Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/syscalls.h>
18 #include <linux/capability.h>
19 #include <linux/init.h>
20 #include <linux/file.h>
21 #include <linux/fs.h>
22 #include <linux/personality.h>
23 #include <linux/security.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 #include <linux/audit.h>
33 #include <linux/khugepaged.h>
34 #include <linux/uprobes.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/notifier.h>
38 #include <linux/memory.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44
45 #include "internal.h"
46
47 #ifndef arch_mmap_check
48 #define arch_mmap_check(addr, len, flags) (0)
49 #endif
50
51 #ifndef arch_rebalance_pgtables
52 #define arch_rebalance_pgtables(addr, len) (addr)
53 #endif
54
55 static void unmap_region(struct mm_struct *mm,
56 struct vm_area_struct *vma, struct vm_area_struct *prev,
57 unsigned long start, unsigned long end);
58
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
62 *
63 * map_type prot
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 *
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 *
73 */
74 pgprot_t protection_map[16] = {
75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81 return __pgprot(pgprot_val(protection_map[vm_flags &
82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
91 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
92 /*
93 * Make sure vm_committed_as in one cacheline and not cacheline shared with
94 * other variables. It can be updated by several CPUs frequently.
95 */
96 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
97
98 /*
99 * The global memory commitment made in the system can be a metric
100 * that can be used to drive ballooning decisions when Linux is hosted
101 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
102 * balancing memory across competing virtual machines that are hosted.
103 * Several metrics drive this policy engine including the guest reported
104 * memory commitment.
105 */
106 unsigned long vm_memory_committed(void)
107 {
108 return percpu_counter_read_positive(&vm_committed_as);
109 }
110 EXPORT_SYMBOL_GPL(vm_memory_committed);
111
112 /*
113 * Check that a process has enough memory to allocate a new virtual
114 * mapping. 0 means there is enough memory for the allocation to
115 * succeed and -ENOMEM implies there is not.
116 *
117 * We currently support three overcommit policies, which are set via the
118 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
119 *
120 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
121 * Additional code 2002 Jul 20 by Robert Love.
122 *
123 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
124 *
125 * Note this is a helper function intended to be used by LSMs which
126 * wish to use this logic.
127 */
128 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
129 {
130 unsigned long free, allowed, reserve;
131
132 vm_acct_memory(pages);
133
134 /*
135 * Sometimes we want to use more memory than we have
136 */
137 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
138 return 0;
139
140 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
141 free = global_page_state(NR_FREE_PAGES);
142 free += global_page_state(NR_FILE_PAGES);
143
144 /*
145 * shmem pages shouldn't be counted as free in this
146 * case, they can't be purged, only swapped out, and
147 * that won't affect the overall amount of available
148 * memory in the system.
149 */
150 free -= global_page_state(NR_SHMEM);
151
152 free += get_nr_swap_pages();
153
154 /*
155 * Any slabs which are created with the
156 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
157 * which are reclaimable, under pressure. The dentry
158 * cache and most inode caches should fall into this
159 */
160 free += global_page_state(NR_SLAB_RECLAIMABLE);
161
162 /*
163 * Leave reserved pages. The pages are not for anonymous pages.
164 */
165 if (free <= totalreserve_pages)
166 goto error;
167 else
168 free -= totalreserve_pages;
169
170 /*
171 * Reserve some for root
172 */
173 if (!cap_sys_admin)
174 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
175
176 if (free > pages)
177 return 0;
178
179 goto error;
180 }
181
182 allowed = (totalram_pages - hugetlb_total_pages())
183 * sysctl_overcommit_ratio / 100;
184 /*
185 * Reserve some for root
186 */
187 if (!cap_sys_admin)
188 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
189 allowed += total_swap_pages;
190
191 /*
192 * Don't let a single process grow so big a user can't recover
193 */
194 if (mm) {
195 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
196 allowed -= min(mm->total_vm / 32, reserve);
197 }
198
199 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
200 return 0;
201 error:
202 vm_unacct_memory(pages);
203
204 return -ENOMEM;
205 }
206
207 /*
208 * Requires inode->i_mapping->i_mmap_mutex
209 */
210 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
211 struct file *file, struct address_space *mapping)
212 {
213 if (vma->vm_flags & VM_DENYWRITE)
214 atomic_inc(&file_inode(file)->i_writecount);
215 if (vma->vm_flags & VM_SHARED)
216 mapping->i_mmap_writable--;
217
218 flush_dcache_mmap_lock(mapping);
219 if (unlikely(vma->vm_flags & VM_NONLINEAR))
220 list_del_init(&vma->shared.nonlinear);
221 else
222 vma_interval_tree_remove(vma, &mapping->i_mmap);
223 flush_dcache_mmap_unlock(mapping);
224 }
225
226 /*
227 * Unlink a file-based vm structure from its interval tree, to hide
228 * vma from rmap and vmtruncate before freeing its page tables.
229 */
230 void unlink_file_vma(struct vm_area_struct *vma)
231 {
232 struct file *file = vma->vm_file;
233
234 if (file) {
235 struct address_space *mapping = file->f_mapping;
236 mutex_lock(&mapping->i_mmap_mutex);
237 __remove_shared_vm_struct(vma, file, mapping);
238 mutex_unlock(&mapping->i_mmap_mutex);
239 }
240 }
241
242 /*
243 * Close a vm structure and free it, returning the next.
244 */
245 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
246 {
247 struct vm_area_struct *next = vma->vm_next;
248
249 might_sleep();
250 if (vma->vm_ops && vma->vm_ops->close)
251 vma->vm_ops->close(vma);
252 if (vma->vm_file)
253 fput(vma->vm_file);
254 mpol_put(vma_policy(vma));
255 kmem_cache_free(vm_area_cachep, vma);
256 return next;
257 }
258
259 static unsigned long do_brk(unsigned long addr, unsigned long len);
260
261 SYSCALL_DEFINE1(brk, unsigned long, brk)
262 {
263 unsigned long rlim, retval;
264 unsigned long newbrk, oldbrk;
265 struct mm_struct *mm = current->mm;
266 unsigned long min_brk;
267 bool populate;
268
269 down_write(&mm->mmap_sem);
270
271 #ifdef CONFIG_COMPAT_BRK
272 /*
273 * CONFIG_COMPAT_BRK can still be overridden by setting
274 * randomize_va_space to 2, which will still cause mm->start_brk
275 * to be arbitrarily shifted
276 */
277 if (current->brk_randomized)
278 min_brk = mm->start_brk;
279 else
280 min_brk = mm->end_data;
281 #else
282 min_brk = mm->start_brk;
283 #endif
284 if (brk < min_brk)
285 goto out;
286
287 /*
288 * Check against rlimit here. If this check is done later after the test
289 * of oldbrk with newbrk then it can escape the test and let the data
290 * segment grow beyond its set limit the in case where the limit is
291 * not page aligned -Ram Gupta
292 */
293 rlim = rlimit(RLIMIT_DATA);
294 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
295 (mm->end_data - mm->start_data) > rlim)
296 goto out;
297
298 newbrk = PAGE_ALIGN(brk);
299 oldbrk = PAGE_ALIGN(mm->brk);
300 if (oldbrk == newbrk)
301 goto set_brk;
302
303 /* Always allow shrinking brk. */
304 if (brk <= mm->brk) {
305 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
306 goto set_brk;
307 goto out;
308 }
309
310 /* Check against existing mmap mappings. */
311 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
312 goto out;
313
314 /* Ok, looks good - let it rip. */
315 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
316 goto out;
317
318 set_brk:
319 mm->brk = brk;
320 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
321 up_write(&mm->mmap_sem);
322 if (populate)
323 mm_populate(oldbrk, newbrk - oldbrk);
324 return brk;
325
326 out:
327 retval = mm->brk;
328 up_write(&mm->mmap_sem);
329 return retval;
330 }
331
332 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
333 {
334 unsigned long max, subtree_gap;
335 max = vma->vm_start;
336 if (vma->vm_prev)
337 max -= vma->vm_prev->vm_end;
338 if (vma->vm_rb.rb_left) {
339 subtree_gap = rb_entry(vma->vm_rb.rb_left,
340 struct vm_area_struct, vm_rb)->rb_subtree_gap;
341 if (subtree_gap > max)
342 max = subtree_gap;
343 }
344 if (vma->vm_rb.rb_right) {
345 subtree_gap = rb_entry(vma->vm_rb.rb_right,
346 struct vm_area_struct, vm_rb)->rb_subtree_gap;
347 if (subtree_gap > max)
348 max = subtree_gap;
349 }
350 return max;
351 }
352
353 #ifdef CONFIG_DEBUG_VM_RB
354 static int browse_rb(struct rb_root *root)
355 {
356 int i = 0, j, bug = 0;
357 struct rb_node *nd, *pn = NULL;
358 unsigned long prev = 0, pend = 0;
359
360 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
361 struct vm_area_struct *vma;
362 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
363 if (vma->vm_start < prev) {
364 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
365 bug = 1;
366 }
367 if (vma->vm_start < pend) {
368 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
369 bug = 1;
370 }
371 if (vma->vm_start > vma->vm_end) {
372 printk("vm_end %lx < vm_start %lx\n",
373 vma->vm_end, vma->vm_start);
374 bug = 1;
375 }
376 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
377 printk("free gap %lx, correct %lx\n",
378 vma->rb_subtree_gap,
379 vma_compute_subtree_gap(vma));
380 bug = 1;
381 }
382 i++;
383 pn = nd;
384 prev = vma->vm_start;
385 pend = vma->vm_end;
386 }
387 j = 0;
388 for (nd = pn; nd; nd = rb_prev(nd))
389 j++;
390 if (i != j) {
391 printk("backwards %d, forwards %d\n", j, i);
392 bug = 1;
393 }
394 return bug ? -1 : i;
395 }
396
397 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
398 {
399 struct rb_node *nd;
400
401 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402 struct vm_area_struct *vma;
403 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404 BUG_ON(vma != ignore &&
405 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
406 }
407 }
408
409 void validate_mm(struct mm_struct *mm)
410 {
411 int bug = 0;
412 int i = 0;
413 unsigned long highest_address = 0;
414 struct vm_area_struct *vma = mm->mmap;
415 while (vma) {
416 struct anon_vma_chain *avc;
417 vma_lock_anon_vma(vma);
418 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
419 anon_vma_interval_tree_verify(avc);
420 vma_unlock_anon_vma(vma);
421 highest_address = vma->vm_end;
422 vma = vma->vm_next;
423 i++;
424 }
425 if (i != mm->map_count) {
426 printk("map_count %d vm_next %d\n", mm->map_count, i);
427 bug = 1;
428 }
429 if (highest_address != mm->highest_vm_end) {
430 printk("mm->highest_vm_end %lx, found %lx\n",
431 mm->highest_vm_end, highest_address);
432 bug = 1;
433 }
434 i = browse_rb(&mm->mm_rb);
435 if (i != mm->map_count) {
436 printk("map_count %d rb %d\n", mm->map_count, i);
437 bug = 1;
438 }
439 BUG_ON(bug);
440 }
441 #else
442 #define validate_mm_rb(root, ignore) do { } while (0)
443 #define validate_mm(mm) do { } while (0)
444 #endif
445
446 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
447 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
448
449 /*
450 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
451 * vma->vm_prev->vm_end values changed, without modifying the vma's position
452 * in the rbtree.
453 */
454 static void vma_gap_update(struct vm_area_struct *vma)
455 {
456 /*
457 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
458 * function that does exacltly what we want.
459 */
460 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
461 }
462
463 static inline void vma_rb_insert(struct vm_area_struct *vma,
464 struct rb_root *root)
465 {
466 /* All rb_subtree_gap values must be consistent prior to insertion */
467 validate_mm_rb(root, NULL);
468
469 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470 }
471
472 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
473 {
474 /*
475 * All rb_subtree_gap values must be consistent prior to erase,
476 * with the possible exception of the vma being erased.
477 */
478 validate_mm_rb(root, vma);
479
480 /*
481 * Note rb_erase_augmented is a fairly large inline function,
482 * so make sure we instantiate it only once with our desired
483 * augmented rbtree callbacks.
484 */
485 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
486 }
487
488 /*
489 * vma has some anon_vma assigned, and is already inserted on that
490 * anon_vma's interval trees.
491 *
492 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
493 * vma must be removed from the anon_vma's interval trees using
494 * anon_vma_interval_tree_pre_update_vma().
495 *
496 * After the update, the vma will be reinserted using
497 * anon_vma_interval_tree_post_update_vma().
498 *
499 * The entire update must be protected by exclusive mmap_sem and by
500 * the root anon_vma's mutex.
501 */
502 static inline void
503 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
504 {
505 struct anon_vma_chain *avc;
506
507 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
508 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
509 }
510
511 static inline void
512 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
513 {
514 struct anon_vma_chain *avc;
515
516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
518 }
519
520 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
521 unsigned long end, struct vm_area_struct **pprev,
522 struct rb_node ***rb_link, struct rb_node **rb_parent)
523 {
524 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
525
526 __rb_link = &mm->mm_rb.rb_node;
527 rb_prev = __rb_parent = NULL;
528
529 while (*__rb_link) {
530 struct vm_area_struct *vma_tmp;
531
532 __rb_parent = *__rb_link;
533 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
534
535 if (vma_tmp->vm_end > addr) {
536 /* Fail if an existing vma overlaps the area */
537 if (vma_tmp->vm_start < end)
538 return -ENOMEM;
539 __rb_link = &__rb_parent->rb_left;
540 } else {
541 rb_prev = __rb_parent;
542 __rb_link = &__rb_parent->rb_right;
543 }
544 }
545
546 *pprev = NULL;
547 if (rb_prev)
548 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
549 *rb_link = __rb_link;
550 *rb_parent = __rb_parent;
551 return 0;
552 }
553
554 static unsigned long count_vma_pages_range(struct mm_struct *mm,
555 unsigned long addr, unsigned long end)
556 {
557 unsigned long nr_pages = 0;
558 struct vm_area_struct *vma;
559
560 /* Find first overlaping mapping */
561 vma = find_vma_intersection(mm, addr, end);
562 if (!vma)
563 return 0;
564
565 nr_pages = (min(end, vma->vm_end) -
566 max(addr, vma->vm_start)) >> PAGE_SHIFT;
567
568 /* Iterate over the rest of the overlaps */
569 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
570 unsigned long overlap_len;
571
572 if (vma->vm_start > end)
573 break;
574
575 overlap_len = min(end, vma->vm_end) - vma->vm_start;
576 nr_pages += overlap_len >> PAGE_SHIFT;
577 }
578
579 return nr_pages;
580 }
581
582 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
583 struct rb_node **rb_link, struct rb_node *rb_parent)
584 {
585 /* Update tracking information for the gap following the new vma. */
586 if (vma->vm_next)
587 vma_gap_update(vma->vm_next);
588 else
589 mm->highest_vm_end = vma->vm_end;
590
591 /*
592 * vma->vm_prev wasn't known when we followed the rbtree to find the
593 * correct insertion point for that vma. As a result, we could not
594 * update the vma vm_rb parents rb_subtree_gap values on the way down.
595 * So, we first insert the vma with a zero rb_subtree_gap value
596 * (to be consistent with what we did on the way down), and then
597 * immediately update the gap to the correct value. Finally we
598 * rebalance the rbtree after all augmented values have been set.
599 */
600 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
601 vma->rb_subtree_gap = 0;
602 vma_gap_update(vma);
603 vma_rb_insert(vma, &mm->mm_rb);
604 }
605
606 static void __vma_link_file(struct vm_area_struct *vma)
607 {
608 struct file *file;
609
610 file = vma->vm_file;
611 if (file) {
612 struct address_space *mapping = file->f_mapping;
613
614 if (vma->vm_flags & VM_DENYWRITE)
615 atomic_dec(&file_inode(file)->i_writecount);
616 if (vma->vm_flags & VM_SHARED)
617 mapping->i_mmap_writable++;
618
619 flush_dcache_mmap_lock(mapping);
620 if (unlikely(vma->vm_flags & VM_NONLINEAR))
621 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
622 else
623 vma_interval_tree_insert(vma, &mapping->i_mmap);
624 flush_dcache_mmap_unlock(mapping);
625 }
626 }
627
628 static void
629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630 struct vm_area_struct *prev, struct rb_node **rb_link,
631 struct rb_node *rb_parent)
632 {
633 __vma_link_list(mm, vma, prev, rb_parent);
634 __vma_link_rb(mm, vma, rb_link, rb_parent);
635 }
636
637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638 struct vm_area_struct *prev, struct rb_node **rb_link,
639 struct rb_node *rb_parent)
640 {
641 struct address_space *mapping = NULL;
642
643 if (vma->vm_file)
644 mapping = vma->vm_file->f_mapping;
645
646 if (mapping)
647 mutex_lock(&mapping->i_mmap_mutex);
648
649 __vma_link(mm, vma, prev, rb_link, rb_parent);
650 __vma_link_file(vma);
651
652 if (mapping)
653 mutex_unlock(&mapping->i_mmap_mutex);
654
655 mm->map_count++;
656 validate_mm(mm);
657 }
658
659 /*
660 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
661 * mm's list and rbtree. It has already been inserted into the interval tree.
662 */
663 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
664 {
665 struct vm_area_struct *prev;
666 struct rb_node **rb_link, *rb_parent;
667
668 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
669 &prev, &rb_link, &rb_parent))
670 BUG();
671 __vma_link(mm, vma, prev, rb_link, rb_parent);
672 mm->map_count++;
673 }
674
675 static inline void
676 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
677 struct vm_area_struct *prev)
678 {
679 struct vm_area_struct *next;
680
681 vma_rb_erase(vma, &mm->mm_rb);
682 prev->vm_next = next = vma->vm_next;
683 if (next)
684 next->vm_prev = prev;
685 if (mm->mmap_cache == vma)
686 mm->mmap_cache = prev;
687 }
688
689 /*
690 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
691 * is already present in an i_mmap tree without adjusting the tree.
692 * The following helper function should be used when such adjustments
693 * are necessary. The "insert" vma (if any) is to be inserted
694 * before we drop the necessary locks.
695 */
696 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
697 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
698 {
699 struct mm_struct *mm = vma->vm_mm;
700 struct vm_area_struct *next = vma->vm_next;
701 struct vm_area_struct *importer = NULL;
702 struct address_space *mapping = NULL;
703 struct rb_root *root = NULL;
704 struct anon_vma *anon_vma = NULL;
705 struct file *file = vma->vm_file;
706 bool start_changed = false, end_changed = false;
707 long adjust_next = 0;
708 int remove_next = 0;
709
710 if (next && !insert) {
711 struct vm_area_struct *exporter = NULL;
712
713 if (end >= next->vm_end) {
714 /*
715 * vma expands, overlapping all the next, and
716 * perhaps the one after too (mprotect case 6).
717 */
718 again: remove_next = 1 + (end > next->vm_end);
719 end = next->vm_end;
720 exporter = next;
721 importer = vma;
722 } else if (end > next->vm_start) {
723 /*
724 * vma expands, overlapping part of the next:
725 * mprotect case 5 shifting the boundary up.
726 */
727 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
728 exporter = next;
729 importer = vma;
730 } else if (end < vma->vm_end) {
731 /*
732 * vma shrinks, and !insert tells it's not
733 * split_vma inserting another: so it must be
734 * mprotect case 4 shifting the boundary down.
735 */
736 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
737 exporter = vma;
738 importer = next;
739 }
740
741 /*
742 * Easily overlooked: when mprotect shifts the boundary,
743 * make sure the expanding vma has anon_vma set if the
744 * shrinking vma had, to cover any anon pages imported.
745 */
746 if (exporter && exporter->anon_vma && !importer->anon_vma) {
747 if (anon_vma_clone(importer, exporter))
748 return -ENOMEM;
749 importer->anon_vma = exporter->anon_vma;
750 }
751 }
752
753 if (file) {
754 mapping = file->f_mapping;
755 if (!(vma->vm_flags & VM_NONLINEAR)) {
756 root = &mapping->i_mmap;
757 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
758
759 if (adjust_next)
760 uprobe_munmap(next, next->vm_start,
761 next->vm_end);
762 }
763
764 mutex_lock(&mapping->i_mmap_mutex);
765 if (insert) {
766 /*
767 * Put into interval tree now, so instantiated pages
768 * are visible to arm/parisc __flush_dcache_page
769 * throughout; but we cannot insert into address
770 * space until vma start or end is updated.
771 */
772 __vma_link_file(insert);
773 }
774 }
775
776 vma_adjust_trans_huge(vma, start, end, adjust_next);
777
778 anon_vma = vma->anon_vma;
779 if (!anon_vma && adjust_next)
780 anon_vma = next->anon_vma;
781 if (anon_vma) {
782 VM_BUG_ON(adjust_next && next->anon_vma &&
783 anon_vma != next->anon_vma);
784 anon_vma_lock_write(anon_vma);
785 anon_vma_interval_tree_pre_update_vma(vma);
786 if (adjust_next)
787 anon_vma_interval_tree_pre_update_vma(next);
788 }
789
790 if (root) {
791 flush_dcache_mmap_lock(mapping);
792 vma_interval_tree_remove(vma, root);
793 if (adjust_next)
794 vma_interval_tree_remove(next, root);
795 }
796
797 if (start != vma->vm_start) {
798 vma->vm_start = start;
799 start_changed = true;
800 }
801 if (end != vma->vm_end) {
802 vma->vm_end = end;
803 end_changed = true;
804 }
805 vma->vm_pgoff = pgoff;
806 if (adjust_next) {
807 next->vm_start += adjust_next << PAGE_SHIFT;
808 next->vm_pgoff += adjust_next;
809 }
810
811 if (root) {
812 if (adjust_next)
813 vma_interval_tree_insert(next, root);
814 vma_interval_tree_insert(vma, root);
815 flush_dcache_mmap_unlock(mapping);
816 }
817
818 if (remove_next) {
819 /*
820 * vma_merge has merged next into vma, and needs
821 * us to remove next before dropping the locks.
822 */
823 __vma_unlink(mm, next, vma);
824 if (file)
825 __remove_shared_vm_struct(next, file, mapping);
826 } else if (insert) {
827 /*
828 * split_vma has split insert from vma, and needs
829 * us to insert it before dropping the locks
830 * (it may either follow vma or precede it).
831 */
832 __insert_vm_struct(mm, insert);
833 } else {
834 if (start_changed)
835 vma_gap_update(vma);
836 if (end_changed) {
837 if (!next)
838 mm->highest_vm_end = end;
839 else if (!adjust_next)
840 vma_gap_update(next);
841 }
842 }
843
844 if (anon_vma) {
845 anon_vma_interval_tree_post_update_vma(vma);
846 if (adjust_next)
847 anon_vma_interval_tree_post_update_vma(next);
848 anon_vma_unlock_write(anon_vma);
849 }
850 if (mapping)
851 mutex_unlock(&mapping->i_mmap_mutex);
852
853 if (root) {
854 uprobe_mmap(vma);
855
856 if (adjust_next)
857 uprobe_mmap(next);
858 }
859
860 if (remove_next) {
861 if (file) {
862 uprobe_munmap(next, next->vm_start, next->vm_end);
863 fput(file);
864 }
865 if (next->anon_vma)
866 anon_vma_merge(vma, next);
867 mm->map_count--;
868 mpol_put(vma_policy(next));
869 kmem_cache_free(vm_area_cachep, next);
870 /*
871 * In mprotect's case 6 (see comments on vma_merge),
872 * we must remove another next too. It would clutter
873 * up the code too much to do both in one go.
874 */
875 next = vma->vm_next;
876 if (remove_next == 2)
877 goto again;
878 else if (next)
879 vma_gap_update(next);
880 else
881 mm->highest_vm_end = end;
882 }
883 if (insert && file)
884 uprobe_mmap(insert);
885
886 validate_mm(mm);
887
888 return 0;
889 }
890
891 /*
892 * If the vma has a ->close operation then the driver probably needs to release
893 * per-vma resources, so we don't attempt to merge those.
894 */
895 static inline int is_mergeable_vma(struct vm_area_struct *vma,
896 struct file *file, unsigned long vm_flags,
897 const char __user *anon_name)
898 {
899 if (vma->vm_flags ^ vm_flags)
900 return 0;
901 if (vma->vm_file != file)
902 return 0;
903 if (vma->vm_ops && vma->vm_ops->close)
904 return 0;
905 if (vma_get_anon_name(vma) != anon_name)
906 return 0;
907 return 1;
908 }
909
910 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
911 struct anon_vma *anon_vma2,
912 struct vm_area_struct *vma)
913 {
914 /*
915 * The list_is_singular() test is to avoid merging VMA cloned from
916 * parents. This can improve scalability caused by anon_vma lock.
917 */
918 if ((!anon_vma1 || !anon_vma2) && (!vma ||
919 list_is_singular(&vma->anon_vma_chain)))
920 return 1;
921 return anon_vma1 == anon_vma2;
922 }
923
924 /*
925 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
926 * in front of (at a lower virtual address and file offset than) the vma.
927 *
928 * We cannot merge two vmas if they have differently assigned (non-NULL)
929 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
930 *
931 * We don't check here for the merged mmap wrapping around the end of pagecache
932 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
933 * wrap, nor mmaps which cover the final page at index -1UL.
934 */
935 static int
936 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
937 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff,
938 const char __user *anon_name)
939 {
940 if (is_mergeable_vma(vma, file, vm_flags, anon_name) &&
941 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
942 if (vma->vm_pgoff == vm_pgoff)
943 return 1;
944 }
945 return 0;
946 }
947
948 /*
949 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
950 * beyond (at a higher virtual address and file offset than) the vma.
951 *
952 * We cannot merge two vmas if they have differently assigned (non-NULL)
953 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
954 */
955 static int
956 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
957 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff,
958 const char __user *anon_name)
959 {
960 if (is_mergeable_vma(vma, file, vm_flags, anon_name) &&
961 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
962 pgoff_t vm_pglen;
963 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
964 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
965 return 1;
966 }
967 return 0;
968 }
969
970 /*
971 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
972 * figure out whether that can be merged with its predecessor or its
973 * successor. Or both (it neatly fills a hole).
974 *
975 * In most cases - when called for mmap, brk or mremap - [addr,end) is
976 * certain not to be mapped by the time vma_merge is called; but when
977 * called for mprotect, it is certain to be already mapped (either at
978 * an offset within prev, or at the start of next), and the flags of
979 * this area are about to be changed to vm_flags - and the no-change
980 * case has already been eliminated.
981 *
982 * The following mprotect cases have to be considered, where AAAA is
983 * the area passed down from mprotect_fixup, never extending beyond one
984 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
985 *
986 * AAAA AAAA AAAA AAAA
987 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
988 * cannot merge might become might become might become
989 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
990 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
991 * mremap move: PPPPNNNNNNNN 8
992 * AAAA
993 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
994 * might become case 1 below case 2 below case 3 below
995 *
996 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
997 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
998 */
999 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1000 struct vm_area_struct *prev, unsigned long addr,
1001 unsigned long end, unsigned long vm_flags,
1002 struct anon_vma *anon_vma, struct file *file,
1003 pgoff_t pgoff, struct mempolicy *policy,
1004 const char __user *anon_name)
1005 {
1006 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1007 struct vm_area_struct *area, *next;
1008 int err;
1009
1010 /*
1011 * We later require that vma->vm_flags == vm_flags,
1012 * so this tests vma->vm_flags & VM_SPECIAL, too.
1013 */
1014 if (vm_flags & VM_SPECIAL)
1015 return NULL;
1016
1017 if (prev)
1018 next = prev->vm_next;
1019 else
1020 next = mm->mmap;
1021 area = next;
1022 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1023 next = next->vm_next;
1024
1025 /*
1026 * Can it merge with the predecessor?
1027 */
1028 if (prev && prev->vm_end == addr &&
1029 mpol_equal(vma_policy(prev), policy) &&
1030 can_vma_merge_after(prev, vm_flags, anon_vma,
1031 file, pgoff, anon_name)) {
1032 /*
1033 * OK, it can. Can we now merge in the successor as well?
1034 */
1035 if (next && end == next->vm_start &&
1036 mpol_equal(policy, vma_policy(next)) &&
1037 can_vma_merge_before(next, vm_flags, anon_vma,
1038 file, pgoff+pglen, anon_name) &&
1039 is_mergeable_anon_vma(prev->anon_vma,
1040 next->anon_vma, NULL)) {
1041 /* cases 1, 6 */
1042 err = vma_adjust(prev, prev->vm_start,
1043 next->vm_end, prev->vm_pgoff, NULL);
1044 } else /* cases 2, 5, 7 */
1045 err = vma_adjust(prev, prev->vm_start,
1046 end, prev->vm_pgoff, NULL);
1047 if (err)
1048 return NULL;
1049 khugepaged_enter_vma_merge(prev);
1050 return prev;
1051 }
1052
1053 /*
1054 * Can this new request be merged in front of next?
1055 */
1056 if (next && end == next->vm_start &&
1057 mpol_equal(policy, vma_policy(next)) &&
1058 can_vma_merge_before(next, vm_flags, anon_vma,
1059 file, pgoff+pglen, anon_name)) {
1060 if (prev && addr < prev->vm_end) /* case 4 */
1061 err = vma_adjust(prev, prev->vm_start,
1062 addr, prev->vm_pgoff, NULL);
1063 else /* cases 3, 8 */
1064 err = vma_adjust(area, addr, next->vm_end,
1065 next->vm_pgoff - pglen, NULL);
1066 if (err)
1067 return NULL;
1068 khugepaged_enter_vma_merge(area);
1069 return area;
1070 }
1071
1072 return NULL;
1073 }
1074
1075 /*
1076 * Rough compatbility check to quickly see if it's even worth looking
1077 * at sharing an anon_vma.
1078 *
1079 * They need to have the same vm_file, and the flags can only differ
1080 * in things that mprotect may change.
1081 *
1082 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1083 * we can merge the two vma's. For example, we refuse to merge a vma if
1084 * there is a vm_ops->close() function, because that indicates that the
1085 * driver is doing some kind of reference counting. But that doesn't
1086 * really matter for the anon_vma sharing case.
1087 */
1088 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1089 {
1090 return a->vm_end == b->vm_start &&
1091 mpol_equal(vma_policy(a), vma_policy(b)) &&
1092 a->vm_file == b->vm_file &&
1093 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1094 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1095 }
1096
1097 /*
1098 * Do some basic sanity checking to see if we can re-use the anon_vma
1099 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1100 * the same as 'old', the other will be the new one that is trying
1101 * to share the anon_vma.
1102 *
1103 * NOTE! This runs with mm_sem held for reading, so it is possible that
1104 * the anon_vma of 'old' is concurrently in the process of being set up
1105 * by another page fault trying to merge _that_. But that's ok: if it
1106 * is being set up, that automatically means that it will be a singleton
1107 * acceptable for merging, so we can do all of this optimistically. But
1108 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1109 *
1110 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1111 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1112 * is to return an anon_vma that is "complex" due to having gone through
1113 * a fork).
1114 *
1115 * We also make sure that the two vma's are compatible (adjacent,
1116 * and with the same memory policies). That's all stable, even with just
1117 * a read lock on the mm_sem.
1118 */
1119 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1120 {
1121 if (anon_vma_compatible(a, b)) {
1122 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1123
1124 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1125 return anon_vma;
1126 }
1127 return NULL;
1128 }
1129
1130 /*
1131 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1132 * neighbouring vmas for a suitable anon_vma, before it goes off
1133 * to allocate a new anon_vma. It checks because a repetitive
1134 * sequence of mprotects and faults may otherwise lead to distinct
1135 * anon_vmas being allocated, preventing vma merge in subsequent
1136 * mprotect.
1137 */
1138 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1139 {
1140 struct anon_vma *anon_vma;
1141 struct vm_area_struct *near;
1142
1143 near = vma->vm_next;
1144 if (!near)
1145 goto try_prev;
1146
1147 anon_vma = reusable_anon_vma(near, vma, near);
1148 if (anon_vma)
1149 return anon_vma;
1150 try_prev:
1151 near = vma->vm_prev;
1152 if (!near)
1153 goto none;
1154
1155 anon_vma = reusable_anon_vma(near, near, vma);
1156 if (anon_vma)
1157 return anon_vma;
1158 none:
1159 /*
1160 * There's no absolute need to look only at touching neighbours:
1161 * we could search further afield for "compatible" anon_vmas.
1162 * But it would probably just be a waste of time searching,
1163 * or lead to too many vmas hanging off the same anon_vma.
1164 * We're trying to allow mprotect remerging later on,
1165 * not trying to minimize memory used for anon_vmas.
1166 */
1167 return NULL;
1168 }
1169
1170 #ifdef CONFIG_PROC_FS
1171 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1172 struct file *file, long pages)
1173 {
1174 const unsigned long stack_flags
1175 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1176
1177 mm->total_vm += pages;
1178
1179 if (file) {
1180 mm->shared_vm += pages;
1181 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1182 mm->exec_vm += pages;
1183 } else if (flags & stack_flags)
1184 mm->stack_vm += pages;
1185 }
1186 #endif /* CONFIG_PROC_FS */
1187
1188 /*
1189 * If a hint addr is less than mmap_min_addr change hint to be as
1190 * low as possible but still greater than mmap_min_addr
1191 */
1192 static inline unsigned long round_hint_to_min(unsigned long hint)
1193 {
1194 hint &= PAGE_MASK;
1195 if (((void *)hint != NULL) &&
1196 (hint < mmap_min_addr))
1197 return PAGE_ALIGN(mmap_min_addr);
1198 return hint;
1199 }
1200
1201 /*
1202 * The caller must hold down_write(&current->mm->mmap_sem).
1203 */
1204
1205 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1206 unsigned long len, unsigned long prot,
1207 unsigned long flags, unsigned long pgoff,
1208 unsigned long *populate)
1209 {
1210 struct mm_struct * mm = current->mm;
1211 struct inode *inode;
1212 vm_flags_t vm_flags;
1213
1214 *populate = 0;
1215
1216 /*
1217 * Does the application expect PROT_READ to imply PROT_EXEC?
1218 *
1219 * (the exception is when the underlying filesystem is noexec
1220 * mounted, in which case we dont add PROT_EXEC.)
1221 */
1222 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1223 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1224 prot |= PROT_EXEC;
1225
1226 if (!len)
1227 return -EINVAL;
1228
1229 if (!(flags & MAP_FIXED))
1230 addr = round_hint_to_min(addr);
1231
1232 /* Careful about overflows.. */
1233 len = PAGE_ALIGN(len);
1234 if (!len)
1235 return -ENOMEM;
1236
1237 /* offset overflow? */
1238 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1239 return -EOVERFLOW;
1240
1241 /* Too many mappings? */
1242 if (mm->map_count > sysctl_max_map_count)
1243 return -ENOMEM;
1244
1245 /* Obtain the address to map to. we verify (or select) it and ensure
1246 * that it represents a valid section of the address space.
1247 */
1248 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1249 if (addr & ~PAGE_MASK)
1250 return addr;
1251
1252 /* Do simple checking here so the lower-level routines won't have
1253 * to. we assume access permissions have been handled by the open
1254 * of the memory object, so we don't do any here.
1255 */
1256 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1257 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1258
1259 if (flags & MAP_LOCKED)
1260 if (!can_do_mlock())
1261 return -EPERM;
1262
1263 /* mlock MCL_FUTURE? */
1264 if (vm_flags & VM_LOCKED) {
1265 unsigned long locked, lock_limit;
1266 locked = len >> PAGE_SHIFT;
1267 locked += mm->locked_vm;
1268 lock_limit = rlimit(RLIMIT_MEMLOCK);
1269 lock_limit >>= PAGE_SHIFT;
1270 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1271 return -EAGAIN;
1272 }
1273
1274 inode = file ? file_inode(file) : NULL;
1275
1276 if (file) {
1277 switch (flags & MAP_TYPE) {
1278 case MAP_SHARED:
1279 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1280 return -EACCES;
1281
1282 /*
1283 * Make sure we don't allow writing to an append-only
1284 * file..
1285 */
1286 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1287 return -EACCES;
1288
1289 /*
1290 * Make sure there are no mandatory locks on the file.
1291 */
1292 if (locks_verify_locked(inode))
1293 return -EAGAIN;
1294
1295 vm_flags |= VM_SHARED | VM_MAYSHARE;
1296 if (!(file->f_mode & FMODE_WRITE))
1297 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1298
1299 /* fall through */
1300 case MAP_PRIVATE:
1301 if (!(file->f_mode & FMODE_READ))
1302 return -EACCES;
1303 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1304 if (vm_flags & VM_EXEC)
1305 return -EPERM;
1306 vm_flags &= ~VM_MAYEXEC;
1307 }
1308
1309 if (!file->f_op || !file->f_op->mmap)
1310 return -ENODEV;
1311 break;
1312
1313 default:
1314 return -EINVAL;
1315 }
1316 } else {
1317 switch (flags & MAP_TYPE) {
1318 case MAP_SHARED:
1319 /*
1320 * Ignore pgoff.
1321 */
1322 pgoff = 0;
1323 vm_flags |= VM_SHARED | VM_MAYSHARE;
1324 break;
1325 case MAP_PRIVATE:
1326 /*
1327 * Set pgoff according to addr for anon_vma.
1328 */
1329 pgoff = addr >> PAGE_SHIFT;
1330 break;
1331 default:
1332 return -EINVAL;
1333 }
1334 }
1335
1336 /*
1337 * Set 'VM_NORESERVE' if we should not account for the
1338 * memory use of this mapping.
1339 */
1340 if (flags & MAP_NORESERVE) {
1341 /* We honor MAP_NORESERVE if allowed to overcommit */
1342 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1343 vm_flags |= VM_NORESERVE;
1344
1345 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1346 if (file && is_file_hugepages(file))
1347 vm_flags |= VM_NORESERVE;
1348 }
1349
1350 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1351 if (!IS_ERR_VALUE(addr) &&
1352 ((vm_flags & VM_LOCKED) ||
1353 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1354 *populate = len;
1355 return addr;
1356 }
1357
1358 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1359 unsigned long, prot, unsigned long, flags,
1360 unsigned long, fd, unsigned long, pgoff)
1361 {
1362 struct file *file = NULL;
1363 unsigned long retval = -EBADF;
1364
1365 if (!(flags & MAP_ANONYMOUS)) {
1366 audit_mmap_fd(fd, flags);
1367 if (unlikely(flags & MAP_HUGETLB))
1368 return -EINVAL;
1369 file = fget(fd);
1370 if (!file)
1371 goto out;
1372 if (is_file_hugepages(file))
1373 len = ALIGN(len, huge_page_size(hstate_file(file)));
1374 } else if (flags & MAP_HUGETLB) {
1375 struct user_struct *user = NULL;
1376 struct hstate *hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) &
1377 SHM_HUGE_MASK);
1378
1379 if (!hs)
1380 return -EINVAL;
1381
1382 len = ALIGN(len, huge_page_size(hs));
1383 /*
1384 * VM_NORESERVE is used because the reservations will be
1385 * taken when vm_ops->mmap() is called
1386 * A dummy user value is used because we are not locking
1387 * memory so no accounting is necessary
1388 */
1389 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1390 VM_NORESERVE,
1391 &user, HUGETLB_ANONHUGE_INODE,
1392 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1393 if (IS_ERR(file))
1394 return PTR_ERR(file);
1395 }
1396
1397 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1398
1399 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1400 if (file)
1401 fput(file);
1402 out:
1403 return retval;
1404 }
1405
1406 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1407 struct mmap_arg_struct {
1408 unsigned long addr;
1409 unsigned long len;
1410 unsigned long prot;
1411 unsigned long flags;
1412 unsigned long fd;
1413 unsigned long offset;
1414 };
1415
1416 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1417 {
1418 struct mmap_arg_struct a;
1419
1420 if (copy_from_user(&a, arg, sizeof(a)))
1421 return -EFAULT;
1422 if (a.offset & ~PAGE_MASK)
1423 return -EINVAL;
1424
1425 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1426 a.offset >> PAGE_SHIFT);
1427 }
1428 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1429
1430 /*
1431 * Some shared mappigns will want the pages marked read-only
1432 * to track write events. If so, we'll downgrade vm_page_prot
1433 * to the private version (using protection_map[] without the
1434 * VM_SHARED bit).
1435 */
1436 int vma_wants_writenotify(struct vm_area_struct *vma)
1437 {
1438 vm_flags_t vm_flags = vma->vm_flags;
1439
1440 /* If it was private or non-writable, the write bit is already clear */
1441 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1442 return 0;
1443
1444 /* The backer wishes to know when pages are first written to? */
1445 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1446 return 1;
1447
1448 /* The open routine did something to the protections already? */
1449 if (pgprot_val(vma->vm_page_prot) !=
1450 pgprot_val(vm_get_page_prot(vm_flags)))
1451 return 0;
1452
1453 /* Specialty mapping? */
1454 if (vm_flags & VM_PFNMAP)
1455 return 0;
1456
1457 /* Can the mapping track the dirty pages? */
1458 return vma->vm_file && vma->vm_file->f_mapping &&
1459 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1460 }
1461
1462 /*
1463 * We account for memory if it's a private writeable mapping,
1464 * not hugepages and VM_NORESERVE wasn't set.
1465 */
1466 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1467 {
1468 /*
1469 * hugetlb has its own accounting separate from the core VM
1470 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1471 */
1472 if (file && is_file_hugepages(file))
1473 return 0;
1474
1475 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1476 }
1477
1478 unsigned long mmap_region(struct file *file, unsigned long addr,
1479 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1480 {
1481 struct mm_struct *mm = current->mm;
1482 struct vm_area_struct *vma, *prev;
1483 int correct_wcount = 0;
1484 int error;
1485 struct rb_node **rb_link, *rb_parent;
1486 unsigned long charged = 0;
1487 struct inode *inode = file ? file_inode(file) : NULL;
1488
1489 /* Check against address space limit. */
1490 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1491 unsigned long nr_pages;
1492
1493 /*
1494 * MAP_FIXED may remove pages of mappings that intersects with
1495 * requested mapping. Account for the pages it would unmap.
1496 */
1497 if (!(vm_flags & MAP_FIXED))
1498 return -ENOMEM;
1499
1500 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1501
1502 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1503 return -ENOMEM;
1504 }
1505
1506 /* Clear old maps */
1507 error = -ENOMEM;
1508 munmap_back:
1509 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1510 if (do_munmap(mm, addr, len))
1511 return -ENOMEM;
1512 goto munmap_back;
1513 }
1514
1515 /*
1516 * Private writable mapping: check memory availability
1517 */
1518 if (accountable_mapping(file, vm_flags)) {
1519 charged = len >> PAGE_SHIFT;
1520 if (security_vm_enough_memory_mm(mm, charged))
1521 return -ENOMEM;
1522 vm_flags |= VM_ACCOUNT;
1523 }
1524
1525 /*
1526 * Can we just expand an old mapping?
1527 */
1528 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff,
1529 NULL, NULL);
1530 if (vma)
1531 goto out;
1532
1533 /*
1534 * Determine the object being mapped and call the appropriate
1535 * specific mapper. the address has already been validated, but
1536 * not unmapped, but the maps are removed from the list.
1537 */
1538 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1539 if (!vma) {
1540 error = -ENOMEM;
1541 goto unacct_error;
1542 }
1543
1544 vma->vm_mm = mm;
1545 vma->vm_start = addr;
1546 vma->vm_end = addr + len;
1547 vma->vm_flags = vm_flags;
1548 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1549 vma->vm_pgoff = pgoff;
1550 INIT_LIST_HEAD(&vma->anon_vma_chain);
1551
1552 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1553
1554 if (file) {
1555 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1556 goto free_vma;
1557 if (vm_flags & VM_DENYWRITE) {
1558 error = deny_write_access(file);
1559 if (error)
1560 goto free_vma;
1561 correct_wcount = 1;
1562 }
1563 vma->vm_file = get_file(file);
1564 error = file->f_op->mmap(file, vma);
1565 if (error)
1566 goto unmap_and_free_vma;
1567
1568 /* Can addr have changed??
1569 *
1570 * Answer: Yes, several device drivers can do it in their
1571 * f_op->mmap method. -DaveM
1572 * Bug: If addr is changed, prev, rb_link, rb_parent should
1573 * be updated for vma_link()
1574 */
1575 WARN_ON_ONCE(addr != vma->vm_start);
1576
1577 addr = vma->vm_start;
1578 pgoff = vma->vm_pgoff;
1579 vm_flags = vma->vm_flags;
1580 } else if (vm_flags & VM_SHARED) {
1581 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1582 goto free_vma;
1583 error = shmem_zero_setup(vma);
1584 if (error)
1585 goto free_vma;
1586 }
1587
1588 if (vma_wants_writenotify(vma)) {
1589 pgprot_t pprot = vma->vm_page_prot;
1590
1591 /* Can vma->vm_page_prot have changed??
1592 *
1593 * Answer: Yes, drivers may have changed it in their
1594 * f_op->mmap method.
1595 *
1596 * Ensures that vmas marked as uncached stay that way.
1597 */
1598 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1599 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1600 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1601 }
1602
1603 vma_link(mm, vma, prev, rb_link, rb_parent);
1604 file = vma->vm_file;
1605
1606 /* Once vma denies write, undo our temporary denial count */
1607 if (correct_wcount)
1608 atomic_inc(&inode->i_writecount);
1609 out:
1610 perf_event_mmap(vma);
1611
1612 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1613 if (vm_flags & VM_LOCKED) {
1614 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1615 vma == get_gate_vma(current->mm)))
1616 mm->locked_vm += (len >> PAGE_SHIFT);
1617 else
1618 vma->vm_flags &= ~VM_LOCKED;
1619 }
1620
1621 if (file)
1622 uprobe_mmap(vma);
1623
1624 return addr;
1625
1626 unmap_and_free_vma:
1627 if (correct_wcount)
1628 atomic_inc(&inode->i_writecount);
1629 vma->vm_file = NULL;
1630 fput(file);
1631
1632 /* Undo any partial mapping done by a device driver. */
1633 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1634 charged = 0;
1635 free_vma:
1636 kmem_cache_free(vm_area_cachep, vma);
1637 unacct_error:
1638 if (charged)
1639 vm_unacct_memory(charged);
1640 return error;
1641 }
1642
1643 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1644 {
1645 /*
1646 * We implement the search by looking for an rbtree node that
1647 * immediately follows a suitable gap. That is,
1648 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1649 * - gap_end = vma->vm_start >= info->low_limit + length;
1650 * - gap_end - gap_start >= length
1651 */
1652
1653 struct mm_struct *mm = current->mm;
1654 struct vm_area_struct *vma;
1655 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1656
1657 /* Adjust search length to account for worst case alignment overhead */
1658 length = info->length + info->align_mask;
1659 if (length < info->length)
1660 return -ENOMEM;
1661
1662 /* Adjust search limits by the desired length */
1663 if (info->high_limit < length)
1664 return -ENOMEM;
1665 high_limit = info->high_limit - length;
1666
1667 if (info->low_limit > high_limit)
1668 return -ENOMEM;
1669 low_limit = info->low_limit + length;
1670
1671 /* Check if rbtree root looks promising */
1672 if (RB_EMPTY_ROOT(&mm->mm_rb))
1673 goto check_highest;
1674 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1675 if (vma->rb_subtree_gap < length)
1676 goto check_highest;
1677
1678 while (true) {
1679 /* Visit left subtree if it looks promising */
1680 gap_end = vma->vm_start;
1681 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1682 struct vm_area_struct *left =
1683 rb_entry(vma->vm_rb.rb_left,
1684 struct vm_area_struct, vm_rb);
1685 if (left->rb_subtree_gap >= length) {
1686 vma = left;
1687 continue;
1688 }
1689 }
1690
1691 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1692 check_current:
1693 /* Check if current node has a suitable gap */
1694 if (gap_start > high_limit)
1695 return -ENOMEM;
1696 if (gap_end >= low_limit && gap_end - gap_start >= length)
1697 goto found;
1698
1699 /* Visit right subtree if it looks promising */
1700 if (vma->vm_rb.rb_right) {
1701 struct vm_area_struct *right =
1702 rb_entry(vma->vm_rb.rb_right,
1703 struct vm_area_struct, vm_rb);
1704 if (right->rb_subtree_gap >= length) {
1705 vma = right;
1706 continue;
1707 }
1708 }
1709
1710 /* Go back up the rbtree to find next candidate node */
1711 while (true) {
1712 struct rb_node *prev = &vma->vm_rb;
1713 if (!rb_parent(prev))
1714 goto check_highest;
1715 vma = rb_entry(rb_parent(prev),
1716 struct vm_area_struct, vm_rb);
1717 if (prev == vma->vm_rb.rb_left) {
1718 gap_start = vma->vm_prev->vm_end;
1719 gap_end = vma->vm_start;
1720 goto check_current;
1721 }
1722 }
1723 }
1724
1725 check_highest:
1726 /* Check highest gap, which does not precede any rbtree node */
1727 gap_start = mm->highest_vm_end;
1728 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1729 if (gap_start > high_limit)
1730 return -ENOMEM;
1731
1732 found:
1733 /* We found a suitable gap. Clip it with the original low_limit. */
1734 if (gap_start < info->low_limit)
1735 gap_start = info->low_limit;
1736
1737 /* Adjust gap address to the desired alignment */
1738 gap_start += (info->align_offset - gap_start) & info->align_mask;
1739
1740 VM_BUG_ON(gap_start + info->length > info->high_limit);
1741 VM_BUG_ON(gap_start + info->length > gap_end);
1742 return gap_start;
1743 }
1744
1745 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1746 {
1747 struct mm_struct *mm = current->mm;
1748 struct vm_area_struct *vma;
1749 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1750
1751 /* Adjust search length to account for worst case alignment overhead */
1752 length = info->length + info->align_mask;
1753 if (length < info->length)
1754 return -ENOMEM;
1755
1756 /*
1757 * Adjust search limits by the desired length.
1758 * See implementation comment at top of unmapped_area().
1759 */
1760 gap_end = info->high_limit;
1761 if (gap_end < length)
1762 return -ENOMEM;
1763 high_limit = gap_end - length;
1764
1765 if (info->low_limit > high_limit)
1766 return -ENOMEM;
1767 low_limit = info->low_limit + length;
1768
1769 /* Check highest gap, which does not precede any rbtree node */
1770 gap_start = mm->highest_vm_end;
1771 if (gap_start <= high_limit)
1772 goto found_highest;
1773
1774 /* Check if rbtree root looks promising */
1775 if (RB_EMPTY_ROOT(&mm->mm_rb))
1776 return -ENOMEM;
1777 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1778 if (vma->rb_subtree_gap < length)
1779 return -ENOMEM;
1780
1781 while (true) {
1782 /* Visit right subtree if it looks promising */
1783 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1784 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1785 struct vm_area_struct *right =
1786 rb_entry(vma->vm_rb.rb_right,
1787 struct vm_area_struct, vm_rb);
1788 if (right->rb_subtree_gap >= length) {
1789 vma = right;
1790 continue;
1791 }
1792 }
1793
1794 check_current:
1795 /* Check if current node has a suitable gap */
1796 gap_end = vma->vm_start;
1797 if (gap_end < low_limit)
1798 return -ENOMEM;
1799 if (gap_start <= high_limit && gap_end - gap_start >= length)
1800 goto found;
1801
1802 /* Visit left subtree if it looks promising */
1803 if (vma->vm_rb.rb_left) {
1804 struct vm_area_struct *left =
1805 rb_entry(vma->vm_rb.rb_left,
1806 struct vm_area_struct, vm_rb);
1807 if (left->rb_subtree_gap >= length) {
1808 vma = left;
1809 continue;
1810 }
1811 }
1812
1813 /* Go back up the rbtree to find next candidate node */
1814 while (true) {
1815 struct rb_node *prev = &vma->vm_rb;
1816 if (!rb_parent(prev))
1817 return -ENOMEM;
1818 vma = rb_entry(rb_parent(prev),
1819 struct vm_area_struct, vm_rb);
1820 if (prev == vma->vm_rb.rb_right) {
1821 gap_start = vma->vm_prev ?
1822 vma->vm_prev->vm_end : 0;
1823 goto check_current;
1824 }
1825 }
1826 }
1827
1828 found:
1829 /* We found a suitable gap. Clip it with the original high_limit. */
1830 if (gap_end > info->high_limit)
1831 gap_end = info->high_limit;
1832
1833 found_highest:
1834 /* Compute highest gap address at the desired alignment */
1835 gap_end -= info->length;
1836 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1837
1838 VM_BUG_ON(gap_end < info->low_limit);
1839 VM_BUG_ON(gap_end < gap_start);
1840 return gap_end;
1841 }
1842
1843 /* Get an address range which is currently unmapped.
1844 * For shmat() with addr=0.
1845 *
1846 * Ugly calling convention alert:
1847 * Return value with the low bits set means error value,
1848 * ie
1849 * if (ret & ~PAGE_MASK)
1850 * error = ret;
1851 *
1852 * This function "knows" that -ENOMEM has the bits set.
1853 */
1854 #ifndef HAVE_ARCH_UNMAPPED_AREA
1855 unsigned long
1856 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1857 unsigned long len, unsigned long pgoff, unsigned long flags)
1858 {
1859 struct mm_struct *mm = current->mm;
1860 struct vm_area_struct *vma;
1861 struct vm_unmapped_area_info info;
1862
1863 if (len > TASK_SIZE - mmap_min_addr)
1864 return -ENOMEM;
1865
1866 if (flags & MAP_FIXED)
1867 return addr;
1868
1869 if (addr) {
1870 addr = PAGE_ALIGN(addr);
1871 vma = find_vma(mm, addr);
1872 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1873 (!vma || addr + len <= vma->vm_start))
1874 return addr;
1875 }
1876
1877 info.flags = 0;
1878 info.length = len;
1879 info.low_limit = TASK_UNMAPPED_BASE;
1880 info.high_limit = TASK_SIZE;
1881 info.align_mask = 0;
1882 return vm_unmapped_area(&info);
1883 }
1884 #endif
1885
1886 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1887 {
1888 /*
1889 * Is this a new hole at the lowest possible address?
1890 */
1891 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1892 mm->free_area_cache = addr;
1893 }
1894
1895 /*
1896 * This mmap-allocator allocates new areas top-down from below the
1897 * stack's low limit (the base):
1898 */
1899 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1900 unsigned long
1901 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1902 const unsigned long len, const unsigned long pgoff,
1903 const unsigned long flags)
1904 {
1905 struct vm_area_struct *vma;
1906 struct mm_struct *mm = current->mm;
1907 unsigned long addr = addr0;
1908 struct vm_unmapped_area_info info;
1909
1910 /* requested length too big for entire address space */
1911 if (len > TASK_SIZE - mmap_min_addr)
1912 return -ENOMEM;
1913
1914 if (flags & MAP_FIXED)
1915 return addr;
1916
1917 /* requesting a specific address */
1918 if (addr) {
1919 addr = PAGE_ALIGN(addr);
1920 vma = find_vma(mm, addr);
1921 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1922 (!vma || addr + len <= vma->vm_start))
1923 return addr;
1924 }
1925
1926 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1927 info.length = len;
1928 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1929 info.high_limit = mm->mmap_base;
1930 info.align_mask = 0;
1931 addr = vm_unmapped_area(&info);
1932
1933 /*
1934 * A failed mmap() very likely causes application failure,
1935 * so fall back to the bottom-up function here. This scenario
1936 * can happen with large stack limits and large mmap()
1937 * allocations.
1938 */
1939 if (addr & ~PAGE_MASK) {
1940 VM_BUG_ON(addr != -ENOMEM);
1941 info.flags = 0;
1942 info.low_limit = TASK_UNMAPPED_BASE;
1943 info.high_limit = TASK_SIZE;
1944 addr = vm_unmapped_area(&info);
1945 }
1946
1947 return addr;
1948 }
1949 #endif
1950
1951 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1952 {
1953 /*
1954 * Is this a new hole at the highest possible address?
1955 */
1956 if (addr > mm->free_area_cache)
1957 mm->free_area_cache = addr;
1958
1959 /* dont allow allocations above current base */
1960 if (mm->free_area_cache > mm->mmap_base)
1961 mm->free_area_cache = mm->mmap_base;
1962 }
1963
1964 unsigned long
1965 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1966 unsigned long pgoff, unsigned long flags)
1967 {
1968 unsigned long (*get_area)(struct file *, unsigned long,
1969 unsigned long, unsigned long, unsigned long);
1970
1971 unsigned long error = arch_mmap_check(addr, len, flags);
1972 if (error)
1973 return error;
1974
1975 /* Careful about overflows.. */
1976 if (len > TASK_SIZE)
1977 return -ENOMEM;
1978
1979 get_area = current->mm->get_unmapped_area;
1980 if (file && file->f_op && file->f_op->get_unmapped_area)
1981 get_area = file->f_op->get_unmapped_area;
1982 addr = get_area(file, addr, len, pgoff, flags);
1983 if (IS_ERR_VALUE(addr))
1984 return addr;
1985
1986 if (addr > TASK_SIZE - len)
1987 return -ENOMEM;
1988 if (addr & ~PAGE_MASK)
1989 return -EINVAL;
1990
1991 addr = arch_rebalance_pgtables(addr, len);
1992 error = security_mmap_addr(addr);
1993 return error ? error : addr;
1994 }
1995
1996 EXPORT_SYMBOL(get_unmapped_area);
1997
1998 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1999 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2000 {
2001 struct vm_area_struct *vma = NULL;
2002
2003 /* Check the cache first. */
2004 /* (Cache hit rate is typically around 35%.) */
2005 vma = ACCESS_ONCE(mm->mmap_cache);
2006 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
2007 struct rb_node *rb_node;
2008
2009 rb_node = mm->mm_rb.rb_node;
2010 vma = NULL;
2011
2012 while (rb_node) {
2013 struct vm_area_struct *vma_tmp;
2014
2015 vma_tmp = rb_entry(rb_node,
2016 struct vm_area_struct, vm_rb);
2017
2018 if (vma_tmp->vm_end > addr) {
2019 vma = vma_tmp;
2020 if (vma_tmp->vm_start <= addr)
2021 break;
2022 rb_node = rb_node->rb_left;
2023 } else
2024 rb_node = rb_node->rb_right;
2025 }
2026 if (vma)
2027 mm->mmap_cache = vma;
2028 }
2029 return vma;
2030 }
2031
2032 EXPORT_SYMBOL(find_vma);
2033
2034 /*
2035 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2036 */
2037 struct vm_area_struct *
2038 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2039 struct vm_area_struct **pprev)
2040 {
2041 struct vm_area_struct *vma;
2042
2043 vma = find_vma(mm, addr);
2044 if (vma) {
2045 *pprev = vma->vm_prev;
2046 } else {
2047 struct rb_node *rb_node = mm->mm_rb.rb_node;
2048 *pprev = NULL;
2049 while (rb_node) {
2050 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2051 rb_node = rb_node->rb_right;
2052 }
2053 }
2054 return vma;
2055 }
2056
2057 /*
2058 * Verify that the stack growth is acceptable and
2059 * update accounting. This is shared with both the
2060 * grow-up and grow-down cases.
2061 */
2062 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2063 {
2064 struct mm_struct *mm = vma->vm_mm;
2065 struct rlimit *rlim = current->signal->rlim;
2066 unsigned long new_start, actual_size;
2067
2068 /* address space limit tests */
2069 if (!may_expand_vm(mm, grow))
2070 return -ENOMEM;
2071
2072 /* Stack limit test */
2073 actual_size = size;
2074 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2075 actual_size -= PAGE_SIZE;
2076 if (actual_size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2077 return -ENOMEM;
2078
2079 /* mlock limit tests */
2080 if (vma->vm_flags & VM_LOCKED) {
2081 unsigned long locked;
2082 unsigned long limit;
2083 locked = mm->locked_vm + grow;
2084 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2085 limit >>= PAGE_SHIFT;
2086 if (locked > limit && !capable(CAP_IPC_LOCK))
2087 return -ENOMEM;
2088 }
2089
2090 /* Check to ensure the stack will not grow into a hugetlb-only region */
2091 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2092 vma->vm_end - size;
2093 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2094 return -EFAULT;
2095
2096 /*
2097 * Overcommit.. This must be the final test, as it will
2098 * update security statistics.
2099 */
2100 if (security_vm_enough_memory_mm(mm, grow))
2101 return -ENOMEM;
2102
2103 /* Ok, everything looks good - let it rip */
2104 if (vma->vm_flags & VM_LOCKED)
2105 mm->locked_vm += grow;
2106 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2107 return 0;
2108 }
2109
2110 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2111 /*
2112 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2113 * vma is the last one with address > vma->vm_end. Have to extend vma.
2114 */
2115 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2116 {
2117 int error;
2118
2119 if (!(vma->vm_flags & VM_GROWSUP))
2120 return -EFAULT;
2121
2122 /*
2123 * We must make sure the anon_vma is allocated
2124 * so that the anon_vma locking is not a noop.
2125 */
2126 if (unlikely(anon_vma_prepare(vma)))
2127 return -ENOMEM;
2128 vma_lock_anon_vma(vma);
2129
2130 /*
2131 * vma->vm_start/vm_end cannot change under us because the caller
2132 * is required to hold the mmap_sem in read mode. We need the
2133 * anon_vma lock to serialize against concurrent expand_stacks.
2134 * Also guard against wrapping around to address 0.
2135 */
2136 if (address < PAGE_ALIGN(address+4))
2137 address = PAGE_ALIGN(address+4);
2138 else {
2139 vma_unlock_anon_vma(vma);
2140 return -ENOMEM;
2141 }
2142 error = 0;
2143
2144 /* Somebody else might have raced and expanded it already */
2145 if (address > vma->vm_end) {
2146 unsigned long size, grow;
2147
2148 size = address - vma->vm_start;
2149 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2150
2151 error = -ENOMEM;
2152 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2153 error = acct_stack_growth(vma, size, grow);
2154 if (!error) {
2155 /*
2156 * vma_gap_update() doesn't support concurrent
2157 * updates, but we only hold a shared mmap_sem
2158 * lock here, so we need to protect against
2159 * concurrent vma expansions.
2160 * vma_lock_anon_vma() doesn't help here, as
2161 * we don't guarantee that all growable vmas
2162 * in a mm share the same root anon vma.
2163 * So, we reuse mm->page_table_lock to guard
2164 * against concurrent vma expansions.
2165 */
2166 spin_lock(&vma->vm_mm->page_table_lock);
2167 anon_vma_interval_tree_pre_update_vma(vma);
2168 vma->vm_end = address;
2169 anon_vma_interval_tree_post_update_vma(vma);
2170 if (vma->vm_next)
2171 vma_gap_update(vma->vm_next);
2172 else
2173 vma->vm_mm->highest_vm_end = address;
2174 spin_unlock(&vma->vm_mm->page_table_lock);
2175
2176 perf_event_mmap(vma);
2177 }
2178 }
2179 }
2180 vma_unlock_anon_vma(vma);
2181 khugepaged_enter_vma_merge(vma);
2182 validate_mm(vma->vm_mm);
2183 return error;
2184 }
2185 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2186
2187 /*
2188 * vma is the first one with address < vma->vm_start. Have to extend vma.
2189 */
2190 int expand_downwards(struct vm_area_struct *vma,
2191 unsigned long address)
2192 {
2193 int error;
2194
2195 /*
2196 * We must make sure the anon_vma is allocated
2197 * so that the anon_vma locking is not a noop.
2198 */
2199 if (unlikely(anon_vma_prepare(vma)))
2200 return -ENOMEM;
2201
2202 address &= PAGE_MASK;
2203 error = security_mmap_addr(address);
2204 if (error)
2205 return error;
2206
2207 vma_lock_anon_vma(vma);
2208
2209 /*
2210 * vma->vm_start/vm_end cannot change under us because the caller
2211 * is required to hold the mmap_sem in read mode. We need the
2212 * anon_vma lock to serialize against concurrent expand_stacks.
2213 */
2214
2215 /* Somebody else might have raced and expanded it already */
2216 if (address < vma->vm_start) {
2217 unsigned long size, grow;
2218
2219 size = vma->vm_end - address;
2220 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2221
2222 error = -ENOMEM;
2223 if (grow <= vma->vm_pgoff) {
2224 error = acct_stack_growth(vma, size, grow);
2225 if (!error) {
2226 /*
2227 * vma_gap_update() doesn't support concurrent
2228 * updates, but we only hold a shared mmap_sem
2229 * lock here, so we need to protect against
2230 * concurrent vma expansions.
2231 * vma_lock_anon_vma() doesn't help here, as
2232 * we don't guarantee that all growable vmas
2233 * in a mm share the same root anon vma.
2234 * So, we reuse mm->page_table_lock to guard
2235 * against concurrent vma expansions.
2236 */
2237 spin_lock(&vma->vm_mm->page_table_lock);
2238 anon_vma_interval_tree_pre_update_vma(vma);
2239 vma->vm_start = address;
2240 vma->vm_pgoff -= grow;
2241 anon_vma_interval_tree_post_update_vma(vma);
2242 vma_gap_update(vma);
2243 spin_unlock(&vma->vm_mm->page_table_lock);
2244
2245 perf_event_mmap(vma);
2246 }
2247 }
2248 }
2249 vma_unlock_anon_vma(vma);
2250 khugepaged_enter_vma_merge(vma);
2251 validate_mm(vma->vm_mm);
2252 return error;
2253 }
2254
2255 /*
2256 * Note how expand_stack() refuses to expand the stack all the way to
2257 * abut the next virtual mapping, *unless* that mapping itself is also
2258 * a stack mapping. We want to leave room for a guard page, after all
2259 * (the guard page itself is not added here, that is done by the
2260 * actual page faulting logic)
2261 *
2262 * This matches the behavior of the guard page logic (see mm/memory.c:
2263 * check_stack_guard_page()), which only allows the guard page to be
2264 * removed under these circumstances.
2265 */
2266 #ifdef CONFIG_STACK_GROWSUP
2267 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2268 {
2269 struct vm_area_struct *next;
2270
2271 address &= PAGE_MASK;
2272 next = vma->vm_next;
2273 if (next && next->vm_start == address + PAGE_SIZE) {
2274 if (!(next->vm_flags & VM_GROWSUP))
2275 return -ENOMEM;
2276 }
2277 return expand_upwards(vma, address);
2278 }
2279
2280 struct vm_area_struct *
2281 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2282 {
2283 struct vm_area_struct *vma, *prev;
2284
2285 addr &= PAGE_MASK;
2286 vma = find_vma_prev(mm, addr, &prev);
2287 if (vma && (vma->vm_start <= addr))
2288 return vma;
2289 if (!prev || expand_stack(prev, addr))
2290 return NULL;
2291 if (prev->vm_flags & VM_LOCKED)
2292 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2293 return prev;
2294 }
2295 #else
2296 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2297 {
2298 struct vm_area_struct *prev;
2299
2300 address &= PAGE_MASK;
2301 prev = vma->vm_prev;
2302 if (prev && prev->vm_end == address) {
2303 if (!(prev->vm_flags & VM_GROWSDOWN))
2304 return -ENOMEM;
2305 }
2306 return expand_downwards(vma, address);
2307 }
2308
2309 struct vm_area_struct *
2310 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2311 {
2312 struct vm_area_struct * vma;
2313 unsigned long start;
2314
2315 addr &= PAGE_MASK;
2316 vma = find_vma(mm,addr);
2317 if (!vma)
2318 return NULL;
2319 if (vma->vm_start <= addr)
2320 return vma;
2321 if (!(vma->vm_flags & VM_GROWSDOWN))
2322 return NULL;
2323 start = vma->vm_start;
2324 if (expand_stack(vma, addr))
2325 return NULL;
2326 if (vma->vm_flags & VM_LOCKED)
2327 __mlock_vma_pages_range(vma, addr, start, NULL);
2328 return vma;
2329 }
2330 #endif
2331
2332 /*
2333 * Ok - we have the memory areas we should free on the vma list,
2334 * so release them, and do the vma updates.
2335 *
2336 * Called with the mm semaphore held.
2337 */
2338 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2339 {
2340 unsigned long nr_accounted = 0;
2341
2342 /* Update high watermark before we lower total_vm */
2343 update_hiwater_vm(mm);
2344 do {
2345 long nrpages = vma_pages(vma);
2346
2347 if (vma->vm_flags & VM_ACCOUNT)
2348 nr_accounted += nrpages;
2349 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2350 vma = remove_vma(vma);
2351 } while (vma);
2352 vm_unacct_memory(nr_accounted);
2353 validate_mm(mm);
2354 }
2355
2356 /*
2357 * Get rid of page table information in the indicated region.
2358 *
2359 * Called with the mm semaphore held.
2360 */
2361 static void unmap_region(struct mm_struct *mm,
2362 struct vm_area_struct *vma, struct vm_area_struct *prev,
2363 unsigned long start, unsigned long end)
2364 {
2365 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2366 struct mmu_gather tlb;
2367
2368 lru_add_drain();
2369 tlb_gather_mmu(&tlb, mm, start, end);
2370 update_hiwater_rss(mm);
2371 unmap_vmas(&tlb, vma, start, end);
2372 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2373 next ? next->vm_start : USER_PGTABLES_CEILING);
2374 tlb_finish_mmu(&tlb, start, end);
2375 }
2376
2377 /*
2378 * Create a list of vma's touched by the unmap, removing them from the mm's
2379 * vma list as we go..
2380 */
2381 static void
2382 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2383 struct vm_area_struct *prev, unsigned long end)
2384 {
2385 struct vm_area_struct **insertion_point;
2386 struct vm_area_struct *tail_vma = NULL;
2387 unsigned long addr;
2388
2389 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2390 vma->vm_prev = NULL;
2391 do {
2392 vma_rb_erase(vma, &mm->mm_rb);
2393 mm->map_count--;
2394 tail_vma = vma;
2395 vma = vma->vm_next;
2396 } while (vma && vma->vm_start < end);
2397 *insertion_point = vma;
2398 if (vma) {
2399 vma->vm_prev = prev;
2400 vma_gap_update(vma);
2401 } else
2402 mm->highest_vm_end = prev ? prev->vm_end : 0;
2403 tail_vma->vm_next = NULL;
2404 if (mm->unmap_area == arch_unmap_area)
2405 addr = prev ? prev->vm_end : mm->mmap_base;
2406 else
2407 addr = vma ? vma->vm_start : mm->mmap_base;
2408 mm->unmap_area(mm, addr);
2409 mm->mmap_cache = NULL; /* Kill the cache. */
2410 }
2411
2412 /*
2413 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2414 * munmap path where it doesn't make sense to fail.
2415 */
2416 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2417 unsigned long addr, int new_below)
2418 {
2419 struct mempolicy *pol;
2420 struct vm_area_struct *new;
2421 int err = -ENOMEM;
2422
2423 if (is_vm_hugetlb_page(vma) && (addr &
2424 ~(huge_page_mask(hstate_vma(vma)))))
2425 return -EINVAL;
2426
2427 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2428 if (!new)
2429 goto out_err;
2430
2431 /* most fields are the same, copy all, and then fixup */
2432 *new = *vma;
2433
2434 INIT_LIST_HEAD(&new->anon_vma_chain);
2435
2436 if (new_below)
2437 new->vm_end = addr;
2438 else {
2439 new->vm_start = addr;
2440 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2441 }
2442
2443 pol = mpol_dup(vma_policy(vma));
2444 if (IS_ERR(pol)) {
2445 err = PTR_ERR(pol);
2446 goto out_free_vma;
2447 }
2448 vma_set_policy(new, pol);
2449
2450 if (anon_vma_clone(new, vma))
2451 goto out_free_mpol;
2452
2453 if (new->vm_file)
2454 get_file(new->vm_file);
2455
2456 if (new->vm_ops && new->vm_ops->open)
2457 new->vm_ops->open(new);
2458
2459 if (new_below)
2460 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2461 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2462 else
2463 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2464
2465 /* Success. */
2466 if (!err)
2467 return 0;
2468
2469 /* Clean everything up if vma_adjust failed. */
2470 if (new->vm_ops && new->vm_ops->close)
2471 new->vm_ops->close(new);
2472 if (new->vm_file)
2473 fput(new->vm_file);
2474 unlink_anon_vmas(new);
2475 out_free_mpol:
2476 mpol_put(pol);
2477 out_free_vma:
2478 kmem_cache_free(vm_area_cachep, new);
2479 out_err:
2480 return err;
2481 }
2482
2483 /*
2484 * Split a vma into two pieces at address 'addr', a new vma is allocated
2485 * either for the first part or the tail.
2486 */
2487 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2488 unsigned long addr, int new_below)
2489 {
2490 if (mm->map_count >= sysctl_max_map_count)
2491 return -ENOMEM;
2492
2493 return __split_vma(mm, vma, addr, new_below);
2494 }
2495
2496 /* Munmap is split into 2 main parts -- this part which finds
2497 * what needs doing, and the areas themselves, which do the
2498 * work. This now handles partial unmappings.
2499 * Jeremy Fitzhardinge <jeremy@goop.org>
2500 */
2501 #ifdef CONFIG_MTK_EXTMEM
2502 extern bool extmem_in_mspace(struct vm_area_struct *vma);
2503 extern void * get_virt_from_mspace(void * pa);
2504 extern size_t extmem_get_mem_size(unsigned long pgoff);
2505 extern void extmem_free(void* mem);
2506 #endif
2507
2508 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2509 {
2510 unsigned long end;
2511 struct file *file;
2512 struct vm_area_struct *vma, *prev, *last;
2513
2514 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2515 return -EINVAL;
2516
2517 if ((len = PAGE_ALIGN(len)) == 0)
2518 return -EINVAL;
2519
2520 /* Find the first overlapping VMA */
2521 vma = find_vma(mm, start);
2522 if (!vma)
2523 return 0;
2524 file=vma->vm_file;
2525 if(file)
2526 {
2527 const char *name=file->f_path.dentry->d_iname;
2528 if(name && (strstr(name,"app_process") || strstr(name,"app_process64") || strstr(name,"main") || strstr(name,"Binder_")))
2529 printk("name:%s unmap vm_start %lx end: %lx\n", name, vma->vm_start, vma->vm_end);
2530 }
2531 else
2532 {
2533 const char *name = arch_vma_name(vma);
2534 if(name && (strstr(name,"app_process") || strstr(name,"app_process64") || strstr(name,"main") || strstr(name,"Binder_")))
2535 printk("name:%s unmap vm_start %lx end: %lx\n", name, vma->vm_start, vma->vm_end);
2536 }
2537 prev = vma->vm_prev;
2538 /* we have start < vma->vm_end */
2539
2540 #ifdef CONFIG_MTK_EXTMEM
2541 /* get correct mmap size if in mspace. */
2542 if (extmem_in_mspace(vma))
2543 len = extmem_get_mem_size(vma->vm_pgoff);
2544 #endif
2545
2546 /* if it doesn't overlap, we have nothing.. */
2547 end = start + len;
2548 if (vma->vm_start >= end)
2549 return 0;
2550
2551 /*
2552 * If we need to split any vma, do it now to save pain later.
2553 *
2554 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2555 * unmapped vm_area_struct will remain in use: so lower split_vma
2556 * places tmp vma above, and higher split_vma places tmp vma below.
2557 */
2558 if (start > vma->vm_start) {
2559 int error;
2560
2561 /*
2562 * Make sure that map_count on return from munmap() will
2563 * not exceed its limit; but let map_count go just above
2564 * its limit temporarily, to help free resources as expected.
2565 */
2566 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2567 return -ENOMEM;
2568
2569 error = __split_vma(mm, vma, start, 0);
2570 if (error)
2571 return error;
2572 prev = vma;
2573 }
2574
2575 /* Does it split the last one? */
2576 last = find_vma(mm, end);
2577 if (last && end > last->vm_start) {
2578 int error = __split_vma(mm, last, end, 1);
2579 if (error)
2580 return error;
2581 }
2582 vma = prev? prev->vm_next: mm->mmap;
2583
2584 /*
2585 * unlock any mlock()ed ranges before detaching vmas
2586 */
2587 if (mm->locked_vm) {
2588 struct vm_area_struct *tmp = vma;
2589 while (tmp && tmp->vm_start < end) {
2590 if (tmp->vm_flags & VM_LOCKED) {
2591 mm->locked_vm -= vma_pages(tmp);
2592 munlock_vma_pages_all(tmp);
2593 }
2594 tmp = tmp->vm_next;
2595 }
2596 }
2597
2598 /*
2599 * Remove the vma's, and unmap the actual pages
2600 */
2601 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2602 unmap_region(mm, vma, prev, start, end);
2603
2604 /* Fix up all other VM information */
2605 remove_vma_list(mm, vma);
2606
2607 return 0;
2608 }
2609
2610 int vm_munmap(unsigned long start, size_t len)
2611 {
2612 int ret;
2613 struct mm_struct *mm = current->mm;
2614
2615 down_write(&mm->mmap_sem);
2616 ret = do_munmap(mm, start, len);
2617 up_write(&mm->mmap_sem);
2618 return ret;
2619 }
2620 EXPORT_SYMBOL(vm_munmap);
2621
2622 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2623 {
2624 profile_munmap(addr);
2625 return vm_munmap(addr, len);
2626 }
2627
2628 static inline void verify_mm_writelocked(struct mm_struct *mm)
2629 {
2630 #ifdef CONFIG_DEBUG_VM
2631 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2632 WARN_ON(1);
2633 up_read(&mm->mmap_sem);
2634 }
2635 #endif
2636 }
2637
2638 /*
2639 * this is really a simplified "do_mmap". it only handles
2640 * anonymous maps. eventually we may be able to do some
2641 * brk-specific accounting here.
2642 */
2643 static unsigned long do_brk(unsigned long addr, unsigned long len)
2644 {
2645 struct mm_struct * mm = current->mm;
2646 struct vm_area_struct * vma, * prev;
2647 unsigned long flags;
2648 struct rb_node ** rb_link, * rb_parent;
2649 pgoff_t pgoff = addr >> PAGE_SHIFT;
2650 int error;
2651
2652 len = PAGE_ALIGN(len);
2653 if (!len)
2654 return addr;
2655
2656 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2657
2658 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2659 if (error & ~PAGE_MASK)
2660 return error;
2661
2662 /*
2663 * mlock MCL_FUTURE?
2664 */
2665 if (mm->def_flags & VM_LOCKED) {
2666 unsigned long locked, lock_limit;
2667 locked = len >> PAGE_SHIFT;
2668 locked += mm->locked_vm;
2669 lock_limit = rlimit(RLIMIT_MEMLOCK);
2670 lock_limit >>= PAGE_SHIFT;
2671 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2672 return -EAGAIN;
2673 }
2674
2675 /*
2676 * mm->mmap_sem is required to protect against another thread
2677 * changing the mappings in case we sleep.
2678 */
2679 verify_mm_writelocked(mm);
2680
2681 /*
2682 * Clear old maps. this also does some error checking for us
2683 */
2684 munmap_back:
2685 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2686 if (do_munmap(mm, addr, len))
2687 return -ENOMEM;
2688 goto munmap_back;
2689 }
2690
2691 /* Check against address space limits *after* clearing old maps... */
2692 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2693 return -ENOMEM;
2694
2695 if (mm->map_count > sysctl_max_map_count)
2696 return -ENOMEM;
2697
2698 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2699 return -ENOMEM;
2700
2701 /* Can we just expand an old private anonymous mapping? */
2702 vma = vma_merge(mm, prev, addr, addr + len, flags,
2703 NULL, NULL, pgoff, NULL, NULL);
2704 if (vma)
2705 goto out;
2706
2707 /*
2708 * create a vma struct for an anonymous mapping
2709 */
2710 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2711 if (!vma) {
2712 vm_unacct_memory(len >> PAGE_SHIFT);
2713 return -ENOMEM;
2714 }
2715
2716 INIT_LIST_HEAD(&vma->anon_vma_chain);
2717 vma->vm_mm = mm;
2718 vma->vm_start = addr;
2719 vma->vm_end = addr + len;
2720 vma->vm_pgoff = pgoff;
2721 vma->vm_flags = flags;
2722 vma->vm_page_prot = vm_get_page_prot(flags);
2723 vma_link(mm, vma, prev, rb_link, rb_parent);
2724 out:
2725 perf_event_mmap(vma);
2726 mm->total_vm += len >> PAGE_SHIFT;
2727 if (flags & VM_LOCKED)
2728 mm->locked_vm += (len >> PAGE_SHIFT);
2729 return addr;
2730 }
2731
2732 unsigned long vm_brk(unsigned long addr, unsigned long len)
2733 {
2734 struct mm_struct *mm = current->mm;
2735 unsigned long ret;
2736 bool populate;
2737
2738 down_write(&mm->mmap_sem);
2739 ret = do_brk(addr, len);
2740 populate = ((mm->def_flags & VM_LOCKED) != 0);
2741 up_write(&mm->mmap_sem);
2742 if (populate)
2743 mm_populate(addr, len);
2744 return ret;
2745 }
2746 EXPORT_SYMBOL(vm_brk);
2747
2748 /* Release all mmaps. */
2749 void exit_mmap(struct mm_struct *mm)
2750 {
2751 struct mmu_gather tlb;
2752 struct vm_area_struct *vma;
2753 unsigned long nr_accounted = 0;
2754
2755 /* mm's last user has gone, and its about to be pulled down */
2756 mmu_notifier_release(mm);
2757
2758 if (mm->locked_vm) {
2759 vma = mm->mmap;
2760 while (vma) {
2761 if (vma->vm_flags & VM_LOCKED)
2762 munlock_vma_pages_all(vma);
2763 vma = vma->vm_next;
2764 }
2765 }
2766
2767 arch_exit_mmap(mm);
2768
2769 vma = mm->mmap;
2770 if (!vma) /* Can happen if dup_mmap() received an OOM */
2771 return;
2772
2773 lru_add_drain();
2774 flush_cache_mm(mm);
2775 tlb_gather_mmu(&tlb, mm, 0, -1);
2776 /* update_hiwater_rss(mm) here? but nobody should be looking */
2777 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2778 unmap_vmas(&tlb, vma, 0, -1);
2779
2780 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2781 tlb_finish_mmu(&tlb, 0, -1);
2782
2783 /*
2784 * Walk the list again, actually closing and freeing it,
2785 * with preemption enabled, without holding any MM locks.
2786 */
2787 while (vma) {
2788 if (vma->vm_flags & VM_ACCOUNT)
2789 nr_accounted += vma_pages(vma);
2790 vma = remove_vma(vma);
2791 }
2792 vm_unacct_memory(nr_accounted);
2793
2794 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2795 }
2796
2797 /* Insert vm structure into process list sorted by address
2798 * and into the inode's i_mmap tree. If vm_file is non-NULL
2799 * then i_mmap_mutex is taken here.
2800 */
2801 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2802 {
2803 struct vm_area_struct *prev;
2804 struct rb_node **rb_link, *rb_parent;
2805
2806 /*
2807 * The vm_pgoff of a purely anonymous vma should be irrelevant
2808 * until its first write fault, when page's anon_vma and index
2809 * are set. But now set the vm_pgoff it will almost certainly
2810 * end up with (unless mremap moves it elsewhere before that
2811 * first wfault), so /proc/pid/maps tells a consistent story.
2812 *
2813 * By setting it to reflect the virtual start address of the
2814 * vma, merges and splits can happen in a seamless way, just
2815 * using the existing file pgoff checks and manipulations.
2816 * Similarly in do_mmap_pgoff and in do_brk.
2817 */
2818 if (!vma->vm_file) {
2819 BUG_ON(vma->anon_vma);
2820 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2821 }
2822 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2823 &prev, &rb_link, &rb_parent))
2824 return -ENOMEM;
2825 if ((vma->vm_flags & VM_ACCOUNT) &&
2826 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2827 return -ENOMEM;
2828
2829 vma_link(mm, vma, prev, rb_link, rb_parent);
2830 return 0;
2831 }
2832
2833 /*
2834 * Copy the vma structure to a new location in the same mm,
2835 * prior to moving page table entries, to effect an mremap move.
2836 */
2837 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2838 unsigned long addr, unsigned long len, pgoff_t pgoff,
2839 bool *need_rmap_locks)
2840 {
2841 struct vm_area_struct *vma = *vmap;
2842 unsigned long vma_start = vma->vm_start;
2843 struct mm_struct *mm = vma->vm_mm;
2844 struct vm_area_struct *new_vma, *prev;
2845 struct rb_node **rb_link, *rb_parent;
2846 struct mempolicy *pol;
2847 bool faulted_in_anon_vma = true;
2848
2849 /*
2850 * If anonymous vma has not yet been faulted, update new pgoff
2851 * to match new location, to increase its chance of merging.
2852 */
2853 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2854 pgoff = addr >> PAGE_SHIFT;
2855 faulted_in_anon_vma = false;
2856 }
2857
2858 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2859 return NULL; /* should never get here */
2860 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2861 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2862 vma_get_anon_name(vma));
2863 if (new_vma) {
2864 /*
2865 * Source vma may have been merged into new_vma
2866 */
2867 if (unlikely(vma_start >= new_vma->vm_start &&
2868 vma_start < new_vma->vm_end)) {
2869 /*
2870 * The only way we can get a vma_merge with
2871 * self during an mremap is if the vma hasn't
2872 * been faulted in yet and we were allowed to
2873 * reset the dst vma->vm_pgoff to the
2874 * destination address of the mremap to allow
2875 * the merge to happen. mremap must change the
2876 * vm_pgoff linearity between src and dst vmas
2877 * (in turn preventing a vma_merge) to be
2878 * safe. It is only safe to keep the vm_pgoff
2879 * linear if there are no pages mapped yet.
2880 */
2881 VM_BUG_ON(faulted_in_anon_vma);
2882 *vmap = vma = new_vma;
2883 }
2884 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2885 } else {
2886 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2887 if (new_vma) {
2888 *new_vma = *vma;
2889 new_vma->vm_start = addr;
2890 new_vma->vm_end = addr + len;
2891 new_vma->vm_pgoff = pgoff;
2892 pol = mpol_dup(vma_policy(vma));
2893 if (IS_ERR(pol))
2894 goto out_free_vma;
2895 vma_set_policy(new_vma, pol);
2896 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2897 if (anon_vma_clone(new_vma, vma))
2898 goto out_free_mempol;
2899 if (new_vma->vm_file)
2900 get_file(new_vma->vm_file);
2901 if (new_vma->vm_ops && new_vma->vm_ops->open)
2902 new_vma->vm_ops->open(new_vma);
2903 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2904 *need_rmap_locks = false;
2905 }
2906 }
2907 return new_vma;
2908
2909 out_free_mempol:
2910 mpol_put(pol);
2911 out_free_vma:
2912 kmem_cache_free(vm_area_cachep, new_vma);
2913 return NULL;
2914 }
2915
2916 /*
2917 * Return true if the calling process may expand its vm space by the passed
2918 * number of pages
2919 */
2920 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2921 {
2922 unsigned long cur = mm->total_vm; /* pages */
2923 unsigned long lim;
2924
2925 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2926
2927 if (cur + npages > lim)
2928 return 0;
2929 return 1;
2930 }
2931
2932
2933 static int special_mapping_fault(struct vm_area_struct *vma,
2934 struct vm_fault *vmf)
2935 {
2936 pgoff_t pgoff;
2937 struct page **pages;
2938
2939 /*
2940 * special mappings have no vm_file, and in that case, the mm
2941 * uses vm_pgoff internally. So we have to subtract it from here.
2942 * We are allowed to do this because we are the mm; do not copy
2943 * this code into drivers!
2944 */
2945 pgoff = vmf->pgoff - vma->vm_pgoff;
2946
2947 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2948 pgoff--;
2949
2950 if (*pages) {
2951 struct page *page = *pages;
2952 get_page(page);
2953 vmf->page = page;
2954 return 0;
2955 }
2956
2957 return VM_FAULT_SIGBUS;
2958 }
2959
2960 /*
2961 * Having a close hook prevents vma merging regardless of flags.
2962 */
2963 static void special_mapping_close(struct vm_area_struct *vma)
2964 {
2965 }
2966
2967 static const struct vm_operations_struct special_mapping_vmops = {
2968 .close = special_mapping_close,
2969 .fault = special_mapping_fault,
2970 };
2971
2972 /*
2973 * Called with mm->mmap_sem held for writing.
2974 * Insert a new vma covering the given region, with the given flags.
2975 * Its pages are supplied by the given array of struct page *.
2976 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2977 * The region past the last page supplied will always produce SIGBUS.
2978 * The array pointer and the pages it points to are assumed to stay alive
2979 * for as long as this mapping might exist.
2980 */
2981 int install_special_mapping(struct mm_struct *mm,
2982 unsigned long addr, unsigned long len,
2983 unsigned long vm_flags, struct page **pages)
2984 {
2985 int ret;
2986 struct vm_area_struct *vma;
2987
2988 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2989 if (unlikely(vma == NULL))
2990 return -ENOMEM;
2991
2992 INIT_LIST_HEAD(&vma->anon_vma_chain);
2993 vma->vm_mm = mm;
2994 vma->vm_start = addr;
2995 vma->vm_end = addr + len;
2996
2997 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2998 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2999
3000 vma->vm_ops = &special_mapping_vmops;
3001 vma->vm_private_data = pages;
3002
3003 ret = insert_vm_struct(mm, vma);
3004 if (ret)
3005 goto out;
3006
3007 mm->total_vm += len >> PAGE_SHIFT;
3008
3009 perf_event_mmap(vma);
3010
3011 return 0;
3012
3013 out:
3014 kmem_cache_free(vm_area_cachep, vma);
3015 return ret;
3016 }
3017
3018 static DEFINE_MUTEX(mm_all_locks_mutex);
3019
3020 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3021 {
3022 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3023 /*
3024 * The LSB of head.next can't change from under us
3025 * because we hold the mm_all_locks_mutex.
3026 */
3027 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3028 /*
3029 * We can safely modify head.next after taking the
3030 * anon_vma->root->rwsem. If some other vma in this mm shares
3031 * the same anon_vma we won't take it again.
3032 *
3033 * No need of atomic instructions here, head.next
3034 * can't change from under us thanks to the
3035 * anon_vma->root->rwsem.
3036 */
3037 if (__test_and_set_bit(0, (unsigned long *)
3038 &anon_vma->root->rb_root.rb_node))
3039 BUG();
3040 }
3041 }
3042
3043 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3044 {
3045 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3046 /*
3047 * AS_MM_ALL_LOCKS can't change from under us because
3048 * we hold the mm_all_locks_mutex.
3049 *
3050 * Operations on ->flags have to be atomic because
3051 * even if AS_MM_ALL_LOCKS is stable thanks to the
3052 * mm_all_locks_mutex, there may be other cpus
3053 * changing other bitflags in parallel to us.
3054 */
3055 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3056 BUG();
3057 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3058 }
3059 }
3060
3061 /*
3062 * This operation locks against the VM for all pte/vma/mm related
3063 * operations that could ever happen on a certain mm. This includes
3064 * vmtruncate, try_to_unmap, and all page faults.
3065 *
3066 * The caller must take the mmap_sem in write mode before calling
3067 * mm_take_all_locks(). The caller isn't allowed to release the
3068 * mmap_sem until mm_drop_all_locks() returns.
3069 *
3070 * mmap_sem in write mode is required in order to block all operations
3071 * that could modify pagetables and free pages without need of
3072 * altering the vma layout (for example populate_range() with
3073 * nonlinear vmas). It's also needed in write mode to avoid new
3074 * anon_vmas to be associated with existing vmas.
3075 *
3076 * A single task can't take more than one mm_take_all_locks() in a row
3077 * or it would deadlock.
3078 *
3079 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3080 * mapping->flags avoid to take the same lock twice, if more than one
3081 * vma in this mm is backed by the same anon_vma or address_space.
3082 *
3083 * We can take all the locks in random order because the VM code
3084 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3085 * takes more than one of them in a row. Secondly we're protected
3086 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3087 *
3088 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3089 * that may have to take thousand of locks.
3090 *
3091 * mm_take_all_locks() can fail if it's interrupted by signals.
3092 */
3093 int mm_take_all_locks(struct mm_struct *mm)
3094 {
3095 struct vm_area_struct *vma;
3096 struct anon_vma_chain *avc;
3097
3098 BUG_ON(down_read_trylock(&mm->mmap_sem));
3099
3100 mutex_lock(&mm_all_locks_mutex);
3101
3102 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3103 if (signal_pending(current))
3104 goto out_unlock;
3105 if (vma->vm_file && vma->vm_file->f_mapping)
3106 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3107 }
3108
3109 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3110 if (signal_pending(current))
3111 goto out_unlock;
3112 if (vma->anon_vma)
3113 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3114 vm_lock_anon_vma(mm, avc->anon_vma);
3115 }
3116
3117 return 0;
3118
3119 out_unlock:
3120 mm_drop_all_locks(mm);
3121 return -EINTR;
3122 }
3123
3124 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3125 {
3126 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3127 /*
3128 * The LSB of head.next can't change to 0 from under
3129 * us because we hold the mm_all_locks_mutex.
3130 *
3131 * We must however clear the bitflag before unlocking
3132 * the vma so the users using the anon_vma->rb_root will
3133 * never see our bitflag.
3134 *
3135 * No need of atomic instructions here, head.next
3136 * can't change from under us until we release the
3137 * anon_vma->root->rwsem.
3138 */
3139 if (!__test_and_clear_bit(0, (unsigned long *)
3140 &anon_vma->root->rb_root.rb_node))
3141 BUG();
3142 anon_vma_unlock_write(anon_vma);
3143 }
3144 }
3145
3146 static void vm_unlock_mapping(struct address_space *mapping)
3147 {
3148 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3149 /*
3150 * AS_MM_ALL_LOCKS can't change to 0 from under us
3151 * because we hold the mm_all_locks_mutex.
3152 */
3153 mutex_unlock(&mapping->i_mmap_mutex);
3154 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3155 &mapping->flags))
3156 BUG();
3157 }
3158 }
3159
3160 /*
3161 * The mmap_sem cannot be released by the caller until
3162 * mm_drop_all_locks() returns.
3163 */
3164 void mm_drop_all_locks(struct mm_struct *mm)
3165 {
3166 struct vm_area_struct *vma;
3167 struct anon_vma_chain *avc;
3168
3169 BUG_ON(down_read_trylock(&mm->mmap_sem));
3170 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3171
3172 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3173 if (vma->anon_vma)
3174 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3175 vm_unlock_anon_vma(avc->anon_vma);
3176 if (vma->vm_file && vma->vm_file->f_mapping)
3177 vm_unlock_mapping(vma->vm_file->f_mapping);
3178 }
3179
3180 mutex_unlock(&mm_all_locks_mutex);
3181 }
3182
3183 /*
3184 * initialise the VMA slab
3185 */
3186 void __init mmap_init(void)
3187 {
3188 int ret;
3189
3190 ret = percpu_counter_init(&vm_committed_as, 0);
3191 VM_BUG_ON(ret);
3192 }
3193
3194 /*
3195 * Initialise sysctl_user_reserve_kbytes.
3196 *
3197 * This is intended to prevent a user from starting a single memory hogging
3198 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3199 * mode.
3200 *
3201 * The default value is min(3% of free memory, 128MB)
3202 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3203 */
3204 static int init_user_reserve(void)
3205 {
3206 unsigned long free_kbytes;
3207
3208 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3209
3210 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3211 return 0;
3212 }
3213 module_init(init_user_reserve)
3214
3215 /*
3216 * Initialise sysctl_admin_reserve_kbytes.
3217 *
3218 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3219 * to log in and kill a memory hogging process.
3220 *
3221 * Systems with more than 256MB will reserve 8MB, enough to recover
3222 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3223 * only reserve 3% of free pages by default.
3224 */
3225 static int init_admin_reserve(void)
3226 {
3227 unsigned long free_kbytes;
3228
3229 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3230
3231 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3232 return 0;
3233 }
3234 module_init(init_admin_reserve)
3235
3236 /*
3237 * Reinititalise user and admin reserves if memory is added or removed.
3238 *
3239 * The default user reserve max is 128MB, and the default max for the
3240 * admin reserve is 8MB. These are usually, but not always, enough to
3241 * enable recovery from a memory hogging process using login/sshd, a shell,
3242 * and tools like top. It may make sense to increase or even disable the
3243 * reserve depending on the existence of swap or variations in the recovery
3244 * tools. So, the admin may have changed them.
3245 *
3246 * If memory is added and the reserves have been eliminated or increased above
3247 * the default max, then we'll trust the admin.
3248 *
3249 * If memory is removed and there isn't enough free memory, then we
3250 * need to reset the reserves.
3251 *
3252 * Otherwise keep the reserve set by the admin.
3253 */
3254 static int reserve_mem_notifier(struct notifier_block *nb,
3255 unsigned long action, void *data)
3256 {
3257 unsigned long tmp, free_kbytes;
3258
3259 switch (action) {
3260 case MEM_ONLINE:
3261 /* Default max is 128MB. Leave alone if modified by operator. */
3262 tmp = sysctl_user_reserve_kbytes;
3263 if (0 < tmp && tmp < (1UL << 17))
3264 init_user_reserve();
3265
3266 /* Default max is 8MB. Leave alone if modified by operator. */
3267 tmp = sysctl_admin_reserve_kbytes;
3268 if (0 < tmp && tmp < (1UL << 13))
3269 init_admin_reserve();
3270
3271 break;
3272 case MEM_OFFLINE:
3273 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3274
3275 if (sysctl_user_reserve_kbytes > free_kbytes) {
3276 init_user_reserve();
3277 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3278 sysctl_user_reserve_kbytes);
3279 }
3280
3281 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3282 init_admin_reserve();
3283 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3284 sysctl_admin_reserve_kbytes);
3285 }
3286 break;
3287 default:
3288 break;
3289 }
3290 return NOTIFY_OK;
3291 }
3292
3293 static struct notifier_block reserve_mem_nb = {
3294 .notifier_call = reserve_mem_notifier,
3295 };
3296
3297 static int __meminit init_reserve_notifier(void)
3298 {
3299 if (register_hotmemory_notifier(&reserve_mem_nb))
3300 printk("Failed registering memory add/remove notifier for admin reserve");
3301
3302 return 0;
3303 }
3304 module_init(init_reserve_notifier)