FROMLIST: mm: mmap: Add new /proc tunable for mmap_base ASLR.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/syscalls.h>
18 #include <linux/capability.h>
19 #include <linux/init.h>
20 #include <linux/file.h>
21 #include <linux/fs.h>
22 #include <linux/personality.h>
23 #include <linux/security.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 #include <linux/audit.h>
33 #include <linux/khugepaged.h>
34 #include <linux/uprobes.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/notifier.h>
38 #include <linux/memory.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44
45 #include "internal.h"
46
47 #ifndef arch_mmap_check
48 #define arch_mmap_check(addr, len, flags) (0)
49 #endif
50
51 #ifndef arch_rebalance_pgtables
52 #define arch_rebalance_pgtables(addr, len) (addr)
53 #endif
54
55 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
56 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
57 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
58 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
59 #endif
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
61 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
62 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
63 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
64 #endif
65
66 static void unmap_region(struct mm_struct *mm,
67 struct vm_area_struct *vma, struct vm_area_struct *prev,
68 unsigned long start, unsigned long end);
69
70 /* description of effects of mapping type and prot in current implementation.
71 * this is due to the limited x86 page protection hardware. The expected
72 * behavior is in parens:
73 *
74 * map_type prot
75 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
76 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
77 * w: (no) no w: (no) no w: (yes) yes w: (no) no
78 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
79 *
80 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
81 * w: (no) no w: (no) no w: (copy) copy w: (no) no
82 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
83 *
84 */
85 pgprot_t protection_map[16] = {
86 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
87 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
88 };
89
90 pgprot_t vm_get_page_prot(unsigned long vm_flags)
91 {
92 return __pgprot(pgprot_val(protection_map[vm_flags &
93 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
94 pgprot_val(arch_vm_get_page_prot(vm_flags)));
95 }
96 EXPORT_SYMBOL(vm_get_page_prot);
97
98 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
99 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
100 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
101 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
102 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
103 /*
104 * Make sure vm_committed_as in one cacheline and not cacheline shared with
105 * other variables. It can be updated by several CPUs frequently.
106 */
107 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
108
109 /*
110 * The global memory commitment made in the system can be a metric
111 * that can be used to drive ballooning decisions when Linux is hosted
112 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
113 * balancing memory across competing virtual machines that are hosted.
114 * Several metrics drive this policy engine including the guest reported
115 * memory commitment.
116 */
117 unsigned long vm_memory_committed(void)
118 {
119 return percpu_counter_read_positive(&vm_committed_as);
120 }
121 EXPORT_SYMBOL_GPL(vm_memory_committed);
122
123 /*
124 * Check that a process has enough memory to allocate a new virtual
125 * mapping. 0 means there is enough memory for the allocation to
126 * succeed and -ENOMEM implies there is not.
127 *
128 * We currently support three overcommit policies, which are set via the
129 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
130 *
131 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
132 * Additional code 2002 Jul 20 by Robert Love.
133 *
134 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
135 *
136 * Note this is a helper function intended to be used by LSMs which
137 * wish to use this logic.
138 */
139 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
140 {
141 long free, allowed, reserve;
142
143 vm_acct_memory(pages);
144
145 /*
146 * Sometimes we want to use more memory than we have
147 */
148 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
149 return 0;
150
151 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
152 free = global_page_state(NR_FREE_PAGES);
153 free += global_page_state(NR_FILE_PAGES);
154
155 /*
156 * shmem pages shouldn't be counted as free in this
157 * case, they can't be purged, only swapped out, and
158 * that won't affect the overall amount of available
159 * memory in the system.
160 */
161 free -= global_page_state(NR_SHMEM);
162
163 free += get_nr_swap_pages();
164
165 /*
166 * Any slabs which are created with the
167 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
168 * which are reclaimable, under pressure. The dentry
169 * cache and most inode caches should fall into this
170 */
171 free += global_page_state(NR_SLAB_RECLAIMABLE);
172
173 /*
174 * Leave reserved pages. The pages are not for anonymous pages.
175 */
176 if (free <= totalreserve_pages)
177 goto error;
178 else
179 free -= totalreserve_pages;
180
181 /*
182 * Reserve some for root
183 */
184 if (!cap_sys_admin)
185 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
186
187 if (free > pages)
188 return 0;
189
190 goto error;
191 }
192
193 allowed = (totalram_pages - hugetlb_total_pages())
194 * sysctl_overcommit_ratio / 100;
195 /*
196 * Reserve some for root
197 */
198 if (!cap_sys_admin)
199 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
200 allowed += total_swap_pages;
201
202 /*
203 * Don't let a single process grow so big a user can't recover
204 */
205 if (mm) {
206 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
207 allowed -= min_t(long, mm->total_vm / 32, reserve);
208 }
209
210 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
211 return 0;
212 error:
213 vm_unacct_memory(pages);
214
215 return -ENOMEM;
216 }
217
218 /*
219 * Requires inode->i_mapping->i_mmap_mutex
220 */
221 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
222 struct file *file, struct address_space *mapping)
223 {
224 if (vma->vm_flags & VM_DENYWRITE)
225 atomic_inc(&file_inode(file)->i_writecount);
226 if (vma->vm_flags & VM_SHARED)
227 mapping->i_mmap_writable--;
228
229 flush_dcache_mmap_lock(mapping);
230 if (unlikely(vma->vm_flags & VM_NONLINEAR))
231 list_del_init(&vma->shared.nonlinear);
232 else
233 vma_interval_tree_remove(vma, &mapping->i_mmap);
234 flush_dcache_mmap_unlock(mapping);
235 }
236
237 /*
238 * Unlink a file-based vm structure from its interval tree, to hide
239 * vma from rmap and vmtruncate before freeing its page tables.
240 */
241 void unlink_file_vma(struct vm_area_struct *vma)
242 {
243 struct file *file = vma->vm_file;
244
245 if (file) {
246 struct address_space *mapping = file->f_mapping;
247 mutex_lock(&mapping->i_mmap_mutex);
248 __remove_shared_vm_struct(vma, file, mapping);
249 mutex_unlock(&mapping->i_mmap_mutex);
250 }
251 }
252
253 /*
254 * Close a vm structure and free it, returning the next.
255 */
256 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
257 {
258 struct vm_area_struct *next = vma->vm_next;
259
260 might_sleep();
261 if (vma->vm_ops && vma->vm_ops->close)
262 vma->vm_ops->close(vma);
263 if (vma->vm_file)
264 fput(vma->vm_file);
265 mpol_put(vma_policy(vma));
266 kmem_cache_free(vm_area_cachep, vma);
267 return next;
268 }
269
270 static unsigned long do_brk(unsigned long addr, unsigned long len);
271
272 SYSCALL_DEFINE1(brk, unsigned long, brk)
273 {
274 unsigned long rlim, retval;
275 unsigned long newbrk, oldbrk;
276 struct mm_struct *mm = current->mm;
277 struct vm_area_struct *next;
278 unsigned long min_brk;
279 bool populate;
280
281 down_write(&mm->mmap_sem);
282
283 #ifdef CONFIG_COMPAT_BRK
284 /*
285 * CONFIG_COMPAT_BRK can still be overridden by setting
286 * randomize_va_space to 2, which will still cause mm->start_brk
287 * to be arbitrarily shifted
288 */
289 if (current->brk_randomized)
290 min_brk = mm->start_brk;
291 else
292 min_brk = mm->end_data;
293 #else
294 min_brk = mm->start_brk;
295 #endif
296 if (brk < min_brk)
297 goto out;
298
299 /*
300 * Check against rlimit here. If this check is done later after the test
301 * of oldbrk with newbrk then it can escape the test and let the data
302 * segment grow beyond its set limit the in case where the limit is
303 * not page aligned -Ram Gupta
304 */
305 rlim = rlimit(RLIMIT_DATA);
306 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
307 (mm->end_data - mm->start_data) > rlim)
308 goto out;
309
310 newbrk = PAGE_ALIGN(brk);
311 oldbrk = PAGE_ALIGN(mm->brk);
312 if (oldbrk == newbrk)
313 goto set_brk;
314
315 /* Always allow shrinking brk. */
316 if (brk <= mm->brk) {
317 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
318 goto set_brk;
319 goto out;
320 }
321
322 /* Check against existing mmap mappings. */
323 next = find_vma(mm, oldbrk);
324 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
325 goto out;
326
327 /* Ok, looks good - let it rip. */
328 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
329 goto out;
330
331 set_brk:
332 mm->brk = brk;
333 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
334 up_write(&mm->mmap_sem);
335 if (populate)
336 mm_populate(oldbrk, newbrk - oldbrk);
337 return brk;
338
339 out:
340 retval = mm->brk;
341 up_write(&mm->mmap_sem);
342 return retval;
343 }
344
345 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
346 {
347 unsigned long max, prev_end, subtree_gap;
348
349 /*
350 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
351 * allow two stack_guard_gaps between them here, and when choosing
352 * an unmapped area; whereas when expanding we only require one.
353 * That's a little inconsistent, but keeps the code here simpler.
354 */
355 max = vm_start_gap(vma);
356 if (vma->vm_prev) {
357 prev_end = vm_end_gap(vma->vm_prev);
358 if (max > prev_end)
359 max -= prev_end;
360 else
361 max = 0;
362 }
363 if (vma->vm_rb.rb_left) {
364 subtree_gap = rb_entry(vma->vm_rb.rb_left,
365 struct vm_area_struct, vm_rb)->rb_subtree_gap;
366 if (subtree_gap > max)
367 max = subtree_gap;
368 }
369 if (vma->vm_rb.rb_right) {
370 subtree_gap = rb_entry(vma->vm_rb.rb_right,
371 struct vm_area_struct, vm_rb)->rb_subtree_gap;
372 if (subtree_gap > max)
373 max = subtree_gap;
374 }
375 return max;
376 }
377
378 #ifdef CONFIG_DEBUG_VM_RB
379 static int browse_rb(struct rb_root *root)
380 {
381 int i = 0, j, bug = 0;
382 struct rb_node *nd, *pn = NULL;
383 unsigned long prev = 0, pend = 0;
384
385 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
386 struct vm_area_struct *vma;
387 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
388 if (vma->vm_start < prev) {
389 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
390 bug = 1;
391 }
392 if (vma->vm_start < pend) {
393 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
394 bug = 1;
395 }
396 if (vma->vm_start > vma->vm_end) {
397 printk("vm_end %lx < vm_start %lx\n",
398 vma->vm_end, vma->vm_start);
399 bug = 1;
400 }
401 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
402 printk("free gap %lx, correct %lx\n",
403 vma->rb_subtree_gap,
404 vma_compute_subtree_gap(vma));
405 bug = 1;
406 }
407 i++;
408 pn = nd;
409 prev = vma->vm_start;
410 pend = vma->vm_end;
411 }
412 j = 0;
413 for (nd = pn; nd; nd = rb_prev(nd))
414 j++;
415 if (i != j) {
416 printk("backwards %d, forwards %d\n", j, i);
417 bug = 1;
418 }
419 return bug ? -1 : i;
420 }
421
422 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
423 {
424 struct rb_node *nd;
425
426 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
427 struct vm_area_struct *vma;
428 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
429 BUG_ON(vma != ignore &&
430 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
431 }
432 }
433
434 void validate_mm(struct mm_struct *mm)
435 {
436 int bug = 0;
437 int i = 0;
438 unsigned long highest_address = 0;
439 struct vm_area_struct *vma = mm->mmap;
440 while (vma) {
441 struct anon_vma_chain *avc;
442 vma_lock_anon_vma(vma);
443 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
444 anon_vma_interval_tree_verify(avc);
445 vma_unlock_anon_vma(vma);
446 highest_address = vm_end_gap(vma);
447 vma = vma->vm_next;
448 i++;
449 }
450 if (i != mm->map_count) {
451 printk("map_count %d vm_next %d\n", mm->map_count, i);
452 bug = 1;
453 }
454 if (highest_address != mm->highest_vm_end) {
455 printk("mm->highest_vm_end %lx, found %lx\n",
456 mm->highest_vm_end, highest_address);
457 bug = 1;
458 }
459 i = browse_rb(&mm->mm_rb);
460 if (i != mm->map_count) {
461 printk("map_count %d rb %d\n", mm->map_count, i);
462 bug = 1;
463 }
464 BUG_ON(bug);
465 }
466 #else
467 #define validate_mm_rb(root, ignore) do { } while (0)
468 #define validate_mm(mm) do { } while (0)
469 #endif
470
471 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
472 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
473
474 /*
475 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
476 * vma->vm_prev->vm_end values changed, without modifying the vma's position
477 * in the rbtree.
478 */
479 static void vma_gap_update(struct vm_area_struct *vma)
480 {
481 /*
482 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
483 * function that does exacltly what we want.
484 */
485 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
486 }
487
488 static inline void vma_rb_insert(struct vm_area_struct *vma,
489 struct rb_root *root)
490 {
491 /* All rb_subtree_gap values must be consistent prior to insertion */
492 validate_mm_rb(root, NULL);
493
494 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
495 }
496
497 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
498 {
499 /*
500 * All rb_subtree_gap values must be consistent prior to erase,
501 * with the possible exception of the vma being erased.
502 */
503 validate_mm_rb(root, vma);
504
505 /*
506 * Note rb_erase_augmented is a fairly large inline function,
507 * so make sure we instantiate it only once with our desired
508 * augmented rbtree callbacks.
509 */
510 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
511 }
512
513 /*
514 * vma has some anon_vma assigned, and is already inserted on that
515 * anon_vma's interval trees.
516 *
517 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
518 * vma must be removed from the anon_vma's interval trees using
519 * anon_vma_interval_tree_pre_update_vma().
520 *
521 * After the update, the vma will be reinserted using
522 * anon_vma_interval_tree_post_update_vma().
523 *
524 * The entire update must be protected by exclusive mmap_sem and by
525 * the root anon_vma's mutex.
526 */
527 static inline void
528 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
529 {
530 struct anon_vma_chain *avc;
531
532 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
533 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
534 }
535
536 static inline void
537 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
538 {
539 struct anon_vma_chain *avc;
540
541 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
542 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
543 }
544
545 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
546 unsigned long end, struct vm_area_struct **pprev,
547 struct rb_node ***rb_link, struct rb_node **rb_parent)
548 {
549 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
550
551 __rb_link = &mm->mm_rb.rb_node;
552 rb_prev = __rb_parent = NULL;
553
554 while (*__rb_link) {
555 struct vm_area_struct *vma_tmp;
556
557 __rb_parent = *__rb_link;
558 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
559
560 if (vma_tmp->vm_end > addr) {
561 /* Fail if an existing vma overlaps the area */
562 if (vma_tmp->vm_start < end)
563 return -ENOMEM;
564 __rb_link = &__rb_parent->rb_left;
565 } else {
566 rb_prev = __rb_parent;
567 __rb_link = &__rb_parent->rb_right;
568 }
569 }
570
571 *pprev = NULL;
572 if (rb_prev)
573 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
574 *rb_link = __rb_link;
575 *rb_parent = __rb_parent;
576 return 0;
577 }
578
579 static unsigned long count_vma_pages_range(struct mm_struct *mm,
580 unsigned long addr, unsigned long end)
581 {
582 unsigned long nr_pages = 0;
583 struct vm_area_struct *vma;
584
585 /* Find first overlaping mapping */
586 vma = find_vma_intersection(mm, addr, end);
587 if (!vma)
588 return 0;
589
590 nr_pages = (min(end, vma->vm_end) -
591 max(addr, vma->vm_start)) >> PAGE_SHIFT;
592
593 /* Iterate over the rest of the overlaps */
594 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
595 unsigned long overlap_len;
596
597 if (vma->vm_start > end)
598 break;
599
600 overlap_len = min(end, vma->vm_end) - vma->vm_start;
601 nr_pages += overlap_len >> PAGE_SHIFT;
602 }
603
604 return nr_pages;
605 }
606
607 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
608 struct rb_node **rb_link, struct rb_node *rb_parent)
609 {
610 /* Update tracking information for the gap following the new vma. */
611 if (vma->vm_next)
612 vma_gap_update(vma->vm_next);
613 else
614 mm->highest_vm_end = vm_end_gap(vma);
615
616 /*
617 * vma->vm_prev wasn't known when we followed the rbtree to find the
618 * correct insertion point for that vma. As a result, we could not
619 * update the vma vm_rb parents rb_subtree_gap values on the way down.
620 * So, we first insert the vma with a zero rb_subtree_gap value
621 * (to be consistent with what we did on the way down), and then
622 * immediately update the gap to the correct value. Finally we
623 * rebalance the rbtree after all augmented values have been set.
624 */
625 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
626 vma->rb_subtree_gap = 0;
627 vma_gap_update(vma);
628 vma_rb_insert(vma, &mm->mm_rb);
629 }
630
631 static void __vma_link_file(struct vm_area_struct *vma)
632 {
633 struct file *file;
634
635 file = vma->vm_file;
636 if (file) {
637 struct address_space *mapping = file->f_mapping;
638
639 if (vma->vm_flags & VM_DENYWRITE)
640 atomic_dec(&file_inode(file)->i_writecount);
641 if (vma->vm_flags & VM_SHARED)
642 mapping->i_mmap_writable++;
643
644 flush_dcache_mmap_lock(mapping);
645 if (unlikely(vma->vm_flags & VM_NONLINEAR))
646 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
647 else
648 vma_interval_tree_insert(vma, &mapping->i_mmap);
649 flush_dcache_mmap_unlock(mapping);
650 }
651 }
652
653 static void
654 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
655 struct vm_area_struct *prev, struct rb_node **rb_link,
656 struct rb_node *rb_parent)
657 {
658 __vma_link_list(mm, vma, prev, rb_parent);
659 __vma_link_rb(mm, vma, rb_link, rb_parent);
660 }
661
662 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
663 struct vm_area_struct *prev, struct rb_node **rb_link,
664 struct rb_node *rb_parent)
665 {
666 struct address_space *mapping = NULL;
667
668 if (vma->vm_file)
669 mapping = vma->vm_file->f_mapping;
670
671 if (mapping)
672 mutex_lock(&mapping->i_mmap_mutex);
673
674 __vma_link(mm, vma, prev, rb_link, rb_parent);
675 __vma_link_file(vma);
676
677 if (mapping)
678 mutex_unlock(&mapping->i_mmap_mutex);
679
680 mm->map_count++;
681 validate_mm(mm);
682 }
683
684 /*
685 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
686 * mm's list and rbtree. It has already been inserted into the interval tree.
687 */
688 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
689 {
690 struct vm_area_struct *prev;
691 struct rb_node **rb_link, *rb_parent;
692
693 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
694 &prev, &rb_link, &rb_parent))
695 BUG();
696 __vma_link(mm, vma, prev, rb_link, rb_parent);
697 mm->map_count++;
698 }
699
700 static inline void
701 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
702 struct vm_area_struct *prev)
703 {
704 struct vm_area_struct *next;
705
706 vma_rb_erase(vma, &mm->mm_rb);
707 prev->vm_next = next = vma->vm_next;
708 if (next)
709 next->vm_prev = prev;
710 if (mm->mmap_cache == vma)
711 mm->mmap_cache = prev;
712 }
713
714 /*
715 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
716 * is already present in an i_mmap tree without adjusting the tree.
717 * The following helper function should be used when such adjustments
718 * are necessary. The "insert" vma (if any) is to be inserted
719 * before we drop the necessary locks.
720 */
721 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
722 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
723 {
724 struct mm_struct *mm = vma->vm_mm;
725 struct vm_area_struct *next = vma->vm_next;
726 struct vm_area_struct *importer = NULL;
727 struct address_space *mapping = NULL;
728 struct rb_root *root = NULL;
729 struct anon_vma *anon_vma = NULL;
730 struct file *file = vma->vm_file;
731 bool start_changed = false, end_changed = false;
732 long adjust_next = 0;
733 int remove_next = 0;
734
735 if (next && !insert) {
736 struct vm_area_struct *exporter = NULL;
737
738 if (end >= next->vm_end) {
739 /*
740 * vma expands, overlapping all the next, and
741 * perhaps the one after too (mprotect case 6).
742 */
743 again: remove_next = 1 + (end > next->vm_end);
744 end = next->vm_end;
745 exporter = next;
746 importer = vma;
747 } else if (end > next->vm_start) {
748 /*
749 * vma expands, overlapping part of the next:
750 * mprotect case 5 shifting the boundary up.
751 */
752 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
753 exporter = next;
754 importer = vma;
755 } else if (end < vma->vm_end) {
756 /*
757 * vma shrinks, and !insert tells it's not
758 * split_vma inserting another: so it must be
759 * mprotect case 4 shifting the boundary down.
760 */
761 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
762 exporter = vma;
763 importer = next;
764 }
765
766 /*
767 * Easily overlooked: when mprotect shifts the boundary,
768 * make sure the expanding vma has anon_vma set if the
769 * shrinking vma had, to cover any anon pages imported.
770 */
771 if (exporter && exporter->anon_vma && !importer->anon_vma) {
772 if (anon_vma_clone(importer, exporter))
773 return -ENOMEM;
774 importer->anon_vma = exporter->anon_vma;
775 }
776 }
777
778 if (file) {
779 mapping = file->f_mapping;
780 if (!(vma->vm_flags & VM_NONLINEAR)) {
781 root = &mapping->i_mmap;
782 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
783
784 if (adjust_next)
785 uprobe_munmap(next, next->vm_start,
786 next->vm_end);
787 }
788
789 mutex_lock(&mapping->i_mmap_mutex);
790 if (insert) {
791 /*
792 * Put into interval tree now, so instantiated pages
793 * are visible to arm/parisc __flush_dcache_page
794 * throughout; but we cannot insert into address
795 * space until vma start or end is updated.
796 */
797 __vma_link_file(insert);
798 }
799 }
800
801 vma_adjust_trans_huge(vma, start, end, adjust_next);
802
803 anon_vma = vma->anon_vma;
804 if (!anon_vma && adjust_next)
805 anon_vma = next->anon_vma;
806 if (anon_vma) {
807 VM_BUG_ON(adjust_next && next->anon_vma &&
808 anon_vma != next->anon_vma);
809 anon_vma_lock_write(anon_vma);
810 anon_vma_interval_tree_pre_update_vma(vma);
811 if (adjust_next)
812 anon_vma_interval_tree_pre_update_vma(next);
813 }
814
815 if (root) {
816 flush_dcache_mmap_lock(mapping);
817 vma_interval_tree_remove(vma, root);
818 if (adjust_next)
819 vma_interval_tree_remove(next, root);
820 }
821
822 if (start != vma->vm_start) {
823 vma->vm_start = start;
824 start_changed = true;
825 }
826 if (end != vma->vm_end) {
827 vma->vm_end = end;
828 end_changed = true;
829 }
830 vma->vm_pgoff = pgoff;
831 if (adjust_next) {
832 next->vm_start += adjust_next << PAGE_SHIFT;
833 next->vm_pgoff += adjust_next;
834 }
835
836 if (root) {
837 if (adjust_next)
838 vma_interval_tree_insert(next, root);
839 vma_interval_tree_insert(vma, root);
840 flush_dcache_mmap_unlock(mapping);
841 }
842
843 if (remove_next) {
844 /*
845 * vma_merge has merged next into vma, and needs
846 * us to remove next before dropping the locks.
847 */
848 __vma_unlink(mm, next, vma);
849 if (file)
850 __remove_shared_vm_struct(next, file, mapping);
851 } else if (insert) {
852 /*
853 * split_vma has split insert from vma, and needs
854 * us to insert it before dropping the locks
855 * (it may either follow vma or precede it).
856 */
857 __insert_vm_struct(mm, insert);
858 } else {
859 if (start_changed)
860 vma_gap_update(vma);
861 if (end_changed) {
862 if (!next)
863 mm->highest_vm_end = vm_end_gap(vma);
864 else if (!adjust_next)
865 vma_gap_update(next);
866 }
867 }
868
869 if (anon_vma) {
870 anon_vma_interval_tree_post_update_vma(vma);
871 if (adjust_next)
872 anon_vma_interval_tree_post_update_vma(next);
873 anon_vma_unlock_write(anon_vma);
874 }
875 if (mapping)
876 mutex_unlock(&mapping->i_mmap_mutex);
877
878 if (root) {
879 uprobe_mmap(vma);
880
881 if (adjust_next)
882 uprobe_mmap(next);
883 }
884
885 if (remove_next) {
886 if (file) {
887 uprobe_munmap(next, next->vm_start, next->vm_end);
888 fput(file);
889 }
890 if (next->anon_vma)
891 anon_vma_merge(vma, next);
892 mm->map_count--;
893 mpol_put(vma_policy(next));
894 kmem_cache_free(vm_area_cachep, next);
895 /*
896 * In mprotect's case 6 (see comments on vma_merge),
897 * we must remove another next too. It would clutter
898 * up the code too much to do both in one go.
899 */
900 next = vma->vm_next;
901 if (remove_next == 2)
902 goto again;
903 else if (next)
904 vma_gap_update(next);
905 else
906 WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
907 }
908 if (insert && file)
909 uprobe_mmap(insert);
910
911 validate_mm(mm);
912
913 return 0;
914 }
915
916 /*
917 * If the vma has a ->close operation then the driver probably needs to release
918 * per-vma resources, so we don't attempt to merge those.
919 */
920 static inline int is_mergeable_vma(struct vm_area_struct *vma,
921 struct file *file, unsigned long vm_flags,
922 const char __user *anon_name)
923 {
924 if (vma->vm_flags ^ vm_flags)
925 return 0;
926 if (vma->vm_file != file)
927 return 0;
928 if (vma->vm_ops && vma->vm_ops->close)
929 return 0;
930 if (vma_get_anon_name(vma) != anon_name)
931 return 0;
932 return 1;
933 }
934
935 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
936 struct anon_vma *anon_vma2,
937 struct vm_area_struct *vma)
938 {
939 /*
940 * The list_is_singular() test is to avoid merging VMA cloned from
941 * parents. This can improve scalability caused by anon_vma lock.
942 */
943 if ((!anon_vma1 || !anon_vma2) && (!vma ||
944 list_is_singular(&vma->anon_vma_chain)))
945 return 1;
946 return anon_vma1 == anon_vma2;
947 }
948
949 /*
950 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
951 * in front of (at a lower virtual address and file offset than) the vma.
952 *
953 * We cannot merge two vmas if they have differently assigned (non-NULL)
954 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
955 *
956 * We don't check here for the merged mmap wrapping around the end of pagecache
957 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
958 * wrap, nor mmaps which cover the final page at index -1UL.
959 */
960 static int
961 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
962 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff,
963 const char __user *anon_name)
964 {
965 if (is_mergeable_vma(vma, file, vm_flags, anon_name) &&
966 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
967 if (vma->vm_pgoff == vm_pgoff)
968 return 1;
969 }
970 return 0;
971 }
972
973 /*
974 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
975 * beyond (at a higher virtual address and file offset than) the vma.
976 *
977 * We cannot merge two vmas if they have differently assigned (non-NULL)
978 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
979 */
980 static int
981 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
982 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff,
983 const char __user *anon_name)
984 {
985 if (is_mergeable_vma(vma, file, vm_flags, anon_name) &&
986 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
987 pgoff_t vm_pglen;
988 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
989 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
990 return 1;
991 }
992 return 0;
993 }
994
995 /*
996 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
997 * figure out whether that can be merged with its predecessor or its
998 * successor. Or both (it neatly fills a hole).
999 *
1000 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1001 * certain not to be mapped by the time vma_merge is called; but when
1002 * called for mprotect, it is certain to be already mapped (either at
1003 * an offset within prev, or at the start of next), and the flags of
1004 * this area are about to be changed to vm_flags - and the no-change
1005 * case has already been eliminated.
1006 *
1007 * The following mprotect cases have to be considered, where AAAA is
1008 * the area passed down from mprotect_fixup, never extending beyond one
1009 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1010 *
1011 * AAAA AAAA AAAA AAAA
1012 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1013 * cannot merge might become might become might become
1014 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1015 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1016 * mremap move: PPPPNNNNNNNN 8
1017 * AAAA
1018 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1019 * might become case 1 below case 2 below case 3 below
1020 *
1021 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1022 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1023 */
1024 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1025 struct vm_area_struct *prev, unsigned long addr,
1026 unsigned long end, unsigned long vm_flags,
1027 struct anon_vma *anon_vma, struct file *file,
1028 pgoff_t pgoff, struct mempolicy *policy,
1029 const char __user *anon_name)
1030 {
1031 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1032 struct vm_area_struct *area, *next;
1033 int err;
1034
1035 /*
1036 * We later require that vma->vm_flags == vm_flags,
1037 * so this tests vma->vm_flags & VM_SPECIAL, too.
1038 */
1039 if (vm_flags & VM_SPECIAL)
1040 return NULL;
1041
1042 if (prev)
1043 next = prev->vm_next;
1044 else
1045 next = mm->mmap;
1046 area = next;
1047 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1048 next = next->vm_next;
1049
1050 /*
1051 * Can it merge with the predecessor?
1052 */
1053 if (prev && prev->vm_end == addr &&
1054 mpol_equal(vma_policy(prev), policy) &&
1055 can_vma_merge_after(prev, vm_flags, anon_vma,
1056 file, pgoff, anon_name)) {
1057 /*
1058 * OK, it can. Can we now merge in the successor as well?
1059 */
1060 if (next && end == next->vm_start &&
1061 mpol_equal(policy, vma_policy(next)) &&
1062 can_vma_merge_before(next, vm_flags, anon_vma,
1063 file, pgoff+pglen, anon_name) &&
1064 is_mergeable_anon_vma(prev->anon_vma,
1065 next->anon_vma, NULL)) {
1066 /* cases 1, 6 */
1067 err = vma_adjust(prev, prev->vm_start,
1068 next->vm_end, prev->vm_pgoff, NULL);
1069 } else /* cases 2, 5, 7 */
1070 err = vma_adjust(prev, prev->vm_start,
1071 end, prev->vm_pgoff, NULL);
1072 if (err)
1073 return NULL;
1074 khugepaged_enter_vma_merge(prev);
1075 return prev;
1076 }
1077
1078 /*
1079 * Can this new request be merged in front of next?
1080 */
1081 if (next && end == next->vm_start &&
1082 mpol_equal(policy, vma_policy(next)) &&
1083 can_vma_merge_before(next, vm_flags, anon_vma,
1084 file, pgoff+pglen, anon_name)) {
1085 if (prev && addr < prev->vm_end) /* case 4 */
1086 err = vma_adjust(prev, prev->vm_start,
1087 addr, prev->vm_pgoff, NULL);
1088 else /* cases 3, 8 */
1089 err = vma_adjust(area, addr, next->vm_end,
1090 next->vm_pgoff - pglen, NULL);
1091 if (err)
1092 return NULL;
1093 khugepaged_enter_vma_merge(area);
1094 return area;
1095 }
1096
1097 return NULL;
1098 }
1099
1100 /*
1101 * Rough compatbility check to quickly see if it's even worth looking
1102 * at sharing an anon_vma.
1103 *
1104 * They need to have the same vm_file, and the flags can only differ
1105 * in things that mprotect may change.
1106 *
1107 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1108 * we can merge the two vma's. For example, we refuse to merge a vma if
1109 * there is a vm_ops->close() function, because that indicates that the
1110 * driver is doing some kind of reference counting. But that doesn't
1111 * really matter for the anon_vma sharing case.
1112 */
1113 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1114 {
1115 return a->vm_end == b->vm_start &&
1116 mpol_equal(vma_policy(a), vma_policy(b)) &&
1117 a->vm_file == b->vm_file &&
1118 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1119 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1120 }
1121
1122 /*
1123 * Do some basic sanity checking to see if we can re-use the anon_vma
1124 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1125 * the same as 'old', the other will be the new one that is trying
1126 * to share the anon_vma.
1127 *
1128 * NOTE! This runs with mm_sem held for reading, so it is possible that
1129 * the anon_vma of 'old' is concurrently in the process of being set up
1130 * by another page fault trying to merge _that_. But that's ok: if it
1131 * is being set up, that automatically means that it will be a singleton
1132 * acceptable for merging, so we can do all of this optimistically. But
1133 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1134 *
1135 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1136 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1137 * is to return an anon_vma that is "complex" due to having gone through
1138 * a fork).
1139 *
1140 * We also make sure that the two vma's are compatible (adjacent,
1141 * and with the same memory policies). That's all stable, even with just
1142 * a read lock on the mm_sem.
1143 */
1144 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1145 {
1146 if (anon_vma_compatible(a, b)) {
1147 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1148
1149 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1150 return anon_vma;
1151 }
1152 return NULL;
1153 }
1154
1155 /*
1156 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1157 * neighbouring vmas for a suitable anon_vma, before it goes off
1158 * to allocate a new anon_vma. It checks because a repetitive
1159 * sequence of mprotects and faults may otherwise lead to distinct
1160 * anon_vmas being allocated, preventing vma merge in subsequent
1161 * mprotect.
1162 */
1163 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1164 {
1165 struct anon_vma *anon_vma;
1166 struct vm_area_struct *near;
1167
1168 near = vma->vm_next;
1169 if (!near)
1170 goto try_prev;
1171
1172 anon_vma = reusable_anon_vma(near, vma, near);
1173 if (anon_vma)
1174 return anon_vma;
1175 try_prev:
1176 near = vma->vm_prev;
1177 if (!near)
1178 goto none;
1179
1180 anon_vma = reusable_anon_vma(near, near, vma);
1181 if (anon_vma)
1182 return anon_vma;
1183 none:
1184 /*
1185 * There's no absolute need to look only at touching neighbours:
1186 * we could search further afield for "compatible" anon_vmas.
1187 * But it would probably just be a waste of time searching,
1188 * or lead to too many vmas hanging off the same anon_vma.
1189 * We're trying to allow mprotect remerging later on,
1190 * not trying to minimize memory used for anon_vmas.
1191 */
1192 return NULL;
1193 }
1194
1195 #ifdef CONFIG_PROC_FS
1196 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1197 struct file *file, long pages)
1198 {
1199 const unsigned long stack_flags
1200 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1201
1202 mm->total_vm += pages;
1203
1204 if (file) {
1205 mm->shared_vm += pages;
1206 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1207 mm->exec_vm += pages;
1208 } else if (flags & stack_flags)
1209 mm->stack_vm += pages;
1210 }
1211 #endif /* CONFIG_PROC_FS */
1212
1213 /*
1214 * If a hint addr is less than mmap_min_addr change hint to be as
1215 * low as possible but still greater than mmap_min_addr
1216 */
1217 static inline unsigned long round_hint_to_min(unsigned long hint)
1218 {
1219 hint &= PAGE_MASK;
1220 if (((void *)hint != NULL) &&
1221 (hint < mmap_min_addr))
1222 return PAGE_ALIGN(mmap_min_addr);
1223 return hint;
1224 }
1225
1226 /*
1227 * The caller must hold down_write(&current->mm->mmap_sem).
1228 */
1229
1230 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1231 unsigned long len, unsigned long prot,
1232 unsigned long flags, unsigned long pgoff,
1233 unsigned long *populate)
1234 {
1235 struct mm_struct * mm = current->mm;
1236 struct inode *inode;
1237 vm_flags_t vm_flags;
1238
1239 *populate = 0;
1240
1241 /*
1242 * Does the application expect PROT_READ to imply PROT_EXEC?
1243 *
1244 * (the exception is when the underlying filesystem is noexec
1245 * mounted, in which case we dont add PROT_EXEC.)
1246 */
1247 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1248 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1249 prot |= PROT_EXEC;
1250
1251 if (!len)
1252 return -EINVAL;
1253
1254 if (!(flags & MAP_FIXED))
1255 addr = round_hint_to_min(addr);
1256
1257 /* Careful about overflows.. */
1258 len = PAGE_ALIGN(len);
1259 if (!len)
1260 return -ENOMEM;
1261
1262 /* offset overflow? */
1263 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1264 return -EOVERFLOW;
1265
1266 /* Too many mappings? */
1267 if (mm->map_count > sysctl_max_map_count)
1268 return -ENOMEM;
1269
1270 /* Obtain the address to map to. we verify (or select) it and ensure
1271 * that it represents a valid section of the address space.
1272 */
1273 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1274 if (addr & ~PAGE_MASK)
1275 return addr;
1276
1277 /* Do simple checking here so the lower-level routines won't have
1278 * to. we assume access permissions have been handled by the open
1279 * of the memory object, so we don't do any here.
1280 */
1281 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1282 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1283
1284 if (flags & MAP_LOCKED)
1285 if (!can_do_mlock())
1286 return -EPERM;
1287
1288 /* mlock MCL_FUTURE? */
1289 if (vm_flags & VM_LOCKED) {
1290 unsigned long locked, lock_limit;
1291 locked = len >> PAGE_SHIFT;
1292 locked += mm->locked_vm;
1293 lock_limit = rlimit(RLIMIT_MEMLOCK);
1294 lock_limit >>= PAGE_SHIFT;
1295 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1296 return -EAGAIN;
1297 }
1298
1299 inode = file ? file_inode(file) : NULL;
1300
1301 if (file) {
1302 switch (flags & MAP_TYPE) {
1303 case MAP_SHARED:
1304 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1305 return -EACCES;
1306
1307 /*
1308 * Make sure we don't allow writing to an append-only
1309 * file..
1310 */
1311 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1312 return -EACCES;
1313
1314 /*
1315 * Make sure there are no mandatory locks on the file.
1316 */
1317 if (locks_verify_locked(inode))
1318 return -EAGAIN;
1319
1320 vm_flags |= VM_SHARED | VM_MAYSHARE;
1321 if (!(file->f_mode & FMODE_WRITE))
1322 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1323
1324 /* fall through */
1325 case MAP_PRIVATE:
1326 if (!(file->f_mode & FMODE_READ))
1327 return -EACCES;
1328 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1329 if (vm_flags & VM_EXEC)
1330 return -EPERM;
1331 vm_flags &= ~VM_MAYEXEC;
1332 }
1333
1334 if (!file->f_op || !file->f_op->mmap)
1335 return -ENODEV;
1336 break;
1337
1338 default:
1339 return -EINVAL;
1340 }
1341 } else {
1342 switch (flags & MAP_TYPE) {
1343 case MAP_SHARED:
1344 /*
1345 * Ignore pgoff.
1346 */
1347 pgoff = 0;
1348 vm_flags |= VM_SHARED | VM_MAYSHARE;
1349 break;
1350 case MAP_PRIVATE:
1351 /*
1352 * Set pgoff according to addr for anon_vma.
1353 */
1354 pgoff = addr >> PAGE_SHIFT;
1355 break;
1356 default:
1357 return -EINVAL;
1358 }
1359 }
1360
1361 /*
1362 * Set 'VM_NORESERVE' if we should not account for the
1363 * memory use of this mapping.
1364 */
1365 if (flags & MAP_NORESERVE) {
1366 /* We honor MAP_NORESERVE if allowed to overcommit */
1367 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1368 vm_flags |= VM_NORESERVE;
1369
1370 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1371 if (file && is_file_hugepages(file))
1372 vm_flags |= VM_NORESERVE;
1373 }
1374
1375 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1376 if (!IS_ERR_VALUE(addr) &&
1377 ((vm_flags & VM_LOCKED) ||
1378 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1379 *populate = len;
1380 return addr;
1381 }
1382
1383 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1384 unsigned long, prot, unsigned long, flags,
1385 unsigned long, fd, unsigned long, pgoff)
1386 {
1387 struct file *file = NULL;
1388 unsigned long retval = -EBADF;
1389
1390 if (!(flags & MAP_ANONYMOUS)) {
1391 audit_mmap_fd(fd, flags);
1392 if (unlikely(flags & MAP_HUGETLB))
1393 return -EINVAL;
1394 file = fget(fd);
1395 if (!file)
1396 goto out;
1397 if (is_file_hugepages(file))
1398 len = ALIGN(len, huge_page_size(hstate_file(file)));
1399 } else if (flags & MAP_HUGETLB) {
1400 struct user_struct *user = NULL;
1401 struct hstate *hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) &
1402 SHM_HUGE_MASK);
1403
1404 if (!hs)
1405 return -EINVAL;
1406
1407 len = ALIGN(len, huge_page_size(hs));
1408 /*
1409 * VM_NORESERVE is used because the reservations will be
1410 * taken when vm_ops->mmap() is called
1411 * A dummy user value is used because we are not locking
1412 * memory so no accounting is necessary
1413 */
1414 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1415 VM_NORESERVE,
1416 &user, HUGETLB_ANONHUGE_INODE,
1417 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1418 if (IS_ERR(file))
1419 return PTR_ERR(file);
1420 }
1421
1422 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1423
1424 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1425 if (file)
1426 fput(file);
1427 out:
1428 return retval;
1429 }
1430
1431 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1432 struct mmap_arg_struct {
1433 unsigned long addr;
1434 unsigned long len;
1435 unsigned long prot;
1436 unsigned long flags;
1437 unsigned long fd;
1438 unsigned long offset;
1439 };
1440
1441 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1442 {
1443 struct mmap_arg_struct a;
1444
1445 if (copy_from_user(&a, arg, sizeof(a)))
1446 return -EFAULT;
1447 if (a.offset & ~PAGE_MASK)
1448 return -EINVAL;
1449
1450 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1451 a.offset >> PAGE_SHIFT);
1452 }
1453 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1454
1455 /*
1456 * Some shared mappigns will want the pages marked read-only
1457 * to track write events. If so, we'll downgrade vm_page_prot
1458 * to the private version (using protection_map[] without the
1459 * VM_SHARED bit).
1460 */
1461 int vma_wants_writenotify(struct vm_area_struct *vma)
1462 {
1463 vm_flags_t vm_flags = vma->vm_flags;
1464
1465 /* If it was private or non-writable, the write bit is already clear */
1466 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1467 return 0;
1468
1469 /* The backer wishes to know when pages are first written to? */
1470 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1471 return 1;
1472
1473 /* The open routine did something to the protections already? */
1474 if (pgprot_val(vma->vm_page_prot) !=
1475 pgprot_val(vm_get_page_prot(vm_flags)))
1476 return 0;
1477
1478 /* Specialty mapping? */
1479 if (vm_flags & VM_PFNMAP)
1480 return 0;
1481
1482 /* Can the mapping track the dirty pages? */
1483 return vma->vm_file && vma->vm_file->f_mapping &&
1484 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1485 }
1486
1487 /*
1488 * We account for memory if it's a private writeable mapping,
1489 * not hugepages and VM_NORESERVE wasn't set.
1490 */
1491 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1492 {
1493 /*
1494 * hugetlb has its own accounting separate from the core VM
1495 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1496 */
1497 if (file && is_file_hugepages(file))
1498 return 0;
1499
1500 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1501 }
1502
1503 unsigned long mmap_region(struct file *file, unsigned long addr,
1504 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1505 {
1506 struct mm_struct *mm = current->mm;
1507 struct vm_area_struct *vma, *prev;
1508 int correct_wcount = 0;
1509 int error;
1510 struct rb_node **rb_link, *rb_parent;
1511 unsigned long charged = 0;
1512 struct inode *inode = file ? file_inode(file) : NULL;
1513
1514 /* Check against address space limit. */
1515 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1516 unsigned long nr_pages;
1517
1518 /*
1519 * MAP_FIXED may remove pages of mappings that intersects with
1520 * requested mapping. Account for the pages it would unmap.
1521 */
1522 if (!(vm_flags & MAP_FIXED))
1523 return -ENOMEM;
1524
1525 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1526
1527 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1528 return -ENOMEM;
1529 }
1530
1531 /* Clear old maps */
1532 error = -ENOMEM;
1533 munmap_back:
1534 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1535 if (do_munmap(mm, addr, len))
1536 return -ENOMEM;
1537 goto munmap_back;
1538 }
1539
1540 /*
1541 * Private writable mapping: check memory availability
1542 */
1543 if (accountable_mapping(file, vm_flags)) {
1544 charged = len >> PAGE_SHIFT;
1545 if (security_vm_enough_memory_mm(mm, charged))
1546 return -ENOMEM;
1547 vm_flags |= VM_ACCOUNT;
1548 }
1549
1550 /*
1551 * Can we just expand an old mapping?
1552 */
1553 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff,
1554 NULL, NULL);
1555 if (vma)
1556 goto out;
1557
1558 /*
1559 * Determine the object being mapped and call the appropriate
1560 * specific mapper. the address has already been validated, but
1561 * not unmapped, but the maps are removed from the list.
1562 */
1563 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1564 if (!vma) {
1565 error = -ENOMEM;
1566 goto unacct_error;
1567 }
1568
1569 vma->vm_mm = mm;
1570 vma->vm_start = addr;
1571 vma->vm_end = addr + len;
1572 vma->vm_flags = vm_flags;
1573 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1574 vma->vm_pgoff = pgoff;
1575 INIT_LIST_HEAD(&vma->anon_vma_chain);
1576
1577 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1578
1579 if (file) {
1580 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1581 goto free_vma;
1582 if (vm_flags & VM_DENYWRITE) {
1583 error = deny_write_access(file);
1584 if (error)
1585 goto free_vma;
1586 correct_wcount = 1;
1587 }
1588 vma->vm_file = get_file(file);
1589 error = file->f_op->mmap(file, vma);
1590 if (error)
1591 goto unmap_and_free_vma;
1592
1593 /* Can addr have changed??
1594 *
1595 * Answer: Yes, several device drivers can do it in their
1596 * f_op->mmap method. -DaveM
1597 * Bug: If addr is changed, prev, rb_link, rb_parent should
1598 * be updated for vma_link()
1599 */
1600 WARN_ON_ONCE(addr != vma->vm_start);
1601
1602 addr = vma->vm_start;
1603 pgoff = vma->vm_pgoff;
1604 vm_flags = vma->vm_flags;
1605 } else if (vm_flags & VM_SHARED) {
1606 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1607 goto free_vma;
1608 error = shmem_zero_setup(vma);
1609 if (error)
1610 goto free_vma;
1611 }
1612
1613 if (vma_wants_writenotify(vma)) {
1614 pgprot_t pprot = vma->vm_page_prot;
1615
1616 /* Can vma->vm_page_prot have changed??
1617 *
1618 * Answer: Yes, drivers may have changed it in their
1619 * f_op->mmap method.
1620 *
1621 * Ensures that vmas marked as uncached stay that way.
1622 */
1623 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1624 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1625 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1626 }
1627
1628 vma_link(mm, vma, prev, rb_link, rb_parent);
1629 file = vma->vm_file;
1630
1631 /* Once vma denies write, undo our temporary denial count */
1632 if (correct_wcount)
1633 atomic_inc(&inode->i_writecount);
1634 out:
1635 perf_event_mmap(vma);
1636
1637 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1638 if (vm_flags & VM_LOCKED) {
1639 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1640 vma == get_gate_vma(current->mm)))
1641 mm->locked_vm += (len >> PAGE_SHIFT);
1642 else
1643 vma->vm_flags &= ~VM_LOCKED;
1644 }
1645
1646 if (file)
1647 uprobe_mmap(vma);
1648
1649 return addr;
1650
1651 unmap_and_free_vma:
1652 if (correct_wcount)
1653 atomic_inc(&inode->i_writecount);
1654 vma->vm_file = NULL;
1655 fput(file);
1656
1657 /* Undo any partial mapping done by a device driver. */
1658 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1659 charged = 0;
1660 free_vma:
1661 kmem_cache_free(vm_area_cachep, vma);
1662 unacct_error:
1663 if (charged)
1664 vm_unacct_memory(charged);
1665 return error;
1666 }
1667
1668 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1669 {
1670 /*
1671 * We implement the search by looking for an rbtree node that
1672 * immediately follows a suitable gap. That is,
1673 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1674 * - gap_end = vma->vm_start >= info->low_limit + length;
1675 * - gap_end - gap_start >= length
1676 */
1677
1678 struct mm_struct *mm = current->mm;
1679 struct vm_area_struct *vma;
1680 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1681
1682 /* Adjust search length to account for worst case alignment overhead */
1683 length = info->length + info->align_mask;
1684 if (length < info->length)
1685 return -ENOMEM;
1686
1687 /* Adjust search limits by the desired length */
1688 if (info->high_limit < length)
1689 return -ENOMEM;
1690 high_limit = info->high_limit - length;
1691
1692 if (info->low_limit > high_limit)
1693 return -ENOMEM;
1694 low_limit = info->low_limit + length;
1695
1696 /* Check if rbtree root looks promising */
1697 if (RB_EMPTY_ROOT(&mm->mm_rb))
1698 goto check_highest;
1699 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1700 if (vma->rb_subtree_gap < length)
1701 goto check_highest;
1702
1703 while (true) {
1704 /* Visit left subtree if it looks promising */
1705 gap_end = vm_start_gap(vma);
1706 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1707 struct vm_area_struct *left =
1708 rb_entry(vma->vm_rb.rb_left,
1709 struct vm_area_struct, vm_rb);
1710 if (left->rb_subtree_gap >= length) {
1711 vma = left;
1712 continue;
1713 }
1714 }
1715
1716 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1717 check_current:
1718 /* Check if current node has a suitable gap */
1719 if (gap_start > high_limit)
1720 return -ENOMEM;
1721 if (gap_end >= low_limit &&
1722 gap_end > gap_start && gap_end - gap_start >= length)
1723 goto found;
1724
1725 /* Visit right subtree if it looks promising */
1726 if (vma->vm_rb.rb_right) {
1727 struct vm_area_struct *right =
1728 rb_entry(vma->vm_rb.rb_right,
1729 struct vm_area_struct, vm_rb);
1730 if (right->rb_subtree_gap >= length) {
1731 vma = right;
1732 continue;
1733 }
1734 }
1735
1736 /* Go back up the rbtree to find next candidate node */
1737 while (true) {
1738 struct rb_node *prev = &vma->vm_rb;
1739 if (!rb_parent(prev))
1740 goto check_highest;
1741 vma = rb_entry(rb_parent(prev),
1742 struct vm_area_struct, vm_rb);
1743 if (prev == vma->vm_rb.rb_left) {
1744 gap_start = vm_end_gap(vma->vm_prev);
1745 gap_end = vm_start_gap(vma);
1746 goto check_current;
1747 }
1748 }
1749 }
1750
1751 check_highest:
1752 /* Check highest gap, which does not precede any rbtree node */
1753 gap_start = mm->highest_vm_end;
1754 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1755 if (gap_start > high_limit)
1756 return -ENOMEM;
1757
1758 found:
1759 /* We found a suitable gap. Clip it with the original low_limit. */
1760 if (gap_start < info->low_limit)
1761 gap_start = info->low_limit;
1762
1763 /* Adjust gap address to the desired alignment */
1764 gap_start += (info->align_offset - gap_start) & info->align_mask;
1765
1766 VM_BUG_ON(gap_start + info->length > info->high_limit);
1767 VM_BUG_ON(gap_start + info->length > gap_end);
1768 return gap_start;
1769 }
1770
1771 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1772 {
1773 struct mm_struct *mm = current->mm;
1774 struct vm_area_struct *vma;
1775 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1776
1777 /* Adjust search length to account for worst case alignment overhead */
1778 length = info->length + info->align_mask;
1779 if (length < info->length)
1780 return -ENOMEM;
1781
1782 /*
1783 * Adjust search limits by the desired length.
1784 * See implementation comment at top of unmapped_area().
1785 */
1786 gap_end = info->high_limit;
1787 if (gap_end < length)
1788 return -ENOMEM;
1789 high_limit = gap_end - length;
1790
1791 if (info->low_limit > high_limit)
1792 return -ENOMEM;
1793 low_limit = info->low_limit + length;
1794
1795 /* Check highest gap, which does not precede any rbtree node */
1796 gap_start = mm->highest_vm_end;
1797 if (gap_start <= high_limit)
1798 goto found_highest;
1799
1800 /* Check if rbtree root looks promising */
1801 if (RB_EMPTY_ROOT(&mm->mm_rb))
1802 return -ENOMEM;
1803 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1804 if (vma->rb_subtree_gap < length)
1805 return -ENOMEM;
1806
1807 while (true) {
1808 /* Visit right subtree if it looks promising */
1809 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1810 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1811 struct vm_area_struct *right =
1812 rb_entry(vma->vm_rb.rb_right,
1813 struct vm_area_struct, vm_rb);
1814 if (right->rb_subtree_gap >= length) {
1815 vma = right;
1816 continue;
1817 }
1818 }
1819
1820 check_current:
1821 /* Check if current node has a suitable gap */
1822 gap_end = vm_start_gap(vma);
1823 if (gap_end < low_limit)
1824 return -ENOMEM;
1825 if (gap_start <= high_limit &&
1826 gap_end > gap_start && gap_end - gap_start >= length)
1827 goto found;
1828
1829 /* Visit left subtree if it looks promising */
1830 if (vma->vm_rb.rb_left) {
1831 struct vm_area_struct *left =
1832 rb_entry(vma->vm_rb.rb_left,
1833 struct vm_area_struct, vm_rb);
1834 if (left->rb_subtree_gap >= length) {
1835 vma = left;
1836 continue;
1837 }
1838 }
1839
1840 /* Go back up the rbtree to find next candidate node */
1841 while (true) {
1842 struct rb_node *prev = &vma->vm_rb;
1843 if (!rb_parent(prev))
1844 return -ENOMEM;
1845 vma = rb_entry(rb_parent(prev),
1846 struct vm_area_struct, vm_rb);
1847 if (prev == vma->vm_rb.rb_right) {
1848 gap_start = vma->vm_prev ?
1849 vm_end_gap(vma->vm_prev) : 0;
1850 goto check_current;
1851 }
1852 }
1853 }
1854
1855 found:
1856 /* We found a suitable gap. Clip it with the original high_limit. */
1857 if (gap_end > info->high_limit)
1858 gap_end = info->high_limit;
1859
1860 found_highest:
1861 /* Compute highest gap address at the desired alignment */
1862 gap_end -= info->length;
1863 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1864
1865 VM_BUG_ON(gap_end < info->low_limit);
1866 VM_BUG_ON(gap_end < gap_start);
1867 return gap_end;
1868 }
1869
1870 /* Get an address range which is currently unmapped.
1871 * For shmat() with addr=0.
1872 *
1873 * Ugly calling convention alert:
1874 * Return value with the low bits set means error value,
1875 * ie
1876 * if (ret & ~PAGE_MASK)
1877 * error = ret;
1878 *
1879 * This function "knows" that -ENOMEM has the bits set.
1880 */
1881 #ifndef HAVE_ARCH_UNMAPPED_AREA
1882 unsigned long
1883 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1884 unsigned long len, unsigned long pgoff, unsigned long flags)
1885 {
1886 struct mm_struct *mm = current->mm;
1887 struct vm_area_struct *vma, *prev;
1888 struct vm_unmapped_area_info info;
1889
1890 if (len > TASK_SIZE - mmap_min_addr)
1891 return -ENOMEM;
1892
1893 if (flags & MAP_FIXED)
1894 return addr;
1895
1896 if (addr) {
1897 addr = PAGE_ALIGN(addr);
1898 vma = find_vma_prev(mm, addr, &prev);
1899 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1900 (!vma || addr + len <= vm_start_gap(vma)) &&
1901 (!prev || addr >= vm_end_gap(prev)))
1902 return addr;
1903 }
1904
1905 info.flags = 0;
1906 info.length = len;
1907 info.low_limit = TASK_UNMAPPED_BASE;
1908 info.high_limit = TASK_SIZE;
1909 info.align_mask = 0;
1910 return vm_unmapped_area(&info);
1911 }
1912 #endif
1913
1914 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1915 {
1916 /*
1917 * Is this a new hole at the lowest possible address?
1918 */
1919 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1920 mm->free_area_cache = addr;
1921 }
1922
1923 /*
1924 * This mmap-allocator allocates new areas top-down from below the
1925 * stack's low limit (the base):
1926 */
1927 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1928 unsigned long
1929 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1930 const unsigned long len, const unsigned long pgoff,
1931 const unsigned long flags)
1932 {
1933 struct vm_area_struct *vma, *prev;
1934 struct mm_struct *mm = current->mm;
1935 unsigned long addr = addr0;
1936 struct vm_unmapped_area_info info;
1937
1938 /* requested length too big for entire address space */
1939 if (len > TASK_SIZE - mmap_min_addr)
1940 return -ENOMEM;
1941
1942 if (flags & MAP_FIXED)
1943 return addr;
1944
1945 /* requesting a specific address */
1946 if (addr) {
1947 addr = PAGE_ALIGN(addr);
1948 vma = find_vma_prev(mm, addr, &prev);
1949 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1950 (!vma || addr + len <= vm_start_gap(vma)) &&
1951 (!prev || addr >= vm_end_gap(prev)))
1952 return addr;
1953 }
1954
1955 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1956 info.length = len;
1957 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1958 info.high_limit = mm->mmap_base;
1959 info.align_mask = 0;
1960 addr = vm_unmapped_area(&info);
1961
1962 /*
1963 * A failed mmap() very likely causes application failure,
1964 * so fall back to the bottom-up function here. This scenario
1965 * can happen with large stack limits and large mmap()
1966 * allocations.
1967 */
1968 if (addr & ~PAGE_MASK) {
1969 VM_BUG_ON(addr != -ENOMEM);
1970 info.flags = 0;
1971 info.low_limit = TASK_UNMAPPED_BASE;
1972 info.high_limit = TASK_SIZE;
1973 addr = vm_unmapped_area(&info);
1974 }
1975
1976 return addr;
1977 }
1978 #endif
1979
1980 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1981 {
1982 /*
1983 * Is this a new hole at the highest possible address?
1984 */
1985 if (addr > mm->free_area_cache)
1986 mm->free_area_cache = addr;
1987
1988 /* dont allow allocations above current base */
1989 if (mm->free_area_cache > mm->mmap_base)
1990 mm->free_area_cache = mm->mmap_base;
1991 }
1992
1993 unsigned long
1994 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1995 unsigned long pgoff, unsigned long flags)
1996 {
1997 unsigned long (*get_area)(struct file *, unsigned long,
1998 unsigned long, unsigned long, unsigned long);
1999
2000 unsigned long error = arch_mmap_check(addr, len, flags);
2001 if (error)
2002 return error;
2003
2004 /* Careful about overflows.. */
2005 if (len > TASK_SIZE)
2006 return -ENOMEM;
2007
2008 get_area = current->mm->get_unmapped_area;
2009 if (file && file->f_op && file->f_op->get_unmapped_area)
2010 get_area = file->f_op->get_unmapped_area;
2011 addr = get_area(file, addr, len, pgoff, flags);
2012 if (IS_ERR_VALUE(addr))
2013 return addr;
2014
2015 if (addr > TASK_SIZE - len)
2016 return -ENOMEM;
2017 if (addr & ~PAGE_MASK)
2018 return -EINVAL;
2019
2020 addr = arch_rebalance_pgtables(addr, len);
2021 error = security_mmap_addr(addr);
2022 return error ? error : addr;
2023 }
2024
2025 EXPORT_SYMBOL(get_unmapped_area);
2026
2027 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2028 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2029 {
2030 struct vm_area_struct *vma = NULL;
2031
2032 /* Check the cache first. */
2033 /* (Cache hit rate is typically around 35%.) */
2034 vma = ACCESS_ONCE(mm->mmap_cache);
2035 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
2036 struct rb_node *rb_node;
2037
2038 rb_node = mm->mm_rb.rb_node;
2039 vma = NULL;
2040
2041 while (rb_node) {
2042 struct vm_area_struct *vma_tmp;
2043
2044 vma_tmp = rb_entry(rb_node,
2045 struct vm_area_struct, vm_rb);
2046
2047 if (vma_tmp->vm_end > addr) {
2048 vma = vma_tmp;
2049 if (vma_tmp->vm_start <= addr)
2050 break;
2051 rb_node = rb_node->rb_left;
2052 } else
2053 rb_node = rb_node->rb_right;
2054 }
2055 if (vma)
2056 mm->mmap_cache = vma;
2057 }
2058 return vma;
2059 }
2060
2061 EXPORT_SYMBOL(find_vma);
2062
2063 /*
2064 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2065 */
2066 struct vm_area_struct *
2067 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2068 struct vm_area_struct **pprev)
2069 {
2070 struct vm_area_struct *vma;
2071
2072 vma = find_vma(mm, addr);
2073 if (vma) {
2074 *pprev = vma->vm_prev;
2075 } else {
2076 struct rb_node *rb_node = mm->mm_rb.rb_node;
2077 *pprev = NULL;
2078 while (rb_node) {
2079 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2080 rb_node = rb_node->rb_right;
2081 }
2082 }
2083 return vma;
2084 }
2085
2086 /*
2087 * Verify that the stack growth is acceptable and
2088 * update accounting. This is shared with both the
2089 * grow-up and grow-down cases.
2090 */
2091 static int acct_stack_growth(struct vm_area_struct *vma,
2092 unsigned long size, unsigned long grow)
2093 {
2094 struct mm_struct *mm = vma->vm_mm;
2095 struct rlimit *rlim = current->signal->rlim;
2096 unsigned long new_start;
2097
2098 /* address space limit tests */
2099 if (!may_expand_vm(mm, grow))
2100 return -ENOMEM;
2101
2102 /* Stack limit test */
2103 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2104 return -ENOMEM;
2105
2106 /* mlock limit tests */
2107 if (vma->vm_flags & VM_LOCKED) {
2108 unsigned long locked;
2109 unsigned long limit;
2110 locked = mm->locked_vm + grow;
2111 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2112 limit >>= PAGE_SHIFT;
2113 if (locked > limit && !capable(CAP_IPC_LOCK))
2114 return -ENOMEM;
2115 }
2116
2117 /* Check to ensure the stack will not grow into a hugetlb-only region */
2118 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2119 vma->vm_end - size;
2120 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2121 return -EFAULT;
2122
2123 /*
2124 * Overcommit.. This must be the final test, as it will
2125 * update security statistics.
2126 */
2127 if (security_vm_enough_memory_mm(mm, grow))
2128 return -ENOMEM;
2129
2130 /* Ok, everything looks good - let it rip */
2131 if (vma->vm_flags & VM_LOCKED)
2132 mm->locked_vm += grow;
2133 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2134 return 0;
2135 }
2136
2137 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2138 /*
2139 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2140 * vma is the last one with address > vma->vm_end. Have to extend vma.
2141 */
2142 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2143 {
2144 struct vm_area_struct *next;
2145 unsigned long gap_addr;
2146 int error = 0;
2147
2148 if (!(vma->vm_flags & VM_GROWSUP))
2149 return -EFAULT;
2150
2151 /* Guard against exceeding limits of the address space. */
2152 address &= PAGE_MASK;
2153 if (address >= (TASK_SIZE & PAGE_MASK))
2154 return -ENOMEM;
2155 address += PAGE_SIZE;
2156
2157 /* Enforce stack_guard_gap */
2158 gap_addr = address + stack_guard_gap;
2159
2160 /* Guard against overflow */
2161 if (gap_addr < address || gap_addr > TASK_SIZE)
2162 gap_addr = TASK_SIZE;
2163
2164 next = vma->vm_next;
2165 if (next && next->vm_start < gap_addr) {
2166 if (!(next->vm_flags & VM_GROWSUP))
2167 return -ENOMEM;
2168 /* Check that both stack segments have the same anon_vma? */
2169 }
2170
2171 /* We must make sure the anon_vma is allocated. */
2172 if (unlikely(anon_vma_prepare(vma)))
2173 return -ENOMEM;
2174
2175 /*
2176 * vma->vm_start/vm_end cannot change under us because the caller
2177 * is required to hold the mmap_sem in read mode. We need the
2178 * anon_vma lock to serialize against concurrent expand_stacks.
2179 */
2180 vma_lock_anon_vma(vma);
2181
2182 /* Somebody else might have raced and expanded it already */
2183 if (address > vma->vm_end) {
2184 unsigned long size, grow;
2185
2186 size = address - vma->vm_start;
2187 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2188
2189 error = -ENOMEM;
2190 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2191 error = acct_stack_growth(vma, size, grow);
2192 if (!error) {
2193 /*
2194 * vma_gap_update() doesn't support concurrent
2195 * updates, but we only hold a shared mmap_sem
2196 * lock here, so we need to protect against
2197 * concurrent vma expansions.
2198 * vma_lock_anon_vma() doesn't help here, as
2199 * we don't guarantee that all growable vmas
2200 * in a mm share the same root anon vma.
2201 * So, we reuse mm->page_table_lock to guard
2202 * against concurrent vma expansions.
2203 */
2204 spin_lock(&vma->vm_mm->page_table_lock);
2205 anon_vma_interval_tree_pre_update_vma(vma);
2206 vma->vm_end = address;
2207 anon_vma_interval_tree_post_update_vma(vma);
2208 if (vma->vm_next)
2209 vma_gap_update(vma->vm_next);
2210 else
2211 vma->vm_mm->highest_vm_end = vm_end_gap(vma);
2212 spin_unlock(&vma->vm_mm->page_table_lock);
2213
2214 perf_event_mmap(vma);
2215 }
2216 }
2217 }
2218 vma_unlock_anon_vma(vma);
2219 khugepaged_enter_vma_merge(vma);
2220 validate_mm(vma->vm_mm);
2221 return error;
2222 }
2223 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2224
2225 /*
2226 * vma is the first one with address < vma->vm_start. Have to extend vma.
2227 */
2228 int expand_downwards(struct vm_area_struct *vma,
2229 unsigned long address)
2230 {
2231 struct vm_area_struct *prev;
2232 unsigned long gap_addr;
2233 int error;
2234
2235 address &= PAGE_MASK;
2236 error = security_mmap_addr(address);
2237 if (error)
2238 return error;
2239
2240 /* Enforce stack_guard_gap */
2241 gap_addr = address - stack_guard_gap;
2242 if (gap_addr > address)
2243 return -ENOMEM;
2244 prev = vma->vm_prev;
2245 if (prev && prev->vm_end > gap_addr) {
2246 if (!(prev->vm_flags & VM_GROWSDOWN))
2247 return -ENOMEM;
2248 /* Check that both stack segments have the same anon_vma? */
2249 }
2250
2251 /* We must make sure the anon_vma is allocated. */
2252 if (unlikely(anon_vma_prepare(vma)))
2253 return -ENOMEM;
2254
2255 /*
2256 * vma->vm_start/vm_end cannot change under us because the caller
2257 * is required to hold the mmap_sem in read mode. We need the
2258 * anon_vma lock to serialize against concurrent expand_stacks.
2259 */
2260 vma_lock_anon_vma(vma);
2261
2262 /* Somebody else might have raced and expanded it already */
2263 if (address < vma->vm_start) {
2264 unsigned long size, grow;
2265
2266 size = vma->vm_end - address;
2267 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2268
2269 error = -ENOMEM;
2270 if (grow <= vma->vm_pgoff) {
2271 error = acct_stack_growth(vma, size, grow);
2272 if (!error) {
2273 /*
2274 * vma_gap_update() doesn't support concurrent
2275 * updates, but we only hold a shared mmap_sem
2276 * lock here, so we need to protect against
2277 * concurrent vma expansions.
2278 * vma_lock_anon_vma() doesn't help here, as
2279 * we don't guarantee that all growable vmas
2280 * in a mm share the same root anon vma.
2281 * So, we reuse mm->page_table_lock to guard
2282 * against concurrent vma expansions.
2283 */
2284 spin_lock(&vma->vm_mm->page_table_lock);
2285 anon_vma_interval_tree_pre_update_vma(vma);
2286 vma->vm_start = address;
2287 vma->vm_pgoff -= grow;
2288 anon_vma_interval_tree_post_update_vma(vma);
2289 vma_gap_update(vma);
2290 spin_unlock(&vma->vm_mm->page_table_lock);
2291
2292 perf_event_mmap(vma);
2293 }
2294 }
2295 }
2296 vma_unlock_anon_vma(vma);
2297 khugepaged_enter_vma_merge(vma);
2298 validate_mm(vma->vm_mm);
2299 return error;
2300 }
2301
2302 /* enforced gap between the expanding stack and other mappings. */
2303 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2304
2305 static int __init cmdline_parse_stack_guard_gap(char *p)
2306 {
2307 unsigned long val;
2308 char *endptr;
2309
2310 val = simple_strtoul(p, &endptr, 10);
2311 if (!*endptr)
2312 stack_guard_gap = val << PAGE_SHIFT;
2313
2314 return 0;
2315 }
2316 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2317
2318 #ifdef CONFIG_STACK_GROWSUP
2319 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2320 {
2321 return expand_upwards(vma, address);
2322 }
2323
2324 struct vm_area_struct *
2325 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2326 {
2327 struct vm_area_struct *vma, *prev;
2328
2329 addr &= PAGE_MASK;
2330 vma = find_vma_prev(mm, addr, &prev);
2331 if (vma && (vma->vm_start <= addr))
2332 return vma;
2333 if (!prev || expand_stack(prev, addr))
2334 return NULL;
2335 if (prev->vm_flags & VM_LOCKED)
2336 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2337 return prev;
2338 }
2339 #else
2340 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2341 {
2342 return expand_downwards(vma, address);
2343 }
2344
2345 struct vm_area_struct *
2346 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2347 {
2348 struct vm_area_struct * vma;
2349 unsigned long start;
2350
2351 addr &= PAGE_MASK;
2352 vma = find_vma(mm,addr);
2353 if (!vma)
2354 return NULL;
2355 if (vma->vm_start <= addr)
2356 return vma;
2357 if (!(vma->vm_flags & VM_GROWSDOWN))
2358 return NULL;
2359 start = vma->vm_start;
2360 if (expand_stack(vma, addr))
2361 return NULL;
2362 if (vma->vm_flags & VM_LOCKED)
2363 __mlock_vma_pages_range(vma, addr, start, NULL);
2364 return vma;
2365 }
2366 #endif
2367
2368 /*
2369 * Ok - we have the memory areas we should free on the vma list,
2370 * so release them, and do the vma updates.
2371 *
2372 * Called with the mm semaphore held.
2373 */
2374 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2375 {
2376 unsigned long nr_accounted = 0;
2377
2378 /* Update high watermark before we lower total_vm */
2379 update_hiwater_vm(mm);
2380 do {
2381 long nrpages = vma_pages(vma);
2382
2383 if (vma->vm_flags & VM_ACCOUNT)
2384 nr_accounted += nrpages;
2385 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2386 vma = remove_vma(vma);
2387 } while (vma);
2388 vm_unacct_memory(nr_accounted);
2389 validate_mm(mm);
2390 }
2391
2392 /*
2393 * Get rid of page table information in the indicated region.
2394 *
2395 * Called with the mm semaphore held.
2396 */
2397 static void unmap_region(struct mm_struct *mm,
2398 struct vm_area_struct *vma, struct vm_area_struct *prev,
2399 unsigned long start, unsigned long end)
2400 {
2401 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2402 struct mmu_gather tlb;
2403
2404 lru_add_drain();
2405 tlb_gather_mmu(&tlb, mm, start, end);
2406 update_hiwater_rss(mm);
2407 unmap_vmas(&tlb, vma, start, end);
2408 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2409 next ? next->vm_start : USER_PGTABLES_CEILING);
2410 tlb_finish_mmu(&tlb, start, end);
2411 }
2412
2413 /*
2414 * Create a list of vma's touched by the unmap, removing them from the mm's
2415 * vma list as we go..
2416 */
2417 static void
2418 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2419 struct vm_area_struct *prev, unsigned long end)
2420 {
2421 struct vm_area_struct **insertion_point;
2422 struct vm_area_struct *tail_vma = NULL;
2423 unsigned long addr;
2424
2425 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2426 vma->vm_prev = NULL;
2427 do {
2428 vma_rb_erase(vma, &mm->mm_rb);
2429 mm->map_count--;
2430 tail_vma = vma;
2431 vma = vma->vm_next;
2432 } while (vma && vma->vm_start < end);
2433 *insertion_point = vma;
2434 if (vma) {
2435 vma->vm_prev = prev;
2436 vma_gap_update(vma);
2437 } else
2438 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2439 tail_vma->vm_next = NULL;
2440 if (mm->unmap_area == arch_unmap_area)
2441 addr = prev ? prev->vm_end : mm->mmap_base;
2442 else
2443 addr = vma ? vma->vm_start : mm->mmap_base;
2444 mm->unmap_area(mm, addr);
2445 mm->mmap_cache = NULL; /* Kill the cache. */
2446 }
2447
2448 /*
2449 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2450 * munmap path where it doesn't make sense to fail.
2451 */
2452 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2453 unsigned long addr, int new_below)
2454 {
2455 struct mempolicy *pol;
2456 struct vm_area_struct *new;
2457 int err = -ENOMEM;
2458
2459 if (is_vm_hugetlb_page(vma) && (addr &
2460 ~(huge_page_mask(hstate_vma(vma)))))
2461 return -EINVAL;
2462
2463 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2464 if (!new)
2465 goto out_err;
2466
2467 /* most fields are the same, copy all, and then fixup */
2468 *new = *vma;
2469
2470 INIT_LIST_HEAD(&new->anon_vma_chain);
2471
2472 if (new_below)
2473 new->vm_end = addr;
2474 else {
2475 new->vm_start = addr;
2476 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2477 }
2478
2479 pol = mpol_dup(vma_policy(vma));
2480 if (IS_ERR(pol)) {
2481 err = PTR_ERR(pol);
2482 goto out_free_vma;
2483 }
2484 vma_set_policy(new, pol);
2485
2486 if (anon_vma_clone(new, vma))
2487 goto out_free_mpol;
2488
2489 if (new->vm_file)
2490 get_file(new->vm_file);
2491
2492 if (new->vm_ops && new->vm_ops->open)
2493 new->vm_ops->open(new);
2494
2495 if (new_below)
2496 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2497 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2498 else
2499 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2500
2501 /* Success. */
2502 if (!err)
2503 return 0;
2504
2505 /* Clean everything up if vma_adjust failed. */
2506 if (new->vm_ops && new->vm_ops->close)
2507 new->vm_ops->close(new);
2508 if (new->vm_file)
2509 fput(new->vm_file);
2510 unlink_anon_vmas(new);
2511 out_free_mpol:
2512 mpol_put(pol);
2513 out_free_vma:
2514 kmem_cache_free(vm_area_cachep, new);
2515 out_err:
2516 return err;
2517 }
2518
2519 /*
2520 * Split a vma into two pieces at address 'addr', a new vma is allocated
2521 * either for the first part or the tail.
2522 */
2523 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2524 unsigned long addr, int new_below)
2525 {
2526 if (mm->map_count >= sysctl_max_map_count)
2527 return -ENOMEM;
2528
2529 return __split_vma(mm, vma, addr, new_below);
2530 }
2531
2532 /* Munmap is split into 2 main parts -- this part which finds
2533 * what needs doing, and the areas themselves, which do the
2534 * work. This now handles partial unmappings.
2535 * Jeremy Fitzhardinge <jeremy@goop.org>
2536 */
2537 #ifdef CONFIG_MTK_EXTMEM
2538 extern bool extmem_in_mspace(struct vm_area_struct *vma);
2539 extern void * get_virt_from_mspace(void * pa);
2540 extern size_t extmem_get_mem_size(unsigned long pgoff);
2541 extern void extmem_free(void* mem);
2542 #endif
2543
2544 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2545 {
2546 unsigned long end;
2547 struct file *file;
2548 struct vm_area_struct *vma, *prev, *last;
2549
2550 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2551 return -EINVAL;
2552
2553 if ((len = PAGE_ALIGN(len)) == 0)
2554 return -EINVAL;
2555
2556 /* Find the first overlapping VMA */
2557 vma = find_vma(mm, start);
2558 if (!vma)
2559 return 0;
2560 file=vma->vm_file;
2561 if(file)
2562 {
2563 const char *name=file->f_path.dentry->d_iname;
2564 if(name && (strstr(name,"app_process") || strstr(name,"app_process64") || strstr(name,"main") || strstr(name,"Binder_")))
2565 printk("name:%s unmap vm_start %lx end: %lx\n", name, vma->vm_start, vma->vm_end);
2566 }
2567 else
2568 {
2569 const char *name = arch_vma_name(vma);
2570 if(name && (strstr(name,"app_process") || strstr(name,"app_process64") || strstr(name,"main") || strstr(name,"Binder_")))
2571 printk("name:%s unmap vm_start %lx end: %lx\n", name, vma->vm_start, vma->vm_end);
2572 }
2573 prev = vma->vm_prev;
2574 /* we have start < vma->vm_end */
2575
2576 #ifdef CONFIG_MTK_EXTMEM
2577 /* get correct mmap size if in mspace. */
2578 if (extmem_in_mspace(vma))
2579 len = extmem_get_mem_size(vma->vm_pgoff);
2580 #endif
2581
2582 /* if it doesn't overlap, we have nothing.. */
2583 end = start + len;
2584 if (vma->vm_start >= end)
2585 return 0;
2586
2587 /*
2588 * If we need to split any vma, do it now to save pain later.
2589 *
2590 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2591 * unmapped vm_area_struct will remain in use: so lower split_vma
2592 * places tmp vma above, and higher split_vma places tmp vma below.
2593 */
2594 if (start > vma->vm_start) {
2595 int error;
2596
2597 /*
2598 * Make sure that map_count on return from munmap() will
2599 * not exceed its limit; but let map_count go just above
2600 * its limit temporarily, to help free resources as expected.
2601 */
2602 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2603 return -ENOMEM;
2604
2605 error = __split_vma(mm, vma, start, 0);
2606 if (error)
2607 return error;
2608 prev = vma;
2609 }
2610
2611 /* Does it split the last one? */
2612 last = find_vma(mm, end);
2613 if (last && end > last->vm_start) {
2614 int error = __split_vma(mm, last, end, 1);
2615 if (error)
2616 return error;
2617 }
2618 vma = prev? prev->vm_next: mm->mmap;
2619
2620 /*
2621 * unlock any mlock()ed ranges before detaching vmas
2622 */
2623 if (mm->locked_vm) {
2624 struct vm_area_struct *tmp = vma;
2625 while (tmp && tmp->vm_start < end) {
2626 if (tmp->vm_flags & VM_LOCKED) {
2627 mm->locked_vm -= vma_pages(tmp);
2628 munlock_vma_pages_all(tmp);
2629 }
2630 tmp = tmp->vm_next;
2631 }
2632 }
2633
2634 /*
2635 * Remove the vma's, and unmap the actual pages
2636 */
2637 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2638 unmap_region(mm, vma, prev, start, end);
2639
2640 /* Fix up all other VM information */
2641 remove_vma_list(mm, vma);
2642
2643 return 0;
2644 }
2645
2646 int vm_munmap(unsigned long start, size_t len)
2647 {
2648 int ret;
2649 struct mm_struct *mm = current->mm;
2650
2651 down_write(&mm->mmap_sem);
2652 ret = do_munmap(mm, start, len);
2653 up_write(&mm->mmap_sem);
2654 return ret;
2655 }
2656 EXPORT_SYMBOL(vm_munmap);
2657
2658 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2659 {
2660 profile_munmap(addr);
2661 return vm_munmap(addr, len);
2662 }
2663
2664 static inline void verify_mm_writelocked(struct mm_struct *mm)
2665 {
2666 #ifdef CONFIG_DEBUG_VM
2667 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2668 WARN_ON(1);
2669 up_read(&mm->mmap_sem);
2670 }
2671 #endif
2672 }
2673
2674 /*
2675 * this is really a simplified "do_mmap". it only handles
2676 * anonymous maps. eventually we may be able to do some
2677 * brk-specific accounting here.
2678 */
2679 static unsigned long do_brk(unsigned long addr, unsigned long len)
2680 {
2681 struct mm_struct * mm = current->mm;
2682 struct vm_area_struct * vma, * prev;
2683 unsigned long flags;
2684 struct rb_node ** rb_link, * rb_parent;
2685 pgoff_t pgoff = addr >> PAGE_SHIFT;
2686 int error;
2687
2688 len = PAGE_ALIGN(len);
2689 if (!len)
2690 return addr;
2691
2692 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2693
2694 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2695 if (error & ~PAGE_MASK)
2696 return error;
2697
2698 /*
2699 * mlock MCL_FUTURE?
2700 */
2701 if (mm->def_flags & VM_LOCKED) {
2702 unsigned long locked, lock_limit;
2703 locked = len >> PAGE_SHIFT;
2704 locked += mm->locked_vm;
2705 lock_limit = rlimit(RLIMIT_MEMLOCK);
2706 lock_limit >>= PAGE_SHIFT;
2707 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2708 return -EAGAIN;
2709 }
2710
2711 /*
2712 * mm->mmap_sem is required to protect against another thread
2713 * changing the mappings in case we sleep.
2714 */
2715 verify_mm_writelocked(mm);
2716
2717 /*
2718 * Clear old maps. this also does some error checking for us
2719 */
2720 munmap_back:
2721 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2722 if (do_munmap(mm, addr, len))
2723 return -ENOMEM;
2724 goto munmap_back;
2725 }
2726
2727 /* Check against address space limits *after* clearing old maps... */
2728 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2729 return -ENOMEM;
2730
2731 if (mm->map_count > sysctl_max_map_count)
2732 return -ENOMEM;
2733
2734 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2735 return -ENOMEM;
2736
2737 /* Can we just expand an old private anonymous mapping? */
2738 vma = vma_merge(mm, prev, addr, addr + len, flags,
2739 NULL, NULL, pgoff, NULL, NULL);
2740 if (vma)
2741 goto out;
2742
2743 /*
2744 * create a vma struct for an anonymous mapping
2745 */
2746 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2747 if (!vma) {
2748 vm_unacct_memory(len >> PAGE_SHIFT);
2749 return -ENOMEM;
2750 }
2751
2752 INIT_LIST_HEAD(&vma->anon_vma_chain);
2753 vma->vm_mm = mm;
2754 vma->vm_start = addr;
2755 vma->vm_end = addr + len;
2756 vma->vm_pgoff = pgoff;
2757 vma->vm_flags = flags;
2758 vma->vm_page_prot = vm_get_page_prot(flags);
2759 vma_link(mm, vma, prev, rb_link, rb_parent);
2760 out:
2761 perf_event_mmap(vma);
2762 mm->total_vm += len >> PAGE_SHIFT;
2763 if (flags & VM_LOCKED)
2764 mm->locked_vm += (len >> PAGE_SHIFT);
2765 return addr;
2766 }
2767
2768 unsigned long vm_brk(unsigned long addr, unsigned long len)
2769 {
2770 struct mm_struct *mm = current->mm;
2771 unsigned long ret;
2772 bool populate;
2773
2774 down_write(&mm->mmap_sem);
2775 ret = do_brk(addr, len);
2776 populate = ((mm->def_flags & VM_LOCKED) != 0);
2777 up_write(&mm->mmap_sem);
2778 if (populate)
2779 mm_populate(addr, len);
2780 return ret;
2781 }
2782 EXPORT_SYMBOL(vm_brk);
2783
2784 /* Release all mmaps. */
2785 void exit_mmap(struct mm_struct *mm)
2786 {
2787 struct mmu_gather tlb;
2788 struct vm_area_struct *vma;
2789 unsigned long nr_accounted = 0;
2790
2791 /* mm's last user has gone, and its about to be pulled down */
2792 mmu_notifier_release(mm);
2793
2794 if (mm->locked_vm) {
2795 vma = mm->mmap;
2796 while (vma) {
2797 if (vma->vm_flags & VM_LOCKED)
2798 munlock_vma_pages_all(vma);
2799 vma = vma->vm_next;
2800 }
2801 }
2802
2803 arch_exit_mmap(mm);
2804
2805 vma = mm->mmap;
2806 if (!vma) /* Can happen if dup_mmap() received an OOM */
2807 return;
2808
2809 lru_add_drain();
2810 flush_cache_mm(mm);
2811 tlb_gather_mmu(&tlb, mm, 0, -1);
2812 /* update_hiwater_rss(mm) here? but nobody should be looking */
2813 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2814 unmap_vmas(&tlb, vma, 0, -1);
2815
2816 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2817 tlb_finish_mmu(&tlb, 0, -1);
2818
2819 /*
2820 * Walk the list again, actually closing and freeing it,
2821 * with preemption enabled, without holding any MM locks.
2822 */
2823 while (vma) {
2824 if (vma->vm_flags & VM_ACCOUNT)
2825 nr_accounted += vma_pages(vma);
2826 vma = remove_vma(vma);
2827 }
2828 vm_unacct_memory(nr_accounted);
2829
2830 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2831 }
2832
2833 /* Insert vm structure into process list sorted by address
2834 * and into the inode's i_mmap tree. If vm_file is non-NULL
2835 * then i_mmap_mutex is taken here.
2836 */
2837 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2838 {
2839 struct vm_area_struct *prev;
2840 struct rb_node **rb_link, *rb_parent;
2841
2842 /*
2843 * The vm_pgoff of a purely anonymous vma should be irrelevant
2844 * until its first write fault, when page's anon_vma and index
2845 * are set. But now set the vm_pgoff it will almost certainly
2846 * end up with (unless mremap moves it elsewhere before that
2847 * first wfault), so /proc/pid/maps tells a consistent story.
2848 *
2849 * By setting it to reflect the virtual start address of the
2850 * vma, merges and splits can happen in a seamless way, just
2851 * using the existing file pgoff checks and manipulations.
2852 * Similarly in do_mmap_pgoff and in do_brk.
2853 */
2854 if (!vma->vm_file) {
2855 BUG_ON(vma->anon_vma);
2856 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2857 }
2858 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2859 &prev, &rb_link, &rb_parent))
2860 return -ENOMEM;
2861 if ((vma->vm_flags & VM_ACCOUNT) &&
2862 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2863 return -ENOMEM;
2864
2865 vma_link(mm, vma, prev, rb_link, rb_parent);
2866 return 0;
2867 }
2868
2869 /*
2870 * Copy the vma structure to a new location in the same mm,
2871 * prior to moving page table entries, to effect an mremap move.
2872 */
2873 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2874 unsigned long addr, unsigned long len, pgoff_t pgoff,
2875 bool *need_rmap_locks)
2876 {
2877 struct vm_area_struct *vma = *vmap;
2878 unsigned long vma_start = vma->vm_start;
2879 struct mm_struct *mm = vma->vm_mm;
2880 struct vm_area_struct *new_vma, *prev;
2881 struct rb_node **rb_link, *rb_parent;
2882 struct mempolicy *pol;
2883 bool faulted_in_anon_vma = true;
2884
2885 /*
2886 * If anonymous vma has not yet been faulted, update new pgoff
2887 * to match new location, to increase its chance of merging.
2888 */
2889 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2890 pgoff = addr >> PAGE_SHIFT;
2891 faulted_in_anon_vma = false;
2892 }
2893
2894 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2895 return NULL; /* should never get here */
2896 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2897 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2898 vma_get_anon_name(vma));
2899 if (new_vma) {
2900 /*
2901 * Source vma may have been merged into new_vma
2902 */
2903 if (unlikely(vma_start >= new_vma->vm_start &&
2904 vma_start < new_vma->vm_end)) {
2905 /*
2906 * The only way we can get a vma_merge with
2907 * self during an mremap is if the vma hasn't
2908 * been faulted in yet and we were allowed to
2909 * reset the dst vma->vm_pgoff to the
2910 * destination address of the mremap to allow
2911 * the merge to happen. mremap must change the
2912 * vm_pgoff linearity between src and dst vmas
2913 * (in turn preventing a vma_merge) to be
2914 * safe. It is only safe to keep the vm_pgoff
2915 * linear if there are no pages mapped yet.
2916 */
2917 VM_BUG_ON(faulted_in_anon_vma);
2918 *vmap = vma = new_vma;
2919 }
2920 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2921 } else {
2922 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2923 if (new_vma) {
2924 *new_vma = *vma;
2925 new_vma->vm_start = addr;
2926 new_vma->vm_end = addr + len;
2927 new_vma->vm_pgoff = pgoff;
2928 pol = mpol_dup(vma_policy(vma));
2929 if (IS_ERR(pol))
2930 goto out_free_vma;
2931 vma_set_policy(new_vma, pol);
2932 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2933 if (anon_vma_clone(new_vma, vma))
2934 goto out_free_mempol;
2935 if (new_vma->vm_file)
2936 get_file(new_vma->vm_file);
2937 if (new_vma->vm_ops && new_vma->vm_ops->open)
2938 new_vma->vm_ops->open(new_vma);
2939 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2940 *need_rmap_locks = false;
2941 }
2942 }
2943 return new_vma;
2944
2945 out_free_mempol:
2946 mpol_put(pol);
2947 out_free_vma:
2948 kmem_cache_free(vm_area_cachep, new_vma);
2949 return NULL;
2950 }
2951
2952 /*
2953 * Return true if the calling process may expand its vm space by the passed
2954 * number of pages
2955 */
2956 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2957 {
2958 unsigned long cur = mm->total_vm; /* pages */
2959 unsigned long lim;
2960
2961 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2962
2963 if (cur + npages > lim)
2964 return 0;
2965 return 1;
2966 }
2967
2968
2969 static int special_mapping_fault(struct vm_area_struct *vma,
2970 struct vm_fault *vmf)
2971 {
2972 pgoff_t pgoff;
2973 struct page **pages;
2974
2975 /*
2976 * special mappings have no vm_file, and in that case, the mm
2977 * uses vm_pgoff internally. So we have to subtract it from here.
2978 * We are allowed to do this because we are the mm; do not copy
2979 * this code into drivers!
2980 */
2981 pgoff = vmf->pgoff - vma->vm_pgoff;
2982
2983 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2984 pgoff--;
2985
2986 if (*pages) {
2987 struct page *page = *pages;
2988 get_page(page);
2989 vmf->page = page;
2990 return 0;
2991 }
2992
2993 return VM_FAULT_SIGBUS;
2994 }
2995
2996 /*
2997 * Having a close hook prevents vma merging regardless of flags.
2998 */
2999 static void special_mapping_close(struct vm_area_struct *vma)
3000 {
3001 }
3002
3003 static const struct vm_operations_struct special_mapping_vmops = {
3004 .close = special_mapping_close,
3005 .fault = special_mapping_fault,
3006 };
3007
3008 /*
3009 * Called with mm->mmap_sem held for writing.
3010 * Insert a new vma covering the given region, with the given flags.
3011 * Its pages are supplied by the given array of struct page *.
3012 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3013 * The region past the last page supplied will always produce SIGBUS.
3014 * The array pointer and the pages it points to are assumed to stay alive
3015 * for as long as this mapping might exist.
3016 */
3017 int install_special_mapping(struct mm_struct *mm,
3018 unsigned long addr, unsigned long len,
3019 unsigned long vm_flags, struct page **pages)
3020 {
3021 int ret;
3022 struct vm_area_struct *vma;
3023
3024 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3025 if (unlikely(vma == NULL))
3026 return -ENOMEM;
3027
3028 INIT_LIST_HEAD(&vma->anon_vma_chain);
3029 vma->vm_mm = mm;
3030 vma->vm_start = addr;
3031 vma->vm_end = addr + len;
3032
3033 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
3034 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3035
3036 vma->vm_ops = &special_mapping_vmops;
3037 vma->vm_private_data = pages;
3038
3039 ret = insert_vm_struct(mm, vma);
3040 if (ret)
3041 goto out;
3042
3043 mm->total_vm += len >> PAGE_SHIFT;
3044
3045 perf_event_mmap(vma);
3046
3047 return 0;
3048
3049 out:
3050 kmem_cache_free(vm_area_cachep, vma);
3051 return ret;
3052 }
3053
3054 static DEFINE_MUTEX(mm_all_locks_mutex);
3055
3056 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3057 {
3058 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3059 /*
3060 * The LSB of head.next can't change from under us
3061 * because we hold the mm_all_locks_mutex.
3062 */
3063 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3064 /*
3065 * We can safely modify head.next after taking the
3066 * anon_vma->root->rwsem. If some other vma in this mm shares
3067 * the same anon_vma we won't take it again.
3068 *
3069 * No need of atomic instructions here, head.next
3070 * can't change from under us thanks to the
3071 * anon_vma->root->rwsem.
3072 */
3073 if (__test_and_set_bit(0, (unsigned long *)
3074 &anon_vma->root->rb_root.rb_node))
3075 BUG();
3076 }
3077 }
3078
3079 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3080 {
3081 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3082 /*
3083 * AS_MM_ALL_LOCKS can't change from under us because
3084 * we hold the mm_all_locks_mutex.
3085 *
3086 * Operations on ->flags have to be atomic because
3087 * even if AS_MM_ALL_LOCKS is stable thanks to the
3088 * mm_all_locks_mutex, there may be other cpus
3089 * changing other bitflags in parallel to us.
3090 */
3091 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3092 BUG();
3093 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3094 }
3095 }
3096
3097 /*
3098 * This operation locks against the VM for all pte/vma/mm related
3099 * operations that could ever happen on a certain mm. This includes
3100 * vmtruncate, try_to_unmap, and all page faults.
3101 *
3102 * The caller must take the mmap_sem in write mode before calling
3103 * mm_take_all_locks(). The caller isn't allowed to release the
3104 * mmap_sem until mm_drop_all_locks() returns.
3105 *
3106 * mmap_sem in write mode is required in order to block all operations
3107 * that could modify pagetables and free pages without need of
3108 * altering the vma layout (for example populate_range() with
3109 * nonlinear vmas). It's also needed in write mode to avoid new
3110 * anon_vmas to be associated with existing vmas.
3111 *
3112 * A single task can't take more than one mm_take_all_locks() in a row
3113 * or it would deadlock.
3114 *
3115 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3116 * mapping->flags avoid to take the same lock twice, if more than one
3117 * vma in this mm is backed by the same anon_vma or address_space.
3118 *
3119 * We can take all the locks in random order because the VM code
3120 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3121 * takes more than one of them in a row. Secondly we're protected
3122 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3123 *
3124 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3125 * that may have to take thousand of locks.
3126 *
3127 * mm_take_all_locks() can fail if it's interrupted by signals.
3128 */
3129 int mm_take_all_locks(struct mm_struct *mm)
3130 {
3131 struct vm_area_struct *vma;
3132 struct anon_vma_chain *avc;
3133
3134 BUG_ON(down_read_trylock(&mm->mmap_sem));
3135
3136 mutex_lock(&mm_all_locks_mutex);
3137
3138 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3139 if (signal_pending(current))
3140 goto out_unlock;
3141 if (vma->vm_file && vma->vm_file->f_mapping)
3142 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3143 }
3144
3145 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3146 if (signal_pending(current))
3147 goto out_unlock;
3148 if (vma->anon_vma)
3149 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3150 vm_lock_anon_vma(mm, avc->anon_vma);
3151 }
3152
3153 return 0;
3154
3155 out_unlock:
3156 mm_drop_all_locks(mm);
3157 return -EINTR;
3158 }
3159
3160 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3161 {
3162 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3163 /*
3164 * The LSB of head.next can't change to 0 from under
3165 * us because we hold the mm_all_locks_mutex.
3166 *
3167 * We must however clear the bitflag before unlocking
3168 * the vma so the users using the anon_vma->rb_root will
3169 * never see our bitflag.
3170 *
3171 * No need of atomic instructions here, head.next
3172 * can't change from under us until we release the
3173 * anon_vma->root->rwsem.
3174 */
3175 if (!__test_and_clear_bit(0, (unsigned long *)
3176 &anon_vma->root->rb_root.rb_node))
3177 BUG();
3178 anon_vma_unlock_write(anon_vma);
3179 }
3180 }
3181
3182 static void vm_unlock_mapping(struct address_space *mapping)
3183 {
3184 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3185 /*
3186 * AS_MM_ALL_LOCKS can't change to 0 from under us
3187 * because we hold the mm_all_locks_mutex.
3188 */
3189 mutex_unlock(&mapping->i_mmap_mutex);
3190 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3191 &mapping->flags))
3192 BUG();
3193 }
3194 }
3195
3196 /*
3197 * The mmap_sem cannot be released by the caller until
3198 * mm_drop_all_locks() returns.
3199 */
3200 void mm_drop_all_locks(struct mm_struct *mm)
3201 {
3202 struct vm_area_struct *vma;
3203 struct anon_vma_chain *avc;
3204
3205 BUG_ON(down_read_trylock(&mm->mmap_sem));
3206 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3207
3208 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3209 if (vma->anon_vma)
3210 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3211 vm_unlock_anon_vma(avc->anon_vma);
3212 if (vma->vm_file && vma->vm_file->f_mapping)
3213 vm_unlock_mapping(vma->vm_file->f_mapping);
3214 }
3215
3216 mutex_unlock(&mm_all_locks_mutex);
3217 }
3218
3219 /*
3220 * initialise the VMA slab
3221 */
3222 void __init mmap_init(void)
3223 {
3224 int ret;
3225
3226 ret = percpu_counter_init(&vm_committed_as, 0);
3227 VM_BUG_ON(ret);
3228 }
3229
3230 /*
3231 * Initialise sysctl_user_reserve_kbytes.
3232 *
3233 * This is intended to prevent a user from starting a single memory hogging
3234 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3235 * mode.
3236 *
3237 * The default value is min(3% of free memory, 128MB)
3238 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3239 */
3240 static int init_user_reserve(void)
3241 {
3242 unsigned long free_kbytes;
3243
3244 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3245
3246 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3247 return 0;
3248 }
3249 module_init(init_user_reserve)
3250
3251 /*
3252 * Initialise sysctl_admin_reserve_kbytes.
3253 *
3254 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3255 * to log in and kill a memory hogging process.
3256 *
3257 * Systems with more than 256MB will reserve 8MB, enough to recover
3258 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3259 * only reserve 3% of free pages by default.
3260 */
3261 static int init_admin_reserve(void)
3262 {
3263 unsigned long free_kbytes;
3264
3265 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3266
3267 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3268 return 0;
3269 }
3270 module_init(init_admin_reserve)
3271
3272 /*
3273 * Reinititalise user and admin reserves if memory is added or removed.
3274 *
3275 * The default user reserve max is 128MB, and the default max for the
3276 * admin reserve is 8MB. These are usually, but not always, enough to
3277 * enable recovery from a memory hogging process using login/sshd, a shell,
3278 * and tools like top. It may make sense to increase or even disable the
3279 * reserve depending on the existence of swap or variations in the recovery
3280 * tools. So, the admin may have changed them.
3281 *
3282 * If memory is added and the reserves have been eliminated or increased above
3283 * the default max, then we'll trust the admin.
3284 *
3285 * If memory is removed and there isn't enough free memory, then we
3286 * need to reset the reserves.
3287 *
3288 * Otherwise keep the reserve set by the admin.
3289 */
3290 static int reserve_mem_notifier(struct notifier_block *nb,
3291 unsigned long action, void *data)
3292 {
3293 unsigned long tmp, free_kbytes;
3294
3295 switch (action) {
3296 case MEM_ONLINE:
3297 /* Default max is 128MB. Leave alone if modified by operator. */
3298 tmp = sysctl_user_reserve_kbytes;
3299 if (0 < tmp && tmp < (1UL << 17))
3300 init_user_reserve();
3301
3302 /* Default max is 8MB. Leave alone if modified by operator. */
3303 tmp = sysctl_admin_reserve_kbytes;
3304 if (0 < tmp && tmp < (1UL << 13))
3305 init_admin_reserve();
3306
3307 break;
3308 case MEM_OFFLINE:
3309 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3310
3311 if (sysctl_user_reserve_kbytes > free_kbytes) {
3312 init_user_reserve();
3313 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3314 sysctl_user_reserve_kbytes);
3315 }
3316
3317 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3318 init_admin_reserve();
3319 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3320 sysctl_admin_reserve_kbytes);
3321 }
3322 break;
3323 default:
3324 break;
3325 }
3326 return NOTIFY_OK;
3327 }
3328
3329 static struct notifier_block reserve_mem_nb = {
3330 .notifier_call = reserve_mem_notifier,
3331 };
3332
3333 static int __meminit init_reserve_notifier(void)
3334 {
3335 if (register_hotmemory_notifier(&reserve_mem_nb))
3336 printk("Failed registering memory add/remove notifier for admin reserve");
3337
3338 return 0;
3339 }
3340 module_init(init_reserve_notifier)