Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page-writeback.c
1 /*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 Andrew Morton
11 * Initial version
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <trace/events/writeback.h>
40
41 /*
42 * Sleep at most 200ms at a time in balance_dirty_pages().
43 */
44 #define MAX_PAUSE max(HZ/5, 1)
45
46 /*
47 * Try to keep balance_dirty_pages() call intervals higher than this many pages
48 * by raising pause time to max_pause when falls below it.
49 */
50 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
51
52 /*
53 * Estimate write bandwidth at 200ms intervals.
54 */
55 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
56
57 #define RATELIMIT_CALC_SHIFT 10
58
59 /*
60 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
61 * will look to see if it needs to force writeback or throttling.
62 */
63 static long ratelimit_pages = 32;
64
65 /* The following parameters are exported via /proc/sys/vm */
66
67 /*
68 * Start background writeback (via writeback threads) at this percentage
69 */
70 int dirty_background_ratio = 10;
71
72 /*
73 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
74 * dirty_background_ratio * the amount of dirtyable memory
75 */
76 unsigned long dirty_background_bytes;
77
78 /*
79 * free highmem will not be subtracted from the total free memory
80 * for calculating free ratios if vm_highmem_is_dirtyable is true
81 */
82 int vm_highmem_is_dirtyable;
83
84 /*
85 * The generator of dirty data starts writeback at this percentage
86 */
87 int vm_dirty_ratio = 20;
88
89 /*
90 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
91 * vm_dirty_ratio * the amount of dirtyable memory
92 */
93 unsigned long vm_dirty_bytes;
94
95 /*
96 * The interval between `kupdate'-style writebacks
97 */
98 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
99
100 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
101
102 /*
103 * The longest time for which data is allowed to remain dirty
104 */
105 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
106
107 /*
108 * Flag that makes the machine dump writes/reads and block dirtyings.
109 */
110 int block_dump;
111 EXPORT_SYMBOL_GPL(block_dump);
112
113 /*
114 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
115 * a full sync is triggered after this time elapses without any disk activity.
116 */
117 int laptop_mode;
118
119 EXPORT_SYMBOL(laptop_mode);
120
121 /* End of sysctl-exported parameters */
122
123 unsigned long global_dirty_limit;
124
125 /*
126 * Scale the writeback cache size proportional to the relative writeout speeds.
127 *
128 * We do this by keeping a floating proportion between BDIs, based on page
129 * writeback completions [end_page_writeback()]. Those devices that write out
130 * pages fastest will get the larger share, while the slower will get a smaller
131 * share.
132 *
133 * We use page writeout completions because we are interested in getting rid of
134 * dirty pages. Having them written out is the primary goal.
135 *
136 * We introduce a concept of time, a period over which we measure these events,
137 * because demand can/will vary over time. The length of this period itself is
138 * measured in page writeback completions.
139 *
140 */
141 static struct fprop_global writeout_completions;
142
143 static void writeout_period(unsigned long t);
144 /* Timer for aging of writeout_completions */
145 static struct timer_list writeout_period_timer =
146 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
147 static unsigned long writeout_period_time = 0;
148
149 /*
150 * Length of period for aging writeout fractions of bdis. This is an
151 * arbitrarily chosen number. The longer the period, the slower fractions will
152 * reflect changes in current writeout rate.
153 */
154 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155
156 /*
157 * Work out the current dirty-memory clamping and background writeout
158 * thresholds.
159 *
160 * The main aim here is to lower them aggressively if there is a lot of mapped
161 * memory around. To avoid stressing page reclaim with lots of unreclaimable
162 * pages. It is better to clamp down on writers than to start swapping, and
163 * performing lots of scanning.
164 *
165 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
166 *
167 * We don't permit the clamping level to fall below 5% - that is getting rather
168 * excessive.
169 *
170 * We make sure that the background writeout level is below the adjusted
171 * clamping level.
172 */
173
174 /*
175 * In a memory zone, there is a certain amount of pages we consider
176 * available for the page cache, which is essentially the number of
177 * free and reclaimable pages, minus some zone reserves to protect
178 * lowmem and the ability to uphold the zone's watermarks without
179 * requiring writeback.
180 *
181 * This number of dirtyable pages is the base value of which the
182 * user-configurable dirty ratio is the effictive number of pages that
183 * are allowed to be actually dirtied. Per individual zone, or
184 * globally by using the sum of dirtyable pages over all zones.
185 *
186 * Because the user is allowed to specify the dirty limit globally as
187 * absolute number of bytes, calculating the per-zone dirty limit can
188 * require translating the configured limit into a percentage of
189 * global dirtyable memory first.
190 */
191
192 /**
193 * zone_dirtyable_memory - number of dirtyable pages in a zone
194 * @zone: the zone
195 *
196 * Returns the zone's number of pages potentially available for dirty
197 * page cache. This is the base value for the per-zone dirty limits.
198 */
199 static unsigned long zone_dirtyable_memory(struct zone *zone)
200 {
201 unsigned long nr_pages;
202
203 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
204 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
205
206 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
207 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
208
209 return nr_pages;
210 }
211
212 static unsigned long highmem_dirtyable_memory(unsigned long total)
213 {
214 #ifdef CONFIG_HIGHMEM
215 int node;
216 unsigned long x = 0;
217
218 for_each_node_state(node, N_HIGH_MEMORY) {
219 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
220
221 x += zone_dirtyable_memory(z);
222 }
223 /*
224 * Unreclaimable memory (kernel memory or anonymous memory
225 * without swap) can bring down the dirtyable pages below
226 * the zone's dirty balance reserve and the above calculation
227 * will underflow. However we still want to add in nodes
228 * which are below threshold (negative values) to get a more
229 * accurate calculation but make sure that the total never
230 * underflows.
231 */
232 if ((long)x < 0)
233 x = 0;
234
235 /*
236 * Make sure that the number of highmem pages is never larger
237 * than the number of the total dirtyable memory. This can only
238 * occur in very strange VM situations but we want to make sure
239 * that this does not occur.
240 */
241 return min(x, total);
242 #else
243 return 0;
244 #endif
245 }
246
247 /**
248 * global_dirtyable_memory - number of globally dirtyable pages
249 *
250 * Returns the global number of pages potentially available for dirty
251 * page cache. This is the base value for the global dirty limits.
252 */
253 static unsigned long global_dirtyable_memory(void)
254 {
255 unsigned long x;
256
257 x = global_page_state(NR_FREE_PAGES);
258 x -= min(x, dirty_balance_reserve);
259
260 x += global_page_state(NR_INACTIVE_FILE);
261 x += global_page_state(NR_ACTIVE_FILE);
262
263 if (!vm_highmem_is_dirtyable)
264 x -= highmem_dirtyable_memory(x);
265
266 /* Subtract min_free_kbytes */
267 x -= min_t(unsigned long, x, min_free_kbytes >> (PAGE_SHIFT - 10));
268
269 return x + 1; /* Ensure that we never return 0 */
270 }
271
272 /*
273 * global_dirty_limits - background-writeback and dirty-throttling thresholds
274 *
275 * Calculate the dirty thresholds based on sysctl parameters
276 * - vm.dirty_background_ratio or vm.dirty_background_bytes
277 * - vm.dirty_ratio or vm.dirty_bytes
278 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
279 * real-time tasks.
280 */
281 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
282 {
283 unsigned long background;
284 unsigned long dirty;
285 unsigned long uninitialized_var(available_memory);
286 struct task_struct *tsk;
287
288 if (!vm_dirty_bytes || !dirty_background_bytes)
289 available_memory = global_dirtyable_memory();
290
291 if (vm_dirty_bytes)
292 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
293 else
294 dirty = (vm_dirty_ratio * available_memory) / 100;
295
296 if (dirty_background_bytes)
297 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
298 else
299 background = (dirty_background_ratio * available_memory) / 100;
300
301 if (background >= dirty)
302 background = dirty / 2;
303 tsk = current;
304 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
305 background += background / 4;
306 dirty += dirty / 4;
307 }
308 *pbackground = background;
309 *pdirty = dirty;
310 trace_global_dirty_state(background, dirty);
311 }
312
313 /**
314 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
315 * @zone: the zone
316 *
317 * Returns the maximum number of dirty pages allowed in a zone, based
318 * on the zone's dirtyable memory.
319 */
320 static unsigned long zone_dirty_limit(struct zone *zone)
321 {
322 unsigned long zone_memory = zone_dirtyable_memory(zone);
323 struct task_struct *tsk = current;
324 unsigned long dirty;
325
326 if (vm_dirty_bytes)
327 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
328 zone_memory / global_dirtyable_memory();
329 else
330 dirty = vm_dirty_ratio * zone_memory / 100;
331
332 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
333 dirty += dirty / 4;
334
335 return dirty;
336 }
337
338 /**
339 * zone_dirty_ok - tells whether a zone is within its dirty limits
340 * @zone: the zone to check
341 *
342 * Returns %true when the dirty pages in @zone are within the zone's
343 * dirty limit, %false if the limit is exceeded.
344 */
345 bool zone_dirty_ok(struct zone *zone)
346 {
347 unsigned long limit = zone_dirty_limit(zone);
348
349 return zone_page_state(zone, NR_FILE_DIRTY) +
350 zone_page_state(zone, NR_UNSTABLE_NFS) +
351 zone_page_state(zone, NR_WRITEBACK) <= limit;
352 }
353
354 int dirty_background_ratio_handler(struct ctl_table *table, int write,
355 void __user *buffer, size_t *lenp,
356 loff_t *ppos)
357 {
358 int ret;
359
360 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
361 if (ret == 0 && write)
362 dirty_background_bytes = 0;
363 return ret;
364 }
365
366 int dirty_background_bytes_handler(struct ctl_table *table, int write,
367 void __user *buffer, size_t *lenp,
368 loff_t *ppos)
369 {
370 int ret;
371
372 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
373 if (ret == 0 && write)
374 dirty_background_ratio = 0;
375 return ret;
376 }
377
378 int dirty_ratio_handler(struct ctl_table *table, int write,
379 void __user *buffer, size_t *lenp,
380 loff_t *ppos)
381 {
382 int old_ratio = vm_dirty_ratio;
383 int ret;
384
385 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
386 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
387 writeback_set_ratelimit();
388 vm_dirty_bytes = 0;
389 }
390 return ret;
391 }
392
393 int dirty_bytes_handler(struct ctl_table *table, int write,
394 void __user *buffer, size_t *lenp,
395 loff_t *ppos)
396 {
397 unsigned long old_bytes = vm_dirty_bytes;
398 int ret;
399
400 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
401 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
402 writeback_set_ratelimit();
403 vm_dirty_ratio = 0;
404 }
405 return ret;
406 }
407
408 static unsigned long wp_next_time(unsigned long cur_time)
409 {
410 cur_time += VM_COMPLETIONS_PERIOD_LEN;
411 /* 0 has a special meaning... */
412 if (!cur_time)
413 return 1;
414 return cur_time;
415 }
416
417 /*
418 * Increment the BDI's writeout completion count and the global writeout
419 * completion count. Called from test_clear_page_writeback().
420 */
421 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
422 {
423 __inc_bdi_stat(bdi, BDI_WRITTEN);
424 __fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
425 bdi->max_prop_frac);
426 /* First event after period switching was turned off? */
427 if (!unlikely(writeout_period_time)) {
428 /*
429 * We can race with other __bdi_writeout_inc calls here but
430 * it does not cause any harm since the resulting time when
431 * timer will fire and what is in writeout_period_time will be
432 * roughly the same.
433 */
434 writeout_period_time = wp_next_time(jiffies);
435 mod_timer(&writeout_period_timer, writeout_period_time);
436 }
437 }
438
439 void bdi_writeout_inc(struct backing_dev_info *bdi)
440 {
441 unsigned long flags;
442
443 local_irq_save(flags);
444 __bdi_writeout_inc(bdi);
445 local_irq_restore(flags);
446 }
447 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
448
449 /*
450 * Obtain an accurate fraction of the BDI's portion.
451 */
452 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
453 long *numerator, long *denominator)
454 {
455 fprop_fraction_percpu(&writeout_completions, &bdi->completions,
456 numerator, denominator);
457 }
458
459 /*
460 * On idle system, we can be called long after we scheduled because we use
461 * deferred timers so count with missed periods.
462 */
463 static void writeout_period(unsigned long t)
464 {
465 int miss_periods = (jiffies - writeout_period_time) /
466 VM_COMPLETIONS_PERIOD_LEN;
467
468 if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
469 writeout_period_time = wp_next_time(writeout_period_time +
470 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
471 mod_timer(&writeout_period_timer, writeout_period_time);
472 } else {
473 /*
474 * Aging has zeroed all fractions. Stop wasting CPU on period
475 * updates.
476 */
477 writeout_period_time = 0;
478 }
479 }
480
481 /*
482 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
483 * registered backing devices, which, for obvious reasons, can not
484 * exceed 100%.
485 */
486 static unsigned int bdi_min_ratio;
487
488 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
489 {
490 int ret = 0;
491
492 spin_lock_bh(&bdi_lock);
493 if (min_ratio > bdi->max_ratio) {
494 ret = -EINVAL;
495 } else {
496 min_ratio -= bdi->min_ratio;
497 if (bdi_min_ratio + min_ratio < 100) {
498 bdi_min_ratio += min_ratio;
499 bdi->min_ratio += min_ratio;
500 } else {
501 ret = -EINVAL;
502 }
503 }
504 spin_unlock_bh(&bdi_lock);
505
506 return ret;
507 }
508
509 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
510 {
511 int ret = 0;
512
513 if (max_ratio > 100)
514 return -EINVAL;
515
516 spin_lock_bh(&bdi_lock);
517 if (bdi->min_ratio > max_ratio) {
518 ret = -EINVAL;
519 } else {
520 bdi->max_ratio = max_ratio;
521 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
522 }
523 spin_unlock_bh(&bdi_lock);
524
525 return ret;
526 }
527 EXPORT_SYMBOL(bdi_set_max_ratio);
528
529 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
530 unsigned long bg_thresh)
531 {
532 return (thresh + bg_thresh) / 2;
533 }
534
535 static unsigned long hard_dirty_limit(unsigned long thresh)
536 {
537 return max(thresh, global_dirty_limit);
538 }
539
540 /**
541 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
542 * @bdi: the backing_dev_info to query
543 * @dirty: global dirty limit in pages
544 *
545 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
546 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
547 *
548 * Note that balance_dirty_pages() will only seriously take it as a hard limit
549 * when sleeping max_pause per page is not enough to keep the dirty pages under
550 * control. For example, when the device is completely stalled due to some error
551 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
552 * In the other normal situations, it acts more gently by throttling the tasks
553 * more (rather than completely block them) when the bdi dirty pages go high.
554 *
555 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
556 * - starving fast devices
557 * - piling up dirty pages (that will take long time to sync) on slow devices
558 *
559 * The bdi's share of dirty limit will be adapting to its throughput and
560 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
561 */
562 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
563 {
564 u64 bdi_dirty;
565 long numerator, denominator;
566
567 /*
568 * Calculate this BDI's share of the dirty ratio.
569 */
570 bdi_writeout_fraction(bdi, &numerator, &denominator);
571
572 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
573 bdi_dirty *= numerator;
574 do_div(bdi_dirty, denominator);
575
576 bdi_dirty += (dirty * bdi->min_ratio) / 100;
577 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
578 bdi_dirty = dirty * bdi->max_ratio / 100;
579
580 return bdi_dirty;
581 }
582
583 /*
584 * Dirty position control.
585 *
586 * (o) global/bdi setpoints
587 *
588 * We want the dirty pages be balanced around the global/bdi setpoints.
589 * When the number of dirty pages is higher/lower than the setpoint, the
590 * dirty position control ratio (and hence task dirty ratelimit) will be
591 * decreased/increased to bring the dirty pages back to the setpoint.
592 *
593 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
594 *
595 * if (dirty < setpoint) scale up pos_ratio
596 * if (dirty > setpoint) scale down pos_ratio
597 *
598 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
599 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
600 *
601 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
602 *
603 * (o) global control line
604 *
605 * ^ pos_ratio
606 * |
607 * | |<===== global dirty control scope ======>|
608 * 2.0 .............*
609 * | .*
610 * | . *
611 * | . *
612 * | . *
613 * | . *
614 * | . *
615 * 1.0 ................................*
616 * | . . *
617 * | . . *
618 * | . . *
619 * | . . *
620 * | . . *
621 * 0 +------------.------------------.----------------------*------------->
622 * freerun^ setpoint^ limit^ dirty pages
623 *
624 * (o) bdi control line
625 *
626 * ^ pos_ratio
627 * |
628 * | *
629 * | *
630 * | *
631 * | *
632 * | * |<=========== span ============>|
633 * 1.0 .......................*
634 * | . *
635 * | . *
636 * | . *
637 * | . *
638 * | . *
639 * | . *
640 * | . *
641 * | . *
642 * | . *
643 * | . *
644 * | . *
645 * 1/4 ...............................................* * * * * * * * * * * *
646 * | . .
647 * | . .
648 * | . .
649 * 0 +----------------------.-------------------------------.------------->
650 * bdi_setpoint^ x_intercept^
651 *
652 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
653 * be smoothly throttled down to normal if it starts high in situations like
654 * - start writing to a slow SD card and a fast disk at the same time. The SD
655 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
656 * - the bdi dirty thresh drops quickly due to change of JBOD workload
657 */
658 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
659 unsigned long thresh,
660 unsigned long bg_thresh,
661 unsigned long dirty,
662 unsigned long bdi_thresh,
663 unsigned long bdi_dirty)
664 {
665 unsigned long write_bw = bdi->avg_write_bandwidth;
666 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
667 unsigned long limit = hard_dirty_limit(thresh);
668 unsigned long x_intercept;
669 unsigned long setpoint; /* dirty pages' target balance point */
670 unsigned long bdi_setpoint;
671 unsigned long span;
672 long long pos_ratio; /* for scaling up/down the rate limit */
673 long x;
674
675 if (unlikely(dirty >= limit))
676 return 0;
677
678 /*
679 * global setpoint
680 *
681 * setpoint - dirty 3
682 * f(dirty) := 1.0 + (----------------)
683 * limit - setpoint
684 *
685 * it's a 3rd order polynomial that subjects to
686 *
687 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
688 * (2) f(setpoint) = 1.0 => the balance point
689 * (3) f(limit) = 0 => the hard limit
690 * (4) df/dx <= 0 => negative feedback control
691 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
692 * => fast response on large errors; small oscillation near setpoint
693 */
694 setpoint = (freerun + limit) / 2;
695 x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
696 limit - setpoint + 1);
697 pos_ratio = x;
698 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
699 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
700 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
701
702 /*
703 * We have computed basic pos_ratio above based on global situation. If
704 * the bdi is over/under its share of dirty pages, we want to scale
705 * pos_ratio further down/up. That is done by the following mechanism.
706 */
707
708 /*
709 * bdi setpoint
710 *
711 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
712 *
713 * x_intercept - bdi_dirty
714 * := --------------------------
715 * x_intercept - bdi_setpoint
716 *
717 * The main bdi control line is a linear function that subjects to
718 *
719 * (1) f(bdi_setpoint) = 1.0
720 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
721 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
722 *
723 * For single bdi case, the dirty pages are observed to fluctuate
724 * regularly within range
725 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
726 * for various filesystems, where (2) can yield in a reasonable 12.5%
727 * fluctuation range for pos_ratio.
728 *
729 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
730 * own size, so move the slope over accordingly and choose a slope that
731 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
732 */
733 if (unlikely(bdi_thresh > thresh))
734 bdi_thresh = thresh;
735 /*
736 * It's very possible that bdi_thresh is close to 0 not because the
737 * device is slow, but that it has remained inactive for long time.
738 * Honour such devices a reasonable good (hopefully IO efficient)
739 * threshold, so that the occasional writes won't be blocked and active
740 * writes can rampup the threshold quickly.
741 */
742 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
743 /*
744 * scale global setpoint to bdi's:
745 * bdi_setpoint = setpoint * bdi_thresh / thresh
746 */
747 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
748 bdi_setpoint = setpoint * (u64)x >> 16;
749 /*
750 * Use span=(8*write_bw) in single bdi case as indicated by
751 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
752 *
753 * bdi_thresh thresh - bdi_thresh
754 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
755 * thresh thresh
756 */
757 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
758 x_intercept = bdi_setpoint + span;
759
760 if (bdi_dirty < x_intercept - span / 4) {
761 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
762 x_intercept - bdi_setpoint + 1);
763 } else
764 pos_ratio /= 4;
765
766 /*
767 * bdi reserve area, safeguard against dirty pool underrun and disk idle
768 * It may push the desired control point of global dirty pages higher
769 * than setpoint.
770 */
771 x_intercept = bdi_thresh / 2;
772 if (bdi_dirty < x_intercept) {
773 if (bdi_dirty > x_intercept / 8)
774 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
775 else
776 pos_ratio *= 8;
777 }
778
779 return pos_ratio;
780 }
781
782 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
783 unsigned long elapsed,
784 unsigned long written)
785 {
786 const unsigned long period = roundup_pow_of_two(3 * HZ);
787 unsigned long avg = bdi->avg_write_bandwidth;
788 unsigned long old = bdi->write_bandwidth;
789 u64 bw;
790
791 /*
792 * bw = written * HZ / elapsed
793 *
794 * bw * elapsed + write_bandwidth * (period - elapsed)
795 * write_bandwidth = ---------------------------------------------------
796 * period
797 */
798 bw = written - bdi->written_stamp;
799 bw *= HZ;
800 if (unlikely(elapsed > period)) {
801 do_div(bw, elapsed);
802 avg = bw;
803 goto out;
804 }
805 bw += (u64)bdi->write_bandwidth * (period - elapsed);
806 bw >>= ilog2(period);
807
808 /*
809 * one more level of smoothing, for filtering out sudden spikes
810 */
811 if (avg > old && old >= (unsigned long)bw)
812 avg -= (avg - old) >> 3;
813
814 if (avg < old && old <= (unsigned long)bw)
815 avg += (old - avg) >> 3;
816
817 out:
818 bdi->write_bandwidth = bw;
819 bdi->avg_write_bandwidth = avg;
820 }
821
822 /*
823 * The global dirtyable memory and dirty threshold could be suddenly knocked
824 * down by a large amount (eg. on the startup of KVM in a swapless system).
825 * This may throw the system into deep dirty exceeded state and throttle
826 * heavy/light dirtiers alike. To retain good responsiveness, maintain
827 * global_dirty_limit for tracking slowly down to the knocked down dirty
828 * threshold.
829 */
830 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
831 {
832 unsigned long limit = global_dirty_limit;
833
834 /*
835 * Follow up in one step.
836 */
837 if (limit < thresh) {
838 limit = thresh;
839 goto update;
840 }
841
842 /*
843 * Follow down slowly. Use the higher one as the target, because thresh
844 * may drop below dirty. This is exactly the reason to introduce
845 * global_dirty_limit which is guaranteed to lie above the dirty pages.
846 */
847 thresh = max(thresh, dirty);
848 if (limit > thresh) {
849 limit -= (limit - thresh) >> 5;
850 goto update;
851 }
852 return;
853 update:
854 global_dirty_limit = limit;
855 }
856
857 static void global_update_bandwidth(unsigned long thresh,
858 unsigned long dirty,
859 unsigned long now)
860 {
861 static DEFINE_SPINLOCK(dirty_lock);
862 static unsigned long update_time;
863
864 /*
865 * check locklessly first to optimize away locking for the most time
866 */
867 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
868 return;
869
870 spin_lock(&dirty_lock);
871 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
872 update_dirty_limit(thresh, dirty);
873 update_time = now;
874 }
875 spin_unlock(&dirty_lock);
876 }
877
878 /*
879 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
880 *
881 * Normal bdi tasks will be curbed at or below it in long term.
882 * Obviously it should be around (write_bw / N) when there are N dd tasks.
883 */
884 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
885 unsigned long thresh,
886 unsigned long bg_thresh,
887 unsigned long dirty,
888 unsigned long bdi_thresh,
889 unsigned long bdi_dirty,
890 unsigned long dirtied,
891 unsigned long elapsed)
892 {
893 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
894 unsigned long limit = hard_dirty_limit(thresh);
895 unsigned long setpoint = (freerun + limit) / 2;
896 unsigned long write_bw = bdi->avg_write_bandwidth;
897 unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
898 unsigned long dirty_rate;
899 unsigned long task_ratelimit;
900 unsigned long balanced_dirty_ratelimit;
901 unsigned long pos_ratio;
902 unsigned long step;
903 unsigned long x;
904
905 /*
906 * The dirty rate will match the writeout rate in long term, except
907 * when dirty pages are truncated by userspace or re-dirtied by FS.
908 */
909 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
910
911 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
912 bdi_thresh, bdi_dirty);
913 /*
914 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
915 */
916 task_ratelimit = (u64)dirty_ratelimit *
917 pos_ratio >> RATELIMIT_CALC_SHIFT;
918 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
919
920 /*
921 * A linear estimation of the "balanced" throttle rate. The theory is,
922 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
923 * dirty_rate will be measured to be (N * task_ratelimit). So the below
924 * formula will yield the balanced rate limit (write_bw / N).
925 *
926 * Note that the expanded form is not a pure rate feedback:
927 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
928 * but also takes pos_ratio into account:
929 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
930 *
931 * (1) is not realistic because pos_ratio also takes part in balancing
932 * the dirty rate. Consider the state
933 * pos_ratio = 0.5 (3)
934 * rate = 2 * (write_bw / N) (4)
935 * If (1) is used, it will stuck in that state! Because each dd will
936 * be throttled at
937 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
938 * yielding
939 * dirty_rate = N * task_ratelimit = write_bw (6)
940 * put (6) into (1) we get
941 * rate_(i+1) = rate_(i) (7)
942 *
943 * So we end up using (2) to always keep
944 * rate_(i+1) ~= (write_bw / N) (8)
945 * regardless of the value of pos_ratio. As long as (8) is satisfied,
946 * pos_ratio is able to drive itself to 1.0, which is not only where
947 * the dirty count meet the setpoint, but also where the slope of
948 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
949 */
950 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
951 dirty_rate | 1);
952 /*
953 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
954 */
955 if (unlikely(balanced_dirty_ratelimit > write_bw))
956 balanced_dirty_ratelimit = write_bw;
957
958 /*
959 * We could safely do this and return immediately:
960 *
961 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
962 *
963 * However to get a more stable dirty_ratelimit, the below elaborated
964 * code makes use of task_ratelimit to filter out singular points and
965 * limit the step size.
966 *
967 * The below code essentially only uses the relative value of
968 *
969 * task_ratelimit - dirty_ratelimit
970 * = (pos_ratio - 1) * dirty_ratelimit
971 *
972 * which reflects the direction and size of dirty position error.
973 */
974
975 /*
976 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
977 * task_ratelimit is on the same side of dirty_ratelimit, too.
978 * For example, when
979 * - dirty_ratelimit > balanced_dirty_ratelimit
980 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
981 * lowering dirty_ratelimit will help meet both the position and rate
982 * control targets. Otherwise, don't update dirty_ratelimit if it will
983 * only help meet the rate target. After all, what the users ultimately
984 * feel and care are stable dirty rate and small position error.
985 *
986 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
987 * and filter out the singular points of balanced_dirty_ratelimit. Which
988 * keeps jumping around randomly and can even leap far away at times
989 * due to the small 200ms estimation period of dirty_rate (we want to
990 * keep that period small to reduce time lags).
991 */
992 step = 0;
993 if (dirty < setpoint) {
994 x = min(bdi->balanced_dirty_ratelimit,
995 min(balanced_dirty_ratelimit, task_ratelimit));
996 if (dirty_ratelimit < x)
997 step = x - dirty_ratelimit;
998 } else {
999 x = max(bdi->balanced_dirty_ratelimit,
1000 max(balanced_dirty_ratelimit, task_ratelimit));
1001 if (dirty_ratelimit > x)
1002 step = dirty_ratelimit - x;
1003 }
1004
1005 /*
1006 * Don't pursue 100% rate matching. It's impossible since the balanced
1007 * rate itself is constantly fluctuating. So decrease the track speed
1008 * when it gets close to the target. Helps eliminate pointless tremors.
1009 */
1010 step >>= dirty_ratelimit / (2 * step + 1);
1011 /*
1012 * Limit the tracking speed to avoid overshooting.
1013 */
1014 step = (step + 7) / 8;
1015
1016 if (dirty_ratelimit < balanced_dirty_ratelimit)
1017 dirty_ratelimit += step;
1018 else
1019 dirty_ratelimit -= step;
1020
1021 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1022 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1023
1024 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
1025 }
1026
1027 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1028 unsigned long thresh,
1029 unsigned long bg_thresh,
1030 unsigned long dirty,
1031 unsigned long bdi_thresh,
1032 unsigned long bdi_dirty,
1033 unsigned long start_time)
1034 {
1035 unsigned long now = jiffies;
1036 unsigned long elapsed = now - bdi->bw_time_stamp;
1037 unsigned long dirtied;
1038 unsigned long written;
1039
1040 /*
1041 * rate-limit, only update once every 200ms.
1042 */
1043 if (elapsed < BANDWIDTH_INTERVAL)
1044 return;
1045
1046 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1047 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1048
1049 /*
1050 * Skip quiet periods when disk bandwidth is under-utilized.
1051 * (at least 1s idle time between two flusher runs)
1052 */
1053 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1054 goto snapshot;
1055
1056 if (thresh) {
1057 global_update_bandwidth(thresh, dirty, now);
1058 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1059 bdi_thresh, bdi_dirty,
1060 dirtied, elapsed);
1061 }
1062 bdi_update_write_bandwidth(bdi, elapsed, written);
1063
1064 snapshot:
1065 bdi->dirtied_stamp = dirtied;
1066 bdi->written_stamp = written;
1067 bdi->bw_time_stamp = now;
1068 }
1069
1070 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1071 unsigned long thresh,
1072 unsigned long bg_thresh,
1073 unsigned long dirty,
1074 unsigned long bdi_thresh,
1075 unsigned long bdi_dirty,
1076 unsigned long start_time)
1077 {
1078 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1079 return;
1080 spin_lock(&bdi->wb.list_lock);
1081 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1082 bdi_thresh, bdi_dirty, start_time);
1083 spin_unlock(&bdi->wb.list_lock);
1084 }
1085
1086 /*
1087 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1088 * will look to see if it needs to start dirty throttling.
1089 *
1090 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1091 * global_page_state() too often. So scale it near-sqrt to the safety margin
1092 * (the number of pages we may dirty without exceeding the dirty limits).
1093 */
1094 static unsigned long dirty_poll_interval(unsigned long dirty,
1095 unsigned long thresh)
1096 {
1097 if (thresh > dirty)
1098 return 1UL << (ilog2(thresh - dirty) >> 1);
1099
1100 return 1;
1101 }
1102
1103 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1104 unsigned long bdi_dirty)
1105 {
1106 unsigned long bw = bdi->avg_write_bandwidth;
1107 unsigned long t;
1108
1109 /*
1110 * Limit pause time for small memory systems. If sleeping for too long
1111 * time, a small pool of dirty/writeback pages may go empty and disk go
1112 * idle.
1113 *
1114 * 8 serves as the safety ratio.
1115 */
1116 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1117 t++;
1118
1119 return min_t(unsigned long, t, MAX_PAUSE);
1120 }
1121
1122 static long bdi_min_pause(struct backing_dev_info *bdi,
1123 long max_pause,
1124 unsigned long task_ratelimit,
1125 unsigned long dirty_ratelimit,
1126 int *nr_dirtied_pause)
1127 {
1128 long hi = ilog2(bdi->avg_write_bandwidth);
1129 long lo = ilog2(bdi->dirty_ratelimit);
1130 long t; /* target pause */
1131 long pause; /* estimated next pause */
1132 int pages; /* target nr_dirtied_pause */
1133
1134 /* target for 10ms pause on 1-dd case */
1135 t = max(1, HZ / 100);
1136
1137 /*
1138 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1139 * overheads.
1140 *
1141 * (N * 10ms) on 2^N concurrent tasks.
1142 */
1143 if (hi > lo)
1144 t += (hi - lo) * (10 * HZ) / 1024;
1145
1146 /*
1147 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1148 * on the much more stable dirty_ratelimit. However the next pause time
1149 * will be computed based on task_ratelimit and the two rate limits may
1150 * depart considerably at some time. Especially if task_ratelimit goes
1151 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1152 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1153 * result task_ratelimit won't be executed faithfully, which could
1154 * eventually bring down dirty_ratelimit.
1155 *
1156 * We apply two rules to fix it up:
1157 * 1) try to estimate the next pause time and if necessary, use a lower
1158 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1159 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1160 * 2) limit the target pause time to max_pause/2, so that the normal
1161 * small fluctuations of task_ratelimit won't trigger rule (1) and
1162 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1163 */
1164 t = min(t, 1 + max_pause / 2);
1165 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1166
1167 /*
1168 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1169 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1170 * When the 16 consecutive reads are often interrupted by some dirty
1171 * throttling pause during the async writes, cfq will go into idles
1172 * (deadline is fine). So push nr_dirtied_pause as high as possible
1173 * until reaches DIRTY_POLL_THRESH=32 pages.
1174 */
1175 if (pages < DIRTY_POLL_THRESH) {
1176 t = max_pause;
1177 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1178 if (pages > DIRTY_POLL_THRESH) {
1179 pages = DIRTY_POLL_THRESH;
1180 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1181 }
1182 }
1183
1184 pause = HZ * pages / (task_ratelimit + 1);
1185 if (pause > max_pause) {
1186 t = max_pause;
1187 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1188 }
1189
1190 *nr_dirtied_pause = pages;
1191 /*
1192 * The minimal pause time will normally be half the target pause time.
1193 */
1194 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1195 }
1196
1197 /*
1198 * balance_dirty_pages() must be called by processes which are generating dirty
1199 * data. It looks at the number of dirty pages in the machine and will force
1200 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1201 * If we're over `background_thresh' then the writeback threads are woken to
1202 * perform some writeout.
1203 */
1204 static void balance_dirty_pages(struct address_space *mapping,
1205 unsigned long pages_dirtied)
1206 {
1207 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1208 unsigned long bdi_reclaimable;
1209 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
1210 unsigned long bdi_dirty;
1211 unsigned long freerun;
1212 unsigned long background_thresh;
1213 unsigned long dirty_thresh;
1214 unsigned long bdi_thresh;
1215 long period;
1216 long pause;
1217 long max_pause;
1218 long min_pause;
1219 int nr_dirtied_pause;
1220 bool dirty_exceeded = false;
1221 unsigned long task_ratelimit;
1222 unsigned long dirty_ratelimit;
1223 unsigned long pos_ratio;
1224 struct backing_dev_info *bdi = mapping->backing_dev_info;
1225 unsigned long start_time = jiffies;
1226
1227 for (;;) {
1228 unsigned long now = jiffies;
1229
1230 /*
1231 * Unstable writes are a feature of certain networked
1232 * filesystems (i.e. NFS) in which data may have been
1233 * written to the server's write cache, but has not yet
1234 * been flushed to permanent storage.
1235 */
1236 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1237 global_page_state(NR_UNSTABLE_NFS);
1238 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1239
1240 global_dirty_limits(&background_thresh, &dirty_thresh);
1241
1242 /*
1243 * Throttle it only when the background writeback cannot
1244 * catch-up. This avoids (excessively) small writeouts
1245 * when the bdi limits are ramping up.
1246 */
1247 freerun = dirty_freerun_ceiling(dirty_thresh,
1248 background_thresh);
1249 if (nr_dirty <= freerun) {
1250 current->dirty_paused_when = now;
1251 current->nr_dirtied = 0;
1252 current->nr_dirtied_pause =
1253 dirty_poll_interval(nr_dirty, dirty_thresh);
1254 break;
1255 }
1256
1257 if (unlikely(!writeback_in_progress(bdi)))
1258 bdi_start_background_writeback(bdi);
1259
1260 /*
1261 * bdi_thresh is not treated as some limiting factor as
1262 * dirty_thresh, due to reasons
1263 * - in JBOD setup, bdi_thresh can fluctuate a lot
1264 * - in a system with HDD and USB key, the USB key may somehow
1265 * go into state (bdi_dirty >> bdi_thresh) either because
1266 * bdi_dirty starts high, or because bdi_thresh drops low.
1267 * In this case we don't want to hard throttle the USB key
1268 * dirtiers for 100 seconds until bdi_dirty drops under
1269 * bdi_thresh. Instead the auxiliary bdi control line in
1270 * bdi_position_ratio() will let the dirtier task progress
1271 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1272 */
1273 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1274
1275 /*
1276 * In order to avoid the stacked BDI deadlock we need
1277 * to ensure we accurately count the 'dirty' pages when
1278 * the threshold is low.
1279 *
1280 * Otherwise it would be possible to get thresh+n pages
1281 * reported dirty, even though there are thresh-m pages
1282 * actually dirty; with m+n sitting in the percpu
1283 * deltas.
1284 */
1285 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1286 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1287 bdi_dirty = bdi_reclaimable +
1288 bdi_stat_sum(bdi, BDI_WRITEBACK);
1289 } else {
1290 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1291 bdi_dirty = bdi_reclaimable +
1292 bdi_stat(bdi, BDI_WRITEBACK);
1293 }
1294
1295 dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1296 (nr_dirty > dirty_thresh);
1297 if (dirty_exceeded && !bdi->dirty_exceeded)
1298 bdi->dirty_exceeded = 1;
1299
1300 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1301 nr_dirty, bdi_thresh, bdi_dirty,
1302 start_time);
1303
1304 dirty_ratelimit = bdi->dirty_ratelimit;
1305 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1306 background_thresh, nr_dirty,
1307 bdi_thresh, bdi_dirty);
1308 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1309 RATELIMIT_CALC_SHIFT;
1310 max_pause = bdi_max_pause(bdi, bdi_dirty);
1311 min_pause = bdi_min_pause(bdi, max_pause,
1312 task_ratelimit, dirty_ratelimit,
1313 &nr_dirtied_pause);
1314
1315 if (unlikely(task_ratelimit == 0)) {
1316 period = max_pause;
1317 pause = max_pause;
1318 goto pause;
1319 }
1320 period = HZ * pages_dirtied / task_ratelimit;
1321 pause = period;
1322 if (current->dirty_paused_when)
1323 pause -= now - current->dirty_paused_when;
1324 /*
1325 * For less than 1s think time (ext3/4 may block the dirtier
1326 * for up to 800ms from time to time on 1-HDD; so does xfs,
1327 * however at much less frequency), try to compensate it in
1328 * future periods by updating the virtual time; otherwise just
1329 * do a reset, as it may be a light dirtier.
1330 */
1331 if (pause < min_pause) {
1332 trace_balance_dirty_pages(bdi,
1333 dirty_thresh,
1334 background_thresh,
1335 nr_dirty,
1336 bdi_thresh,
1337 bdi_dirty,
1338 dirty_ratelimit,
1339 task_ratelimit,
1340 pages_dirtied,
1341 period,
1342 min(pause, 0L),
1343 start_time);
1344 if (pause < -HZ) {
1345 current->dirty_paused_when = now;
1346 current->nr_dirtied = 0;
1347 } else if (period) {
1348 current->dirty_paused_when += period;
1349 current->nr_dirtied = 0;
1350 } else if (current->nr_dirtied_pause <= pages_dirtied)
1351 current->nr_dirtied_pause += pages_dirtied;
1352 break;
1353 }
1354 if (unlikely(pause > max_pause)) {
1355 /* for occasional dropped task_ratelimit */
1356 now += min(pause - max_pause, max_pause);
1357 pause = max_pause;
1358 }
1359
1360 pause:
1361 trace_balance_dirty_pages(bdi,
1362 dirty_thresh,
1363 background_thresh,
1364 nr_dirty,
1365 bdi_thresh,
1366 bdi_dirty,
1367 dirty_ratelimit,
1368 task_ratelimit,
1369 pages_dirtied,
1370 period,
1371 pause,
1372 start_time);
1373 __set_current_state(TASK_KILLABLE);
1374 io_schedule_timeout(pause);
1375
1376 current->dirty_paused_when = now + pause;
1377 current->nr_dirtied = 0;
1378 current->nr_dirtied_pause = nr_dirtied_pause;
1379
1380 /*
1381 * This is typically equal to (nr_dirty < dirty_thresh) and can
1382 * also keep "1000+ dd on a slow USB stick" under control.
1383 */
1384 if (task_ratelimit)
1385 break;
1386
1387 /*
1388 * In the case of an unresponding NFS server and the NFS dirty
1389 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1390 * to go through, so that tasks on them still remain responsive.
1391 *
1392 * In theory 1 page is enough to keep the comsumer-producer
1393 * pipe going: the flusher cleans 1 page => the task dirties 1
1394 * more page. However bdi_dirty has accounting errors. So use
1395 * the larger and more IO friendly bdi_stat_error.
1396 */
1397 if (bdi_dirty <= bdi_stat_error(bdi))
1398 break;
1399
1400 if (fatal_signal_pending(current))
1401 break;
1402 }
1403
1404 if (!dirty_exceeded && bdi->dirty_exceeded)
1405 bdi->dirty_exceeded = 0;
1406
1407 if (writeback_in_progress(bdi))
1408 return;
1409
1410 /*
1411 * In laptop mode, we wait until hitting the higher threshold before
1412 * starting background writeout, and then write out all the way down
1413 * to the lower threshold. So slow writers cause minimal disk activity.
1414 *
1415 * In normal mode, we start background writeout at the lower
1416 * background_thresh, to keep the amount of dirty memory low.
1417 */
1418 if (laptop_mode)
1419 return;
1420
1421 if (nr_reclaimable > background_thresh)
1422 bdi_start_background_writeback(bdi);
1423 }
1424
1425 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1426 {
1427 if (set_page_dirty(page) || page_mkwrite) {
1428 struct address_space *mapping = page_mapping(page);
1429
1430 if (mapping)
1431 balance_dirty_pages_ratelimited(mapping);
1432 }
1433 }
1434
1435 static DEFINE_PER_CPU(int, bdp_ratelimits);
1436
1437 /*
1438 * Normal tasks are throttled by
1439 * loop {
1440 * dirty tsk->nr_dirtied_pause pages;
1441 * take a snap in balance_dirty_pages();
1442 * }
1443 * However there is a worst case. If every task exit immediately when dirtied
1444 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1445 * called to throttle the page dirties. The solution is to save the not yet
1446 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1447 * randomly into the running tasks. This works well for the above worst case,
1448 * as the new task will pick up and accumulate the old task's leaked dirty
1449 * count and eventually get throttled.
1450 */
1451 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1452
1453 /**
1454 * balance_dirty_pages_ratelimited - balance dirty memory state
1455 * @mapping: address_space which was dirtied
1456 *
1457 * Processes which are dirtying memory should call in here once for each page
1458 * which was newly dirtied. The function will periodically check the system's
1459 * dirty state and will initiate writeback if needed.
1460 *
1461 * On really big machines, get_writeback_state is expensive, so try to avoid
1462 * calling it too often (ratelimiting). But once we're over the dirty memory
1463 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1464 * from overshooting the limit by (ratelimit_pages) each.
1465 */
1466 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1467 {
1468 struct backing_dev_info *bdi = mapping->backing_dev_info;
1469 int ratelimit;
1470 int *p;
1471
1472 if (!bdi_cap_account_dirty(bdi))
1473 return;
1474
1475 ratelimit = current->nr_dirtied_pause;
1476 if (bdi->dirty_exceeded)
1477 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1478
1479 preempt_disable();
1480 /*
1481 * This prevents one CPU to accumulate too many dirtied pages without
1482 * calling into balance_dirty_pages(), which can happen when there are
1483 * 1000+ tasks, all of them start dirtying pages at exactly the same
1484 * time, hence all honoured too large initial task->nr_dirtied_pause.
1485 */
1486 p = &__get_cpu_var(bdp_ratelimits);
1487 if (unlikely(current->nr_dirtied >= ratelimit))
1488 *p = 0;
1489 else if (unlikely(*p >= ratelimit_pages)) {
1490 *p = 0;
1491 ratelimit = 0;
1492 }
1493 /*
1494 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1495 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1496 * the dirty throttling and livelock other long-run dirtiers.
1497 */
1498 p = &__get_cpu_var(dirty_throttle_leaks);
1499 if (*p > 0 && current->nr_dirtied < ratelimit) {
1500 unsigned long nr_pages_dirtied;
1501 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1502 *p -= nr_pages_dirtied;
1503 current->nr_dirtied += nr_pages_dirtied;
1504 }
1505 preempt_enable();
1506
1507 if (unlikely(current->nr_dirtied >= ratelimit))
1508 balance_dirty_pages(mapping, current->nr_dirtied);
1509 }
1510 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1511
1512 void throttle_vm_writeout(gfp_t gfp_mask)
1513 {
1514 unsigned long background_thresh;
1515 unsigned long dirty_thresh;
1516
1517 for ( ; ; ) {
1518 global_dirty_limits(&background_thresh, &dirty_thresh);
1519 dirty_thresh = hard_dirty_limit(dirty_thresh);
1520
1521 /*
1522 * Boost the allowable dirty threshold a bit for page
1523 * allocators so they don't get DoS'ed by heavy writers
1524 */
1525 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1526
1527 if (global_page_state(NR_UNSTABLE_NFS) +
1528 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1529 break;
1530 congestion_wait(BLK_RW_ASYNC, HZ/10);
1531
1532 /*
1533 * The caller might hold locks which can prevent IO completion
1534 * or progress in the filesystem. So we cannot just sit here
1535 * waiting for IO to complete.
1536 */
1537 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1538 break;
1539 }
1540 }
1541
1542 /*
1543 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1544 */
1545 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1546 void __user *buffer, size_t *length, loff_t *ppos)
1547 {
1548 proc_dointvec(table, write, buffer, length, ppos);
1549 return 0;
1550 }
1551
1552 #ifdef CONFIG_BLOCK
1553 void laptop_mode_timer_fn(unsigned long data)
1554 {
1555 struct request_queue *q = (struct request_queue *)data;
1556 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1557 global_page_state(NR_UNSTABLE_NFS);
1558
1559 /*
1560 * We want to write everything out, not just down to the dirty
1561 * threshold
1562 */
1563 if (bdi_has_dirty_io(&q->backing_dev_info))
1564 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1565 WB_REASON_LAPTOP_TIMER);
1566 }
1567
1568 /*
1569 * We've spun up the disk and we're in laptop mode: schedule writeback
1570 * of all dirty data a few seconds from now. If the flush is already scheduled
1571 * then push it back - the user is still using the disk.
1572 */
1573 void laptop_io_completion(struct backing_dev_info *info)
1574 {
1575 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1576 }
1577
1578 /*
1579 * We're in laptop mode and we've just synced. The sync's writes will have
1580 * caused another writeback to be scheduled by laptop_io_completion.
1581 * Nothing needs to be written back anymore, so we unschedule the writeback.
1582 */
1583 void laptop_sync_completion(void)
1584 {
1585 struct backing_dev_info *bdi;
1586
1587 rcu_read_lock();
1588
1589 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1590 del_timer(&bdi->laptop_mode_wb_timer);
1591
1592 rcu_read_unlock();
1593 }
1594 #endif
1595
1596 /*
1597 * If ratelimit_pages is too high then we can get into dirty-data overload
1598 * if a large number of processes all perform writes at the same time.
1599 * If it is too low then SMP machines will call the (expensive)
1600 * get_writeback_state too often.
1601 *
1602 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1603 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1604 * thresholds.
1605 */
1606
1607 void writeback_set_ratelimit(void)
1608 {
1609 unsigned long background_thresh;
1610 unsigned long dirty_thresh;
1611 global_dirty_limits(&background_thresh, &dirty_thresh);
1612 global_dirty_limit = dirty_thresh;
1613 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1614 if (ratelimit_pages < 16)
1615 ratelimit_pages = 16;
1616 }
1617
1618 static int __cpuinit
1619 ratelimit_handler(struct notifier_block *self, unsigned long action,
1620 void *hcpu)
1621 {
1622
1623 switch (action & ~CPU_TASKS_FROZEN) {
1624 case CPU_ONLINE:
1625 case CPU_DEAD:
1626 writeback_set_ratelimit();
1627 return NOTIFY_OK;
1628 default:
1629 return NOTIFY_DONE;
1630 }
1631 }
1632
1633 static struct notifier_block __cpuinitdata ratelimit_nb = {
1634 .notifier_call = ratelimit_handler,
1635 .next = NULL,
1636 };
1637
1638 /*
1639 * Called early on to tune the page writeback dirty limits.
1640 *
1641 * We used to scale dirty pages according to how total memory
1642 * related to pages that could be allocated for buffers (by
1643 * comparing nr_free_buffer_pages() to vm_total_pages.
1644 *
1645 * However, that was when we used "dirty_ratio" to scale with
1646 * all memory, and we don't do that any more. "dirty_ratio"
1647 * is now applied to total non-HIGHPAGE memory (by subtracting
1648 * totalhigh_pages from vm_total_pages), and as such we can't
1649 * get into the old insane situation any more where we had
1650 * large amounts of dirty pages compared to a small amount of
1651 * non-HIGHMEM memory.
1652 *
1653 * But we might still want to scale the dirty_ratio by how
1654 * much memory the box has..
1655 */
1656 void __init page_writeback_init(void)
1657 {
1658 writeback_set_ratelimit();
1659 register_cpu_notifier(&ratelimit_nb);
1660
1661 fprop_global_init(&writeout_completions);
1662 }
1663
1664 /**
1665 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1666 * @mapping: address space structure to write
1667 * @start: starting page index
1668 * @end: ending page index (inclusive)
1669 *
1670 * This function scans the page range from @start to @end (inclusive) and tags
1671 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1672 * that write_cache_pages (or whoever calls this function) will then use
1673 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1674 * used to avoid livelocking of writeback by a process steadily creating new
1675 * dirty pages in the file (thus it is important for this function to be quick
1676 * so that it can tag pages faster than a dirtying process can create them).
1677 */
1678 /*
1679 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1680 */
1681 void tag_pages_for_writeback(struct address_space *mapping,
1682 pgoff_t start, pgoff_t end)
1683 {
1684 #define WRITEBACK_TAG_BATCH 4096
1685 unsigned long tagged;
1686
1687 do {
1688 spin_lock_irq(&mapping->tree_lock);
1689 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1690 &start, end, WRITEBACK_TAG_BATCH,
1691 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1692 spin_unlock_irq(&mapping->tree_lock);
1693 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1694 cond_resched();
1695 /* We check 'start' to handle wrapping when end == ~0UL */
1696 } while (tagged >= WRITEBACK_TAG_BATCH && start);
1697 }
1698 EXPORT_SYMBOL(tag_pages_for_writeback);
1699
1700 /**
1701 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1702 * @mapping: address space structure to write
1703 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1704 * @writepage: function called for each page
1705 * @data: data passed to writepage function
1706 *
1707 * If a page is already under I/O, write_cache_pages() skips it, even
1708 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1709 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1710 * and msync() need to guarantee that all the data which was dirty at the time
1711 * the call was made get new I/O started against them. If wbc->sync_mode is
1712 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1713 * existing IO to complete.
1714 *
1715 * To avoid livelocks (when other process dirties new pages), we first tag
1716 * pages which should be written back with TOWRITE tag and only then start
1717 * writing them. For data-integrity sync we have to be careful so that we do
1718 * not miss some pages (e.g., because some other process has cleared TOWRITE
1719 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1720 * by the process clearing the DIRTY tag (and submitting the page for IO).
1721 */
1722 int write_cache_pages(struct address_space *mapping,
1723 struct writeback_control *wbc, writepage_t writepage,
1724 void *data)
1725 {
1726 int ret = 0;
1727 int done = 0;
1728 struct pagevec pvec;
1729 int nr_pages;
1730 pgoff_t uninitialized_var(writeback_index);
1731 pgoff_t index;
1732 pgoff_t end; /* Inclusive */
1733 pgoff_t done_index;
1734 int cycled;
1735 int range_whole = 0;
1736 int tag;
1737
1738 pagevec_init(&pvec, 0);
1739 if (wbc->range_cyclic) {
1740 writeback_index = mapping->writeback_index; /* prev offset */
1741 index = writeback_index;
1742 if (index == 0)
1743 cycled = 1;
1744 else
1745 cycled = 0;
1746 end = -1;
1747 } else {
1748 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1749 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1750 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1751 range_whole = 1;
1752 cycled = 1; /* ignore range_cyclic tests */
1753 }
1754 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1755 tag = PAGECACHE_TAG_TOWRITE;
1756 else
1757 tag = PAGECACHE_TAG_DIRTY;
1758 retry:
1759 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1760 tag_pages_for_writeback(mapping, index, end);
1761 done_index = index;
1762 while (!done && (index <= end)) {
1763 int i;
1764
1765 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1766 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1767 if (nr_pages == 0)
1768 break;
1769
1770 for (i = 0; i < nr_pages; i++) {
1771 struct page *page = pvec.pages[i];
1772
1773 /*
1774 * At this point, the page may be truncated or
1775 * invalidated (changing page->mapping to NULL), or
1776 * even swizzled back from swapper_space to tmpfs file
1777 * mapping. However, page->index will not change
1778 * because we have a reference on the page.
1779 */
1780 if (page->index > end) {
1781 /*
1782 * can't be range_cyclic (1st pass) because
1783 * end == -1 in that case.
1784 */
1785 done = 1;
1786 break;
1787 }
1788
1789 done_index = page->index;
1790
1791 lock_page(page);
1792
1793 /*
1794 * Page truncated or invalidated. We can freely skip it
1795 * then, even for data integrity operations: the page
1796 * has disappeared concurrently, so there could be no
1797 * real expectation of this data interity operation
1798 * even if there is now a new, dirty page at the same
1799 * pagecache address.
1800 */
1801 if (unlikely(page->mapping != mapping)) {
1802 continue_unlock:
1803 unlock_page(page);
1804 continue;
1805 }
1806
1807 if (!PageDirty(page)) {
1808 /* someone wrote it for us */
1809 goto continue_unlock;
1810 }
1811
1812 if (PageWriteback(page)) {
1813 if (wbc->sync_mode != WB_SYNC_NONE)
1814 wait_on_page_writeback(page);
1815 else
1816 goto continue_unlock;
1817 }
1818
1819 BUG_ON(PageWriteback(page));
1820 if (!clear_page_dirty_for_io(page))
1821 goto continue_unlock;
1822
1823 trace_wbc_writepage(wbc, mapping->backing_dev_info);
1824 ret = (*writepage)(page, wbc, data);
1825 if (unlikely(ret)) {
1826 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1827 unlock_page(page);
1828 ret = 0;
1829 } else {
1830 /*
1831 * done_index is set past this page,
1832 * so media errors will not choke
1833 * background writeout for the entire
1834 * file. This has consequences for
1835 * range_cyclic semantics (ie. it may
1836 * not be suitable for data integrity
1837 * writeout).
1838 */
1839 done_index = page->index + 1;
1840 done = 1;
1841 break;
1842 }
1843 }
1844
1845 /*
1846 * We stop writing back only if we are not doing
1847 * integrity sync. In case of integrity sync we have to
1848 * keep going until we have written all the pages
1849 * we tagged for writeback prior to entering this loop.
1850 */
1851 if (--wbc->nr_to_write <= 0 &&
1852 wbc->sync_mode == WB_SYNC_NONE) {
1853 done = 1;
1854 break;
1855 }
1856 }
1857 pagevec_release(&pvec);
1858 cond_resched();
1859 }
1860 if (!cycled && !done) {
1861 /*
1862 * range_cyclic:
1863 * We hit the last page and there is more work to be done: wrap
1864 * back to the start of the file
1865 */
1866 cycled = 1;
1867 index = 0;
1868 end = writeback_index - 1;
1869 goto retry;
1870 }
1871 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1872 mapping->writeback_index = done_index;
1873
1874 return ret;
1875 }
1876 EXPORT_SYMBOL(write_cache_pages);
1877
1878 /*
1879 * Function used by generic_writepages to call the real writepage
1880 * function and set the mapping flags on error
1881 */
1882 static int __writepage(struct page *page, struct writeback_control *wbc,
1883 void *data)
1884 {
1885 struct address_space *mapping = data;
1886 int ret = mapping->a_ops->writepage(page, wbc);
1887 mapping_set_error(mapping, ret);
1888 return ret;
1889 }
1890
1891 /**
1892 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1893 * @mapping: address space structure to write
1894 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1895 *
1896 * This is a library function, which implements the writepages()
1897 * address_space_operation.
1898 */
1899 int generic_writepages(struct address_space *mapping,
1900 struct writeback_control *wbc)
1901 {
1902 struct blk_plug plug;
1903 int ret;
1904
1905 /* deal with chardevs and other special file */
1906 if (!mapping->a_ops->writepage)
1907 return 0;
1908
1909 blk_start_plug(&plug);
1910 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1911 blk_finish_plug(&plug);
1912 return ret;
1913 }
1914
1915 EXPORT_SYMBOL(generic_writepages);
1916
1917 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1918 {
1919 int ret;
1920
1921 if (wbc->nr_to_write <= 0)
1922 return 0;
1923 if (mapping->a_ops->writepages)
1924 ret = mapping->a_ops->writepages(mapping, wbc);
1925 else
1926 ret = generic_writepages(mapping, wbc);
1927 return ret;
1928 }
1929
1930 /**
1931 * write_one_page - write out a single page and optionally wait on I/O
1932 * @page: the page to write
1933 * @wait: if true, wait on writeout
1934 *
1935 * The page must be locked by the caller and will be unlocked upon return.
1936 *
1937 * write_one_page() returns a negative error code if I/O failed.
1938 */
1939 int write_one_page(struct page *page, int wait)
1940 {
1941 struct address_space *mapping = page->mapping;
1942 int ret = 0;
1943 struct writeback_control wbc = {
1944 .sync_mode = WB_SYNC_ALL,
1945 .nr_to_write = 1,
1946 };
1947
1948 BUG_ON(!PageLocked(page));
1949
1950 if (wait)
1951 wait_on_page_writeback(page);
1952
1953 if (clear_page_dirty_for_io(page)) {
1954 page_cache_get(page);
1955 ret = mapping->a_ops->writepage(page, &wbc);
1956 if (ret == 0 && wait) {
1957 wait_on_page_writeback(page);
1958 if (PageError(page))
1959 ret = -EIO;
1960 }
1961 page_cache_release(page);
1962 } else {
1963 unlock_page(page);
1964 }
1965 return ret;
1966 }
1967 EXPORT_SYMBOL(write_one_page);
1968
1969 /*
1970 * For address_spaces which do not use buffers nor write back.
1971 */
1972 int __set_page_dirty_no_writeback(struct page *page)
1973 {
1974 if (!PageDirty(page))
1975 return !TestSetPageDirty(page);
1976 return 0;
1977 }
1978
1979 /*
1980 * Helper function for set_page_dirty family.
1981 * NOTE: This relies on being atomic wrt interrupts.
1982 */
1983 void account_page_dirtied(struct page *page, struct address_space *mapping)
1984 {
1985 trace_writeback_dirty_page(page, mapping);
1986
1987 if (mapping_cap_account_dirty(mapping)) {
1988 __inc_zone_page_state(page, NR_FILE_DIRTY);
1989 __inc_zone_page_state(page, NR_DIRTIED);
1990 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1991 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1992 task_io_account_write(PAGE_CACHE_SIZE);
1993 current->nr_dirtied++;
1994 this_cpu_inc(bdp_ratelimits);
1995 }
1996 }
1997 EXPORT_SYMBOL(account_page_dirtied);
1998
1999 /*
2000 * Helper function for set_page_writeback family.
2001 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
2002 * wrt interrupts.
2003 */
2004 void account_page_writeback(struct page *page)
2005 {
2006 inc_zone_page_state(page, NR_WRITEBACK);
2007 }
2008 EXPORT_SYMBOL(account_page_writeback);
2009
2010 /*
2011 * For address_spaces which do not use buffers. Just tag the page as dirty in
2012 * its radix tree.
2013 *
2014 * This is also used when a single buffer is being dirtied: we want to set the
2015 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2016 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2017 *
2018 * Most callers have locked the page, which pins the address_space in memory.
2019 * But zap_pte_range() does not lock the page, however in that case the
2020 * mapping is pinned by the vma's ->vm_file reference.
2021 *
2022 * We take care to handle the case where the page was truncated from the
2023 * mapping by re-checking page_mapping() inside tree_lock.
2024 */
2025 int __set_page_dirty_nobuffers(struct page *page)
2026 {
2027 if (!TestSetPageDirty(page)) {
2028 struct address_space *mapping = page_mapping(page);
2029 struct address_space *mapping2;
2030 unsigned long flags;
2031
2032 if (!mapping)
2033 return 1;
2034
2035 spin_lock_irqsave(&mapping->tree_lock, flags);
2036 mapping2 = page_mapping(page);
2037 if (mapping2) { /* Race with truncate? */
2038 BUG_ON(mapping2 != mapping);
2039 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2040 account_page_dirtied(page, mapping);
2041 radix_tree_tag_set(&mapping->page_tree,
2042 page_index(page), PAGECACHE_TAG_DIRTY);
2043 }
2044 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2045 if (mapping->host) {
2046 /* !PageAnon && !swapper_space */
2047 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2048 }
2049 return 1;
2050 }
2051 return 0;
2052 }
2053 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2054
2055 /*
2056 * Call this whenever redirtying a page, to de-account the dirty counters
2057 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2058 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2059 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2060 * control.
2061 */
2062 void account_page_redirty(struct page *page)
2063 {
2064 struct address_space *mapping = page->mapping;
2065 if (mapping && mapping_cap_account_dirty(mapping)) {
2066 current->nr_dirtied--;
2067 dec_zone_page_state(page, NR_DIRTIED);
2068 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2069 }
2070 }
2071 EXPORT_SYMBOL(account_page_redirty);
2072
2073 /*
2074 * When a writepage implementation decides that it doesn't want to write this
2075 * page for some reason, it should redirty the locked page via
2076 * redirty_page_for_writepage() and it should then unlock the page and return 0
2077 */
2078 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2079 {
2080 wbc->pages_skipped++;
2081 account_page_redirty(page);
2082 return __set_page_dirty_nobuffers(page);
2083 }
2084 EXPORT_SYMBOL(redirty_page_for_writepage);
2085
2086 /*
2087 * Dirty a page.
2088 *
2089 * For pages with a mapping this should be done under the page lock
2090 * for the benefit of asynchronous memory errors who prefer a consistent
2091 * dirty state. This rule can be broken in some special cases,
2092 * but should be better not to.
2093 *
2094 * If the mapping doesn't provide a set_page_dirty a_op, then
2095 * just fall through and assume that it wants buffer_heads.
2096 */
2097 int set_page_dirty(struct page *page)
2098 {
2099 struct address_space *mapping = page_mapping(page);
2100
2101 if (likely(mapping)) {
2102 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2103 /*
2104 * readahead/lru_deactivate_page could remain
2105 * PG_readahead/PG_reclaim due to race with end_page_writeback
2106 * About readahead, if the page is written, the flags would be
2107 * reset. So no problem.
2108 * About lru_deactivate_page, if the page is redirty, the flag
2109 * will be reset. So no problem. but if the page is used by readahead
2110 * it will confuse readahead and make it restart the size rampup
2111 * process. But it's a trivial problem.
2112 */
2113 ClearPageReclaim(page);
2114 #ifdef CONFIG_BLOCK
2115 if (!spd)
2116 spd = __set_page_dirty_buffers;
2117 #endif
2118 return (*spd)(page);
2119 }
2120 if (!PageDirty(page)) {
2121 if (!TestSetPageDirty(page))
2122 return 1;
2123 }
2124 return 0;
2125 }
2126 EXPORT_SYMBOL(set_page_dirty);
2127
2128 /*
2129 * set_page_dirty() is racy if the caller has no reference against
2130 * page->mapping->host, and if the page is unlocked. This is because another
2131 * CPU could truncate the page off the mapping and then free the mapping.
2132 *
2133 * Usually, the page _is_ locked, or the caller is a user-space process which
2134 * holds a reference on the inode by having an open file.
2135 *
2136 * In other cases, the page should be locked before running set_page_dirty().
2137 */
2138 int set_page_dirty_lock(struct page *page)
2139 {
2140 int ret;
2141
2142 lock_page(page);
2143 ret = set_page_dirty(page);
2144 unlock_page(page);
2145 return ret;
2146 }
2147 EXPORT_SYMBOL(set_page_dirty_lock);
2148
2149 /*
2150 * Clear a page's dirty flag, while caring for dirty memory accounting.
2151 * Returns true if the page was previously dirty.
2152 *
2153 * This is for preparing to put the page under writeout. We leave the page
2154 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2155 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2156 * implementation will run either set_page_writeback() or set_page_dirty(),
2157 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2158 * back into sync.
2159 *
2160 * This incoherency between the page's dirty flag and radix-tree tag is
2161 * unfortunate, but it only exists while the page is locked.
2162 */
2163 int clear_page_dirty_for_io(struct page *page)
2164 {
2165 struct address_space *mapping = page_mapping(page);
2166
2167 BUG_ON(!PageLocked(page));
2168
2169 if (mapping && mapping_cap_account_dirty(mapping)) {
2170 /*
2171 * Yes, Virginia, this is indeed insane.
2172 *
2173 * We use this sequence to make sure that
2174 * (a) we account for dirty stats properly
2175 * (b) we tell the low-level filesystem to
2176 * mark the whole page dirty if it was
2177 * dirty in a pagetable. Only to then
2178 * (c) clean the page again and return 1 to
2179 * cause the writeback.
2180 *
2181 * This way we avoid all nasty races with the
2182 * dirty bit in multiple places and clearing
2183 * them concurrently from different threads.
2184 *
2185 * Note! Normally the "set_page_dirty(page)"
2186 * has no effect on the actual dirty bit - since
2187 * that will already usually be set. But we
2188 * need the side effects, and it can help us
2189 * avoid races.
2190 *
2191 * We basically use the page "master dirty bit"
2192 * as a serialization point for all the different
2193 * threads doing their things.
2194 */
2195 if (page_mkclean(page))
2196 set_page_dirty(page);
2197 /*
2198 * We carefully synchronise fault handlers against
2199 * installing a dirty pte and marking the page dirty
2200 * at this point. We do this by having them hold the
2201 * page lock at some point after installing their
2202 * pte, but before marking the page dirty.
2203 * Pages are always locked coming in here, so we get
2204 * the desired exclusion. See mm/memory.c:do_wp_page()
2205 * for more comments.
2206 */
2207 if (TestClearPageDirty(page)) {
2208 dec_zone_page_state(page, NR_FILE_DIRTY);
2209 dec_bdi_stat(mapping->backing_dev_info,
2210 BDI_RECLAIMABLE);
2211 return 1;
2212 }
2213 return 0;
2214 }
2215 return TestClearPageDirty(page);
2216 }
2217 EXPORT_SYMBOL(clear_page_dirty_for_io);
2218
2219 int test_clear_page_writeback(struct page *page)
2220 {
2221 struct address_space *mapping = page_mapping(page);
2222 int ret;
2223
2224 if (mapping) {
2225 struct backing_dev_info *bdi = mapping->backing_dev_info;
2226 unsigned long flags;
2227
2228 spin_lock_irqsave(&mapping->tree_lock, flags);
2229 ret = TestClearPageWriteback(page);
2230 if (ret) {
2231 radix_tree_tag_clear(&mapping->page_tree,
2232 page_index(page),
2233 PAGECACHE_TAG_WRITEBACK);
2234 if (bdi_cap_account_writeback(bdi)) {
2235 __dec_bdi_stat(bdi, BDI_WRITEBACK);
2236 __bdi_writeout_inc(bdi);
2237 }
2238 }
2239 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2240 } else {
2241 ret = TestClearPageWriteback(page);
2242 }
2243 if (ret) {
2244 dec_zone_page_state(page, NR_WRITEBACK);
2245 inc_zone_page_state(page, NR_WRITTEN);
2246 }
2247 return ret;
2248 }
2249
2250 int test_set_page_writeback(struct page *page)
2251 {
2252 struct address_space *mapping = page_mapping(page);
2253 int ret;
2254
2255 if (mapping) {
2256 struct backing_dev_info *bdi = mapping->backing_dev_info;
2257 unsigned long flags;
2258
2259 spin_lock_irqsave(&mapping->tree_lock, flags);
2260 ret = TestSetPageWriteback(page);
2261 if (!ret) {
2262 radix_tree_tag_set(&mapping->page_tree,
2263 page_index(page),
2264 PAGECACHE_TAG_WRITEBACK);
2265 if (bdi_cap_account_writeback(bdi))
2266 __inc_bdi_stat(bdi, BDI_WRITEBACK);
2267 }
2268 if (!PageDirty(page))
2269 radix_tree_tag_clear(&mapping->page_tree,
2270 page_index(page),
2271 PAGECACHE_TAG_DIRTY);
2272 radix_tree_tag_clear(&mapping->page_tree,
2273 page_index(page),
2274 PAGECACHE_TAG_TOWRITE);
2275 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2276 } else {
2277 ret = TestSetPageWriteback(page);
2278 }
2279 if (!ret)
2280 account_page_writeback(page);
2281 return ret;
2282
2283 }
2284 EXPORT_SYMBOL(test_set_page_writeback);
2285
2286 /*
2287 * Return true if any of the pages in the mapping are marked with the
2288 * passed tag.
2289 */
2290 int mapping_tagged(struct address_space *mapping, int tag)
2291 {
2292 return radix_tree_tagged(&mapping->page_tree, tag);
2293 }
2294 EXPORT_SYMBOL(mapping_tagged);
2295
2296 /**
2297 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2298 * @page: The page to wait on.
2299 *
2300 * This function determines if the given page is related to a backing device
2301 * that requires page contents to be held stable during writeback. If so, then
2302 * it will wait for any pending writeback to complete.
2303 */
2304 void wait_for_stable_page(struct page *page)
2305 {
2306 struct address_space *mapping = page_mapping(page);
2307 struct backing_dev_info *bdi = mapping->backing_dev_info;
2308
2309 if (!bdi_cap_stable_pages_required(bdi))
2310 return;
2311
2312 wait_on_page_writeback(page);
2313 }
2314 EXPORT_SYMBOL_GPL(wait_for_stable_page);