Merge tag 'v3.10.107' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 #include <linux/mmu_notifier.h>
94
95 #include <asm/tlbflush.h>
96 #include <asm/uaccess.h>
97 #include <linux/random.h>
98
99 #include "internal.h"
100
101 /* Internal flags */
102 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
103 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
104
105 static struct kmem_cache *policy_cache;
106 static struct kmem_cache *sn_cache;
107
108 /* Highest zone. An specific allocation for a zone below that is not
109 policied. */
110 enum zone_type policy_zone = 0;
111
112 /*
113 * run-time system-wide default policy => local allocation
114 */
115 static struct mempolicy default_policy = {
116 .refcnt = ATOMIC_INIT(1), /* never free it */
117 .mode = MPOL_PREFERRED,
118 .flags = MPOL_F_LOCAL,
119 };
120
121 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
122
123 static struct mempolicy *get_task_policy(struct task_struct *p)
124 {
125 struct mempolicy *pol = p->mempolicy;
126 int node;
127
128 if (!pol) {
129 node = numa_node_id();
130 if (node != NUMA_NO_NODE)
131 pol = &preferred_node_policy[node];
132
133 /* preferred_node_policy is not initialised early in boot */
134 if (!pol->mode)
135 pol = NULL;
136 }
137
138 return pol;
139 }
140
141 static const struct mempolicy_operations {
142 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
143 /*
144 * If read-side task has no lock to protect task->mempolicy, write-side
145 * task will rebind the task->mempolicy by two step. The first step is
146 * setting all the newly nodes, and the second step is cleaning all the
147 * disallowed nodes. In this way, we can avoid finding no node to alloc
148 * page.
149 * If we have a lock to protect task->mempolicy in read-side, we do
150 * rebind directly.
151 *
152 * step:
153 * MPOL_REBIND_ONCE - do rebind work at once
154 * MPOL_REBIND_STEP1 - set all the newly nodes
155 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
156 */
157 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
158 enum mpol_rebind_step step);
159 } mpol_ops[MPOL_MAX];
160
161 /* Check that the nodemask contains at least one populated zone */
162 static int is_valid_nodemask(const nodemask_t *nodemask)
163 {
164 return nodes_intersects(*nodemask, node_states[N_MEMORY]);
165 }
166
167 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
168 {
169 return pol->flags & MPOL_MODE_FLAGS;
170 }
171
172 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
173 const nodemask_t *rel)
174 {
175 nodemask_t tmp;
176 nodes_fold(tmp, *orig, nodes_weight(*rel));
177 nodes_onto(*ret, tmp, *rel);
178 }
179
180 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
181 {
182 if (nodes_empty(*nodes))
183 return -EINVAL;
184 pol->v.nodes = *nodes;
185 return 0;
186 }
187
188 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
189 {
190 if (!nodes)
191 pol->flags |= MPOL_F_LOCAL; /* local allocation */
192 else if (nodes_empty(*nodes))
193 return -EINVAL; /* no allowed nodes */
194 else
195 pol->v.preferred_node = first_node(*nodes);
196 return 0;
197 }
198
199 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
200 {
201 if (!is_valid_nodemask(nodes))
202 return -EINVAL;
203 pol->v.nodes = *nodes;
204 return 0;
205 }
206
207 /*
208 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
209 * any, for the new policy. mpol_new() has already validated the nodes
210 * parameter with respect to the policy mode and flags. But, we need to
211 * handle an empty nodemask with MPOL_PREFERRED here.
212 *
213 * Must be called holding task's alloc_lock to protect task's mems_allowed
214 * and mempolicy. May also be called holding the mmap_semaphore for write.
215 */
216 static int mpol_set_nodemask(struct mempolicy *pol,
217 const nodemask_t *nodes, struct nodemask_scratch *nsc)
218 {
219 int ret;
220
221 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
222 if (pol == NULL)
223 return 0;
224 /* Check N_MEMORY */
225 nodes_and(nsc->mask1,
226 cpuset_current_mems_allowed, node_states[N_MEMORY]);
227
228 VM_BUG_ON(!nodes);
229 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
230 nodes = NULL; /* explicit local allocation */
231 else {
232 if (pol->flags & MPOL_F_RELATIVE_NODES)
233 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
234 else
235 nodes_and(nsc->mask2, *nodes, nsc->mask1);
236
237 if (mpol_store_user_nodemask(pol))
238 pol->w.user_nodemask = *nodes;
239 else
240 pol->w.cpuset_mems_allowed =
241 cpuset_current_mems_allowed;
242 }
243
244 if (nodes)
245 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
246 else
247 ret = mpol_ops[pol->mode].create(pol, NULL);
248 return ret;
249 }
250
251 /*
252 * This function just creates a new policy, does some check and simple
253 * initialization. You must invoke mpol_set_nodemask() to set nodes.
254 */
255 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
256 nodemask_t *nodes)
257 {
258 struct mempolicy *policy;
259
260 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
261 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
262
263 if (mode == MPOL_DEFAULT) {
264 if (nodes && !nodes_empty(*nodes))
265 return ERR_PTR(-EINVAL);
266 return NULL;
267 }
268 VM_BUG_ON(!nodes);
269
270 /*
271 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
272 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
273 * All other modes require a valid pointer to a non-empty nodemask.
274 */
275 if (mode == MPOL_PREFERRED) {
276 if (nodes_empty(*nodes)) {
277 if (((flags & MPOL_F_STATIC_NODES) ||
278 (flags & MPOL_F_RELATIVE_NODES)))
279 return ERR_PTR(-EINVAL);
280 }
281 } else if (mode == MPOL_LOCAL) {
282 if (!nodes_empty(*nodes))
283 return ERR_PTR(-EINVAL);
284 mode = MPOL_PREFERRED;
285 } else if (nodes_empty(*nodes))
286 return ERR_PTR(-EINVAL);
287 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
288 if (!policy)
289 return ERR_PTR(-ENOMEM);
290 atomic_set(&policy->refcnt, 1);
291 policy->mode = mode;
292 policy->flags = flags;
293
294 return policy;
295 }
296
297 /* Slow path of a mpol destructor. */
298 void __mpol_put(struct mempolicy *p)
299 {
300 if (!atomic_dec_and_test(&p->refcnt))
301 return;
302 kmem_cache_free(policy_cache, p);
303 }
304
305 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
306 enum mpol_rebind_step step)
307 {
308 }
309
310 /*
311 * step:
312 * MPOL_REBIND_ONCE - do rebind work at once
313 * MPOL_REBIND_STEP1 - set all the newly nodes
314 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
315 */
316 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
317 enum mpol_rebind_step step)
318 {
319 nodemask_t tmp;
320
321 if (pol->flags & MPOL_F_STATIC_NODES)
322 nodes_and(tmp, pol->w.user_nodemask, *nodes);
323 else if (pol->flags & MPOL_F_RELATIVE_NODES)
324 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
325 else {
326 /*
327 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
328 * result
329 */
330 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
331 nodes_remap(tmp, pol->v.nodes,
332 pol->w.cpuset_mems_allowed, *nodes);
333 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
334 } else if (step == MPOL_REBIND_STEP2) {
335 tmp = pol->w.cpuset_mems_allowed;
336 pol->w.cpuset_mems_allowed = *nodes;
337 } else
338 BUG();
339 }
340
341 if (nodes_empty(tmp))
342 tmp = *nodes;
343
344 if (step == MPOL_REBIND_STEP1)
345 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
346 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
347 pol->v.nodes = tmp;
348 else
349 BUG();
350
351 if (!node_isset(current->il_next, tmp)) {
352 current->il_next = next_node(current->il_next, tmp);
353 if (current->il_next >= MAX_NUMNODES)
354 current->il_next = first_node(tmp);
355 if (current->il_next >= MAX_NUMNODES)
356 current->il_next = numa_node_id();
357 }
358 }
359
360 static void mpol_rebind_preferred(struct mempolicy *pol,
361 const nodemask_t *nodes,
362 enum mpol_rebind_step step)
363 {
364 nodemask_t tmp;
365
366 if (pol->flags & MPOL_F_STATIC_NODES) {
367 int node = first_node(pol->w.user_nodemask);
368
369 if (node_isset(node, *nodes)) {
370 pol->v.preferred_node = node;
371 pol->flags &= ~MPOL_F_LOCAL;
372 } else
373 pol->flags |= MPOL_F_LOCAL;
374 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
375 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
376 pol->v.preferred_node = first_node(tmp);
377 } else if (!(pol->flags & MPOL_F_LOCAL)) {
378 pol->v.preferred_node = node_remap(pol->v.preferred_node,
379 pol->w.cpuset_mems_allowed,
380 *nodes);
381 pol->w.cpuset_mems_allowed = *nodes;
382 }
383 }
384
385 /*
386 * mpol_rebind_policy - Migrate a policy to a different set of nodes
387 *
388 * If read-side task has no lock to protect task->mempolicy, write-side
389 * task will rebind the task->mempolicy by two step. The first step is
390 * setting all the newly nodes, and the second step is cleaning all the
391 * disallowed nodes. In this way, we can avoid finding no node to alloc
392 * page.
393 * If we have a lock to protect task->mempolicy in read-side, we do
394 * rebind directly.
395 *
396 * step:
397 * MPOL_REBIND_ONCE - do rebind work at once
398 * MPOL_REBIND_STEP1 - set all the newly nodes
399 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
400 */
401 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
402 enum mpol_rebind_step step)
403 {
404 if (!pol)
405 return;
406 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
407 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
408 return;
409
410 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
411 return;
412
413 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
414 BUG();
415
416 if (step == MPOL_REBIND_STEP1)
417 pol->flags |= MPOL_F_REBINDING;
418 else if (step == MPOL_REBIND_STEP2)
419 pol->flags &= ~MPOL_F_REBINDING;
420 else if (step >= MPOL_REBIND_NSTEP)
421 BUG();
422
423 mpol_ops[pol->mode].rebind(pol, newmask, step);
424 }
425
426 /*
427 * Wrapper for mpol_rebind_policy() that just requires task
428 * pointer, and updates task mempolicy.
429 *
430 * Called with task's alloc_lock held.
431 */
432
433 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
434 enum mpol_rebind_step step)
435 {
436 mpol_rebind_policy(tsk->mempolicy, new, step);
437 }
438
439 /*
440 * Rebind each vma in mm to new nodemask.
441 *
442 * Call holding a reference to mm. Takes mm->mmap_sem during call.
443 */
444
445 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
446 {
447 struct vm_area_struct *vma;
448
449 down_write(&mm->mmap_sem);
450 for (vma = mm->mmap; vma; vma = vma->vm_next)
451 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
452 up_write(&mm->mmap_sem);
453 }
454
455 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
456 [MPOL_DEFAULT] = {
457 .rebind = mpol_rebind_default,
458 },
459 [MPOL_INTERLEAVE] = {
460 .create = mpol_new_interleave,
461 .rebind = mpol_rebind_nodemask,
462 },
463 [MPOL_PREFERRED] = {
464 .create = mpol_new_preferred,
465 .rebind = mpol_rebind_preferred,
466 },
467 [MPOL_BIND] = {
468 .create = mpol_new_bind,
469 .rebind = mpol_rebind_nodemask,
470 },
471 };
472
473 static void migrate_page_add(struct page *page, struct list_head *pagelist,
474 unsigned long flags);
475
476 /* Scan through pages checking if pages follow certain conditions. */
477 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
478 unsigned long addr, unsigned long end,
479 const nodemask_t *nodes, unsigned long flags,
480 void *private)
481 {
482 pte_t *orig_pte;
483 pte_t *pte;
484 spinlock_t *ptl;
485
486 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
487 do {
488 struct page *page;
489 int nid;
490
491 if (!pte_present(*pte))
492 continue;
493 page = vm_normal_page(vma, addr, *pte);
494 if (!page)
495 continue;
496 /*
497 * vm_normal_page() filters out zero pages, but there might
498 * still be PageReserved pages to skip, perhaps in a VDSO.
499 */
500 if (PageReserved(page))
501 continue;
502 nid = page_to_nid(page);
503 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
504 continue;
505
506 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
507 migrate_page_add(page, private, flags);
508 else
509 break;
510 } while (pte++, addr += PAGE_SIZE, addr != end);
511 pte_unmap_unlock(orig_pte, ptl);
512 return addr != end;
513 }
514
515 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
516 unsigned long addr, unsigned long end,
517 const nodemask_t *nodes, unsigned long flags,
518 void *private)
519 {
520 pmd_t *pmd;
521 unsigned long next;
522
523 pmd = pmd_offset(pud, addr);
524 do {
525 next = pmd_addr_end(addr, end);
526 split_huge_page_pmd(vma, addr, pmd);
527 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
528 continue;
529 if (check_pte_range(vma, pmd, addr, next, nodes,
530 flags, private))
531 return -EIO;
532 } while (pmd++, addr = next, addr != end);
533 return 0;
534 }
535
536 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
537 unsigned long addr, unsigned long end,
538 const nodemask_t *nodes, unsigned long flags,
539 void *private)
540 {
541 pud_t *pud;
542 unsigned long next;
543
544 pud = pud_offset(pgd, addr);
545 do {
546 next = pud_addr_end(addr, end);
547 if (pud_none_or_clear_bad(pud))
548 continue;
549 if (check_pmd_range(vma, pud, addr, next, nodes,
550 flags, private))
551 return -EIO;
552 } while (pud++, addr = next, addr != end);
553 return 0;
554 }
555
556 static inline int check_pgd_range(struct vm_area_struct *vma,
557 unsigned long addr, unsigned long end,
558 const nodemask_t *nodes, unsigned long flags,
559 void *private)
560 {
561 pgd_t *pgd;
562 unsigned long next;
563
564 pgd = pgd_offset(vma->vm_mm, addr);
565 do {
566 next = pgd_addr_end(addr, end);
567 if (pgd_none_or_clear_bad(pgd))
568 continue;
569 if (check_pud_range(vma, pgd, addr, next, nodes,
570 flags, private))
571 return -EIO;
572 } while (pgd++, addr = next, addr != end);
573 return 0;
574 }
575
576 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
577 /*
578 * This is used to mark a range of virtual addresses to be inaccessible.
579 * These are later cleared by a NUMA hinting fault. Depending on these
580 * faults, pages may be migrated for better NUMA placement.
581 *
582 * This is assuming that NUMA faults are handled using PROT_NONE. If
583 * an architecture makes a different choice, it will need further
584 * changes to the core.
585 */
586 unsigned long change_prot_numa(struct vm_area_struct *vma,
587 unsigned long addr, unsigned long end)
588 {
589 int nr_updated;
590 BUILD_BUG_ON(_PAGE_NUMA != _PAGE_PROTNONE);
591
592 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
593 if (nr_updated)
594 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
595
596 return nr_updated;
597 }
598 #else
599 static unsigned long change_prot_numa(struct vm_area_struct *vma,
600 unsigned long addr, unsigned long end)
601 {
602 return 0;
603 }
604 #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
605
606 /*
607 * Check if all pages in a range are on a set of nodes.
608 * If pagelist != NULL then isolate pages from the LRU and
609 * put them on the pagelist.
610 */
611 static int
612 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
613 const nodemask_t *nodes, unsigned long flags, void *private)
614 {
615 int err = 0;
616 struct vm_area_struct *vma, *prev;
617
618 vma = find_vma(mm, start);
619 if (!vma)
620 return -EFAULT;
621 prev = NULL;
622 for (; vma && vma->vm_start < end; vma = vma->vm_next) {
623 unsigned long endvma = vma->vm_end;
624
625 if (endvma > end)
626 endvma = end;
627 if (vma->vm_start > start)
628 start = vma->vm_start;
629
630 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
631 if (!vma->vm_next && vma->vm_end < end)
632 return -EFAULT;
633 if (prev && prev->vm_end < vma->vm_start)
634 return -EFAULT;
635 }
636
637 if (is_vm_hugetlb_page(vma))
638 goto next;
639
640 if (flags & MPOL_MF_LAZY) {
641 change_prot_numa(vma, start, endvma);
642 goto next;
643 }
644
645 if ((flags & MPOL_MF_STRICT) ||
646 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
647 vma_migratable(vma))) {
648
649 err = check_pgd_range(vma, start, endvma, nodes,
650 flags, private);
651 if (err)
652 break;
653 }
654 next:
655 prev = vma;
656 }
657 return err;
658 }
659
660 /*
661 * Apply policy to a single VMA
662 * This must be called with the mmap_sem held for writing.
663 */
664 static int vma_replace_policy(struct vm_area_struct *vma,
665 struct mempolicy *pol)
666 {
667 int err;
668 struct mempolicy *old;
669 struct mempolicy *new;
670
671 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
672 vma->vm_start, vma->vm_end, vma->vm_pgoff,
673 vma->vm_ops, vma->vm_file,
674 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
675
676 new = mpol_dup(pol);
677 if (IS_ERR(new))
678 return PTR_ERR(new);
679
680 if (vma->vm_ops && vma->vm_ops->set_policy) {
681 err = vma->vm_ops->set_policy(vma, new);
682 if (err)
683 goto err_out;
684 }
685
686 old = vma->vm_policy;
687 vma->vm_policy = new; /* protected by mmap_sem */
688 mpol_put(old);
689
690 return 0;
691 err_out:
692 mpol_put(new);
693 return err;
694 }
695
696 /* Step 2: apply policy to a range and do splits. */
697 static int mbind_range(struct mm_struct *mm, unsigned long start,
698 unsigned long end, struct mempolicy *new_pol)
699 {
700 struct vm_area_struct *next;
701 struct vm_area_struct *prev;
702 struct vm_area_struct *vma;
703 int err = 0;
704 pgoff_t pgoff;
705 unsigned long vmstart;
706 unsigned long vmend;
707
708 vma = find_vma(mm, start);
709 if (!vma || vma->vm_start > start)
710 return -EFAULT;
711
712 prev = vma->vm_prev;
713 if (start > vma->vm_start)
714 prev = vma;
715
716 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
717 next = vma->vm_next;
718 vmstart = max(start, vma->vm_start);
719 vmend = min(end, vma->vm_end);
720
721 if (mpol_equal(vma_policy(vma), new_pol))
722 continue;
723
724 pgoff = vma->vm_pgoff +
725 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
726 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
727 vma->anon_vma, vma->vm_file, pgoff,
728 new_pol, vma_get_anon_name(vma));
729 if (prev) {
730 vma = prev;
731 next = vma->vm_next;
732 if (mpol_equal(vma_policy(vma), new_pol))
733 continue;
734 /* vma_merge() joined vma && vma->next, case 8 */
735 goto replace;
736 }
737 if (vma->vm_start != vmstart) {
738 err = split_vma(vma->vm_mm, vma, vmstart, 1);
739 if (err)
740 goto out;
741 }
742 if (vma->vm_end != vmend) {
743 err = split_vma(vma->vm_mm, vma, vmend, 0);
744 if (err)
745 goto out;
746 }
747 replace:
748 err = vma_replace_policy(vma, new_pol);
749 if (err)
750 goto out;
751 }
752
753 out:
754 return err;
755 }
756
757 /*
758 * Update task->flags PF_MEMPOLICY bit: set iff non-default
759 * mempolicy. Allows more rapid checking of this (combined perhaps
760 * with other PF_* flag bits) on memory allocation hot code paths.
761 *
762 * If called from outside this file, the task 'p' should -only- be
763 * a newly forked child not yet visible on the task list, because
764 * manipulating the task flags of a visible task is not safe.
765 *
766 * The above limitation is why this routine has the funny name
767 * mpol_fix_fork_child_flag().
768 *
769 * It is also safe to call this with a task pointer of current,
770 * which the static wrapper mpol_set_task_struct_flag() does,
771 * for use within this file.
772 */
773
774 void mpol_fix_fork_child_flag(struct task_struct *p)
775 {
776 if (p->mempolicy)
777 p->flags |= PF_MEMPOLICY;
778 else
779 p->flags &= ~PF_MEMPOLICY;
780 }
781
782 static void mpol_set_task_struct_flag(void)
783 {
784 mpol_fix_fork_child_flag(current);
785 }
786
787 /* Set the process memory policy */
788 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
789 nodemask_t *nodes)
790 {
791 struct mempolicy *new, *old;
792 struct mm_struct *mm = current->mm;
793 NODEMASK_SCRATCH(scratch);
794 int ret;
795
796 if (!scratch)
797 return -ENOMEM;
798
799 new = mpol_new(mode, flags, nodes);
800 if (IS_ERR(new)) {
801 ret = PTR_ERR(new);
802 goto out;
803 }
804 /*
805 * prevent changing our mempolicy while show_numa_maps()
806 * is using it.
807 * Note: do_set_mempolicy() can be called at init time
808 * with no 'mm'.
809 */
810 if (mm)
811 down_write(&mm->mmap_sem);
812 task_lock(current);
813 ret = mpol_set_nodemask(new, nodes, scratch);
814 if (ret) {
815 task_unlock(current);
816 if (mm)
817 up_write(&mm->mmap_sem);
818 mpol_put(new);
819 goto out;
820 }
821 old = current->mempolicy;
822 current->mempolicy = new;
823 mpol_set_task_struct_flag();
824 if (new && new->mode == MPOL_INTERLEAVE &&
825 nodes_weight(new->v.nodes))
826 current->il_next = first_node(new->v.nodes);
827 task_unlock(current);
828 if (mm)
829 up_write(&mm->mmap_sem);
830
831 mpol_put(old);
832 ret = 0;
833 out:
834 NODEMASK_SCRATCH_FREE(scratch);
835 return ret;
836 }
837
838 /*
839 * Return nodemask for policy for get_mempolicy() query
840 *
841 * Called with task's alloc_lock held
842 */
843 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
844 {
845 nodes_clear(*nodes);
846 if (p == &default_policy)
847 return;
848
849 switch (p->mode) {
850 case MPOL_BIND:
851 /* Fall through */
852 case MPOL_INTERLEAVE:
853 *nodes = p->v.nodes;
854 break;
855 case MPOL_PREFERRED:
856 if (!(p->flags & MPOL_F_LOCAL))
857 node_set(p->v.preferred_node, *nodes);
858 /* else return empty node mask for local allocation */
859 break;
860 default:
861 BUG();
862 }
863 }
864
865 static int lookup_node(struct mm_struct *mm, unsigned long addr)
866 {
867 struct page *p;
868 int err;
869
870 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
871 if (err >= 0) {
872 err = page_to_nid(p);
873 put_page(p);
874 }
875 return err;
876 }
877
878 /* Retrieve NUMA policy */
879 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
880 unsigned long addr, unsigned long flags)
881 {
882 int err;
883 struct mm_struct *mm = current->mm;
884 struct vm_area_struct *vma = NULL;
885 struct mempolicy *pol = current->mempolicy;
886
887 if (flags &
888 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
889 return -EINVAL;
890
891 if (flags & MPOL_F_MEMS_ALLOWED) {
892 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
893 return -EINVAL;
894 *policy = 0; /* just so it's initialized */
895 task_lock(current);
896 *nmask = cpuset_current_mems_allowed;
897 task_unlock(current);
898 return 0;
899 }
900
901 if (flags & MPOL_F_ADDR) {
902 /*
903 * Do NOT fall back to task policy if the
904 * vma/shared policy at addr is NULL. We
905 * want to return MPOL_DEFAULT in this case.
906 */
907 down_read(&mm->mmap_sem);
908 vma = find_vma_intersection(mm, addr, addr+1);
909 if (!vma) {
910 up_read(&mm->mmap_sem);
911 return -EFAULT;
912 }
913 if (vma->vm_ops && vma->vm_ops->get_policy)
914 pol = vma->vm_ops->get_policy(vma, addr);
915 else
916 pol = vma->vm_policy;
917 } else if (addr)
918 return -EINVAL;
919
920 if (!pol)
921 pol = &default_policy; /* indicates default behavior */
922
923 if (flags & MPOL_F_NODE) {
924 if (flags & MPOL_F_ADDR) {
925 err = lookup_node(mm, addr);
926 if (err < 0)
927 goto out;
928 *policy = err;
929 } else if (pol == current->mempolicy &&
930 pol->mode == MPOL_INTERLEAVE) {
931 *policy = current->il_next;
932 } else {
933 err = -EINVAL;
934 goto out;
935 }
936 } else {
937 *policy = pol == &default_policy ? MPOL_DEFAULT :
938 pol->mode;
939 /*
940 * Internal mempolicy flags must be masked off before exposing
941 * the policy to userspace.
942 */
943 *policy |= (pol->flags & MPOL_MODE_FLAGS);
944 }
945
946 if (vma) {
947 up_read(&current->mm->mmap_sem);
948 vma = NULL;
949 }
950
951 err = 0;
952 if (nmask) {
953 if (mpol_store_user_nodemask(pol)) {
954 *nmask = pol->w.user_nodemask;
955 } else {
956 task_lock(current);
957 get_policy_nodemask(pol, nmask);
958 task_unlock(current);
959 }
960 }
961
962 out:
963 mpol_cond_put(pol);
964 if (vma)
965 up_read(&current->mm->mmap_sem);
966 return err;
967 }
968
969 #ifdef CONFIG_MIGRATION
970 /*
971 * page migration
972 */
973 static void migrate_page_add(struct page *page, struct list_head *pagelist,
974 unsigned long flags)
975 {
976 /*
977 * Avoid migrating a page that is shared with others.
978 */
979 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
980 if (!isolate_lru_page(page)) {
981 list_add_tail(&page->lru, pagelist);
982 inc_zone_page_state(page, NR_ISOLATED_ANON +
983 page_is_file_cache(page));
984 }
985 }
986 }
987
988 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
989 {
990 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
991 }
992
993 /*
994 * Migrate pages from one node to a target node.
995 * Returns error or the number of pages not migrated.
996 */
997 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
998 int flags)
999 {
1000 nodemask_t nmask;
1001 LIST_HEAD(pagelist);
1002 int err = 0;
1003
1004 nodes_clear(nmask);
1005 node_set(source, nmask);
1006
1007 /*
1008 * This does not "check" the range but isolates all pages that
1009 * need migration. Between passing in the full user address
1010 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1011 */
1012 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1013 check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1014 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1015
1016 if (!list_empty(&pagelist)) {
1017 err = migrate_pages(&pagelist, new_node_page, dest,
1018 MIGRATE_SYNC, MR_SYSCALL);
1019 if (err)
1020 putback_lru_pages(&pagelist);
1021 }
1022
1023 return err;
1024 }
1025
1026 /*
1027 * Move pages between the two nodesets so as to preserve the physical
1028 * layout as much as possible.
1029 *
1030 * Returns the number of page that could not be moved.
1031 */
1032 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1033 const nodemask_t *to, int flags)
1034 {
1035 int busy = 0;
1036 int err;
1037 nodemask_t tmp;
1038
1039 err = migrate_prep();
1040 if (err)
1041 return err;
1042
1043 down_read(&mm->mmap_sem);
1044
1045 err = migrate_vmas(mm, from, to, flags);
1046 if (err)
1047 goto out;
1048
1049 /*
1050 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1051 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1052 * bit in 'tmp', and return that <source, dest> pair for migration.
1053 * The pair of nodemasks 'to' and 'from' define the map.
1054 *
1055 * If no pair of bits is found that way, fallback to picking some
1056 * pair of 'source' and 'dest' bits that are not the same. If the
1057 * 'source' and 'dest' bits are the same, this represents a node
1058 * that will be migrating to itself, so no pages need move.
1059 *
1060 * If no bits are left in 'tmp', or if all remaining bits left
1061 * in 'tmp' correspond to the same bit in 'to', return false
1062 * (nothing left to migrate).
1063 *
1064 * This lets us pick a pair of nodes to migrate between, such that
1065 * if possible the dest node is not already occupied by some other
1066 * source node, minimizing the risk of overloading the memory on a
1067 * node that would happen if we migrated incoming memory to a node
1068 * before migrating outgoing memory source that same node.
1069 *
1070 * A single scan of tmp is sufficient. As we go, we remember the
1071 * most recent <s, d> pair that moved (s != d). If we find a pair
1072 * that not only moved, but what's better, moved to an empty slot
1073 * (d is not set in tmp), then we break out then, with that pair.
1074 * Otherwise when we finish scanning from_tmp, we at least have the
1075 * most recent <s, d> pair that moved. If we get all the way through
1076 * the scan of tmp without finding any node that moved, much less
1077 * moved to an empty node, then there is nothing left worth migrating.
1078 */
1079
1080 tmp = *from;
1081 while (!nodes_empty(tmp)) {
1082 int s,d;
1083 int source = -1;
1084 int dest = 0;
1085
1086 for_each_node_mask(s, tmp) {
1087
1088 /*
1089 * do_migrate_pages() tries to maintain the relative
1090 * node relationship of the pages established between
1091 * threads and memory areas.
1092 *
1093 * However if the number of source nodes is not equal to
1094 * the number of destination nodes we can not preserve
1095 * this node relative relationship. In that case, skip
1096 * copying memory from a node that is in the destination
1097 * mask.
1098 *
1099 * Example: [2,3,4] -> [3,4,5] moves everything.
1100 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1101 */
1102
1103 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1104 (node_isset(s, *to)))
1105 continue;
1106
1107 d = node_remap(s, *from, *to);
1108 if (s == d)
1109 continue;
1110
1111 source = s; /* Node moved. Memorize */
1112 dest = d;
1113
1114 /* dest not in remaining from nodes? */
1115 if (!node_isset(dest, tmp))
1116 break;
1117 }
1118 if (source == -1)
1119 break;
1120
1121 node_clear(source, tmp);
1122 err = migrate_to_node(mm, source, dest, flags);
1123 if (err > 0)
1124 busy += err;
1125 if (err < 0)
1126 break;
1127 }
1128 out:
1129 up_read(&mm->mmap_sem);
1130 if (err < 0)
1131 return err;
1132 return busy;
1133
1134 }
1135
1136 /*
1137 * Allocate a new page for page migration based on vma policy.
1138 * Start by assuming the page is mapped by the same vma as contains @start.
1139 * Search forward from there, if not. N.B., this assumes that the
1140 * list of pages handed to migrate_pages()--which is how we get here--
1141 * is in virtual address order.
1142 */
1143 static struct page *new_page(struct page *page, unsigned long start, int **x)
1144 {
1145 struct vm_area_struct *vma;
1146 unsigned long uninitialized_var(address);
1147
1148 vma = find_vma(current->mm, start);
1149 while (vma) {
1150 address = page_address_in_vma(page, vma);
1151 if (address != -EFAULT)
1152 break;
1153 vma = vma->vm_next;
1154 }
1155
1156 /*
1157 * if !vma, alloc_page_vma() will use task or system default policy
1158 */
1159 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1160 }
1161 #else
1162
1163 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1164 unsigned long flags)
1165 {
1166 }
1167
1168 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1169 const nodemask_t *to, int flags)
1170 {
1171 return -ENOSYS;
1172 }
1173
1174 static struct page *new_page(struct page *page, unsigned long start, int **x)
1175 {
1176 return NULL;
1177 }
1178 #endif
1179
1180 static long do_mbind(unsigned long start, unsigned long len,
1181 unsigned short mode, unsigned short mode_flags,
1182 nodemask_t *nmask, unsigned long flags)
1183 {
1184 struct mm_struct *mm = current->mm;
1185 struct mempolicy *new;
1186 unsigned long end;
1187 int err;
1188 LIST_HEAD(pagelist);
1189
1190 if (flags & ~(unsigned long)MPOL_MF_VALID)
1191 return -EINVAL;
1192 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1193 return -EPERM;
1194
1195 if (start & ~PAGE_MASK)
1196 return -EINVAL;
1197
1198 if (mode == MPOL_DEFAULT)
1199 flags &= ~MPOL_MF_STRICT;
1200
1201 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1202 end = start + len;
1203
1204 if (end < start)
1205 return -EINVAL;
1206 if (end == start)
1207 return 0;
1208
1209 new = mpol_new(mode, mode_flags, nmask);
1210 if (IS_ERR(new))
1211 return PTR_ERR(new);
1212
1213 if (flags & MPOL_MF_LAZY)
1214 new->flags |= MPOL_F_MOF;
1215
1216 /*
1217 * If we are using the default policy then operation
1218 * on discontinuous address spaces is okay after all
1219 */
1220 if (!new)
1221 flags |= MPOL_MF_DISCONTIG_OK;
1222
1223 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1224 start, start + len, mode, mode_flags,
1225 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1226
1227 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1228
1229 err = migrate_prep();
1230 if (err)
1231 goto mpol_out;
1232 }
1233 {
1234 NODEMASK_SCRATCH(scratch);
1235 if (scratch) {
1236 down_write(&mm->mmap_sem);
1237 task_lock(current);
1238 err = mpol_set_nodemask(new, nmask, scratch);
1239 task_unlock(current);
1240 if (err)
1241 up_write(&mm->mmap_sem);
1242 } else
1243 err = -ENOMEM;
1244 NODEMASK_SCRATCH_FREE(scratch);
1245 }
1246 if (err)
1247 goto mpol_out;
1248
1249 err = check_range(mm, start, end, nmask,
1250 flags | MPOL_MF_INVERT, &pagelist);
1251 if (!err)
1252 err = mbind_range(mm, start, end, new);
1253
1254 if (!err) {
1255 int nr_failed = 0;
1256
1257 if (!list_empty(&pagelist)) {
1258 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1259 nr_failed = migrate_pages(&pagelist, new_page,
1260 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1261 if (nr_failed)
1262 putback_lru_pages(&pagelist);
1263 }
1264
1265 if (nr_failed && (flags & MPOL_MF_STRICT))
1266 err = -EIO;
1267 } else
1268 putback_lru_pages(&pagelist);
1269
1270 up_write(&mm->mmap_sem);
1271 mpol_out:
1272 mpol_put(new);
1273 return err;
1274 }
1275
1276 /*
1277 * User space interface with variable sized bitmaps for nodelists.
1278 */
1279
1280 /* Copy a node mask from user space. */
1281 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1282 unsigned long maxnode)
1283 {
1284 unsigned long k;
1285 unsigned long nlongs;
1286 unsigned long endmask;
1287
1288 --maxnode;
1289 nodes_clear(*nodes);
1290 if (maxnode == 0 || !nmask)
1291 return 0;
1292 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1293 return -EINVAL;
1294
1295 nlongs = BITS_TO_LONGS(maxnode);
1296 if ((maxnode % BITS_PER_LONG) == 0)
1297 endmask = ~0UL;
1298 else
1299 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1300
1301 /* When the user specified more nodes than supported just check
1302 if the non supported part is all zero. */
1303 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1304 if (nlongs > PAGE_SIZE/sizeof(long))
1305 return -EINVAL;
1306 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1307 unsigned long t;
1308 if (get_user(t, nmask + k))
1309 return -EFAULT;
1310 if (k == nlongs - 1) {
1311 if (t & endmask)
1312 return -EINVAL;
1313 } else if (t)
1314 return -EINVAL;
1315 }
1316 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1317 endmask = ~0UL;
1318 }
1319
1320 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1321 return -EFAULT;
1322 nodes_addr(*nodes)[nlongs-1] &= endmask;
1323 return 0;
1324 }
1325
1326 /* Copy a kernel node mask to user space */
1327 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1328 nodemask_t *nodes)
1329 {
1330 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1331 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1332
1333 if (copy > nbytes) {
1334 if (copy > PAGE_SIZE)
1335 return -EINVAL;
1336 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1337 return -EFAULT;
1338 copy = nbytes;
1339 }
1340 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1341 }
1342
1343 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1344 unsigned long, mode, unsigned long __user *, nmask,
1345 unsigned long, maxnode, unsigned, flags)
1346 {
1347 nodemask_t nodes;
1348 int err;
1349 unsigned short mode_flags;
1350
1351 mode_flags = mode & MPOL_MODE_FLAGS;
1352 mode &= ~MPOL_MODE_FLAGS;
1353 if (mode >= MPOL_MAX)
1354 return -EINVAL;
1355 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1356 (mode_flags & MPOL_F_RELATIVE_NODES))
1357 return -EINVAL;
1358 err = get_nodes(&nodes, nmask, maxnode);
1359 if (err)
1360 return err;
1361 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1362 }
1363
1364 /* Set the process memory policy */
1365 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1366 unsigned long, maxnode)
1367 {
1368 int err;
1369 nodemask_t nodes;
1370 unsigned short flags;
1371
1372 flags = mode & MPOL_MODE_FLAGS;
1373 mode &= ~MPOL_MODE_FLAGS;
1374 if ((unsigned int)mode >= MPOL_MAX)
1375 return -EINVAL;
1376 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1377 return -EINVAL;
1378 err = get_nodes(&nodes, nmask, maxnode);
1379 if (err)
1380 return err;
1381 return do_set_mempolicy(mode, flags, &nodes);
1382 }
1383
1384 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1385 const unsigned long __user *, old_nodes,
1386 const unsigned long __user *, new_nodes)
1387 {
1388 const struct cred *cred = current_cred(), *tcred;
1389 struct mm_struct *mm = NULL;
1390 struct task_struct *task;
1391 nodemask_t task_nodes;
1392 int err;
1393 nodemask_t *old;
1394 nodemask_t *new;
1395 NODEMASK_SCRATCH(scratch);
1396
1397 if (!scratch)
1398 return -ENOMEM;
1399
1400 old = &scratch->mask1;
1401 new = &scratch->mask2;
1402
1403 err = get_nodes(old, old_nodes, maxnode);
1404 if (err)
1405 goto out;
1406
1407 err = get_nodes(new, new_nodes, maxnode);
1408 if (err)
1409 goto out;
1410
1411 /* Find the mm_struct */
1412 rcu_read_lock();
1413 task = pid ? find_task_by_vpid(pid) : current;
1414 if (!task) {
1415 rcu_read_unlock();
1416 err = -ESRCH;
1417 goto out;
1418 }
1419 get_task_struct(task);
1420
1421 err = -EINVAL;
1422
1423 /*
1424 * Check if this process has the right to modify the specified
1425 * process. The right exists if the process has administrative
1426 * capabilities, superuser privileges or the same
1427 * userid as the target process.
1428 */
1429 tcred = __task_cred(task);
1430 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1431 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1432 !capable(CAP_SYS_NICE)) {
1433 rcu_read_unlock();
1434 err = -EPERM;
1435 goto out_put;
1436 }
1437 rcu_read_unlock();
1438
1439 task_nodes = cpuset_mems_allowed(task);
1440 /* Is the user allowed to access the target nodes? */
1441 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1442 err = -EPERM;
1443 goto out_put;
1444 }
1445
1446 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1447 err = -EINVAL;
1448 goto out_put;
1449 }
1450
1451 err = security_task_movememory(task);
1452 if (err)
1453 goto out_put;
1454
1455 mm = get_task_mm(task);
1456 put_task_struct(task);
1457
1458 if (!mm) {
1459 err = -EINVAL;
1460 goto out;
1461 }
1462
1463 err = do_migrate_pages(mm, old, new,
1464 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1465
1466 mmput(mm);
1467 out:
1468 NODEMASK_SCRATCH_FREE(scratch);
1469
1470 return err;
1471
1472 out_put:
1473 put_task_struct(task);
1474 goto out;
1475
1476 }
1477
1478
1479 /* Retrieve NUMA policy */
1480 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1481 unsigned long __user *, nmask, unsigned long, maxnode,
1482 unsigned long, addr, unsigned long, flags)
1483 {
1484 int err;
1485 int uninitialized_var(pval);
1486 nodemask_t nodes;
1487
1488 if (nmask != NULL && maxnode < MAX_NUMNODES)
1489 return -EINVAL;
1490
1491 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1492
1493 if (err)
1494 return err;
1495
1496 if (policy && put_user(pval, policy))
1497 return -EFAULT;
1498
1499 if (nmask)
1500 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1501
1502 return err;
1503 }
1504
1505 #ifdef CONFIG_COMPAT
1506
1507 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1508 compat_ulong_t __user *nmask,
1509 compat_ulong_t maxnode,
1510 compat_ulong_t addr, compat_ulong_t flags)
1511 {
1512 long err;
1513 unsigned long __user *nm = NULL;
1514 unsigned long nr_bits, alloc_size;
1515 DECLARE_BITMAP(bm, MAX_NUMNODES);
1516
1517 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1518 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1519
1520 if (nmask)
1521 nm = compat_alloc_user_space(alloc_size);
1522
1523 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1524
1525 if (!err && nmask) {
1526 unsigned long copy_size;
1527 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1528 err = copy_from_user(bm, nm, copy_size);
1529 /* ensure entire bitmap is zeroed */
1530 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1531 err |= compat_put_bitmap(nmask, bm, nr_bits);
1532 }
1533
1534 return err;
1535 }
1536
1537 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1538 compat_ulong_t maxnode)
1539 {
1540 unsigned long __user *nm = NULL;
1541 unsigned long nr_bits, alloc_size;
1542 DECLARE_BITMAP(bm, MAX_NUMNODES);
1543
1544 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1545 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1546
1547 if (nmask) {
1548 if (compat_get_bitmap(bm, nmask, nr_bits))
1549 return -EFAULT;
1550 nm = compat_alloc_user_space(alloc_size);
1551 if (copy_to_user(nm, bm, alloc_size))
1552 return -EFAULT;
1553 }
1554
1555 return sys_set_mempolicy(mode, nm, nr_bits+1);
1556 }
1557
1558 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1559 compat_ulong_t mode, compat_ulong_t __user *nmask,
1560 compat_ulong_t maxnode, compat_ulong_t flags)
1561 {
1562 unsigned long __user *nm = NULL;
1563 unsigned long nr_bits, alloc_size;
1564 nodemask_t bm;
1565
1566 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1567 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1568
1569 if (nmask) {
1570 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1571 return -EFAULT;
1572 nm = compat_alloc_user_space(alloc_size);
1573 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1574 return -EFAULT;
1575 }
1576
1577 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1578 }
1579
1580 #endif
1581
1582 /*
1583 * get_vma_policy(@task, @vma, @addr)
1584 * @task - task for fallback if vma policy == default
1585 * @vma - virtual memory area whose policy is sought
1586 * @addr - address in @vma for shared policy lookup
1587 *
1588 * Returns effective policy for a VMA at specified address.
1589 * Falls back to @task or system default policy, as necessary.
1590 * Current or other task's task mempolicy and non-shared vma policies must be
1591 * protected by task_lock(task) by the caller.
1592 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1593 * count--added by the get_policy() vm_op, as appropriate--to protect against
1594 * freeing by another task. It is the caller's responsibility to free the
1595 * extra reference for shared policies.
1596 */
1597 struct mempolicy *get_vma_policy(struct task_struct *task,
1598 struct vm_area_struct *vma, unsigned long addr)
1599 {
1600 struct mempolicy *pol = get_task_policy(task);
1601
1602 if (vma) {
1603 if (vma->vm_ops && vma->vm_ops->get_policy) {
1604 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1605 addr);
1606 if (vpol)
1607 pol = vpol;
1608 } else if (vma->vm_policy) {
1609 pol = vma->vm_policy;
1610
1611 /*
1612 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1613 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1614 * count on these policies which will be dropped by
1615 * mpol_cond_put() later
1616 */
1617 if (mpol_needs_cond_ref(pol))
1618 mpol_get(pol);
1619 }
1620 }
1621 if (!pol)
1622 pol = &default_policy;
1623 return pol;
1624 }
1625
1626 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1627 {
1628 enum zone_type dynamic_policy_zone = policy_zone;
1629
1630 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1631
1632 /*
1633 * if policy->v.nodes has movable memory only,
1634 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1635 *
1636 * policy->v.nodes is intersect with node_states[N_MEMORY].
1637 * so if the following test faile, it implies
1638 * policy->v.nodes has movable memory only.
1639 */
1640 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1641 dynamic_policy_zone = ZONE_MOVABLE;
1642
1643 return zone >= dynamic_policy_zone;
1644 }
1645
1646 /*
1647 * Return a nodemask representing a mempolicy for filtering nodes for
1648 * page allocation
1649 */
1650 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1651 {
1652 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1653 if (unlikely(policy->mode == MPOL_BIND) &&
1654 apply_policy_zone(policy, gfp_zone(gfp)) &&
1655 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1656 return &policy->v.nodes;
1657
1658 return NULL;
1659 }
1660
1661 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1662 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1663 int nd)
1664 {
1665 switch (policy->mode) {
1666 case MPOL_PREFERRED:
1667 if (!(policy->flags & MPOL_F_LOCAL))
1668 nd = policy->v.preferred_node;
1669 break;
1670 case MPOL_BIND:
1671 /*
1672 * Normally, MPOL_BIND allocations are node-local within the
1673 * allowed nodemask. However, if __GFP_THISNODE is set and the
1674 * current node isn't part of the mask, we use the zonelist for
1675 * the first node in the mask instead.
1676 */
1677 if (unlikely(gfp & __GFP_THISNODE) &&
1678 unlikely(!node_isset(nd, policy->v.nodes)))
1679 nd = first_node(policy->v.nodes);
1680 break;
1681 default:
1682 BUG();
1683 }
1684 return node_zonelist(nd, gfp);
1685 }
1686
1687 /* Do dynamic interleaving for a process */
1688 static unsigned interleave_nodes(struct mempolicy *policy)
1689 {
1690 unsigned nid, next;
1691 struct task_struct *me = current;
1692
1693 nid = me->il_next;
1694 next = next_node(nid, policy->v.nodes);
1695 if (next >= MAX_NUMNODES)
1696 next = first_node(policy->v.nodes);
1697 if (next < MAX_NUMNODES)
1698 me->il_next = next;
1699 return nid;
1700 }
1701
1702 /*
1703 * Depending on the memory policy provide a node from which to allocate the
1704 * next slab entry.
1705 * @policy must be protected by freeing by the caller. If @policy is
1706 * the current task's mempolicy, this protection is implicit, as only the
1707 * task can change it's policy. The system default policy requires no
1708 * such protection.
1709 */
1710 unsigned slab_node(void)
1711 {
1712 struct mempolicy *policy;
1713
1714 if (in_interrupt())
1715 return numa_node_id();
1716
1717 policy = current->mempolicy;
1718 if (!policy || policy->flags & MPOL_F_LOCAL)
1719 return numa_node_id();
1720
1721 switch (policy->mode) {
1722 case MPOL_PREFERRED:
1723 /*
1724 * handled MPOL_F_LOCAL above
1725 */
1726 return policy->v.preferred_node;
1727
1728 case MPOL_INTERLEAVE:
1729 return interleave_nodes(policy);
1730
1731 case MPOL_BIND: {
1732 /*
1733 * Follow bind policy behavior and start allocation at the
1734 * first node.
1735 */
1736 struct zonelist *zonelist;
1737 struct zone *zone;
1738 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1739 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1740 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1741 &policy->v.nodes,
1742 &zone);
1743 return zone ? zone->node : numa_node_id();
1744 }
1745
1746 default:
1747 BUG();
1748 }
1749 }
1750
1751 /* Do static interleaving for a VMA with known offset. */
1752 static unsigned offset_il_node(struct mempolicy *pol,
1753 struct vm_area_struct *vma, unsigned long off)
1754 {
1755 unsigned nnodes = nodes_weight(pol->v.nodes);
1756 unsigned target;
1757 int c;
1758 int nid = -1;
1759
1760 if (!nnodes)
1761 return numa_node_id();
1762 target = (unsigned int)off % nnodes;
1763 c = 0;
1764 do {
1765 nid = next_node(nid, pol->v.nodes);
1766 c++;
1767 } while (c <= target);
1768 return nid;
1769 }
1770
1771 /* Determine a node number for interleave */
1772 static inline unsigned interleave_nid(struct mempolicy *pol,
1773 struct vm_area_struct *vma, unsigned long addr, int shift)
1774 {
1775 if (vma) {
1776 unsigned long off;
1777
1778 /*
1779 * for small pages, there is no difference between
1780 * shift and PAGE_SHIFT, so the bit-shift is safe.
1781 * for huge pages, since vm_pgoff is in units of small
1782 * pages, we need to shift off the always 0 bits to get
1783 * a useful offset.
1784 */
1785 BUG_ON(shift < PAGE_SHIFT);
1786 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1787 off += (addr - vma->vm_start) >> shift;
1788 return offset_il_node(pol, vma, off);
1789 } else
1790 return interleave_nodes(pol);
1791 }
1792
1793 /*
1794 * Return the bit number of a random bit set in the nodemask.
1795 * (returns -1 if nodemask is empty)
1796 */
1797 int node_random(const nodemask_t *maskp)
1798 {
1799 int w, bit = -1;
1800
1801 w = nodes_weight(*maskp);
1802 if (w)
1803 bit = bitmap_ord_to_pos(maskp->bits,
1804 get_random_int() % w, MAX_NUMNODES);
1805 return bit;
1806 }
1807
1808 #ifdef CONFIG_HUGETLBFS
1809 /*
1810 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1811 * @vma = virtual memory area whose policy is sought
1812 * @addr = address in @vma for shared policy lookup and interleave policy
1813 * @gfp_flags = for requested zone
1814 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1815 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1816 *
1817 * Returns a zonelist suitable for a huge page allocation and a pointer
1818 * to the struct mempolicy for conditional unref after allocation.
1819 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1820 * @nodemask for filtering the zonelist.
1821 *
1822 * Must be protected by get_mems_allowed()
1823 */
1824 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1825 gfp_t gfp_flags, struct mempolicy **mpol,
1826 nodemask_t **nodemask)
1827 {
1828 struct zonelist *zl;
1829
1830 *mpol = get_vma_policy(current, vma, addr);
1831 *nodemask = NULL; /* assume !MPOL_BIND */
1832
1833 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1834 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1835 huge_page_shift(hstate_vma(vma))), gfp_flags);
1836 } else {
1837 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1838 if ((*mpol)->mode == MPOL_BIND)
1839 *nodemask = &(*mpol)->v.nodes;
1840 }
1841 return zl;
1842 }
1843
1844 /*
1845 * init_nodemask_of_mempolicy
1846 *
1847 * If the current task's mempolicy is "default" [NULL], return 'false'
1848 * to indicate default policy. Otherwise, extract the policy nodemask
1849 * for 'bind' or 'interleave' policy into the argument nodemask, or
1850 * initialize the argument nodemask to contain the single node for
1851 * 'preferred' or 'local' policy and return 'true' to indicate presence
1852 * of non-default mempolicy.
1853 *
1854 * We don't bother with reference counting the mempolicy [mpol_get/put]
1855 * because the current task is examining it's own mempolicy and a task's
1856 * mempolicy is only ever changed by the task itself.
1857 *
1858 * N.B., it is the caller's responsibility to free a returned nodemask.
1859 */
1860 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1861 {
1862 struct mempolicy *mempolicy;
1863 int nid;
1864
1865 if (!(mask && current->mempolicy))
1866 return false;
1867
1868 task_lock(current);
1869 mempolicy = current->mempolicy;
1870 switch (mempolicy->mode) {
1871 case MPOL_PREFERRED:
1872 if (mempolicy->flags & MPOL_F_LOCAL)
1873 nid = numa_node_id();
1874 else
1875 nid = mempolicy->v.preferred_node;
1876 init_nodemask_of_node(mask, nid);
1877 break;
1878
1879 case MPOL_BIND:
1880 /* Fall through */
1881 case MPOL_INTERLEAVE:
1882 *mask = mempolicy->v.nodes;
1883 break;
1884
1885 default:
1886 BUG();
1887 }
1888 task_unlock(current);
1889
1890 return true;
1891 }
1892 #endif
1893
1894 /*
1895 * mempolicy_nodemask_intersects
1896 *
1897 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1898 * policy. Otherwise, check for intersection between mask and the policy
1899 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1900 * policy, always return true since it may allocate elsewhere on fallback.
1901 *
1902 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1903 */
1904 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1905 const nodemask_t *mask)
1906 {
1907 struct mempolicy *mempolicy;
1908 bool ret = true;
1909
1910 if (!mask)
1911 return ret;
1912 task_lock(tsk);
1913 mempolicy = tsk->mempolicy;
1914 if (!mempolicy)
1915 goto out;
1916
1917 switch (mempolicy->mode) {
1918 case MPOL_PREFERRED:
1919 /*
1920 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1921 * allocate from, they may fallback to other nodes when oom.
1922 * Thus, it's possible for tsk to have allocated memory from
1923 * nodes in mask.
1924 */
1925 break;
1926 case MPOL_BIND:
1927 case MPOL_INTERLEAVE:
1928 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1929 break;
1930 default:
1931 BUG();
1932 }
1933 out:
1934 task_unlock(tsk);
1935 return ret;
1936 }
1937
1938 /* Allocate a page in interleaved policy.
1939 Own path because it needs to do special accounting. */
1940 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1941 unsigned nid)
1942 {
1943 struct zonelist *zl;
1944 struct page *page;
1945
1946 zl = node_zonelist(nid, gfp);
1947 page = __alloc_pages(gfp, order, zl);
1948 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1949 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1950 return page;
1951 }
1952
1953 /**
1954 * alloc_pages_vma - Allocate a page for a VMA.
1955 *
1956 * @gfp:
1957 * %GFP_USER user allocation.
1958 * %GFP_KERNEL kernel allocations,
1959 * %GFP_HIGHMEM highmem/user allocations,
1960 * %GFP_FS allocation should not call back into a file system.
1961 * %GFP_ATOMIC don't sleep.
1962 *
1963 * @order:Order of the GFP allocation.
1964 * @vma: Pointer to VMA or NULL if not available.
1965 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1966 *
1967 * This function allocates a page from the kernel page pool and applies
1968 * a NUMA policy associated with the VMA or the current process.
1969 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1970 * mm_struct of the VMA to prevent it from going away. Should be used for
1971 * all allocations for pages that will be mapped into
1972 * user space. Returns NULL when no page can be allocated.
1973 *
1974 * Should be called with the mm_sem of the vma hold.
1975 */
1976 struct page *
1977 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1978 unsigned long addr, int node)
1979 {
1980 struct mempolicy *pol;
1981 struct page *page;
1982 unsigned int cpuset_mems_cookie;
1983
1984 retry_cpuset:
1985 pol = get_vma_policy(current, vma, addr);
1986 cpuset_mems_cookie = get_mems_allowed();
1987
1988 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1989 unsigned nid;
1990
1991 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1992 mpol_cond_put(pol);
1993 page = alloc_page_interleave(gfp, order, nid);
1994 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1995 goto retry_cpuset;
1996
1997 return page;
1998 }
1999 page = __alloc_pages_nodemask(gfp, order,
2000 policy_zonelist(gfp, pol, node),
2001 policy_nodemask(gfp, pol));
2002 if (unlikely(mpol_needs_cond_ref(pol)))
2003 __mpol_put(pol);
2004 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2005 goto retry_cpuset;
2006 return page;
2007 }
2008
2009 /**
2010 * alloc_pages_current - Allocate pages.
2011 *
2012 * @gfp:
2013 * %GFP_USER user allocation,
2014 * %GFP_KERNEL kernel allocation,
2015 * %GFP_HIGHMEM highmem allocation,
2016 * %GFP_FS don't call back into a file system.
2017 * %GFP_ATOMIC don't sleep.
2018 * @order: Power of two of allocation size in pages. 0 is a single page.
2019 *
2020 * Allocate a page from the kernel page pool. When not in
2021 * interrupt context and apply the current process NUMA policy.
2022 * Returns NULL when no page can be allocated.
2023 *
2024 * Don't call cpuset_update_task_memory_state() unless
2025 * 1) it's ok to take cpuset_sem (can WAIT), and
2026 * 2) allocating for current task (not interrupt).
2027 */
2028 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2029 {
2030 struct mempolicy *pol = get_task_policy(current);
2031 struct page *page;
2032 unsigned int cpuset_mems_cookie;
2033
2034 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2035 pol = &default_policy;
2036
2037 retry_cpuset:
2038 cpuset_mems_cookie = get_mems_allowed();
2039
2040 /*
2041 * No reference counting needed for current->mempolicy
2042 * nor system default_policy
2043 */
2044 if (pol->mode == MPOL_INTERLEAVE)
2045 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2046 else
2047 page = __alloc_pages_nodemask(gfp, order,
2048 policy_zonelist(gfp, pol, numa_node_id()),
2049 policy_nodemask(gfp, pol));
2050
2051 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2052 goto retry_cpuset;
2053
2054 return page;
2055 }
2056 EXPORT_SYMBOL(alloc_pages_current);
2057
2058 /*
2059 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2060 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2061 * with the mems_allowed returned by cpuset_mems_allowed(). This
2062 * keeps mempolicies cpuset relative after its cpuset moves. See
2063 * further kernel/cpuset.c update_nodemask().
2064 *
2065 * current's mempolicy may be rebinded by the other task(the task that changes
2066 * cpuset's mems), so we needn't do rebind work for current task.
2067 */
2068
2069 /* Slow path of a mempolicy duplicate */
2070 struct mempolicy *__mpol_dup(struct mempolicy *old)
2071 {
2072 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2073
2074 if (!new)
2075 return ERR_PTR(-ENOMEM);
2076
2077 /* task's mempolicy is protected by alloc_lock */
2078 if (old == current->mempolicy) {
2079 task_lock(current);
2080 *new = *old;
2081 task_unlock(current);
2082 } else
2083 *new = *old;
2084
2085 if (current_cpuset_is_being_rebound()) {
2086 nodemask_t mems = cpuset_mems_allowed(current);
2087 if (new->flags & MPOL_F_REBINDING)
2088 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2089 else
2090 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2091 }
2092 atomic_set(&new->refcnt, 1);
2093 return new;
2094 }
2095
2096 /* Slow path of a mempolicy comparison */
2097 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2098 {
2099 if (!a || !b)
2100 return false;
2101 if (a->mode != b->mode)
2102 return false;
2103 if (a->flags != b->flags)
2104 return false;
2105 if (mpol_store_user_nodemask(a))
2106 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2107 return false;
2108
2109 switch (a->mode) {
2110 case MPOL_BIND:
2111 /* Fall through */
2112 case MPOL_INTERLEAVE:
2113 return !!nodes_equal(a->v.nodes, b->v.nodes);
2114 case MPOL_PREFERRED:
2115 return a->v.preferred_node == b->v.preferred_node;
2116 default:
2117 BUG();
2118 return false;
2119 }
2120 }
2121
2122 /*
2123 * Shared memory backing store policy support.
2124 *
2125 * Remember policies even when nobody has shared memory mapped.
2126 * The policies are kept in Red-Black tree linked from the inode.
2127 * They are protected by the sp->lock spinlock, which should be held
2128 * for any accesses to the tree.
2129 */
2130
2131 /* lookup first element intersecting start-end */
2132 /* Caller holds sp->lock */
2133 static struct sp_node *
2134 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2135 {
2136 struct rb_node *n = sp->root.rb_node;
2137
2138 while (n) {
2139 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2140
2141 if (start >= p->end)
2142 n = n->rb_right;
2143 else if (end <= p->start)
2144 n = n->rb_left;
2145 else
2146 break;
2147 }
2148 if (!n)
2149 return NULL;
2150 for (;;) {
2151 struct sp_node *w = NULL;
2152 struct rb_node *prev = rb_prev(n);
2153 if (!prev)
2154 break;
2155 w = rb_entry(prev, struct sp_node, nd);
2156 if (w->end <= start)
2157 break;
2158 n = prev;
2159 }
2160 return rb_entry(n, struct sp_node, nd);
2161 }
2162
2163 /* Insert a new shared policy into the list. */
2164 /* Caller holds sp->lock */
2165 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2166 {
2167 struct rb_node **p = &sp->root.rb_node;
2168 struct rb_node *parent = NULL;
2169 struct sp_node *nd;
2170
2171 while (*p) {
2172 parent = *p;
2173 nd = rb_entry(parent, struct sp_node, nd);
2174 if (new->start < nd->start)
2175 p = &(*p)->rb_left;
2176 else if (new->end > nd->end)
2177 p = &(*p)->rb_right;
2178 else
2179 BUG();
2180 }
2181 rb_link_node(&new->nd, parent, p);
2182 rb_insert_color(&new->nd, &sp->root);
2183 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2184 new->policy ? new->policy->mode : 0);
2185 }
2186
2187 /* Find shared policy intersecting idx */
2188 struct mempolicy *
2189 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2190 {
2191 struct mempolicy *pol = NULL;
2192 struct sp_node *sn;
2193
2194 if (!sp->root.rb_node)
2195 return NULL;
2196 spin_lock(&sp->lock);
2197 sn = sp_lookup(sp, idx, idx+1);
2198 if (sn) {
2199 mpol_get(sn->policy);
2200 pol = sn->policy;
2201 }
2202 spin_unlock(&sp->lock);
2203 return pol;
2204 }
2205
2206 static void sp_free(struct sp_node *n)
2207 {
2208 mpol_put(n->policy);
2209 kmem_cache_free(sn_cache, n);
2210 }
2211
2212 /**
2213 * mpol_misplaced - check whether current page node is valid in policy
2214 *
2215 * @page - page to be checked
2216 * @vma - vm area where page mapped
2217 * @addr - virtual address where page mapped
2218 *
2219 * Lookup current policy node id for vma,addr and "compare to" page's
2220 * node id.
2221 *
2222 * Returns:
2223 * -1 - not misplaced, page is in the right node
2224 * node - node id where the page should be
2225 *
2226 * Policy determination "mimics" alloc_page_vma().
2227 * Called from fault path where we know the vma and faulting address.
2228 */
2229 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2230 {
2231 struct mempolicy *pol;
2232 struct zone *zone;
2233 int curnid = page_to_nid(page);
2234 unsigned long pgoff;
2235 int polnid = -1;
2236 int ret = -1;
2237
2238 BUG_ON(!vma);
2239
2240 pol = get_vma_policy(current, vma, addr);
2241 if (!(pol->flags & MPOL_F_MOF))
2242 goto out;
2243
2244 switch (pol->mode) {
2245 case MPOL_INTERLEAVE:
2246 BUG_ON(addr >= vma->vm_end);
2247 BUG_ON(addr < vma->vm_start);
2248
2249 pgoff = vma->vm_pgoff;
2250 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2251 polnid = offset_il_node(pol, vma, pgoff);
2252 break;
2253
2254 case MPOL_PREFERRED:
2255 if (pol->flags & MPOL_F_LOCAL)
2256 polnid = numa_node_id();
2257 else
2258 polnid = pol->v.preferred_node;
2259 break;
2260
2261 case MPOL_BIND:
2262 /*
2263 * allows binding to multiple nodes.
2264 * use current page if in policy nodemask,
2265 * else select nearest allowed node, if any.
2266 * If no allowed nodes, use current [!misplaced].
2267 */
2268 if (node_isset(curnid, pol->v.nodes))
2269 goto out;
2270 (void)first_zones_zonelist(
2271 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2272 gfp_zone(GFP_HIGHUSER),
2273 &pol->v.nodes, &zone);
2274 polnid = zone->node;
2275 break;
2276
2277 default:
2278 BUG();
2279 }
2280
2281 /* Migrate the page towards the node whose CPU is referencing it */
2282 if (pol->flags & MPOL_F_MORON) {
2283 int last_nid;
2284
2285 polnid = numa_node_id();
2286
2287 /*
2288 * Multi-stage node selection is used in conjunction
2289 * with a periodic migration fault to build a temporal
2290 * task<->page relation. By using a two-stage filter we
2291 * remove short/unlikely relations.
2292 *
2293 * Using P(p) ~ n_p / n_t as per frequentist
2294 * probability, we can equate a task's usage of a
2295 * particular page (n_p) per total usage of this
2296 * page (n_t) (in a given time-span) to a probability.
2297 *
2298 * Our periodic faults will sample this probability and
2299 * getting the same result twice in a row, given these
2300 * samples are fully independent, is then given by
2301 * P(n)^2, provided our sample period is sufficiently
2302 * short compared to the usage pattern.
2303 *
2304 * This quadric squishes small probabilities, making
2305 * it less likely we act on an unlikely task<->page
2306 * relation.
2307 */
2308 last_nid = page_nid_xchg_last(page, polnid);
2309 if (last_nid != polnid)
2310 goto out;
2311 }
2312
2313 if (curnid != polnid)
2314 ret = polnid;
2315 out:
2316 mpol_cond_put(pol);
2317
2318 return ret;
2319 }
2320
2321 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2322 {
2323 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2324 rb_erase(&n->nd, &sp->root);
2325 sp_free(n);
2326 }
2327
2328 static void sp_node_init(struct sp_node *node, unsigned long start,
2329 unsigned long end, struct mempolicy *pol)
2330 {
2331 node->start = start;
2332 node->end = end;
2333 node->policy = pol;
2334 }
2335
2336 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2337 struct mempolicy *pol)
2338 {
2339 struct sp_node *n;
2340 struct mempolicy *newpol;
2341
2342 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2343 if (!n)
2344 return NULL;
2345
2346 newpol = mpol_dup(pol);
2347 if (IS_ERR(newpol)) {
2348 kmem_cache_free(sn_cache, n);
2349 return NULL;
2350 }
2351 newpol->flags |= MPOL_F_SHARED;
2352 sp_node_init(n, start, end, newpol);
2353
2354 return n;
2355 }
2356
2357 /* Replace a policy range. */
2358 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2359 unsigned long end, struct sp_node *new)
2360 {
2361 struct sp_node *n;
2362 struct sp_node *n_new = NULL;
2363 struct mempolicy *mpol_new = NULL;
2364 int ret = 0;
2365
2366 restart:
2367 spin_lock(&sp->lock);
2368 n = sp_lookup(sp, start, end);
2369 /* Take care of old policies in the same range. */
2370 while (n && n->start < end) {
2371 struct rb_node *next = rb_next(&n->nd);
2372 if (n->start >= start) {
2373 if (n->end <= end)
2374 sp_delete(sp, n);
2375 else
2376 n->start = end;
2377 } else {
2378 /* Old policy spanning whole new range. */
2379 if (n->end > end) {
2380 if (!n_new)
2381 goto alloc_new;
2382
2383 *mpol_new = *n->policy;
2384 atomic_set(&mpol_new->refcnt, 1);
2385 sp_node_init(n_new, end, n->end, mpol_new);
2386 n->end = start;
2387 sp_insert(sp, n_new);
2388 n_new = NULL;
2389 mpol_new = NULL;
2390 break;
2391 } else
2392 n->end = start;
2393 }
2394 if (!next)
2395 break;
2396 n = rb_entry(next, struct sp_node, nd);
2397 }
2398 if (new)
2399 sp_insert(sp, new);
2400 spin_unlock(&sp->lock);
2401 ret = 0;
2402
2403 err_out:
2404 if (mpol_new)
2405 mpol_put(mpol_new);
2406 if (n_new)
2407 kmem_cache_free(sn_cache, n_new);
2408
2409 return ret;
2410
2411 alloc_new:
2412 spin_unlock(&sp->lock);
2413 ret = -ENOMEM;
2414 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2415 if (!n_new)
2416 goto err_out;
2417 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2418 if (!mpol_new)
2419 goto err_out;
2420 goto restart;
2421 }
2422
2423 /**
2424 * mpol_shared_policy_init - initialize shared policy for inode
2425 * @sp: pointer to inode shared policy
2426 * @mpol: struct mempolicy to install
2427 *
2428 * Install non-NULL @mpol in inode's shared policy rb-tree.
2429 * On entry, the current task has a reference on a non-NULL @mpol.
2430 * This must be released on exit.
2431 * This is called at get_inode() calls and we can use GFP_KERNEL.
2432 */
2433 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2434 {
2435 int ret;
2436
2437 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2438 spin_lock_init(&sp->lock);
2439
2440 if (mpol) {
2441 struct vm_area_struct pvma;
2442 struct mempolicy *new;
2443 NODEMASK_SCRATCH(scratch);
2444
2445 if (!scratch)
2446 goto put_mpol;
2447 /* contextualize the tmpfs mount point mempolicy */
2448 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2449 if (IS_ERR(new))
2450 goto free_scratch; /* no valid nodemask intersection */
2451
2452 task_lock(current);
2453 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2454 task_unlock(current);
2455 if (ret)
2456 goto put_new;
2457
2458 /* Create pseudo-vma that contains just the policy */
2459 memset(&pvma, 0, sizeof(struct vm_area_struct));
2460 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2461 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2462
2463 put_new:
2464 mpol_put(new); /* drop initial ref */
2465 free_scratch:
2466 NODEMASK_SCRATCH_FREE(scratch);
2467 put_mpol:
2468 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2469 }
2470 }
2471
2472 int mpol_set_shared_policy(struct shared_policy *info,
2473 struct vm_area_struct *vma, struct mempolicy *npol)
2474 {
2475 int err;
2476 struct sp_node *new = NULL;
2477 unsigned long sz = vma_pages(vma);
2478
2479 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2480 vma->vm_pgoff,
2481 sz, npol ? npol->mode : -1,
2482 npol ? npol->flags : -1,
2483 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2484
2485 if (npol) {
2486 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2487 if (!new)
2488 return -ENOMEM;
2489 }
2490 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2491 if (err && new)
2492 sp_free(new);
2493 return err;
2494 }
2495
2496 /* Free a backing policy store on inode delete. */
2497 void mpol_free_shared_policy(struct shared_policy *p)
2498 {
2499 struct sp_node *n;
2500 struct rb_node *next;
2501
2502 if (!p->root.rb_node)
2503 return;
2504 spin_lock(&p->lock);
2505 next = rb_first(&p->root);
2506 while (next) {
2507 n = rb_entry(next, struct sp_node, nd);
2508 next = rb_next(&n->nd);
2509 sp_delete(p, n);
2510 }
2511 spin_unlock(&p->lock);
2512 }
2513
2514 #ifdef CONFIG_NUMA_BALANCING
2515 static bool __initdata numabalancing_override;
2516
2517 static void __init check_numabalancing_enable(void)
2518 {
2519 bool numabalancing_default = false;
2520
2521 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2522 numabalancing_default = true;
2523
2524 if (nr_node_ids > 1 && !numabalancing_override) {
2525 printk(KERN_INFO "Enabling automatic NUMA balancing. "
2526 "Configure with numa_balancing= or sysctl");
2527 set_numabalancing_state(numabalancing_default);
2528 }
2529 }
2530
2531 static int __init setup_numabalancing(char *str)
2532 {
2533 int ret = 0;
2534 if (!str)
2535 goto out;
2536 numabalancing_override = true;
2537
2538 if (!strcmp(str, "enable")) {
2539 set_numabalancing_state(true);
2540 ret = 1;
2541 } else if (!strcmp(str, "disable")) {
2542 set_numabalancing_state(false);
2543 ret = 1;
2544 }
2545 out:
2546 if (!ret)
2547 printk(KERN_WARNING "Unable to parse numa_balancing=\n");
2548
2549 return ret;
2550 }
2551 __setup("numa_balancing=", setup_numabalancing);
2552 #else
2553 static inline void __init check_numabalancing_enable(void)
2554 {
2555 }
2556 #endif /* CONFIG_NUMA_BALANCING */
2557
2558 /* assumes fs == KERNEL_DS */
2559 void __init numa_policy_init(void)
2560 {
2561 nodemask_t interleave_nodes;
2562 unsigned long largest = 0;
2563 int nid, prefer = 0;
2564
2565 policy_cache = kmem_cache_create("numa_policy",
2566 sizeof(struct mempolicy),
2567 0, SLAB_PANIC, NULL);
2568
2569 sn_cache = kmem_cache_create("shared_policy_node",
2570 sizeof(struct sp_node),
2571 0, SLAB_PANIC, NULL);
2572
2573 for_each_node(nid) {
2574 preferred_node_policy[nid] = (struct mempolicy) {
2575 .refcnt = ATOMIC_INIT(1),
2576 .mode = MPOL_PREFERRED,
2577 .flags = MPOL_F_MOF | MPOL_F_MORON,
2578 .v = { .preferred_node = nid, },
2579 };
2580 }
2581
2582 /*
2583 * Set interleaving policy for system init. Interleaving is only
2584 * enabled across suitably sized nodes (default is >= 16MB), or
2585 * fall back to the largest node if they're all smaller.
2586 */
2587 nodes_clear(interleave_nodes);
2588 for_each_node_state(nid, N_MEMORY) {
2589 unsigned long total_pages = node_present_pages(nid);
2590
2591 /* Preserve the largest node */
2592 if (largest < total_pages) {
2593 largest = total_pages;
2594 prefer = nid;
2595 }
2596
2597 /* Interleave this node? */
2598 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2599 node_set(nid, interleave_nodes);
2600 }
2601
2602 /* All too small, use the largest */
2603 if (unlikely(nodes_empty(interleave_nodes)))
2604 node_set(prefer, interleave_nodes);
2605
2606 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2607 printk("numa_policy_init: interleaving failed\n");
2608
2609 check_numabalancing_enable();
2610 }
2611
2612 /* Reset policy of current process to default */
2613 void numa_default_policy(void)
2614 {
2615 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2616 }
2617
2618 /*
2619 * Parse and format mempolicy from/to strings
2620 */
2621
2622 /*
2623 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2624 */
2625 static const char * const policy_modes[] =
2626 {
2627 [MPOL_DEFAULT] = "default",
2628 [MPOL_PREFERRED] = "prefer",
2629 [MPOL_BIND] = "bind",
2630 [MPOL_INTERLEAVE] = "interleave",
2631 [MPOL_LOCAL] = "local",
2632 };
2633
2634
2635 #ifdef CONFIG_TMPFS
2636 /**
2637 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2638 * @str: string containing mempolicy to parse
2639 * @mpol: pointer to struct mempolicy pointer, returned on success.
2640 *
2641 * Format of input:
2642 * <mode>[=<flags>][:<nodelist>]
2643 *
2644 * On success, returns 0, else 1
2645 */
2646 int mpol_parse_str(char *str, struct mempolicy **mpol)
2647 {
2648 struct mempolicy *new = NULL;
2649 unsigned short mode;
2650 unsigned short mode_flags;
2651 nodemask_t nodes;
2652 char *nodelist = strchr(str, ':');
2653 char *flags = strchr(str, '=');
2654 int err = 1;
2655
2656 if (nodelist) {
2657 /* NUL-terminate mode or flags string */
2658 *nodelist++ = '\0';
2659 if (nodelist_parse(nodelist, nodes))
2660 goto out;
2661 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2662 goto out;
2663 } else
2664 nodes_clear(nodes);
2665
2666 if (flags)
2667 *flags++ = '\0'; /* terminate mode string */
2668
2669 for (mode = 0; mode < MPOL_MAX; mode++) {
2670 if (!strcmp(str, policy_modes[mode])) {
2671 break;
2672 }
2673 }
2674 if (mode >= MPOL_MAX)
2675 goto out;
2676
2677 switch (mode) {
2678 case MPOL_PREFERRED:
2679 /*
2680 * Insist on a nodelist of one node only
2681 */
2682 if (nodelist) {
2683 char *rest = nodelist;
2684 while (isdigit(*rest))
2685 rest++;
2686 if (*rest)
2687 goto out;
2688 }
2689 break;
2690 case MPOL_INTERLEAVE:
2691 /*
2692 * Default to online nodes with memory if no nodelist
2693 */
2694 if (!nodelist)
2695 nodes = node_states[N_MEMORY];
2696 break;
2697 case MPOL_LOCAL:
2698 /*
2699 * Don't allow a nodelist; mpol_new() checks flags
2700 */
2701 if (nodelist)
2702 goto out;
2703 mode = MPOL_PREFERRED;
2704 break;
2705 case MPOL_DEFAULT:
2706 /*
2707 * Insist on a empty nodelist
2708 */
2709 if (!nodelist)
2710 err = 0;
2711 goto out;
2712 case MPOL_BIND:
2713 /*
2714 * Insist on a nodelist
2715 */
2716 if (!nodelist)
2717 goto out;
2718 }
2719
2720 mode_flags = 0;
2721 if (flags) {
2722 /*
2723 * Currently, we only support two mutually exclusive
2724 * mode flags.
2725 */
2726 if (!strcmp(flags, "static"))
2727 mode_flags |= MPOL_F_STATIC_NODES;
2728 else if (!strcmp(flags, "relative"))
2729 mode_flags |= MPOL_F_RELATIVE_NODES;
2730 else
2731 goto out;
2732 }
2733
2734 new = mpol_new(mode, mode_flags, &nodes);
2735 if (IS_ERR(new))
2736 goto out;
2737
2738 /*
2739 * Save nodes for mpol_to_str() to show the tmpfs mount options
2740 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2741 */
2742 if (mode != MPOL_PREFERRED)
2743 new->v.nodes = nodes;
2744 else if (nodelist)
2745 new->v.preferred_node = first_node(nodes);
2746 else
2747 new->flags |= MPOL_F_LOCAL;
2748
2749 /*
2750 * Save nodes for contextualization: this will be used to "clone"
2751 * the mempolicy in a specific context [cpuset] at a later time.
2752 */
2753 new->w.user_nodemask = nodes;
2754
2755 err = 0;
2756
2757 out:
2758 /* Restore string for error message */
2759 if (nodelist)
2760 *--nodelist = ':';
2761 if (flags)
2762 *--flags = '=';
2763 if (!err)
2764 *mpol = new;
2765 return err;
2766 }
2767 #endif /* CONFIG_TMPFS */
2768
2769 /**
2770 * mpol_to_str - format a mempolicy structure for printing
2771 * @buffer: to contain formatted mempolicy string
2772 * @maxlen: length of @buffer
2773 * @pol: pointer to mempolicy to be formatted
2774 *
2775 * Convert a mempolicy into a string.
2776 * Returns the number of characters in buffer (if positive)
2777 * or an error (negative)
2778 */
2779 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2780 {
2781 char *p = buffer;
2782 int l;
2783 nodemask_t nodes;
2784 unsigned short mode;
2785 unsigned short flags = pol ? pol->flags : 0;
2786
2787 /*
2788 * Sanity check: room for longest mode, flag and some nodes
2789 */
2790 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2791
2792 if (!pol || pol == &default_policy || (pol->flags & MPOL_F_MORON))
2793 mode = MPOL_DEFAULT;
2794 else
2795 mode = pol->mode;
2796
2797 switch (mode) {
2798 case MPOL_DEFAULT:
2799 nodes_clear(nodes);
2800 break;
2801
2802 case MPOL_PREFERRED:
2803 nodes_clear(nodes);
2804 if (flags & MPOL_F_LOCAL)
2805 mode = MPOL_LOCAL;
2806 else
2807 node_set(pol->v.preferred_node, nodes);
2808 break;
2809
2810 case MPOL_BIND:
2811 /* Fall through */
2812 case MPOL_INTERLEAVE:
2813 nodes = pol->v.nodes;
2814 break;
2815
2816 default:
2817 return -EINVAL;
2818 }
2819
2820 l = strlen(policy_modes[mode]);
2821 if (buffer + maxlen < p + l + 1)
2822 return -ENOSPC;
2823
2824 strcpy(p, policy_modes[mode]);
2825 p += l;
2826
2827 if (flags & MPOL_MODE_FLAGS) {
2828 if (buffer + maxlen < p + 2)
2829 return -ENOSPC;
2830 *p++ = '=';
2831
2832 /*
2833 * Currently, the only defined flags are mutually exclusive
2834 */
2835 if (flags & MPOL_F_STATIC_NODES)
2836 p += snprintf(p, buffer + maxlen - p, "static");
2837 else if (flags & MPOL_F_RELATIVE_NODES)
2838 p += snprintf(p, buffer + maxlen - p, "relative");
2839 }
2840
2841 if (!nodes_empty(nodes)) {
2842 if (buffer + maxlen < p + 2)
2843 return -ENOSPC;
2844 *p++ = ':';
2845 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2846 }
2847 return p - buffer;
2848 }