Merge tag 'v3.10.107' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/syscalls.h>
18 #include <linux/capability.h>
19 #include <linux/init.h>
20 #include <linux/file.h>
21 #include <linux/fs.h>
22 #include <linux/personality.h>
23 #include <linux/security.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 #include <linux/audit.h>
33 #include <linux/khugepaged.h>
34 #include <linux/uprobes.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/notifier.h>
38 #include <linux/memory.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44
45 #include "internal.h"
46
47 #ifndef arch_mmap_check
48 #define arch_mmap_check(addr, len, flags) (0)
49 #endif
50
51 #ifndef arch_rebalance_pgtables
52 #define arch_rebalance_pgtables(addr, len) (addr)
53 #endif
54
55 static void unmap_region(struct mm_struct *mm,
56 struct vm_area_struct *vma, struct vm_area_struct *prev,
57 unsigned long start, unsigned long end);
58
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
62 *
63 * map_type prot
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 *
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 *
73 */
74 pgprot_t protection_map[16] = {
75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81 return __pgprot(pgprot_val(protection_map[vm_flags &
82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
91 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
92 /*
93 * Make sure vm_committed_as in one cacheline and not cacheline shared with
94 * other variables. It can be updated by several CPUs frequently.
95 */
96 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
97
98 /*
99 * The global memory commitment made in the system can be a metric
100 * that can be used to drive ballooning decisions when Linux is hosted
101 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
102 * balancing memory across competing virtual machines that are hosted.
103 * Several metrics drive this policy engine including the guest reported
104 * memory commitment.
105 */
106 unsigned long vm_memory_committed(void)
107 {
108 return percpu_counter_read_positive(&vm_committed_as);
109 }
110 EXPORT_SYMBOL_GPL(vm_memory_committed);
111
112 /*
113 * Check that a process has enough memory to allocate a new virtual
114 * mapping. 0 means there is enough memory for the allocation to
115 * succeed and -ENOMEM implies there is not.
116 *
117 * We currently support three overcommit policies, which are set via the
118 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
119 *
120 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
121 * Additional code 2002 Jul 20 by Robert Love.
122 *
123 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
124 *
125 * Note this is a helper function intended to be used by LSMs which
126 * wish to use this logic.
127 */
128 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
129 {
130 long free, allowed, reserve;
131
132 vm_acct_memory(pages);
133
134 /*
135 * Sometimes we want to use more memory than we have
136 */
137 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
138 return 0;
139
140 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
141 free = global_page_state(NR_FREE_PAGES);
142 free += global_page_state(NR_FILE_PAGES);
143
144 /*
145 * shmem pages shouldn't be counted as free in this
146 * case, they can't be purged, only swapped out, and
147 * that won't affect the overall amount of available
148 * memory in the system.
149 */
150 free -= global_page_state(NR_SHMEM);
151
152 free += get_nr_swap_pages();
153
154 /*
155 * Any slabs which are created with the
156 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
157 * which are reclaimable, under pressure. The dentry
158 * cache and most inode caches should fall into this
159 */
160 free += global_page_state(NR_SLAB_RECLAIMABLE);
161
162 /*
163 * Leave reserved pages. The pages are not for anonymous pages.
164 */
165 if (free <= totalreserve_pages)
166 goto error;
167 else
168 free -= totalreserve_pages;
169
170 /*
171 * Reserve some for root
172 */
173 if (!cap_sys_admin)
174 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
175
176 if (free > pages)
177 return 0;
178
179 goto error;
180 }
181
182 allowed = (totalram_pages - hugetlb_total_pages())
183 * sysctl_overcommit_ratio / 100;
184 /*
185 * Reserve some for root
186 */
187 if (!cap_sys_admin)
188 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
189 allowed += total_swap_pages;
190
191 /*
192 * Don't let a single process grow so big a user can't recover
193 */
194 if (mm) {
195 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
196 allowed -= min_t(long, mm->total_vm / 32, reserve);
197 }
198
199 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
200 return 0;
201 error:
202 vm_unacct_memory(pages);
203
204 return -ENOMEM;
205 }
206
207 /*
208 * Requires inode->i_mapping->i_mmap_mutex
209 */
210 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
211 struct file *file, struct address_space *mapping)
212 {
213 if (vma->vm_flags & VM_DENYWRITE)
214 atomic_inc(&file_inode(file)->i_writecount);
215 if (vma->vm_flags & VM_SHARED)
216 mapping->i_mmap_writable--;
217
218 flush_dcache_mmap_lock(mapping);
219 if (unlikely(vma->vm_flags & VM_NONLINEAR))
220 list_del_init(&vma->shared.nonlinear);
221 else
222 vma_interval_tree_remove(vma, &mapping->i_mmap);
223 flush_dcache_mmap_unlock(mapping);
224 }
225
226 /*
227 * Unlink a file-based vm structure from its interval tree, to hide
228 * vma from rmap and vmtruncate before freeing its page tables.
229 */
230 void unlink_file_vma(struct vm_area_struct *vma)
231 {
232 struct file *file = vma->vm_file;
233
234 if (file) {
235 struct address_space *mapping = file->f_mapping;
236 mutex_lock(&mapping->i_mmap_mutex);
237 __remove_shared_vm_struct(vma, file, mapping);
238 mutex_unlock(&mapping->i_mmap_mutex);
239 }
240 }
241
242 /*
243 * Close a vm structure and free it, returning the next.
244 */
245 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
246 {
247 struct vm_area_struct *next = vma->vm_next;
248
249 might_sleep();
250 if (vma->vm_ops && vma->vm_ops->close)
251 vma->vm_ops->close(vma);
252 if (vma->vm_file)
253 fput(vma->vm_file);
254 mpol_put(vma_policy(vma));
255 kmem_cache_free(vm_area_cachep, vma);
256 return next;
257 }
258
259 static unsigned long do_brk(unsigned long addr, unsigned long len);
260
261 SYSCALL_DEFINE1(brk, unsigned long, brk)
262 {
263 unsigned long rlim, retval;
264 unsigned long newbrk, oldbrk;
265 struct mm_struct *mm = current->mm;
266 struct vm_area_struct *next;
267 unsigned long min_brk;
268 bool populate;
269
270 down_write(&mm->mmap_sem);
271
272 #ifdef CONFIG_COMPAT_BRK
273 /*
274 * CONFIG_COMPAT_BRK can still be overridden by setting
275 * randomize_va_space to 2, which will still cause mm->start_brk
276 * to be arbitrarily shifted
277 */
278 if (current->brk_randomized)
279 min_brk = mm->start_brk;
280 else
281 min_brk = mm->end_data;
282 #else
283 min_brk = mm->start_brk;
284 #endif
285 if (brk < min_brk)
286 goto out;
287
288 /*
289 * Check against rlimit here. If this check is done later after the test
290 * of oldbrk with newbrk then it can escape the test and let the data
291 * segment grow beyond its set limit the in case where the limit is
292 * not page aligned -Ram Gupta
293 */
294 rlim = rlimit(RLIMIT_DATA);
295 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
296 (mm->end_data - mm->start_data) > rlim)
297 goto out;
298
299 newbrk = PAGE_ALIGN(brk);
300 oldbrk = PAGE_ALIGN(mm->brk);
301 if (oldbrk == newbrk)
302 goto set_brk;
303
304 /* Always allow shrinking brk. */
305 if (brk <= mm->brk) {
306 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
307 goto set_brk;
308 goto out;
309 }
310
311 /* Check against existing mmap mappings. */
312 next = find_vma(mm, oldbrk);
313 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
314 goto out;
315
316 /* Ok, looks good - let it rip. */
317 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
318 goto out;
319
320 set_brk:
321 mm->brk = brk;
322 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
323 up_write(&mm->mmap_sem);
324 if (populate)
325 mm_populate(oldbrk, newbrk - oldbrk);
326 return brk;
327
328 out:
329 retval = mm->brk;
330 up_write(&mm->mmap_sem);
331 return retval;
332 }
333
334 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
335 {
336 unsigned long max, prev_end, subtree_gap;
337
338 /*
339 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
340 * allow two stack_guard_gaps between them here, and when choosing
341 * an unmapped area; whereas when expanding we only require one.
342 * That's a little inconsistent, but keeps the code here simpler.
343 */
344 max = vm_start_gap(vma);
345 if (vma->vm_prev) {
346 prev_end = vm_end_gap(vma->vm_prev);
347 if (max > prev_end)
348 max -= prev_end;
349 else
350 max = 0;
351 }
352 if (vma->vm_rb.rb_left) {
353 subtree_gap = rb_entry(vma->vm_rb.rb_left,
354 struct vm_area_struct, vm_rb)->rb_subtree_gap;
355 if (subtree_gap > max)
356 max = subtree_gap;
357 }
358 if (vma->vm_rb.rb_right) {
359 subtree_gap = rb_entry(vma->vm_rb.rb_right,
360 struct vm_area_struct, vm_rb)->rb_subtree_gap;
361 if (subtree_gap > max)
362 max = subtree_gap;
363 }
364 return max;
365 }
366
367 #ifdef CONFIG_DEBUG_VM_RB
368 static int browse_rb(struct rb_root *root)
369 {
370 int i = 0, j, bug = 0;
371 struct rb_node *nd, *pn = NULL;
372 unsigned long prev = 0, pend = 0;
373
374 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
375 struct vm_area_struct *vma;
376 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
377 if (vma->vm_start < prev) {
378 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
379 bug = 1;
380 }
381 if (vma->vm_start < pend) {
382 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
383 bug = 1;
384 }
385 if (vma->vm_start > vma->vm_end) {
386 printk("vm_end %lx < vm_start %lx\n",
387 vma->vm_end, vma->vm_start);
388 bug = 1;
389 }
390 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
391 printk("free gap %lx, correct %lx\n",
392 vma->rb_subtree_gap,
393 vma_compute_subtree_gap(vma));
394 bug = 1;
395 }
396 i++;
397 pn = nd;
398 prev = vma->vm_start;
399 pend = vma->vm_end;
400 }
401 j = 0;
402 for (nd = pn; nd; nd = rb_prev(nd))
403 j++;
404 if (i != j) {
405 printk("backwards %d, forwards %d\n", j, i);
406 bug = 1;
407 }
408 return bug ? -1 : i;
409 }
410
411 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
412 {
413 struct rb_node *nd;
414
415 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
416 struct vm_area_struct *vma;
417 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
418 BUG_ON(vma != ignore &&
419 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
420 }
421 }
422
423 void validate_mm(struct mm_struct *mm)
424 {
425 int bug = 0;
426 int i = 0;
427 unsigned long highest_address = 0;
428 struct vm_area_struct *vma = mm->mmap;
429 while (vma) {
430 struct anon_vma_chain *avc;
431 vma_lock_anon_vma(vma);
432 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
433 anon_vma_interval_tree_verify(avc);
434 vma_unlock_anon_vma(vma);
435 highest_address = vm_end_gap(vma);
436 vma = vma->vm_next;
437 i++;
438 }
439 if (i != mm->map_count) {
440 printk("map_count %d vm_next %d\n", mm->map_count, i);
441 bug = 1;
442 }
443 if (highest_address != mm->highest_vm_end) {
444 printk("mm->highest_vm_end %lx, found %lx\n",
445 mm->highest_vm_end, highest_address);
446 bug = 1;
447 }
448 i = browse_rb(&mm->mm_rb);
449 if (i != mm->map_count) {
450 printk("map_count %d rb %d\n", mm->map_count, i);
451 bug = 1;
452 }
453 BUG_ON(bug);
454 }
455 #else
456 #define validate_mm_rb(root, ignore) do { } while (0)
457 #define validate_mm(mm) do { } while (0)
458 #endif
459
460 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
461 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
462
463 /*
464 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
465 * vma->vm_prev->vm_end values changed, without modifying the vma's position
466 * in the rbtree.
467 */
468 static void vma_gap_update(struct vm_area_struct *vma)
469 {
470 /*
471 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
472 * function that does exacltly what we want.
473 */
474 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
475 }
476
477 static inline void vma_rb_insert(struct vm_area_struct *vma,
478 struct rb_root *root)
479 {
480 /* All rb_subtree_gap values must be consistent prior to insertion */
481 validate_mm_rb(root, NULL);
482
483 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
484 }
485
486 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
487 {
488 /*
489 * All rb_subtree_gap values must be consistent prior to erase,
490 * with the possible exception of the vma being erased.
491 */
492 validate_mm_rb(root, vma);
493
494 /*
495 * Note rb_erase_augmented is a fairly large inline function,
496 * so make sure we instantiate it only once with our desired
497 * augmented rbtree callbacks.
498 */
499 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
500 }
501
502 /*
503 * vma has some anon_vma assigned, and is already inserted on that
504 * anon_vma's interval trees.
505 *
506 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
507 * vma must be removed from the anon_vma's interval trees using
508 * anon_vma_interval_tree_pre_update_vma().
509 *
510 * After the update, the vma will be reinserted using
511 * anon_vma_interval_tree_post_update_vma().
512 *
513 * The entire update must be protected by exclusive mmap_sem and by
514 * the root anon_vma's mutex.
515 */
516 static inline void
517 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
518 {
519 struct anon_vma_chain *avc;
520
521 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
522 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
523 }
524
525 static inline void
526 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
527 {
528 struct anon_vma_chain *avc;
529
530 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
531 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
532 }
533
534 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
535 unsigned long end, struct vm_area_struct **pprev,
536 struct rb_node ***rb_link, struct rb_node **rb_parent)
537 {
538 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
539
540 __rb_link = &mm->mm_rb.rb_node;
541 rb_prev = __rb_parent = NULL;
542
543 while (*__rb_link) {
544 struct vm_area_struct *vma_tmp;
545
546 __rb_parent = *__rb_link;
547 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
548
549 if (vma_tmp->vm_end > addr) {
550 /* Fail if an existing vma overlaps the area */
551 if (vma_tmp->vm_start < end)
552 return -ENOMEM;
553 __rb_link = &__rb_parent->rb_left;
554 } else {
555 rb_prev = __rb_parent;
556 __rb_link = &__rb_parent->rb_right;
557 }
558 }
559
560 *pprev = NULL;
561 if (rb_prev)
562 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
563 *rb_link = __rb_link;
564 *rb_parent = __rb_parent;
565 return 0;
566 }
567
568 static unsigned long count_vma_pages_range(struct mm_struct *mm,
569 unsigned long addr, unsigned long end)
570 {
571 unsigned long nr_pages = 0;
572 struct vm_area_struct *vma;
573
574 /* Find first overlaping mapping */
575 vma = find_vma_intersection(mm, addr, end);
576 if (!vma)
577 return 0;
578
579 nr_pages = (min(end, vma->vm_end) -
580 max(addr, vma->vm_start)) >> PAGE_SHIFT;
581
582 /* Iterate over the rest of the overlaps */
583 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
584 unsigned long overlap_len;
585
586 if (vma->vm_start > end)
587 break;
588
589 overlap_len = min(end, vma->vm_end) - vma->vm_start;
590 nr_pages += overlap_len >> PAGE_SHIFT;
591 }
592
593 return nr_pages;
594 }
595
596 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
597 struct rb_node **rb_link, struct rb_node *rb_parent)
598 {
599 /* Update tracking information for the gap following the new vma. */
600 if (vma->vm_next)
601 vma_gap_update(vma->vm_next);
602 else
603 mm->highest_vm_end = vm_end_gap(vma);
604
605 /*
606 * vma->vm_prev wasn't known when we followed the rbtree to find the
607 * correct insertion point for that vma. As a result, we could not
608 * update the vma vm_rb parents rb_subtree_gap values on the way down.
609 * So, we first insert the vma with a zero rb_subtree_gap value
610 * (to be consistent with what we did on the way down), and then
611 * immediately update the gap to the correct value. Finally we
612 * rebalance the rbtree after all augmented values have been set.
613 */
614 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
615 vma->rb_subtree_gap = 0;
616 vma_gap_update(vma);
617 vma_rb_insert(vma, &mm->mm_rb);
618 }
619
620 static void __vma_link_file(struct vm_area_struct *vma)
621 {
622 struct file *file;
623
624 file = vma->vm_file;
625 if (file) {
626 struct address_space *mapping = file->f_mapping;
627
628 if (vma->vm_flags & VM_DENYWRITE)
629 atomic_dec(&file_inode(file)->i_writecount);
630 if (vma->vm_flags & VM_SHARED)
631 mapping->i_mmap_writable++;
632
633 flush_dcache_mmap_lock(mapping);
634 if (unlikely(vma->vm_flags & VM_NONLINEAR))
635 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
636 else
637 vma_interval_tree_insert(vma, &mapping->i_mmap);
638 flush_dcache_mmap_unlock(mapping);
639 }
640 }
641
642 static void
643 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
644 struct vm_area_struct *prev, struct rb_node **rb_link,
645 struct rb_node *rb_parent)
646 {
647 __vma_link_list(mm, vma, prev, rb_parent);
648 __vma_link_rb(mm, vma, rb_link, rb_parent);
649 }
650
651 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
652 struct vm_area_struct *prev, struct rb_node **rb_link,
653 struct rb_node *rb_parent)
654 {
655 struct address_space *mapping = NULL;
656
657 if (vma->vm_file)
658 mapping = vma->vm_file->f_mapping;
659
660 if (mapping)
661 mutex_lock(&mapping->i_mmap_mutex);
662
663 __vma_link(mm, vma, prev, rb_link, rb_parent);
664 __vma_link_file(vma);
665
666 if (mapping)
667 mutex_unlock(&mapping->i_mmap_mutex);
668
669 mm->map_count++;
670 validate_mm(mm);
671 }
672
673 /*
674 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
675 * mm's list and rbtree. It has already been inserted into the interval tree.
676 */
677 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
678 {
679 struct vm_area_struct *prev;
680 struct rb_node **rb_link, *rb_parent;
681
682 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
683 &prev, &rb_link, &rb_parent))
684 BUG();
685 __vma_link(mm, vma, prev, rb_link, rb_parent);
686 mm->map_count++;
687 }
688
689 static inline void
690 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
691 struct vm_area_struct *prev)
692 {
693 struct vm_area_struct *next;
694
695 vma_rb_erase(vma, &mm->mm_rb);
696 prev->vm_next = next = vma->vm_next;
697 if (next)
698 next->vm_prev = prev;
699 if (mm->mmap_cache == vma)
700 mm->mmap_cache = prev;
701 }
702
703 /*
704 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
705 * is already present in an i_mmap tree without adjusting the tree.
706 * The following helper function should be used when such adjustments
707 * are necessary. The "insert" vma (if any) is to be inserted
708 * before we drop the necessary locks.
709 */
710 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
711 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
712 {
713 struct mm_struct *mm = vma->vm_mm;
714 struct vm_area_struct *next = vma->vm_next;
715 struct vm_area_struct *importer = NULL;
716 struct address_space *mapping = NULL;
717 struct rb_root *root = NULL;
718 struct anon_vma *anon_vma = NULL;
719 struct file *file = vma->vm_file;
720 bool start_changed = false, end_changed = false;
721 long adjust_next = 0;
722 int remove_next = 0;
723
724 if (next && !insert) {
725 struct vm_area_struct *exporter = NULL;
726
727 if (end >= next->vm_end) {
728 /*
729 * vma expands, overlapping all the next, and
730 * perhaps the one after too (mprotect case 6).
731 */
732 again: remove_next = 1 + (end > next->vm_end);
733 end = next->vm_end;
734 exporter = next;
735 importer = vma;
736 } else if (end > next->vm_start) {
737 /*
738 * vma expands, overlapping part of the next:
739 * mprotect case 5 shifting the boundary up.
740 */
741 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
742 exporter = next;
743 importer = vma;
744 } else if (end < vma->vm_end) {
745 /*
746 * vma shrinks, and !insert tells it's not
747 * split_vma inserting another: so it must be
748 * mprotect case 4 shifting the boundary down.
749 */
750 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
751 exporter = vma;
752 importer = next;
753 }
754
755 /*
756 * Easily overlooked: when mprotect shifts the boundary,
757 * make sure the expanding vma has anon_vma set if the
758 * shrinking vma had, to cover any anon pages imported.
759 */
760 if (exporter && exporter->anon_vma && !importer->anon_vma) {
761 if (anon_vma_clone(importer, exporter))
762 return -ENOMEM;
763 importer->anon_vma = exporter->anon_vma;
764 }
765 }
766
767 if (file) {
768 mapping = file->f_mapping;
769 if (!(vma->vm_flags & VM_NONLINEAR)) {
770 root = &mapping->i_mmap;
771 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
772
773 if (adjust_next)
774 uprobe_munmap(next, next->vm_start,
775 next->vm_end);
776 }
777
778 mutex_lock(&mapping->i_mmap_mutex);
779 if (insert) {
780 /*
781 * Put into interval tree now, so instantiated pages
782 * are visible to arm/parisc __flush_dcache_page
783 * throughout; but we cannot insert into address
784 * space until vma start or end is updated.
785 */
786 __vma_link_file(insert);
787 }
788 }
789
790 vma_adjust_trans_huge(vma, start, end, adjust_next);
791
792 anon_vma = vma->anon_vma;
793 if (!anon_vma && adjust_next)
794 anon_vma = next->anon_vma;
795 if (anon_vma) {
796 VM_BUG_ON(adjust_next && next->anon_vma &&
797 anon_vma != next->anon_vma);
798 anon_vma_lock_write(anon_vma);
799 anon_vma_interval_tree_pre_update_vma(vma);
800 if (adjust_next)
801 anon_vma_interval_tree_pre_update_vma(next);
802 }
803
804 if (root) {
805 flush_dcache_mmap_lock(mapping);
806 vma_interval_tree_remove(vma, root);
807 if (adjust_next)
808 vma_interval_tree_remove(next, root);
809 }
810
811 if (start != vma->vm_start) {
812 vma->vm_start = start;
813 start_changed = true;
814 }
815 if (end != vma->vm_end) {
816 vma->vm_end = end;
817 end_changed = true;
818 }
819 vma->vm_pgoff = pgoff;
820 if (adjust_next) {
821 next->vm_start += adjust_next << PAGE_SHIFT;
822 next->vm_pgoff += adjust_next;
823 }
824
825 if (root) {
826 if (adjust_next)
827 vma_interval_tree_insert(next, root);
828 vma_interval_tree_insert(vma, root);
829 flush_dcache_mmap_unlock(mapping);
830 }
831
832 if (remove_next) {
833 /*
834 * vma_merge has merged next into vma, and needs
835 * us to remove next before dropping the locks.
836 */
837 __vma_unlink(mm, next, vma);
838 if (file)
839 __remove_shared_vm_struct(next, file, mapping);
840 } else if (insert) {
841 /*
842 * split_vma has split insert from vma, and needs
843 * us to insert it before dropping the locks
844 * (it may either follow vma or precede it).
845 */
846 __insert_vm_struct(mm, insert);
847 } else {
848 if (start_changed)
849 vma_gap_update(vma);
850 if (end_changed) {
851 if (!next)
852 mm->highest_vm_end = vm_end_gap(vma);
853 else if (!adjust_next)
854 vma_gap_update(next);
855 }
856 }
857
858 if (anon_vma) {
859 anon_vma_interval_tree_post_update_vma(vma);
860 if (adjust_next)
861 anon_vma_interval_tree_post_update_vma(next);
862 anon_vma_unlock_write(anon_vma);
863 }
864 if (mapping)
865 mutex_unlock(&mapping->i_mmap_mutex);
866
867 if (root) {
868 uprobe_mmap(vma);
869
870 if (adjust_next)
871 uprobe_mmap(next);
872 }
873
874 if (remove_next) {
875 if (file) {
876 uprobe_munmap(next, next->vm_start, next->vm_end);
877 fput(file);
878 }
879 if (next->anon_vma)
880 anon_vma_merge(vma, next);
881 mm->map_count--;
882 mpol_put(vma_policy(next));
883 kmem_cache_free(vm_area_cachep, next);
884 /*
885 * In mprotect's case 6 (see comments on vma_merge),
886 * we must remove another next too. It would clutter
887 * up the code too much to do both in one go.
888 */
889 next = vma->vm_next;
890 if (remove_next == 2)
891 goto again;
892 else if (next)
893 vma_gap_update(next);
894 else
895 WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
896 }
897 if (insert && file)
898 uprobe_mmap(insert);
899
900 validate_mm(mm);
901
902 return 0;
903 }
904
905 /*
906 * If the vma has a ->close operation then the driver probably needs to release
907 * per-vma resources, so we don't attempt to merge those.
908 */
909 static inline int is_mergeable_vma(struct vm_area_struct *vma,
910 struct file *file, unsigned long vm_flags,
911 const char __user *anon_name)
912 {
913 if (vma->vm_flags ^ vm_flags)
914 return 0;
915 if (vma->vm_file != file)
916 return 0;
917 if (vma->vm_ops && vma->vm_ops->close)
918 return 0;
919 if (vma_get_anon_name(vma) != anon_name)
920 return 0;
921 return 1;
922 }
923
924 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
925 struct anon_vma *anon_vma2,
926 struct vm_area_struct *vma)
927 {
928 /*
929 * The list_is_singular() test is to avoid merging VMA cloned from
930 * parents. This can improve scalability caused by anon_vma lock.
931 */
932 if ((!anon_vma1 || !anon_vma2) && (!vma ||
933 list_is_singular(&vma->anon_vma_chain)))
934 return 1;
935 return anon_vma1 == anon_vma2;
936 }
937
938 /*
939 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
940 * in front of (at a lower virtual address and file offset than) the vma.
941 *
942 * We cannot merge two vmas if they have differently assigned (non-NULL)
943 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
944 *
945 * We don't check here for the merged mmap wrapping around the end of pagecache
946 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
947 * wrap, nor mmaps which cover the final page at index -1UL.
948 */
949 static int
950 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
951 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff,
952 const char __user *anon_name)
953 {
954 if (is_mergeable_vma(vma, file, vm_flags, anon_name) &&
955 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
956 if (vma->vm_pgoff == vm_pgoff)
957 return 1;
958 }
959 return 0;
960 }
961
962 /*
963 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
964 * beyond (at a higher virtual address and file offset than) the vma.
965 *
966 * We cannot merge two vmas if they have differently assigned (non-NULL)
967 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
968 */
969 static int
970 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
971 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff,
972 const char __user *anon_name)
973 {
974 if (is_mergeable_vma(vma, file, vm_flags, anon_name) &&
975 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
976 pgoff_t vm_pglen;
977 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
978 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
979 return 1;
980 }
981 return 0;
982 }
983
984 /*
985 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
986 * figure out whether that can be merged with its predecessor or its
987 * successor. Or both (it neatly fills a hole).
988 *
989 * In most cases - when called for mmap, brk or mremap - [addr,end) is
990 * certain not to be mapped by the time vma_merge is called; but when
991 * called for mprotect, it is certain to be already mapped (either at
992 * an offset within prev, or at the start of next), and the flags of
993 * this area are about to be changed to vm_flags - and the no-change
994 * case has already been eliminated.
995 *
996 * The following mprotect cases have to be considered, where AAAA is
997 * the area passed down from mprotect_fixup, never extending beyond one
998 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
999 *
1000 * AAAA AAAA AAAA AAAA
1001 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1002 * cannot merge might become might become might become
1003 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1004 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1005 * mremap move: PPPPNNNNNNNN 8
1006 * AAAA
1007 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1008 * might become case 1 below case 2 below case 3 below
1009 *
1010 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1011 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1012 */
1013 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1014 struct vm_area_struct *prev, unsigned long addr,
1015 unsigned long end, unsigned long vm_flags,
1016 struct anon_vma *anon_vma, struct file *file,
1017 pgoff_t pgoff, struct mempolicy *policy,
1018 const char __user *anon_name)
1019 {
1020 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1021 struct vm_area_struct *area, *next;
1022 int err;
1023
1024 /*
1025 * We later require that vma->vm_flags == vm_flags,
1026 * so this tests vma->vm_flags & VM_SPECIAL, too.
1027 */
1028 if (vm_flags & VM_SPECIAL)
1029 return NULL;
1030
1031 if (prev)
1032 next = prev->vm_next;
1033 else
1034 next = mm->mmap;
1035 area = next;
1036 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1037 next = next->vm_next;
1038
1039 /*
1040 * Can it merge with the predecessor?
1041 */
1042 if (prev && prev->vm_end == addr &&
1043 mpol_equal(vma_policy(prev), policy) &&
1044 can_vma_merge_after(prev, vm_flags, anon_vma,
1045 file, pgoff, anon_name)) {
1046 /*
1047 * OK, it can. Can we now merge in the successor as well?
1048 */
1049 if (next && end == next->vm_start &&
1050 mpol_equal(policy, vma_policy(next)) &&
1051 can_vma_merge_before(next, vm_flags, anon_vma,
1052 file, pgoff+pglen, anon_name) &&
1053 is_mergeable_anon_vma(prev->anon_vma,
1054 next->anon_vma, NULL)) {
1055 /* cases 1, 6 */
1056 err = vma_adjust(prev, prev->vm_start,
1057 next->vm_end, prev->vm_pgoff, NULL);
1058 } else /* cases 2, 5, 7 */
1059 err = vma_adjust(prev, prev->vm_start,
1060 end, prev->vm_pgoff, NULL);
1061 if (err)
1062 return NULL;
1063 khugepaged_enter_vma_merge(prev);
1064 return prev;
1065 }
1066
1067 /*
1068 * Can this new request be merged in front of next?
1069 */
1070 if (next && end == next->vm_start &&
1071 mpol_equal(policy, vma_policy(next)) &&
1072 can_vma_merge_before(next, vm_flags, anon_vma,
1073 file, pgoff+pglen, anon_name)) {
1074 if (prev && addr < prev->vm_end) /* case 4 */
1075 err = vma_adjust(prev, prev->vm_start,
1076 addr, prev->vm_pgoff, NULL);
1077 else /* cases 3, 8 */
1078 err = vma_adjust(area, addr, next->vm_end,
1079 next->vm_pgoff - pglen, NULL);
1080 if (err)
1081 return NULL;
1082 khugepaged_enter_vma_merge(area);
1083 return area;
1084 }
1085
1086 return NULL;
1087 }
1088
1089 /*
1090 * Rough compatbility check to quickly see if it's even worth looking
1091 * at sharing an anon_vma.
1092 *
1093 * They need to have the same vm_file, and the flags can only differ
1094 * in things that mprotect may change.
1095 *
1096 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1097 * we can merge the two vma's. For example, we refuse to merge a vma if
1098 * there is a vm_ops->close() function, because that indicates that the
1099 * driver is doing some kind of reference counting. But that doesn't
1100 * really matter for the anon_vma sharing case.
1101 */
1102 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1103 {
1104 return a->vm_end == b->vm_start &&
1105 mpol_equal(vma_policy(a), vma_policy(b)) &&
1106 a->vm_file == b->vm_file &&
1107 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1108 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1109 }
1110
1111 /*
1112 * Do some basic sanity checking to see if we can re-use the anon_vma
1113 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1114 * the same as 'old', the other will be the new one that is trying
1115 * to share the anon_vma.
1116 *
1117 * NOTE! This runs with mm_sem held for reading, so it is possible that
1118 * the anon_vma of 'old' is concurrently in the process of being set up
1119 * by another page fault trying to merge _that_. But that's ok: if it
1120 * is being set up, that automatically means that it will be a singleton
1121 * acceptable for merging, so we can do all of this optimistically. But
1122 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1123 *
1124 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1125 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1126 * is to return an anon_vma that is "complex" due to having gone through
1127 * a fork).
1128 *
1129 * We also make sure that the two vma's are compatible (adjacent,
1130 * and with the same memory policies). That's all stable, even with just
1131 * a read lock on the mm_sem.
1132 */
1133 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1134 {
1135 if (anon_vma_compatible(a, b)) {
1136 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1137
1138 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1139 return anon_vma;
1140 }
1141 return NULL;
1142 }
1143
1144 /*
1145 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1146 * neighbouring vmas for a suitable anon_vma, before it goes off
1147 * to allocate a new anon_vma. It checks because a repetitive
1148 * sequence of mprotects and faults may otherwise lead to distinct
1149 * anon_vmas being allocated, preventing vma merge in subsequent
1150 * mprotect.
1151 */
1152 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1153 {
1154 struct anon_vma *anon_vma;
1155 struct vm_area_struct *near;
1156
1157 near = vma->vm_next;
1158 if (!near)
1159 goto try_prev;
1160
1161 anon_vma = reusable_anon_vma(near, vma, near);
1162 if (anon_vma)
1163 return anon_vma;
1164 try_prev:
1165 near = vma->vm_prev;
1166 if (!near)
1167 goto none;
1168
1169 anon_vma = reusable_anon_vma(near, near, vma);
1170 if (anon_vma)
1171 return anon_vma;
1172 none:
1173 /*
1174 * There's no absolute need to look only at touching neighbours:
1175 * we could search further afield for "compatible" anon_vmas.
1176 * But it would probably just be a waste of time searching,
1177 * or lead to too many vmas hanging off the same anon_vma.
1178 * We're trying to allow mprotect remerging later on,
1179 * not trying to minimize memory used for anon_vmas.
1180 */
1181 return NULL;
1182 }
1183
1184 #ifdef CONFIG_PROC_FS
1185 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1186 struct file *file, long pages)
1187 {
1188 const unsigned long stack_flags
1189 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1190
1191 mm->total_vm += pages;
1192
1193 if (file) {
1194 mm->shared_vm += pages;
1195 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1196 mm->exec_vm += pages;
1197 } else if (flags & stack_flags)
1198 mm->stack_vm += pages;
1199 }
1200 #endif /* CONFIG_PROC_FS */
1201
1202 /*
1203 * If a hint addr is less than mmap_min_addr change hint to be as
1204 * low as possible but still greater than mmap_min_addr
1205 */
1206 static inline unsigned long round_hint_to_min(unsigned long hint)
1207 {
1208 hint &= PAGE_MASK;
1209 if (((void *)hint != NULL) &&
1210 (hint < mmap_min_addr))
1211 return PAGE_ALIGN(mmap_min_addr);
1212 return hint;
1213 }
1214
1215 /*
1216 * The caller must hold down_write(&current->mm->mmap_sem).
1217 */
1218
1219 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1220 unsigned long len, unsigned long prot,
1221 unsigned long flags, unsigned long pgoff,
1222 unsigned long *populate)
1223 {
1224 struct mm_struct * mm = current->mm;
1225 struct inode *inode;
1226 vm_flags_t vm_flags;
1227
1228 *populate = 0;
1229
1230 /*
1231 * Does the application expect PROT_READ to imply PROT_EXEC?
1232 *
1233 * (the exception is when the underlying filesystem is noexec
1234 * mounted, in which case we dont add PROT_EXEC.)
1235 */
1236 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1237 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1238 prot |= PROT_EXEC;
1239
1240 if (!len)
1241 return -EINVAL;
1242
1243 if (!(flags & MAP_FIXED))
1244 addr = round_hint_to_min(addr);
1245
1246 /* Careful about overflows.. */
1247 len = PAGE_ALIGN(len);
1248 if (!len)
1249 return -ENOMEM;
1250
1251 /* offset overflow? */
1252 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1253 return -EOVERFLOW;
1254
1255 /* Too many mappings? */
1256 if (mm->map_count > sysctl_max_map_count)
1257 return -ENOMEM;
1258
1259 /* Obtain the address to map to. we verify (or select) it and ensure
1260 * that it represents a valid section of the address space.
1261 */
1262 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1263 if (addr & ~PAGE_MASK)
1264 return addr;
1265
1266 /* Do simple checking here so the lower-level routines won't have
1267 * to. we assume access permissions have been handled by the open
1268 * of the memory object, so we don't do any here.
1269 */
1270 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1271 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1272
1273 if (flags & MAP_LOCKED)
1274 if (!can_do_mlock())
1275 return -EPERM;
1276
1277 /* mlock MCL_FUTURE? */
1278 if (vm_flags & VM_LOCKED) {
1279 unsigned long locked, lock_limit;
1280 locked = len >> PAGE_SHIFT;
1281 locked += mm->locked_vm;
1282 lock_limit = rlimit(RLIMIT_MEMLOCK);
1283 lock_limit >>= PAGE_SHIFT;
1284 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1285 return -EAGAIN;
1286 }
1287
1288 inode = file ? file_inode(file) : NULL;
1289
1290 if (file) {
1291 switch (flags & MAP_TYPE) {
1292 case MAP_SHARED:
1293 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1294 return -EACCES;
1295
1296 /*
1297 * Make sure we don't allow writing to an append-only
1298 * file..
1299 */
1300 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1301 return -EACCES;
1302
1303 /*
1304 * Make sure there are no mandatory locks on the file.
1305 */
1306 if (locks_verify_locked(inode))
1307 return -EAGAIN;
1308
1309 vm_flags |= VM_SHARED | VM_MAYSHARE;
1310 if (!(file->f_mode & FMODE_WRITE))
1311 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1312
1313 /* fall through */
1314 case MAP_PRIVATE:
1315 if (!(file->f_mode & FMODE_READ))
1316 return -EACCES;
1317 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1318 if (vm_flags & VM_EXEC)
1319 return -EPERM;
1320 vm_flags &= ~VM_MAYEXEC;
1321 }
1322
1323 if (!file->f_op || !file->f_op->mmap)
1324 return -ENODEV;
1325 break;
1326
1327 default:
1328 return -EINVAL;
1329 }
1330 } else {
1331 switch (flags & MAP_TYPE) {
1332 case MAP_SHARED:
1333 /*
1334 * Ignore pgoff.
1335 */
1336 pgoff = 0;
1337 vm_flags |= VM_SHARED | VM_MAYSHARE;
1338 break;
1339 case MAP_PRIVATE:
1340 /*
1341 * Set pgoff according to addr for anon_vma.
1342 */
1343 pgoff = addr >> PAGE_SHIFT;
1344 break;
1345 default:
1346 return -EINVAL;
1347 }
1348 }
1349
1350 /*
1351 * Set 'VM_NORESERVE' if we should not account for the
1352 * memory use of this mapping.
1353 */
1354 if (flags & MAP_NORESERVE) {
1355 /* We honor MAP_NORESERVE if allowed to overcommit */
1356 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1357 vm_flags |= VM_NORESERVE;
1358
1359 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1360 if (file && is_file_hugepages(file))
1361 vm_flags |= VM_NORESERVE;
1362 }
1363
1364 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1365 if (!IS_ERR_VALUE(addr) &&
1366 ((vm_flags & VM_LOCKED) ||
1367 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1368 *populate = len;
1369 return addr;
1370 }
1371
1372 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1373 unsigned long, prot, unsigned long, flags,
1374 unsigned long, fd, unsigned long, pgoff)
1375 {
1376 struct file *file = NULL;
1377 unsigned long retval = -EBADF;
1378
1379 if (!(flags & MAP_ANONYMOUS)) {
1380 audit_mmap_fd(fd, flags);
1381 if (unlikely(flags & MAP_HUGETLB))
1382 return -EINVAL;
1383 file = fget(fd);
1384 if (!file)
1385 goto out;
1386 if (is_file_hugepages(file))
1387 len = ALIGN(len, huge_page_size(hstate_file(file)));
1388 } else if (flags & MAP_HUGETLB) {
1389 struct user_struct *user = NULL;
1390 struct hstate *hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) &
1391 SHM_HUGE_MASK);
1392
1393 if (!hs)
1394 return -EINVAL;
1395
1396 len = ALIGN(len, huge_page_size(hs));
1397 /*
1398 * VM_NORESERVE is used because the reservations will be
1399 * taken when vm_ops->mmap() is called
1400 * A dummy user value is used because we are not locking
1401 * memory so no accounting is necessary
1402 */
1403 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1404 VM_NORESERVE,
1405 &user, HUGETLB_ANONHUGE_INODE,
1406 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1407 if (IS_ERR(file))
1408 return PTR_ERR(file);
1409 }
1410
1411 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1412
1413 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1414 if (file)
1415 fput(file);
1416 out:
1417 return retval;
1418 }
1419
1420 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1421 struct mmap_arg_struct {
1422 unsigned long addr;
1423 unsigned long len;
1424 unsigned long prot;
1425 unsigned long flags;
1426 unsigned long fd;
1427 unsigned long offset;
1428 };
1429
1430 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1431 {
1432 struct mmap_arg_struct a;
1433
1434 if (copy_from_user(&a, arg, sizeof(a)))
1435 return -EFAULT;
1436 if (a.offset & ~PAGE_MASK)
1437 return -EINVAL;
1438
1439 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1440 a.offset >> PAGE_SHIFT);
1441 }
1442 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1443
1444 /*
1445 * Some shared mappigns will want the pages marked read-only
1446 * to track write events. If so, we'll downgrade vm_page_prot
1447 * to the private version (using protection_map[] without the
1448 * VM_SHARED bit).
1449 */
1450 int vma_wants_writenotify(struct vm_area_struct *vma)
1451 {
1452 vm_flags_t vm_flags = vma->vm_flags;
1453
1454 /* If it was private or non-writable, the write bit is already clear */
1455 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1456 return 0;
1457
1458 /* The backer wishes to know when pages are first written to? */
1459 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1460 return 1;
1461
1462 /* The open routine did something to the protections already? */
1463 if (pgprot_val(vma->vm_page_prot) !=
1464 pgprot_val(vm_get_page_prot(vm_flags)))
1465 return 0;
1466
1467 /* Specialty mapping? */
1468 if (vm_flags & VM_PFNMAP)
1469 return 0;
1470
1471 /* Can the mapping track the dirty pages? */
1472 return vma->vm_file && vma->vm_file->f_mapping &&
1473 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1474 }
1475
1476 /*
1477 * We account for memory if it's a private writeable mapping,
1478 * not hugepages and VM_NORESERVE wasn't set.
1479 */
1480 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1481 {
1482 /*
1483 * hugetlb has its own accounting separate from the core VM
1484 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1485 */
1486 if (file && is_file_hugepages(file))
1487 return 0;
1488
1489 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1490 }
1491
1492 unsigned long mmap_region(struct file *file, unsigned long addr,
1493 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1494 {
1495 struct mm_struct *mm = current->mm;
1496 struct vm_area_struct *vma, *prev;
1497 int correct_wcount = 0;
1498 int error;
1499 struct rb_node **rb_link, *rb_parent;
1500 unsigned long charged = 0;
1501 struct inode *inode = file ? file_inode(file) : NULL;
1502
1503 /* Check against address space limit. */
1504 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1505 unsigned long nr_pages;
1506
1507 /*
1508 * MAP_FIXED may remove pages of mappings that intersects with
1509 * requested mapping. Account for the pages it would unmap.
1510 */
1511 if (!(vm_flags & MAP_FIXED))
1512 return -ENOMEM;
1513
1514 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1515
1516 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1517 return -ENOMEM;
1518 }
1519
1520 /* Clear old maps */
1521 error = -ENOMEM;
1522 munmap_back:
1523 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1524 if (do_munmap(mm, addr, len))
1525 return -ENOMEM;
1526 goto munmap_back;
1527 }
1528
1529 /*
1530 * Private writable mapping: check memory availability
1531 */
1532 if (accountable_mapping(file, vm_flags)) {
1533 charged = len >> PAGE_SHIFT;
1534 if (security_vm_enough_memory_mm(mm, charged))
1535 return -ENOMEM;
1536 vm_flags |= VM_ACCOUNT;
1537 }
1538
1539 /*
1540 * Can we just expand an old mapping?
1541 */
1542 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff,
1543 NULL, NULL);
1544 if (vma)
1545 goto out;
1546
1547 /*
1548 * Determine the object being mapped and call the appropriate
1549 * specific mapper. the address has already been validated, but
1550 * not unmapped, but the maps are removed from the list.
1551 */
1552 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1553 if (!vma) {
1554 error = -ENOMEM;
1555 goto unacct_error;
1556 }
1557
1558 vma->vm_mm = mm;
1559 vma->vm_start = addr;
1560 vma->vm_end = addr + len;
1561 vma->vm_flags = vm_flags;
1562 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1563 vma->vm_pgoff = pgoff;
1564 INIT_LIST_HEAD(&vma->anon_vma_chain);
1565
1566 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1567
1568 if (file) {
1569 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1570 goto free_vma;
1571 if (vm_flags & VM_DENYWRITE) {
1572 error = deny_write_access(file);
1573 if (error)
1574 goto free_vma;
1575 correct_wcount = 1;
1576 }
1577 vma->vm_file = get_file(file);
1578 error = file->f_op->mmap(file, vma);
1579 if (error)
1580 goto unmap_and_free_vma;
1581
1582 /* Can addr have changed??
1583 *
1584 * Answer: Yes, several device drivers can do it in their
1585 * f_op->mmap method. -DaveM
1586 * Bug: If addr is changed, prev, rb_link, rb_parent should
1587 * be updated for vma_link()
1588 */
1589 WARN_ON_ONCE(addr != vma->vm_start);
1590
1591 addr = vma->vm_start;
1592 pgoff = vma->vm_pgoff;
1593 vm_flags = vma->vm_flags;
1594 } else if (vm_flags & VM_SHARED) {
1595 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1596 goto free_vma;
1597 error = shmem_zero_setup(vma);
1598 if (error)
1599 goto free_vma;
1600 }
1601
1602 if (vma_wants_writenotify(vma)) {
1603 pgprot_t pprot = vma->vm_page_prot;
1604
1605 /* Can vma->vm_page_prot have changed??
1606 *
1607 * Answer: Yes, drivers may have changed it in their
1608 * f_op->mmap method.
1609 *
1610 * Ensures that vmas marked as uncached stay that way.
1611 */
1612 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1613 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1614 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1615 }
1616
1617 vma_link(mm, vma, prev, rb_link, rb_parent);
1618 file = vma->vm_file;
1619
1620 /* Once vma denies write, undo our temporary denial count */
1621 if (correct_wcount)
1622 atomic_inc(&inode->i_writecount);
1623 out:
1624 perf_event_mmap(vma);
1625
1626 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1627 if (vm_flags & VM_LOCKED) {
1628 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1629 vma == get_gate_vma(current->mm)))
1630 mm->locked_vm += (len >> PAGE_SHIFT);
1631 else
1632 vma->vm_flags &= ~VM_LOCKED;
1633 }
1634
1635 if (file)
1636 uprobe_mmap(vma);
1637
1638 return addr;
1639
1640 unmap_and_free_vma:
1641 if (correct_wcount)
1642 atomic_inc(&inode->i_writecount);
1643 vma->vm_file = NULL;
1644 fput(file);
1645
1646 /* Undo any partial mapping done by a device driver. */
1647 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1648 charged = 0;
1649 free_vma:
1650 kmem_cache_free(vm_area_cachep, vma);
1651 unacct_error:
1652 if (charged)
1653 vm_unacct_memory(charged);
1654 return error;
1655 }
1656
1657 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1658 {
1659 /*
1660 * We implement the search by looking for an rbtree node that
1661 * immediately follows a suitable gap. That is,
1662 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1663 * - gap_end = vma->vm_start >= info->low_limit + length;
1664 * - gap_end - gap_start >= length
1665 */
1666
1667 struct mm_struct *mm = current->mm;
1668 struct vm_area_struct *vma;
1669 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1670
1671 /* Adjust search length to account for worst case alignment overhead */
1672 length = info->length + info->align_mask;
1673 if (length < info->length)
1674 return -ENOMEM;
1675
1676 /* Adjust search limits by the desired length */
1677 if (info->high_limit < length)
1678 return -ENOMEM;
1679 high_limit = info->high_limit - length;
1680
1681 if (info->low_limit > high_limit)
1682 return -ENOMEM;
1683 low_limit = info->low_limit + length;
1684
1685 /* Check if rbtree root looks promising */
1686 if (RB_EMPTY_ROOT(&mm->mm_rb))
1687 goto check_highest;
1688 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1689 if (vma->rb_subtree_gap < length)
1690 goto check_highest;
1691
1692 while (true) {
1693 /* Visit left subtree if it looks promising */
1694 gap_end = vm_start_gap(vma);
1695 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1696 struct vm_area_struct *left =
1697 rb_entry(vma->vm_rb.rb_left,
1698 struct vm_area_struct, vm_rb);
1699 if (left->rb_subtree_gap >= length) {
1700 vma = left;
1701 continue;
1702 }
1703 }
1704
1705 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1706 check_current:
1707 /* Check if current node has a suitable gap */
1708 if (gap_start > high_limit)
1709 return -ENOMEM;
1710 if (gap_end >= low_limit &&
1711 gap_end > gap_start && gap_end - gap_start >= length)
1712 goto found;
1713
1714 /* Visit right subtree if it looks promising */
1715 if (vma->vm_rb.rb_right) {
1716 struct vm_area_struct *right =
1717 rb_entry(vma->vm_rb.rb_right,
1718 struct vm_area_struct, vm_rb);
1719 if (right->rb_subtree_gap >= length) {
1720 vma = right;
1721 continue;
1722 }
1723 }
1724
1725 /* Go back up the rbtree to find next candidate node */
1726 while (true) {
1727 struct rb_node *prev = &vma->vm_rb;
1728 if (!rb_parent(prev))
1729 goto check_highest;
1730 vma = rb_entry(rb_parent(prev),
1731 struct vm_area_struct, vm_rb);
1732 if (prev == vma->vm_rb.rb_left) {
1733 gap_start = vm_end_gap(vma->vm_prev);
1734 gap_end = vm_start_gap(vma);
1735 goto check_current;
1736 }
1737 }
1738 }
1739
1740 check_highest:
1741 /* Check highest gap, which does not precede any rbtree node */
1742 gap_start = mm->highest_vm_end;
1743 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1744 if (gap_start > high_limit)
1745 return -ENOMEM;
1746
1747 found:
1748 /* We found a suitable gap. Clip it with the original low_limit. */
1749 if (gap_start < info->low_limit)
1750 gap_start = info->low_limit;
1751
1752 /* Adjust gap address to the desired alignment */
1753 gap_start += (info->align_offset - gap_start) & info->align_mask;
1754
1755 VM_BUG_ON(gap_start + info->length > info->high_limit);
1756 VM_BUG_ON(gap_start + info->length > gap_end);
1757 return gap_start;
1758 }
1759
1760 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1761 {
1762 struct mm_struct *mm = current->mm;
1763 struct vm_area_struct *vma;
1764 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1765
1766 /* Adjust search length to account for worst case alignment overhead */
1767 length = info->length + info->align_mask;
1768 if (length < info->length)
1769 return -ENOMEM;
1770
1771 /*
1772 * Adjust search limits by the desired length.
1773 * See implementation comment at top of unmapped_area().
1774 */
1775 gap_end = info->high_limit;
1776 if (gap_end < length)
1777 return -ENOMEM;
1778 high_limit = gap_end - length;
1779
1780 if (info->low_limit > high_limit)
1781 return -ENOMEM;
1782 low_limit = info->low_limit + length;
1783
1784 /* Check highest gap, which does not precede any rbtree node */
1785 gap_start = mm->highest_vm_end;
1786 if (gap_start <= high_limit)
1787 goto found_highest;
1788
1789 /* Check if rbtree root looks promising */
1790 if (RB_EMPTY_ROOT(&mm->mm_rb))
1791 return -ENOMEM;
1792 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1793 if (vma->rb_subtree_gap < length)
1794 return -ENOMEM;
1795
1796 while (true) {
1797 /* Visit right subtree if it looks promising */
1798 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1799 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1800 struct vm_area_struct *right =
1801 rb_entry(vma->vm_rb.rb_right,
1802 struct vm_area_struct, vm_rb);
1803 if (right->rb_subtree_gap >= length) {
1804 vma = right;
1805 continue;
1806 }
1807 }
1808
1809 check_current:
1810 /* Check if current node has a suitable gap */
1811 gap_end = vm_start_gap(vma);
1812 if (gap_end < low_limit)
1813 return -ENOMEM;
1814 if (gap_start <= high_limit &&
1815 gap_end > gap_start && gap_end - gap_start >= length)
1816 goto found;
1817
1818 /* Visit left subtree if it looks promising */
1819 if (vma->vm_rb.rb_left) {
1820 struct vm_area_struct *left =
1821 rb_entry(vma->vm_rb.rb_left,
1822 struct vm_area_struct, vm_rb);
1823 if (left->rb_subtree_gap >= length) {
1824 vma = left;
1825 continue;
1826 }
1827 }
1828
1829 /* Go back up the rbtree to find next candidate node */
1830 while (true) {
1831 struct rb_node *prev = &vma->vm_rb;
1832 if (!rb_parent(prev))
1833 return -ENOMEM;
1834 vma = rb_entry(rb_parent(prev),
1835 struct vm_area_struct, vm_rb);
1836 if (prev == vma->vm_rb.rb_right) {
1837 gap_start = vma->vm_prev ?
1838 vm_end_gap(vma->vm_prev) : 0;
1839 goto check_current;
1840 }
1841 }
1842 }
1843
1844 found:
1845 /* We found a suitable gap. Clip it with the original high_limit. */
1846 if (gap_end > info->high_limit)
1847 gap_end = info->high_limit;
1848
1849 found_highest:
1850 /* Compute highest gap address at the desired alignment */
1851 gap_end -= info->length;
1852 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1853
1854 VM_BUG_ON(gap_end < info->low_limit);
1855 VM_BUG_ON(gap_end < gap_start);
1856 return gap_end;
1857 }
1858
1859 /* Get an address range which is currently unmapped.
1860 * For shmat() with addr=0.
1861 *
1862 * Ugly calling convention alert:
1863 * Return value with the low bits set means error value,
1864 * ie
1865 * if (ret & ~PAGE_MASK)
1866 * error = ret;
1867 *
1868 * This function "knows" that -ENOMEM has the bits set.
1869 */
1870 #ifndef HAVE_ARCH_UNMAPPED_AREA
1871 unsigned long
1872 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1873 unsigned long len, unsigned long pgoff, unsigned long flags)
1874 {
1875 struct mm_struct *mm = current->mm;
1876 struct vm_area_struct *vma, *prev;
1877 struct vm_unmapped_area_info info;
1878
1879 if (len > TASK_SIZE - mmap_min_addr)
1880 return -ENOMEM;
1881
1882 if (flags & MAP_FIXED)
1883 return addr;
1884
1885 if (addr) {
1886 addr = PAGE_ALIGN(addr);
1887 vma = find_vma_prev(mm, addr, &prev);
1888 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1889 (!vma || addr + len <= vm_start_gap(vma)) &&
1890 (!prev || addr >= vm_end_gap(prev)))
1891 return addr;
1892 }
1893
1894 info.flags = 0;
1895 info.length = len;
1896 info.low_limit = TASK_UNMAPPED_BASE;
1897 info.high_limit = TASK_SIZE;
1898 info.align_mask = 0;
1899 return vm_unmapped_area(&info);
1900 }
1901 #endif
1902
1903 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1904 {
1905 /*
1906 * Is this a new hole at the lowest possible address?
1907 */
1908 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1909 mm->free_area_cache = addr;
1910 }
1911
1912 /*
1913 * This mmap-allocator allocates new areas top-down from below the
1914 * stack's low limit (the base):
1915 */
1916 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1917 unsigned long
1918 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1919 const unsigned long len, const unsigned long pgoff,
1920 const unsigned long flags)
1921 {
1922 struct vm_area_struct *vma, *prev;
1923 struct mm_struct *mm = current->mm;
1924 unsigned long addr = addr0;
1925 struct vm_unmapped_area_info info;
1926
1927 /* requested length too big for entire address space */
1928 if (len > TASK_SIZE - mmap_min_addr)
1929 return -ENOMEM;
1930
1931 if (flags & MAP_FIXED)
1932 return addr;
1933
1934 /* requesting a specific address */
1935 if (addr) {
1936 addr = PAGE_ALIGN(addr);
1937 vma = find_vma_prev(mm, addr, &prev);
1938 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1939 (!vma || addr + len <= vm_start_gap(vma)) &&
1940 (!prev || addr >= vm_end_gap(prev)))
1941 return addr;
1942 }
1943
1944 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1945 info.length = len;
1946 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1947 info.high_limit = mm->mmap_base;
1948 info.align_mask = 0;
1949 addr = vm_unmapped_area(&info);
1950
1951 /*
1952 * A failed mmap() very likely causes application failure,
1953 * so fall back to the bottom-up function here. This scenario
1954 * can happen with large stack limits and large mmap()
1955 * allocations.
1956 */
1957 if (addr & ~PAGE_MASK) {
1958 VM_BUG_ON(addr != -ENOMEM);
1959 info.flags = 0;
1960 info.low_limit = TASK_UNMAPPED_BASE;
1961 info.high_limit = TASK_SIZE;
1962 addr = vm_unmapped_area(&info);
1963 }
1964
1965 return addr;
1966 }
1967 #endif
1968
1969 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1970 {
1971 /*
1972 * Is this a new hole at the highest possible address?
1973 */
1974 if (addr > mm->free_area_cache)
1975 mm->free_area_cache = addr;
1976
1977 /* dont allow allocations above current base */
1978 if (mm->free_area_cache > mm->mmap_base)
1979 mm->free_area_cache = mm->mmap_base;
1980 }
1981
1982 unsigned long
1983 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1984 unsigned long pgoff, unsigned long flags)
1985 {
1986 unsigned long (*get_area)(struct file *, unsigned long,
1987 unsigned long, unsigned long, unsigned long);
1988
1989 unsigned long error = arch_mmap_check(addr, len, flags);
1990 if (error)
1991 return error;
1992
1993 /* Careful about overflows.. */
1994 if (len > TASK_SIZE)
1995 return -ENOMEM;
1996
1997 get_area = current->mm->get_unmapped_area;
1998 if (file && file->f_op && file->f_op->get_unmapped_area)
1999 get_area = file->f_op->get_unmapped_area;
2000 addr = get_area(file, addr, len, pgoff, flags);
2001 if (IS_ERR_VALUE(addr))
2002 return addr;
2003
2004 if (addr > TASK_SIZE - len)
2005 return -ENOMEM;
2006 if (addr & ~PAGE_MASK)
2007 return -EINVAL;
2008
2009 addr = arch_rebalance_pgtables(addr, len);
2010 error = security_mmap_addr(addr);
2011 return error ? error : addr;
2012 }
2013
2014 EXPORT_SYMBOL(get_unmapped_area);
2015
2016 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2017 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2018 {
2019 struct vm_area_struct *vma = NULL;
2020
2021 /* Check the cache first. */
2022 /* (Cache hit rate is typically around 35%.) */
2023 vma = ACCESS_ONCE(mm->mmap_cache);
2024 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
2025 struct rb_node *rb_node;
2026
2027 rb_node = mm->mm_rb.rb_node;
2028 vma = NULL;
2029
2030 while (rb_node) {
2031 struct vm_area_struct *vma_tmp;
2032
2033 vma_tmp = rb_entry(rb_node,
2034 struct vm_area_struct, vm_rb);
2035
2036 if (vma_tmp->vm_end > addr) {
2037 vma = vma_tmp;
2038 if (vma_tmp->vm_start <= addr)
2039 break;
2040 rb_node = rb_node->rb_left;
2041 } else
2042 rb_node = rb_node->rb_right;
2043 }
2044 if (vma)
2045 mm->mmap_cache = vma;
2046 }
2047 return vma;
2048 }
2049
2050 EXPORT_SYMBOL(find_vma);
2051
2052 /*
2053 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2054 */
2055 struct vm_area_struct *
2056 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2057 struct vm_area_struct **pprev)
2058 {
2059 struct vm_area_struct *vma;
2060
2061 vma = find_vma(mm, addr);
2062 if (vma) {
2063 *pprev = vma->vm_prev;
2064 } else {
2065 struct rb_node *rb_node = mm->mm_rb.rb_node;
2066 *pprev = NULL;
2067 while (rb_node) {
2068 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2069 rb_node = rb_node->rb_right;
2070 }
2071 }
2072 return vma;
2073 }
2074
2075 /*
2076 * Verify that the stack growth is acceptable and
2077 * update accounting. This is shared with both the
2078 * grow-up and grow-down cases.
2079 */
2080 static int acct_stack_growth(struct vm_area_struct *vma,
2081 unsigned long size, unsigned long grow)
2082 {
2083 struct mm_struct *mm = vma->vm_mm;
2084 struct rlimit *rlim = current->signal->rlim;
2085 unsigned long new_start;
2086
2087 /* address space limit tests */
2088 if (!may_expand_vm(mm, grow))
2089 return -ENOMEM;
2090
2091 /* Stack limit test */
2092 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2093 return -ENOMEM;
2094
2095 /* mlock limit tests */
2096 if (vma->vm_flags & VM_LOCKED) {
2097 unsigned long locked;
2098 unsigned long limit;
2099 locked = mm->locked_vm + grow;
2100 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2101 limit >>= PAGE_SHIFT;
2102 if (locked > limit && !capable(CAP_IPC_LOCK))
2103 return -ENOMEM;
2104 }
2105
2106 /* Check to ensure the stack will not grow into a hugetlb-only region */
2107 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2108 vma->vm_end - size;
2109 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2110 return -EFAULT;
2111
2112 /*
2113 * Overcommit.. This must be the final test, as it will
2114 * update security statistics.
2115 */
2116 if (security_vm_enough_memory_mm(mm, grow))
2117 return -ENOMEM;
2118
2119 /* Ok, everything looks good - let it rip */
2120 if (vma->vm_flags & VM_LOCKED)
2121 mm->locked_vm += grow;
2122 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2123 return 0;
2124 }
2125
2126 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2127 /*
2128 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2129 * vma is the last one with address > vma->vm_end. Have to extend vma.
2130 */
2131 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2132 {
2133 struct vm_area_struct *next;
2134 unsigned long gap_addr;
2135 int error = 0;
2136
2137 if (!(vma->vm_flags & VM_GROWSUP))
2138 return -EFAULT;
2139
2140 /* Guard against exceeding limits of the address space. */
2141 address &= PAGE_MASK;
2142 if (address >= TASK_SIZE)
2143 return -ENOMEM;
2144 address += PAGE_SIZE;
2145
2146 /* Enforce stack_guard_gap */
2147 gap_addr = address + stack_guard_gap;
2148
2149 /* Guard against overflow */
2150 if (gap_addr < address || gap_addr > TASK_SIZE)
2151 gap_addr = TASK_SIZE;
2152
2153 next = vma->vm_next;
2154 if (next && next->vm_start < gap_addr) {
2155 if (!(next->vm_flags & VM_GROWSUP))
2156 return -ENOMEM;
2157 /* Check that both stack segments have the same anon_vma? */
2158 }
2159
2160 /* We must make sure the anon_vma is allocated. */
2161 if (unlikely(anon_vma_prepare(vma)))
2162 return -ENOMEM;
2163
2164 /*
2165 * vma->vm_start/vm_end cannot change under us because the caller
2166 * is required to hold the mmap_sem in read mode. We need the
2167 * anon_vma lock to serialize against concurrent expand_stacks.
2168 */
2169 vma_lock_anon_vma(vma);
2170
2171 /* Somebody else might have raced and expanded it already */
2172 if (address > vma->vm_end) {
2173 unsigned long size, grow;
2174
2175 size = address - vma->vm_start;
2176 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2177
2178 error = -ENOMEM;
2179 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2180 error = acct_stack_growth(vma, size, grow);
2181 if (!error) {
2182 /*
2183 * vma_gap_update() doesn't support concurrent
2184 * updates, but we only hold a shared mmap_sem
2185 * lock here, so we need to protect against
2186 * concurrent vma expansions.
2187 * vma_lock_anon_vma() doesn't help here, as
2188 * we don't guarantee that all growable vmas
2189 * in a mm share the same root anon vma.
2190 * So, we reuse mm->page_table_lock to guard
2191 * against concurrent vma expansions.
2192 */
2193 spin_lock(&vma->vm_mm->page_table_lock);
2194 anon_vma_interval_tree_pre_update_vma(vma);
2195 vma->vm_end = address;
2196 anon_vma_interval_tree_post_update_vma(vma);
2197 if (vma->vm_next)
2198 vma_gap_update(vma->vm_next);
2199 else
2200 vma->vm_mm->highest_vm_end = vm_end_gap(vma);
2201 spin_unlock(&vma->vm_mm->page_table_lock);
2202
2203 perf_event_mmap(vma);
2204 }
2205 }
2206 }
2207 vma_unlock_anon_vma(vma);
2208 khugepaged_enter_vma_merge(vma);
2209 validate_mm(vma->vm_mm);
2210 return error;
2211 }
2212 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2213
2214 /*
2215 * vma is the first one with address < vma->vm_start. Have to extend vma.
2216 */
2217 int expand_downwards(struct vm_area_struct *vma,
2218 unsigned long address)
2219 {
2220 struct vm_area_struct *prev;
2221 unsigned long gap_addr;
2222 int error;
2223
2224 address &= PAGE_MASK;
2225 error = security_mmap_addr(address);
2226 if (error)
2227 return error;
2228
2229 /* Enforce stack_guard_gap */
2230 gap_addr = address - stack_guard_gap;
2231 if (gap_addr > address)
2232 return -ENOMEM;
2233 prev = vma->vm_prev;
2234 if (prev && prev->vm_end > gap_addr) {
2235 if (!(prev->vm_flags & VM_GROWSDOWN))
2236 return -ENOMEM;
2237 /* Check that both stack segments have the same anon_vma? */
2238 }
2239
2240 /* We must make sure the anon_vma is allocated. */
2241 if (unlikely(anon_vma_prepare(vma)))
2242 return -ENOMEM;
2243
2244 /*
2245 * vma->vm_start/vm_end cannot change under us because the caller
2246 * is required to hold the mmap_sem in read mode. We need the
2247 * anon_vma lock to serialize against concurrent expand_stacks.
2248 */
2249 vma_lock_anon_vma(vma);
2250
2251 /* Somebody else might have raced and expanded it already */
2252 if (address < vma->vm_start) {
2253 unsigned long size, grow;
2254
2255 size = vma->vm_end - address;
2256 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2257
2258 error = -ENOMEM;
2259 if (grow <= vma->vm_pgoff) {
2260 error = acct_stack_growth(vma, size, grow);
2261 if (!error) {
2262 /*
2263 * vma_gap_update() doesn't support concurrent
2264 * updates, but we only hold a shared mmap_sem
2265 * lock here, so we need to protect against
2266 * concurrent vma expansions.
2267 * vma_lock_anon_vma() doesn't help here, as
2268 * we don't guarantee that all growable vmas
2269 * in a mm share the same root anon vma.
2270 * So, we reuse mm->page_table_lock to guard
2271 * against concurrent vma expansions.
2272 */
2273 spin_lock(&vma->vm_mm->page_table_lock);
2274 anon_vma_interval_tree_pre_update_vma(vma);
2275 vma->vm_start = address;
2276 vma->vm_pgoff -= grow;
2277 anon_vma_interval_tree_post_update_vma(vma);
2278 vma_gap_update(vma);
2279 spin_unlock(&vma->vm_mm->page_table_lock);
2280
2281 perf_event_mmap(vma);
2282 }
2283 }
2284 }
2285 vma_unlock_anon_vma(vma);
2286 khugepaged_enter_vma_merge(vma);
2287 validate_mm(vma->vm_mm);
2288 return error;
2289 }
2290
2291 /* enforced gap between the expanding stack and other mappings. */
2292 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2293
2294 static int __init cmdline_parse_stack_guard_gap(char *p)
2295 {
2296 unsigned long val;
2297 char *endptr;
2298
2299 val = simple_strtoul(p, &endptr, 10);
2300 if (!*endptr)
2301 stack_guard_gap = val << PAGE_SHIFT;
2302
2303 return 0;
2304 }
2305 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2306
2307 #ifdef CONFIG_STACK_GROWSUP
2308 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2309 {
2310 return expand_upwards(vma, address);
2311 }
2312
2313 struct vm_area_struct *
2314 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2315 {
2316 struct vm_area_struct *vma, *prev;
2317
2318 addr &= PAGE_MASK;
2319 vma = find_vma_prev(mm, addr, &prev);
2320 if (vma && (vma->vm_start <= addr))
2321 return vma;
2322 if (!prev || expand_stack(prev, addr))
2323 return NULL;
2324 if (prev->vm_flags & VM_LOCKED)
2325 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2326 return prev;
2327 }
2328 #else
2329 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2330 {
2331 return expand_downwards(vma, address);
2332 }
2333
2334 struct vm_area_struct *
2335 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2336 {
2337 struct vm_area_struct * vma;
2338 unsigned long start;
2339
2340 addr &= PAGE_MASK;
2341 vma = find_vma(mm,addr);
2342 if (!vma)
2343 return NULL;
2344 if (vma->vm_start <= addr)
2345 return vma;
2346 if (!(vma->vm_flags & VM_GROWSDOWN))
2347 return NULL;
2348 start = vma->vm_start;
2349 if (expand_stack(vma, addr))
2350 return NULL;
2351 if (vma->vm_flags & VM_LOCKED)
2352 __mlock_vma_pages_range(vma, addr, start, NULL);
2353 return vma;
2354 }
2355 #endif
2356
2357 /*
2358 * Ok - we have the memory areas we should free on the vma list,
2359 * so release them, and do the vma updates.
2360 *
2361 * Called with the mm semaphore held.
2362 */
2363 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2364 {
2365 unsigned long nr_accounted = 0;
2366
2367 /* Update high watermark before we lower total_vm */
2368 update_hiwater_vm(mm);
2369 do {
2370 long nrpages = vma_pages(vma);
2371
2372 if (vma->vm_flags & VM_ACCOUNT)
2373 nr_accounted += nrpages;
2374 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2375 vma = remove_vma(vma);
2376 } while (vma);
2377 vm_unacct_memory(nr_accounted);
2378 validate_mm(mm);
2379 }
2380
2381 /*
2382 * Get rid of page table information in the indicated region.
2383 *
2384 * Called with the mm semaphore held.
2385 */
2386 static void unmap_region(struct mm_struct *mm,
2387 struct vm_area_struct *vma, struct vm_area_struct *prev,
2388 unsigned long start, unsigned long end)
2389 {
2390 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2391 struct mmu_gather tlb;
2392
2393 lru_add_drain();
2394 tlb_gather_mmu(&tlb, mm, start, end);
2395 update_hiwater_rss(mm);
2396 unmap_vmas(&tlb, vma, start, end);
2397 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2398 next ? next->vm_start : USER_PGTABLES_CEILING);
2399 tlb_finish_mmu(&tlb, start, end);
2400 }
2401
2402 /*
2403 * Create a list of vma's touched by the unmap, removing them from the mm's
2404 * vma list as we go..
2405 */
2406 static void
2407 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2408 struct vm_area_struct *prev, unsigned long end)
2409 {
2410 struct vm_area_struct **insertion_point;
2411 struct vm_area_struct *tail_vma = NULL;
2412 unsigned long addr;
2413
2414 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2415 vma->vm_prev = NULL;
2416 do {
2417 vma_rb_erase(vma, &mm->mm_rb);
2418 mm->map_count--;
2419 tail_vma = vma;
2420 vma = vma->vm_next;
2421 } while (vma && vma->vm_start < end);
2422 *insertion_point = vma;
2423 if (vma) {
2424 vma->vm_prev = prev;
2425 vma_gap_update(vma);
2426 } else
2427 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2428 tail_vma->vm_next = NULL;
2429 if (mm->unmap_area == arch_unmap_area)
2430 addr = prev ? prev->vm_end : mm->mmap_base;
2431 else
2432 addr = vma ? vma->vm_start : mm->mmap_base;
2433 mm->unmap_area(mm, addr);
2434 mm->mmap_cache = NULL; /* Kill the cache. */
2435 }
2436
2437 /*
2438 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2439 * munmap path where it doesn't make sense to fail.
2440 */
2441 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2442 unsigned long addr, int new_below)
2443 {
2444 struct mempolicy *pol;
2445 struct vm_area_struct *new;
2446 int err = -ENOMEM;
2447
2448 if (is_vm_hugetlb_page(vma) && (addr &
2449 ~(huge_page_mask(hstate_vma(vma)))))
2450 return -EINVAL;
2451
2452 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2453 if (!new)
2454 goto out_err;
2455
2456 /* most fields are the same, copy all, and then fixup */
2457 *new = *vma;
2458
2459 INIT_LIST_HEAD(&new->anon_vma_chain);
2460
2461 if (new_below)
2462 new->vm_end = addr;
2463 else {
2464 new->vm_start = addr;
2465 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2466 }
2467
2468 pol = mpol_dup(vma_policy(vma));
2469 if (IS_ERR(pol)) {
2470 err = PTR_ERR(pol);
2471 goto out_free_vma;
2472 }
2473 vma_set_policy(new, pol);
2474
2475 if (anon_vma_clone(new, vma))
2476 goto out_free_mpol;
2477
2478 if (new->vm_file)
2479 get_file(new->vm_file);
2480
2481 if (new->vm_ops && new->vm_ops->open)
2482 new->vm_ops->open(new);
2483
2484 if (new_below)
2485 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2486 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2487 else
2488 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2489
2490 /* Success. */
2491 if (!err)
2492 return 0;
2493
2494 /* Clean everything up if vma_adjust failed. */
2495 if (new->vm_ops && new->vm_ops->close)
2496 new->vm_ops->close(new);
2497 if (new->vm_file)
2498 fput(new->vm_file);
2499 unlink_anon_vmas(new);
2500 out_free_mpol:
2501 mpol_put(pol);
2502 out_free_vma:
2503 kmem_cache_free(vm_area_cachep, new);
2504 out_err:
2505 return err;
2506 }
2507
2508 /*
2509 * Split a vma into two pieces at address 'addr', a new vma is allocated
2510 * either for the first part or the tail.
2511 */
2512 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2513 unsigned long addr, int new_below)
2514 {
2515 if (mm->map_count >= sysctl_max_map_count)
2516 return -ENOMEM;
2517
2518 return __split_vma(mm, vma, addr, new_below);
2519 }
2520
2521 /* Munmap is split into 2 main parts -- this part which finds
2522 * what needs doing, and the areas themselves, which do the
2523 * work. This now handles partial unmappings.
2524 * Jeremy Fitzhardinge <jeremy@goop.org>
2525 */
2526 #ifdef CONFIG_MTK_EXTMEM
2527 extern bool extmem_in_mspace(struct vm_area_struct *vma);
2528 extern void * get_virt_from_mspace(void * pa);
2529 extern size_t extmem_get_mem_size(unsigned long pgoff);
2530 extern void extmem_free(void* mem);
2531 #endif
2532
2533 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2534 {
2535 unsigned long end;
2536 struct file *file;
2537 struct vm_area_struct *vma, *prev, *last;
2538
2539 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2540 return -EINVAL;
2541
2542 if ((len = PAGE_ALIGN(len)) == 0)
2543 return -EINVAL;
2544
2545 /* Find the first overlapping VMA */
2546 vma = find_vma(mm, start);
2547 if (!vma)
2548 return 0;
2549 file=vma->vm_file;
2550 if(file)
2551 {
2552 const char *name=file->f_path.dentry->d_iname;
2553 if(name && (strstr(name,"app_process") || strstr(name,"app_process64") || strstr(name,"main") || strstr(name,"Binder_")))
2554 printk("name:%s unmap vm_start %lx end: %lx\n", name, vma->vm_start, vma->vm_end);
2555 }
2556 else
2557 {
2558 const char *name = arch_vma_name(vma);
2559 if(name && (strstr(name,"app_process") || strstr(name,"app_process64") || strstr(name,"main") || strstr(name,"Binder_")))
2560 printk("name:%s unmap vm_start %lx end: %lx\n", name, vma->vm_start, vma->vm_end);
2561 }
2562 prev = vma->vm_prev;
2563 /* we have start < vma->vm_end */
2564
2565 #ifdef CONFIG_MTK_EXTMEM
2566 /* get correct mmap size if in mspace. */
2567 if (extmem_in_mspace(vma))
2568 len = extmem_get_mem_size(vma->vm_pgoff);
2569 #endif
2570
2571 /* if it doesn't overlap, we have nothing.. */
2572 end = start + len;
2573 if (vma->vm_start >= end)
2574 return 0;
2575
2576 /*
2577 * If we need to split any vma, do it now to save pain later.
2578 *
2579 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2580 * unmapped vm_area_struct will remain in use: so lower split_vma
2581 * places tmp vma above, and higher split_vma places tmp vma below.
2582 */
2583 if (start > vma->vm_start) {
2584 int error;
2585
2586 /*
2587 * Make sure that map_count on return from munmap() will
2588 * not exceed its limit; but let map_count go just above
2589 * its limit temporarily, to help free resources as expected.
2590 */
2591 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2592 return -ENOMEM;
2593
2594 error = __split_vma(mm, vma, start, 0);
2595 if (error)
2596 return error;
2597 prev = vma;
2598 }
2599
2600 /* Does it split the last one? */
2601 last = find_vma(mm, end);
2602 if (last && end > last->vm_start) {
2603 int error = __split_vma(mm, last, end, 1);
2604 if (error)
2605 return error;
2606 }
2607 vma = prev? prev->vm_next: mm->mmap;
2608
2609 /*
2610 * unlock any mlock()ed ranges before detaching vmas
2611 */
2612 if (mm->locked_vm) {
2613 struct vm_area_struct *tmp = vma;
2614 while (tmp && tmp->vm_start < end) {
2615 if (tmp->vm_flags & VM_LOCKED) {
2616 mm->locked_vm -= vma_pages(tmp);
2617 munlock_vma_pages_all(tmp);
2618 }
2619 tmp = tmp->vm_next;
2620 }
2621 }
2622
2623 /*
2624 * Remove the vma's, and unmap the actual pages
2625 */
2626 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2627 unmap_region(mm, vma, prev, start, end);
2628
2629 /* Fix up all other VM information */
2630 remove_vma_list(mm, vma);
2631
2632 return 0;
2633 }
2634
2635 int vm_munmap(unsigned long start, size_t len)
2636 {
2637 int ret;
2638 struct mm_struct *mm = current->mm;
2639
2640 down_write(&mm->mmap_sem);
2641 ret = do_munmap(mm, start, len);
2642 up_write(&mm->mmap_sem);
2643 return ret;
2644 }
2645 EXPORT_SYMBOL(vm_munmap);
2646
2647 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2648 {
2649 profile_munmap(addr);
2650 return vm_munmap(addr, len);
2651 }
2652
2653 static inline void verify_mm_writelocked(struct mm_struct *mm)
2654 {
2655 #ifdef CONFIG_DEBUG_VM
2656 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2657 WARN_ON(1);
2658 up_read(&mm->mmap_sem);
2659 }
2660 #endif
2661 }
2662
2663 /*
2664 * this is really a simplified "do_mmap". it only handles
2665 * anonymous maps. eventually we may be able to do some
2666 * brk-specific accounting here.
2667 */
2668 static unsigned long do_brk(unsigned long addr, unsigned long len)
2669 {
2670 struct mm_struct * mm = current->mm;
2671 struct vm_area_struct * vma, * prev;
2672 unsigned long flags;
2673 struct rb_node ** rb_link, * rb_parent;
2674 pgoff_t pgoff = addr >> PAGE_SHIFT;
2675 int error;
2676
2677 len = PAGE_ALIGN(len);
2678 if (!len)
2679 return addr;
2680
2681 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2682
2683 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2684 if (error & ~PAGE_MASK)
2685 return error;
2686
2687 /*
2688 * mlock MCL_FUTURE?
2689 */
2690 if (mm->def_flags & VM_LOCKED) {
2691 unsigned long locked, lock_limit;
2692 locked = len >> PAGE_SHIFT;
2693 locked += mm->locked_vm;
2694 lock_limit = rlimit(RLIMIT_MEMLOCK);
2695 lock_limit >>= PAGE_SHIFT;
2696 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2697 return -EAGAIN;
2698 }
2699
2700 /*
2701 * mm->mmap_sem is required to protect against another thread
2702 * changing the mappings in case we sleep.
2703 */
2704 verify_mm_writelocked(mm);
2705
2706 /*
2707 * Clear old maps. this also does some error checking for us
2708 */
2709 munmap_back:
2710 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2711 if (do_munmap(mm, addr, len))
2712 return -ENOMEM;
2713 goto munmap_back;
2714 }
2715
2716 /* Check against address space limits *after* clearing old maps... */
2717 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2718 return -ENOMEM;
2719
2720 if (mm->map_count > sysctl_max_map_count)
2721 return -ENOMEM;
2722
2723 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2724 return -ENOMEM;
2725
2726 /* Can we just expand an old private anonymous mapping? */
2727 vma = vma_merge(mm, prev, addr, addr + len, flags,
2728 NULL, NULL, pgoff, NULL, NULL);
2729 if (vma)
2730 goto out;
2731
2732 /*
2733 * create a vma struct for an anonymous mapping
2734 */
2735 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2736 if (!vma) {
2737 vm_unacct_memory(len >> PAGE_SHIFT);
2738 return -ENOMEM;
2739 }
2740
2741 INIT_LIST_HEAD(&vma->anon_vma_chain);
2742 vma->vm_mm = mm;
2743 vma->vm_start = addr;
2744 vma->vm_end = addr + len;
2745 vma->vm_pgoff = pgoff;
2746 vma->vm_flags = flags;
2747 vma->vm_page_prot = vm_get_page_prot(flags);
2748 vma_link(mm, vma, prev, rb_link, rb_parent);
2749 out:
2750 perf_event_mmap(vma);
2751 mm->total_vm += len >> PAGE_SHIFT;
2752 if (flags & VM_LOCKED)
2753 mm->locked_vm += (len >> PAGE_SHIFT);
2754 return addr;
2755 }
2756
2757 unsigned long vm_brk(unsigned long addr, unsigned long len)
2758 {
2759 struct mm_struct *mm = current->mm;
2760 unsigned long ret;
2761 bool populate;
2762
2763 down_write(&mm->mmap_sem);
2764 ret = do_brk(addr, len);
2765 populate = ((mm->def_flags & VM_LOCKED) != 0);
2766 up_write(&mm->mmap_sem);
2767 if (populate)
2768 mm_populate(addr, len);
2769 return ret;
2770 }
2771 EXPORT_SYMBOL(vm_brk);
2772
2773 /* Release all mmaps. */
2774 void exit_mmap(struct mm_struct *mm)
2775 {
2776 struct mmu_gather tlb;
2777 struct vm_area_struct *vma;
2778 unsigned long nr_accounted = 0;
2779
2780 /* mm's last user has gone, and its about to be pulled down */
2781 mmu_notifier_release(mm);
2782
2783 if (mm->locked_vm) {
2784 vma = mm->mmap;
2785 while (vma) {
2786 if (vma->vm_flags & VM_LOCKED)
2787 munlock_vma_pages_all(vma);
2788 vma = vma->vm_next;
2789 }
2790 }
2791
2792 arch_exit_mmap(mm);
2793
2794 vma = mm->mmap;
2795 if (!vma) /* Can happen if dup_mmap() received an OOM */
2796 return;
2797
2798 lru_add_drain();
2799 flush_cache_mm(mm);
2800 tlb_gather_mmu(&tlb, mm, 0, -1);
2801 /* update_hiwater_rss(mm) here? but nobody should be looking */
2802 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2803 unmap_vmas(&tlb, vma, 0, -1);
2804
2805 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2806 tlb_finish_mmu(&tlb, 0, -1);
2807
2808 /*
2809 * Walk the list again, actually closing and freeing it,
2810 * with preemption enabled, without holding any MM locks.
2811 */
2812 while (vma) {
2813 if (vma->vm_flags & VM_ACCOUNT)
2814 nr_accounted += vma_pages(vma);
2815 vma = remove_vma(vma);
2816 }
2817 vm_unacct_memory(nr_accounted);
2818
2819 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2820 }
2821
2822 /* Insert vm structure into process list sorted by address
2823 * and into the inode's i_mmap tree. If vm_file is non-NULL
2824 * then i_mmap_mutex is taken here.
2825 */
2826 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2827 {
2828 struct vm_area_struct *prev;
2829 struct rb_node **rb_link, *rb_parent;
2830
2831 /*
2832 * The vm_pgoff of a purely anonymous vma should be irrelevant
2833 * until its first write fault, when page's anon_vma and index
2834 * are set. But now set the vm_pgoff it will almost certainly
2835 * end up with (unless mremap moves it elsewhere before that
2836 * first wfault), so /proc/pid/maps tells a consistent story.
2837 *
2838 * By setting it to reflect the virtual start address of the
2839 * vma, merges and splits can happen in a seamless way, just
2840 * using the existing file pgoff checks and manipulations.
2841 * Similarly in do_mmap_pgoff and in do_brk.
2842 */
2843 if (!vma->vm_file) {
2844 BUG_ON(vma->anon_vma);
2845 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2846 }
2847 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2848 &prev, &rb_link, &rb_parent))
2849 return -ENOMEM;
2850 if ((vma->vm_flags & VM_ACCOUNT) &&
2851 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2852 return -ENOMEM;
2853
2854 vma_link(mm, vma, prev, rb_link, rb_parent);
2855 return 0;
2856 }
2857
2858 /*
2859 * Copy the vma structure to a new location in the same mm,
2860 * prior to moving page table entries, to effect an mremap move.
2861 */
2862 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2863 unsigned long addr, unsigned long len, pgoff_t pgoff,
2864 bool *need_rmap_locks)
2865 {
2866 struct vm_area_struct *vma = *vmap;
2867 unsigned long vma_start = vma->vm_start;
2868 struct mm_struct *mm = vma->vm_mm;
2869 struct vm_area_struct *new_vma, *prev;
2870 struct rb_node **rb_link, *rb_parent;
2871 struct mempolicy *pol;
2872 bool faulted_in_anon_vma = true;
2873
2874 /*
2875 * If anonymous vma has not yet been faulted, update new pgoff
2876 * to match new location, to increase its chance of merging.
2877 */
2878 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2879 pgoff = addr >> PAGE_SHIFT;
2880 faulted_in_anon_vma = false;
2881 }
2882
2883 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2884 return NULL; /* should never get here */
2885 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2886 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2887 vma_get_anon_name(vma));
2888 if (new_vma) {
2889 /*
2890 * Source vma may have been merged into new_vma
2891 */
2892 if (unlikely(vma_start >= new_vma->vm_start &&
2893 vma_start < new_vma->vm_end)) {
2894 /*
2895 * The only way we can get a vma_merge with
2896 * self during an mremap is if the vma hasn't
2897 * been faulted in yet and we were allowed to
2898 * reset the dst vma->vm_pgoff to the
2899 * destination address of the mremap to allow
2900 * the merge to happen. mremap must change the
2901 * vm_pgoff linearity between src and dst vmas
2902 * (in turn preventing a vma_merge) to be
2903 * safe. It is only safe to keep the vm_pgoff
2904 * linear if there are no pages mapped yet.
2905 */
2906 VM_BUG_ON(faulted_in_anon_vma);
2907 *vmap = vma = new_vma;
2908 }
2909 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2910 } else {
2911 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2912 if (new_vma) {
2913 *new_vma = *vma;
2914 new_vma->vm_start = addr;
2915 new_vma->vm_end = addr + len;
2916 new_vma->vm_pgoff = pgoff;
2917 pol = mpol_dup(vma_policy(vma));
2918 if (IS_ERR(pol))
2919 goto out_free_vma;
2920 vma_set_policy(new_vma, pol);
2921 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2922 if (anon_vma_clone(new_vma, vma))
2923 goto out_free_mempol;
2924 if (new_vma->vm_file)
2925 get_file(new_vma->vm_file);
2926 if (new_vma->vm_ops && new_vma->vm_ops->open)
2927 new_vma->vm_ops->open(new_vma);
2928 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2929 *need_rmap_locks = false;
2930 }
2931 }
2932 return new_vma;
2933
2934 out_free_mempol:
2935 mpol_put(pol);
2936 out_free_vma:
2937 kmem_cache_free(vm_area_cachep, new_vma);
2938 return NULL;
2939 }
2940
2941 /*
2942 * Return true if the calling process may expand its vm space by the passed
2943 * number of pages
2944 */
2945 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2946 {
2947 unsigned long cur = mm->total_vm; /* pages */
2948 unsigned long lim;
2949
2950 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2951
2952 if (cur + npages > lim)
2953 return 0;
2954 return 1;
2955 }
2956
2957
2958 static int special_mapping_fault(struct vm_area_struct *vma,
2959 struct vm_fault *vmf)
2960 {
2961 pgoff_t pgoff;
2962 struct page **pages;
2963
2964 /*
2965 * special mappings have no vm_file, and in that case, the mm
2966 * uses vm_pgoff internally. So we have to subtract it from here.
2967 * We are allowed to do this because we are the mm; do not copy
2968 * this code into drivers!
2969 */
2970 pgoff = vmf->pgoff - vma->vm_pgoff;
2971
2972 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2973 pgoff--;
2974
2975 if (*pages) {
2976 struct page *page = *pages;
2977 get_page(page);
2978 vmf->page = page;
2979 return 0;
2980 }
2981
2982 return VM_FAULT_SIGBUS;
2983 }
2984
2985 /*
2986 * Having a close hook prevents vma merging regardless of flags.
2987 */
2988 static void special_mapping_close(struct vm_area_struct *vma)
2989 {
2990 }
2991
2992 static const struct vm_operations_struct special_mapping_vmops = {
2993 .close = special_mapping_close,
2994 .fault = special_mapping_fault,
2995 };
2996
2997 /*
2998 * Called with mm->mmap_sem held for writing.
2999 * Insert a new vma covering the given region, with the given flags.
3000 * Its pages are supplied by the given array of struct page *.
3001 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3002 * The region past the last page supplied will always produce SIGBUS.
3003 * The array pointer and the pages it points to are assumed to stay alive
3004 * for as long as this mapping might exist.
3005 */
3006 int install_special_mapping(struct mm_struct *mm,
3007 unsigned long addr, unsigned long len,
3008 unsigned long vm_flags, struct page **pages)
3009 {
3010 int ret;
3011 struct vm_area_struct *vma;
3012
3013 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3014 if (unlikely(vma == NULL))
3015 return -ENOMEM;
3016
3017 INIT_LIST_HEAD(&vma->anon_vma_chain);
3018 vma->vm_mm = mm;
3019 vma->vm_start = addr;
3020 vma->vm_end = addr + len;
3021
3022 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
3023 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3024
3025 vma->vm_ops = &special_mapping_vmops;
3026 vma->vm_private_data = pages;
3027
3028 ret = insert_vm_struct(mm, vma);
3029 if (ret)
3030 goto out;
3031
3032 mm->total_vm += len >> PAGE_SHIFT;
3033
3034 perf_event_mmap(vma);
3035
3036 return 0;
3037
3038 out:
3039 kmem_cache_free(vm_area_cachep, vma);
3040 return ret;
3041 }
3042
3043 static DEFINE_MUTEX(mm_all_locks_mutex);
3044
3045 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3046 {
3047 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3048 /*
3049 * The LSB of head.next can't change from under us
3050 * because we hold the mm_all_locks_mutex.
3051 */
3052 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3053 /*
3054 * We can safely modify head.next after taking the
3055 * anon_vma->root->rwsem. If some other vma in this mm shares
3056 * the same anon_vma we won't take it again.
3057 *
3058 * No need of atomic instructions here, head.next
3059 * can't change from under us thanks to the
3060 * anon_vma->root->rwsem.
3061 */
3062 if (__test_and_set_bit(0, (unsigned long *)
3063 &anon_vma->root->rb_root.rb_node))
3064 BUG();
3065 }
3066 }
3067
3068 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3069 {
3070 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3071 /*
3072 * AS_MM_ALL_LOCKS can't change from under us because
3073 * we hold the mm_all_locks_mutex.
3074 *
3075 * Operations on ->flags have to be atomic because
3076 * even if AS_MM_ALL_LOCKS is stable thanks to the
3077 * mm_all_locks_mutex, there may be other cpus
3078 * changing other bitflags in parallel to us.
3079 */
3080 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3081 BUG();
3082 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3083 }
3084 }
3085
3086 /*
3087 * This operation locks against the VM for all pte/vma/mm related
3088 * operations that could ever happen on a certain mm. This includes
3089 * vmtruncate, try_to_unmap, and all page faults.
3090 *
3091 * The caller must take the mmap_sem in write mode before calling
3092 * mm_take_all_locks(). The caller isn't allowed to release the
3093 * mmap_sem until mm_drop_all_locks() returns.
3094 *
3095 * mmap_sem in write mode is required in order to block all operations
3096 * that could modify pagetables and free pages without need of
3097 * altering the vma layout (for example populate_range() with
3098 * nonlinear vmas). It's also needed in write mode to avoid new
3099 * anon_vmas to be associated with existing vmas.
3100 *
3101 * A single task can't take more than one mm_take_all_locks() in a row
3102 * or it would deadlock.
3103 *
3104 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3105 * mapping->flags avoid to take the same lock twice, if more than one
3106 * vma in this mm is backed by the same anon_vma or address_space.
3107 *
3108 * We can take all the locks in random order because the VM code
3109 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3110 * takes more than one of them in a row. Secondly we're protected
3111 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3112 *
3113 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3114 * that may have to take thousand of locks.
3115 *
3116 * mm_take_all_locks() can fail if it's interrupted by signals.
3117 */
3118 int mm_take_all_locks(struct mm_struct *mm)
3119 {
3120 struct vm_area_struct *vma;
3121 struct anon_vma_chain *avc;
3122
3123 BUG_ON(down_read_trylock(&mm->mmap_sem));
3124
3125 mutex_lock(&mm_all_locks_mutex);
3126
3127 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3128 if (signal_pending(current))
3129 goto out_unlock;
3130 if (vma->vm_file && vma->vm_file->f_mapping)
3131 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3132 }
3133
3134 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3135 if (signal_pending(current))
3136 goto out_unlock;
3137 if (vma->anon_vma)
3138 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3139 vm_lock_anon_vma(mm, avc->anon_vma);
3140 }
3141
3142 return 0;
3143
3144 out_unlock:
3145 mm_drop_all_locks(mm);
3146 return -EINTR;
3147 }
3148
3149 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3150 {
3151 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3152 /*
3153 * The LSB of head.next can't change to 0 from under
3154 * us because we hold the mm_all_locks_mutex.
3155 *
3156 * We must however clear the bitflag before unlocking
3157 * the vma so the users using the anon_vma->rb_root will
3158 * never see our bitflag.
3159 *
3160 * No need of atomic instructions here, head.next
3161 * can't change from under us until we release the
3162 * anon_vma->root->rwsem.
3163 */
3164 if (!__test_and_clear_bit(0, (unsigned long *)
3165 &anon_vma->root->rb_root.rb_node))
3166 BUG();
3167 anon_vma_unlock_write(anon_vma);
3168 }
3169 }
3170
3171 static void vm_unlock_mapping(struct address_space *mapping)
3172 {
3173 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3174 /*
3175 * AS_MM_ALL_LOCKS can't change to 0 from under us
3176 * because we hold the mm_all_locks_mutex.
3177 */
3178 mutex_unlock(&mapping->i_mmap_mutex);
3179 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3180 &mapping->flags))
3181 BUG();
3182 }
3183 }
3184
3185 /*
3186 * The mmap_sem cannot be released by the caller until
3187 * mm_drop_all_locks() returns.
3188 */
3189 void mm_drop_all_locks(struct mm_struct *mm)
3190 {
3191 struct vm_area_struct *vma;
3192 struct anon_vma_chain *avc;
3193
3194 BUG_ON(down_read_trylock(&mm->mmap_sem));
3195 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3196
3197 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3198 if (vma->anon_vma)
3199 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3200 vm_unlock_anon_vma(avc->anon_vma);
3201 if (vma->vm_file && vma->vm_file->f_mapping)
3202 vm_unlock_mapping(vma->vm_file->f_mapping);
3203 }
3204
3205 mutex_unlock(&mm_all_locks_mutex);
3206 }
3207
3208 /*
3209 * initialise the VMA slab
3210 */
3211 void __init mmap_init(void)
3212 {
3213 int ret;
3214
3215 ret = percpu_counter_init(&vm_committed_as, 0);
3216 VM_BUG_ON(ret);
3217 }
3218
3219 /*
3220 * Initialise sysctl_user_reserve_kbytes.
3221 *
3222 * This is intended to prevent a user from starting a single memory hogging
3223 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3224 * mode.
3225 *
3226 * The default value is min(3% of free memory, 128MB)
3227 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3228 */
3229 static int init_user_reserve(void)
3230 {
3231 unsigned long free_kbytes;
3232
3233 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3234
3235 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3236 return 0;
3237 }
3238 module_init(init_user_reserve)
3239
3240 /*
3241 * Initialise sysctl_admin_reserve_kbytes.
3242 *
3243 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3244 * to log in and kill a memory hogging process.
3245 *
3246 * Systems with more than 256MB will reserve 8MB, enough to recover
3247 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3248 * only reserve 3% of free pages by default.
3249 */
3250 static int init_admin_reserve(void)
3251 {
3252 unsigned long free_kbytes;
3253
3254 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3255
3256 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3257 return 0;
3258 }
3259 module_init(init_admin_reserve)
3260
3261 /*
3262 * Reinititalise user and admin reserves if memory is added or removed.
3263 *
3264 * The default user reserve max is 128MB, and the default max for the
3265 * admin reserve is 8MB. These are usually, but not always, enough to
3266 * enable recovery from a memory hogging process using login/sshd, a shell,
3267 * and tools like top. It may make sense to increase or even disable the
3268 * reserve depending on the existence of swap or variations in the recovery
3269 * tools. So, the admin may have changed them.
3270 *
3271 * If memory is added and the reserves have been eliminated or increased above
3272 * the default max, then we'll trust the admin.
3273 *
3274 * If memory is removed and there isn't enough free memory, then we
3275 * need to reset the reserves.
3276 *
3277 * Otherwise keep the reserve set by the admin.
3278 */
3279 static int reserve_mem_notifier(struct notifier_block *nb,
3280 unsigned long action, void *data)
3281 {
3282 unsigned long tmp, free_kbytes;
3283
3284 switch (action) {
3285 case MEM_ONLINE:
3286 /* Default max is 128MB. Leave alone if modified by operator. */
3287 tmp = sysctl_user_reserve_kbytes;
3288 if (0 < tmp && tmp < (1UL << 17))
3289 init_user_reserve();
3290
3291 /* Default max is 8MB. Leave alone if modified by operator. */
3292 tmp = sysctl_admin_reserve_kbytes;
3293 if (0 < tmp && tmp < (1UL << 13))
3294 init_admin_reserve();
3295
3296 break;
3297 case MEM_OFFLINE:
3298 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3299
3300 if (sysctl_user_reserve_kbytes > free_kbytes) {
3301 init_user_reserve();
3302 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3303 sysctl_user_reserve_kbytes);
3304 }
3305
3306 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3307 init_admin_reserve();
3308 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3309 sysctl_admin_reserve_kbytes);
3310 }
3311 break;
3312 default:
3313 break;
3314 }
3315 return NOTIFY_OK;
3316 }
3317
3318 static struct notifier_block reserve_mem_nb = {
3319 .notifier_call = reserve_mem_notifier,
3320 };
3321
3322 static int __meminit init_reserve_notifier(void)
3323 {
3324 if (register_hotmemory_notifier(&reserve_mem_nb))
3325 printk("Failed registering memory add/remove notifier for admin reserve");
3326
3327 return 0;
3328 }
3329 module_init(init_reserve_notifier)