Merge tag 'v3.10.56' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 #include <linux/freezer.h>
36 #include <linux/ftrace.h>
37 #include <linux/ratelimit.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/oom.h>
41
42 int sysctl_panic_on_oom;
43 int sysctl_oom_kill_allocating_task;
44 int sysctl_oom_dump_tasks = 1;
45 static DEFINE_SPINLOCK(zone_scan_lock);
46
47 #ifdef CONFIG_NUMA
48 /**
49 * has_intersects_mems_allowed() - check task eligiblity for kill
50 * @start: task struct of which task to consider
51 * @mask: nodemask passed to page allocator for mempolicy ooms
52 *
53 * Task eligibility is determined by whether or not a candidate task, @tsk,
54 * shares the same mempolicy nodes as current if it is bound by such a policy
55 * and whether or not it has the same set of allowed cpuset nodes.
56 */
57 static bool has_intersects_mems_allowed(struct task_struct *start,
58 const nodemask_t *mask)
59 {
60 struct task_struct *tsk;
61 bool ret = false;
62
63 rcu_read_lock();
64 for_each_thread(start, tsk) {
65 if (mask) {
66 /*
67 * If this is a mempolicy constrained oom, tsk's
68 * cpuset is irrelevant. Only return true if its
69 * mempolicy intersects current, otherwise it may be
70 * needlessly killed.
71 */
72 ret = mempolicy_nodemask_intersects(tsk, mask);
73 } else {
74 /*
75 * This is not a mempolicy constrained oom, so only
76 * check the mems of tsk's cpuset.
77 */
78 ret = cpuset_mems_allowed_intersects(current, tsk);
79 }
80 if (ret)
81 break;
82 }
83 rcu_read_unlock();
84
85 return ret;
86 }
87 #else
88 static bool has_intersects_mems_allowed(struct task_struct *tsk,
89 const nodemask_t *mask)
90 {
91 return true;
92 }
93 #endif /* CONFIG_NUMA */
94
95 /*
96 * The process p may have detached its own ->mm while exiting or through
97 * use_mm(), but one or more of its subthreads may still have a valid
98 * pointer. Return p, or any of its subthreads with a valid ->mm, with
99 * task_lock() held.
100 */
101 struct task_struct *find_lock_task_mm(struct task_struct *p)
102 {
103 struct task_struct *t;
104
105 rcu_read_lock();
106
107 for_each_thread(p, t) {
108 task_lock(t);
109 if (likely(t->mm))
110 goto found;
111 task_unlock(t);
112 }
113 t = NULL;
114 found:
115 rcu_read_unlock();
116
117 return t;
118 }
119
120 /* return true if the task is not adequate as candidate victim task. */
121 static bool oom_unkillable_task(struct task_struct *p,
122 const struct mem_cgroup *memcg, const nodemask_t *nodemask)
123 {
124 if (is_global_init(p))
125 return true;
126 if (p->flags & PF_KTHREAD)
127 return true;
128
129 /* When mem_cgroup_out_of_memory() and p is not member of the group */
130 if (memcg && !task_in_mem_cgroup(p, memcg))
131 return true;
132
133 /* p may not have freeable memory in nodemask */
134 if (!has_intersects_mems_allowed(p, nodemask))
135 return true;
136
137 return false;
138 }
139
140 /**
141 * oom_badness - heuristic function to determine which candidate task to kill
142 * @p: task struct of which task we should calculate
143 * @totalpages: total present RAM allowed for page allocation
144 *
145 * The heuristic for determining which task to kill is made to be as simple and
146 * predictable as possible. The goal is to return the highest value for the
147 * task consuming the most memory to avoid subsequent oom failures.
148 */
149 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
150 const nodemask_t *nodemask, unsigned long totalpages)
151 {
152 long points;
153 long adj;
154
155 if (oom_unkillable_task(p, memcg, nodemask))
156 return 0;
157
158 p = find_lock_task_mm(p);
159 if (!p)
160 return 0;
161
162 adj = (long)p->signal->oom_score_adj;
163 if (adj == OOM_SCORE_ADJ_MIN) {
164 task_unlock(p);
165 return 0;
166 }
167
168 /*
169 * The baseline for the badness score is the proportion of RAM that each
170 * task's rss, pagetable and swap space use.
171 */
172 points = get_mm_rss(p->mm) + p->mm->nr_ptes +
173 get_mm_counter(p->mm, MM_SWAPENTS);
174 task_unlock(p);
175
176 /*
177 * Root processes get 3% bonus, just like the __vm_enough_memory()
178 * implementation used by LSMs.
179 */
180 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
181 points -= (points * 3) / 100;
182
183 /* Normalize to oom_score_adj units */
184 adj *= totalpages / 1000;
185 points += adj;
186
187 /*
188 * Never return 0 for an eligible task regardless of the root bonus and
189 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
190 */
191 return points > 0 ? points : 1;
192 }
193
194 /*
195 * Determine the type of allocation constraint.
196 */
197 #ifdef CONFIG_NUMA
198 static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
199 gfp_t gfp_mask, nodemask_t *nodemask,
200 unsigned long *totalpages)
201 {
202 struct zone *zone;
203 struct zoneref *z;
204 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
205 bool cpuset_limited = false;
206 int nid;
207
208 /* Default to all available memory */
209 *totalpages = totalram_pages + total_swap_pages;
210
211 if (!zonelist)
212 return CONSTRAINT_NONE;
213 /*
214 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
215 * to kill current.We have to random task kill in this case.
216 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
217 */
218 if (gfp_mask & __GFP_THISNODE)
219 return CONSTRAINT_NONE;
220
221 /*
222 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
223 * the page allocator means a mempolicy is in effect. Cpuset policy
224 * is enforced in get_page_from_freelist().
225 */
226 if (nodemask && !nodes_subset(node_states[N_MEMORY], *nodemask)) {
227 *totalpages = total_swap_pages;
228 for_each_node_mask(nid, *nodemask)
229 *totalpages += node_spanned_pages(nid);
230 return CONSTRAINT_MEMORY_POLICY;
231 }
232
233 /* Check this allocation failure is caused by cpuset's wall function */
234 for_each_zone_zonelist_nodemask(zone, z, zonelist,
235 high_zoneidx, nodemask)
236 if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
237 cpuset_limited = true;
238
239 if (cpuset_limited) {
240 *totalpages = total_swap_pages;
241 for_each_node_mask(nid, cpuset_current_mems_allowed)
242 *totalpages += node_spanned_pages(nid);
243 return CONSTRAINT_CPUSET;
244 }
245 return CONSTRAINT_NONE;
246 }
247 #else
248 static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
249 gfp_t gfp_mask, nodemask_t *nodemask,
250 unsigned long *totalpages)
251 {
252 *totalpages = totalram_pages + total_swap_pages;
253 return CONSTRAINT_NONE;
254 }
255 #endif
256
257 enum oom_scan_t oom_scan_process_thread(struct task_struct *task,
258 unsigned long totalpages, const nodemask_t *nodemask,
259 bool force_kill)
260 {
261 if (task->exit_state)
262 return OOM_SCAN_CONTINUE;
263 if (oom_unkillable_task(task, NULL, nodemask))
264 return OOM_SCAN_CONTINUE;
265
266 /*
267 * This task already has access to memory reserves and is being killed.
268 * Don't allow any other task to have access to the reserves.
269 */
270 if (test_tsk_thread_flag(task, TIF_MEMDIE)) {
271 if (unlikely(frozen(task)))
272 __thaw_task(task);
273 if (!force_kill)
274 return OOM_SCAN_ABORT;
275 }
276 if (!task->mm)
277 return OOM_SCAN_CONTINUE;
278
279 /*
280 * If task is allocating a lot of memory and has been marked to be
281 * killed first if it triggers an oom, then select it.
282 */
283 if (oom_task_origin(task))
284 return OOM_SCAN_SELECT;
285
286 if (task->flags & PF_EXITING && !force_kill) {
287 /*
288 * If this task is not being ptraced on exit, then wait for it
289 * to finish before killing some other task unnecessarily.
290 */
291 if (!(task->group_leader->ptrace & PT_TRACE_EXIT))
292 return OOM_SCAN_ABORT;
293 }
294 return OOM_SCAN_OK;
295 }
296
297 /*
298 * Simple selection loop. We chose the process with the highest
299 * number of 'points'.
300 *
301 * (not docbooked, we don't want this one cluttering up the manual)
302 */
303 static struct task_struct *select_bad_process(unsigned int *ppoints,
304 unsigned long totalpages, const nodemask_t *nodemask,
305 bool force_kill)
306 {
307 struct task_struct *g, *p;
308 struct task_struct *chosen = NULL;
309 unsigned long chosen_points = 0;
310
311 rcu_read_lock();
312 for_each_process_thread(g, p) {
313 unsigned int points;
314
315 switch (oom_scan_process_thread(p, totalpages, nodemask,
316 force_kill)) {
317 case OOM_SCAN_SELECT:
318 chosen = p;
319 chosen_points = ULONG_MAX;
320 /* fall through */
321 case OOM_SCAN_CONTINUE:
322 continue;
323 case OOM_SCAN_ABORT:
324 rcu_read_unlock();
325 return ERR_PTR(-1UL);
326 case OOM_SCAN_OK:
327 break;
328 };
329 points = oom_badness(p, NULL, nodemask, totalpages);
330 if (points > chosen_points) {
331 chosen = p;
332 chosen_points = points;
333 }
334 }
335 if (chosen)
336 get_task_struct(chosen);
337 rcu_read_unlock();
338
339 *ppoints = chosen_points * 1000 / totalpages;
340 return chosen;
341 }
342
343 /**
344 * dump_tasks - dump current memory state of all system tasks
345 * @memcg: current's memory controller, if constrained
346 * @nodemask: nodemask passed to page allocator for mempolicy ooms
347 *
348 * Dumps the current memory state of all eligible tasks. Tasks not in the same
349 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
350 * are not shown.
351 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
352 * swapents, oom_score_adj value, and name.
353 */
354 static void dump_tasks(const struct mem_cgroup *memcg, const nodemask_t *nodemask)
355 {
356 struct task_struct *p;
357 struct task_struct *task;
358
359 pr_info("[ pid ] uid tgid total_vm rss nr_ptes swapents oom_score_adj name\n");
360 rcu_read_lock();
361 for_each_process(p) {
362 if (oom_unkillable_task(p, memcg, nodemask))
363 continue;
364
365 task = find_lock_task_mm(p);
366 if (!task) {
367 /*
368 * This is a kthread or all of p's threads have already
369 * detached their mm's. There's no need to report
370 * them; they can't be oom killed anyway.
371 */
372 continue;
373 }
374
375 pr_info("[%5d] %5d %5d %8lu %8lu %7lu %8lu %5hd %s\n",
376 task->pid, from_kuid(&init_user_ns, task_uid(task)),
377 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
378 task->mm->nr_ptes,
379 get_mm_counter(task->mm, MM_SWAPENTS),
380 task->signal->oom_score_adj, task->comm);
381 task_unlock(task);
382 }
383 rcu_read_unlock();
384 }
385
386 static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
387 struct mem_cgroup *memcg, const nodemask_t *nodemask)
388 {
389 task_lock(current);
390 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
391 "oom_score_adj=%hd\n",
392 current->comm, gfp_mask, order,
393 current->signal->oom_score_adj);
394 cpuset_print_task_mems_allowed(current);
395 task_unlock(current);
396 dump_stack();
397 if (memcg)
398 mem_cgroup_print_oom_info(memcg, p);
399 else
400 show_mem(SHOW_MEM_FILTER_NODES);
401 if (sysctl_oom_dump_tasks)
402 dump_tasks(memcg, nodemask);
403 }
404
405 #define K(x) ((x) << (PAGE_SHIFT-10))
406 /*
407 * Must be called while holding a reference to p, which will be released upon
408 * returning.
409 */
410 void oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
411 unsigned int points, unsigned long totalpages,
412 struct mem_cgroup *memcg, nodemask_t *nodemask,
413 const char *message)
414 {
415 struct task_struct *victim = p;
416 struct task_struct *child;
417 struct task_struct *t;
418 struct mm_struct *mm;
419 unsigned int victim_points = 0;
420 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
421 DEFAULT_RATELIMIT_BURST);
422
423 /*
424 * If the task is already exiting, don't alarm the sysadmin or kill
425 * its children or threads, just set TIF_MEMDIE so it can die quickly
426 */
427 if (p->flags & PF_EXITING) {
428 set_tsk_thread_flag(p, TIF_MEMDIE);
429 put_task_struct(p);
430 return;
431 }
432
433 if (__ratelimit(&oom_rs))
434 dump_header(p, gfp_mask, order, memcg, nodemask);
435
436 task_lock(p);
437 pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n",
438 message, task_pid_nr(p), p->comm, points);
439 task_unlock(p);
440
441 /*
442 * If any of p's children has a different mm and is eligible for kill,
443 * the one with the highest oom_badness() score is sacrificed for its
444 * parent. This attempts to lose the minimal amount of work done while
445 * still freeing memory.
446 */
447 read_lock(&tasklist_lock);
448 for_each_thread(p, t) {
449 list_for_each_entry(child, &t->children, sibling) {
450 unsigned int child_points;
451
452 /*LCH add for race condition*/
453 if (p->flags & PF_EXITING) {
454 read_unlock(&tasklist_lock);
455 task_lock(p);
456 pr_err("%s: process %d (%s) is exiting\n", message, task_pid_nr(p), p->comm);
457 task_unlock(p);
458 set_tsk_thread_flag(p, TIF_MEMDIE);
459 put_task_struct(p);
460 return;
461 }
462
463 if (child->mm == p->mm)
464 continue;
465 /*
466 * oom_badness() returns 0 if the thread is unkillable
467 */
468 child_points = oom_badness(child, memcg, nodemask,
469 totalpages);
470 if (child_points > victim_points) {
471 put_task_struct(victim);
472 victim = child;
473 victim_points = child_points;
474 get_task_struct(victim);
475 }
476 }
477 }
478 read_unlock(&tasklist_lock);
479
480 p = find_lock_task_mm(victim);
481 if (!p) {
482 put_task_struct(victim);
483 return;
484 } else if (victim != p) {
485 get_task_struct(p);
486 put_task_struct(victim);
487 victim = p;
488 }
489
490 /* mm cannot safely be dereferenced after task_unlock(victim) */
491 mm = victim->mm;
492 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
493 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
494 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
495 K(get_mm_counter(victim->mm, MM_FILEPAGES)));
496 task_unlock(victim);
497
498 /*
499 * Kill all user processes sharing victim->mm in other thread groups, if
500 * any. They don't get access to memory reserves, though, to avoid
501 * depletion of all memory. This prevents mm->mmap_sem livelock when an
502 * oom killed thread cannot exit because it requires the semaphore and
503 * its contended by another thread trying to allocate memory itself.
504 * That thread will now get access to memory reserves since it has a
505 * pending fatal signal.
506 */
507 rcu_read_lock();
508 for_each_process(p)
509 if (p->mm == mm && !same_thread_group(p, victim) &&
510 !(p->flags & PF_KTHREAD)) {
511 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
512 continue;
513
514 task_lock(p); /* Protect ->comm from prctl() */
515 pr_err("Kill process %d (%s) sharing same memory\n",
516 task_pid_nr(p), p->comm);
517 task_unlock(p);
518 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
519 }
520 rcu_read_unlock();
521
522 set_tsk_thread_flag(victim, TIF_MEMDIE);
523 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
524 put_task_struct(victim);
525 }
526 #undef K
527
528 /*
529 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
530 */
531 void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
532 int order, const nodemask_t *nodemask)
533 {
534 if (likely(!sysctl_panic_on_oom))
535 return;
536 if (sysctl_panic_on_oom != 2) {
537 /*
538 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
539 * does not panic for cpuset, mempolicy, or memcg allocation
540 * failures.
541 */
542 if (constraint != CONSTRAINT_NONE)
543 return;
544 }
545 dump_header(NULL, gfp_mask, order, NULL, nodemask);
546 panic("Out of memory: %s panic_on_oom is enabled\n",
547 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
548 }
549
550 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
551
552 int register_oom_notifier(struct notifier_block *nb)
553 {
554 return blocking_notifier_chain_register(&oom_notify_list, nb);
555 }
556 EXPORT_SYMBOL_GPL(register_oom_notifier);
557
558 int unregister_oom_notifier(struct notifier_block *nb)
559 {
560 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
561 }
562 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
563
564 /*
565 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
566 * if a parallel OOM killing is already taking place that includes a zone in
567 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
568 */
569 int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
570 {
571 struct zoneref *z;
572 struct zone *zone;
573 int ret = 1;
574
575 spin_lock(&zone_scan_lock);
576 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
577 if (zone_is_oom_locked(zone)) {
578 ret = 0;
579 goto out;
580 }
581 }
582
583 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
584 /*
585 * Lock each zone in the zonelist under zone_scan_lock so a
586 * parallel invocation of try_set_zonelist_oom() doesn't succeed
587 * when it shouldn't.
588 */
589 zone_set_flag(zone, ZONE_OOM_LOCKED);
590 }
591
592 out:
593 spin_unlock(&zone_scan_lock);
594 return ret;
595 }
596
597 /*
598 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
599 * allocation attempts with zonelists containing them may now recall the OOM
600 * killer, if necessary.
601 */
602 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
603 {
604 struct zoneref *z;
605 struct zone *zone;
606
607 spin_lock(&zone_scan_lock);
608 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
609 zone_clear_flag(zone, ZONE_OOM_LOCKED);
610 }
611 spin_unlock(&zone_scan_lock);
612 }
613
614 /**
615 * out_of_memory - kill the "best" process when we run out of memory
616 * @zonelist: zonelist pointer
617 * @gfp_mask: memory allocation flags
618 * @order: amount of memory being requested as a power of 2
619 * @nodemask: nodemask passed to page allocator
620 * @force_kill: true if a task must be killed, even if others are exiting
621 *
622 * If we run out of memory, we have the choice between either
623 * killing a random task (bad), letting the system crash (worse)
624 * OR try to be smart about which process to kill. Note that we
625 * don't have to be perfect here, we just have to be good.
626 */
627 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
628 int order, nodemask_t *nodemask, bool force_kill)
629 {
630 const nodemask_t *mpol_mask;
631 struct task_struct *p;
632 unsigned long totalpages;
633 unsigned long freed = 0;
634 unsigned int uninitialized_var(points);
635 enum oom_constraint constraint = CONSTRAINT_NONE;
636 int killed = 0;
637
638 #ifdef CONFIG_MT_ENG_BUILD
639 //void add_kmem_status_oom_counter(void);
640 //add_kmem_status_oom_counter();
641 #endif
642
643 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
644 if (freed > 0)
645 /* Got some memory back in the last second. */
646 return;
647
648 /*
649 * If current has a pending SIGKILL or is exiting, then automatically
650 * select it. The goal is to allow it to allocate so that it may
651 * quickly exit and free its memory.
652 */
653 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
654 set_thread_flag(TIF_MEMDIE);
655 return;
656 }
657
658 /*
659 * Check if there were limitations on the allocation (only relevant for
660 * NUMA) that may require different handling.
661 */
662 constraint = constrained_alloc(zonelist, gfp_mask, nodemask,
663 &totalpages);
664 mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL;
665 check_panic_on_oom(constraint, gfp_mask, order, mpol_mask);
666
667 if (sysctl_oom_kill_allocating_task && current->mm &&
668 !oom_unkillable_task(current, NULL, nodemask) &&
669 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
670 get_task_struct(current);
671 oom_kill_process(current, gfp_mask, order, 0, totalpages, NULL,
672 nodemask,
673 "Out of memory (oom_kill_allocating_task)");
674 goto out;
675 }
676
677 p = select_bad_process(&points, totalpages, mpol_mask, force_kill);
678 /* Found nothing?!?! Either we hang forever, or we panic. */
679 if (!p) {
680 dump_header(NULL, gfp_mask, order, NULL, mpol_mask);
681 panic("Out of memory and no killable processes...\n");
682 }
683 if (PTR_ERR(p) != -1UL) {
684 oom_kill_process(p, gfp_mask, order, points, totalpages, NULL,
685 nodemask, "Out of memory");
686 killed = 1;
687 }
688 out:
689 /*
690 * Give the killed threads a good chance of exiting before trying to
691 * allocate memory again.
692 */
693 if (killed)
694 schedule_timeout_killable(1);
695 }
696
697 /*
698 * The pagefault handler calls here because it is out of memory, so kill a
699 * memory-hogging task. If any populated zone has ZONE_OOM_LOCKED set, a
700 * parallel oom killing is already in progress so do nothing.
701 */
702 void pagefault_out_of_memory(void)
703 {
704 struct zonelist *zonelist = node_zonelist(first_online_node,
705 GFP_KERNEL);
706
707 if (try_set_zonelist_oom(zonelist, GFP_KERNEL)) {
708 out_of_memory(NULL, 0, 0, NULL, false);
709 clear_zonelist_oom(zonelist, GFP_KERNEL);
710 }
711 }