tmpfs: don't undo fallocate past its last page
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/syscalls.h>
18 #include <linux/capability.h>
19 #include <linux/init.h>
20 #include <linux/file.h>
21 #include <linux/fs.h>
22 #include <linux/personality.h>
23 #include <linux/security.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 #include <linux/audit.h>
33 #include <linux/khugepaged.h>
34 #include <linux/uprobes.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/notifier.h>
38 #include <linux/memory.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44
45 #include "internal.h"
46
47 #ifndef arch_mmap_check
48 #define arch_mmap_check(addr, len, flags) (0)
49 #endif
50
51 #ifndef arch_rebalance_pgtables
52 #define arch_rebalance_pgtables(addr, len) (addr)
53 #endif
54
55 static void unmap_region(struct mm_struct *mm,
56 struct vm_area_struct *vma, struct vm_area_struct *prev,
57 unsigned long start, unsigned long end);
58
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
62 *
63 * map_type prot
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 *
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 *
73 */
74 pgprot_t protection_map[16] = {
75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81 return __pgprot(pgprot_val(protection_map[vm_flags &
82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
91 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
92 /*
93 * Make sure vm_committed_as in one cacheline and not cacheline shared with
94 * other variables. It can be updated by several CPUs frequently.
95 */
96 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
97
98 /*
99 * The global memory commitment made in the system can be a metric
100 * that can be used to drive ballooning decisions when Linux is hosted
101 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
102 * balancing memory across competing virtual machines that are hosted.
103 * Several metrics drive this policy engine including the guest reported
104 * memory commitment.
105 */
106 unsigned long vm_memory_committed(void)
107 {
108 return percpu_counter_read_positive(&vm_committed_as);
109 }
110 EXPORT_SYMBOL_GPL(vm_memory_committed);
111
112 /*
113 * Check that a process has enough memory to allocate a new virtual
114 * mapping. 0 means there is enough memory for the allocation to
115 * succeed and -ENOMEM implies there is not.
116 *
117 * We currently support three overcommit policies, which are set via the
118 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
119 *
120 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
121 * Additional code 2002 Jul 20 by Robert Love.
122 *
123 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
124 *
125 * Note this is a helper function intended to be used by LSMs which
126 * wish to use this logic.
127 */
128 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
129 {
130 long free, allowed, reserve;
131
132 vm_acct_memory(pages);
133
134 /*
135 * Sometimes we want to use more memory than we have
136 */
137 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
138 return 0;
139
140 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
141 free = global_page_state(NR_FREE_PAGES);
142 free += global_page_state(NR_FILE_PAGES);
143
144 /*
145 * shmem pages shouldn't be counted as free in this
146 * case, they can't be purged, only swapped out, and
147 * that won't affect the overall amount of available
148 * memory in the system.
149 */
150 free -= global_page_state(NR_SHMEM);
151
152 free += get_nr_swap_pages();
153
154 /*
155 * Any slabs which are created with the
156 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
157 * which are reclaimable, under pressure. The dentry
158 * cache and most inode caches should fall into this
159 */
160 free += global_page_state(NR_SLAB_RECLAIMABLE);
161
162 /*
163 * Leave reserved pages. The pages are not for anonymous pages.
164 */
165 if (free <= totalreserve_pages)
166 goto error;
167 else
168 free -= totalreserve_pages;
169
170 /*
171 * Reserve some for root
172 */
173 if (!cap_sys_admin)
174 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
175
176 if (free > pages)
177 return 0;
178
179 goto error;
180 }
181
182 allowed = (totalram_pages - hugetlb_total_pages())
183 * sysctl_overcommit_ratio / 100;
184 /*
185 * Reserve some for root
186 */
187 if (!cap_sys_admin)
188 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
189 allowed += total_swap_pages;
190
191 /*
192 * Don't let a single process grow so big a user can't recover
193 */
194 if (mm) {
195 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
196 allowed -= min_t(long, mm->total_vm / 32, reserve);
197 }
198
199 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
200 return 0;
201 error:
202 vm_unacct_memory(pages);
203
204 return -ENOMEM;
205 }
206
207 /*
208 * Requires inode->i_mapping->i_mmap_mutex
209 */
210 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
211 struct file *file, struct address_space *mapping)
212 {
213 if (vma->vm_flags & VM_DENYWRITE)
214 atomic_inc(&file_inode(file)->i_writecount);
215 if (vma->vm_flags & VM_SHARED)
216 mapping->i_mmap_writable--;
217
218 flush_dcache_mmap_lock(mapping);
219 if (unlikely(vma->vm_flags & VM_NONLINEAR))
220 list_del_init(&vma->shared.nonlinear);
221 else
222 vma_interval_tree_remove(vma, &mapping->i_mmap);
223 flush_dcache_mmap_unlock(mapping);
224 }
225
226 /*
227 * Unlink a file-based vm structure from its interval tree, to hide
228 * vma from rmap and vmtruncate before freeing its page tables.
229 */
230 void unlink_file_vma(struct vm_area_struct *vma)
231 {
232 struct file *file = vma->vm_file;
233
234 if (file) {
235 struct address_space *mapping = file->f_mapping;
236 mutex_lock(&mapping->i_mmap_mutex);
237 __remove_shared_vm_struct(vma, file, mapping);
238 mutex_unlock(&mapping->i_mmap_mutex);
239 }
240 }
241
242 /*
243 * Close a vm structure and free it, returning the next.
244 */
245 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
246 {
247 struct vm_area_struct *next = vma->vm_next;
248
249 might_sleep();
250 if (vma->vm_ops && vma->vm_ops->close)
251 vma->vm_ops->close(vma);
252 if (vma->vm_file)
253 fput(vma->vm_file);
254 mpol_put(vma_policy(vma));
255 kmem_cache_free(vm_area_cachep, vma);
256 return next;
257 }
258
259 static unsigned long do_brk(unsigned long addr, unsigned long len);
260
261 SYSCALL_DEFINE1(brk, unsigned long, brk)
262 {
263 unsigned long rlim, retval;
264 unsigned long newbrk, oldbrk;
265 struct mm_struct *mm = current->mm;
266 unsigned long min_brk;
267 bool populate;
268
269 down_write(&mm->mmap_sem);
270
271 #ifdef CONFIG_COMPAT_BRK
272 /*
273 * CONFIG_COMPAT_BRK can still be overridden by setting
274 * randomize_va_space to 2, which will still cause mm->start_brk
275 * to be arbitrarily shifted
276 */
277 if (current->brk_randomized)
278 min_brk = mm->start_brk;
279 else
280 min_brk = mm->end_data;
281 #else
282 min_brk = mm->start_brk;
283 #endif
284 if (brk < min_brk)
285 goto out;
286
287 /*
288 * Check against rlimit here. If this check is done later after the test
289 * of oldbrk with newbrk then it can escape the test and let the data
290 * segment grow beyond its set limit the in case where the limit is
291 * not page aligned -Ram Gupta
292 */
293 rlim = rlimit(RLIMIT_DATA);
294 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
295 (mm->end_data - mm->start_data) > rlim)
296 goto out;
297
298 newbrk = PAGE_ALIGN(brk);
299 oldbrk = PAGE_ALIGN(mm->brk);
300 if (oldbrk == newbrk)
301 goto set_brk;
302
303 /* Always allow shrinking brk. */
304 if (brk <= mm->brk) {
305 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
306 goto set_brk;
307 goto out;
308 }
309
310 /* Check against existing mmap mappings. */
311 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
312 goto out;
313
314 /* Ok, looks good - let it rip. */
315 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
316 goto out;
317
318 set_brk:
319 mm->brk = brk;
320 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
321 up_write(&mm->mmap_sem);
322 if (populate)
323 mm_populate(oldbrk, newbrk - oldbrk);
324 return brk;
325
326 out:
327 retval = mm->brk;
328 up_write(&mm->mmap_sem);
329 return retval;
330 }
331
332 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
333 {
334 unsigned long max, subtree_gap;
335 max = vma->vm_start;
336 if (vma->vm_prev)
337 max -= vma->vm_prev->vm_end;
338 if (vma->vm_rb.rb_left) {
339 subtree_gap = rb_entry(vma->vm_rb.rb_left,
340 struct vm_area_struct, vm_rb)->rb_subtree_gap;
341 if (subtree_gap > max)
342 max = subtree_gap;
343 }
344 if (vma->vm_rb.rb_right) {
345 subtree_gap = rb_entry(vma->vm_rb.rb_right,
346 struct vm_area_struct, vm_rb)->rb_subtree_gap;
347 if (subtree_gap > max)
348 max = subtree_gap;
349 }
350 return max;
351 }
352
353 #ifdef CONFIG_DEBUG_VM_RB
354 static int browse_rb(struct rb_root *root)
355 {
356 int i = 0, j, bug = 0;
357 struct rb_node *nd, *pn = NULL;
358 unsigned long prev = 0, pend = 0;
359
360 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
361 struct vm_area_struct *vma;
362 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
363 if (vma->vm_start < prev) {
364 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
365 bug = 1;
366 }
367 if (vma->vm_start < pend) {
368 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
369 bug = 1;
370 }
371 if (vma->vm_start > vma->vm_end) {
372 printk("vm_end %lx < vm_start %lx\n",
373 vma->vm_end, vma->vm_start);
374 bug = 1;
375 }
376 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
377 printk("free gap %lx, correct %lx\n",
378 vma->rb_subtree_gap,
379 vma_compute_subtree_gap(vma));
380 bug = 1;
381 }
382 i++;
383 pn = nd;
384 prev = vma->vm_start;
385 pend = vma->vm_end;
386 }
387 j = 0;
388 for (nd = pn; nd; nd = rb_prev(nd))
389 j++;
390 if (i != j) {
391 printk("backwards %d, forwards %d\n", j, i);
392 bug = 1;
393 }
394 return bug ? -1 : i;
395 }
396
397 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
398 {
399 struct rb_node *nd;
400
401 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402 struct vm_area_struct *vma;
403 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404 BUG_ON(vma != ignore &&
405 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
406 }
407 }
408
409 void validate_mm(struct mm_struct *mm)
410 {
411 int bug = 0;
412 int i = 0;
413 unsigned long highest_address = 0;
414 struct vm_area_struct *vma = mm->mmap;
415 while (vma) {
416 struct anon_vma_chain *avc;
417 vma_lock_anon_vma(vma);
418 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
419 anon_vma_interval_tree_verify(avc);
420 vma_unlock_anon_vma(vma);
421 highest_address = vma->vm_end;
422 vma = vma->vm_next;
423 i++;
424 }
425 if (i != mm->map_count) {
426 printk("map_count %d vm_next %d\n", mm->map_count, i);
427 bug = 1;
428 }
429 if (highest_address != mm->highest_vm_end) {
430 printk("mm->highest_vm_end %lx, found %lx\n",
431 mm->highest_vm_end, highest_address);
432 bug = 1;
433 }
434 i = browse_rb(&mm->mm_rb);
435 if (i != mm->map_count) {
436 printk("map_count %d rb %d\n", mm->map_count, i);
437 bug = 1;
438 }
439 BUG_ON(bug);
440 }
441 #else
442 #define validate_mm_rb(root, ignore) do { } while (0)
443 #define validate_mm(mm) do { } while (0)
444 #endif
445
446 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
447 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
448
449 /*
450 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
451 * vma->vm_prev->vm_end values changed, without modifying the vma's position
452 * in the rbtree.
453 */
454 static void vma_gap_update(struct vm_area_struct *vma)
455 {
456 /*
457 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
458 * function that does exacltly what we want.
459 */
460 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
461 }
462
463 static inline void vma_rb_insert(struct vm_area_struct *vma,
464 struct rb_root *root)
465 {
466 /* All rb_subtree_gap values must be consistent prior to insertion */
467 validate_mm_rb(root, NULL);
468
469 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470 }
471
472 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
473 {
474 /*
475 * All rb_subtree_gap values must be consistent prior to erase,
476 * with the possible exception of the vma being erased.
477 */
478 validate_mm_rb(root, vma);
479
480 /*
481 * Note rb_erase_augmented is a fairly large inline function,
482 * so make sure we instantiate it only once with our desired
483 * augmented rbtree callbacks.
484 */
485 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
486 }
487
488 /*
489 * vma has some anon_vma assigned, and is already inserted on that
490 * anon_vma's interval trees.
491 *
492 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
493 * vma must be removed from the anon_vma's interval trees using
494 * anon_vma_interval_tree_pre_update_vma().
495 *
496 * After the update, the vma will be reinserted using
497 * anon_vma_interval_tree_post_update_vma().
498 *
499 * The entire update must be protected by exclusive mmap_sem and by
500 * the root anon_vma's mutex.
501 */
502 static inline void
503 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
504 {
505 struct anon_vma_chain *avc;
506
507 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
508 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
509 }
510
511 static inline void
512 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
513 {
514 struct anon_vma_chain *avc;
515
516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
518 }
519
520 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
521 unsigned long end, struct vm_area_struct **pprev,
522 struct rb_node ***rb_link, struct rb_node **rb_parent)
523 {
524 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
525
526 __rb_link = &mm->mm_rb.rb_node;
527 rb_prev = __rb_parent = NULL;
528
529 while (*__rb_link) {
530 struct vm_area_struct *vma_tmp;
531
532 __rb_parent = *__rb_link;
533 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
534
535 if (vma_tmp->vm_end > addr) {
536 /* Fail if an existing vma overlaps the area */
537 if (vma_tmp->vm_start < end)
538 return -ENOMEM;
539 __rb_link = &__rb_parent->rb_left;
540 } else {
541 rb_prev = __rb_parent;
542 __rb_link = &__rb_parent->rb_right;
543 }
544 }
545
546 *pprev = NULL;
547 if (rb_prev)
548 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
549 *rb_link = __rb_link;
550 *rb_parent = __rb_parent;
551 return 0;
552 }
553
554 static unsigned long count_vma_pages_range(struct mm_struct *mm,
555 unsigned long addr, unsigned long end)
556 {
557 unsigned long nr_pages = 0;
558 struct vm_area_struct *vma;
559
560 /* Find first overlaping mapping */
561 vma = find_vma_intersection(mm, addr, end);
562 if (!vma)
563 return 0;
564
565 nr_pages = (min(end, vma->vm_end) -
566 max(addr, vma->vm_start)) >> PAGE_SHIFT;
567
568 /* Iterate over the rest of the overlaps */
569 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
570 unsigned long overlap_len;
571
572 if (vma->vm_start > end)
573 break;
574
575 overlap_len = min(end, vma->vm_end) - vma->vm_start;
576 nr_pages += overlap_len >> PAGE_SHIFT;
577 }
578
579 return nr_pages;
580 }
581
582 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
583 struct rb_node **rb_link, struct rb_node *rb_parent)
584 {
585 /* Update tracking information for the gap following the new vma. */
586 if (vma->vm_next)
587 vma_gap_update(vma->vm_next);
588 else
589 mm->highest_vm_end = vma->vm_end;
590
591 /*
592 * vma->vm_prev wasn't known when we followed the rbtree to find the
593 * correct insertion point for that vma. As a result, we could not
594 * update the vma vm_rb parents rb_subtree_gap values on the way down.
595 * So, we first insert the vma with a zero rb_subtree_gap value
596 * (to be consistent with what we did on the way down), and then
597 * immediately update the gap to the correct value. Finally we
598 * rebalance the rbtree after all augmented values have been set.
599 */
600 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
601 vma->rb_subtree_gap = 0;
602 vma_gap_update(vma);
603 vma_rb_insert(vma, &mm->mm_rb);
604 }
605
606 static void __vma_link_file(struct vm_area_struct *vma)
607 {
608 struct file *file;
609
610 file = vma->vm_file;
611 if (file) {
612 struct address_space *mapping = file->f_mapping;
613
614 if (vma->vm_flags & VM_DENYWRITE)
615 atomic_dec(&file_inode(file)->i_writecount);
616 if (vma->vm_flags & VM_SHARED)
617 mapping->i_mmap_writable++;
618
619 flush_dcache_mmap_lock(mapping);
620 if (unlikely(vma->vm_flags & VM_NONLINEAR))
621 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
622 else
623 vma_interval_tree_insert(vma, &mapping->i_mmap);
624 flush_dcache_mmap_unlock(mapping);
625 }
626 }
627
628 static void
629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630 struct vm_area_struct *prev, struct rb_node **rb_link,
631 struct rb_node *rb_parent)
632 {
633 __vma_link_list(mm, vma, prev, rb_parent);
634 __vma_link_rb(mm, vma, rb_link, rb_parent);
635 }
636
637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638 struct vm_area_struct *prev, struct rb_node **rb_link,
639 struct rb_node *rb_parent)
640 {
641 struct address_space *mapping = NULL;
642
643 if (vma->vm_file)
644 mapping = vma->vm_file->f_mapping;
645
646 if (mapping)
647 mutex_lock(&mapping->i_mmap_mutex);
648
649 __vma_link(mm, vma, prev, rb_link, rb_parent);
650 __vma_link_file(vma);
651
652 if (mapping)
653 mutex_unlock(&mapping->i_mmap_mutex);
654
655 mm->map_count++;
656 validate_mm(mm);
657 }
658
659 /*
660 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
661 * mm's list and rbtree. It has already been inserted into the interval tree.
662 */
663 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
664 {
665 struct vm_area_struct *prev;
666 struct rb_node **rb_link, *rb_parent;
667
668 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
669 &prev, &rb_link, &rb_parent))
670 BUG();
671 __vma_link(mm, vma, prev, rb_link, rb_parent);
672 mm->map_count++;
673 }
674
675 static inline void
676 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
677 struct vm_area_struct *prev)
678 {
679 struct vm_area_struct *next;
680
681 vma_rb_erase(vma, &mm->mm_rb);
682 prev->vm_next = next = vma->vm_next;
683 if (next)
684 next->vm_prev = prev;
685 if (mm->mmap_cache == vma)
686 mm->mmap_cache = prev;
687 }
688
689 /*
690 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
691 * is already present in an i_mmap tree without adjusting the tree.
692 * The following helper function should be used when such adjustments
693 * are necessary. The "insert" vma (if any) is to be inserted
694 * before we drop the necessary locks.
695 */
696 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
697 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
698 {
699 struct mm_struct *mm = vma->vm_mm;
700 struct vm_area_struct *next = vma->vm_next;
701 struct vm_area_struct *importer = NULL;
702 struct address_space *mapping = NULL;
703 struct rb_root *root = NULL;
704 struct anon_vma *anon_vma = NULL;
705 struct file *file = vma->vm_file;
706 bool start_changed = false, end_changed = false;
707 long adjust_next = 0;
708 int remove_next = 0;
709
710 if (next && !insert) {
711 struct vm_area_struct *exporter = NULL;
712
713 if (end >= next->vm_end) {
714 /*
715 * vma expands, overlapping all the next, and
716 * perhaps the one after too (mprotect case 6).
717 */
718 again: remove_next = 1 + (end > next->vm_end);
719 end = next->vm_end;
720 exporter = next;
721 importer = vma;
722 } else if (end > next->vm_start) {
723 /*
724 * vma expands, overlapping part of the next:
725 * mprotect case 5 shifting the boundary up.
726 */
727 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
728 exporter = next;
729 importer = vma;
730 } else if (end < vma->vm_end) {
731 /*
732 * vma shrinks, and !insert tells it's not
733 * split_vma inserting another: so it must be
734 * mprotect case 4 shifting the boundary down.
735 */
736 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
737 exporter = vma;
738 importer = next;
739 }
740
741 /*
742 * Easily overlooked: when mprotect shifts the boundary,
743 * make sure the expanding vma has anon_vma set if the
744 * shrinking vma had, to cover any anon pages imported.
745 */
746 if (exporter && exporter->anon_vma && !importer->anon_vma) {
747 if (anon_vma_clone(importer, exporter))
748 return -ENOMEM;
749 importer->anon_vma = exporter->anon_vma;
750 }
751 }
752
753 if (file) {
754 mapping = file->f_mapping;
755 if (!(vma->vm_flags & VM_NONLINEAR)) {
756 root = &mapping->i_mmap;
757 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
758
759 if (adjust_next)
760 uprobe_munmap(next, next->vm_start,
761 next->vm_end);
762 }
763
764 mutex_lock(&mapping->i_mmap_mutex);
765 if (insert) {
766 /*
767 * Put into interval tree now, so instantiated pages
768 * are visible to arm/parisc __flush_dcache_page
769 * throughout; but we cannot insert into address
770 * space until vma start or end is updated.
771 */
772 __vma_link_file(insert);
773 }
774 }
775
776 vma_adjust_trans_huge(vma, start, end, adjust_next);
777
778 anon_vma = vma->anon_vma;
779 if (!anon_vma && adjust_next)
780 anon_vma = next->anon_vma;
781 if (anon_vma) {
782 VM_BUG_ON(adjust_next && next->anon_vma &&
783 anon_vma != next->anon_vma);
784 anon_vma_lock_write(anon_vma);
785 anon_vma_interval_tree_pre_update_vma(vma);
786 if (adjust_next)
787 anon_vma_interval_tree_pre_update_vma(next);
788 }
789
790 if (root) {
791 flush_dcache_mmap_lock(mapping);
792 vma_interval_tree_remove(vma, root);
793 if (adjust_next)
794 vma_interval_tree_remove(next, root);
795 }
796
797 if (start != vma->vm_start) {
798 vma->vm_start = start;
799 start_changed = true;
800 }
801 if (end != vma->vm_end) {
802 vma->vm_end = end;
803 end_changed = true;
804 }
805 vma->vm_pgoff = pgoff;
806 if (adjust_next) {
807 next->vm_start += adjust_next << PAGE_SHIFT;
808 next->vm_pgoff += adjust_next;
809 }
810
811 if (root) {
812 if (adjust_next)
813 vma_interval_tree_insert(next, root);
814 vma_interval_tree_insert(vma, root);
815 flush_dcache_mmap_unlock(mapping);
816 }
817
818 if (remove_next) {
819 /*
820 * vma_merge has merged next into vma, and needs
821 * us to remove next before dropping the locks.
822 */
823 __vma_unlink(mm, next, vma);
824 if (file)
825 __remove_shared_vm_struct(next, file, mapping);
826 } else if (insert) {
827 /*
828 * split_vma has split insert from vma, and needs
829 * us to insert it before dropping the locks
830 * (it may either follow vma or precede it).
831 */
832 __insert_vm_struct(mm, insert);
833 } else {
834 if (start_changed)
835 vma_gap_update(vma);
836 if (end_changed) {
837 if (!next)
838 mm->highest_vm_end = end;
839 else if (!adjust_next)
840 vma_gap_update(next);
841 }
842 }
843
844 if (anon_vma) {
845 anon_vma_interval_tree_post_update_vma(vma);
846 if (adjust_next)
847 anon_vma_interval_tree_post_update_vma(next);
848 anon_vma_unlock_write(anon_vma);
849 }
850 if (mapping)
851 mutex_unlock(&mapping->i_mmap_mutex);
852
853 if (root) {
854 uprobe_mmap(vma);
855
856 if (adjust_next)
857 uprobe_mmap(next);
858 }
859
860 if (remove_next) {
861 if (file) {
862 uprobe_munmap(next, next->vm_start, next->vm_end);
863 fput(file);
864 }
865 if (next->anon_vma)
866 anon_vma_merge(vma, next);
867 mm->map_count--;
868 mpol_put(vma_policy(next));
869 kmem_cache_free(vm_area_cachep, next);
870 /*
871 * In mprotect's case 6 (see comments on vma_merge),
872 * we must remove another next too. It would clutter
873 * up the code too much to do both in one go.
874 */
875 next = vma->vm_next;
876 if (remove_next == 2)
877 goto again;
878 else if (next)
879 vma_gap_update(next);
880 else
881 mm->highest_vm_end = end;
882 }
883 if (insert && file)
884 uprobe_mmap(insert);
885
886 validate_mm(mm);
887
888 return 0;
889 }
890
891 /*
892 * If the vma has a ->close operation then the driver probably needs to release
893 * per-vma resources, so we don't attempt to merge those.
894 */
895 static inline int is_mergeable_vma(struct vm_area_struct *vma,
896 struct file *file, unsigned long vm_flags)
897 {
898 if (vma->vm_flags ^ vm_flags)
899 return 0;
900 if (vma->vm_file != file)
901 return 0;
902 if (vma->vm_ops && vma->vm_ops->close)
903 return 0;
904 return 1;
905 }
906
907 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
908 struct anon_vma *anon_vma2,
909 struct vm_area_struct *vma)
910 {
911 /*
912 * The list_is_singular() test is to avoid merging VMA cloned from
913 * parents. This can improve scalability caused by anon_vma lock.
914 */
915 if ((!anon_vma1 || !anon_vma2) && (!vma ||
916 list_is_singular(&vma->anon_vma_chain)))
917 return 1;
918 return anon_vma1 == anon_vma2;
919 }
920
921 /*
922 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
923 * in front of (at a lower virtual address and file offset than) the vma.
924 *
925 * We cannot merge two vmas if they have differently assigned (non-NULL)
926 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
927 *
928 * We don't check here for the merged mmap wrapping around the end of pagecache
929 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
930 * wrap, nor mmaps which cover the final page at index -1UL.
931 */
932 static int
933 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
934 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
935 {
936 if (is_mergeable_vma(vma, file, vm_flags) &&
937 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
938 if (vma->vm_pgoff == vm_pgoff)
939 return 1;
940 }
941 return 0;
942 }
943
944 /*
945 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
946 * beyond (at a higher virtual address and file offset than) the vma.
947 *
948 * We cannot merge two vmas if they have differently assigned (non-NULL)
949 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
950 */
951 static int
952 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
953 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
954 {
955 if (is_mergeable_vma(vma, file, vm_flags) &&
956 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
957 pgoff_t vm_pglen;
958 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
959 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
960 return 1;
961 }
962 return 0;
963 }
964
965 /*
966 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
967 * whether that can be merged with its predecessor or its successor.
968 * Or both (it neatly fills a hole).
969 *
970 * In most cases - when called for mmap, brk or mremap - [addr,end) is
971 * certain not to be mapped by the time vma_merge is called; but when
972 * called for mprotect, it is certain to be already mapped (either at
973 * an offset within prev, or at the start of next), and the flags of
974 * this area are about to be changed to vm_flags - and the no-change
975 * case has already been eliminated.
976 *
977 * The following mprotect cases have to be considered, where AAAA is
978 * the area passed down from mprotect_fixup, never extending beyond one
979 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
980 *
981 * AAAA AAAA AAAA AAAA
982 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
983 * cannot merge might become might become might become
984 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
985 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
986 * mremap move: PPPPNNNNNNNN 8
987 * AAAA
988 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
989 * might become case 1 below case 2 below case 3 below
990 *
991 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
992 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
993 */
994 struct vm_area_struct *vma_merge(struct mm_struct *mm,
995 struct vm_area_struct *prev, unsigned long addr,
996 unsigned long end, unsigned long vm_flags,
997 struct anon_vma *anon_vma, struct file *file,
998 pgoff_t pgoff, struct mempolicy *policy)
999 {
1000 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1001 struct vm_area_struct *area, *next;
1002 int err;
1003
1004 /*
1005 * We later require that vma->vm_flags == vm_flags,
1006 * so this tests vma->vm_flags & VM_SPECIAL, too.
1007 */
1008 if (vm_flags & VM_SPECIAL)
1009 return NULL;
1010
1011 if (prev)
1012 next = prev->vm_next;
1013 else
1014 next = mm->mmap;
1015 area = next;
1016 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1017 next = next->vm_next;
1018
1019 /*
1020 * Can it merge with the predecessor?
1021 */
1022 if (prev && prev->vm_end == addr &&
1023 mpol_equal(vma_policy(prev), policy) &&
1024 can_vma_merge_after(prev, vm_flags,
1025 anon_vma, file, pgoff)) {
1026 /*
1027 * OK, it can. Can we now merge in the successor as well?
1028 */
1029 if (next && end == next->vm_start &&
1030 mpol_equal(policy, vma_policy(next)) &&
1031 can_vma_merge_before(next, vm_flags,
1032 anon_vma, file, pgoff+pglen) &&
1033 is_mergeable_anon_vma(prev->anon_vma,
1034 next->anon_vma, NULL)) {
1035 /* cases 1, 6 */
1036 err = vma_adjust(prev, prev->vm_start,
1037 next->vm_end, prev->vm_pgoff, NULL);
1038 } else /* cases 2, 5, 7 */
1039 err = vma_adjust(prev, prev->vm_start,
1040 end, prev->vm_pgoff, NULL);
1041 if (err)
1042 return NULL;
1043 khugepaged_enter_vma_merge(prev);
1044 return prev;
1045 }
1046
1047 /*
1048 * Can this new request be merged in front of next?
1049 */
1050 if (next && end == next->vm_start &&
1051 mpol_equal(policy, vma_policy(next)) &&
1052 can_vma_merge_before(next, vm_flags,
1053 anon_vma, file, pgoff+pglen)) {
1054 if (prev && addr < prev->vm_end) /* case 4 */
1055 err = vma_adjust(prev, prev->vm_start,
1056 addr, prev->vm_pgoff, NULL);
1057 else /* cases 3, 8 */
1058 err = vma_adjust(area, addr, next->vm_end,
1059 next->vm_pgoff - pglen, NULL);
1060 if (err)
1061 return NULL;
1062 khugepaged_enter_vma_merge(area);
1063 return area;
1064 }
1065
1066 return NULL;
1067 }
1068
1069 /*
1070 * Rough compatbility check to quickly see if it's even worth looking
1071 * at sharing an anon_vma.
1072 *
1073 * They need to have the same vm_file, and the flags can only differ
1074 * in things that mprotect may change.
1075 *
1076 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1077 * we can merge the two vma's. For example, we refuse to merge a vma if
1078 * there is a vm_ops->close() function, because that indicates that the
1079 * driver is doing some kind of reference counting. But that doesn't
1080 * really matter for the anon_vma sharing case.
1081 */
1082 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1083 {
1084 return a->vm_end == b->vm_start &&
1085 mpol_equal(vma_policy(a), vma_policy(b)) &&
1086 a->vm_file == b->vm_file &&
1087 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1088 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1089 }
1090
1091 /*
1092 * Do some basic sanity checking to see if we can re-use the anon_vma
1093 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1094 * the same as 'old', the other will be the new one that is trying
1095 * to share the anon_vma.
1096 *
1097 * NOTE! This runs with mm_sem held for reading, so it is possible that
1098 * the anon_vma of 'old' is concurrently in the process of being set up
1099 * by another page fault trying to merge _that_. But that's ok: if it
1100 * is being set up, that automatically means that it will be a singleton
1101 * acceptable for merging, so we can do all of this optimistically. But
1102 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1103 *
1104 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1105 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1106 * is to return an anon_vma that is "complex" due to having gone through
1107 * a fork).
1108 *
1109 * We also make sure that the two vma's are compatible (adjacent,
1110 * and with the same memory policies). That's all stable, even with just
1111 * a read lock on the mm_sem.
1112 */
1113 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1114 {
1115 if (anon_vma_compatible(a, b)) {
1116 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1117
1118 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1119 return anon_vma;
1120 }
1121 return NULL;
1122 }
1123
1124 /*
1125 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1126 * neighbouring vmas for a suitable anon_vma, before it goes off
1127 * to allocate a new anon_vma. It checks because a repetitive
1128 * sequence of mprotects and faults may otherwise lead to distinct
1129 * anon_vmas being allocated, preventing vma merge in subsequent
1130 * mprotect.
1131 */
1132 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1133 {
1134 struct anon_vma *anon_vma;
1135 struct vm_area_struct *near;
1136
1137 near = vma->vm_next;
1138 if (!near)
1139 goto try_prev;
1140
1141 anon_vma = reusable_anon_vma(near, vma, near);
1142 if (anon_vma)
1143 return anon_vma;
1144 try_prev:
1145 near = vma->vm_prev;
1146 if (!near)
1147 goto none;
1148
1149 anon_vma = reusable_anon_vma(near, near, vma);
1150 if (anon_vma)
1151 return anon_vma;
1152 none:
1153 /*
1154 * There's no absolute need to look only at touching neighbours:
1155 * we could search further afield for "compatible" anon_vmas.
1156 * But it would probably just be a waste of time searching,
1157 * or lead to too many vmas hanging off the same anon_vma.
1158 * We're trying to allow mprotect remerging later on,
1159 * not trying to minimize memory used for anon_vmas.
1160 */
1161 return NULL;
1162 }
1163
1164 #ifdef CONFIG_PROC_FS
1165 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1166 struct file *file, long pages)
1167 {
1168 const unsigned long stack_flags
1169 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1170
1171 mm->total_vm += pages;
1172
1173 if (file) {
1174 mm->shared_vm += pages;
1175 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1176 mm->exec_vm += pages;
1177 } else if (flags & stack_flags)
1178 mm->stack_vm += pages;
1179 }
1180 #endif /* CONFIG_PROC_FS */
1181
1182 /*
1183 * If a hint addr is less than mmap_min_addr change hint to be as
1184 * low as possible but still greater than mmap_min_addr
1185 */
1186 static inline unsigned long round_hint_to_min(unsigned long hint)
1187 {
1188 hint &= PAGE_MASK;
1189 if (((void *)hint != NULL) &&
1190 (hint < mmap_min_addr))
1191 return PAGE_ALIGN(mmap_min_addr);
1192 return hint;
1193 }
1194
1195 /*
1196 * The caller must hold down_write(&current->mm->mmap_sem).
1197 */
1198
1199 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1200 unsigned long len, unsigned long prot,
1201 unsigned long flags, unsigned long pgoff,
1202 unsigned long *populate)
1203 {
1204 struct mm_struct * mm = current->mm;
1205 struct inode *inode;
1206 vm_flags_t vm_flags;
1207
1208 *populate = 0;
1209
1210 /*
1211 * Does the application expect PROT_READ to imply PROT_EXEC?
1212 *
1213 * (the exception is when the underlying filesystem is noexec
1214 * mounted, in which case we dont add PROT_EXEC.)
1215 */
1216 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1217 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1218 prot |= PROT_EXEC;
1219
1220 if (!len)
1221 return -EINVAL;
1222
1223 if (!(flags & MAP_FIXED))
1224 addr = round_hint_to_min(addr);
1225
1226 /* Careful about overflows.. */
1227 len = PAGE_ALIGN(len);
1228 if (!len)
1229 return -ENOMEM;
1230
1231 /* offset overflow? */
1232 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1233 return -EOVERFLOW;
1234
1235 /* Too many mappings? */
1236 if (mm->map_count > sysctl_max_map_count)
1237 return -ENOMEM;
1238
1239 /* Obtain the address to map to. we verify (or select) it and ensure
1240 * that it represents a valid section of the address space.
1241 */
1242 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1243 if (addr & ~PAGE_MASK)
1244 return addr;
1245
1246 /* Do simple checking here so the lower-level routines won't have
1247 * to. we assume access permissions have been handled by the open
1248 * of the memory object, so we don't do any here.
1249 */
1250 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1251 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1252
1253 if (flags & MAP_LOCKED)
1254 if (!can_do_mlock())
1255 return -EPERM;
1256
1257 /* mlock MCL_FUTURE? */
1258 if (vm_flags & VM_LOCKED) {
1259 unsigned long locked, lock_limit;
1260 locked = len >> PAGE_SHIFT;
1261 locked += mm->locked_vm;
1262 lock_limit = rlimit(RLIMIT_MEMLOCK);
1263 lock_limit >>= PAGE_SHIFT;
1264 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1265 return -EAGAIN;
1266 }
1267
1268 inode = file ? file_inode(file) : NULL;
1269
1270 if (file) {
1271 switch (flags & MAP_TYPE) {
1272 case MAP_SHARED:
1273 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1274 return -EACCES;
1275
1276 /*
1277 * Make sure we don't allow writing to an append-only
1278 * file..
1279 */
1280 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1281 return -EACCES;
1282
1283 /*
1284 * Make sure there are no mandatory locks on the file.
1285 */
1286 if (locks_verify_locked(inode))
1287 return -EAGAIN;
1288
1289 vm_flags |= VM_SHARED | VM_MAYSHARE;
1290 if (!(file->f_mode & FMODE_WRITE))
1291 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1292
1293 /* fall through */
1294 case MAP_PRIVATE:
1295 if (!(file->f_mode & FMODE_READ))
1296 return -EACCES;
1297 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1298 if (vm_flags & VM_EXEC)
1299 return -EPERM;
1300 vm_flags &= ~VM_MAYEXEC;
1301 }
1302
1303 if (!file->f_op || !file->f_op->mmap)
1304 return -ENODEV;
1305 break;
1306
1307 default:
1308 return -EINVAL;
1309 }
1310 } else {
1311 switch (flags & MAP_TYPE) {
1312 case MAP_SHARED:
1313 /*
1314 * Ignore pgoff.
1315 */
1316 pgoff = 0;
1317 vm_flags |= VM_SHARED | VM_MAYSHARE;
1318 break;
1319 case MAP_PRIVATE:
1320 /*
1321 * Set pgoff according to addr for anon_vma.
1322 */
1323 pgoff = addr >> PAGE_SHIFT;
1324 break;
1325 default:
1326 return -EINVAL;
1327 }
1328 }
1329
1330 /*
1331 * Set 'VM_NORESERVE' if we should not account for the
1332 * memory use of this mapping.
1333 */
1334 if (flags & MAP_NORESERVE) {
1335 /* We honor MAP_NORESERVE if allowed to overcommit */
1336 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1337 vm_flags |= VM_NORESERVE;
1338
1339 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1340 if (file && is_file_hugepages(file))
1341 vm_flags |= VM_NORESERVE;
1342 }
1343
1344 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1345 if (!IS_ERR_VALUE(addr) &&
1346 ((vm_flags & VM_LOCKED) ||
1347 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1348 *populate = len;
1349 return addr;
1350 }
1351
1352 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1353 unsigned long, prot, unsigned long, flags,
1354 unsigned long, fd, unsigned long, pgoff)
1355 {
1356 struct file *file = NULL;
1357 unsigned long retval = -EBADF;
1358
1359 if (!(flags & MAP_ANONYMOUS)) {
1360 audit_mmap_fd(fd, flags);
1361 if (unlikely(flags & MAP_HUGETLB))
1362 return -EINVAL;
1363 file = fget(fd);
1364 if (!file)
1365 goto out;
1366 if (is_file_hugepages(file))
1367 len = ALIGN(len, huge_page_size(hstate_file(file)));
1368 } else if (flags & MAP_HUGETLB) {
1369 struct user_struct *user = NULL;
1370 struct hstate *hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) &
1371 SHM_HUGE_MASK);
1372
1373 if (!hs)
1374 return -EINVAL;
1375
1376 len = ALIGN(len, huge_page_size(hs));
1377 /*
1378 * VM_NORESERVE is used because the reservations will be
1379 * taken when vm_ops->mmap() is called
1380 * A dummy user value is used because we are not locking
1381 * memory so no accounting is necessary
1382 */
1383 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1384 VM_NORESERVE,
1385 &user, HUGETLB_ANONHUGE_INODE,
1386 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1387 if (IS_ERR(file))
1388 return PTR_ERR(file);
1389 }
1390
1391 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1392
1393 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1394 if (file)
1395 fput(file);
1396 out:
1397 return retval;
1398 }
1399
1400 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1401 struct mmap_arg_struct {
1402 unsigned long addr;
1403 unsigned long len;
1404 unsigned long prot;
1405 unsigned long flags;
1406 unsigned long fd;
1407 unsigned long offset;
1408 };
1409
1410 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1411 {
1412 struct mmap_arg_struct a;
1413
1414 if (copy_from_user(&a, arg, sizeof(a)))
1415 return -EFAULT;
1416 if (a.offset & ~PAGE_MASK)
1417 return -EINVAL;
1418
1419 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1420 a.offset >> PAGE_SHIFT);
1421 }
1422 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1423
1424 /*
1425 * Some shared mappigns will want the pages marked read-only
1426 * to track write events. If so, we'll downgrade vm_page_prot
1427 * to the private version (using protection_map[] without the
1428 * VM_SHARED bit).
1429 */
1430 int vma_wants_writenotify(struct vm_area_struct *vma)
1431 {
1432 vm_flags_t vm_flags = vma->vm_flags;
1433
1434 /* If it was private or non-writable, the write bit is already clear */
1435 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1436 return 0;
1437
1438 /* The backer wishes to know when pages are first written to? */
1439 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1440 return 1;
1441
1442 /* The open routine did something to the protections already? */
1443 if (pgprot_val(vma->vm_page_prot) !=
1444 pgprot_val(vm_get_page_prot(vm_flags)))
1445 return 0;
1446
1447 /* Specialty mapping? */
1448 if (vm_flags & VM_PFNMAP)
1449 return 0;
1450
1451 /* Can the mapping track the dirty pages? */
1452 return vma->vm_file && vma->vm_file->f_mapping &&
1453 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1454 }
1455
1456 /*
1457 * We account for memory if it's a private writeable mapping,
1458 * not hugepages and VM_NORESERVE wasn't set.
1459 */
1460 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1461 {
1462 /*
1463 * hugetlb has its own accounting separate from the core VM
1464 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1465 */
1466 if (file && is_file_hugepages(file))
1467 return 0;
1468
1469 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1470 }
1471
1472 unsigned long mmap_region(struct file *file, unsigned long addr,
1473 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1474 {
1475 struct mm_struct *mm = current->mm;
1476 struct vm_area_struct *vma, *prev;
1477 int correct_wcount = 0;
1478 int error;
1479 struct rb_node **rb_link, *rb_parent;
1480 unsigned long charged = 0;
1481 struct inode *inode = file ? file_inode(file) : NULL;
1482
1483 /* Check against address space limit. */
1484 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1485 unsigned long nr_pages;
1486
1487 /*
1488 * MAP_FIXED may remove pages of mappings that intersects with
1489 * requested mapping. Account for the pages it would unmap.
1490 */
1491 if (!(vm_flags & MAP_FIXED))
1492 return -ENOMEM;
1493
1494 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1495
1496 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1497 return -ENOMEM;
1498 }
1499
1500 /* Clear old maps */
1501 error = -ENOMEM;
1502 munmap_back:
1503 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1504 if (do_munmap(mm, addr, len))
1505 return -ENOMEM;
1506 goto munmap_back;
1507 }
1508
1509 /*
1510 * Private writable mapping: check memory availability
1511 */
1512 if (accountable_mapping(file, vm_flags)) {
1513 charged = len >> PAGE_SHIFT;
1514 if (security_vm_enough_memory_mm(mm, charged))
1515 return -ENOMEM;
1516 vm_flags |= VM_ACCOUNT;
1517 }
1518
1519 /*
1520 * Can we just expand an old mapping?
1521 */
1522 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1523 if (vma)
1524 goto out;
1525
1526 /*
1527 * Determine the object being mapped and call the appropriate
1528 * specific mapper. the address has already been validated, but
1529 * not unmapped, but the maps are removed from the list.
1530 */
1531 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1532 if (!vma) {
1533 error = -ENOMEM;
1534 goto unacct_error;
1535 }
1536
1537 vma->vm_mm = mm;
1538 vma->vm_start = addr;
1539 vma->vm_end = addr + len;
1540 vma->vm_flags = vm_flags;
1541 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1542 vma->vm_pgoff = pgoff;
1543 INIT_LIST_HEAD(&vma->anon_vma_chain);
1544
1545 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1546
1547 if (file) {
1548 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1549 goto free_vma;
1550 if (vm_flags & VM_DENYWRITE) {
1551 error = deny_write_access(file);
1552 if (error)
1553 goto free_vma;
1554 correct_wcount = 1;
1555 }
1556 vma->vm_file = get_file(file);
1557 error = file->f_op->mmap(file, vma);
1558 if (error)
1559 goto unmap_and_free_vma;
1560
1561 /* Can addr have changed??
1562 *
1563 * Answer: Yes, several device drivers can do it in their
1564 * f_op->mmap method. -DaveM
1565 * Bug: If addr is changed, prev, rb_link, rb_parent should
1566 * be updated for vma_link()
1567 */
1568 WARN_ON_ONCE(addr != vma->vm_start);
1569
1570 addr = vma->vm_start;
1571 pgoff = vma->vm_pgoff;
1572 vm_flags = vma->vm_flags;
1573 } else if (vm_flags & VM_SHARED) {
1574 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1575 goto free_vma;
1576 error = shmem_zero_setup(vma);
1577 if (error)
1578 goto free_vma;
1579 }
1580
1581 if (vma_wants_writenotify(vma)) {
1582 pgprot_t pprot = vma->vm_page_prot;
1583
1584 /* Can vma->vm_page_prot have changed??
1585 *
1586 * Answer: Yes, drivers may have changed it in their
1587 * f_op->mmap method.
1588 *
1589 * Ensures that vmas marked as uncached stay that way.
1590 */
1591 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1592 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1593 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1594 }
1595
1596 vma_link(mm, vma, prev, rb_link, rb_parent);
1597 file = vma->vm_file;
1598
1599 /* Once vma denies write, undo our temporary denial count */
1600 if (correct_wcount)
1601 atomic_inc(&inode->i_writecount);
1602 out:
1603 perf_event_mmap(vma);
1604
1605 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1606 if (vm_flags & VM_LOCKED) {
1607 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1608 vma == get_gate_vma(current->mm)))
1609 mm->locked_vm += (len >> PAGE_SHIFT);
1610 else
1611 vma->vm_flags &= ~VM_LOCKED;
1612 }
1613
1614 if (file)
1615 uprobe_mmap(vma);
1616
1617 return addr;
1618
1619 unmap_and_free_vma:
1620 if (correct_wcount)
1621 atomic_inc(&inode->i_writecount);
1622 vma->vm_file = NULL;
1623 fput(file);
1624
1625 /* Undo any partial mapping done by a device driver. */
1626 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1627 charged = 0;
1628 free_vma:
1629 kmem_cache_free(vm_area_cachep, vma);
1630 unacct_error:
1631 if (charged)
1632 vm_unacct_memory(charged);
1633 return error;
1634 }
1635
1636 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1637 {
1638 /*
1639 * We implement the search by looking for an rbtree node that
1640 * immediately follows a suitable gap. That is,
1641 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1642 * - gap_end = vma->vm_start >= info->low_limit + length;
1643 * - gap_end - gap_start >= length
1644 */
1645
1646 struct mm_struct *mm = current->mm;
1647 struct vm_area_struct *vma;
1648 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1649
1650 /* Adjust search length to account for worst case alignment overhead */
1651 length = info->length + info->align_mask;
1652 if (length < info->length)
1653 return -ENOMEM;
1654
1655 /* Adjust search limits by the desired length */
1656 if (info->high_limit < length)
1657 return -ENOMEM;
1658 high_limit = info->high_limit - length;
1659
1660 if (info->low_limit > high_limit)
1661 return -ENOMEM;
1662 low_limit = info->low_limit + length;
1663
1664 /* Check if rbtree root looks promising */
1665 if (RB_EMPTY_ROOT(&mm->mm_rb))
1666 goto check_highest;
1667 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1668 if (vma->rb_subtree_gap < length)
1669 goto check_highest;
1670
1671 while (true) {
1672 /* Visit left subtree if it looks promising */
1673 gap_end = vma->vm_start;
1674 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1675 struct vm_area_struct *left =
1676 rb_entry(vma->vm_rb.rb_left,
1677 struct vm_area_struct, vm_rb);
1678 if (left->rb_subtree_gap >= length) {
1679 vma = left;
1680 continue;
1681 }
1682 }
1683
1684 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1685 check_current:
1686 /* Check if current node has a suitable gap */
1687 if (gap_start > high_limit)
1688 return -ENOMEM;
1689 if (gap_end >= low_limit && gap_end - gap_start >= length)
1690 goto found;
1691
1692 /* Visit right subtree if it looks promising */
1693 if (vma->vm_rb.rb_right) {
1694 struct vm_area_struct *right =
1695 rb_entry(vma->vm_rb.rb_right,
1696 struct vm_area_struct, vm_rb);
1697 if (right->rb_subtree_gap >= length) {
1698 vma = right;
1699 continue;
1700 }
1701 }
1702
1703 /* Go back up the rbtree to find next candidate node */
1704 while (true) {
1705 struct rb_node *prev = &vma->vm_rb;
1706 if (!rb_parent(prev))
1707 goto check_highest;
1708 vma = rb_entry(rb_parent(prev),
1709 struct vm_area_struct, vm_rb);
1710 if (prev == vma->vm_rb.rb_left) {
1711 gap_start = vma->vm_prev->vm_end;
1712 gap_end = vma->vm_start;
1713 goto check_current;
1714 }
1715 }
1716 }
1717
1718 check_highest:
1719 /* Check highest gap, which does not precede any rbtree node */
1720 gap_start = mm->highest_vm_end;
1721 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1722 if (gap_start > high_limit)
1723 return -ENOMEM;
1724
1725 found:
1726 /* We found a suitable gap. Clip it with the original low_limit. */
1727 if (gap_start < info->low_limit)
1728 gap_start = info->low_limit;
1729
1730 /* Adjust gap address to the desired alignment */
1731 gap_start += (info->align_offset - gap_start) & info->align_mask;
1732
1733 VM_BUG_ON(gap_start + info->length > info->high_limit);
1734 VM_BUG_ON(gap_start + info->length > gap_end);
1735 return gap_start;
1736 }
1737
1738 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1739 {
1740 struct mm_struct *mm = current->mm;
1741 struct vm_area_struct *vma;
1742 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1743
1744 /* Adjust search length to account for worst case alignment overhead */
1745 length = info->length + info->align_mask;
1746 if (length < info->length)
1747 return -ENOMEM;
1748
1749 /*
1750 * Adjust search limits by the desired length.
1751 * See implementation comment at top of unmapped_area().
1752 */
1753 gap_end = info->high_limit;
1754 if (gap_end < length)
1755 return -ENOMEM;
1756 high_limit = gap_end - length;
1757
1758 if (info->low_limit > high_limit)
1759 return -ENOMEM;
1760 low_limit = info->low_limit + length;
1761
1762 /* Check highest gap, which does not precede any rbtree node */
1763 gap_start = mm->highest_vm_end;
1764 if (gap_start <= high_limit)
1765 goto found_highest;
1766
1767 /* Check if rbtree root looks promising */
1768 if (RB_EMPTY_ROOT(&mm->mm_rb))
1769 return -ENOMEM;
1770 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1771 if (vma->rb_subtree_gap < length)
1772 return -ENOMEM;
1773
1774 while (true) {
1775 /* Visit right subtree if it looks promising */
1776 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1777 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1778 struct vm_area_struct *right =
1779 rb_entry(vma->vm_rb.rb_right,
1780 struct vm_area_struct, vm_rb);
1781 if (right->rb_subtree_gap >= length) {
1782 vma = right;
1783 continue;
1784 }
1785 }
1786
1787 check_current:
1788 /* Check if current node has a suitable gap */
1789 gap_end = vma->vm_start;
1790 if (gap_end < low_limit)
1791 return -ENOMEM;
1792 if (gap_start <= high_limit && gap_end - gap_start >= length)
1793 goto found;
1794
1795 /* Visit left subtree if it looks promising */
1796 if (vma->vm_rb.rb_left) {
1797 struct vm_area_struct *left =
1798 rb_entry(vma->vm_rb.rb_left,
1799 struct vm_area_struct, vm_rb);
1800 if (left->rb_subtree_gap >= length) {
1801 vma = left;
1802 continue;
1803 }
1804 }
1805
1806 /* Go back up the rbtree to find next candidate node */
1807 while (true) {
1808 struct rb_node *prev = &vma->vm_rb;
1809 if (!rb_parent(prev))
1810 return -ENOMEM;
1811 vma = rb_entry(rb_parent(prev),
1812 struct vm_area_struct, vm_rb);
1813 if (prev == vma->vm_rb.rb_right) {
1814 gap_start = vma->vm_prev ?
1815 vma->vm_prev->vm_end : 0;
1816 goto check_current;
1817 }
1818 }
1819 }
1820
1821 found:
1822 /* We found a suitable gap. Clip it with the original high_limit. */
1823 if (gap_end > info->high_limit)
1824 gap_end = info->high_limit;
1825
1826 found_highest:
1827 /* Compute highest gap address at the desired alignment */
1828 gap_end -= info->length;
1829 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1830
1831 VM_BUG_ON(gap_end < info->low_limit);
1832 VM_BUG_ON(gap_end < gap_start);
1833 return gap_end;
1834 }
1835
1836 /* Get an address range which is currently unmapped.
1837 * For shmat() with addr=0.
1838 *
1839 * Ugly calling convention alert:
1840 * Return value with the low bits set means error value,
1841 * ie
1842 * if (ret & ~PAGE_MASK)
1843 * error = ret;
1844 *
1845 * This function "knows" that -ENOMEM has the bits set.
1846 */
1847 #ifndef HAVE_ARCH_UNMAPPED_AREA
1848 unsigned long
1849 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1850 unsigned long len, unsigned long pgoff, unsigned long flags)
1851 {
1852 struct mm_struct *mm = current->mm;
1853 struct vm_area_struct *vma;
1854 struct vm_unmapped_area_info info;
1855
1856 if (len > TASK_SIZE - mmap_min_addr)
1857 return -ENOMEM;
1858
1859 if (flags & MAP_FIXED)
1860 return addr;
1861
1862 if (addr) {
1863 addr = PAGE_ALIGN(addr);
1864 vma = find_vma(mm, addr);
1865 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1866 (!vma || addr + len <= vma->vm_start))
1867 return addr;
1868 }
1869
1870 info.flags = 0;
1871 info.length = len;
1872 info.low_limit = TASK_UNMAPPED_BASE;
1873 info.high_limit = TASK_SIZE;
1874 info.align_mask = 0;
1875 return vm_unmapped_area(&info);
1876 }
1877 #endif
1878
1879 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1880 {
1881 /*
1882 * Is this a new hole at the lowest possible address?
1883 */
1884 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1885 mm->free_area_cache = addr;
1886 }
1887
1888 /*
1889 * This mmap-allocator allocates new areas top-down from below the
1890 * stack's low limit (the base):
1891 */
1892 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1893 unsigned long
1894 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1895 const unsigned long len, const unsigned long pgoff,
1896 const unsigned long flags)
1897 {
1898 struct vm_area_struct *vma;
1899 struct mm_struct *mm = current->mm;
1900 unsigned long addr = addr0;
1901 struct vm_unmapped_area_info info;
1902
1903 /* requested length too big for entire address space */
1904 if (len > TASK_SIZE - mmap_min_addr)
1905 return -ENOMEM;
1906
1907 if (flags & MAP_FIXED)
1908 return addr;
1909
1910 /* requesting a specific address */
1911 if (addr) {
1912 addr = PAGE_ALIGN(addr);
1913 vma = find_vma(mm, addr);
1914 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1915 (!vma || addr + len <= vma->vm_start))
1916 return addr;
1917 }
1918
1919 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1920 info.length = len;
1921 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1922 info.high_limit = mm->mmap_base;
1923 info.align_mask = 0;
1924 addr = vm_unmapped_area(&info);
1925
1926 /*
1927 * A failed mmap() very likely causes application failure,
1928 * so fall back to the bottom-up function here. This scenario
1929 * can happen with large stack limits and large mmap()
1930 * allocations.
1931 */
1932 if (addr & ~PAGE_MASK) {
1933 VM_BUG_ON(addr != -ENOMEM);
1934 info.flags = 0;
1935 info.low_limit = TASK_UNMAPPED_BASE;
1936 info.high_limit = TASK_SIZE;
1937 addr = vm_unmapped_area(&info);
1938 }
1939
1940 return addr;
1941 }
1942 #endif
1943
1944 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1945 {
1946 /*
1947 * Is this a new hole at the highest possible address?
1948 */
1949 if (addr > mm->free_area_cache)
1950 mm->free_area_cache = addr;
1951
1952 /* dont allow allocations above current base */
1953 if (mm->free_area_cache > mm->mmap_base)
1954 mm->free_area_cache = mm->mmap_base;
1955 }
1956
1957 unsigned long
1958 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1959 unsigned long pgoff, unsigned long flags)
1960 {
1961 unsigned long (*get_area)(struct file *, unsigned long,
1962 unsigned long, unsigned long, unsigned long);
1963
1964 unsigned long error = arch_mmap_check(addr, len, flags);
1965 if (error)
1966 return error;
1967
1968 /* Careful about overflows.. */
1969 if (len > TASK_SIZE)
1970 return -ENOMEM;
1971
1972 get_area = current->mm->get_unmapped_area;
1973 if (file && file->f_op && file->f_op->get_unmapped_area)
1974 get_area = file->f_op->get_unmapped_area;
1975 addr = get_area(file, addr, len, pgoff, flags);
1976 if (IS_ERR_VALUE(addr))
1977 return addr;
1978
1979 if (addr > TASK_SIZE - len)
1980 return -ENOMEM;
1981 if (addr & ~PAGE_MASK)
1982 return -EINVAL;
1983
1984 addr = arch_rebalance_pgtables(addr, len);
1985 error = security_mmap_addr(addr);
1986 return error ? error : addr;
1987 }
1988
1989 EXPORT_SYMBOL(get_unmapped_area);
1990
1991 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1992 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1993 {
1994 struct vm_area_struct *vma = NULL;
1995
1996 /* Check the cache first. */
1997 /* (Cache hit rate is typically around 35%.) */
1998 vma = ACCESS_ONCE(mm->mmap_cache);
1999 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
2000 struct rb_node *rb_node;
2001
2002 rb_node = mm->mm_rb.rb_node;
2003 vma = NULL;
2004
2005 while (rb_node) {
2006 struct vm_area_struct *vma_tmp;
2007
2008 vma_tmp = rb_entry(rb_node,
2009 struct vm_area_struct, vm_rb);
2010
2011 if (vma_tmp->vm_end > addr) {
2012 vma = vma_tmp;
2013 if (vma_tmp->vm_start <= addr)
2014 break;
2015 rb_node = rb_node->rb_left;
2016 } else
2017 rb_node = rb_node->rb_right;
2018 }
2019 if (vma)
2020 mm->mmap_cache = vma;
2021 }
2022 return vma;
2023 }
2024
2025 EXPORT_SYMBOL(find_vma);
2026
2027 /*
2028 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2029 */
2030 struct vm_area_struct *
2031 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2032 struct vm_area_struct **pprev)
2033 {
2034 struct vm_area_struct *vma;
2035
2036 vma = find_vma(mm, addr);
2037 if (vma) {
2038 *pprev = vma->vm_prev;
2039 } else {
2040 struct rb_node *rb_node = mm->mm_rb.rb_node;
2041 *pprev = NULL;
2042 while (rb_node) {
2043 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2044 rb_node = rb_node->rb_right;
2045 }
2046 }
2047 return vma;
2048 }
2049
2050 /*
2051 * Verify that the stack growth is acceptable and
2052 * update accounting. This is shared with both the
2053 * grow-up and grow-down cases.
2054 */
2055 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2056 {
2057 struct mm_struct *mm = vma->vm_mm;
2058 struct rlimit *rlim = current->signal->rlim;
2059 unsigned long new_start, actual_size;
2060
2061 /* address space limit tests */
2062 if (!may_expand_vm(mm, grow))
2063 return -ENOMEM;
2064
2065 /* Stack limit test */
2066 actual_size = size;
2067 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2068 actual_size -= PAGE_SIZE;
2069 if (actual_size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2070 return -ENOMEM;
2071
2072 /* mlock limit tests */
2073 if (vma->vm_flags & VM_LOCKED) {
2074 unsigned long locked;
2075 unsigned long limit;
2076 locked = mm->locked_vm + grow;
2077 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2078 limit >>= PAGE_SHIFT;
2079 if (locked > limit && !capable(CAP_IPC_LOCK))
2080 return -ENOMEM;
2081 }
2082
2083 /* Check to ensure the stack will not grow into a hugetlb-only region */
2084 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2085 vma->vm_end - size;
2086 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2087 return -EFAULT;
2088
2089 /*
2090 * Overcommit.. This must be the final test, as it will
2091 * update security statistics.
2092 */
2093 if (security_vm_enough_memory_mm(mm, grow))
2094 return -ENOMEM;
2095
2096 /* Ok, everything looks good - let it rip */
2097 if (vma->vm_flags & VM_LOCKED)
2098 mm->locked_vm += grow;
2099 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2100 return 0;
2101 }
2102
2103 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2104 /*
2105 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2106 * vma is the last one with address > vma->vm_end. Have to extend vma.
2107 */
2108 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2109 {
2110 int error;
2111
2112 if (!(vma->vm_flags & VM_GROWSUP))
2113 return -EFAULT;
2114
2115 /*
2116 * We must make sure the anon_vma is allocated
2117 * so that the anon_vma locking is not a noop.
2118 */
2119 if (unlikely(anon_vma_prepare(vma)))
2120 return -ENOMEM;
2121 vma_lock_anon_vma(vma);
2122
2123 /*
2124 * vma->vm_start/vm_end cannot change under us because the caller
2125 * is required to hold the mmap_sem in read mode. We need the
2126 * anon_vma lock to serialize against concurrent expand_stacks.
2127 * Also guard against wrapping around to address 0.
2128 */
2129 if (address < PAGE_ALIGN(address+4))
2130 address = PAGE_ALIGN(address+4);
2131 else {
2132 vma_unlock_anon_vma(vma);
2133 return -ENOMEM;
2134 }
2135 error = 0;
2136
2137 /* Somebody else might have raced and expanded it already */
2138 if (address > vma->vm_end) {
2139 unsigned long size, grow;
2140
2141 size = address - vma->vm_start;
2142 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2143
2144 error = -ENOMEM;
2145 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2146 error = acct_stack_growth(vma, size, grow);
2147 if (!error) {
2148 /*
2149 * vma_gap_update() doesn't support concurrent
2150 * updates, but we only hold a shared mmap_sem
2151 * lock here, so we need to protect against
2152 * concurrent vma expansions.
2153 * vma_lock_anon_vma() doesn't help here, as
2154 * we don't guarantee that all growable vmas
2155 * in a mm share the same root anon vma.
2156 * So, we reuse mm->page_table_lock to guard
2157 * against concurrent vma expansions.
2158 */
2159 spin_lock(&vma->vm_mm->page_table_lock);
2160 anon_vma_interval_tree_pre_update_vma(vma);
2161 vma->vm_end = address;
2162 anon_vma_interval_tree_post_update_vma(vma);
2163 if (vma->vm_next)
2164 vma_gap_update(vma->vm_next);
2165 else
2166 vma->vm_mm->highest_vm_end = address;
2167 spin_unlock(&vma->vm_mm->page_table_lock);
2168
2169 perf_event_mmap(vma);
2170 }
2171 }
2172 }
2173 vma_unlock_anon_vma(vma);
2174 khugepaged_enter_vma_merge(vma);
2175 validate_mm(vma->vm_mm);
2176 return error;
2177 }
2178 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2179
2180 /*
2181 * vma is the first one with address < vma->vm_start. Have to extend vma.
2182 */
2183 int expand_downwards(struct vm_area_struct *vma,
2184 unsigned long address)
2185 {
2186 int error;
2187
2188 /*
2189 * We must make sure the anon_vma is allocated
2190 * so that the anon_vma locking is not a noop.
2191 */
2192 if (unlikely(anon_vma_prepare(vma)))
2193 return -ENOMEM;
2194
2195 address &= PAGE_MASK;
2196 error = security_mmap_addr(address);
2197 if (error)
2198 return error;
2199
2200 vma_lock_anon_vma(vma);
2201
2202 /*
2203 * vma->vm_start/vm_end cannot change under us because the caller
2204 * is required to hold the mmap_sem in read mode. We need the
2205 * anon_vma lock to serialize against concurrent expand_stacks.
2206 */
2207
2208 /* Somebody else might have raced and expanded it already */
2209 if (address < vma->vm_start) {
2210 unsigned long size, grow;
2211
2212 size = vma->vm_end - address;
2213 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2214
2215 error = -ENOMEM;
2216 if (grow <= vma->vm_pgoff) {
2217 error = acct_stack_growth(vma, size, grow);
2218 if (!error) {
2219 /*
2220 * vma_gap_update() doesn't support concurrent
2221 * updates, but we only hold a shared mmap_sem
2222 * lock here, so we need to protect against
2223 * concurrent vma expansions.
2224 * vma_lock_anon_vma() doesn't help here, as
2225 * we don't guarantee that all growable vmas
2226 * in a mm share the same root anon vma.
2227 * So, we reuse mm->page_table_lock to guard
2228 * against concurrent vma expansions.
2229 */
2230 spin_lock(&vma->vm_mm->page_table_lock);
2231 anon_vma_interval_tree_pre_update_vma(vma);
2232 vma->vm_start = address;
2233 vma->vm_pgoff -= grow;
2234 anon_vma_interval_tree_post_update_vma(vma);
2235 vma_gap_update(vma);
2236 spin_unlock(&vma->vm_mm->page_table_lock);
2237
2238 perf_event_mmap(vma);
2239 }
2240 }
2241 }
2242 vma_unlock_anon_vma(vma);
2243 khugepaged_enter_vma_merge(vma);
2244 validate_mm(vma->vm_mm);
2245 return error;
2246 }
2247
2248 /*
2249 * Note how expand_stack() refuses to expand the stack all the way to
2250 * abut the next virtual mapping, *unless* that mapping itself is also
2251 * a stack mapping. We want to leave room for a guard page, after all
2252 * (the guard page itself is not added here, that is done by the
2253 * actual page faulting logic)
2254 *
2255 * This matches the behavior of the guard page logic (see mm/memory.c:
2256 * check_stack_guard_page()), which only allows the guard page to be
2257 * removed under these circumstances.
2258 */
2259 #ifdef CONFIG_STACK_GROWSUP
2260 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2261 {
2262 struct vm_area_struct *next;
2263
2264 address &= PAGE_MASK;
2265 next = vma->vm_next;
2266 if (next && next->vm_start == address + PAGE_SIZE) {
2267 if (!(next->vm_flags & VM_GROWSUP))
2268 return -ENOMEM;
2269 }
2270 return expand_upwards(vma, address);
2271 }
2272
2273 struct vm_area_struct *
2274 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2275 {
2276 struct vm_area_struct *vma, *prev;
2277
2278 addr &= PAGE_MASK;
2279 vma = find_vma_prev(mm, addr, &prev);
2280 if (vma && (vma->vm_start <= addr))
2281 return vma;
2282 if (!prev || expand_stack(prev, addr))
2283 return NULL;
2284 if (prev->vm_flags & VM_LOCKED)
2285 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2286 return prev;
2287 }
2288 #else
2289 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2290 {
2291 struct vm_area_struct *prev;
2292
2293 address &= PAGE_MASK;
2294 prev = vma->vm_prev;
2295 if (prev && prev->vm_end == address) {
2296 if (!(prev->vm_flags & VM_GROWSDOWN))
2297 return -ENOMEM;
2298 }
2299 return expand_downwards(vma, address);
2300 }
2301
2302 struct vm_area_struct *
2303 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2304 {
2305 struct vm_area_struct * vma;
2306 unsigned long start;
2307
2308 addr &= PAGE_MASK;
2309 vma = find_vma(mm,addr);
2310 if (!vma)
2311 return NULL;
2312 if (vma->vm_start <= addr)
2313 return vma;
2314 if (!(vma->vm_flags & VM_GROWSDOWN))
2315 return NULL;
2316 start = vma->vm_start;
2317 if (expand_stack(vma, addr))
2318 return NULL;
2319 if (vma->vm_flags & VM_LOCKED)
2320 __mlock_vma_pages_range(vma, addr, start, NULL);
2321 return vma;
2322 }
2323 #endif
2324
2325 /*
2326 * Ok - we have the memory areas we should free on the vma list,
2327 * so release them, and do the vma updates.
2328 *
2329 * Called with the mm semaphore held.
2330 */
2331 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2332 {
2333 unsigned long nr_accounted = 0;
2334
2335 /* Update high watermark before we lower total_vm */
2336 update_hiwater_vm(mm);
2337 do {
2338 long nrpages = vma_pages(vma);
2339
2340 if (vma->vm_flags & VM_ACCOUNT)
2341 nr_accounted += nrpages;
2342 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2343 vma = remove_vma(vma);
2344 } while (vma);
2345 vm_unacct_memory(nr_accounted);
2346 validate_mm(mm);
2347 }
2348
2349 /*
2350 * Get rid of page table information in the indicated region.
2351 *
2352 * Called with the mm semaphore held.
2353 */
2354 static void unmap_region(struct mm_struct *mm,
2355 struct vm_area_struct *vma, struct vm_area_struct *prev,
2356 unsigned long start, unsigned long end)
2357 {
2358 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2359 struct mmu_gather tlb;
2360
2361 lru_add_drain();
2362 tlb_gather_mmu(&tlb, mm, start, end);
2363 update_hiwater_rss(mm);
2364 unmap_vmas(&tlb, vma, start, end);
2365 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2366 next ? next->vm_start : USER_PGTABLES_CEILING);
2367 tlb_finish_mmu(&tlb, start, end);
2368 }
2369
2370 /*
2371 * Create a list of vma's touched by the unmap, removing them from the mm's
2372 * vma list as we go..
2373 */
2374 static void
2375 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2376 struct vm_area_struct *prev, unsigned long end)
2377 {
2378 struct vm_area_struct **insertion_point;
2379 struct vm_area_struct *tail_vma = NULL;
2380 unsigned long addr;
2381
2382 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2383 vma->vm_prev = NULL;
2384 do {
2385 vma_rb_erase(vma, &mm->mm_rb);
2386 mm->map_count--;
2387 tail_vma = vma;
2388 vma = vma->vm_next;
2389 } while (vma && vma->vm_start < end);
2390 *insertion_point = vma;
2391 if (vma) {
2392 vma->vm_prev = prev;
2393 vma_gap_update(vma);
2394 } else
2395 mm->highest_vm_end = prev ? prev->vm_end : 0;
2396 tail_vma->vm_next = NULL;
2397 if (mm->unmap_area == arch_unmap_area)
2398 addr = prev ? prev->vm_end : mm->mmap_base;
2399 else
2400 addr = vma ? vma->vm_start : mm->mmap_base;
2401 mm->unmap_area(mm, addr);
2402 mm->mmap_cache = NULL; /* Kill the cache. */
2403 }
2404
2405 /*
2406 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2407 * munmap path where it doesn't make sense to fail.
2408 */
2409 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2410 unsigned long addr, int new_below)
2411 {
2412 struct mempolicy *pol;
2413 struct vm_area_struct *new;
2414 int err = -ENOMEM;
2415
2416 if (is_vm_hugetlb_page(vma) && (addr &
2417 ~(huge_page_mask(hstate_vma(vma)))))
2418 return -EINVAL;
2419
2420 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2421 if (!new)
2422 goto out_err;
2423
2424 /* most fields are the same, copy all, and then fixup */
2425 *new = *vma;
2426
2427 INIT_LIST_HEAD(&new->anon_vma_chain);
2428
2429 if (new_below)
2430 new->vm_end = addr;
2431 else {
2432 new->vm_start = addr;
2433 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2434 }
2435
2436 pol = mpol_dup(vma_policy(vma));
2437 if (IS_ERR(pol)) {
2438 err = PTR_ERR(pol);
2439 goto out_free_vma;
2440 }
2441 vma_set_policy(new, pol);
2442
2443 if (anon_vma_clone(new, vma))
2444 goto out_free_mpol;
2445
2446 if (new->vm_file)
2447 get_file(new->vm_file);
2448
2449 if (new->vm_ops && new->vm_ops->open)
2450 new->vm_ops->open(new);
2451
2452 if (new_below)
2453 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2454 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2455 else
2456 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2457
2458 /* Success. */
2459 if (!err)
2460 return 0;
2461
2462 /* Clean everything up if vma_adjust failed. */
2463 if (new->vm_ops && new->vm_ops->close)
2464 new->vm_ops->close(new);
2465 if (new->vm_file)
2466 fput(new->vm_file);
2467 unlink_anon_vmas(new);
2468 out_free_mpol:
2469 mpol_put(pol);
2470 out_free_vma:
2471 kmem_cache_free(vm_area_cachep, new);
2472 out_err:
2473 return err;
2474 }
2475
2476 /*
2477 * Split a vma into two pieces at address 'addr', a new vma is allocated
2478 * either for the first part or the tail.
2479 */
2480 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2481 unsigned long addr, int new_below)
2482 {
2483 if (mm->map_count >= sysctl_max_map_count)
2484 return -ENOMEM;
2485
2486 return __split_vma(mm, vma, addr, new_below);
2487 }
2488
2489 /* Munmap is split into 2 main parts -- this part which finds
2490 * what needs doing, and the areas themselves, which do the
2491 * work. This now handles partial unmappings.
2492 * Jeremy Fitzhardinge <jeremy@goop.org>
2493 */
2494 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2495 {
2496 unsigned long end;
2497 struct vm_area_struct *vma, *prev, *last;
2498
2499 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2500 return -EINVAL;
2501
2502 if ((len = PAGE_ALIGN(len)) == 0)
2503 return -EINVAL;
2504
2505 /* Find the first overlapping VMA */
2506 vma = find_vma(mm, start);
2507 if (!vma)
2508 return 0;
2509 prev = vma->vm_prev;
2510 /* we have start < vma->vm_end */
2511
2512 /* if it doesn't overlap, we have nothing.. */
2513 end = start + len;
2514 if (vma->vm_start >= end)
2515 return 0;
2516
2517 /*
2518 * If we need to split any vma, do it now to save pain later.
2519 *
2520 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2521 * unmapped vm_area_struct will remain in use: so lower split_vma
2522 * places tmp vma above, and higher split_vma places tmp vma below.
2523 */
2524 if (start > vma->vm_start) {
2525 int error;
2526
2527 /*
2528 * Make sure that map_count on return from munmap() will
2529 * not exceed its limit; but let map_count go just above
2530 * its limit temporarily, to help free resources as expected.
2531 */
2532 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2533 return -ENOMEM;
2534
2535 error = __split_vma(mm, vma, start, 0);
2536 if (error)
2537 return error;
2538 prev = vma;
2539 }
2540
2541 /* Does it split the last one? */
2542 last = find_vma(mm, end);
2543 if (last && end > last->vm_start) {
2544 int error = __split_vma(mm, last, end, 1);
2545 if (error)
2546 return error;
2547 }
2548 vma = prev? prev->vm_next: mm->mmap;
2549
2550 /*
2551 * unlock any mlock()ed ranges before detaching vmas
2552 */
2553 if (mm->locked_vm) {
2554 struct vm_area_struct *tmp = vma;
2555 while (tmp && tmp->vm_start < end) {
2556 if (tmp->vm_flags & VM_LOCKED) {
2557 mm->locked_vm -= vma_pages(tmp);
2558 munlock_vma_pages_all(tmp);
2559 }
2560 tmp = tmp->vm_next;
2561 }
2562 }
2563
2564 /*
2565 * Remove the vma's, and unmap the actual pages
2566 */
2567 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2568 unmap_region(mm, vma, prev, start, end);
2569
2570 /* Fix up all other VM information */
2571 remove_vma_list(mm, vma);
2572
2573 return 0;
2574 }
2575
2576 int vm_munmap(unsigned long start, size_t len)
2577 {
2578 int ret;
2579 struct mm_struct *mm = current->mm;
2580
2581 down_write(&mm->mmap_sem);
2582 ret = do_munmap(mm, start, len);
2583 up_write(&mm->mmap_sem);
2584 return ret;
2585 }
2586 EXPORT_SYMBOL(vm_munmap);
2587
2588 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2589 {
2590 profile_munmap(addr);
2591 return vm_munmap(addr, len);
2592 }
2593
2594 static inline void verify_mm_writelocked(struct mm_struct *mm)
2595 {
2596 #ifdef CONFIG_DEBUG_VM
2597 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2598 WARN_ON(1);
2599 up_read(&mm->mmap_sem);
2600 }
2601 #endif
2602 }
2603
2604 /*
2605 * this is really a simplified "do_mmap". it only handles
2606 * anonymous maps. eventually we may be able to do some
2607 * brk-specific accounting here.
2608 */
2609 static unsigned long do_brk(unsigned long addr, unsigned long len)
2610 {
2611 struct mm_struct * mm = current->mm;
2612 struct vm_area_struct * vma, * prev;
2613 unsigned long flags;
2614 struct rb_node ** rb_link, * rb_parent;
2615 pgoff_t pgoff = addr >> PAGE_SHIFT;
2616 int error;
2617
2618 len = PAGE_ALIGN(len);
2619 if (!len)
2620 return addr;
2621
2622 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2623
2624 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2625 if (error & ~PAGE_MASK)
2626 return error;
2627
2628 /*
2629 * mlock MCL_FUTURE?
2630 */
2631 if (mm->def_flags & VM_LOCKED) {
2632 unsigned long locked, lock_limit;
2633 locked = len >> PAGE_SHIFT;
2634 locked += mm->locked_vm;
2635 lock_limit = rlimit(RLIMIT_MEMLOCK);
2636 lock_limit >>= PAGE_SHIFT;
2637 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2638 return -EAGAIN;
2639 }
2640
2641 /*
2642 * mm->mmap_sem is required to protect against another thread
2643 * changing the mappings in case we sleep.
2644 */
2645 verify_mm_writelocked(mm);
2646
2647 /*
2648 * Clear old maps. this also does some error checking for us
2649 */
2650 munmap_back:
2651 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2652 if (do_munmap(mm, addr, len))
2653 return -ENOMEM;
2654 goto munmap_back;
2655 }
2656
2657 /* Check against address space limits *after* clearing old maps... */
2658 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2659 return -ENOMEM;
2660
2661 if (mm->map_count > sysctl_max_map_count)
2662 return -ENOMEM;
2663
2664 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2665 return -ENOMEM;
2666
2667 /* Can we just expand an old private anonymous mapping? */
2668 vma = vma_merge(mm, prev, addr, addr + len, flags,
2669 NULL, NULL, pgoff, NULL);
2670 if (vma)
2671 goto out;
2672
2673 /*
2674 * create a vma struct for an anonymous mapping
2675 */
2676 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2677 if (!vma) {
2678 vm_unacct_memory(len >> PAGE_SHIFT);
2679 return -ENOMEM;
2680 }
2681
2682 INIT_LIST_HEAD(&vma->anon_vma_chain);
2683 vma->vm_mm = mm;
2684 vma->vm_start = addr;
2685 vma->vm_end = addr + len;
2686 vma->vm_pgoff = pgoff;
2687 vma->vm_flags = flags;
2688 vma->vm_page_prot = vm_get_page_prot(flags);
2689 vma_link(mm, vma, prev, rb_link, rb_parent);
2690 out:
2691 perf_event_mmap(vma);
2692 mm->total_vm += len >> PAGE_SHIFT;
2693 if (flags & VM_LOCKED)
2694 mm->locked_vm += (len >> PAGE_SHIFT);
2695 return addr;
2696 }
2697
2698 unsigned long vm_brk(unsigned long addr, unsigned long len)
2699 {
2700 struct mm_struct *mm = current->mm;
2701 unsigned long ret;
2702 bool populate;
2703
2704 down_write(&mm->mmap_sem);
2705 ret = do_brk(addr, len);
2706 populate = ((mm->def_flags & VM_LOCKED) != 0);
2707 up_write(&mm->mmap_sem);
2708 if (populate)
2709 mm_populate(addr, len);
2710 return ret;
2711 }
2712 EXPORT_SYMBOL(vm_brk);
2713
2714 /* Release all mmaps. */
2715 void exit_mmap(struct mm_struct *mm)
2716 {
2717 struct mmu_gather tlb;
2718 struct vm_area_struct *vma;
2719 unsigned long nr_accounted = 0;
2720
2721 /* mm's last user has gone, and its about to be pulled down */
2722 mmu_notifier_release(mm);
2723
2724 if (mm->locked_vm) {
2725 vma = mm->mmap;
2726 while (vma) {
2727 if (vma->vm_flags & VM_LOCKED)
2728 munlock_vma_pages_all(vma);
2729 vma = vma->vm_next;
2730 }
2731 }
2732
2733 arch_exit_mmap(mm);
2734
2735 vma = mm->mmap;
2736 if (!vma) /* Can happen if dup_mmap() received an OOM */
2737 return;
2738
2739 lru_add_drain();
2740 flush_cache_mm(mm);
2741 tlb_gather_mmu(&tlb, mm, 0, -1);
2742 /* update_hiwater_rss(mm) here? but nobody should be looking */
2743 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2744 unmap_vmas(&tlb, vma, 0, -1);
2745
2746 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2747 tlb_finish_mmu(&tlb, 0, -1);
2748
2749 /*
2750 * Walk the list again, actually closing and freeing it,
2751 * with preemption enabled, without holding any MM locks.
2752 */
2753 while (vma) {
2754 if (vma->vm_flags & VM_ACCOUNT)
2755 nr_accounted += vma_pages(vma);
2756 vma = remove_vma(vma);
2757 }
2758 vm_unacct_memory(nr_accounted);
2759
2760 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2761 }
2762
2763 /* Insert vm structure into process list sorted by address
2764 * and into the inode's i_mmap tree. If vm_file is non-NULL
2765 * then i_mmap_mutex is taken here.
2766 */
2767 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2768 {
2769 struct vm_area_struct *prev;
2770 struct rb_node **rb_link, *rb_parent;
2771
2772 /*
2773 * The vm_pgoff of a purely anonymous vma should be irrelevant
2774 * until its first write fault, when page's anon_vma and index
2775 * are set. But now set the vm_pgoff it will almost certainly
2776 * end up with (unless mremap moves it elsewhere before that
2777 * first wfault), so /proc/pid/maps tells a consistent story.
2778 *
2779 * By setting it to reflect the virtual start address of the
2780 * vma, merges and splits can happen in a seamless way, just
2781 * using the existing file pgoff checks and manipulations.
2782 * Similarly in do_mmap_pgoff and in do_brk.
2783 */
2784 if (!vma->vm_file) {
2785 BUG_ON(vma->anon_vma);
2786 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2787 }
2788 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2789 &prev, &rb_link, &rb_parent))
2790 return -ENOMEM;
2791 if ((vma->vm_flags & VM_ACCOUNT) &&
2792 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2793 return -ENOMEM;
2794
2795 vma_link(mm, vma, prev, rb_link, rb_parent);
2796 return 0;
2797 }
2798
2799 /*
2800 * Copy the vma structure to a new location in the same mm,
2801 * prior to moving page table entries, to effect an mremap move.
2802 */
2803 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2804 unsigned long addr, unsigned long len, pgoff_t pgoff,
2805 bool *need_rmap_locks)
2806 {
2807 struct vm_area_struct *vma = *vmap;
2808 unsigned long vma_start = vma->vm_start;
2809 struct mm_struct *mm = vma->vm_mm;
2810 struct vm_area_struct *new_vma, *prev;
2811 struct rb_node **rb_link, *rb_parent;
2812 struct mempolicy *pol;
2813 bool faulted_in_anon_vma = true;
2814
2815 /*
2816 * If anonymous vma has not yet been faulted, update new pgoff
2817 * to match new location, to increase its chance of merging.
2818 */
2819 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2820 pgoff = addr >> PAGE_SHIFT;
2821 faulted_in_anon_vma = false;
2822 }
2823
2824 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2825 return NULL; /* should never get here */
2826 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2827 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2828 if (new_vma) {
2829 /*
2830 * Source vma may have been merged into new_vma
2831 */
2832 if (unlikely(vma_start >= new_vma->vm_start &&
2833 vma_start < new_vma->vm_end)) {
2834 /*
2835 * The only way we can get a vma_merge with
2836 * self during an mremap is if the vma hasn't
2837 * been faulted in yet and we were allowed to
2838 * reset the dst vma->vm_pgoff to the
2839 * destination address of the mremap to allow
2840 * the merge to happen. mremap must change the
2841 * vm_pgoff linearity between src and dst vmas
2842 * (in turn preventing a vma_merge) to be
2843 * safe. It is only safe to keep the vm_pgoff
2844 * linear if there are no pages mapped yet.
2845 */
2846 VM_BUG_ON(faulted_in_anon_vma);
2847 *vmap = vma = new_vma;
2848 }
2849 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2850 } else {
2851 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2852 if (new_vma) {
2853 *new_vma = *vma;
2854 new_vma->vm_start = addr;
2855 new_vma->vm_end = addr + len;
2856 new_vma->vm_pgoff = pgoff;
2857 pol = mpol_dup(vma_policy(vma));
2858 if (IS_ERR(pol))
2859 goto out_free_vma;
2860 vma_set_policy(new_vma, pol);
2861 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2862 if (anon_vma_clone(new_vma, vma))
2863 goto out_free_mempol;
2864 if (new_vma->vm_file)
2865 get_file(new_vma->vm_file);
2866 if (new_vma->vm_ops && new_vma->vm_ops->open)
2867 new_vma->vm_ops->open(new_vma);
2868 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2869 *need_rmap_locks = false;
2870 }
2871 }
2872 return new_vma;
2873
2874 out_free_mempol:
2875 mpol_put(pol);
2876 out_free_vma:
2877 kmem_cache_free(vm_area_cachep, new_vma);
2878 return NULL;
2879 }
2880
2881 /*
2882 * Return true if the calling process may expand its vm space by the passed
2883 * number of pages
2884 */
2885 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2886 {
2887 unsigned long cur = mm->total_vm; /* pages */
2888 unsigned long lim;
2889
2890 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2891
2892 if (cur + npages > lim)
2893 return 0;
2894 return 1;
2895 }
2896
2897
2898 static int special_mapping_fault(struct vm_area_struct *vma,
2899 struct vm_fault *vmf)
2900 {
2901 pgoff_t pgoff;
2902 struct page **pages;
2903
2904 /*
2905 * special mappings have no vm_file, and in that case, the mm
2906 * uses vm_pgoff internally. So we have to subtract it from here.
2907 * We are allowed to do this because we are the mm; do not copy
2908 * this code into drivers!
2909 */
2910 pgoff = vmf->pgoff - vma->vm_pgoff;
2911
2912 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2913 pgoff--;
2914
2915 if (*pages) {
2916 struct page *page = *pages;
2917 get_page(page);
2918 vmf->page = page;
2919 return 0;
2920 }
2921
2922 return VM_FAULT_SIGBUS;
2923 }
2924
2925 /*
2926 * Having a close hook prevents vma merging regardless of flags.
2927 */
2928 static void special_mapping_close(struct vm_area_struct *vma)
2929 {
2930 }
2931
2932 static const struct vm_operations_struct special_mapping_vmops = {
2933 .close = special_mapping_close,
2934 .fault = special_mapping_fault,
2935 };
2936
2937 /*
2938 * Called with mm->mmap_sem held for writing.
2939 * Insert a new vma covering the given region, with the given flags.
2940 * Its pages are supplied by the given array of struct page *.
2941 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2942 * The region past the last page supplied will always produce SIGBUS.
2943 * The array pointer and the pages it points to are assumed to stay alive
2944 * for as long as this mapping might exist.
2945 */
2946 int install_special_mapping(struct mm_struct *mm,
2947 unsigned long addr, unsigned long len,
2948 unsigned long vm_flags, struct page **pages)
2949 {
2950 int ret;
2951 struct vm_area_struct *vma;
2952
2953 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2954 if (unlikely(vma == NULL))
2955 return -ENOMEM;
2956
2957 INIT_LIST_HEAD(&vma->anon_vma_chain);
2958 vma->vm_mm = mm;
2959 vma->vm_start = addr;
2960 vma->vm_end = addr + len;
2961
2962 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2963 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2964
2965 vma->vm_ops = &special_mapping_vmops;
2966 vma->vm_private_data = pages;
2967
2968 ret = insert_vm_struct(mm, vma);
2969 if (ret)
2970 goto out;
2971
2972 mm->total_vm += len >> PAGE_SHIFT;
2973
2974 perf_event_mmap(vma);
2975
2976 return 0;
2977
2978 out:
2979 kmem_cache_free(vm_area_cachep, vma);
2980 return ret;
2981 }
2982
2983 static DEFINE_MUTEX(mm_all_locks_mutex);
2984
2985 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2986 {
2987 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2988 /*
2989 * The LSB of head.next can't change from under us
2990 * because we hold the mm_all_locks_mutex.
2991 */
2992 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2993 /*
2994 * We can safely modify head.next after taking the
2995 * anon_vma->root->rwsem. If some other vma in this mm shares
2996 * the same anon_vma we won't take it again.
2997 *
2998 * No need of atomic instructions here, head.next
2999 * can't change from under us thanks to the
3000 * anon_vma->root->rwsem.
3001 */
3002 if (__test_and_set_bit(0, (unsigned long *)
3003 &anon_vma->root->rb_root.rb_node))
3004 BUG();
3005 }
3006 }
3007
3008 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3009 {
3010 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3011 /*
3012 * AS_MM_ALL_LOCKS can't change from under us because
3013 * we hold the mm_all_locks_mutex.
3014 *
3015 * Operations on ->flags have to be atomic because
3016 * even if AS_MM_ALL_LOCKS is stable thanks to the
3017 * mm_all_locks_mutex, there may be other cpus
3018 * changing other bitflags in parallel to us.
3019 */
3020 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3021 BUG();
3022 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3023 }
3024 }
3025
3026 /*
3027 * This operation locks against the VM for all pte/vma/mm related
3028 * operations that could ever happen on a certain mm. This includes
3029 * vmtruncate, try_to_unmap, and all page faults.
3030 *
3031 * The caller must take the mmap_sem in write mode before calling
3032 * mm_take_all_locks(). The caller isn't allowed to release the
3033 * mmap_sem until mm_drop_all_locks() returns.
3034 *
3035 * mmap_sem in write mode is required in order to block all operations
3036 * that could modify pagetables and free pages without need of
3037 * altering the vma layout (for example populate_range() with
3038 * nonlinear vmas). It's also needed in write mode to avoid new
3039 * anon_vmas to be associated with existing vmas.
3040 *
3041 * A single task can't take more than one mm_take_all_locks() in a row
3042 * or it would deadlock.
3043 *
3044 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3045 * mapping->flags avoid to take the same lock twice, if more than one
3046 * vma in this mm is backed by the same anon_vma or address_space.
3047 *
3048 * We can take all the locks in random order because the VM code
3049 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3050 * takes more than one of them in a row. Secondly we're protected
3051 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3052 *
3053 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3054 * that may have to take thousand of locks.
3055 *
3056 * mm_take_all_locks() can fail if it's interrupted by signals.
3057 */
3058 int mm_take_all_locks(struct mm_struct *mm)
3059 {
3060 struct vm_area_struct *vma;
3061 struct anon_vma_chain *avc;
3062
3063 BUG_ON(down_read_trylock(&mm->mmap_sem));
3064
3065 mutex_lock(&mm_all_locks_mutex);
3066
3067 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3068 if (signal_pending(current))
3069 goto out_unlock;
3070 if (vma->vm_file && vma->vm_file->f_mapping)
3071 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3072 }
3073
3074 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3075 if (signal_pending(current))
3076 goto out_unlock;
3077 if (vma->anon_vma)
3078 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3079 vm_lock_anon_vma(mm, avc->anon_vma);
3080 }
3081
3082 return 0;
3083
3084 out_unlock:
3085 mm_drop_all_locks(mm);
3086 return -EINTR;
3087 }
3088
3089 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3090 {
3091 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3092 /*
3093 * The LSB of head.next can't change to 0 from under
3094 * us because we hold the mm_all_locks_mutex.
3095 *
3096 * We must however clear the bitflag before unlocking
3097 * the vma so the users using the anon_vma->rb_root will
3098 * never see our bitflag.
3099 *
3100 * No need of atomic instructions here, head.next
3101 * can't change from under us until we release the
3102 * anon_vma->root->rwsem.
3103 */
3104 if (!__test_and_clear_bit(0, (unsigned long *)
3105 &anon_vma->root->rb_root.rb_node))
3106 BUG();
3107 anon_vma_unlock_write(anon_vma);
3108 }
3109 }
3110
3111 static void vm_unlock_mapping(struct address_space *mapping)
3112 {
3113 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3114 /*
3115 * AS_MM_ALL_LOCKS can't change to 0 from under us
3116 * because we hold the mm_all_locks_mutex.
3117 */
3118 mutex_unlock(&mapping->i_mmap_mutex);
3119 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3120 &mapping->flags))
3121 BUG();
3122 }
3123 }
3124
3125 /*
3126 * The mmap_sem cannot be released by the caller until
3127 * mm_drop_all_locks() returns.
3128 */
3129 void mm_drop_all_locks(struct mm_struct *mm)
3130 {
3131 struct vm_area_struct *vma;
3132 struct anon_vma_chain *avc;
3133
3134 BUG_ON(down_read_trylock(&mm->mmap_sem));
3135 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3136
3137 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3138 if (vma->anon_vma)
3139 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3140 vm_unlock_anon_vma(avc->anon_vma);
3141 if (vma->vm_file && vma->vm_file->f_mapping)
3142 vm_unlock_mapping(vma->vm_file->f_mapping);
3143 }
3144
3145 mutex_unlock(&mm_all_locks_mutex);
3146 }
3147
3148 /*
3149 * initialise the VMA slab
3150 */
3151 void __init mmap_init(void)
3152 {
3153 int ret;
3154
3155 ret = percpu_counter_init(&vm_committed_as, 0);
3156 VM_BUG_ON(ret);
3157 }
3158
3159 /*
3160 * Initialise sysctl_user_reserve_kbytes.
3161 *
3162 * This is intended to prevent a user from starting a single memory hogging
3163 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3164 * mode.
3165 *
3166 * The default value is min(3% of free memory, 128MB)
3167 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3168 */
3169 static int init_user_reserve(void)
3170 {
3171 unsigned long free_kbytes;
3172
3173 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3174
3175 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3176 return 0;
3177 }
3178 module_init(init_user_reserve)
3179
3180 /*
3181 * Initialise sysctl_admin_reserve_kbytes.
3182 *
3183 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3184 * to log in and kill a memory hogging process.
3185 *
3186 * Systems with more than 256MB will reserve 8MB, enough to recover
3187 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3188 * only reserve 3% of free pages by default.
3189 */
3190 static int init_admin_reserve(void)
3191 {
3192 unsigned long free_kbytes;
3193
3194 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3195
3196 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3197 return 0;
3198 }
3199 module_init(init_admin_reserve)
3200
3201 /*
3202 * Reinititalise user and admin reserves if memory is added or removed.
3203 *
3204 * The default user reserve max is 128MB, and the default max for the
3205 * admin reserve is 8MB. These are usually, but not always, enough to
3206 * enable recovery from a memory hogging process using login/sshd, a shell,
3207 * and tools like top. It may make sense to increase or even disable the
3208 * reserve depending on the existence of swap or variations in the recovery
3209 * tools. So, the admin may have changed them.
3210 *
3211 * If memory is added and the reserves have been eliminated or increased above
3212 * the default max, then we'll trust the admin.
3213 *
3214 * If memory is removed and there isn't enough free memory, then we
3215 * need to reset the reserves.
3216 *
3217 * Otherwise keep the reserve set by the admin.
3218 */
3219 static int reserve_mem_notifier(struct notifier_block *nb,
3220 unsigned long action, void *data)
3221 {
3222 unsigned long tmp, free_kbytes;
3223
3224 switch (action) {
3225 case MEM_ONLINE:
3226 /* Default max is 128MB. Leave alone if modified by operator. */
3227 tmp = sysctl_user_reserve_kbytes;
3228 if (0 < tmp && tmp < (1UL << 17))
3229 init_user_reserve();
3230
3231 /* Default max is 8MB. Leave alone if modified by operator. */
3232 tmp = sysctl_admin_reserve_kbytes;
3233 if (0 < tmp && tmp < (1UL << 13))
3234 init_admin_reserve();
3235
3236 break;
3237 case MEM_OFFLINE:
3238 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3239
3240 if (sysctl_user_reserve_kbytes > free_kbytes) {
3241 init_user_reserve();
3242 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3243 sysctl_user_reserve_kbytes);
3244 }
3245
3246 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3247 init_admin_reserve();
3248 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3249 sysctl_admin_reserve_kbytes);
3250 }
3251 break;
3252 default:
3253 break;
3254 }
3255 return NOTIFY_OK;
3256 }
3257
3258 static struct notifier_block reserve_mem_nb = {
3259 .notifier_call = reserve_mem_notifier,
3260 };
3261
3262 static int __meminit init_reserve_notifier(void)
3263 {
3264 if (register_hotmemory_notifier(&reserve_mem_nb))
3265 printk("Failed registering memory add/remove notifier for admin reserve");
3266
3267 return 0;
3268 }
3269 module_init(init_reserve_notifier)