tmpfs: don't undo fallocate past its last page
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/memcontrol.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40
41 #include <asm/tlbflush.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
45
46 #include "internal.h"
47
48 /*
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
52 */
53 int migrate_prep(void)
54 {
55 /*
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
60 */
61 lru_add_drain_all();
62
63 return 0;
64 }
65
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
68 {
69 lru_add_drain();
70
71 return 0;
72 }
73
74 /*
75 * Add isolated pages on the list back to the LRU under page lock
76 * to avoid leaking evictable pages back onto unevictable list.
77 */
78 void putback_lru_pages(struct list_head *l)
79 {
80 struct page *page;
81 struct page *page2;
82
83 list_for_each_entry_safe(page, page2, l, lru) {
84 list_del(&page->lru);
85 dec_zone_page_state(page, NR_ISOLATED_ANON +
86 page_is_file_cache(page));
87 putback_lru_page(page);
88 }
89 }
90
91 /*
92 * Put previously isolated pages back onto the appropriate lists
93 * from where they were once taken off for compaction/migration.
94 *
95 * This function shall be used instead of putback_lru_pages(),
96 * whenever the isolated pageset has been built by isolate_migratepages_range()
97 */
98 void putback_movable_pages(struct list_head *l)
99 {
100 struct page *page;
101 struct page *page2;
102
103 list_for_each_entry_safe(page, page2, l, lru) {
104 list_del(&page->lru);
105 dec_zone_page_state(page, NR_ISOLATED_ANON +
106 page_is_file_cache(page));
107 if (unlikely(isolated_balloon_page(page)))
108 balloon_page_putback(page);
109 else
110 putback_lru_page(page);
111 }
112 }
113
114 /*
115 * Restore a potential migration pte to a working pte entry
116 */
117 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
118 unsigned long addr, void *old)
119 {
120 struct mm_struct *mm = vma->vm_mm;
121 swp_entry_t entry;
122 pmd_t *pmd;
123 pte_t *ptep, pte;
124 spinlock_t *ptl;
125
126 if (unlikely(PageHuge(new))) {
127 ptep = huge_pte_offset(mm, addr);
128 if (!ptep)
129 goto out;
130 ptl = &mm->page_table_lock;
131 } else {
132 pmd = mm_find_pmd(mm, addr);
133 if (!pmd)
134 goto out;
135 if (pmd_trans_huge(*pmd))
136 goto out;
137
138 ptep = pte_offset_map(pmd, addr);
139
140 /*
141 * Peek to check is_swap_pte() before taking ptlock? No, we
142 * can race mremap's move_ptes(), which skips anon_vma lock.
143 */
144
145 ptl = pte_lockptr(mm, pmd);
146 }
147
148 spin_lock(ptl);
149 pte = *ptep;
150 if (!is_swap_pte(pte))
151 goto unlock;
152
153 entry = pte_to_swp_entry(pte);
154
155 if (!is_migration_entry(entry) ||
156 migration_entry_to_page(entry) != old)
157 goto unlock;
158
159 get_page(new);
160 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
161 if (is_write_migration_entry(entry))
162 pte = pte_mkwrite(pte);
163 #ifdef CONFIG_HUGETLB_PAGE
164 if (PageHuge(new)) {
165 pte = pte_mkhuge(pte);
166 pte = arch_make_huge_pte(pte, vma, new, 0);
167 }
168 #endif
169 flush_dcache_page(new);
170 set_pte_at(mm, addr, ptep, pte);
171
172 if (PageHuge(new)) {
173 if (PageAnon(new))
174 hugepage_add_anon_rmap(new, vma, addr);
175 else
176 page_dup_rmap(new);
177 } else if (PageAnon(new))
178 page_add_anon_rmap(new, vma, addr);
179 else
180 page_add_file_rmap(new);
181
182 /* No need to invalidate - it was non-present before */
183 update_mmu_cache(vma, addr, ptep);
184 unlock:
185 pte_unmap_unlock(ptep, ptl);
186 out:
187 return SWAP_AGAIN;
188 }
189
190 /*
191 * Get rid of all migration entries and replace them by
192 * references to the indicated page.
193 */
194 static void remove_migration_ptes(struct page *old, struct page *new)
195 {
196 rmap_walk(new, remove_migration_pte, old);
197 }
198
199 /*
200 * Something used the pte of a page under migration. We need to
201 * get to the page and wait until migration is finished.
202 * When we return from this function the fault will be retried.
203 */
204 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
205 spinlock_t *ptl)
206 {
207 pte_t pte;
208 swp_entry_t entry;
209 struct page *page;
210
211 spin_lock(ptl);
212 pte = *ptep;
213 if (!is_swap_pte(pte))
214 goto out;
215
216 entry = pte_to_swp_entry(pte);
217 if (!is_migration_entry(entry))
218 goto out;
219
220 page = migration_entry_to_page(entry);
221
222 /*
223 * Once radix-tree replacement of page migration started, page_count
224 * *must* be zero. And, we don't want to call wait_on_page_locked()
225 * against a page without get_page().
226 * So, we use get_page_unless_zero(), here. Even failed, page fault
227 * will occur again.
228 */
229 if (!get_page_unless_zero(page))
230 goto out;
231 pte_unmap_unlock(ptep, ptl);
232 wait_on_page_locked(page);
233 put_page(page);
234 return;
235 out:
236 pte_unmap_unlock(ptep, ptl);
237 }
238
239 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
240 unsigned long address)
241 {
242 spinlock_t *ptl = pte_lockptr(mm, pmd);
243 pte_t *ptep = pte_offset_map(pmd, address);
244 __migration_entry_wait(mm, ptep, ptl);
245 }
246
247 void migration_entry_wait_huge(struct mm_struct *mm, pte_t *pte)
248 {
249 spinlock_t *ptl = &(mm)->page_table_lock;
250 __migration_entry_wait(mm, pte, ptl);
251 }
252
253 #ifdef CONFIG_BLOCK
254 /* Returns true if all buffers are successfully locked */
255 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
256 enum migrate_mode mode)
257 {
258 struct buffer_head *bh = head;
259
260 /* Simple case, sync compaction */
261 if (mode != MIGRATE_ASYNC) {
262 do {
263 get_bh(bh);
264 lock_buffer(bh);
265 bh = bh->b_this_page;
266
267 } while (bh != head);
268
269 return true;
270 }
271
272 /* async case, we cannot block on lock_buffer so use trylock_buffer */
273 do {
274 get_bh(bh);
275 if (!trylock_buffer(bh)) {
276 /*
277 * We failed to lock the buffer and cannot stall in
278 * async migration. Release the taken locks
279 */
280 struct buffer_head *failed_bh = bh;
281 put_bh(failed_bh);
282 bh = head;
283 while (bh != failed_bh) {
284 unlock_buffer(bh);
285 put_bh(bh);
286 bh = bh->b_this_page;
287 }
288 return false;
289 }
290
291 bh = bh->b_this_page;
292 } while (bh != head);
293 return true;
294 }
295 #else
296 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
297 enum migrate_mode mode)
298 {
299 return true;
300 }
301 #endif /* CONFIG_BLOCK */
302
303 /*
304 * Replace the page in the mapping.
305 *
306 * The number of remaining references must be:
307 * 1 for anonymous pages without a mapping
308 * 2 for pages with a mapping
309 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
310 */
311 static int migrate_page_move_mapping(struct address_space *mapping,
312 struct page *newpage, struct page *page,
313 struct buffer_head *head, enum migrate_mode mode)
314 {
315 struct zone *oldzone, *newzone;
316 int dirty;
317 int expected_count = 0;
318 void **pslot;
319
320 if (!mapping) {
321 /* Anonymous page without mapping */
322 if (page_count(page) != 1)
323 return -EAGAIN;
324 return MIGRATEPAGE_SUCCESS;
325 }
326
327 oldzone = page_zone(page);
328 newzone = page_zone(newpage);
329
330 spin_lock_irq(&mapping->tree_lock);
331
332 pslot = radix_tree_lookup_slot(&mapping->page_tree,
333 page_index(page));
334
335 expected_count = 2 + page_has_private(page);
336 if (page_count(page) != expected_count ||
337 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
338 spin_unlock_irq(&mapping->tree_lock);
339 return -EAGAIN;
340 }
341
342 if (!page_freeze_refs(page, expected_count)) {
343 spin_unlock_irq(&mapping->tree_lock);
344 return -EAGAIN;
345 }
346
347 /*
348 * In the async migration case of moving a page with buffers, lock the
349 * buffers using trylock before the mapping is moved. If the mapping
350 * was moved, we later failed to lock the buffers and could not move
351 * the mapping back due to an elevated page count, we would have to
352 * block waiting on other references to be dropped.
353 */
354 if (mode == MIGRATE_ASYNC && head &&
355 !buffer_migrate_lock_buffers(head, mode)) {
356 page_unfreeze_refs(page, expected_count);
357 spin_unlock_irq(&mapping->tree_lock);
358 return -EAGAIN;
359 }
360
361 /*
362 * Now we know that no one else is looking at the page.
363 */
364 get_page(newpage); /* add cache reference */
365 if (PageSwapCache(page)) {
366 SetPageSwapCache(newpage);
367 set_page_private(newpage, page_private(page));
368 }
369
370 /* Move dirty while page refs frozen and newpage not yet exposed */
371 dirty = PageDirty(page);
372 if (dirty) {
373 ClearPageDirty(page);
374 SetPageDirty(newpage);
375 }
376
377 radix_tree_replace_slot(pslot, newpage);
378
379 /*
380 * Drop cache reference from old page by unfreezing
381 * to one less reference.
382 * We know this isn't the last reference.
383 */
384 page_unfreeze_refs(page, expected_count - 1);
385
386 spin_unlock(&mapping->tree_lock);
387 /* Leave irq disabled to prevent preemption while updating stats */
388
389 /*
390 * If moved to a different zone then also account
391 * the page for that zone. Other VM counters will be
392 * taken care of when we establish references to the
393 * new page and drop references to the old page.
394 *
395 * Note that anonymous pages are accounted for
396 * via NR_FILE_PAGES and NR_ANON_PAGES if they
397 * are mapped to swap space.
398 */
399 if (newzone != oldzone) {
400 __dec_zone_state(oldzone, NR_FILE_PAGES);
401 __inc_zone_state(newzone, NR_FILE_PAGES);
402 if (PageSwapBacked(page) && !PageSwapCache(page)) {
403 __dec_zone_state(oldzone, NR_SHMEM);
404 __inc_zone_state(newzone, NR_SHMEM);
405 }
406 if (dirty && mapping_cap_account_dirty(mapping)) {
407 __dec_zone_state(oldzone, NR_FILE_DIRTY);
408 __inc_zone_state(newzone, NR_FILE_DIRTY);
409 }
410 }
411 local_irq_enable();
412
413 return MIGRATEPAGE_SUCCESS;
414 }
415
416 /*
417 * The expected number of remaining references is the same as that
418 * of migrate_page_move_mapping().
419 */
420 int migrate_huge_page_move_mapping(struct address_space *mapping,
421 struct page *newpage, struct page *page)
422 {
423 int expected_count;
424 void **pslot;
425
426 if (!mapping) {
427 if (page_count(page) != 1)
428 return -EAGAIN;
429 return MIGRATEPAGE_SUCCESS;
430 }
431
432 spin_lock_irq(&mapping->tree_lock);
433
434 pslot = radix_tree_lookup_slot(&mapping->page_tree,
435 page_index(page));
436
437 expected_count = 2 + page_has_private(page);
438 if (page_count(page) != expected_count ||
439 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
440 spin_unlock_irq(&mapping->tree_lock);
441 return -EAGAIN;
442 }
443
444 if (!page_freeze_refs(page, expected_count)) {
445 spin_unlock_irq(&mapping->tree_lock);
446 return -EAGAIN;
447 }
448
449 get_page(newpage);
450
451 radix_tree_replace_slot(pslot, newpage);
452
453 page_unfreeze_refs(page, expected_count - 1);
454
455 spin_unlock_irq(&mapping->tree_lock);
456 return MIGRATEPAGE_SUCCESS;
457 }
458
459 /*
460 * Copy the page to its new location
461 */
462 void migrate_page_copy(struct page *newpage, struct page *page)
463 {
464 if (PageHuge(page) || PageTransHuge(page))
465 copy_huge_page(newpage, page);
466 else
467 copy_highpage(newpage, page);
468
469 if (PageError(page))
470 SetPageError(newpage);
471 if (PageReferenced(page))
472 SetPageReferenced(newpage);
473 if (PageUptodate(page))
474 SetPageUptodate(newpage);
475 if (TestClearPageActive(page)) {
476 VM_BUG_ON(PageUnevictable(page));
477 SetPageActive(newpage);
478 } else if (TestClearPageUnevictable(page))
479 SetPageUnevictable(newpage);
480 if (PageChecked(page))
481 SetPageChecked(newpage);
482 if (PageMappedToDisk(page))
483 SetPageMappedToDisk(newpage);
484
485 /* Move dirty on pages not done by migrate_page_move_mapping() */
486 if (PageDirty(page))
487 SetPageDirty(newpage);
488
489 mlock_migrate_page(newpage, page);
490 ksm_migrate_page(newpage, page);
491 /*
492 * Please do not reorder this without considering how mm/ksm.c's
493 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
494 */
495 ClearPageSwapCache(page);
496 ClearPagePrivate(page);
497 set_page_private(page, 0);
498
499 /*
500 * If any waiters have accumulated on the new page then
501 * wake them up.
502 */
503 if (PageWriteback(newpage))
504 end_page_writeback(newpage);
505 }
506
507 /************************************************************
508 * Migration functions
509 ***********************************************************/
510
511 /* Always fail migration. Used for mappings that are not movable */
512 int fail_migrate_page(struct address_space *mapping,
513 struct page *newpage, struct page *page)
514 {
515 return -EIO;
516 }
517 EXPORT_SYMBOL(fail_migrate_page);
518
519 /*
520 * Common logic to directly migrate a single page suitable for
521 * pages that do not use PagePrivate/PagePrivate2.
522 *
523 * Pages are locked upon entry and exit.
524 */
525 int migrate_page(struct address_space *mapping,
526 struct page *newpage, struct page *page,
527 enum migrate_mode mode)
528 {
529 int rc;
530
531 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
532
533 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
534
535 if (rc != MIGRATEPAGE_SUCCESS)
536 return rc;
537
538 migrate_page_copy(newpage, page);
539 return MIGRATEPAGE_SUCCESS;
540 }
541 EXPORT_SYMBOL(migrate_page);
542
543 #ifdef CONFIG_BLOCK
544 /*
545 * Migration function for pages with buffers. This function can only be used
546 * if the underlying filesystem guarantees that no other references to "page"
547 * exist.
548 */
549 int buffer_migrate_page(struct address_space *mapping,
550 struct page *newpage, struct page *page, enum migrate_mode mode)
551 {
552 struct buffer_head *bh, *head;
553 int rc;
554
555 if (!page_has_buffers(page))
556 return migrate_page(mapping, newpage, page, mode);
557
558 head = page_buffers(page);
559
560 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
561
562 if (rc != MIGRATEPAGE_SUCCESS)
563 return rc;
564
565 /*
566 * In the async case, migrate_page_move_mapping locked the buffers
567 * with an IRQ-safe spinlock held. In the sync case, the buffers
568 * need to be locked now
569 */
570 if (mode != MIGRATE_ASYNC)
571 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
572
573 ClearPagePrivate(page);
574 set_page_private(newpage, page_private(page));
575 set_page_private(page, 0);
576 put_page(page);
577 get_page(newpage);
578
579 bh = head;
580 do {
581 set_bh_page(bh, newpage, bh_offset(bh));
582 bh = bh->b_this_page;
583
584 } while (bh != head);
585
586 SetPagePrivate(newpage);
587
588 migrate_page_copy(newpage, page);
589
590 bh = head;
591 do {
592 unlock_buffer(bh);
593 put_bh(bh);
594 bh = bh->b_this_page;
595
596 } while (bh != head);
597
598 return MIGRATEPAGE_SUCCESS;
599 }
600 EXPORT_SYMBOL(buffer_migrate_page);
601 #endif
602
603 /*
604 * Writeback a page to clean the dirty state
605 */
606 static int writeout(struct address_space *mapping, struct page *page)
607 {
608 struct writeback_control wbc = {
609 .sync_mode = WB_SYNC_NONE,
610 .nr_to_write = 1,
611 .range_start = 0,
612 .range_end = LLONG_MAX,
613 .for_reclaim = 1
614 };
615 int rc;
616
617 if (!mapping->a_ops->writepage)
618 /* No write method for the address space */
619 return -EINVAL;
620
621 if (!clear_page_dirty_for_io(page))
622 /* Someone else already triggered a write */
623 return -EAGAIN;
624
625 /*
626 * A dirty page may imply that the underlying filesystem has
627 * the page on some queue. So the page must be clean for
628 * migration. Writeout may mean we loose the lock and the
629 * page state is no longer what we checked for earlier.
630 * At this point we know that the migration attempt cannot
631 * be successful.
632 */
633 remove_migration_ptes(page, page);
634
635 rc = mapping->a_ops->writepage(page, &wbc);
636
637 if (rc != AOP_WRITEPAGE_ACTIVATE)
638 /* unlocked. Relock */
639 lock_page(page);
640
641 return (rc < 0) ? -EIO : -EAGAIN;
642 }
643
644 /*
645 * Default handling if a filesystem does not provide a migration function.
646 */
647 static int fallback_migrate_page(struct address_space *mapping,
648 struct page *newpage, struct page *page, enum migrate_mode mode)
649 {
650 if (PageDirty(page)) {
651 /* Only writeback pages in full synchronous migration */
652 if (mode != MIGRATE_SYNC)
653 return -EBUSY;
654 return writeout(mapping, page);
655 }
656
657 /*
658 * Buffers may be managed in a filesystem specific way.
659 * We must have no buffers or drop them.
660 */
661 if (page_has_private(page) &&
662 !try_to_release_page(page, GFP_KERNEL))
663 return -EAGAIN;
664
665 return migrate_page(mapping, newpage, page, mode);
666 }
667
668 /*
669 * Move a page to a newly allocated page
670 * The page is locked and all ptes have been successfully removed.
671 *
672 * The new page will have replaced the old page if this function
673 * is successful.
674 *
675 * Return value:
676 * < 0 - error code
677 * MIGRATEPAGE_SUCCESS - success
678 */
679 static int move_to_new_page(struct page *newpage, struct page *page,
680 int remap_swapcache, enum migrate_mode mode)
681 {
682 struct address_space *mapping;
683 int rc;
684
685 /*
686 * Block others from accessing the page when we get around to
687 * establishing additional references. We are the only one
688 * holding a reference to the new page at this point.
689 */
690 if (!trylock_page(newpage))
691 BUG();
692
693 /* Prepare mapping for the new page.*/
694 newpage->index = page->index;
695 newpage->mapping = page->mapping;
696 if (PageSwapBacked(page))
697 SetPageSwapBacked(newpage);
698
699 mapping = page_mapping(page);
700 if (!mapping)
701 rc = migrate_page(mapping, newpage, page, mode);
702 else if (mapping->a_ops->migratepage)
703 /*
704 * Most pages have a mapping and most filesystems provide a
705 * migratepage callback. Anonymous pages are part of swap
706 * space which also has its own migratepage callback. This
707 * is the most common path for page migration.
708 */
709 rc = mapping->a_ops->migratepage(mapping,
710 newpage, page, mode);
711 else
712 rc = fallback_migrate_page(mapping, newpage, page, mode);
713
714 if (rc != MIGRATEPAGE_SUCCESS) {
715 newpage->mapping = NULL;
716 } else {
717 if (remap_swapcache)
718 remove_migration_ptes(page, newpage);
719 page->mapping = NULL;
720 }
721
722 unlock_page(newpage);
723
724 return rc;
725 }
726
727 static int __unmap_and_move(struct page *page, struct page *newpage,
728 int force, enum migrate_mode mode)
729 {
730 int rc = -EAGAIN;
731 int remap_swapcache = 1;
732 struct mem_cgroup *mem;
733 struct anon_vma *anon_vma = NULL;
734
735 if (!trylock_page(page)) {
736 if (!force || mode == MIGRATE_ASYNC)
737 goto out;
738
739 /*
740 * It's not safe for direct compaction to call lock_page.
741 * For example, during page readahead pages are added locked
742 * to the LRU. Later, when the IO completes the pages are
743 * marked uptodate and unlocked. However, the queueing
744 * could be merging multiple pages for one bio (e.g.
745 * mpage_readpages). If an allocation happens for the
746 * second or third page, the process can end up locking
747 * the same page twice and deadlocking. Rather than
748 * trying to be clever about what pages can be locked,
749 * avoid the use of lock_page for direct compaction
750 * altogether.
751 */
752 if (current->flags & PF_MEMALLOC)
753 goto out;
754
755 lock_page(page);
756 }
757
758 /* charge against new page */
759 mem_cgroup_prepare_migration(page, newpage, &mem);
760
761 if (PageWriteback(page)) {
762 /*
763 * Only in the case of a full synchronous migration is it
764 * necessary to wait for PageWriteback. In the async case,
765 * the retry loop is too short and in the sync-light case,
766 * the overhead of stalling is too much
767 */
768 if (mode != MIGRATE_SYNC) {
769 rc = -EBUSY;
770 goto uncharge;
771 }
772 if (!force)
773 goto uncharge;
774 wait_on_page_writeback(page);
775 }
776 /*
777 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
778 * we cannot notice that anon_vma is freed while we migrates a page.
779 * This get_anon_vma() delays freeing anon_vma pointer until the end
780 * of migration. File cache pages are no problem because of page_lock()
781 * File Caches may use write_page() or lock_page() in migration, then,
782 * just care Anon page here.
783 */
784 if (PageAnon(page) && !PageKsm(page)) {
785 /*
786 * Only page_lock_anon_vma_read() understands the subtleties of
787 * getting a hold on an anon_vma from outside one of its mms.
788 */
789 anon_vma = page_get_anon_vma(page);
790 if (anon_vma) {
791 /*
792 * Anon page
793 */
794 } else if (PageSwapCache(page)) {
795 /*
796 * We cannot be sure that the anon_vma of an unmapped
797 * swapcache page is safe to use because we don't
798 * know in advance if the VMA that this page belonged
799 * to still exists. If the VMA and others sharing the
800 * data have been freed, then the anon_vma could
801 * already be invalid.
802 *
803 * To avoid this possibility, swapcache pages get
804 * migrated but are not remapped when migration
805 * completes
806 */
807 remap_swapcache = 0;
808 } else {
809 goto uncharge;
810 }
811 }
812
813 if (unlikely(balloon_page_movable(page))) {
814 /*
815 * A ballooned page does not need any special attention from
816 * physical to virtual reverse mapping procedures.
817 * Skip any attempt to unmap PTEs or to remap swap cache,
818 * in order to avoid burning cycles at rmap level, and perform
819 * the page migration right away (proteced by page lock).
820 */
821 rc = balloon_page_migrate(newpage, page, mode);
822 goto uncharge;
823 }
824
825 /*
826 * Corner case handling:
827 * 1. When a new swap-cache page is read into, it is added to the LRU
828 * and treated as swapcache but it has no rmap yet.
829 * Calling try_to_unmap() against a page->mapping==NULL page will
830 * trigger a BUG. So handle it here.
831 * 2. An orphaned page (see truncate_complete_page) might have
832 * fs-private metadata. The page can be picked up due to memory
833 * offlining. Everywhere else except page reclaim, the page is
834 * invisible to the vm, so the page can not be migrated. So try to
835 * free the metadata, so the page can be freed.
836 */
837 if (!page->mapping) {
838 VM_BUG_ON(PageAnon(page));
839 if (page_has_private(page)) {
840 try_to_free_buffers(page);
841 goto uncharge;
842 }
843 goto skip_unmap;
844 }
845
846 /* Establish migration ptes or remove ptes */
847 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
848
849 skip_unmap:
850 if (!page_mapped(page))
851 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
852
853 if (rc && remap_swapcache)
854 remove_migration_ptes(page, page);
855
856 /* Drop an anon_vma reference if we took one */
857 if (anon_vma)
858 put_anon_vma(anon_vma);
859
860 uncharge:
861 mem_cgroup_end_migration(mem, page, newpage,
862 (rc == MIGRATEPAGE_SUCCESS ||
863 rc == MIGRATEPAGE_BALLOON_SUCCESS));
864 unlock_page(page);
865 out:
866 return rc;
867 }
868
869 /*
870 * Obtain the lock on page, remove all ptes and migrate the page
871 * to the newly allocated page in newpage.
872 */
873 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
874 struct page *page, int force, enum migrate_mode mode)
875 {
876 int rc = 0;
877 int *result = NULL;
878 struct page *newpage = get_new_page(page, private, &result);
879
880 if (!newpage)
881 return -ENOMEM;
882
883 if (page_count(page) == 1) {
884 /* page was freed from under us. So we are done. */
885 goto out;
886 }
887
888 if (unlikely(PageTransHuge(page)))
889 if (unlikely(split_huge_page(page)))
890 goto out;
891
892 rc = __unmap_and_move(page, newpage, force, mode);
893
894 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
895 /*
896 * A ballooned page has been migrated already.
897 * Now, it's the time to wrap-up counters,
898 * handle the page back to Buddy and return.
899 */
900 dec_zone_page_state(page, NR_ISOLATED_ANON +
901 page_is_file_cache(page));
902 balloon_page_free(page);
903 return MIGRATEPAGE_SUCCESS;
904 }
905 out:
906 if (rc != -EAGAIN) {
907 /*
908 * A page that has been migrated has all references
909 * removed and will be freed. A page that has not been
910 * migrated will have kepts its references and be
911 * restored.
912 */
913 list_del(&page->lru);
914 dec_zone_page_state(page, NR_ISOLATED_ANON +
915 page_is_file_cache(page));
916 putback_lru_page(page);
917 }
918 /*
919 * Move the new page to the LRU. If migration was not successful
920 * then this will free the page.
921 */
922 putback_lru_page(newpage);
923 if (result) {
924 if (rc)
925 *result = rc;
926 else
927 *result = page_to_nid(newpage);
928 }
929 return rc;
930 }
931
932 /*
933 * Counterpart of unmap_and_move_page() for hugepage migration.
934 *
935 * This function doesn't wait the completion of hugepage I/O
936 * because there is no race between I/O and migration for hugepage.
937 * Note that currently hugepage I/O occurs only in direct I/O
938 * where no lock is held and PG_writeback is irrelevant,
939 * and writeback status of all subpages are counted in the reference
940 * count of the head page (i.e. if all subpages of a 2MB hugepage are
941 * under direct I/O, the reference of the head page is 512 and a bit more.)
942 * This means that when we try to migrate hugepage whose subpages are
943 * doing direct I/O, some references remain after try_to_unmap() and
944 * hugepage migration fails without data corruption.
945 *
946 * There is also no race when direct I/O is issued on the page under migration,
947 * because then pte is replaced with migration swap entry and direct I/O code
948 * will wait in the page fault for migration to complete.
949 */
950 static int unmap_and_move_huge_page(new_page_t get_new_page,
951 unsigned long private, struct page *hpage,
952 int force, enum migrate_mode mode)
953 {
954 int rc = 0;
955 int *result = NULL;
956 struct page *new_hpage = get_new_page(hpage, private, &result);
957 struct anon_vma *anon_vma = NULL;
958
959 if (!new_hpage)
960 return -ENOMEM;
961
962 rc = -EAGAIN;
963
964 if (!trylock_page(hpage)) {
965 if (!force || mode != MIGRATE_SYNC)
966 goto out;
967 lock_page(hpage);
968 }
969
970 if (PageAnon(hpage))
971 anon_vma = page_get_anon_vma(hpage);
972
973 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
974
975 if (!page_mapped(hpage))
976 rc = move_to_new_page(new_hpage, hpage, 1, mode);
977
978 if (rc)
979 remove_migration_ptes(hpage, hpage);
980
981 if (anon_vma)
982 put_anon_vma(anon_vma);
983
984 if (!rc)
985 hugetlb_cgroup_migrate(hpage, new_hpage);
986
987 unlock_page(hpage);
988 out:
989 put_page(new_hpage);
990 if (result) {
991 if (rc)
992 *result = rc;
993 else
994 *result = page_to_nid(new_hpage);
995 }
996 return rc;
997 }
998
999 /*
1000 * migrate_pages - migrate the pages specified in a list, to the free pages
1001 * supplied as the target for the page migration
1002 *
1003 * @from: The list of pages to be migrated.
1004 * @get_new_page: The function used to allocate free pages to be used
1005 * as the target of the page migration.
1006 * @private: Private data to be passed on to get_new_page()
1007 * @mode: The migration mode that specifies the constraints for
1008 * page migration, if any.
1009 * @reason: The reason for page migration.
1010 *
1011 * The function returns after 10 attempts or if no pages are movable any more
1012 * because the list has become empty or no retryable pages exist any more.
1013 * The caller should call putback_lru_pages() to return pages to the LRU
1014 * or free list only if ret != 0.
1015 *
1016 * Returns the number of pages that were not migrated, or an error code.
1017 */
1018 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1019 unsigned long private, enum migrate_mode mode, int reason)
1020 {
1021 int retry = 1;
1022 int nr_failed = 0;
1023 int nr_succeeded = 0;
1024 int pass = 0;
1025 struct page *page;
1026 struct page *page2;
1027 int swapwrite = current->flags & PF_SWAPWRITE;
1028 int rc;
1029
1030 if (!swapwrite)
1031 current->flags |= PF_SWAPWRITE;
1032
1033 for(pass = 0; pass < 10 && retry; pass++) {
1034 retry = 0;
1035
1036 list_for_each_entry_safe(page, page2, from, lru) {
1037 cond_resched();
1038
1039 rc = unmap_and_move(get_new_page, private,
1040 page, pass > 2, mode);
1041
1042 switch(rc) {
1043 case -ENOMEM:
1044 goto out;
1045 case -EAGAIN:
1046 retry++;
1047 break;
1048 case MIGRATEPAGE_SUCCESS:
1049 nr_succeeded++;
1050 break;
1051 default:
1052 /* Permanent failure */
1053 nr_failed++;
1054 break;
1055 }
1056 }
1057 }
1058 rc = nr_failed + retry;
1059 out:
1060 if (nr_succeeded)
1061 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1062 if (nr_failed)
1063 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1064 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1065
1066 if (!swapwrite)
1067 current->flags &= ~PF_SWAPWRITE;
1068
1069 return rc;
1070 }
1071
1072 int migrate_huge_page(struct page *hpage, new_page_t get_new_page,
1073 unsigned long private, enum migrate_mode mode)
1074 {
1075 int pass, rc;
1076
1077 for (pass = 0; pass < 10; pass++) {
1078 rc = unmap_and_move_huge_page(get_new_page, private,
1079 hpage, pass > 2, mode);
1080 switch (rc) {
1081 case -ENOMEM:
1082 goto out;
1083 case -EAGAIN:
1084 /* try again */
1085 cond_resched();
1086 break;
1087 case MIGRATEPAGE_SUCCESS:
1088 goto out;
1089 default:
1090 rc = -EIO;
1091 goto out;
1092 }
1093 }
1094 out:
1095 return rc;
1096 }
1097
1098 #ifdef CONFIG_NUMA
1099 /*
1100 * Move a list of individual pages
1101 */
1102 struct page_to_node {
1103 unsigned long addr;
1104 struct page *page;
1105 int node;
1106 int status;
1107 };
1108
1109 static struct page *new_page_node(struct page *p, unsigned long private,
1110 int **result)
1111 {
1112 struct page_to_node *pm = (struct page_to_node *)private;
1113
1114 while (pm->node != MAX_NUMNODES && pm->page != p)
1115 pm++;
1116
1117 if (pm->node == MAX_NUMNODES)
1118 return NULL;
1119
1120 *result = &pm->status;
1121
1122 return alloc_pages_exact_node(pm->node,
1123 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1124 }
1125
1126 /*
1127 * Move a set of pages as indicated in the pm array. The addr
1128 * field must be set to the virtual address of the page to be moved
1129 * and the node number must contain a valid target node.
1130 * The pm array ends with node = MAX_NUMNODES.
1131 */
1132 static int do_move_page_to_node_array(struct mm_struct *mm,
1133 struct page_to_node *pm,
1134 int migrate_all)
1135 {
1136 int err;
1137 struct page_to_node *pp;
1138 LIST_HEAD(pagelist);
1139
1140 down_read(&mm->mmap_sem);
1141
1142 /*
1143 * Build a list of pages to migrate
1144 */
1145 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1146 struct vm_area_struct *vma;
1147 struct page *page;
1148
1149 err = -EFAULT;
1150 vma = find_vma(mm, pp->addr);
1151 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1152 goto set_status;
1153
1154 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1155
1156 err = PTR_ERR(page);
1157 if (IS_ERR(page))
1158 goto set_status;
1159
1160 err = -ENOENT;
1161 if (!page)
1162 goto set_status;
1163
1164 /* Use PageReserved to check for zero page */
1165 if (PageReserved(page))
1166 goto put_and_set;
1167
1168 pp->page = page;
1169 err = page_to_nid(page);
1170
1171 if (err == pp->node)
1172 /*
1173 * Node already in the right place
1174 */
1175 goto put_and_set;
1176
1177 err = -EACCES;
1178 if (page_mapcount(page) > 1 &&
1179 !migrate_all)
1180 goto put_and_set;
1181
1182 err = isolate_lru_page(page);
1183 if (!err) {
1184 list_add_tail(&page->lru, &pagelist);
1185 inc_zone_page_state(page, NR_ISOLATED_ANON +
1186 page_is_file_cache(page));
1187 }
1188 put_and_set:
1189 /*
1190 * Either remove the duplicate refcount from
1191 * isolate_lru_page() or drop the page ref if it was
1192 * not isolated.
1193 */
1194 put_page(page);
1195 set_status:
1196 pp->status = err;
1197 }
1198
1199 err = 0;
1200 if (!list_empty(&pagelist)) {
1201 err = migrate_pages(&pagelist, new_page_node,
1202 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1203 if (err)
1204 putback_lru_pages(&pagelist);
1205 }
1206
1207 up_read(&mm->mmap_sem);
1208 return err;
1209 }
1210
1211 /*
1212 * Migrate an array of page address onto an array of nodes and fill
1213 * the corresponding array of status.
1214 */
1215 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1216 unsigned long nr_pages,
1217 const void __user * __user *pages,
1218 const int __user *nodes,
1219 int __user *status, int flags)
1220 {
1221 struct page_to_node *pm;
1222 unsigned long chunk_nr_pages;
1223 unsigned long chunk_start;
1224 int err;
1225
1226 err = -ENOMEM;
1227 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1228 if (!pm)
1229 goto out;
1230
1231 migrate_prep();
1232
1233 /*
1234 * Store a chunk of page_to_node array in a page,
1235 * but keep the last one as a marker
1236 */
1237 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1238
1239 for (chunk_start = 0;
1240 chunk_start < nr_pages;
1241 chunk_start += chunk_nr_pages) {
1242 int j;
1243
1244 if (chunk_start + chunk_nr_pages > nr_pages)
1245 chunk_nr_pages = nr_pages - chunk_start;
1246
1247 /* fill the chunk pm with addrs and nodes from user-space */
1248 for (j = 0; j < chunk_nr_pages; j++) {
1249 const void __user *p;
1250 int node;
1251
1252 err = -EFAULT;
1253 if (get_user(p, pages + j + chunk_start))
1254 goto out_pm;
1255 pm[j].addr = (unsigned long) p;
1256
1257 if (get_user(node, nodes + j + chunk_start))
1258 goto out_pm;
1259
1260 err = -ENODEV;
1261 if (node < 0 || node >= MAX_NUMNODES)
1262 goto out_pm;
1263
1264 if (!node_state(node, N_MEMORY))
1265 goto out_pm;
1266
1267 err = -EACCES;
1268 if (!node_isset(node, task_nodes))
1269 goto out_pm;
1270
1271 pm[j].node = node;
1272 }
1273
1274 /* End marker for this chunk */
1275 pm[chunk_nr_pages].node = MAX_NUMNODES;
1276
1277 /* Migrate this chunk */
1278 err = do_move_page_to_node_array(mm, pm,
1279 flags & MPOL_MF_MOVE_ALL);
1280 if (err < 0)
1281 goto out_pm;
1282
1283 /* Return status information */
1284 for (j = 0; j < chunk_nr_pages; j++)
1285 if (put_user(pm[j].status, status + j + chunk_start)) {
1286 err = -EFAULT;
1287 goto out_pm;
1288 }
1289 }
1290 err = 0;
1291
1292 out_pm:
1293 free_page((unsigned long)pm);
1294 out:
1295 return err;
1296 }
1297
1298 /*
1299 * Determine the nodes of an array of pages and store it in an array of status.
1300 */
1301 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1302 const void __user **pages, int *status)
1303 {
1304 unsigned long i;
1305
1306 down_read(&mm->mmap_sem);
1307
1308 for (i = 0; i < nr_pages; i++) {
1309 unsigned long addr = (unsigned long)(*pages);
1310 struct vm_area_struct *vma;
1311 struct page *page;
1312 int err = -EFAULT;
1313
1314 vma = find_vma(mm, addr);
1315 if (!vma || addr < vma->vm_start)
1316 goto set_status;
1317
1318 page = follow_page(vma, addr, 0);
1319
1320 err = PTR_ERR(page);
1321 if (IS_ERR(page))
1322 goto set_status;
1323
1324 err = -ENOENT;
1325 /* Use PageReserved to check for zero page */
1326 if (!page || PageReserved(page))
1327 goto set_status;
1328
1329 err = page_to_nid(page);
1330 set_status:
1331 *status = err;
1332
1333 pages++;
1334 status++;
1335 }
1336
1337 up_read(&mm->mmap_sem);
1338 }
1339
1340 /*
1341 * Determine the nodes of a user array of pages and store it in
1342 * a user array of status.
1343 */
1344 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1345 const void __user * __user *pages,
1346 int __user *status)
1347 {
1348 #define DO_PAGES_STAT_CHUNK_NR 16
1349 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1350 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1351
1352 while (nr_pages) {
1353 unsigned long chunk_nr;
1354
1355 chunk_nr = nr_pages;
1356 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1357 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1358
1359 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1360 break;
1361
1362 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1363
1364 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1365 break;
1366
1367 pages += chunk_nr;
1368 status += chunk_nr;
1369 nr_pages -= chunk_nr;
1370 }
1371 return nr_pages ? -EFAULT : 0;
1372 }
1373
1374 /*
1375 * Move a list of pages in the address space of the currently executing
1376 * process.
1377 */
1378 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1379 const void __user * __user *, pages,
1380 const int __user *, nodes,
1381 int __user *, status, int, flags)
1382 {
1383 const struct cred *cred = current_cred(), *tcred;
1384 struct task_struct *task;
1385 struct mm_struct *mm;
1386 int err;
1387 nodemask_t task_nodes;
1388
1389 /* Check flags */
1390 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1391 return -EINVAL;
1392
1393 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1394 return -EPERM;
1395
1396 /* Find the mm_struct */
1397 rcu_read_lock();
1398 task = pid ? find_task_by_vpid(pid) : current;
1399 if (!task) {
1400 rcu_read_unlock();
1401 return -ESRCH;
1402 }
1403 get_task_struct(task);
1404
1405 /*
1406 * Check if this process has the right to modify the specified
1407 * process. The right exists if the process has administrative
1408 * capabilities, superuser privileges or the same
1409 * userid as the target process.
1410 */
1411 tcred = __task_cred(task);
1412 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1413 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1414 !capable(CAP_SYS_NICE)) {
1415 rcu_read_unlock();
1416 err = -EPERM;
1417 goto out;
1418 }
1419 rcu_read_unlock();
1420
1421 err = security_task_movememory(task);
1422 if (err)
1423 goto out;
1424
1425 task_nodes = cpuset_mems_allowed(task);
1426 mm = get_task_mm(task);
1427 put_task_struct(task);
1428
1429 if (!mm)
1430 return -EINVAL;
1431
1432 if (nodes)
1433 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1434 nodes, status, flags);
1435 else
1436 err = do_pages_stat(mm, nr_pages, pages, status);
1437
1438 mmput(mm);
1439 return err;
1440
1441 out:
1442 put_task_struct(task);
1443 return err;
1444 }
1445
1446 /*
1447 * Call migration functions in the vma_ops that may prepare
1448 * memory in a vm for migration. migration functions may perform
1449 * the migration for vmas that do not have an underlying page struct.
1450 */
1451 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1452 const nodemask_t *from, unsigned long flags)
1453 {
1454 struct vm_area_struct *vma;
1455 int err = 0;
1456
1457 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1458 if (vma->vm_ops && vma->vm_ops->migrate) {
1459 err = vma->vm_ops->migrate(vma, to, from, flags);
1460 if (err)
1461 break;
1462 }
1463 }
1464 return err;
1465 }
1466
1467 #ifdef CONFIG_NUMA_BALANCING
1468 /*
1469 * Returns true if this is a safe migration target node for misplaced NUMA
1470 * pages. Currently it only checks the watermarks which crude
1471 */
1472 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1473 unsigned long nr_migrate_pages)
1474 {
1475 int z;
1476 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1477 struct zone *zone = pgdat->node_zones + z;
1478
1479 if (!populated_zone(zone))
1480 continue;
1481
1482 if (zone->all_unreclaimable)
1483 continue;
1484
1485 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1486 if (!zone_watermark_ok(zone, 0,
1487 high_wmark_pages(zone) +
1488 nr_migrate_pages,
1489 0, 0))
1490 continue;
1491 return true;
1492 }
1493 return false;
1494 }
1495
1496 static struct page *alloc_misplaced_dst_page(struct page *page,
1497 unsigned long data,
1498 int **result)
1499 {
1500 int nid = (int) data;
1501 struct page *newpage;
1502
1503 newpage = alloc_pages_exact_node(nid,
1504 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1505 __GFP_NOMEMALLOC | __GFP_NORETRY |
1506 __GFP_NOWARN) &
1507 ~GFP_IOFS, 0);
1508 if (newpage)
1509 page_nid_xchg_last(newpage, page_nid_last(page));
1510
1511 return newpage;
1512 }
1513
1514 /*
1515 * page migration rate limiting control.
1516 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1517 * window of time. Default here says do not migrate more than 1280M per second.
1518 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1519 * as it is faults that reset the window, pte updates will happen unconditionally
1520 * if there has not been a fault since @pteupdate_interval_millisecs after the
1521 * throttle window closed.
1522 */
1523 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1524 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1525 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1526
1527 /* Returns true if NUMA migration is currently rate limited */
1528 bool migrate_ratelimited(int node)
1529 {
1530 pg_data_t *pgdat = NODE_DATA(node);
1531
1532 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1533 msecs_to_jiffies(pteupdate_interval_millisecs)))
1534 return false;
1535
1536 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1537 return false;
1538
1539 return true;
1540 }
1541
1542 /* Returns true if the node is migrate rate-limited after the update */
1543 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
1544 {
1545 bool rate_limited = false;
1546
1547 /*
1548 * Rate-limit the amount of data that is being migrated to a node.
1549 * Optimal placement is no good if the memory bus is saturated and
1550 * all the time is being spent migrating!
1551 */
1552 spin_lock(&pgdat->numabalancing_migrate_lock);
1553 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1554 pgdat->numabalancing_migrate_nr_pages = 0;
1555 pgdat->numabalancing_migrate_next_window = jiffies +
1556 msecs_to_jiffies(migrate_interval_millisecs);
1557 }
1558 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1559 rate_limited = true;
1560 else
1561 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1562 spin_unlock(&pgdat->numabalancing_migrate_lock);
1563
1564 return rate_limited;
1565 }
1566
1567 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1568 {
1569 int page_lru;
1570
1571 VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1572
1573 /* Avoid migrating to a node that is nearly full */
1574 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1575 return 0;
1576
1577 if (isolate_lru_page(page))
1578 return 0;
1579
1580 /*
1581 * migrate_misplaced_transhuge_page() skips page migration's usual
1582 * check on page_count(), so we must do it here, now that the page
1583 * has been isolated: a GUP pin, or any other pin, prevents migration.
1584 * The expected page count is 3: 1 for page's mapcount and 1 for the
1585 * caller's pin and 1 for the reference taken by isolate_lru_page().
1586 */
1587 if (PageTransHuge(page) && page_count(page) != 3) {
1588 putback_lru_page(page);
1589 return 0;
1590 }
1591
1592 page_lru = page_is_file_cache(page);
1593 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1594 hpage_nr_pages(page));
1595
1596 /*
1597 * Isolating the page has taken another reference, so the
1598 * caller's reference can be safely dropped without the page
1599 * disappearing underneath us during migration.
1600 */
1601 put_page(page);
1602 return 1;
1603 }
1604
1605 /*
1606 * Attempt to migrate a misplaced page to the specified destination
1607 * node. Caller is expected to have an elevated reference count on
1608 * the page that will be dropped by this function before returning.
1609 */
1610 int migrate_misplaced_page(struct page *page, int node)
1611 {
1612 pg_data_t *pgdat = NODE_DATA(node);
1613 int isolated;
1614 int nr_remaining;
1615 LIST_HEAD(migratepages);
1616
1617 /*
1618 * Don't migrate pages that are mapped in multiple processes.
1619 * TODO: Handle false sharing detection instead of this hammer
1620 */
1621 if (page_mapcount(page) != 1)
1622 goto out;
1623
1624 /*
1625 * Rate-limit the amount of data that is being migrated to a node.
1626 * Optimal placement is no good if the memory bus is saturated and
1627 * all the time is being spent migrating!
1628 */
1629 if (numamigrate_update_ratelimit(pgdat, 1))
1630 goto out;
1631
1632 isolated = numamigrate_isolate_page(pgdat, page);
1633 if (!isolated)
1634 goto out;
1635
1636 list_add(&page->lru, &migratepages);
1637 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1638 node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1639 if (nr_remaining) {
1640 putback_lru_pages(&migratepages);
1641 isolated = 0;
1642 } else
1643 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1644 BUG_ON(!list_empty(&migratepages));
1645 return isolated;
1646
1647 out:
1648 put_page(page);
1649 return 0;
1650 }
1651 #endif /* CONFIG_NUMA_BALANCING */
1652
1653 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1654 /*
1655 * Migrates a THP to a given target node. page must be locked and is unlocked
1656 * before returning.
1657 */
1658 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1659 struct vm_area_struct *vma,
1660 pmd_t *pmd, pmd_t entry,
1661 unsigned long address,
1662 struct page *page, int node)
1663 {
1664 unsigned long haddr = address & HPAGE_PMD_MASK;
1665 pg_data_t *pgdat = NODE_DATA(node);
1666 int isolated = 0;
1667 struct page *new_page = NULL;
1668 struct mem_cgroup *memcg = NULL;
1669 int page_lru = page_is_file_cache(page);
1670
1671 /*
1672 * Don't migrate pages that are mapped in multiple processes.
1673 * TODO: Handle false sharing detection instead of this hammer
1674 */
1675 if (page_mapcount(page) != 1)
1676 goto out_dropref;
1677
1678 /*
1679 * Rate-limit the amount of data that is being migrated to a node.
1680 * Optimal placement is no good if the memory bus is saturated and
1681 * all the time is being spent migrating!
1682 */
1683 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1684 goto out_dropref;
1685
1686 new_page = alloc_pages_node(node,
1687 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1688 if (!new_page)
1689 goto out_fail;
1690
1691 page_nid_xchg_last(new_page, page_nid_last(page));
1692
1693 isolated = numamigrate_isolate_page(pgdat, page);
1694 if (!isolated) {
1695 put_page(new_page);
1696 goto out_fail;
1697 }
1698
1699 /* Prepare a page as a migration target */
1700 __set_page_locked(new_page);
1701 SetPageSwapBacked(new_page);
1702
1703 /* anon mapping, we can simply copy page->mapping to the new page: */
1704 new_page->mapping = page->mapping;
1705 new_page->index = page->index;
1706 migrate_page_copy(new_page, page);
1707 WARN_ON(PageLRU(new_page));
1708
1709 /* Recheck the target PMD */
1710 spin_lock(&mm->page_table_lock);
1711 if (unlikely(!pmd_same(*pmd, entry))) {
1712 spin_unlock(&mm->page_table_lock);
1713
1714 /* Reverse changes made by migrate_page_copy() */
1715 if (TestClearPageActive(new_page))
1716 SetPageActive(page);
1717 if (TestClearPageUnevictable(new_page))
1718 SetPageUnevictable(page);
1719 mlock_migrate_page(page, new_page);
1720
1721 unlock_page(new_page);
1722 put_page(new_page); /* Free it */
1723
1724 /* Retake the callers reference and putback on LRU */
1725 get_page(page);
1726 putback_lru_page(page);
1727 mod_zone_page_state(page_zone(page),
1728 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1729
1730 goto out_unlock;
1731 }
1732
1733 /*
1734 * Traditional migration needs to prepare the memcg charge
1735 * transaction early to prevent the old page from being
1736 * uncharged when installing migration entries. Here we can
1737 * save the potential rollback and start the charge transfer
1738 * only when migration is already known to end successfully.
1739 */
1740 mem_cgroup_prepare_migration(page, new_page, &memcg);
1741
1742 entry = mk_pmd(new_page, vma->vm_page_prot);
1743 entry = pmd_mknonnuma(entry);
1744 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1745 entry = pmd_mkhuge(entry);
1746
1747 pmdp_clear_flush(vma, haddr, pmd);
1748 set_pmd_at(mm, haddr, pmd, entry);
1749 page_add_new_anon_rmap(new_page, vma, haddr);
1750 update_mmu_cache_pmd(vma, address, &entry);
1751 page_remove_rmap(page);
1752 /*
1753 * Finish the charge transaction under the page table lock to
1754 * prevent split_huge_page() from dividing up the charge
1755 * before it's fully transferred to the new page.
1756 */
1757 mem_cgroup_end_migration(memcg, page, new_page, true);
1758 spin_unlock(&mm->page_table_lock);
1759
1760 unlock_page(new_page);
1761 unlock_page(page);
1762 put_page(page); /* Drop the rmap reference */
1763 put_page(page); /* Drop the LRU isolation reference */
1764
1765 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1766 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1767
1768 mod_zone_page_state(page_zone(page),
1769 NR_ISOLATED_ANON + page_lru,
1770 -HPAGE_PMD_NR);
1771 return isolated;
1772
1773 out_fail:
1774 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1775 out_dropref:
1776 entry = pmd_mknonnuma(entry);
1777 set_pmd_at(mm, haddr, pmd, entry);
1778 update_mmu_cache_pmd(vma, address, &entry);
1779
1780 out_unlock:
1781 unlock_page(page);
1782 put_page(page);
1783 return 0;
1784 }
1785 #endif /* CONFIG_NUMA_BALANCING */
1786
1787 #endif /* CONFIG_NUMA */