tmpfs: don't undo fallocate past its last page
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page-writeback.c
1 /*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 Andrew Morton
11 * Initial version
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <trace/events/writeback.h>
40
41 /*
42 * Sleep at most 200ms at a time in balance_dirty_pages().
43 */
44 #define MAX_PAUSE max(HZ/5, 1)
45
46 /*
47 * Try to keep balance_dirty_pages() call intervals higher than this many pages
48 * by raising pause time to max_pause when falls below it.
49 */
50 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
51
52 /*
53 * Estimate write bandwidth at 200ms intervals.
54 */
55 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
56
57 #define RATELIMIT_CALC_SHIFT 10
58
59 /*
60 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
61 * will look to see if it needs to force writeback or throttling.
62 */
63 static long ratelimit_pages = 32;
64
65 /* The following parameters are exported via /proc/sys/vm */
66
67 /*
68 * Start background writeback (via writeback threads) at this percentage
69 */
70 int dirty_background_ratio = 10;
71
72 /*
73 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
74 * dirty_background_ratio * the amount of dirtyable memory
75 */
76 unsigned long dirty_background_bytes;
77
78 /*
79 * free highmem will not be subtracted from the total free memory
80 * for calculating free ratios if vm_highmem_is_dirtyable is true
81 */
82 int vm_highmem_is_dirtyable;
83
84 /*
85 * The generator of dirty data starts writeback at this percentage
86 */
87 int vm_dirty_ratio = 20;
88
89 /*
90 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
91 * vm_dirty_ratio * the amount of dirtyable memory
92 */
93 unsigned long vm_dirty_bytes;
94
95 /*
96 * The interval between `kupdate'-style writebacks
97 */
98 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
99
100 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
101
102 /*
103 * The longest time for which data is allowed to remain dirty
104 */
105 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
106
107 /*
108 * Flag that makes the machine dump writes/reads and block dirtyings.
109 */
110 int block_dump;
111
112 /*
113 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
114 * a full sync is triggered after this time elapses without any disk activity.
115 */
116 int laptop_mode;
117
118 EXPORT_SYMBOL(laptop_mode);
119
120 /* End of sysctl-exported parameters */
121
122 unsigned long global_dirty_limit;
123
124 /*
125 * Scale the writeback cache size proportional to the relative writeout speeds.
126 *
127 * We do this by keeping a floating proportion between BDIs, based on page
128 * writeback completions [end_page_writeback()]. Those devices that write out
129 * pages fastest will get the larger share, while the slower will get a smaller
130 * share.
131 *
132 * We use page writeout completions because we are interested in getting rid of
133 * dirty pages. Having them written out is the primary goal.
134 *
135 * We introduce a concept of time, a period over which we measure these events,
136 * because demand can/will vary over time. The length of this period itself is
137 * measured in page writeback completions.
138 *
139 */
140 static struct fprop_global writeout_completions;
141
142 static void writeout_period(unsigned long t);
143 /* Timer for aging of writeout_completions */
144 static struct timer_list writeout_period_timer =
145 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
146 static unsigned long writeout_period_time = 0;
147
148 /*
149 * Length of period for aging writeout fractions of bdis. This is an
150 * arbitrarily chosen number. The longer the period, the slower fractions will
151 * reflect changes in current writeout rate.
152 */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154
155 /*
156 * Work out the current dirty-memory clamping and background writeout
157 * thresholds.
158 *
159 * The main aim here is to lower them aggressively if there is a lot of mapped
160 * memory around. To avoid stressing page reclaim with lots of unreclaimable
161 * pages. It is better to clamp down on writers than to start swapping, and
162 * performing lots of scanning.
163 *
164 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
165 *
166 * We don't permit the clamping level to fall below 5% - that is getting rather
167 * excessive.
168 *
169 * We make sure that the background writeout level is below the adjusted
170 * clamping level.
171 */
172
173 /*
174 * In a memory zone, there is a certain amount of pages we consider
175 * available for the page cache, which is essentially the number of
176 * free and reclaimable pages, minus some zone reserves to protect
177 * lowmem and the ability to uphold the zone's watermarks without
178 * requiring writeback.
179 *
180 * This number of dirtyable pages is the base value of which the
181 * user-configurable dirty ratio is the effictive number of pages that
182 * are allowed to be actually dirtied. Per individual zone, or
183 * globally by using the sum of dirtyable pages over all zones.
184 *
185 * Because the user is allowed to specify the dirty limit globally as
186 * absolute number of bytes, calculating the per-zone dirty limit can
187 * require translating the configured limit into a percentage of
188 * global dirtyable memory first.
189 */
190
191 /**
192 * zone_dirtyable_memory - number of dirtyable pages in a zone
193 * @zone: the zone
194 *
195 * Returns the zone's number of pages potentially available for dirty
196 * page cache. This is the base value for the per-zone dirty limits.
197 */
198 static unsigned long zone_dirtyable_memory(struct zone *zone)
199 {
200 unsigned long nr_pages;
201
202 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
203 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
204
205 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
206 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
207
208 return nr_pages;
209 }
210
211 static unsigned long highmem_dirtyable_memory(unsigned long total)
212 {
213 #ifdef CONFIG_HIGHMEM
214 int node;
215 unsigned long x = 0;
216
217 for_each_node_state(node, N_HIGH_MEMORY) {
218 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
219
220 x += zone_dirtyable_memory(z);
221 }
222 /*
223 * Unreclaimable memory (kernel memory or anonymous memory
224 * without swap) can bring down the dirtyable pages below
225 * the zone's dirty balance reserve and the above calculation
226 * will underflow. However we still want to add in nodes
227 * which are below threshold (negative values) to get a more
228 * accurate calculation but make sure that the total never
229 * underflows.
230 */
231 if ((long)x < 0)
232 x = 0;
233
234 /*
235 * Make sure that the number of highmem pages is never larger
236 * than the number of the total dirtyable memory. This can only
237 * occur in very strange VM situations but we want to make sure
238 * that this does not occur.
239 */
240 return min(x, total);
241 #else
242 return 0;
243 #endif
244 }
245
246 /**
247 * global_dirtyable_memory - number of globally dirtyable pages
248 *
249 * Returns the global number of pages potentially available for dirty
250 * page cache. This is the base value for the global dirty limits.
251 */
252 static unsigned long global_dirtyable_memory(void)
253 {
254 unsigned long x;
255
256 x = global_page_state(NR_FREE_PAGES);
257 x -= min(x, dirty_balance_reserve);
258
259 x += global_page_state(NR_INACTIVE_FILE);
260 x += global_page_state(NR_ACTIVE_FILE);
261
262 if (!vm_highmem_is_dirtyable)
263 x -= highmem_dirtyable_memory(x);
264
265 /* Subtract min_free_kbytes */
266 x -= min_t(unsigned long, x, min_free_kbytes >> (PAGE_SHIFT - 10));
267
268 return x + 1; /* Ensure that we never return 0 */
269 }
270
271 /*
272 * global_dirty_limits - background-writeback and dirty-throttling thresholds
273 *
274 * Calculate the dirty thresholds based on sysctl parameters
275 * - vm.dirty_background_ratio or vm.dirty_background_bytes
276 * - vm.dirty_ratio or vm.dirty_bytes
277 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
278 * real-time tasks.
279 */
280 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
281 {
282 unsigned long background;
283 unsigned long dirty;
284 unsigned long uninitialized_var(available_memory);
285 struct task_struct *tsk;
286
287 if (!vm_dirty_bytes || !dirty_background_bytes)
288 available_memory = global_dirtyable_memory();
289
290 if (vm_dirty_bytes)
291 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
292 else
293 dirty = (vm_dirty_ratio * available_memory) / 100;
294
295 if (dirty_background_bytes)
296 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
297 else
298 background = (dirty_background_ratio * available_memory) / 100;
299
300 if (background >= dirty)
301 background = dirty / 2;
302 tsk = current;
303 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
304 background += background / 4;
305 dirty += dirty / 4;
306 }
307 *pbackground = background;
308 *pdirty = dirty;
309 trace_global_dirty_state(background, dirty);
310 }
311
312 /**
313 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
314 * @zone: the zone
315 *
316 * Returns the maximum number of dirty pages allowed in a zone, based
317 * on the zone's dirtyable memory.
318 */
319 static unsigned long zone_dirty_limit(struct zone *zone)
320 {
321 unsigned long zone_memory = zone_dirtyable_memory(zone);
322 struct task_struct *tsk = current;
323 unsigned long dirty;
324
325 if (vm_dirty_bytes)
326 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
327 zone_memory / global_dirtyable_memory();
328 else
329 dirty = vm_dirty_ratio * zone_memory / 100;
330
331 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
332 dirty += dirty / 4;
333
334 return dirty;
335 }
336
337 /**
338 * zone_dirty_ok - tells whether a zone is within its dirty limits
339 * @zone: the zone to check
340 *
341 * Returns %true when the dirty pages in @zone are within the zone's
342 * dirty limit, %false if the limit is exceeded.
343 */
344 bool zone_dirty_ok(struct zone *zone)
345 {
346 unsigned long limit = zone_dirty_limit(zone);
347
348 return zone_page_state(zone, NR_FILE_DIRTY) +
349 zone_page_state(zone, NR_UNSTABLE_NFS) +
350 zone_page_state(zone, NR_WRITEBACK) <= limit;
351 }
352
353 int dirty_background_ratio_handler(struct ctl_table *table, int write,
354 void __user *buffer, size_t *lenp,
355 loff_t *ppos)
356 {
357 int ret;
358
359 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
360 if (ret == 0 && write)
361 dirty_background_bytes = 0;
362 return ret;
363 }
364
365 int dirty_background_bytes_handler(struct ctl_table *table, int write,
366 void __user *buffer, size_t *lenp,
367 loff_t *ppos)
368 {
369 int ret;
370
371 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
372 if (ret == 0 && write)
373 dirty_background_ratio = 0;
374 return ret;
375 }
376
377 int dirty_ratio_handler(struct ctl_table *table, int write,
378 void __user *buffer, size_t *lenp,
379 loff_t *ppos)
380 {
381 int old_ratio = vm_dirty_ratio;
382 int ret;
383
384 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
385 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
386 writeback_set_ratelimit();
387 vm_dirty_bytes = 0;
388 }
389 return ret;
390 }
391
392 int dirty_bytes_handler(struct ctl_table *table, int write,
393 void __user *buffer, size_t *lenp,
394 loff_t *ppos)
395 {
396 unsigned long old_bytes = vm_dirty_bytes;
397 int ret;
398
399 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
400 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
401 writeback_set_ratelimit();
402 vm_dirty_ratio = 0;
403 }
404 return ret;
405 }
406
407 static unsigned long wp_next_time(unsigned long cur_time)
408 {
409 cur_time += VM_COMPLETIONS_PERIOD_LEN;
410 /* 0 has a special meaning... */
411 if (!cur_time)
412 return 1;
413 return cur_time;
414 }
415
416 /*
417 * Increment the BDI's writeout completion count and the global writeout
418 * completion count. Called from test_clear_page_writeback().
419 */
420 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
421 {
422 __inc_bdi_stat(bdi, BDI_WRITTEN);
423 __fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
424 bdi->max_prop_frac);
425 /* First event after period switching was turned off? */
426 if (!unlikely(writeout_period_time)) {
427 /*
428 * We can race with other __bdi_writeout_inc calls here but
429 * it does not cause any harm since the resulting time when
430 * timer will fire and what is in writeout_period_time will be
431 * roughly the same.
432 */
433 writeout_period_time = wp_next_time(jiffies);
434 mod_timer(&writeout_period_timer, writeout_period_time);
435 }
436 }
437
438 void bdi_writeout_inc(struct backing_dev_info *bdi)
439 {
440 unsigned long flags;
441
442 local_irq_save(flags);
443 __bdi_writeout_inc(bdi);
444 local_irq_restore(flags);
445 }
446 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
447
448 /*
449 * Obtain an accurate fraction of the BDI's portion.
450 */
451 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
452 long *numerator, long *denominator)
453 {
454 fprop_fraction_percpu(&writeout_completions, &bdi->completions,
455 numerator, denominator);
456 }
457
458 /*
459 * On idle system, we can be called long after we scheduled because we use
460 * deferred timers so count with missed periods.
461 */
462 static void writeout_period(unsigned long t)
463 {
464 int miss_periods = (jiffies - writeout_period_time) /
465 VM_COMPLETIONS_PERIOD_LEN;
466
467 if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
468 writeout_period_time = wp_next_time(writeout_period_time +
469 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
470 mod_timer(&writeout_period_timer, writeout_period_time);
471 } else {
472 /*
473 * Aging has zeroed all fractions. Stop wasting CPU on period
474 * updates.
475 */
476 writeout_period_time = 0;
477 }
478 }
479
480 /*
481 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
482 * registered backing devices, which, for obvious reasons, can not
483 * exceed 100%.
484 */
485 static unsigned int bdi_min_ratio;
486
487 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
488 {
489 int ret = 0;
490
491 spin_lock_bh(&bdi_lock);
492 if (min_ratio > bdi->max_ratio) {
493 ret = -EINVAL;
494 } else {
495 min_ratio -= bdi->min_ratio;
496 if (bdi_min_ratio + min_ratio < 100) {
497 bdi_min_ratio += min_ratio;
498 bdi->min_ratio += min_ratio;
499 } else {
500 ret = -EINVAL;
501 }
502 }
503 spin_unlock_bh(&bdi_lock);
504
505 return ret;
506 }
507
508 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
509 {
510 int ret = 0;
511
512 if (max_ratio > 100)
513 return -EINVAL;
514
515 spin_lock_bh(&bdi_lock);
516 if (bdi->min_ratio > max_ratio) {
517 ret = -EINVAL;
518 } else {
519 bdi->max_ratio = max_ratio;
520 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
521 }
522 spin_unlock_bh(&bdi_lock);
523
524 return ret;
525 }
526 EXPORT_SYMBOL(bdi_set_max_ratio);
527
528 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
529 unsigned long bg_thresh)
530 {
531 return (thresh + bg_thresh) / 2;
532 }
533
534 static unsigned long hard_dirty_limit(unsigned long thresh)
535 {
536 return max(thresh, global_dirty_limit);
537 }
538
539 /**
540 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
541 * @bdi: the backing_dev_info to query
542 * @dirty: global dirty limit in pages
543 *
544 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
545 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
546 *
547 * Note that balance_dirty_pages() will only seriously take it as a hard limit
548 * when sleeping max_pause per page is not enough to keep the dirty pages under
549 * control. For example, when the device is completely stalled due to some error
550 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
551 * In the other normal situations, it acts more gently by throttling the tasks
552 * more (rather than completely block them) when the bdi dirty pages go high.
553 *
554 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
555 * - starving fast devices
556 * - piling up dirty pages (that will take long time to sync) on slow devices
557 *
558 * The bdi's share of dirty limit will be adapting to its throughput and
559 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
560 */
561 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
562 {
563 u64 bdi_dirty;
564 long numerator, denominator;
565
566 /*
567 * Calculate this BDI's share of the dirty ratio.
568 */
569 bdi_writeout_fraction(bdi, &numerator, &denominator);
570
571 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
572 bdi_dirty *= numerator;
573 do_div(bdi_dirty, denominator);
574
575 bdi_dirty += (dirty * bdi->min_ratio) / 100;
576 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
577 bdi_dirty = dirty * bdi->max_ratio / 100;
578
579 return bdi_dirty;
580 }
581
582 /*
583 * Dirty position control.
584 *
585 * (o) global/bdi setpoints
586 *
587 * We want the dirty pages be balanced around the global/bdi setpoints.
588 * When the number of dirty pages is higher/lower than the setpoint, the
589 * dirty position control ratio (and hence task dirty ratelimit) will be
590 * decreased/increased to bring the dirty pages back to the setpoint.
591 *
592 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
593 *
594 * if (dirty < setpoint) scale up pos_ratio
595 * if (dirty > setpoint) scale down pos_ratio
596 *
597 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
598 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
599 *
600 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
601 *
602 * (o) global control line
603 *
604 * ^ pos_ratio
605 * |
606 * | |<===== global dirty control scope ======>|
607 * 2.0 .............*
608 * | .*
609 * | . *
610 * | . *
611 * | . *
612 * | . *
613 * | . *
614 * 1.0 ................................*
615 * | . . *
616 * | . . *
617 * | . . *
618 * | . . *
619 * | . . *
620 * 0 +------------.------------------.----------------------*------------->
621 * freerun^ setpoint^ limit^ dirty pages
622 *
623 * (o) bdi control line
624 *
625 * ^ pos_ratio
626 * |
627 * | *
628 * | *
629 * | *
630 * | *
631 * | * |<=========== span ============>|
632 * 1.0 .......................*
633 * | . *
634 * | . *
635 * | . *
636 * | . *
637 * | . *
638 * | . *
639 * | . *
640 * | . *
641 * | . *
642 * | . *
643 * | . *
644 * 1/4 ...............................................* * * * * * * * * * * *
645 * | . .
646 * | . .
647 * | . .
648 * 0 +----------------------.-------------------------------.------------->
649 * bdi_setpoint^ x_intercept^
650 *
651 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
652 * be smoothly throttled down to normal if it starts high in situations like
653 * - start writing to a slow SD card and a fast disk at the same time. The SD
654 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
655 * - the bdi dirty thresh drops quickly due to change of JBOD workload
656 */
657 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
658 unsigned long thresh,
659 unsigned long bg_thresh,
660 unsigned long dirty,
661 unsigned long bdi_thresh,
662 unsigned long bdi_dirty)
663 {
664 unsigned long write_bw = bdi->avg_write_bandwidth;
665 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
666 unsigned long limit = hard_dirty_limit(thresh);
667 unsigned long x_intercept;
668 unsigned long setpoint; /* dirty pages' target balance point */
669 unsigned long bdi_setpoint;
670 unsigned long span;
671 long long pos_ratio; /* for scaling up/down the rate limit */
672 long x;
673
674 if (unlikely(dirty >= limit))
675 return 0;
676
677 /*
678 * global setpoint
679 *
680 * setpoint - dirty 3
681 * f(dirty) := 1.0 + (----------------)
682 * limit - setpoint
683 *
684 * it's a 3rd order polynomial that subjects to
685 *
686 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
687 * (2) f(setpoint) = 1.0 => the balance point
688 * (3) f(limit) = 0 => the hard limit
689 * (4) df/dx <= 0 => negative feedback control
690 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
691 * => fast response on large errors; small oscillation near setpoint
692 */
693 setpoint = (freerun + limit) / 2;
694 x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
695 limit - setpoint + 1);
696 pos_ratio = x;
697 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
698 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
699 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
700
701 /*
702 * We have computed basic pos_ratio above based on global situation. If
703 * the bdi is over/under its share of dirty pages, we want to scale
704 * pos_ratio further down/up. That is done by the following mechanism.
705 */
706
707 /*
708 * bdi setpoint
709 *
710 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
711 *
712 * x_intercept - bdi_dirty
713 * := --------------------------
714 * x_intercept - bdi_setpoint
715 *
716 * The main bdi control line is a linear function that subjects to
717 *
718 * (1) f(bdi_setpoint) = 1.0
719 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
720 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
721 *
722 * For single bdi case, the dirty pages are observed to fluctuate
723 * regularly within range
724 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
725 * for various filesystems, where (2) can yield in a reasonable 12.5%
726 * fluctuation range for pos_ratio.
727 *
728 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
729 * own size, so move the slope over accordingly and choose a slope that
730 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
731 */
732 if (unlikely(bdi_thresh > thresh))
733 bdi_thresh = thresh;
734 /*
735 * It's very possible that bdi_thresh is close to 0 not because the
736 * device is slow, but that it has remained inactive for long time.
737 * Honour such devices a reasonable good (hopefully IO efficient)
738 * threshold, so that the occasional writes won't be blocked and active
739 * writes can rampup the threshold quickly.
740 */
741 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
742 /*
743 * scale global setpoint to bdi's:
744 * bdi_setpoint = setpoint * bdi_thresh / thresh
745 */
746 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
747 bdi_setpoint = setpoint * (u64)x >> 16;
748 /*
749 * Use span=(8*write_bw) in single bdi case as indicated by
750 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
751 *
752 * bdi_thresh thresh - bdi_thresh
753 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
754 * thresh thresh
755 */
756 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
757 x_intercept = bdi_setpoint + span;
758
759 if (bdi_dirty < x_intercept - span / 4) {
760 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
761 x_intercept - bdi_setpoint + 1);
762 } else
763 pos_ratio /= 4;
764
765 /*
766 * bdi reserve area, safeguard against dirty pool underrun and disk idle
767 * It may push the desired control point of global dirty pages higher
768 * than setpoint.
769 */
770 x_intercept = bdi_thresh / 2;
771 if (bdi_dirty < x_intercept) {
772 if (bdi_dirty > x_intercept / 8)
773 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
774 else
775 pos_ratio *= 8;
776 }
777
778 return pos_ratio;
779 }
780
781 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
782 unsigned long elapsed,
783 unsigned long written)
784 {
785 const unsigned long period = roundup_pow_of_two(3 * HZ);
786 unsigned long avg = bdi->avg_write_bandwidth;
787 unsigned long old = bdi->write_bandwidth;
788 u64 bw;
789
790 /*
791 * bw = written * HZ / elapsed
792 *
793 * bw * elapsed + write_bandwidth * (period - elapsed)
794 * write_bandwidth = ---------------------------------------------------
795 * period
796 *
797 * @written may have decreased due to account_page_redirty().
798 * Avoid underflowing @bw calculation.
799 */
800 bw = written - min(written, bdi->written_stamp);
801 bw *= HZ;
802 if (unlikely(elapsed > period)) {
803 do_div(bw, elapsed);
804 avg = bw;
805 goto out;
806 }
807 bw += (u64)bdi->write_bandwidth * (period - elapsed);
808 bw >>= ilog2(period);
809
810 /*
811 * one more level of smoothing, for filtering out sudden spikes
812 */
813 if (avg > old && old >= (unsigned long)bw)
814 avg -= (avg - old) >> 3;
815
816 if (avg < old && old <= (unsigned long)bw)
817 avg += (old - avg) >> 3;
818
819 out:
820 bdi->write_bandwidth = bw;
821 bdi->avg_write_bandwidth = avg;
822 }
823
824 /*
825 * The global dirtyable memory and dirty threshold could be suddenly knocked
826 * down by a large amount (eg. on the startup of KVM in a swapless system).
827 * This may throw the system into deep dirty exceeded state and throttle
828 * heavy/light dirtiers alike. To retain good responsiveness, maintain
829 * global_dirty_limit for tracking slowly down to the knocked down dirty
830 * threshold.
831 */
832 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
833 {
834 unsigned long limit = global_dirty_limit;
835
836 /*
837 * Follow up in one step.
838 */
839 if (limit < thresh) {
840 limit = thresh;
841 goto update;
842 }
843
844 /*
845 * Follow down slowly. Use the higher one as the target, because thresh
846 * may drop below dirty. This is exactly the reason to introduce
847 * global_dirty_limit which is guaranteed to lie above the dirty pages.
848 */
849 thresh = max(thresh, dirty);
850 if (limit > thresh) {
851 limit -= (limit - thresh) >> 5;
852 goto update;
853 }
854 return;
855 update:
856 global_dirty_limit = limit;
857 }
858
859 static void global_update_bandwidth(unsigned long thresh,
860 unsigned long dirty,
861 unsigned long now)
862 {
863 static DEFINE_SPINLOCK(dirty_lock);
864 static unsigned long update_time = INITIAL_JIFFIES;
865
866 /*
867 * check locklessly first to optimize away locking for the most time
868 */
869 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
870 return;
871
872 spin_lock(&dirty_lock);
873 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
874 update_dirty_limit(thresh, dirty);
875 update_time = now;
876 }
877 spin_unlock(&dirty_lock);
878 }
879
880 /*
881 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
882 *
883 * Normal bdi tasks will be curbed at or below it in long term.
884 * Obviously it should be around (write_bw / N) when there are N dd tasks.
885 */
886 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
887 unsigned long thresh,
888 unsigned long bg_thresh,
889 unsigned long dirty,
890 unsigned long bdi_thresh,
891 unsigned long bdi_dirty,
892 unsigned long dirtied,
893 unsigned long elapsed)
894 {
895 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
896 unsigned long limit = hard_dirty_limit(thresh);
897 unsigned long setpoint = (freerun + limit) / 2;
898 unsigned long write_bw = bdi->avg_write_bandwidth;
899 unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
900 unsigned long dirty_rate;
901 unsigned long task_ratelimit;
902 unsigned long balanced_dirty_ratelimit;
903 unsigned long pos_ratio;
904 unsigned long step;
905 unsigned long x;
906
907 /*
908 * The dirty rate will match the writeout rate in long term, except
909 * when dirty pages are truncated by userspace or re-dirtied by FS.
910 */
911 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
912
913 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
914 bdi_thresh, bdi_dirty);
915 /*
916 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
917 */
918 task_ratelimit = (u64)dirty_ratelimit *
919 pos_ratio >> RATELIMIT_CALC_SHIFT;
920 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
921
922 /*
923 * A linear estimation of the "balanced" throttle rate. The theory is,
924 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
925 * dirty_rate will be measured to be (N * task_ratelimit). So the below
926 * formula will yield the balanced rate limit (write_bw / N).
927 *
928 * Note that the expanded form is not a pure rate feedback:
929 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
930 * but also takes pos_ratio into account:
931 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
932 *
933 * (1) is not realistic because pos_ratio also takes part in balancing
934 * the dirty rate. Consider the state
935 * pos_ratio = 0.5 (3)
936 * rate = 2 * (write_bw / N) (4)
937 * If (1) is used, it will stuck in that state! Because each dd will
938 * be throttled at
939 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
940 * yielding
941 * dirty_rate = N * task_ratelimit = write_bw (6)
942 * put (6) into (1) we get
943 * rate_(i+1) = rate_(i) (7)
944 *
945 * So we end up using (2) to always keep
946 * rate_(i+1) ~= (write_bw / N) (8)
947 * regardless of the value of pos_ratio. As long as (8) is satisfied,
948 * pos_ratio is able to drive itself to 1.0, which is not only where
949 * the dirty count meet the setpoint, but also where the slope of
950 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
951 */
952 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
953 dirty_rate | 1);
954 /*
955 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
956 */
957 if (unlikely(balanced_dirty_ratelimit > write_bw))
958 balanced_dirty_ratelimit = write_bw;
959
960 /*
961 * We could safely do this and return immediately:
962 *
963 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
964 *
965 * However to get a more stable dirty_ratelimit, the below elaborated
966 * code makes use of task_ratelimit to filter out singular points and
967 * limit the step size.
968 *
969 * The below code essentially only uses the relative value of
970 *
971 * task_ratelimit - dirty_ratelimit
972 * = (pos_ratio - 1) * dirty_ratelimit
973 *
974 * which reflects the direction and size of dirty position error.
975 */
976
977 /*
978 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
979 * task_ratelimit is on the same side of dirty_ratelimit, too.
980 * For example, when
981 * - dirty_ratelimit > balanced_dirty_ratelimit
982 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
983 * lowering dirty_ratelimit will help meet both the position and rate
984 * control targets. Otherwise, don't update dirty_ratelimit if it will
985 * only help meet the rate target. After all, what the users ultimately
986 * feel and care are stable dirty rate and small position error.
987 *
988 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
989 * and filter out the singular points of balanced_dirty_ratelimit. Which
990 * keeps jumping around randomly and can even leap far away at times
991 * due to the small 200ms estimation period of dirty_rate (we want to
992 * keep that period small to reduce time lags).
993 */
994 step = 0;
995 if (dirty < setpoint) {
996 x = min(bdi->balanced_dirty_ratelimit,
997 min(balanced_dirty_ratelimit, task_ratelimit));
998 if (dirty_ratelimit < x)
999 step = x - dirty_ratelimit;
1000 } else {
1001 x = max(bdi->balanced_dirty_ratelimit,
1002 max(balanced_dirty_ratelimit, task_ratelimit));
1003 if (dirty_ratelimit > x)
1004 step = dirty_ratelimit - x;
1005 }
1006
1007 /*
1008 * Don't pursue 100% rate matching. It's impossible since the balanced
1009 * rate itself is constantly fluctuating. So decrease the track speed
1010 * when it gets close to the target. Helps eliminate pointless tremors.
1011 */
1012 step >>= dirty_ratelimit / (2 * step + 1);
1013 /*
1014 * Limit the tracking speed to avoid overshooting.
1015 */
1016 step = (step + 7) / 8;
1017
1018 if (dirty_ratelimit < balanced_dirty_ratelimit)
1019 dirty_ratelimit += step;
1020 else
1021 dirty_ratelimit -= step;
1022
1023 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1024 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1025
1026 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
1027 }
1028
1029 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1030 unsigned long thresh,
1031 unsigned long bg_thresh,
1032 unsigned long dirty,
1033 unsigned long bdi_thresh,
1034 unsigned long bdi_dirty,
1035 unsigned long start_time)
1036 {
1037 unsigned long now = jiffies;
1038 unsigned long elapsed = now - bdi->bw_time_stamp;
1039 unsigned long dirtied;
1040 unsigned long written;
1041
1042 /*
1043 * rate-limit, only update once every 200ms.
1044 */
1045 if (elapsed < BANDWIDTH_INTERVAL)
1046 return;
1047
1048 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1049 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1050
1051 /*
1052 * Skip quiet periods when disk bandwidth is under-utilized.
1053 * (at least 1s idle time between two flusher runs)
1054 */
1055 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1056 goto snapshot;
1057
1058 if (thresh) {
1059 global_update_bandwidth(thresh, dirty, now);
1060 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1061 bdi_thresh, bdi_dirty,
1062 dirtied, elapsed);
1063 }
1064 bdi_update_write_bandwidth(bdi, elapsed, written);
1065
1066 snapshot:
1067 bdi->dirtied_stamp = dirtied;
1068 bdi->written_stamp = written;
1069 bdi->bw_time_stamp = now;
1070 }
1071
1072 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1073 unsigned long thresh,
1074 unsigned long bg_thresh,
1075 unsigned long dirty,
1076 unsigned long bdi_thresh,
1077 unsigned long bdi_dirty,
1078 unsigned long start_time)
1079 {
1080 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1081 return;
1082 spin_lock(&bdi->wb.list_lock);
1083 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1084 bdi_thresh, bdi_dirty, start_time);
1085 spin_unlock(&bdi->wb.list_lock);
1086 }
1087
1088 /*
1089 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1090 * will look to see if it needs to start dirty throttling.
1091 *
1092 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1093 * global_page_state() too often. So scale it near-sqrt to the safety margin
1094 * (the number of pages we may dirty without exceeding the dirty limits).
1095 */
1096 static unsigned long dirty_poll_interval(unsigned long dirty,
1097 unsigned long thresh)
1098 {
1099 if (thresh > dirty)
1100 return 1UL << (ilog2(thresh - dirty) >> 1);
1101
1102 return 1;
1103 }
1104
1105 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1106 unsigned long bdi_dirty)
1107 {
1108 unsigned long bw = bdi->avg_write_bandwidth;
1109 unsigned long t;
1110
1111 /*
1112 * Limit pause time for small memory systems. If sleeping for too long
1113 * time, a small pool of dirty/writeback pages may go empty and disk go
1114 * idle.
1115 *
1116 * 8 serves as the safety ratio.
1117 */
1118 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1119 t++;
1120
1121 return min_t(unsigned long, t, MAX_PAUSE);
1122 }
1123
1124 static long bdi_min_pause(struct backing_dev_info *bdi,
1125 long max_pause,
1126 unsigned long task_ratelimit,
1127 unsigned long dirty_ratelimit,
1128 int *nr_dirtied_pause)
1129 {
1130 long hi = ilog2(bdi->avg_write_bandwidth);
1131 long lo = ilog2(bdi->dirty_ratelimit);
1132 long t; /* target pause */
1133 long pause; /* estimated next pause */
1134 int pages; /* target nr_dirtied_pause */
1135
1136 /* target for 10ms pause on 1-dd case */
1137 t = max(1, HZ / 100);
1138
1139 /*
1140 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1141 * overheads.
1142 *
1143 * (N * 10ms) on 2^N concurrent tasks.
1144 */
1145 if (hi > lo)
1146 t += (hi - lo) * (10 * HZ) / 1024;
1147
1148 /*
1149 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1150 * on the much more stable dirty_ratelimit. However the next pause time
1151 * will be computed based on task_ratelimit and the two rate limits may
1152 * depart considerably at some time. Especially if task_ratelimit goes
1153 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1154 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1155 * result task_ratelimit won't be executed faithfully, which could
1156 * eventually bring down dirty_ratelimit.
1157 *
1158 * We apply two rules to fix it up:
1159 * 1) try to estimate the next pause time and if necessary, use a lower
1160 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1161 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1162 * 2) limit the target pause time to max_pause/2, so that the normal
1163 * small fluctuations of task_ratelimit won't trigger rule (1) and
1164 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1165 */
1166 t = min(t, 1 + max_pause / 2);
1167 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1168
1169 /*
1170 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1171 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1172 * When the 16 consecutive reads are often interrupted by some dirty
1173 * throttling pause during the async writes, cfq will go into idles
1174 * (deadline is fine). So push nr_dirtied_pause as high as possible
1175 * until reaches DIRTY_POLL_THRESH=32 pages.
1176 */
1177 if (pages < DIRTY_POLL_THRESH) {
1178 t = max_pause;
1179 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1180 if (pages > DIRTY_POLL_THRESH) {
1181 pages = DIRTY_POLL_THRESH;
1182 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1183 }
1184 }
1185
1186 pause = HZ * pages / (task_ratelimit + 1);
1187 if (pause > max_pause) {
1188 t = max_pause;
1189 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1190 }
1191
1192 *nr_dirtied_pause = pages;
1193 /*
1194 * The minimal pause time will normally be half the target pause time.
1195 */
1196 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1197 }
1198
1199 /*
1200 * balance_dirty_pages() must be called by processes which are generating dirty
1201 * data. It looks at the number of dirty pages in the machine and will force
1202 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1203 * If we're over `background_thresh' then the writeback threads are woken to
1204 * perform some writeout.
1205 */
1206 static void balance_dirty_pages(struct address_space *mapping,
1207 unsigned long pages_dirtied)
1208 {
1209 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1210 unsigned long bdi_reclaimable;
1211 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
1212 unsigned long bdi_dirty;
1213 unsigned long freerun;
1214 unsigned long background_thresh;
1215 unsigned long dirty_thresh;
1216 unsigned long bdi_thresh;
1217 long period;
1218 long pause;
1219 long max_pause;
1220 long min_pause;
1221 int nr_dirtied_pause;
1222 bool dirty_exceeded = false;
1223 unsigned long task_ratelimit;
1224 unsigned long dirty_ratelimit;
1225 unsigned long pos_ratio;
1226 struct backing_dev_info *bdi = mapping->backing_dev_info;
1227 unsigned long start_time = jiffies;
1228
1229 for (;;) {
1230 unsigned long now = jiffies;
1231
1232 /*
1233 * Unstable writes are a feature of certain networked
1234 * filesystems (i.e. NFS) in which data may have been
1235 * written to the server's write cache, but has not yet
1236 * been flushed to permanent storage.
1237 */
1238 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1239 global_page_state(NR_UNSTABLE_NFS);
1240 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1241
1242 global_dirty_limits(&background_thresh, &dirty_thresh);
1243
1244 /*
1245 * Throttle it only when the background writeback cannot
1246 * catch-up. This avoids (excessively) small writeouts
1247 * when the bdi limits are ramping up.
1248 */
1249 freerun = dirty_freerun_ceiling(dirty_thresh,
1250 background_thresh);
1251 if (nr_dirty <= freerun) {
1252 current->dirty_paused_when = now;
1253 current->nr_dirtied = 0;
1254 current->nr_dirtied_pause =
1255 dirty_poll_interval(nr_dirty, dirty_thresh);
1256 break;
1257 }
1258
1259 if (unlikely(!writeback_in_progress(bdi)))
1260 bdi_start_background_writeback(bdi);
1261
1262 /*
1263 * bdi_thresh is not treated as some limiting factor as
1264 * dirty_thresh, due to reasons
1265 * - in JBOD setup, bdi_thresh can fluctuate a lot
1266 * - in a system with HDD and USB key, the USB key may somehow
1267 * go into state (bdi_dirty >> bdi_thresh) either because
1268 * bdi_dirty starts high, or because bdi_thresh drops low.
1269 * In this case we don't want to hard throttle the USB key
1270 * dirtiers for 100 seconds until bdi_dirty drops under
1271 * bdi_thresh. Instead the auxiliary bdi control line in
1272 * bdi_position_ratio() will let the dirtier task progress
1273 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1274 */
1275 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1276
1277 /*
1278 * In order to avoid the stacked BDI deadlock we need
1279 * to ensure we accurately count the 'dirty' pages when
1280 * the threshold is low.
1281 *
1282 * Otherwise it would be possible to get thresh+n pages
1283 * reported dirty, even though there are thresh-m pages
1284 * actually dirty; with m+n sitting in the percpu
1285 * deltas.
1286 */
1287 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1288 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1289 bdi_dirty = bdi_reclaimable +
1290 bdi_stat_sum(bdi, BDI_WRITEBACK);
1291 } else {
1292 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1293 bdi_dirty = bdi_reclaimable +
1294 bdi_stat(bdi, BDI_WRITEBACK);
1295 }
1296
1297 dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1298 (nr_dirty > dirty_thresh);
1299 if (dirty_exceeded && !bdi->dirty_exceeded)
1300 bdi->dirty_exceeded = 1;
1301
1302 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1303 nr_dirty, bdi_thresh, bdi_dirty,
1304 start_time);
1305
1306 dirty_ratelimit = bdi->dirty_ratelimit;
1307 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1308 background_thresh, nr_dirty,
1309 bdi_thresh, bdi_dirty);
1310 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1311 RATELIMIT_CALC_SHIFT;
1312 max_pause = bdi_max_pause(bdi, bdi_dirty);
1313 min_pause = bdi_min_pause(bdi, max_pause,
1314 task_ratelimit, dirty_ratelimit,
1315 &nr_dirtied_pause);
1316
1317 if (unlikely(task_ratelimit == 0)) {
1318 period = max_pause;
1319 pause = max_pause;
1320 goto pause;
1321 }
1322 period = HZ * pages_dirtied / task_ratelimit;
1323 pause = period;
1324 if (current->dirty_paused_when)
1325 pause -= now - current->dirty_paused_when;
1326 /*
1327 * For less than 1s think time (ext3/4 may block the dirtier
1328 * for up to 800ms from time to time on 1-HDD; so does xfs,
1329 * however at much less frequency), try to compensate it in
1330 * future periods by updating the virtual time; otherwise just
1331 * do a reset, as it may be a light dirtier.
1332 */
1333 if (pause < min_pause) {
1334 trace_balance_dirty_pages(bdi,
1335 dirty_thresh,
1336 background_thresh,
1337 nr_dirty,
1338 bdi_thresh,
1339 bdi_dirty,
1340 dirty_ratelimit,
1341 task_ratelimit,
1342 pages_dirtied,
1343 period,
1344 min(pause, 0L),
1345 start_time);
1346 if (pause < -HZ) {
1347 current->dirty_paused_when = now;
1348 current->nr_dirtied = 0;
1349 } else if (period) {
1350 current->dirty_paused_when += period;
1351 current->nr_dirtied = 0;
1352 } else if (current->nr_dirtied_pause <= pages_dirtied)
1353 current->nr_dirtied_pause += pages_dirtied;
1354 break;
1355 }
1356 if (unlikely(pause > max_pause)) {
1357 /* for occasional dropped task_ratelimit */
1358 now += min(pause - max_pause, max_pause);
1359 pause = max_pause;
1360 }
1361
1362 pause:
1363 trace_balance_dirty_pages(bdi,
1364 dirty_thresh,
1365 background_thresh,
1366 nr_dirty,
1367 bdi_thresh,
1368 bdi_dirty,
1369 dirty_ratelimit,
1370 task_ratelimit,
1371 pages_dirtied,
1372 period,
1373 pause,
1374 start_time);
1375 __set_current_state(TASK_KILLABLE);
1376 io_schedule_timeout(pause);
1377
1378 current->dirty_paused_when = now + pause;
1379 current->nr_dirtied = 0;
1380 current->nr_dirtied_pause = nr_dirtied_pause;
1381
1382 /*
1383 * This is typically equal to (nr_dirty < dirty_thresh) and can
1384 * also keep "1000+ dd on a slow USB stick" under control.
1385 */
1386 if (task_ratelimit)
1387 break;
1388
1389 /*
1390 * In the case of an unresponding NFS server and the NFS dirty
1391 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1392 * to go through, so that tasks on them still remain responsive.
1393 *
1394 * In theory 1 page is enough to keep the comsumer-producer
1395 * pipe going: the flusher cleans 1 page => the task dirties 1
1396 * more page. However bdi_dirty has accounting errors. So use
1397 * the larger and more IO friendly bdi_stat_error.
1398 */
1399 if (bdi_dirty <= bdi_stat_error(bdi))
1400 break;
1401
1402 if (fatal_signal_pending(current))
1403 break;
1404 }
1405
1406 if (!dirty_exceeded && bdi->dirty_exceeded)
1407 bdi->dirty_exceeded = 0;
1408
1409 if (writeback_in_progress(bdi))
1410 return;
1411
1412 /*
1413 * In laptop mode, we wait until hitting the higher threshold before
1414 * starting background writeout, and then write out all the way down
1415 * to the lower threshold. So slow writers cause minimal disk activity.
1416 *
1417 * In normal mode, we start background writeout at the lower
1418 * background_thresh, to keep the amount of dirty memory low.
1419 */
1420 if (laptop_mode)
1421 return;
1422
1423 if (nr_reclaimable > background_thresh)
1424 bdi_start_background_writeback(bdi);
1425 }
1426
1427 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1428 {
1429 if (set_page_dirty(page) || page_mkwrite) {
1430 struct address_space *mapping = page_mapping(page);
1431
1432 if (mapping)
1433 balance_dirty_pages_ratelimited(mapping);
1434 }
1435 }
1436
1437 static DEFINE_PER_CPU(int, bdp_ratelimits);
1438
1439 /*
1440 * Normal tasks are throttled by
1441 * loop {
1442 * dirty tsk->nr_dirtied_pause pages;
1443 * take a snap in balance_dirty_pages();
1444 * }
1445 * However there is a worst case. If every task exit immediately when dirtied
1446 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1447 * called to throttle the page dirties. The solution is to save the not yet
1448 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1449 * randomly into the running tasks. This works well for the above worst case,
1450 * as the new task will pick up and accumulate the old task's leaked dirty
1451 * count and eventually get throttled.
1452 */
1453 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1454
1455 /**
1456 * balance_dirty_pages_ratelimited - balance dirty memory state
1457 * @mapping: address_space which was dirtied
1458 *
1459 * Processes which are dirtying memory should call in here once for each page
1460 * which was newly dirtied. The function will periodically check the system's
1461 * dirty state and will initiate writeback if needed.
1462 *
1463 * On really big machines, get_writeback_state is expensive, so try to avoid
1464 * calling it too often (ratelimiting). But once we're over the dirty memory
1465 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1466 * from overshooting the limit by (ratelimit_pages) each.
1467 */
1468 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1469 {
1470 struct backing_dev_info *bdi = mapping->backing_dev_info;
1471 int ratelimit;
1472 int *p;
1473
1474 if (!bdi_cap_account_dirty(bdi))
1475 return;
1476
1477 ratelimit = current->nr_dirtied_pause;
1478 if (bdi->dirty_exceeded)
1479 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1480
1481 preempt_disable();
1482 /*
1483 * This prevents one CPU to accumulate too many dirtied pages without
1484 * calling into balance_dirty_pages(), which can happen when there are
1485 * 1000+ tasks, all of them start dirtying pages at exactly the same
1486 * time, hence all honoured too large initial task->nr_dirtied_pause.
1487 */
1488 p = &__get_cpu_var(bdp_ratelimits);
1489 if (unlikely(current->nr_dirtied >= ratelimit))
1490 *p = 0;
1491 else if (unlikely(*p >= ratelimit_pages)) {
1492 *p = 0;
1493 ratelimit = 0;
1494 }
1495 /*
1496 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1497 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1498 * the dirty throttling and livelock other long-run dirtiers.
1499 */
1500 p = &__get_cpu_var(dirty_throttle_leaks);
1501 if (*p > 0 && current->nr_dirtied < ratelimit) {
1502 unsigned long nr_pages_dirtied;
1503 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1504 *p -= nr_pages_dirtied;
1505 current->nr_dirtied += nr_pages_dirtied;
1506 }
1507 preempt_enable();
1508
1509 if (unlikely(current->nr_dirtied >= ratelimit))
1510 balance_dirty_pages(mapping, current->nr_dirtied);
1511 }
1512 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1513
1514 void throttle_vm_writeout(gfp_t gfp_mask)
1515 {
1516 unsigned long background_thresh;
1517 unsigned long dirty_thresh;
1518
1519 for ( ; ; ) {
1520 global_dirty_limits(&background_thresh, &dirty_thresh);
1521 dirty_thresh = hard_dirty_limit(dirty_thresh);
1522
1523 /*
1524 * Boost the allowable dirty threshold a bit for page
1525 * allocators so they don't get DoS'ed by heavy writers
1526 */
1527 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1528
1529 if (global_page_state(NR_UNSTABLE_NFS) +
1530 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1531 break;
1532 congestion_wait(BLK_RW_ASYNC, HZ/10);
1533
1534 /*
1535 * The caller might hold locks which can prevent IO completion
1536 * or progress in the filesystem. So we cannot just sit here
1537 * waiting for IO to complete.
1538 */
1539 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1540 break;
1541 }
1542 }
1543
1544 /*
1545 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1546 */
1547 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1548 void __user *buffer, size_t *length, loff_t *ppos)
1549 {
1550 proc_dointvec(table, write, buffer, length, ppos);
1551 return 0;
1552 }
1553
1554 #ifdef CONFIG_BLOCK
1555 void laptop_mode_timer_fn(unsigned long data)
1556 {
1557 struct request_queue *q = (struct request_queue *)data;
1558 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1559 global_page_state(NR_UNSTABLE_NFS);
1560
1561 /*
1562 * We want to write everything out, not just down to the dirty
1563 * threshold
1564 */
1565 if (bdi_has_dirty_io(&q->backing_dev_info))
1566 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1567 WB_REASON_LAPTOP_TIMER);
1568 }
1569
1570 /*
1571 * We've spun up the disk and we're in laptop mode: schedule writeback
1572 * of all dirty data a few seconds from now. If the flush is already scheduled
1573 * then push it back - the user is still using the disk.
1574 */
1575 void laptop_io_completion(struct backing_dev_info *info)
1576 {
1577 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1578 }
1579
1580 /*
1581 * We're in laptop mode and we've just synced. The sync's writes will have
1582 * caused another writeback to be scheduled by laptop_io_completion.
1583 * Nothing needs to be written back anymore, so we unschedule the writeback.
1584 */
1585 void laptop_sync_completion(void)
1586 {
1587 struct backing_dev_info *bdi;
1588
1589 rcu_read_lock();
1590
1591 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1592 del_timer(&bdi->laptop_mode_wb_timer);
1593
1594 rcu_read_unlock();
1595 }
1596 #endif
1597
1598 /*
1599 * If ratelimit_pages is too high then we can get into dirty-data overload
1600 * if a large number of processes all perform writes at the same time.
1601 * If it is too low then SMP machines will call the (expensive)
1602 * get_writeback_state too often.
1603 *
1604 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1605 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1606 * thresholds.
1607 */
1608
1609 void writeback_set_ratelimit(void)
1610 {
1611 unsigned long background_thresh;
1612 unsigned long dirty_thresh;
1613 global_dirty_limits(&background_thresh, &dirty_thresh);
1614 global_dirty_limit = dirty_thresh;
1615 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1616 if (ratelimit_pages < 16)
1617 ratelimit_pages = 16;
1618 }
1619
1620 static int __cpuinit
1621 ratelimit_handler(struct notifier_block *self, unsigned long action,
1622 void *hcpu)
1623 {
1624
1625 switch (action & ~CPU_TASKS_FROZEN) {
1626 case CPU_ONLINE:
1627 case CPU_DEAD:
1628 writeback_set_ratelimit();
1629 return NOTIFY_OK;
1630 default:
1631 return NOTIFY_DONE;
1632 }
1633 }
1634
1635 static struct notifier_block __cpuinitdata ratelimit_nb = {
1636 .notifier_call = ratelimit_handler,
1637 .next = NULL,
1638 };
1639
1640 /*
1641 * Called early on to tune the page writeback dirty limits.
1642 *
1643 * We used to scale dirty pages according to how total memory
1644 * related to pages that could be allocated for buffers (by
1645 * comparing nr_free_buffer_pages() to vm_total_pages.
1646 *
1647 * However, that was when we used "dirty_ratio" to scale with
1648 * all memory, and we don't do that any more. "dirty_ratio"
1649 * is now applied to total non-HIGHPAGE memory (by subtracting
1650 * totalhigh_pages from vm_total_pages), and as such we can't
1651 * get into the old insane situation any more where we had
1652 * large amounts of dirty pages compared to a small amount of
1653 * non-HIGHMEM memory.
1654 *
1655 * But we might still want to scale the dirty_ratio by how
1656 * much memory the box has..
1657 */
1658 void __init page_writeback_init(void)
1659 {
1660 writeback_set_ratelimit();
1661 register_cpu_notifier(&ratelimit_nb);
1662
1663 fprop_global_init(&writeout_completions);
1664 }
1665
1666 /**
1667 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1668 * @mapping: address space structure to write
1669 * @start: starting page index
1670 * @end: ending page index (inclusive)
1671 *
1672 * This function scans the page range from @start to @end (inclusive) and tags
1673 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1674 * that write_cache_pages (or whoever calls this function) will then use
1675 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1676 * used to avoid livelocking of writeback by a process steadily creating new
1677 * dirty pages in the file (thus it is important for this function to be quick
1678 * so that it can tag pages faster than a dirtying process can create them).
1679 */
1680 /*
1681 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1682 */
1683 void tag_pages_for_writeback(struct address_space *mapping,
1684 pgoff_t start, pgoff_t end)
1685 {
1686 #define WRITEBACK_TAG_BATCH 4096
1687 unsigned long tagged;
1688
1689 do {
1690 spin_lock_irq(&mapping->tree_lock);
1691 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1692 &start, end, WRITEBACK_TAG_BATCH,
1693 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1694 spin_unlock_irq(&mapping->tree_lock);
1695 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1696 cond_resched();
1697 /* We check 'start' to handle wrapping when end == ~0UL */
1698 } while (tagged >= WRITEBACK_TAG_BATCH && start);
1699 }
1700 EXPORT_SYMBOL(tag_pages_for_writeback);
1701
1702 /**
1703 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1704 * @mapping: address space structure to write
1705 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1706 * @writepage: function called for each page
1707 * @data: data passed to writepage function
1708 *
1709 * If a page is already under I/O, write_cache_pages() skips it, even
1710 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1711 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1712 * and msync() need to guarantee that all the data which was dirty at the time
1713 * the call was made get new I/O started against them. If wbc->sync_mode is
1714 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1715 * existing IO to complete.
1716 *
1717 * To avoid livelocks (when other process dirties new pages), we first tag
1718 * pages which should be written back with TOWRITE tag and only then start
1719 * writing them. For data-integrity sync we have to be careful so that we do
1720 * not miss some pages (e.g., because some other process has cleared TOWRITE
1721 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1722 * by the process clearing the DIRTY tag (and submitting the page for IO).
1723 */
1724 int write_cache_pages(struct address_space *mapping,
1725 struct writeback_control *wbc, writepage_t writepage,
1726 void *data)
1727 {
1728 int ret = 0;
1729 int done = 0;
1730 struct pagevec pvec;
1731 int nr_pages;
1732 pgoff_t uninitialized_var(writeback_index);
1733 pgoff_t index;
1734 pgoff_t end; /* Inclusive */
1735 pgoff_t done_index;
1736 int cycled;
1737 int range_whole = 0;
1738 int tag;
1739
1740 pagevec_init(&pvec, 0);
1741 if (wbc->range_cyclic) {
1742 writeback_index = mapping->writeback_index; /* prev offset */
1743 index = writeback_index;
1744 if (index == 0)
1745 cycled = 1;
1746 else
1747 cycled = 0;
1748 end = -1;
1749 } else {
1750 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1751 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1752 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1753 range_whole = 1;
1754 cycled = 1; /* ignore range_cyclic tests */
1755 }
1756 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1757 tag = PAGECACHE_TAG_TOWRITE;
1758 else
1759 tag = PAGECACHE_TAG_DIRTY;
1760 retry:
1761 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1762 tag_pages_for_writeback(mapping, index, end);
1763 done_index = index;
1764 while (!done && (index <= end)) {
1765 int i;
1766
1767 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1768 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1769 if (nr_pages == 0)
1770 break;
1771
1772 for (i = 0; i < nr_pages; i++) {
1773 struct page *page = pvec.pages[i];
1774
1775 /*
1776 * At this point, the page may be truncated or
1777 * invalidated (changing page->mapping to NULL), or
1778 * even swizzled back from swapper_space to tmpfs file
1779 * mapping. However, page->index will not change
1780 * because we have a reference on the page.
1781 */
1782 if (page->index > end) {
1783 /*
1784 * can't be range_cyclic (1st pass) because
1785 * end == -1 in that case.
1786 */
1787 done = 1;
1788 break;
1789 }
1790
1791 done_index = page->index;
1792
1793 lock_page(page);
1794
1795 /*
1796 * Page truncated or invalidated. We can freely skip it
1797 * then, even for data integrity operations: the page
1798 * has disappeared concurrently, so there could be no
1799 * real expectation of this data interity operation
1800 * even if there is now a new, dirty page at the same
1801 * pagecache address.
1802 */
1803 if (unlikely(page->mapping != mapping)) {
1804 continue_unlock:
1805 unlock_page(page);
1806 continue;
1807 }
1808
1809 if (!PageDirty(page)) {
1810 /* someone wrote it for us */
1811 goto continue_unlock;
1812 }
1813
1814 if (PageWriteback(page)) {
1815 if (wbc->sync_mode != WB_SYNC_NONE)
1816 wait_on_page_writeback(page);
1817 else
1818 goto continue_unlock;
1819 }
1820
1821 BUG_ON(PageWriteback(page));
1822 if (!clear_page_dirty_for_io(page))
1823 goto continue_unlock;
1824
1825 trace_wbc_writepage(wbc, mapping->backing_dev_info);
1826 ret = (*writepage)(page, wbc, data);
1827 if (unlikely(ret)) {
1828 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1829 unlock_page(page);
1830 ret = 0;
1831 } else {
1832 /*
1833 * done_index is set past this page,
1834 * so media errors will not choke
1835 * background writeout for the entire
1836 * file. This has consequences for
1837 * range_cyclic semantics (ie. it may
1838 * not be suitable for data integrity
1839 * writeout).
1840 */
1841 done_index = page->index + 1;
1842 done = 1;
1843 break;
1844 }
1845 }
1846
1847 /*
1848 * We stop writing back only if we are not doing
1849 * integrity sync. In case of integrity sync we have to
1850 * keep going until we have written all the pages
1851 * we tagged for writeback prior to entering this loop.
1852 */
1853 if (--wbc->nr_to_write <= 0 &&
1854 wbc->sync_mode == WB_SYNC_NONE) {
1855 done = 1;
1856 break;
1857 }
1858 }
1859 pagevec_release(&pvec);
1860 cond_resched();
1861 }
1862 if (!cycled && !done) {
1863 /*
1864 * range_cyclic:
1865 * We hit the last page and there is more work to be done: wrap
1866 * back to the start of the file
1867 */
1868 cycled = 1;
1869 index = 0;
1870 end = writeback_index - 1;
1871 goto retry;
1872 }
1873 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1874 mapping->writeback_index = done_index;
1875
1876 return ret;
1877 }
1878 EXPORT_SYMBOL(write_cache_pages);
1879
1880 /*
1881 * Function used by generic_writepages to call the real writepage
1882 * function and set the mapping flags on error
1883 */
1884 static int __writepage(struct page *page, struct writeback_control *wbc,
1885 void *data)
1886 {
1887 struct address_space *mapping = data;
1888 int ret = mapping->a_ops->writepage(page, wbc);
1889 mapping_set_error(mapping, ret);
1890 return ret;
1891 }
1892
1893 /**
1894 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1895 * @mapping: address space structure to write
1896 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1897 *
1898 * This is a library function, which implements the writepages()
1899 * address_space_operation.
1900 */
1901 int generic_writepages(struct address_space *mapping,
1902 struct writeback_control *wbc)
1903 {
1904 struct blk_plug plug;
1905 int ret;
1906
1907 /* deal with chardevs and other special file */
1908 if (!mapping->a_ops->writepage)
1909 return 0;
1910
1911 blk_start_plug(&plug);
1912 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1913 blk_finish_plug(&plug);
1914 return ret;
1915 }
1916
1917 EXPORT_SYMBOL(generic_writepages);
1918
1919 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1920 {
1921 int ret;
1922
1923 if (wbc->nr_to_write <= 0)
1924 return 0;
1925 if (mapping->a_ops->writepages)
1926 ret = mapping->a_ops->writepages(mapping, wbc);
1927 else
1928 ret = generic_writepages(mapping, wbc);
1929 return ret;
1930 }
1931
1932 /**
1933 * write_one_page - write out a single page and optionally wait on I/O
1934 * @page: the page to write
1935 * @wait: if true, wait on writeout
1936 *
1937 * The page must be locked by the caller and will be unlocked upon return.
1938 *
1939 * write_one_page() returns a negative error code if I/O failed.
1940 */
1941 int write_one_page(struct page *page, int wait)
1942 {
1943 struct address_space *mapping = page->mapping;
1944 int ret = 0;
1945 struct writeback_control wbc = {
1946 .sync_mode = WB_SYNC_ALL,
1947 .nr_to_write = 1,
1948 };
1949
1950 BUG_ON(!PageLocked(page));
1951
1952 if (wait)
1953 wait_on_page_writeback(page);
1954
1955 if (clear_page_dirty_for_io(page)) {
1956 page_cache_get(page);
1957 ret = mapping->a_ops->writepage(page, &wbc);
1958 if (ret == 0 && wait) {
1959 wait_on_page_writeback(page);
1960 if (PageError(page))
1961 ret = -EIO;
1962 }
1963 page_cache_release(page);
1964 } else {
1965 unlock_page(page);
1966 }
1967 return ret;
1968 }
1969 EXPORT_SYMBOL(write_one_page);
1970
1971 /*
1972 * For address_spaces which do not use buffers nor write back.
1973 */
1974 int __set_page_dirty_no_writeback(struct page *page)
1975 {
1976 if (!PageDirty(page))
1977 return !TestSetPageDirty(page);
1978 return 0;
1979 }
1980
1981 /*
1982 * Helper function for set_page_dirty family.
1983 * NOTE: This relies on being atomic wrt interrupts.
1984 */
1985 void account_page_dirtied(struct page *page, struct address_space *mapping)
1986 {
1987 trace_writeback_dirty_page(page, mapping);
1988
1989 if (mapping_cap_account_dirty(mapping)) {
1990 __inc_zone_page_state(page, NR_FILE_DIRTY);
1991 __inc_zone_page_state(page, NR_DIRTIED);
1992 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1993 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1994 task_io_account_write(PAGE_CACHE_SIZE);
1995 current->nr_dirtied++;
1996 this_cpu_inc(bdp_ratelimits);
1997 }
1998 }
1999 EXPORT_SYMBOL(account_page_dirtied);
2000
2001 /*
2002 * Helper function for set_page_writeback family.
2003 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
2004 * wrt interrupts.
2005 */
2006 void account_page_writeback(struct page *page)
2007 {
2008 inc_zone_page_state(page, NR_WRITEBACK);
2009 }
2010 EXPORT_SYMBOL(account_page_writeback);
2011
2012 /*
2013 * For address_spaces which do not use buffers. Just tag the page as dirty in
2014 * its radix tree.
2015 *
2016 * This is also used when a single buffer is being dirtied: we want to set the
2017 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2018 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2019 *
2020 * Most callers have locked the page, which pins the address_space in memory.
2021 * But zap_pte_range() does not lock the page, however in that case the
2022 * mapping is pinned by the vma's ->vm_file reference.
2023 *
2024 * We take care to handle the case where the page was truncated from the
2025 * mapping by re-checking page_mapping() inside tree_lock.
2026 */
2027 int __set_page_dirty_nobuffers(struct page *page)
2028 {
2029 if (!TestSetPageDirty(page)) {
2030 struct address_space *mapping = page_mapping(page);
2031 struct address_space *mapping2;
2032 unsigned long flags;
2033
2034 if (!mapping)
2035 return 1;
2036
2037 spin_lock_irqsave(&mapping->tree_lock, flags);
2038 mapping2 = page_mapping(page);
2039 if (mapping2) { /* Race with truncate? */
2040 BUG_ON(mapping2 != mapping);
2041 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2042 account_page_dirtied(page, mapping);
2043 radix_tree_tag_set(&mapping->page_tree,
2044 page_index(page), PAGECACHE_TAG_DIRTY);
2045 }
2046 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2047 if (mapping->host) {
2048 /* !PageAnon && !swapper_space */
2049 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2050 }
2051 return 1;
2052 }
2053 return 0;
2054 }
2055 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2056
2057 /*
2058 * Call this whenever redirtying a page, to de-account the dirty counters
2059 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2060 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2061 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2062 * control.
2063 */
2064 void account_page_redirty(struct page *page)
2065 {
2066 struct address_space *mapping = page->mapping;
2067 if (mapping && mapping_cap_account_dirty(mapping)) {
2068 current->nr_dirtied--;
2069 dec_zone_page_state(page, NR_DIRTIED);
2070 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2071 }
2072 }
2073 EXPORT_SYMBOL(account_page_redirty);
2074
2075 /*
2076 * When a writepage implementation decides that it doesn't want to write this
2077 * page for some reason, it should redirty the locked page via
2078 * redirty_page_for_writepage() and it should then unlock the page and return 0
2079 */
2080 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2081 {
2082 wbc->pages_skipped++;
2083 account_page_redirty(page);
2084 return __set_page_dirty_nobuffers(page);
2085 }
2086 EXPORT_SYMBOL(redirty_page_for_writepage);
2087
2088 /*
2089 * Dirty a page.
2090 *
2091 * For pages with a mapping this should be done under the page lock
2092 * for the benefit of asynchronous memory errors who prefer a consistent
2093 * dirty state. This rule can be broken in some special cases,
2094 * but should be better not to.
2095 *
2096 * If the mapping doesn't provide a set_page_dirty a_op, then
2097 * just fall through and assume that it wants buffer_heads.
2098 */
2099 int set_page_dirty(struct page *page)
2100 {
2101 struct address_space *mapping = page_mapping(page);
2102
2103 if (likely(mapping)) {
2104 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2105 /*
2106 * readahead/lru_deactivate_page could remain
2107 * PG_readahead/PG_reclaim due to race with end_page_writeback
2108 * About readahead, if the page is written, the flags would be
2109 * reset. So no problem.
2110 * About lru_deactivate_page, if the page is redirty, the flag
2111 * will be reset. So no problem. but if the page is used by readahead
2112 * it will confuse readahead and make it restart the size rampup
2113 * process. But it's a trivial problem.
2114 */
2115 ClearPageReclaim(page);
2116 #ifdef CONFIG_BLOCK
2117 if (!spd)
2118 spd = __set_page_dirty_buffers;
2119 #endif
2120 return (*spd)(page);
2121 }
2122 if (!PageDirty(page)) {
2123 if (!TestSetPageDirty(page))
2124 return 1;
2125 }
2126 return 0;
2127 }
2128 EXPORT_SYMBOL(set_page_dirty);
2129
2130 /*
2131 * set_page_dirty() is racy if the caller has no reference against
2132 * page->mapping->host, and if the page is unlocked. This is because another
2133 * CPU could truncate the page off the mapping and then free the mapping.
2134 *
2135 * Usually, the page _is_ locked, or the caller is a user-space process which
2136 * holds a reference on the inode by having an open file.
2137 *
2138 * In other cases, the page should be locked before running set_page_dirty().
2139 */
2140 int set_page_dirty_lock(struct page *page)
2141 {
2142 int ret;
2143
2144 lock_page(page);
2145 ret = set_page_dirty(page);
2146 unlock_page(page);
2147 return ret;
2148 }
2149 EXPORT_SYMBOL(set_page_dirty_lock);
2150
2151 /*
2152 * Clear a page's dirty flag, while caring for dirty memory accounting.
2153 * Returns true if the page was previously dirty.
2154 *
2155 * This is for preparing to put the page under writeout. We leave the page
2156 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2157 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2158 * implementation will run either set_page_writeback() or set_page_dirty(),
2159 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2160 * back into sync.
2161 *
2162 * This incoherency between the page's dirty flag and radix-tree tag is
2163 * unfortunate, but it only exists while the page is locked.
2164 */
2165 int clear_page_dirty_for_io(struct page *page)
2166 {
2167 struct address_space *mapping = page_mapping(page);
2168
2169 BUG_ON(!PageLocked(page));
2170
2171 if (mapping && mapping_cap_account_dirty(mapping)) {
2172 /*
2173 * Yes, Virginia, this is indeed insane.
2174 *
2175 * We use this sequence to make sure that
2176 * (a) we account for dirty stats properly
2177 * (b) we tell the low-level filesystem to
2178 * mark the whole page dirty if it was
2179 * dirty in a pagetable. Only to then
2180 * (c) clean the page again and return 1 to
2181 * cause the writeback.
2182 *
2183 * This way we avoid all nasty races with the
2184 * dirty bit in multiple places and clearing
2185 * them concurrently from different threads.
2186 *
2187 * Note! Normally the "set_page_dirty(page)"
2188 * has no effect on the actual dirty bit - since
2189 * that will already usually be set. But we
2190 * need the side effects, and it can help us
2191 * avoid races.
2192 *
2193 * We basically use the page "master dirty bit"
2194 * as a serialization point for all the different
2195 * threads doing their things.
2196 */
2197 if (page_mkclean(page))
2198 set_page_dirty(page);
2199 /*
2200 * We carefully synchronise fault handlers against
2201 * installing a dirty pte and marking the page dirty
2202 * at this point. We do this by having them hold the
2203 * page lock at some point after installing their
2204 * pte, but before marking the page dirty.
2205 * Pages are always locked coming in here, so we get
2206 * the desired exclusion. See mm/memory.c:do_wp_page()
2207 * for more comments.
2208 */
2209 if (TestClearPageDirty(page)) {
2210 dec_zone_page_state(page, NR_FILE_DIRTY);
2211 dec_bdi_stat(mapping->backing_dev_info,
2212 BDI_RECLAIMABLE);
2213 return 1;
2214 }
2215 return 0;
2216 }
2217 return TestClearPageDirty(page);
2218 }
2219 EXPORT_SYMBOL(clear_page_dirty_for_io);
2220
2221 int test_clear_page_writeback(struct page *page)
2222 {
2223 struct address_space *mapping = page_mapping(page);
2224 int ret;
2225
2226 if (mapping) {
2227 struct backing_dev_info *bdi = mapping->backing_dev_info;
2228 unsigned long flags;
2229
2230 spin_lock_irqsave(&mapping->tree_lock, flags);
2231 ret = TestClearPageWriteback(page);
2232 if (ret) {
2233 radix_tree_tag_clear(&mapping->page_tree,
2234 page_index(page),
2235 PAGECACHE_TAG_WRITEBACK);
2236 if (bdi_cap_account_writeback(bdi)) {
2237 __dec_bdi_stat(bdi, BDI_WRITEBACK);
2238 __bdi_writeout_inc(bdi);
2239 }
2240 }
2241 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2242 } else {
2243 ret = TestClearPageWriteback(page);
2244 }
2245 if (ret) {
2246 dec_zone_page_state(page, NR_WRITEBACK);
2247 inc_zone_page_state(page, NR_WRITTEN);
2248 }
2249 return ret;
2250 }
2251
2252 int test_set_page_writeback(struct page *page)
2253 {
2254 struct address_space *mapping = page_mapping(page);
2255 int ret;
2256
2257 if (mapping) {
2258 struct backing_dev_info *bdi = mapping->backing_dev_info;
2259 unsigned long flags;
2260
2261 spin_lock_irqsave(&mapping->tree_lock, flags);
2262 ret = TestSetPageWriteback(page);
2263 if (!ret) {
2264 radix_tree_tag_set(&mapping->page_tree,
2265 page_index(page),
2266 PAGECACHE_TAG_WRITEBACK);
2267 if (bdi_cap_account_writeback(bdi))
2268 __inc_bdi_stat(bdi, BDI_WRITEBACK);
2269 }
2270 if (!PageDirty(page))
2271 radix_tree_tag_clear(&mapping->page_tree,
2272 page_index(page),
2273 PAGECACHE_TAG_DIRTY);
2274 radix_tree_tag_clear(&mapping->page_tree,
2275 page_index(page),
2276 PAGECACHE_TAG_TOWRITE);
2277 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2278 } else {
2279 ret = TestSetPageWriteback(page);
2280 }
2281 if (!ret)
2282 account_page_writeback(page);
2283 return ret;
2284
2285 }
2286 EXPORT_SYMBOL(test_set_page_writeback);
2287
2288 /*
2289 * Return true if any of the pages in the mapping are marked with the
2290 * passed tag.
2291 */
2292 int mapping_tagged(struct address_space *mapping, int tag)
2293 {
2294 return radix_tree_tagged(&mapping->page_tree, tag);
2295 }
2296 EXPORT_SYMBOL(mapping_tagged);
2297
2298 /**
2299 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2300 * @page: The page to wait on.
2301 *
2302 * This function determines if the given page is related to a backing device
2303 * that requires page contents to be held stable during writeback. If so, then
2304 * it will wait for any pending writeback to complete.
2305 */
2306 void wait_for_stable_page(struct page *page)
2307 {
2308 struct address_space *mapping = page_mapping(page);
2309 struct backing_dev_info *bdi = mapping->backing_dev_info;
2310
2311 if (!bdi_cap_stable_pages_required(bdi))
2312 return;
2313
2314 wait_on_page_writeback(page);
2315 }
2316 EXPORT_SYMBOL_GPL(wait_for_stable_page);