THREAD_SIZE / 1024,
3088 K(zone_page_state(zone, NR_PAGETABLE)),
3089 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3090 K(zone_page_state(zone, NR_BOUNCE)),
3091 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3092 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3093 zone->pages_scanned,
3094 (zone->all_unreclaimable ? "yes" : "no")
3095 );
3096 printk("lowmem_reserve[]:");
3097 for (i = 0; i < MAX_NR_ZONES; i++)
3098 printk(" %lu", zone->lowmem_reserve[i]);
3099 printk("\n");
3100 }
3101
3102 for_each_populated_zone(zone) {
3103 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3104 unsigned char types[MAX_ORDER];
3105
3106 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3107 continue;
3108 show_node(zone);
3109 printk("%s: ", zone->name);
3110
3111 spin_lock_irqsave(&zone->lock, flags);
3112 for (order = 0; order < MAX_ORDER; order++) {
3113 struct free_area *area = &zone->free_area[order];
3114 int type;
3115
3116 nr[order] = area->nr_free;
3117 total += nr[order] << order;
3118
3119 types[order] = 0;
3120 for (type = 0; type < MIGRATE_TYPES; type++) {
3121 if (!list_empty(&area->free_list[type]))
3122 types[order] |= 1 << type;
3123 }
3124 }
3125 spin_unlock_irqrestore(&zone->lock, flags);
3126 for (order = 0; order < MAX_ORDER; order++) {
3127 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3128 if (nr[order])
3129 show_migration_types(types[order]);
3130 }
3131 printk("= %lukB\n", K(total));
3132 }
3133
3134 hugetlb_show_meminfo();
3135
3136 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3137
3138 show_swap_cache_info();
3139 }
3140
3141 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3142 {
3143 zoneref->zone = zone;
3144 zoneref->zone_idx = zone_idx(zone);
3145 }
3146
3147 /*
3148 * Builds allocation fallback zone lists.
3149 *
3150 * Add all populated zones of a node to the zonelist.
3151 */
3152 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3153 int nr_zones, enum zone_type zone_type)
3154 {
3155 struct zone *zone;
3156
3157 BUG_ON(zone_type >= MAX_NR_ZONES);
3158 zone_type++;
3159
3160 do {
3161 zone_type--;
3162 zone = pgdat->node_zones + zone_type;
3163 if (populated_zone(zone)) {
3164 zoneref_set_zone(zone,
3165 &zonelist->_zonerefs[nr_zones++]);
3166 check_highest_zone(zone_type);
3167 }
3168
3169 } while (zone_type);
3170 return nr_zones;
3171 }
3172
3173
3174 /*
3175 * zonelist_order:
3176 * 0 = automatic detection of better ordering.
3177 * 1 = order by ([node] distance, -zonetype)
3178 * 2 = order by (-zonetype, [node] distance)
3179 *
3180 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3181 * the same zonelist. So only NUMA can configure this param.
3182 */
3183 #define ZONELIST_ORDER_DEFAULT 0
3184 #define ZONELIST_ORDER_NODE 1
3185 #define ZONELIST_ORDER_ZONE 2
3186
3187 /* zonelist order in the kernel.
3188 * set_zonelist_order() will set this to NODE or ZONE.
3189 */
3190 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3191 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3192
3193
3194 #ifdef CONFIG_NUMA
3195 /* The value user specified ....changed by config */
3196 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3197 /* string for sysctl */
3198 #define NUMA_ZONELIST_ORDER_LEN 16
3199 char numa_zonelist_order[16] = "default";
3200
3201 /*
3202 * interface for configure zonelist ordering.
3203 * command line option "numa_zonelist_order"
3204 * = "[dD]efault - default, automatic configuration.
3205 * = "[nN]ode - order by node locality, then by zone within node
3206 * = "[zZ]one - order by zone, then by locality within zone
3207 */
3208
3209 static int __parse_numa_zonelist_order(char *s)
3210 {
3211 if (*s == 'd' || *s == 'D') {
3212 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3213 } else if (*s == 'n' || *s == 'N') {
3214 user_zonelist_order = ZONELIST_ORDER_NODE;
3215 } else if (*s == 'z' || *s == 'Z') {
3216 user_zonelist_order = ZONELIST_ORDER_ZONE;
3217 } else {
3218 printk(KERN_WARNING
3219 "Ignoring invalid numa_zonelist_order value: "
3220 "%s\n", s);
3221 return -EINVAL;
3222 }
3223 return 0;
3224 }
3225
3226 static __init int setup_numa_zonelist_order(char *s)
3227 {
3228 int ret;
3229
3230 if (!s)
3231 return 0;
3232
3233 ret = __parse_numa_zonelist_order(s);
3234 if (ret == 0)
3235 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3236
3237 return ret;
3238 }
3239 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3240
3241 /*
3242 * sysctl handler for numa_zonelist_order
3243 */
3244 int numa_zonelist_order_handler(ctl_table *table, int write,
3245 void __user *buffer, size_t *length,
3246 loff_t *ppos)
3247 {
3248 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3249 int ret;
3250 static DEFINE_MUTEX(zl_order_mutex);
3251
3252 mutex_lock(&zl_order_mutex);
3253 if (write)
3254 strcpy(saved_string, (char*)table->data);
3255 ret = proc_dostring(table, write, buffer, length, ppos);
3256 if (ret)
3257 goto out;
3258 if (write) {
3259 int oldval = user_zonelist_order;
3260 if (__parse_numa_zonelist_order((char*)table->data)) {
3261 /*
3262 * bogus value. restore saved string
3263 */
3264 strncpy((char*)table->data, saved_string,
3265 NUMA_ZONELIST_ORDER_LEN);
3266 user_zonelist_order = oldval;
3267 } else if (oldval != user_zonelist_order) {
3268 mutex_lock(&zonelists_mutex);
3269 build_all_zonelists(NULL, NULL);
3270 mutex_unlock(&zonelists_mutex);
3271 }
3272 }
3273 out:
3274 mutex_unlock(&zl_order_mutex);
3275 return ret;
3276 }
3277
3278
3279 #define MAX_NODE_LOAD (nr_online_nodes)
3280 static int node_load[MAX_NUMNODES];
3281
3282 /**
3283 * find_next_best_node - find the next node that should appear in a given node's fallback list
3284 * @node: node whose fallback list we're appending
3285 * @used_node_mask: nodemask_t of already used nodes
3286 *
3287 * We use a number of factors to determine which is the next node that should
3288 * appear on a given node's fallback list. The node should not have appeared
3289 * already in @node's fallback list, and it should be the next closest node
3290 * according to the distance array (which contains arbitrary distance values
3291 * from each node to each node in the system), and should also prefer nodes
3292 * with no CPUs, since presumably they'll have very little allocation pressure
3293 * on them otherwise.
3294 * It returns -1 if no node is found.
3295 */
3296 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3297 {
3298 int n, val;
3299 int min_val = INT_MAX;
3300 int best_node = NUMA_NO_NODE;
3301 const struct cpumask *tmp = cpumask_of_node(0);
3302
3303 /* Use the local node if we haven't already */
3304 if (!node_isset(node, *used_node_mask)) {
3305 node_set(node, *used_node_mask);
3306 return node;
3307 }
3308
3309 for_each_node_state(n, N_MEMORY) {
3310
3311 /* Don't want a node to appear more than once */
3312 if (node_isset(n, *used_node_mask))
3313 continue;
3314
3315 /* Use the distance array to find the distance */
3316 val = node_distance(node, n);
3317
3318 /* Penalize nodes under us ("prefer the next node") */
3319 val += (n < node);
3320
3321 /* Give preference to headless and unused nodes */
3322 tmp = cpumask_of_node(n);
3323 if (!cpumask_empty(tmp))
3324 val += PENALTY_FOR_NODE_WITH_CPUS;
3325
3326 /* Slight preference for less loaded node */
3327 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3328 val += node_load[n];
3329
3330 if (val < min_val) {
3331 min_val = val;
3332 best_node = n;
3333 }
3334 }
3335
3336 if (best_node >= 0)
3337 node_set(best_node, *used_node_mask);
3338
3339 return best_node;
3340 }
3341
3342
3343 /*
3344 * Build zonelists ordered by node and zones within node.
3345 * This results in maximum locality--normal zone overflows into local
3346 * DMA zone, if any--but risks exhausting DMA zone.
3347 */
3348 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3349 {
3350 int j;
3351 struct zonelist *zonelist;
3352
3353 zonelist = &pgdat->node_zonelists[0];
3354 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3355 ;
3356 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3357 MAX_NR_ZONES - 1);
3358 zonelist->_zonerefs[j].zone = NULL;
3359 zonelist->_zonerefs[j].zone_idx = 0;
3360 }
3361
3362 /*
3363 * Build gfp_thisnode zonelists
3364 */
3365 static void build_thisnode_zonelists(pg_data_t *pgdat)
3366 {
3367 int j;
3368 struct zonelist *zonelist;
3369
3370 zonelist = &pgdat->node_zonelists[1];
3371 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3372 zonelist->_zonerefs[j].zone = NULL;
3373 zonelist->_zonerefs[j].zone_idx = 0;
3374 }
3375
3376 /*
3377 * Build zonelists ordered by zone and nodes within zones.
3378 * This results in conserving DMA zone[s] until all Normal memory is
3379 * exhausted, but results in overflowing to remote node while memory
3380 * may still exist in local DMA zone.
3381 */
3382 static int node_order[MAX_NUMNODES];
3383
3384 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3385 {
3386 int pos, j, node;
3387 int zone_type; /* needs to be signed */
3388 struct zone *z;
3389 struct zonelist *zonelist;
3390
3391 zonelist = &pgdat->node_zonelists[0];
3392 pos = 0;
3393 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3394 for (j = 0; j < nr_nodes; j++) {
3395 node = node_order[j];
3396 z = &NODE_DATA(node)->node_zones[zone_type];
3397 if (populated_zone(z)) {
3398 zoneref_set_zone(z,
3399 &zonelist->_zonerefs[pos++]);
3400 check_highest_zone(zone_type);
3401 }
3402 }
3403 }
3404 zonelist->_zonerefs[pos].zone = NULL;
3405 zonelist->_zonerefs[pos].zone_idx = 0;
3406 }
3407
3408 static int default_zonelist_order(void)
3409 {
3410 int nid, zone_type;
3411 unsigned long low_kmem_size,total_size;
3412 struct zone *z;
3413 int average_size;
3414 /*
3415 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3416 * If they are really small and used heavily, the system can fall
3417 * into OOM very easily.
3418 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3419 */
3420 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3421 low_kmem_size = 0;
3422 total_size = 0;
3423 for_each_online_node(nid) {
3424 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3425 z = &NODE_DATA(nid)->node_zones[zone_type];
3426 if (populated_zone(z)) {
3427 if (zone_type < ZONE_NORMAL)
3428 low_kmem_size += z->present_pages;
3429 total_size += z->present_pages;
3430 } else if (zone_type == ZONE_NORMAL) {
3431 /*
3432 * If any node has only lowmem, then node order
3433 * is preferred to allow kernel allocations
3434 * locally; otherwise, they can easily infringe
3435 * on other nodes when there is an abundance of
3436 * lowmem available to allocate from.
3437 */
3438 return ZONELIST_ORDER_NODE;
3439 }
3440 }
3441 }
3442 if (!low_kmem_size || /* there are no DMA area. */
3443 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3444 return ZONELIST_ORDER_NODE;
3445 /*
3446 * look into each node's config.
3447 * If there is a node whose DMA/DMA32 memory is very big area on
3448 * local memory, NODE_ORDER may be suitable.
3449 */
3450 average_size = total_size /
3451 (nodes_weight(node_states[N_MEMORY]) + 1);
3452 for_each_online_node(nid) {
3453 low_kmem_size = 0;
3454 total_size = 0;
3455 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3456 z = &NODE_DATA(nid)->node_zones[zone_type];
3457 if (populated_zone(z)) {
3458 if (zone_type < ZONE_NORMAL)
3459 low_kmem_size += z->present_pages;
3460 total_size += z->present_pages;
3461 }
3462 }
3463 if (low_kmem_size &&
3464 total_size > average_size && /* ignore small node */
3465 low_kmem_size > total_size * 70/100)
3466 return ZONELIST_ORDER_NODE;
3467 }
3468 return ZONELIST_ORDER_ZONE;
3469 }
3470
3471 static void set_zonelist_order(void)
3472 {
3473 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3474 current_zonelist_order = default_zonelist_order();
3475 else
3476 current_zonelist_order = user_zonelist_order;
3477 }
3478
3479 static void build_zonelists(pg_data_t *pgdat)
3480 {
3481 int j, node, load;
3482 enum zone_type i;
3483 nodemask_t used_mask;
3484 int local_node, prev_node;
3485 struct zonelist *zonelist;
3486 int order = current_zonelist_order;
3487
3488 /* initialize zonelists */
3489 for (i = 0; i < MAX_ZONELISTS; i++) {
3490 zonelist = pgdat->node_zonelists + i;
3491 zonelist->_zonerefs[0].zone = NULL;
3492 zonelist->_zonerefs[0].zone_idx = 0;
3493 }
3494
3495 /* NUMA-aware ordering of nodes */
3496 local_node = pgdat->node_id;
3497 load = nr_online_nodes;
3498 prev_node = local_node;
3499 nodes_clear(used_mask);
3500
3501 memset(node_order, 0, sizeof(node_order));
3502 j = 0;
3503
3504 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3505 /*
3506 * We don't want to pressure a particular node.
3507 * So adding penalty to the first node in same
3508 * distance group to make it round-robin.
3509 */
3510 if (node_distance(local_node, node) !=
3511 node_distance(local_node, prev_node))
3512 node_load[node] = load;
3513
3514 prev_node = node;
3515 load--;
3516 if (order == ZONELIST_ORDER_NODE)
3517 build_zonelists_in_node_order(pgdat, node);
3518 else
3519 node_order[j++] = node; /* remember order */
3520 }
3521
3522 if (order == ZONELIST_ORDER_ZONE) {
3523 /* calculate node order -- i.e., DMA last! */
3524 build_zonelists_in_zone_order(pgdat, j);
3525 }
3526
3527 build_thisnode_zonelists(pgdat);
3528 }
3529
3530 /* Construct the zonelist performance cache - see further mmzone.h */
3531 static void build_zonelist_cache(pg_data_t *pgdat)
3532 {
3533 struct zonelist *zonelist;
3534 struct zonelist_cache *zlc;
3535 struct zoneref *z;
3536
3537 zonelist = &pgdat->node_zonelists[0];
3538 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3539 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3540 for (z = zonelist->_zonerefs; z->zone; z++)
3541 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3542 }
3543
3544 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3545 /*
3546 * Return node id of node used for "local" allocations.
3547 * I.e., first node id of first zone in arg node's generic zonelist.
3548 * Used for initializing percpu 'numa_mem', which is used primarily
3549 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3550 */
3551 int local_memory_node(int node)
3552 {
3553 struct zone *zone;
3554
3555 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3556 gfp_zone(GFP_KERNEL),
3557 NULL,
3558 &zone);
3559 return zone->node;
3560 }
3561 #endif
3562
3563 #else /* CONFIG_NUMA */
3564
3565 static void set_zonelist_order(void)
3566 {
3567 current_zonelist_order = ZONELIST_ORDER_ZONE;
3568 }
3569
3570 static void build_zonelists(pg_data_t *pgdat)
3571 {
3572 int node, local_node;
3573 enum zone_type j;
3574 struct zonelist *zonelist;
3575
3576 local_node = pgdat->node_id;
3577
3578 zonelist = &pgdat->node_zonelists[0];
3579 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3580
3581 /*
3582 * Now we build the zonelist so that it contains the zones
3583 * of all the other nodes.
3584 * We don't want to pressure a particular node, so when
3585 * building the zones for node N, we make sure that the
3586 * zones coming right after the local ones are those from
3587 * node N+1 (modulo N)
3588 */
3589 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3590 if (!node_online(node))
3591 continue;
3592 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3593 MAX_NR_ZONES - 1);
3594 }
3595 for (node = 0; node < local_node; node++) {
3596 if (!node_online(node))
3597 continue;
3598 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3599 MAX_NR_ZONES - 1);
3600 }
3601
3602 zonelist->_zonerefs[j].zone = NULL;
3603 zonelist->_zonerefs[j].zone_idx = 0;
3604 }
3605
3606 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3607 static void build_zonelist_cache(pg_data_t *pgdat)
3608 {
3609 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3610 }
3611
3612 #endif /* CONFIG_NUMA */
3613
3614 /*
3615 * Boot pageset table. One per cpu which is going to be used for all
3616 * zones and all nodes. The parameters will be set in such a way
3617 * that an item put on a list will immediately be handed over to
3618 * the buddy list. This is safe since pageset manipulation is done
3619 * with interrupts disabled.
3620 *
3621 * The boot_pagesets must be kept even after bootup is complete for
3622 * unused processors and/or zones. They do play a role for bootstrapping
3623 * hotplugged processors.
3624 *
3625 * zoneinfo_show() and maybe other functions do
3626 * not check if the processor is online before following the pageset pointer.
3627 * Other parts of the kernel may not check if the zone is available.
3628 */
3629 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3630 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3631 static void setup_zone_pageset(struct zone *zone);
3632
3633 /*
3634 * Global mutex to protect against size modification of zonelists
3635 * as well as to serialize pageset setup for the new populated zone.
3636 */
3637 DEFINE_MUTEX(zonelists_mutex);
3638
3639 /* return values int ....just for stop_machine() */
3640 static int __build_all_zonelists(void *data)
3641 {
3642 int nid;
3643 int cpu;
3644 pg_data_t *self = data;
3645
3646 #ifdef CONFIG_NUMA
3647 memset(node_load, 0, sizeof(node_load));
3648 #endif
3649
3650 if (self && !node_online(self->node_id)) {
3651 build_zonelists(self);
3652 build_zonelist_cache(self);
3653 }
3654
3655 for_each_online_node(nid) {
3656 pg_data_t *pgdat = NODE_DATA(nid);
3657
3658 build_zonelists(pgdat);
3659 build_zonelist_cache(pgdat);
3660 }
3661
3662 /*
3663 * Initialize the boot_pagesets that are going to be used
3664 * for bootstrapping processors. The real pagesets for
3665 * each zone will be allocated later when the per cpu
3666 * allocator is available.
3667 *
3668 * boot_pagesets are used also for bootstrapping offline
3669 * cpus if the system is already booted because the pagesets
3670 * are needed to initialize allocators on a specific cpu too.
3671 * F.e. the percpu allocator needs the page allocator which
3672 * needs the percpu allocator in order to allocate its pagesets
3673 * (a chicken-egg dilemma).
3674 */
3675 for_each_possible_cpu(cpu) {
3676 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3677
3678 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3679 /*
3680 * We now know the "local memory node" for each node--
3681 * i.e., the node of the first zone in the generic zonelist.
3682 * Set up numa_mem percpu variable for on-line cpus. During
3683 * boot, only the boot cpu should be on-line; we'll init the
3684 * secondary cpus' numa_mem as they come on-line. During
3685 * node/memory hotplug, we'll fixup all on-line cpus.
3686 */
3687 if (cpu_online(cpu))
3688 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3689 #endif
3690 }
3691
3692 return 0;
3693 }
3694
3695 /*
3696 * Called with zonelists_mutex held always
3697 * unless system_state == SYSTEM_BOOTING.
3698 */
3699 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3700 {
3701 set_zonelist_order();
3702
3703 if (system_state == SYSTEM_BOOTING) {
3704 __build_all_zonelists(NULL);
3705 mminit_verify_zonelist();
3706 cpuset_init_current_mems_allowed();
3707 } else {
3708 /* we have to stop all cpus to guarantee there is no user
3709 of zonelist */
3710 #ifdef CONFIG_MEMORY_HOTPLUG
3711 if (zone)
3712 setup_zone_pageset(zone);
3713 #endif
3714 stop_machine(__build_all_zonelists, pgdat, NULL);
3715 /* cpuset refresh routine should be here */
3716 }
3717 vm_total_pages = nr_free_pagecache_pages();
3718 /*
3719 * Disable grouping by mobility if the number of pages in the
3720 * system is too low to allow the mechanism to work. It would be
3721 * more accurate, but expensive to check per-zone. This check is
3722 * made on memory-hotadd so a system can start with mobility
3723 * disabled and enable it later
3724 */
3725 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3726 page_group_by_mobility_disabled = 1;
3727 else
3728 page_group_by_mobility_disabled = 0;
3729
3730 printk("Built %i zonelists in %s order, mobility grouping %s. "
3731 "Total pages: %ld\n",
3732 nr_online_nodes,
3733 zonelist_order_name[current_zonelist_order],
3734 page_group_by_mobility_disabled ? "off" : "on",
3735 vm_total_pages);
3736 #ifdef CONFIG_NUMA
3737 printk("Policy zone: %s\n", zone_names[policy_zone]);
3738 #endif
3739 }
3740
3741 /*
3742 * Helper functions to size the waitqueue hash table.
3743 * Essentially these want to choose hash table sizes sufficiently
3744 * large so that collisions trying to wait on pages are rare.
3745 * But in fact, the number of active page waitqueues on typical
3746 * systems is ridiculously low, less than 200. So this is even
3747 * conservative, even though it seems large.
3748 *
3749 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3750 * waitqueues, i.e. the size of the waitq table given the number of pages.
3751 */
3752 #define PAGES_PER_WAITQUEUE 256
3753
3754 #ifndef CONFIG_MEMORY_HOTPLUG
3755 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3756 {
3757 unsigned long size = 1;
3758
3759 pages /= PAGES_PER_WAITQUEUE;
3760
3761 while (size < pages)
3762 size <<= 1;
3763
3764 /*
3765 * Once we have dozens or even hundreds of threads sleeping
3766 * on IO we've got bigger problems than wait queue collision.
3767 * Limit the size of the wait table to a reasonable size.
3768 */
3769 size = min(size, 4096UL);
3770
3771 return max(size, 4UL);
3772 }
3773 #else
3774 /*
3775 * A zone's size might be changed by hot-add, so it is not possible to determine
3776 * a suitable size for its wait_table. So we use the maximum size now.
3777 *
3778 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3779 *
3780 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3781 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3782 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3783 *
3784 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3785 * or more by the traditional way. (See above). It equals:
3786 *
3787 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3788 * ia64(16K page size) : = ( 8G + 4M)byte.
3789 * powerpc (64K page size) : = (32G +16M)byte.
3790 */
3791 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3792 {
3793 return 4096UL;
3794 }
3795 #endif
3796
3797 /*
3798 * This is an integer logarithm so that shifts can be used later
3799 * to extract the more random high bits from the multiplicative
3800 * hash function before the remainder is taken.
3801 */
3802 static inline unsigned long wait_table_bits(unsigned long size)
3803 {
3804 return ffz(~size);
3805 }
3806
3807 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3808
3809 /*
3810 * Check if a pageblock contains reserved pages
3811 */
3812 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3813 {
3814 unsigned long pfn;
3815
3816 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3817 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3818 return 1;
3819 }
3820 return 0;
3821 }
3822
3823 /*
3824 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3825 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3826 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3827 * higher will lead to a bigger reserve which will get freed as contiguous
3828 * blocks as reclaim kicks in
3829 */
3830 static void setup_zone_migrate_reserve(struct zone *zone)
3831 {
3832 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3833 struct page *page;
3834 unsigned long block_migratetype;
3835 int reserve;
3836
3837 /*
3838 * Get the start pfn, end pfn and the number of blocks to reserve
3839 * We have to be careful to be aligned to pageblock_nr_pages to
3840 * make sure that we always check pfn_valid for the first page in
3841 * the block.
3842 */
3843 start_pfn = zone->zone_start_pfn;
3844 end_pfn = zone_end_pfn(zone);
3845 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3846 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3847 pageblock_order;
3848
3849 /*
3850 * Reserve blocks are generally in place to help high-order atomic
3851 * allocations that are short-lived. A min_free_kbytes value that
3852 * would result in more than 2 reserve blocks for atomic allocations
3853 * is assumed to be in place to help anti-fragmentation for the
3854 * future allocation of hugepages at runtime.
3855 */
3856 reserve = min(2, reserve);
3857
3858 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3859 if (!pfn_valid(pfn))
3860 continue;
3861 page = pfn_to_page(pfn);
3862
3863 /* Watch out for overlapping nodes */
3864 if (page_to_nid(page) != zone_to_nid(zone))
3865 continue;
3866
3867 block_migratetype = get_pageblock_migratetype(page);
3868
3869 /* Only test what is necessary when the reserves are not met */
3870 if (reserve > 0) {
3871 /*
3872 * Blocks with reserved pages will never free, skip
3873 * them.
3874 */
3875 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3876 if (pageblock_is_reserved(pfn, block_end_pfn))
3877 continue;
3878
3879 /* If this block is reserved, account for it */
3880 if (block_migratetype == MIGRATE_RESERVE) {
3881 reserve--;
3882 continue;
3883 }
3884
3885 /* Suitable for reserving if this block is movable */
3886 if (block_migratetype == MIGRATE_MOVABLE) {
3887 set_pageblock_migratetype(page,
3888 MIGRATE_RESERVE);
3889 move_freepages_block(zone, page,
3890 MIGRATE_RESERVE);
3891 reserve--;
3892 continue;
3893 }
3894 }
3895
3896 /*
3897 * If the reserve is met and this is a previous reserved block,
3898 * take it back
3899 */
3900 if (block_migratetype == MIGRATE_RESERVE) {
3901 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3902 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3903 }
3904 }
3905 }
3906
3907 /*
3908 * Initially all pages are reserved - free ones are freed
3909 * up by free_all_bootmem() once the early boot process is
3910 * done. Non-atomic initialization, single-pass.
3911 */
3912 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3913 unsigned long start_pfn, enum memmap_context context)
3914 {
3915 struct page *page;
3916 unsigned long end_pfn = start_pfn + size;
3917 unsigned long pfn;
3918 struct zone *z;
3919
3920 if (highest_memmap_pfn < end_pfn - 1)
3921 highest_memmap_pfn = end_pfn - 1;
3922
3923 z = &NODE_DATA(nid)->node_zones[zone];
3924 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3925 /*
3926 * There can be holes in boot-time mem_map[]s
3927 * handed to this function. They do not
3928 * exist on hotplugged memory.
3929 */
3930 if (context == MEMMAP_EARLY) {
3931 if (!early_pfn_valid(pfn))
3932 continue;
3933 if (!early_pfn_in_nid(pfn, nid))
3934 continue;
3935 }
3936 page = pfn_to_page(pfn);
3937 set_page_links(page, zone, nid, pfn);
3938 mminit_verify_page_links(page, zone, nid, pfn);
3939 init_page_count(page);
3940 page_mapcount_reset(page);
3941 page_nid_reset_last(page);
3942 SetPageReserved(page);
3943 /*
3944 * Mark the block movable so that blocks are reserved for
3945 * movable at startup. This will force kernel allocations
3946 * to reserve their blocks rather than leaking throughout
3947 * the address space during boot when many long-lived
3948 * kernel allocations are made. Later some blocks near
3949 * the start are marked MIGRATE_RESERVE by
3950 * setup_zone_migrate_reserve()
3951 *
3952 * bitmap is created for zone's valid pfn range. but memmap
3953 * can be created for invalid pages (for alignment)
3954 * check here not to call set_pageblock_migratetype() against
3955 * pfn out of zone.
3956 */
3957 if ((z->zone_start_pfn <= pfn)
3958 && (pfn < zone_end_pfn(z))
3959 && !(pfn & (pageblock_nr_pages - 1)))
3960 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3961
3962 INIT_LIST_HEAD(&page->lru);
3963 #ifdef WANT_PAGE_VIRTUAL
3964 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3965 if (!is_highmem_idx(zone))
3966 set_page_address(page, __va(pfn << PAGE_SHIFT));
3967 #endif
3968 }
3969 }
3970
3971 static void __meminit zone_init_free_lists(struct zone *zone)
3972 {
3973 int order, t;
3974 for_each_migratetype_order(order, t) {
3975 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3976 zone->free_area[order].nr_free = 0;
3977 }
3978 }
3979
3980 #ifndef __HAVE_ARCH_MEMMAP_INIT
3981 #define memmap_init(size, nid, zone, start_pfn) \
3982 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3983 #endif
3984
3985 static int __meminit zone_batchsize(struct zone *zone)
3986 {
3987 #ifdef CONFIG_MMU
3988 int batch;
3989
3990 /*
3991 * The per-cpu-pages pools are set to around 1000th of the
3992 * size of the zone. But no more than 1/2 of a meg.
3993 *
3994 * OK, so we don't know how big the cache is. So guess.
3995 */
3996 batch = zone->managed_pages / 1024;
3997 if (batch * PAGE_SIZE > 512 * 1024)
3998 batch = (512 * 1024) / PAGE_SIZE;
3999 batch /= 4; /* We effectively *= 4 below */
4000 if (batch < 1)
4001 batch = 1;
4002
4003 /*
4004 * Clamp the batch to a 2^n - 1 value. Having a power
4005 * of 2 value was found to be more likely to have
4006 * suboptimal cache aliasing properties in some cases.
4007 *
4008 * For example if 2 tasks are alternately allocating
4009 * batches of pages, one task can end up with a lot
4010 * of pages of one half of the possible page colors
4011 * and the other with pages of the other colors.
4012 */
4013 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4014
4015 return batch;
4016
4017 #else
4018 /* The deferral and batching of frees should be suppressed under NOMMU
4019 * conditions.
4020 *
4021 * The problem is that NOMMU needs to be able to allocate large chunks
4022 * of contiguous memory as there's no hardware page translation to
4023 * assemble apparent contiguous memory from discontiguous pages.
4024 *
4025 * Queueing large contiguous runs of pages for batching, however,
4026 * causes the pages to actually be freed in smaller chunks. As there
4027 * can be a significant delay between the individual batches being
4028 * recycled, this leads to the once large chunks of space being
4029 * fragmented and becoming unavailable for high-order allocations.
4030 */
4031 return 0;
4032 #endif
4033 }
4034
4035 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4036 {
4037 struct per_cpu_pages *pcp;
4038 int migratetype;
4039
4040 memset(p, 0, sizeof(*p));
4041
4042 pcp = &p->pcp;
4043 pcp->count = 0;
4044 pcp->high = 6 * batch;
4045 pcp->batch = max(1UL, 1 * batch);
4046 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4047 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4048 }
4049
4050 /*
4051 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4052 * to the value high for the pageset p.
4053 */
4054
4055 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4056 unsigned long high)
4057 {
4058 struct per_cpu_pages *pcp;
4059
4060 pcp = &p->pcp;
4061 pcp->high = high;
4062 pcp->batch = max(1UL, high/4);
4063 if ((high/4) > (PAGE_SHIFT * 8))
4064 pcp->batch = PAGE_SHIFT * 8;
4065 }
4066
4067 static void __meminit setup_zone_pageset(struct zone *zone)
4068 {
4069 int cpu;
4070
4071 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4072
4073 for_each_possible_cpu(cpu) {
4074 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4075
4076 setup_pageset(pcp, zone_batchsize(zone));
4077
4078 if (percpu_pagelist_fraction)
4079 setup_pagelist_highmark(pcp,
4080 (zone->managed_pages /
4081 percpu_pagelist_fraction));
4082 }
4083 }
4084
4085 /*
4086 * Allocate per cpu pagesets and initialize them.
4087 * Before this call only boot pagesets were available.
4088 */
4089 void __init setup_per_cpu_pageset(void)
4090 {
4091 struct zone *zone;
4092
4093 for_each_populated_zone(zone)
4094 setup_zone_pageset(zone);
4095 }
4096
4097 static noinline __init_refok
4098 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4099 {
4100 int i;
4101 struct pglist_data *pgdat = zone->zone_pgdat;
4102 size_t alloc_size;
4103
4104 /*
4105 * The per-page waitqueue mechanism uses hashed waitqueues
4106 * per zone.
4107 */
4108 zone->wait_table_hash_nr_entries =
4109 wait_table_hash_nr_entries(zone_size_pages);
4110 zone->wait_table_bits =
4111 wait_table_bits(zone->wait_table_hash_nr_entries);
4112 alloc_size = zone->wait_table_hash_nr_entries
4113 * sizeof(wait_queue_head_t);
4114
4115 if (!slab_is_available()) {
4116 zone->wait_table = (wait_queue_head_t *)
4117 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4118 } else {
4119 /*
4120 * This case means that a zone whose size was 0 gets new memory
4121 * via memory hot-add.
4122 * But it may be the case that a new node was hot-added. In
4123 * this case vmalloc() will not be able to use this new node's
4124 * memory - this wait_table must be initialized to use this new
4125 * node itself as well.
4126 * To use this new node's memory, further consideration will be
4127 * necessary.
4128 */
4129 zone->wait_table = vmalloc(alloc_size);
4130 }
4131 if (!zone->wait_table)
4132 return -ENOMEM;
4133
4134 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4135 init_waitqueue_head(zone->wait_table + i);
4136
4137 return 0;
4138 }
4139
4140 static __meminit void zone_pcp_init(struct zone *zone)
4141 {
4142 /*
4143 * per cpu subsystem is not up at this point. The following code
4144 * relies on the ability of the linker to provide the
4145 * offset of a (static) per cpu variable into the per cpu area.
4146 */
4147 zone->pageset = &boot_pageset;
4148
4149 if (zone->present_pages)
4150 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4151 zone->name, zone->present_pages,
4152 zone_batchsize(zone));
4153 }
4154
4155 int __meminit init_currently_empty_zone(struct zone *zone,
4156 unsigned long zone_start_pfn,
4157 unsigned long size,
4158 enum memmap_context context)
4159 {
4160 struct pglist_data *pgdat = zone->zone_pgdat;
4161 int ret;
4162 ret = zone_wait_table_init(zone, size);
4163 if (ret)
4164 return ret;
4165 pgdat->nr_zones = zone_idx(zone) + 1;
4166
4167 zone->zone_start_pfn = zone_start_pfn;
4168
4169 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4170 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4171 pgdat->node_id,
4172 (unsigned long)zone_idx(zone),
4173 zone_start_pfn, (zone_start_pfn + size));
4174
4175 zone_init_free_lists(zone);
4176
4177 return 0;
4178 }
4179
4180 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4181 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4182 /*
4183 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4184 * Architectures may implement their own version but if add_active_range()
4185 * was used and there are no special requirements, this is a convenient
4186 * alternative
4187 */
4188 int __meminit __early_pfn_to_nid(unsigned long pfn)
4189 {
4190 unsigned long start_pfn, end_pfn;
4191 int i, nid;
4192 /*
4193 * NOTE: The following SMP-unsafe globals are only used early in boot
4194 * when the kernel is running single-threaded.
4195 */
4196 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4197 static int __meminitdata last_nid;
4198
4199 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4200 return last_nid;
4201
4202 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4203 if (start_pfn <= pfn && pfn < end_pfn) {
4204 last_start_pfn = start_pfn;
4205 last_end_pfn = end_pfn;
4206 last_nid = nid;
4207 return nid;
4208 }
4209 /* This is a memory hole */
4210 return -1;
4211 }
4212 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4213
4214 int __meminit early_pfn_to_nid(unsigned long pfn)
4215 {
4216 int nid;
4217
4218 nid = __early_pfn_to_nid(pfn);
4219 if (nid >= 0)
4220 return nid;
4221 /* just returns 0 */
4222 return 0;
4223 }
4224
4225 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4226 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4227 {
4228 int nid;
4229
4230 nid = __early_pfn_to_nid(pfn);
4231 if (nid >= 0 && nid != node)
4232 return false;
4233 return true;
4234 }
4235 #endif
4236
4237 /**
4238 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4239 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4240 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4241 *
4242 * If an architecture guarantees that all ranges registered with
4243 * add_active_ranges() contain no holes and may be freed, this
4244 * this function may be used instead of calling free_bootmem() manually.
4245 */
4246 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4247 {
4248 unsigned long start_pfn, end_pfn;
4249 int i, this_nid;
4250
4251 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4252 start_pfn = min(start_pfn, max_low_pfn);
4253 end_pfn = min(end_pfn, max_low_pfn);
4254
4255 if (start_pfn < end_pfn)
4256 free_bootmem_node(NODE_DATA(this_nid),
4257 PFN_PHYS(start_pfn),
4258 (end_pfn - start_pfn) << PAGE_SHIFT);
4259 }
4260 }
4261
4262 /**
4263 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4264 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4265 *
4266 * If an architecture guarantees that all ranges registered with
4267 * add_active_ranges() contain no holes and may be freed, this
4268 * function may be used instead of calling memory_present() manually.
4269 */
4270 void __init sparse_memory_present_with_active_regions(int nid)
4271 {
4272 unsigned long start_pfn, end_pfn;
4273 int i, this_nid;
4274
4275 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4276 memory_present(this_nid, start_pfn, end_pfn);
4277 }
4278
4279 /**
4280 * get_pfn_range_for_nid - Return the start and end page frames for a node
4281 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4282 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4283 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4284 *
4285 * It returns the start and end page frame of a node based on information
4286 * provided by an arch calling add_active_range(). If called for a node
4287 * with no available memory, a warning is printed and the start and end
4288 * PFNs will be 0.
4289 */
4290 void __meminit get_pfn_range_for_nid(unsigned int nid,
4291 unsigned long *start_pfn, unsigned long *end_pfn)
4292 {
4293 unsigned long this_start_pfn, this_end_pfn;
4294 int i;
4295
4296 *start_pfn = -1UL;
4297 *end_pfn = 0;
4298
4299 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4300 *start_pfn = min(*start_pfn, this_start_pfn);
4301 *end_pfn = max(*end_pfn, this_end_pfn);
4302 }
4303
4304 if (*start_pfn == -1UL)
4305 *start_pfn = 0;
4306 }
4307
4308 /*
4309 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4310 * assumption is made that zones within a node are ordered in monotonic
4311 * increasing memory addresses so that the "highest" populated zone is used
4312 */
4313 static void __init find_usable_zone_for_movable(void)
4314 {
4315 int zone_index;
4316 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4317 if (zone_index == ZONE_MOVABLE)
4318 continue;
4319
4320 if (arch_zone_highest_possible_pfn[zone_index] >
4321 arch_zone_lowest_possible_pfn[zone_index])
4322 break;
4323 }
4324
4325 VM_BUG_ON(zone_index == -1);
4326 movable_zone = zone_index;
4327 }
4328
4329 /*
4330 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4331 * because it is sized independent of architecture. Unlike the other zones,
4332 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4333 * in each node depending on the size of each node and how evenly kernelcore
4334 * is distributed. This helper function adjusts the zone ranges
4335 * provided by the architecture for a given node by using the end of the
4336 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4337 * zones within a node are in order of monotonic increases memory addresses
4338 */
4339 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4340 unsigned long zone_type,
4341 unsigned long node_start_pfn,
4342 unsigned long node_end_pfn,
4343 unsigned long *zone_start_pfn,
4344 unsigned long *zone_end_pfn)
4345 {
4346 /* Only adjust if ZONE_MOVABLE is on this node */
4347 if (zone_movable_pfn[nid]) {
4348 /* Size ZONE_MOVABLE */
4349 if (zone_type == ZONE_MOVABLE) {
4350 *zone_start_pfn = zone_movable_pfn[nid];
4351 *zone_end_pfn = min(node_end_pfn,
4352 arch_zone_highest_possible_pfn[movable_zone]);
4353
4354 /* Adjust for ZONE_MOVABLE starting within this range */
4355 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4356 *zone_end_pfn > zone_movable_pfn[nid]) {
4357 *zone_end_pfn = zone_movable_pfn[nid];
4358
4359 /* Check if this whole range is within ZONE_MOVABLE */
4360 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4361 *zone_start_pfn = *zone_end_pfn;
4362 }
4363 }
4364
4365 /*
4366 * Return the number of pages a zone spans in a node, including holes
4367 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4368 */
4369 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4370 unsigned long zone_type,
4371 unsigned long *ignored)
4372 {
4373 unsigned long node_start_pfn, node_end_pfn;
4374 unsigned long zone_start_pfn, zone_end_pfn;
4375
4376 /* Get the start and end of the node and zone */
4377 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4378 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4379 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4380 adjust_zone_range_for_zone_movable(nid, zone_type,
4381 node_start_pfn, node_end_pfn,
4382 &zone_start_pfn, &zone_end_pfn);
4383
4384 /* Check that this node has pages within the zone's required range */
4385 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4386 return 0;
4387
4388 /* Move the zone boundaries inside the node if necessary */
4389 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4390 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4391
4392 /* Return the spanned pages */
4393 return zone_end_pfn - zone_start_pfn;
4394 }
4395
4396 /*
4397 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4398 * then all holes in the requested range will be accounted for.
4399 */
4400 unsigned long __meminit __absent_pages_in_range(int nid,
4401 unsigned long range_start_pfn,
4402 unsigned long range_end_pfn)
4403 {
4404 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4405 unsigned long start_pfn, end_pfn;
4406 int i;
4407
4408 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4409 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4410 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4411 nr_absent -= end_pfn - start_pfn;
4412 }
4413 return nr_absent;
4414 }
4415
4416 /**
4417 * absent_pages_in_range - Return number of page frames in holes within a range
4418 * @start_pfn: The start PFN to start searching for holes
4419 * @end_pfn: The end PFN to stop searching for holes
4420 *
4421 * It returns the number of pages frames in memory holes within a range.
4422 */
4423 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4424 unsigned long end_pfn)
4425 {
4426 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4427 }
4428
4429 /* Return the number of page frames in holes in a zone on a node */
4430 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4431 unsigned long zone_type,
4432 unsigned long *ignored)
4433 {
4434 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4435 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4436 unsigned long node_start_pfn, node_end_pfn;
4437 unsigned long zone_start_pfn, zone_end_pfn;
4438
4439 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4440 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4441 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4442
4443 adjust_zone_range_for_zone_movable(nid, zone_type,
4444 node_start_pfn, node_end_pfn,
4445 &zone_start_pfn, &zone_end_pfn);
4446 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4447 }
4448
4449 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4450 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4451 unsigned long zone_type,
4452 unsigned long *zones_size)
4453 {
4454 return zones_size[zone_type];
4455 }
4456
4457 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4458 unsigned long zone_type,
4459 unsigned long *zholes_size)
4460 {
4461 if (!zholes_size)
4462 return 0;
4463
4464 return zholes_size[zone_type];
4465 }
4466
4467 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4468
4469 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4470 unsigned long *zones_size, unsigned long *zholes_size)
4471 {
4472 unsigned long realtotalpages, totalpages = 0;
4473 enum zone_type i;
4474
4475 for (i = 0; i < MAX_NR_ZONES; i++)
4476 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4477 zones_size);
4478 pgdat->node_spanned_pages = totalpages;
4479
4480 realtotalpages = totalpages;
4481 for (i = 0; i < MAX_NR_ZONES; i++)
4482 realtotalpages -=
4483 zone_absent_pages_in_node(pgdat->node_id, i,
4484 zholes_size);
4485 pgdat->node_present_pages = realtotalpages;
4486 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4487 realtotalpages);
4488 }
4489
4490 #ifndef CONFIG_SPARSEMEM
4491 /*
4492 * Calculate the size of the zone->blockflags rounded to an unsigned long
4493 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4494 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4495 * round what is now in bits to nearest long in bits, then return it in
4496 * bytes.
4497 */
4498 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4499 {
4500 unsigned long usemapsize;
4501
4502 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4503 usemapsize = roundup(zonesize, pageblock_nr_pages);
4504 usemapsize = usemapsize >> pageblock_order;
4505 usemapsize *= NR_PAGEBLOCK_BITS;
4506 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4507
4508 return usemapsize / 8;
4509 }
4510
4511 static void __init setup_usemap(struct pglist_data *pgdat,
4512 struct zone *zone,
4513 unsigned long zone_start_pfn,
4514 unsigned long zonesize)
4515 {
4516 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4517 zone->pageblock_flags = NULL;
4518 if (usemapsize)
4519 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4520 usemapsize);
4521 }
4522 #else
4523 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4524 unsigned long zone_start_pfn, unsigned long zonesize) {}
4525 #endif /* CONFIG_SPARSEMEM */
4526
4527 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4528
4529 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4530 void __init set_pageblock_order(void)
4531 {
4532 unsigned int order;
4533
4534 /* Check that pageblock_nr_pages has not already been setup */
4535 if (pageblock_order)
4536 return;
4537
4538 if (HPAGE_SHIFT > PAGE_SHIFT)
4539 order = HUGETLB_PAGE_ORDER;
4540 else
4541 order = MAX_ORDER - 1;
4542
4543 /*
4544 * Assume the largest contiguous order of interest is a huge page.
4545 * This value may be variable depending on boot parameters on IA64 and
4546 * powerpc.
4547 */
4548 pageblock_order = order;
4549 }
4550 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4551
4552 /*
4553 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4554 * is unused as pageblock_order is set at compile-time. See
4555 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4556 * the kernel config
4557 */
4558 void __init set_pageblock_order(void)
4559 {
4560 }
4561
4562 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4563
4564 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4565 unsigned long present_pages)
4566 {
4567 unsigned long pages = spanned_pages;
4568
4569 /*
4570 * Provide a more accurate estimation if there are holes within
4571 * the zone and SPARSEMEM is in use. If there are holes within the
4572 * zone, each populated memory region may cost us one or two extra
4573 * memmap pages due to alignment because memmap pages for each
4574 * populated regions may not naturally algined on page boundary.
4575 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4576 */
4577 if (spanned_pages > present_pages + (present_pages >> 4) &&
4578 IS_ENABLED(CONFIG_SPARSEMEM))
4579 pages = present_pages;
4580
4581 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4582 }
4583
4584 /*
4585 * Set up the zone data structures:
4586 * - mark all pages reserved
4587 * - mark all memory queues empty
4588 * - clear the memory bitmaps
4589 *
4590 * NOTE: pgdat should get zeroed by caller.
4591 */
4592 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4593 unsigned long *zones_size, unsigned long *zholes_size)
4594 {
4595 enum zone_type j;
4596 int nid = pgdat->node_id;
4597 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4598 int ret;
4599
4600 pgdat_resize_init(pgdat);
4601 #ifdef CONFIG_NUMA_BALANCING
4602 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4603 pgdat->numabalancing_migrate_nr_pages = 0;
4604 pgdat->numabalancing_migrate_next_window = jiffies;
4605 #endif
4606 init_waitqueue_head(&pgdat->kswapd_wait);
4607 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4608 pgdat_page_cgroup_init(pgdat);
4609
4610 for (j = 0; j < MAX_NR_ZONES; j++) {
4611 struct zone *zone = pgdat->node_zones + j;
4612 unsigned long size, realsize, freesize, memmap_pages;
4613
4614 size = zone_spanned_pages_in_node(nid, j, zones_size);
4615 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4616 zholes_size);
4617
4618 /*
4619 * Adjust freesize so that it accounts for how much memory
4620 * is used by this zone for memmap. This affects the watermark
4621 * and per-cpu initialisations
4622 */
4623 memmap_pages = calc_memmap_size(size, realsize);
4624 if (freesize >= memmap_pages) {
4625 freesize -= memmap_pages;
4626 if (memmap_pages)
4627 printk(KERN_DEBUG
4628 " %s zone: %lu pages used for memmap\n",
4629 zone_names[j], memmap_pages);
4630 } else
4631 printk(KERN_WARNING
4632 " %s zone: %lu pages exceeds freesize %lu\n",
4633 zone_names[j], memmap_pages, freesize);
4634
4635 /* Account for reserved pages */
4636 if (j == 0 && freesize > dma_reserve) {
4637 freesize -= dma_reserve;
4638 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4639 zone_names[0], dma_reserve);
4640 }
4641
4642 if (!is_highmem_idx(j))
4643 nr_kernel_pages += freesize;
4644 /* Charge for highmem memmap if there are enough kernel pages */
4645 else if (nr_kernel_pages > memmap_pages * 2)
4646 nr_kernel_pages -= memmap_pages;
4647 nr_all_pages += freesize;
4648
4649 zone->spanned_pages = size;
4650 zone->present_pages = realsize;
4651 /*
4652 * Set an approximate value for lowmem here, it will be adjusted
4653 * when the bootmem allocator frees pages into the buddy system.
4654 * And all highmem pages will be managed by the buddy system.
4655 */
4656 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4657 #ifdef CONFIG_NUMA
4658 zone->node = nid;
4659 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4660 / 100;
4661 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4662 #endif
4663 zone->name = zone_names[j];
4664 spin_lock_init(&zone->lock);
4665 spin_lock_init(&zone->lru_lock);
4666 zone_seqlock_init(zone);
4667 zone->zone_pgdat = pgdat;
4668
4669 zone_pcp_init(zone);
4670 lruvec_init(&zone->lruvec);
4671 if (!size)
4672 continue;
4673
4674 set_pageblock_order();
4675 setup_usemap(pgdat, zone, zone_start_pfn, size);
4676 ret = init_currently_empty_zone(zone, zone_start_pfn,
4677 size, MEMMAP_EARLY);
4678 BUG_ON(ret);
4679 memmap_init(size, nid, j, zone_start_pfn);
4680 zone_start_pfn += size;
4681 }
4682 }
4683
4684 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4685 {
4686 /* Skip empty nodes */
4687 if (!pgdat->node_spanned_pages)
4688 return;
4689
4690 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4691 /* ia64 gets its own node_mem_map, before this, without bootmem */
4692 if (!pgdat->node_mem_map) {
4693 unsigned long size, start, end;
4694 struct page *map;
4695
4696 /*
4697 * The zone's endpoints aren't required to be MAX_ORDER
4698 * aligned but the node_mem_map endpoints must be in order
4699 * for the buddy allocator to function correctly.
4700 */
4701 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4702 end = pgdat_end_pfn(pgdat);
4703 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4704 size = (end - start) * sizeof(struct page);
4705 map = alloc_remap(pgdat->node_id, size);
4706 if (!map)
4707 map = alloc_bootmem_node_nopanic(pgdat, size);
4708 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4709 }
4710 #ifndef CONFIG_NEED_MULTIPLE_NODES
4711 /*
4712 * With no DISCONTIG, the global mem_map is just set as node 0's
4713 */
4714 if (pgdat == NODE_DATA(0)) {
4715 mem_map = NODE_DATA(0)->node_mem_map;
4716 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4717 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4718 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4719 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4720 }
4721 #endif
4722 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4723 }
4724
4725 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4726 unsigned long node_start_pfn, unsigned long *zholes_size)
4727 {
4728 pg_data_t *pgdat = NODE_DATA(nid);
4729
4730 /* pg_data_t should be reset to zero when it's allocated */
4731 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4732
4733 pgdat->node_id = nid;
4734 pgdat->node_start_pfn = node_start_pfn;
4735 init_zone_allows_reclaim(nid);
4736 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4737
4738 alloc_node_mem_map(pgdat);
4739 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4740 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4741 nid, (unsigned long)pgdat,
4742 (unsigned long)pgdat->node_mem_map);
4743 #endif
4744
4745 free_area_init_core(pgdat, zones_size, zholes_size);
4746 }
4747
4748 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4749
4750 #if MAX_NUMNODES > 1
4751 /*
4752 * Figure out the number of possible node ids.
4753 */
4754 void __init setup_nr_node_ids(void)
4755 {
4756 unsigned int node;
4757 unsigned int highest = 0;
4758
4759 for_each_node_mask(node, node_possible_map)
4760 highest = node;
4761 nr_node_ids = highest + 1;
4762 }
4763 #endif
4764
4765 /**
4766 * node_map_pfn_alignment - determine the maximum internode alignment
4767 *
4768 * This function should be called after node map is populated and sorted.
4769 * It calculates the maximum power of two alignment which can distinguish
4770 * all the nodes.
4771 *
4772 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4773 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4774 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4775 * shifted, 1GiB is enough and this function will indicate so.
4776 *
4777 * This is used to test whether pfn -> nid mapping of the chosen memory
4778 * model has fine enough granularity to avoid incorrect mapping for the
4779 * populated node map.
4780 *
4781 * Returns the determined alignment in pfn's. 0 if there is no alignment
4782 * requirement (single node).
4783 */
4784 unsigned long __init node_map_pfn_alignment(void)
4785 {
4786 unsigned long accl_mask = 0, last_end = 0;
4787 unsigned long start, end, mask;
4788 int last_nid = -1;
4789 int i, nid;
4790
4791 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4792 if (!start || last_nid < 0 || last_nid == nid) {
4793 last_nid = nid;
4794 last_end = end;
4795 continue;
4796 }
4797
4798 /*
4799 * Start with a mask granular enough to pin-point to the
4800 * start pfn and tick off bits one-by-one until it becomes
4801 * too coarse to separate the current node from the last.
4802 */
4803 mask = ~((1 << __ffs(start)) - 1);
4804 while (mask && last_end <= (start & (mask << 1)))
4805 mask <<= 1;
4806
4807 /* accumulate all internode masks */
4808 accl_mask |= mask;
4809 }
4810
4811 /* convert mask to number of pages */
4812 return ~accl_mask + 1;
4813 }
4814
4815 /* Find the lowest pfn for a node */
4816 static unsigned long __init find_min_pfn_for_node(int nid)
4817 {
4818 unsigned long min_pfn = ULONG_MAX;
4819 unsigned long start_pfn;
4820 int i;
4821
4822 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4823 min_pfn = min(min_pfn, start_pfn);
4824
4825 if (min_pfn == ULONG_MAX) {
4826 printk(KERN_WARNING
4827 "Could not find start_pfn for node %d\n", nid);
4828 return 0;
4829 }
4830
4831 return min_pfn;
4832 }
4833
4834 /**
4835 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4836 *
4837 * It returns the minimum PFN based on information provided via
4838 * add_active_range().
4839 */
4840 unsigned long __init find_min_pfn_with_active_regions(void)
4841 {
4842 return find_min_pfn_for_node(MAX_NUMNODES);
4843 }
4844
4845 /*
4846 * early_calculate_totalpages()
4847 * Sum pages in active regions for movable zone.
4848 * Populate N_MEMORY for calculating usable_nodes.
4849 */
4850 static unsigned long __init early_calculate_totalpages(void)
4851 {
4852 unsigned long totalpages = 0;
4853 unsigned long start_pfn, end_pfn;
4854 int i, nid;
4855
4856 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4857 unsigned long pages = end_pfn - start_pfn;
4858
4859 totalpages += pages;
4860 if (pages)
4861 node_set_state(nid, N_MEMORY);
4862 }
4863 return totalpages;
4864 }
4865
4866 /*
4867 * Find the PFN the Movable zone begins in each node. Kernel memory
4868 * is spread evenly between nodes as long as the nodes have enough
4869 * memory. When they don't, some nodes will have more kernelcore than
4870 * others
4871 */
4872 static void __init find_zone_movable_pfns_for_nodes(void)
4873 {
4874 int i, nid;
4875 unsigned long usable_startpfn;
4876 unsigned long kernelcore_node, kernelcore_remaining;
4877 /* save the state before borrow the nodemask */
4878 nodemask_t saved_node_state = node_states[N_MEMORY];
4879 unsigned long totalpages = early_calculate_totalpages();
4880 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4881
4882 /*
4883 * If movablecore was specified, calculate what size of
4884 * kernelcore that corresponds so that memory usable for
4885 * any allocation type is evenly spread. If both kernelcore
4886 * and movablecore are specified, then the value of kernelcore
4887 * will be used for required_kernelcore if it's greater than
4888 * what movablecore would have allowed.
4889 */
4890 if (required_movablecore) {
4891 unsigned long corepages;
4892
4893 /*
4894 * Round-up so that ZONE_MOVABLE is at least as large as what
4895 * was requested by the user
4896 */
4897 required_movablecore =
4898 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4899 corepages = totalpages - required_movablecore;
4900
4901 required_kernelcore = max(required_kernelcore, corepages);
4902 }
4903
4904 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4905 if (!required_kernelcore)
4906 goto out;
4907
4908 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4909 find_usable_zone_for_movable();
4910 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4911
4912 restart:
4913 /* Spread kernelcore memory as evenly as possible throughout nodes */
4914 kernelcore_node = required_kernelcore / usable_nodes;
4915 for_each_node_state(nid, N_MEMORY) {
4916 unsigned long start_pfn, end_pfn;
4917
4918 /*
4919 * Recalculate kernelcore_node if the division per node
4920 * now exceeds what is necessary to satisfy the requested
4921 * amount of memory for the kernel
4922 */
4923 if (required_kernelcore < kernelcore_node)
4924 kernelcore_node = required_kernelcore / usable_nodes;
4925
4926 /*
4927 * As the map is walked, we track how much memory is usable
4928 * by the kernel using kernelcore_remaining. When it is
4929 * 0, the rest of the node is usable by ZONE_MOVABLE
4930 */
4931 kernelcore_remaining = kernelcore_node;
4932
4933 /* Go through each range of PFNs within this node */
4934 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4935 unsigned long size_pages;
4936
4937 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4938 if (start_pfn >= end_pfn)
4939 continue;
4940
4941 /* Account for what is only usable for kernelcore */
4942 if (start_pfn < usable_startpfn) {
4943 unsigned long kernel_pages;
4944 kernel_pages = min(end_pfn, usable_startpfn)
4945 - start_pfn;
4946
4947 kernelcore_remaining -= min(kernel_pages,
4948 kernelcore_remaining);
4949 required_kernelcore -= min(kernel_pages,
4950 required_kernelcore);
4951
4952 /* Continue if range is now fully accounted */
4953 if (end_pfn <= usable_startpfn) {
4954
4955 /*
4956 * Push zone_movable_pfn to the end so
4957 * that if we have to rebalance
4958 * kernelcore across nodes, we will
4959 * not double account here
4960 */
4961 zone_movable_pfn[nid] = end_pfn;
4962 continue;
4963 }
4964 start_pfn = usable_startpfn;
4965 }
4966
4967 /*
4968 * The usable PFN range for ZONE_MOVABLE is from
4969 * start_pfn->end_pfn. Calculate size_pages as the
4970 * number of pages used as kernelcore
4971 */
4972 size_pages = end_pfn - start_pfn;
4973 if (size_pages > kernelcore_remaining)
4974 size_pages = kernelcore_remaining;
4975 zone_movable_pfn[nid] = start_pfn + size_pages;
4976
4977 /*
4978 * Some kernelcore has been met, update counts and
4979 * break if the kernelcore for this node has been
4980 * satisified
4981 */
4982 required_kernelcore -= min(required_kernelcore,
4983 size_pages);
4984 kernelcore_remaining -= size_pages;
4985 if (!kernelcore_remaining)
4986 break;
4987 }
4988 }
4989
4990 /*
4991 * If there is still required_kernelcore, we do another pass with one
4992 * less node in the count. This will push zone_movable_pfn[nid] further
4993 * along on the nodes that still have memory until kernelcore is
4994 * satisified
4995 */
4996 usable_nodes--;
4997 if (usable_nodes && required_kernelcore > usable_nodes)
4998 goto restart;
4999
5000 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5001 for (nid = 0; nid < MAX_NUMNODES; nid++)
5002 zone_movable_pfn[nid] =
5003 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5004
5005 out:
5006 /* restore the node_state */
5007 node_states[N_MEMORY] = saved_node_state;
5008 }
5009
5010 /* Any regular or high memory on that node ? */
5011 static void check_for_memory(pg_data_t *pgdat, int nid)
5012 {
5013 enum zone_type zone_type;
5014
5015 if (N_MEMORY == N_NORMAL_MEMORY)
5016 return;
5017
5018 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5019 struct zone *zone = &pgdat->node_zones[zone_type];
5020 if (zone->present_pages) {
5021 node_set_state(nid, N_HIGH_MEMORY);
5022 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5023 zone_type <= ZONE_NORMAL)
5024 node_set_state(nid, N_NORMAL_MEMORY);
5025 break;
5026 }
5027 }
5028 }
5029
5030 /**
5031 * free_area_init_nodes - Initialise all pg_data_t and zone data
5032 * @max_zone_pfn: an array of max PFNs for each zone
5033 *
5034 * This will call free_area_init_node() for each active node in the system.
5035 * Using the page ranges provided by add_active_range(), the size of each
5036 * zone in each node and their holes is calculated. If the maximum PFN
5037 * between two adjacent zones match, it is assumed that the zone is empty.
5038 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5039 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5040 * starts where the previous one ended. For example, ZONE_DMA32 starts
5041 * at arch_max_dma_pfn.
5042 */
5043 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5044 {
5045 unsigned long start_pfn, end_pfn;
5046 int i, nid;
5047
5048 /* Record where the zone boundaries are */
5049 memset(arch_zone_lowest_possible_pfn, 0,
5050 sizeof(arch_zone_lowest_possible_pfn));
5051 memset(arch_zone_highest_possible_pfn, 0,
5052 sizeof(arch_zone_highest_possible_pfn));
5053 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5054 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5055 for (i = 1; i < MAX_NR_ZONES; i++) {
5056 if (i == ZONE_MOVABLE)
5057 continue;
5058 arch_zone_lowest_possible_pfn[i] =
5059 arch_zone_highest_possible_pfn[i-1];
5060 arch_zone_highest_possible_pfn[i] =
5061 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5062 }
5063 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5064 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5065
5066 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5067 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5068 find_zone_movable_pfns_for_nodes();
5069
5070 /* Print out the zone ranges */
5071 printk("Zone ranges:\n");
5072 for (i = 0; i < MAX_NR_ZONES; i++) {
5073 if (i == ZONE_MOVABLE)
5074 continue;
5075 printk(KERN_CONT " %-8s ", zone_names[i]);
5076 if (arch_zone_lowest_possible_pfn[i] ==
5077 arch_zone_highest_possible_pfn[i])
5078 printk(KERN_CONT "empty\n");
5079 else
5080 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5081 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5082 (arch_zone_highest_possible_pfn[i]
5083 << PAGE_SHIFT) - 1);
5084 }
5085
5086 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5087 printk("Movable zone start for each node\n");
5088 for (i = 0; i < MAX_NUMNODES; i++) {
5089 if (zone_movable_pfn[i])
5090 printk(" Node %d: %#010lx\n", i,
5091 zone_movable_pfn[i] << PAGE_SHIFT);
5092 }
5093
5094 /* Print out the early node map */
5095 printk("Early memory node ranges\n");
5096 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5097 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5098 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5099
5100 /* Initialise every node */
5101 mminit_verify_pageflags_layout();
5102 setup_nr_node_ids();
5103 for_each_online_node(nid) {
5104 pg_data_t *pgdat = NODE_DATA(nid);
5105 free_area_init_node(nid, NULL,
5106 find_min_pfn_for_node(nid), NULL);
5107
5108 /* Any memory on that node */
5109 if (pgdat->node_present_pages)
5110 node_set_state(nid, N_MEMORY);
5111 check_for_memory(pgdat, nid);
5112 }
5113 }
5114
5115 static int __init cmdline_parse_core(char *p, unsigned long *core)
5116 {
5117 unsigned long long coremem;
5118 if (!p)
5119 return -EINVAL;
5120
5121 coremem = memparse(p, &p);
5122 *core = coremem >> PAGE_SHIFT;
5123
5124 /* Paranoid check that UL is enough for the coremem value */
5125 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5126
5127 return 0;
5128 }
5129
5130 /*
5131 * kernelcore=size sets the amount of memory for use for allocations that
5132 * cannot be reclaimed or migrated.
5133 */
5134 static int __init cmdline_parse_kernelcore(char *p)
5135 {
5136 return cmdline_parse_core(p, &required_kernelcore);
5137 }
5138
5139 /*
5140 * movablecore=size sets the amount of memory for use for allocations that
5141 * can be reclaimed or migrated.
5142 */
5143 static int __init cmdline_parse_movablecore(char *p)
5144 {
5145 return cmdline_parse_core(p, &required_movablecore);
5146 }
5147
5148 early_param("kernelcore", cmdline_parse_kernelcore);
5149 early_param("movablecore", cmdline_parse_movablecore);
5150
5151 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5152
5153 unsigned long free_reserved_area(unsigned long start, unsigned long end,
5154 int poison, char *s)
5155 {
5156 unsigned long pages, pos;
5157
5158 pos = start = PAGE_ALIGN(start);
5159 end &= PAGE_MASK;
5160 for (pages = 0; pos < end; pos += PAGE_SIZE, pages++) {
5161 if (poison)
5162 memset((void *)pos, poison, PAGE_SIZE);
5163 free_reserved_page(virt_to_page((void *)pos));
5164 }
5165
5166 if (pages && s)
5167 pr_info("Freeing %s memory: %ldK (%lx - %lx)\n",
5168 s, pages << (PAGE_SHIFT - 10), start, end);
5169
5170 return pages;
5171 }
5172
5173 #ifdef CONFIG_HIGHMEM
5174 void free_highmem_page(struct page *page)
5175 {
5176 __free_reserved_page(page);
5177 totalram_pages++;
5178 totalhigh_pages++;
5179 }
5180 #endif
5181
5182 /**
5183 * set_dma_reserve - set the specified number of pages reserved in the first zone
5184 * @new_dma_reserve: The number of pages to mark reserved
5185 *
5186 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5187 * In the DMA zone, a significant percentage may be consumed by kernel image
5188 * and other unfreeable allocations which can skew the watermarks badly. This
5189 * function may optionally be used to account for unfreeable pages in the
5190 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5191 * smaller per-cpu batchsize.
5192 */
5193 void __init set_dma_reserve(unsigned long new_dma_reserve)
5194 {
5195 dma_reserve = new_dma_reserve;
5196 }
5197
5198 void __init free_area_init(unsigned long *zones_size)
5199 {
5200 free_area_init_node(0, zones_size,
5201 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5202 }
5203
5204 static int page_alloc_cpu_notify(struct notifier_block *self,
5205 unsigned long action, void *hcpu)
5206 {
5207 int cpu = (unsigned long)hcpu;
5208
5209 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5210 lru_add_drain_cpu(cpu);
5211 drain_pages(cpu);
5212
5213 /*
5214 * Spill the event counters of the dead processor
5215 * into the current processors event counters.
5216 * This artificially elevates the count of the current
5217 * processor.
5218 */
5219 vm_events_fold_cpu(cpu);
5220
5221 /*
5222 * Zero the differential counters of the dead processor
5223 * so that the vm statistics are consistent.
5224 *
5225 * This is only okay since the processor is dead and cannot
5226 * race with what we are doing.
5227 */
5228 refresh_cpu_vm_stats(cpu);
5229 }
5230 return NOTIFY_OK;
5231 }
5232
5233 void __init page_alloc_init(void)
5234 {
5235 hotcpu_notifier(page_alloc_cpu_notify, 0);
5236 }
5237
5238 /*
5239 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5240 * or min_free_kbytes changes.
5241 */
5242 static void calculate_totalreserve_pages(void)
5243 {
5244 struct pglist_data *pgdat;
5245 unsigned long reserve_pages = 0;
5246 enum zone_type i, j;
5247
5248 for_each_online_pgdat(pgdat) {
5249 for (i = 0; i < MAX_NR_ZONES; i++) {
5250 struct zone *zone = pgdat->node_zones + i;
5251 unsigned long max = 0;
5252
5253 /* Find valid and maximum lowmem_reserve in the zone */
5254 for (j = i; j < MAX_NR_ZONES; j++) {
5255 if (zone->lowmem_reserve[j] > max)
5256 max = zone->lowmem_reserve[j];
5257 }
5258
5259 /* we treat the high watermark as reserved pages. */
5260 max += high_wmark_pages(zone);
5261
5262 if (max > zone->managed_pages)
5263 max = zone->managed_pages;
5264 reserve_pages += max;
5265 /*
5266 * Lowmem reserves are not available to
5267 * GFP_HIGHUSER page cache allocations and
5268 * kswapd tries to balance zones to their high
5269 * watermark. As a result, neither should be
5270 * regarded as dirtyable memory, to prevent a
5271 * situation where reclaim has to clean pages
5272 * in order to balance the zones.
5273 */
5274 zone->dirty_balance_reserve = max;
5275 }
5276 }
5277 dirty_balance_reserve = reserve_pages;
5278 totalreserve_pages = reserve_pages;
5279 }
5280
5281 /*
5282 * setup_per_zone_lowmem_reserve - called whenever
5283 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5284 * has a correct pages reserved value, so an adequate number of
5285 * pages are left in the zone after a successful __alloc_pages().
5286 */
5287 static void setup_per_zone_lowmem_reserve(void)
5288 {
5289 struct pglist_data *pgdat;
5290 enum zone_type j, idx;
5291
5292 for_each_online_pgdat(pgdat) {
5293 for (j = 0; j < MAX_NR_ZONES; j++) {
5294 struct zone *zone = pgdat->node_zones + j;
5295 unsigned long managed_pages = zone->managed_pages;
5296
5297 zone->lowmem_reserve[j] = 0;
5298
5299 idx = j;
5300 while (idx) {
5301 struct zone *lower_zone;
5302
5303 idx--;
5304
5305 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5306 sysctl_lowmem_reserve_ratio[idx] = 1;
5307
5308 lower_zone = pgdat->node_zones + idx;
5309 lower_zone->lowmem_reserve[j] = managed_pages /
5310 sysctl_lowmem_reserve_ratio[idx];
5311 managed_pages += lower_zone->managed_pages;
5312 }
5313 }
5314 }
5315
5316 /* update totalreserve_pages */
5317 calculate_totalreserve_pages();
5318 }
5319
5320 static void __setup_per_zone_wmarks(void)
5321 {
5322 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5323 unsigned long lowmem_pages = 0;
5324 struct zone *zone;
5325 unsigned long flags;
5326
5327 /* Calculate total number of !ZONE_HIGHMEM pages */
5328 for_each_zone(zone) {
5329 if (!is_highmem(zone))
5330 lowmem_pages += zone->managed_pages;
5331 }
5332
5333 for_each_zone(zone) {
5334 u64 tmp;
5335
5336 spin_lock_irqsave(&zone->lock, flags);
5337 tmp = (u64)pages_min * zone->managed_pages;
5338 do_div(tmp, lowmem_pages);
5339 if (is_highmem(zone)) {
5340 /*
5341 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5342 * need highmem pages, so cap pages_min to a small
5343 * value here.
5344 *
5345 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5346 * deltas controls asynch page reclaim, and so should
5347 * not be capped for highmem.
5348 */
5349 unsigned long min_pages;
5350
5351 min_pages = zone->managed_pages / 1024;
5352 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5353 zone->watermark[WMARK_MIN] = min_pages;
5354 } else {
5355 /*
5356 * If it's a lowmem zone, reserve a number of pages
5357 * proportionate to the zone's size.
5358 */
5359 zone->watermark[WMARK_MIN] = tmp;
5360 }
5361
5362 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5363 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5364
5365 setup_zone_migrate_reserve(zone);
5366 spin_unlock_irqrestore(&zone->lock, flags);
5367 }
5368
5369 /* update totalreserve_pages */
5370 calculate_totalreserve_pages();
5371 }
5372
5373 /**
5374 * setup_per_zone_wmarks - called when min_free_kbytes changes
5375 * or when memory is hot-{added|removed}
5376 *
5377 * Ensures that the watermark[min,low,high] values for each zone are set
5378 * correctly with respect to min_free_kbytes.
5379 */
5380 void setup_per_zone_wmarks(void)
5381 {
5382 mutex_lock(&zonelists_mutex);
5383 __setup_per_zone_wmarks();
5384 mutex_unlock(&zonelists_mutex);
5385 }
5386
5387 /*
5388 * The inactive anon list should be small enough that the VM never has to
5389 * do too much work, but large enough that each inactive page has a chance
5390 * to be referenced again before it is swapped out.
5391 *
5392 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5393 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5394 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5395 * the anonymous pages are kept on the inactive list.
5396 *
5397 * total target max
5398 * memory ratio inactive anon
5399 * -------------------------------------
5400 * 10MB 1 5MB
5401 * 100MB 1 50MB
5402 * 1GB 3 250MB
5403 * 10GB 10 0.9GB
5404 * 100GB 31 3GB
5405 * 1TB 101 10GB
5406 * 10TB 320 32GB
5407 */
5408 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5409 {
5410 unsigned int gb, ratio;
5411
5412 /* Zone size in gigabytes */
5413 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5414 if (gb)
5415 ratio = int_sqrt(10 * gb);
5416 else
5417 ratio = 1;
5418
5419 zone->inactive_ratio = ratio;
5420 }
5421
5422 static void __meminit setup_per_zone_inactive_ratio(void)
5423 {
5424 struct zone *zone;
5425
5426 for_each_zone(zone)
5427 calculate_zone_inactive_ratio(zone);
5428 }
5429
5430 /*
5431 * Initialise min_free_kbytes.
5432 *
5433 * For small machines we want it small (128k min). For large machines
5434 * we want it large (64MB max). But it is not linear, because network
5435 * bandwidth does not increase linearly with machine size. We use
5436 *
5437 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5438 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5439 *
5440 * which yields
5441 *
5442 * 16MB: 512k
5443 * 32MB: 724k
5444 * 64MB: 1024k
5445 * 128MB: 1448k
5446 * 256MB: 2048k
5447 * 512MB: 2896k
5448 * 1024MB: 4096k
5449 * 2048MB: 5792k
5450 * 4096MB: 8192k
5451 * 8192MB: 11584k
5452 * 16384MB: 16384k
5453 */
5454 int __meminit init_per_zone_wmark_min(void)
5455 {
5456 unsigned long lowmem_kbytes;
5457
5458 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5459
5460 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5461 if (min_free_kbytes < 128)
5462 min_free_kbytes = 128;
5463 if (min_free_kbytes > 65536)
5464 min_free_kbytes = 65536;
5465 setup_per_zone_wmarks();
5466 refresh_zone_stat_thresholds();
5467 setup_per_zone_lowmem_reserve();
5468 setup_per_zone_inactive_ratio();
5469 return 0;
5470 }
5471 module_init(init_per_zone_wmark_min)
5472
5473 /*
5474 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5475 * that we can call two helper functions whenever min_free_kbytes
5476 * changes.
5477 */
5478 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5479 void __user *buffer, size_t *length, loff_t *ppos)
5480 {
5481 proc_dointvec(table, write, buffer, length, ppos);
5482 if (write)
5483 setup_per_zone_wmarks();
5484 return 0;
5485 }
5486
5487 #ifdef CONFIG_NUMA
5488 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5489 void __user *buffer, size_t *length, loff_t *ppos)
5490 {
5491 struct zone *zone;
5492 int rc;
5493
5494 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5495 if (rc)
5496 return rc;
5497
5498 for_each_zone(zone)
5499 zone->min_unmapped_pages = (zone->managed_pages *
5500 sysctl_min_unmapped_ratio) / 100;
5501 return 0;
5502 }
5503
5504 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5505 void __user *buffer, size_t *length, loff_t *ppos)
5506 {
5507 struct zone *zone;
5508 int rc;
5509
5510 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5511 if (rc)
5512 return rc;
5513
5514 for_each_zone(zone)
5515 zone->min_slab_pages = (zone->managed_pages *
5516 sysctl_min_slab_ratio) / 100;
5517 return 0;
5518 }
5519 #endif
5520
5521 /*
5522 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5523 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5524 * whenever sysctl_lowmem_reserve_ratio changes.
5525 *
5526 * The reserve ratio obviously has absolutely no relation with the
5527 * minimum watermarks. The lowmem reserve ratio can only make sense
5528 * if in function of the boot time zone sizes.
5529 */
5530 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5531 void __user *buffer, size_t *length, loff_t *ppos)
5532 {
5533 proc_dointvec_minmax(table, write, buffer, length, ppos);
5534 setup_per_zone_lowmem_reserve();
5535 return 0;
5536 }
5537
5538 /*
5539 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5540 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5541 * can have before it gets flushed back to buddy allocator.
5542 */
5543
5544 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5545 void __user *buffer, size_t *length, loff_t *ppos)
5546 {
5547 struct zone *zone;
5548 unsigned int cpu;
5549 int ret;
5550
5551 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5552 if (!write || (ret < 0))
5553 return ret;
5554 for_each_populated_zone(zone) {
5555 for_each_possible_cpu(cpu) {
5556 unsigned long high;
5557 high = zone->managed_pages / percpu_pagelist_fraction;
5558 setup_pagelist_highmark(
5559 per_cpu_ptr(zone->pageset, cpu), high);
5560 }
5561 }
5562 return 0;
5563 }
5564
5565 int hashdist = HASHDIST_DEFAULT;
5566
5567 #ifdef CONFIG_NUMA
5568 static int __init set_hashdist(char *str)
5569 {
5570 if (!str)
5571 return 0;
5572 hashdist = simple_strtoul(str, &str, 0);
5573 return 1;
5574 }
5575 __setup("hashdist=", set_hashdist);
5576 #endif
5577
5578 /*
5579 * allocate a large system hash table from bootmem
5580 * - it is assumed that the hash table must contain an exact power-of-2
5581 * quantity of entries
5582 * - limit is the number of hash buckets, not the total allocation size
5583 */
5584 void *__init alloc_large_system_hash(const char *tablename,
5585 unsigned long bucketsize,
5586 unsigned long numentries,
5587 int scale,
5588 int flags,
5589 unsigned int *_hash_shift,
5590 unsigned int *_hash_mask,
5591 unsigned long low_limit,
5592 unsigned long high_limit)
5593 {
5594 unsigned long long max = high_limit;
5595 unsigned long log2qty, size;
5596 void *table = NULL;
5597
5598 /* allow the kernel cmdline to have a say */
5599 if (!numentries) {
5600 /* round applicable memory size up to nearest megabyte */
5601 numentries = nr_kernel_pages;
5602 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5603 numentries >>= 20 - PAGE_SHIFT;
5604 numentries <<= 20 - PAGE_SHIFT;
5605
5606 /* limit to 1 bucket per 2^scale bytes of low memory */
5607 if (scale > PAGE_SHIFT)
5608 numentries >>= (scale - PAGE_SHIFT);
5609 else
5610 numentries <<= (PAGE_SHIFT - scale);
5611
5612 /* Make sure we've got at least a 0-order allocation.. */
5613 if (unlikely(flags & HASH_SMALL)) {
5614 /* Makes no sense without HASH_EARLY */
5615 WARN_ON(!(flags & HASH_EARLY));
5616 if (!(numentries >> *_hash_shift)) {
5617 numentries = 1UL << *_hash_shift;
5618 BUG_ON(!numentries);
5619 }
5620 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5621 numentries = PAGE_SIZE / bucketsize;
5622 }
5623 numentries = roundup_pow_of_two(numentries);
5624
5625 /* limit allocation size to 1/16 total memory by default */
5626 if (max == 0) {
5627 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5628 do_div(max, bucketsize);
5629 }
5630 max = min(max, 0x80000000ULL);
5631
5632 if (numentries < low_limit)
5633 numentries = low_limit;
5634 if (numentries > max)
5635 numentries = max;
5636
5637 log2qty = ilog2(numentries);
5638
5639 do {
5640 size = bucketsize << log2qty;
5641 if (flags & HASH_EARLY)
5642 table = alloc_bootmem_nopanic(size);
5643 else if (hashdist)
5644 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5645 else {
5646 /*
5647 * If bucketsize is not a power-of-two, we may free
5648 * some pages at the end of hash table which
5649 * alloc_pages_exact() automatically does
5650 */
5651 if (get_order(size) < MAX_ORDER) {
5652 table = alloc_pages_exact(size, GFP_ATOMIC);
5653 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5654 }
5655 }
5656 } while (!table && size > PAGE_SIZE && --log2qty);
5657
5658 if (!table)
5659 panic("Failed to allocate %s hash table\n", tablename);
5660
5661 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5662 tablename,
5663 (1UL << log2qty),
5664 ilog2(size) - PAGE_SHIFT,
5665 size);
5666
5667 if (_hash_shift)
5668 *_hash_shift = log2qty;
5669 if (_hash_mask)
5670 *_hash_mask = (1 << log2qty) - 1;
5671
5672 return table;
5673 }
5674
5675 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5676 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5677 unsigned long pfn)
5678 {
5679 #ifdef CONFIG_SPARSEMEM
5680 return __pfn_to_section(pfn)->pageblock_flags;
5681 #else
5682 return zone->pageblock_flags;
5683 #endif /* CONFIG_SPARSEMEM */
5684 }
5685
5686 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5687 {
5688 #ifdef CONFIG_SPARSEMEM
5689 pfn &= (PAGES_PER_SECTION-1);
5690 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5691 #else
5692 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5693 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5694 #endif /* CONFIG_SPARSEMEM */
5695 }
5696
5697 /**
5698 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5699 * @page: The page within the block of interest
5700 * @start_bitidx: The first bit of interest to retrieve
5701 * @end_bitidx: The last bit of interest
5702 * returns pageblock_bits flags
5703 */
5704 unsigned long get_pageblock_flags_group(struct page *page,
5705 int start_bitidx, int end_bitidx)
5706 {
5707 struct zone *zone;
5708 unsigned long *bitmap;
5709 unsigned long pfn, bitidx;
5710 unsigned long flags = 0;
5711 unsigned long value = 1;
5712
5713 zone = page_zone(page);
5714 pfn = page_to_pfn(page);
5715 bitmap = get_pageblock_bitmap(zone, pfn);
5716 bitidx = pfn_to_bitidx(zone, pfn);
5717
5718 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5719 if (test_bit(bitidx + start_bitidx, bitmap))
5720 flags |= value;
5721
5722 return flags;
5723 }
5724
5725 /**
5726 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5727 * @page: The page within the block of interest
5728 * @start_bitidx: The first bit of interest
5729 * @end_bitidx: The last bit of interest
5730 * @flags: The flags to set
5731 */
5732 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5733 int start_bitidx, int end_bitidx)
5734 {
5735 struct zone *zone;
5736 unsigned long *bitmap;
5737 unsigned long pfn, bitidx;
5738 unsigned long value = 1;
5739
5740 zone = page_zone(page);
5741 pfn = page_to_pfn(page);
5742 bitmap = get_pageblock_bitmap(zone, pfn);
5743 bitidx = pfn_to_bitidx(zone, pfn);
5744 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5745
5746 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5747 if (flags & value)
5748 __set_bit(bitidx + start_bitidx, bitmap);
5749 else
5750 __clear_bit(bitidx + start_bitidx, bitmap);
5751 }
5752
5753 /*
5754 * This function checks whether pageblock includes unmovable pages or not.
5755 * If @count is not zero, it is okay to include less @count unmovable pages
5756 *
5757 * PageLRU check wihtout isolation or lru_lock could race so that
5758 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5759 * expect this function should be exact.
5760 */
5761 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5762 bool skip_hwpoisoned_pages)
5763 {
5764 unsigned long pfn, iter, found;
5765 int mt;
5766
5767 /*
5768 * For avoiding noise data, lru_add_drain_all() should be called
5769 * If ZONE_MOVABLE, the zone never contains unmovable pages
5770 */
5771 if (zone_idx(zone) == ZONE_MOVABLE)
5772 return false;
5773 mt = get_pageblock_migratetype(page);
5774 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5775 return false;
5776
5777 pfn = page_to_pfn(page);
5778 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5779 unsigned long check = pfn + iter;
5780
5781 if (!pfn_valid_within(check))
5782 continue;
5783
5784 page = pfn_to_page(check);
5785 /*
5786 * We can't use page_count without pin a page
5787 * because another CPU can free compound page.
5788 * This check already skips compound tails of THP
5789 * because their page->_count is zero at all time.
5790 */
5791 if (!atomic_read(&page->_count)) {
5792 if (PageBuddy(page))
5793 iter += (1 << page_order(page)) - 1;
5794 continue;
5795 }
5796
5797 /*
5798 * The HWPoisoned page may be not in buddy system, and
5799 * page_count() is not 0.
5800 */
5801 if (skip_hwpoisoned_pages && PageHWPoison(page))
5802 continue;
5803
5804 if (!PageLRU(page))
5805 found++;
5806 /*
5807 * If there are RECLAIMABLE pages, we need to check it.
5808 * But now, memory offline itself doesn't call shrink_slab()
5809 * and it still to be fixed.
5810 */
5811 /*
5812 * If the page is not RAM, page_count()should be 0.
5813 * we don't need more check. This is an _used_ not-movable page.
5814 *
5815 * The problematic thing here is PG_reserved pages. PG_reserved
5816 * is set to both of a memory hole page and a _used_ kernel
5817 * page at boot.
5818 */
5819 if (found > count)
5820 return true;
5821 }
5822 return false;
5823 }
5824
5825 bool is_pageblock_removable_nolock(struct page *page)
5826 {
5827 struct zone *zone;
5828 unsigned long pfn;
5829
5830 /*
5831 * We have to be careful here because we are iterating over memory
5832 * sections which are not zone aware so we might end up outside of
5833 * the zone but still within the section.
5834 * We have to take care about the node as well. If the node is offline
5835 * its NODE_DATA will be NULL - see page_zone.
5836 */
5837 if (!node_online(page_to_nid(page)))
5838 return false;
5839
5840 zone = page_zone(page);
5841 pfn = page_to_pfn(page);
5842 if (!zone_spans_pfn(zone, pfn))
5843 return false;
5844
5845 return !has_unmovable_pages(zone, page, 0, true);
5846 }
5847
5848 #ifdef CONFIG_CMA
5849
5850 static unsigned long pfn_max_align_down(unsigned long pfn)
5851 {
5852 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5853 pageblock_nr_pages) - 1);
5854 }
5855
5856 static unsigned long pfn_max_align_up(unsigned long pfn)
5857 {
5858 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5859 pageblock_nr_pages));
5860 }
5861
5862 /* [start, end) must belong to a single zone. */
5863 static int __alloc_contig_migrate_range(struct compact_control *cc,
5864 unsigned long start, unsigned long end)
5865 {
5866 /* This function is based on compact_zone() from compaction.c. */
5867 unsigned long nr_reclaimed;
5868 unsigned long pfn = start;
5869 unsigned int tries = 0;
5870 int ret = 0;
5871
5872 migrate_prep();
5873
5874 while (pfn < end || !list_empty(&cc->migratepages)) {
5875 if (fatal_signal_pending(current)) {
5876 ret = -EINTR;
5877 break;
5878 }
5879
5880 if (list_empty(&cc->migratepages)) {
5881 cc->nr_migratepages = 0;
5882 pfn = isolate_migratepages_range(cc->zone, cc,
5883 pfn, end, true);
5884 if (!pfn) {
5885 ret = -EINTR;
5886 break;
5887 }
5888 tries = 0;
5889 } else if (++tries == 5) {
5890 ret = ret < 0 ? ret : -EBUSY;
5891 break;
5892 }
5893
5894 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5895 &cc->migratepages);
5896 cc->nr_migratepages -= nr_reclaimed;
5897
5898 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
5899 0, MIGRATE_SYNC, MR_CMA);
5900 }
5901 if (ret < 0) {
5902 putback_movable_pages(&cc->migratepages);
5903 return ret;
5904 }
5905 return 0;
5906 }
5907
5908 /**
5909 * alloc_contig_range() -- tries to allocate given range of pages
5910 * @start: start PFN to allocate
5911 * @end: one-past-the-last PFN to allocate
5912 * @migratetype: migratetype of the underlaying pageblocks (either
5913 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5914 * in range must have the same migratetype and it must
5915 * be either of the two.
5916 *
5917 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5918 * aligned, however it's the caller's responsibility to guarantee that
5919 * we are the only thread that changes migrate type of pageblocks the
5920 * pages fall in.
5921 *
5922 * The PFN range must belong to a single zone.
5923 *
5924 * Returns zero on success or negative error code. On success all
5925 * pages which PFN is in [start, end) are allocated for the caller and
5926 * need to be freed with free_contig_range().
5927 */
5928 int alloc_contig_range(unsigned long start, unsigned long end,
5929 unsigned migratetype)
5930 {
5931 unsigned long outer_start, outer_end;
5932 int ret = 0, order;
5933
5934 struct compact_control cc = {
5935 .nr_migratepages = 0,
5936 .order = -1,
5937 .zone = page_zone(pfn_to_page(start)),
5938 .sync = true,
5939 .ignore_skip_hint = true,
5940 };
5941 INIT_LIST_HEAD(&cc.migratepages);
5942
5943 /*
5944 * What we do here is we mark all pageblocks in range as
5945 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5946 * have different sizes, and due to the way page allocator
5947 * work, we align the range to biggest of the two pages so
5948 * that page allocator won't try to merge buddies from
5949 * different pageblocks and change MIGRATE_ISOLATE to some
5950 * other migration type.
5951 *
5952 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5953 * migrate the pages from an unaligned range (ie. pages that
5954 * we are interested in). This will put all the pages in
5955 * range back to page allocator as MIGRATE_ISOLATE.
5956 *
5957 * When this is done, we take the pages in range from page
5958 * allocator removing them from the buddy system. This way
5959 * page allocator will never consider using them.
5960 *
5961 * This lets us mark the pageblocks back as
5962 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5963 * aligned range but not in the unaligned, original range are
5964 * put back to page allocator so that buddy can use them.
5965 */
5966
5967 ret = start_isolate_page_range(pfn_max_align_down(start),
5968 pfn_max_align_up(end), migratetype,
5969 false);
5970 if (ret)
5971 return ret;
5972
5973 ret = __alloc_contig_migrate_range(&cc, start, end);
5974 if (ret)
5975 goto done;
5976
5977 /*
5978 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5979 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5980 * more, all pages in [start, end) are free in page allocator.
5981 * What we are going to do is to allocate all pages from
5982 * [start, end) (that is remove them from page allocator).
5983 *
5984 * The only problem is that pages at the beginning and at the
5985 * end of interesting range may be not aligned with pages that
5986 * page allocator holds, ie. they can be part of higher order
5987 * pages. Because of this, we reserve the bigger range and
5988 * once this is done free the pages we are not interested in.
5989 *
5990 * We don't have to hold zone->lock here because the pages are
5991 * isolated thus they won't get removed from buddy.
5992 */
5993
5994 lru_add_drain_all();
5995 drain_all_pages();
5996
5997 order = 0;
5998 outer_start = start;
5999 while (!PageBuddy(pfn_to_page(outer_start))) {
6000 if (++order >= MAX_ORDER) {
6001 ret = -EBUSY;
6002 goto done;
6003 }
6004 outer_start &= ~0UL << order;
6005 }
6006
6007 /* Make sure the range is really isolated. */
6008 if (test_pages_isolated(outer_start, end, false)) {
6009 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6010 outer_start, end);
6011 ret = -EBUSY;
6012 goto done;
6013 }
6014
6015
6016 /* Grab isolated pages from freelists. */
6017 outer_end = isolate_freepages_range(&cc, outer_start, end);
6018 if (!outer_end) {
6019 ret = -EBUSY;
6020 goto done;
6021 }
6022
6023 /* Free head and tail (if any) */
6024 if (start != outer_start)
6025 free_contig_range(outer_start, start - outer_start);
6026 if (end != outer_end)
6027 free_contig_range(end, outer_end - end);
6028
6029 done:
6030 undo_isolate_page_range(pfn_max_align_down(start),
6031 pfn_max_align_up(end), migratetype);
6032 return ret;
6033 }
6034
6035 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6036 {
6037 unsigned int count = 0;
6038
6039 for (; nr_pages--; pfn++) {
6040 struct page *page = pfn_to_page(pfn);
6041
6042 count += page_count(page) != 1;
6043 __free_page(page);
6044 }
6045 WARN(count != 0, "%d pages are still in use!\n", count);
6046 }
6047 #endif
6048
6049 #ifdef CONFIG_MEMORY_HOTPLUG
6050 static int __meminit __zone_pcp_update(void *data)
6051 {
6052 struct zone *zone = data;
6053 int cpu;
6054 unsigned long batch = zone_batchsize(zone), flags;
6055
6056 for_each_possible_cpu(cpu) {
6057 struct per_cpu_pageset *pset;
6058 struct per_cpu_pages *pcp;
6059
6060 pset = per_cpu_ptr(zone->pageset, cpu);
6061 pcp = &pset->pcp;
6062
6063 local_irq_save(flags);
6064 if (pcp->count > 0)
6065 free_pcppages_bulk(zone, pcp->count, pcp);
6066 drain_zonestat(zone, pset);
6067 setup_pageset(pset, batch);
6068 local_irq_restore(flags);
6069 }
6070 return 0;
6071 }
6072
6073 void __meminit zone_pcp_update(struct zone *zone)
6074 {
6075 stop_machine(__zone_pcp_update, zone, NULL);
6076 }
6077 #endif
6078
6079 void zone_pcp_reset(struct zone *zone)
6080 {
6081 unsigned long flags;
6082 int cpu;
6083 struct per_cpu_pageset *pset;
6084
6085 /* avoid races with drain_pages() */
6086 local_irq_save(flags);
6087 if (zone->pageset != &boot_pageset) {
6088 for_each_online_cpu(cpu) {
6089 pset = per_cpu_ptr(zone->pageset, cpu);
6090 drain_zonestat(zone, pset);
6091 }
6092 free_percpu(zone->pageset);
6093 zone->pageset = &boot_pageset;
6094 }
6095 local_irq_restore(flags);
6096 }
6097
6098 #ifdef CONFIG_MEMORY_HOTREMOVE
6099 /*
6100 * All pages in the range must be isolated before calling this.
6101 */
6102 void
6103 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6104 {
6105 struct page *page;
6106 struct zone *zone;
6107 int order, i;
6108 unsigned long pfn;
6109 unsigned long flags;
6110 /* find the first valid pfn */
6111 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6112 if (pfn_valid(pfn))
6113 break;
6114 if (pfn == end_pfn)
6115 return;
6116 zone = page_zone(pfn_to_page(pfn));
6117 spin_lock_irqsave(&zone->lock, flags);
6118 pfn = start_pfn;
6119 while (pfn < end_pfn) {
6120 if (!pfn_valid(pfn)) {
6121 pfn++;
6122 continue;
6123 }
6124 page = pfn_to_page(pfn);
6125 /*
6126 * The HWPoisoned page may be not in buddy system, and
6127 * page_count() is not 0.
6128 */
6129 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6130 pfn++;
6131 SetPageReserved(page);
6132 continue;
6133 }
6134
6135 BUG_ON(page_count(page));
6136 BUG_ON(!PageBuddy(page));
6137 order = page_order(page);
6138 #ifdef CONFIG_DEBUG_VM
6139 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6140 pfn, 1 << order, end_pfn);
6141 #endif
6142 list_del(&page->lru);
6143 rmv_page_order(page);
6144 zone->free_area[order].nr_free--;
6145 #ifdef CONFIG_HIGHMEM
6146 if (PageHighMem(page))
6147 totalhigh_pages -= 1 << order;
6148 #endif
6149 for (i = 0; i < (1 << order); i++)
6150 SetPageReserved((page+i));
6151 pfn += (1 << order);
6152 }
6153 spin_unlock_irqrestore(&zone->lock, flags);
6154 }
6155 #endif
6156
6157 #ifdef CONFIG_MEMORY_FAILURE
6158 bool is_free_buddy_page(struct page *page)
6159 {
6160 struct zone *zone = page_zone(page);
6161 unsigned long pfn = page_to_pfn(page);
6162 unsigned long flags;
6163 int order;
6164
6165 spin_lock_irqsave(&zone->lock, flags);
6166 for (order = 0; order < MAX_ORDER; order++) {
6167 struct page *page_head = page - (pfn & ((1 << order) - 1));
6168
6169 if (PageBuddy(page_head) && page_order(page_head) >= order)
6170 break;
6171 }
6172 spin_unlock_irqrestore(&zone->lock, flags);
6173
6174 return order < MAX_ORDER;
6175 }
6176 #endif
6177
6178 static const struct trace_print_flags pageflag_names[] = {
6179 {1UL << PG_locked, "locked" },
6180 {1UL << PG_error, "error" },
6181 {1UL << PG_referenced, "referenced" },
6182 {1UL << PG_uptodate, "uptodate" },
6183 {1UL << PG_dirty, "dirty" },
6184 {1UL << PG_lru, "lru" },
6185 {1UL << PG_active, "active" },
6186 {1UL << PG_slab, "slab" },
6187 {1UL << PG_owner_priv_1, "owner_priv_1" },
6188 {1UL << PG_arch_1, "arch_1" },
6189 {1UL << PG_reserved, "reserved" },
6190 {1UL << PG_private, "private" },
6191 {1UL << PG_private_2, "private_2" },
6192 {1UL << PG_writeback, "writeback" },
6193 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6194 {1UL << PG_head, "head" },
6195 {1UL << PG_tail, "tail" },
6196 #else
6197 {1UL << PG_compound, "compound" },
6198 #endif
6199 {1UL << PG_swapcache, "swapcache" },
6200 {1UL << PG_mappedtodisk, "mappedtodisk" },
6201 {1UL << PG_reclaim, "reclaim" },
6202 {1UL << PG_swapbacked, "swapbacked" },
6203 {1UL << PG_unevictable, "unevictable" },
6204 #ifdef CONFIG_MMU
6205 {1UL << PG_mlocked, "mlocked" },
6206 #endif
6207 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6208 {1UL << PG_uncached, "uncached" },
6209 #endif
6210 #ifdef CONFIG_MEMORY_FAILURE
6211 {1UL << PG_hwpoison, "hwpoison" },
6212 #endif
6213 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6214 {1UL << PG_compound_lock, "compound_lock" },
6215 #endif
6216 };
6217
6218 static void dump_page_flags(unsigned long flags)
6219 {
6220 const char *delim = "";
6221 unsigned long mask;
6222 int i;
6223
6224 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6225
6226 printk(KERN_ALERT "page flags: %#lx(", flags);
6227
6228 /* remove zone id */
6229 flags &= (1UL << NR_PAGEFLAGS) - 1;
6230
6231 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6232
6233 mask = pageflag_names[i].mask;
6234 if ((flags & mask) != mask)
6235 continue;
6236
6237 flags &= ~mask;
6238 printk("%s%s", delim, pageflag_names[i].name);
6239 delim = "|";
6240 }
6241
6242 /* check for left over flags */
6243 if (flags)
6244 printk("%s%#lx", delim, flags);
6245
6246 printk(")\n");
6247 }
6248
6249 void dump_page(struct page *page)
6250 {
6251 printk(KERN_ALERT
6252 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6253 page, atomic_read(&page->_count), page_mapcount(page),
6254 page->mapping, page->index);
6255 dump_page_flags(page->flags);
6256 mem_cgroup_print_bad_page(page);
6257 }