Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 #include <linux/mmu_notifier.h>
94
95 #include <asm/tlbflush.h>
96 #include <asm/uaccess.h>
97 #include <linux/random.h>
98
99 #include "internal.h"
100
101 /* Internal flags */
102 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
103 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
104
105 static struct kmem_cache *policy_cache;
106 static struct kmem_cache *sn_cache;
107
108 /* Highest zone. An specific allocation for a zone below that is not
109 policied. */
110 enum zone_type policy_zone = 0;
111
112 /*
113 * run-time system-wide default policy => local allocation
114 */
115 static struct mempolicy default_policy = {
116 .refcnt = ATOMIC_INIT(1), /* never free it */
117 .mode = MPOL_PREFERRED,
118 .flags = MPOL_F_LOCAL,
119 };
120
121 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
122
123 static struct mempolicy *get_task_policy(struct task_struct *p)
124 {
125 struct mempolicy *pol = p->mempolicy;
126 int node;
127
128 if (!pol) {
129 node = numa_node_id();
130 if (node != NUMA_NO_NODE)
131 pol = &preferred_node_policy[node];
132
133 /* preferred_node_policy is not initialised early in boot */
134 if (!pol->mode)
135 pol = NULL;
136 }
137
138 return pol;
139 }
140
141 static const struct mempolicy_operations {
142 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
143 /*
144 * If read-side task has no lock to protect task->mempolicy, write-side
145 * task will rebind the task->mempolicy by two step. The first step is
146 * setting all the newly nodes, and the second step is cleaning all the
147 * disallowed nodes. In this way, we can avoid finding no node to alloc
148 * page.
149 * If we have a lock to protect task->mempolicy in read-side, we do
150 * rebind directly.
151 *
152 * step:
153 * MPOL_REBIND_ONCE - do rebind work at once
154 * MPOL_REBIND_STEP1 - set all the newly nodes
155 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
156 */
157 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
158 enum mpol_rebind_step step);
159 } mpol_ops[MPOL_MAX];
160
161 /* Check that the nodemask contains at least one populated zone */
162 static int is_valid_nodemask(const nodemask_t *nodemask)
163 {
164 return nodes_intersects(*nodemask, node_states[N_MEMORY]);
165 }
166
167 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
168 {
169 return pol->flags & MPOL_MODE_FLAGS;
170 }
171
172 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
173 const nodemask_t *rel)
174 {
175 nodemask_t tmp;
176 nodes_fold(tmp, *orig, nodes_weight(*rel));
177 nodes_onto(*ret, tmp, *rel);
178 }
179
180 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
181 {
182 if (nodes_empty(*nodes))
183 return -EINVAL;
184 pol->v.nodes = *nodes;
185 return 0;
186 }
187
188 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
189 {
190 if (!nodes)
191 pol->flags |= MPOL_F_LOCAL; /* local allocation */
192 else if (nodes_empty(*nodes))
193 return -EINVAL; /* no allowed nodes */
194 else
195 pol->v.preferred_node = first_node(*nodes);
196 return 0;
197 }
198
199 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
200 {
201 if (!is_valid_nodemask(nodes))
202 return -EINVAL;
203 pol->v.nodes = *nodes;
204 return 0;
205 }
206
207 /*
208 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
209 * any, for the new policy. mpol_new() has already validated the nodes
210 * parameter with respect to the policy mode and flags. But, we need to
211 * handle an empty nodemask with MPOL_PREFERRED here.
212 *
213 * Must be called holding task's alloc_lock to protect task's mems_allowed
214 * and mempolicy. May also be called holding the mmap_semaphore for write.
215 */
216 static int mpol_set_nodemask(struct mempolicy *pol,
217 const nodemask_t *nodes, struct nodemask_scratch *nsc)
218 {
219 int ret;
220
221 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
222 if (pol == NULL)
223 return 0;
224 /* Check N_MEMORY */
225 nodes_and(nsc->mask1,
226 cpuset_current_mems_allowed, node_states[N_MEMORY]);
227
228 VM_BUG_ON(!nodes);
229 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
230 nodes = NULL; /* explicit local allocation */
231 else {
232 if (pol->flags & MPOL_F_RELATIVE_NODES)
233 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
234 else
235 nodes_and(nsc->mask2, *nodes, nsc->mask1);
236
237 if (mpol_store_user_nodemask(pol))
238 pol->w.user_nodemask = *nodes;
239 else
240 pol->w.cpuset_mems_allowed =
241 cpuset_current_mems_allowed;
242 }
243
244 if (nodes)
245 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
246 else
247 ret = mpol_ops[pol->mode].create(pol, NULL);
248 return ret;
249 }
250
251 /*
252 * This function just creates a new policy, does some check and simple
253 * initialization. You must invoke mpol_set_nodemask() to set nodes.
254 */
255 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
256 nodemask_t *nodes)
257 {
258 struct mempolicy *policy;
259
260 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
261 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
262
263 if (mode == MPOL_DEFAULT) {
264 if (nodes && !nodes_empty(*nodes))
265 return ERR_PTR(-EINVAL);
266 return NULL;
267 }
268 VM_BUG_ON(!nodes);
269
270 /*
271 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
272 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
273 * All other modes require a valid pointer to a non-empty nodemask.
274 */
275 if (mode == MPOL_PREFERRED) {
276 if (nodes_empty(*nodes)) {
277 if (((flags & MPOL_F_STATIC_NODES) ||
278 (flags & MPOL_F_RELATIVE_NODES)))
279 return ERR_PTR(-EINVAL);
280 }
281 } else if (mode == MPOL_LOCAL) {
282 if (!nodes_empty(*nodes))
283 return ERR_PTR(-EINVAL);
284 mode = MPOL_PREFERRED;
285 } else if (nodes_empty(*nodes))
286 return ERR_PTR(-EINVAL);
287 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
288 if (!policy)
289 return ERR_PTR(-ENOMEM);
290 atomic_set(&policy->refcnt, 1);
291 policy->mode = mode;
292 policy->flags = flags;
293
294 return policy;
295 }
296
297 /* Slow path of a mpol destructor. */
298 void __mpol_put(struct mempolicy *p)
299 {
300 if (!atomic_dec_and_test(&p->refcnt))
301 return;
302 kmem_cache_free(policy_cache, p);
303 }
304
305 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
306 enum mpol_rebind_step step)
307 {
308 }
309
310 /*
311 * step:
312 * MPOL_REBIND_ONCE - do rebind work at once
313 * MPOL_REBIND_STEP1 - set all the newly nodes
314 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
315 */
316 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
317 enum mpol_rebind_step step)
318 {
319 nodemask_t tmp;
320
321 if (pol->flags & MPOL_F_STATIC_NODES)
322 nodes_and(tmp, pol->w.user_nodemask, *nodes);
323 else if (pol->flags & MPOL_F_RELATIVE_NODES)
324 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
325 else {
326 /*
327 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
328 * result
329 */
330 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
331 nodes_remap(tmp, pol->v.nodes,
332 pol->w.cpuset_mems_allowed, *nodes);
333 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
334 } else if (step == MPOL_REBIND_STEP2) {
335 tmp = pol->w.cpuset_mems_allowed;
336 pol->w.cpuset_mems_allowed = *nodes;
337 } else
338 BUG();
339 }
340
341 if (nodes_empty(tmp))
342 tmp = *nodes;
343
344 if (step == MPOL_REBIND_STEP1)
345 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
346 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
347 pol->v.nodes = tmp;
348 else
349 BUG();
350
351 if (!node_isset(current->il_next, tmp)) {
352 current->il_next = next_node(current->il_next, tmp);
353 if (current->il_next >= MAX_NUMNODES)
354 current->il_next = first_node(tmp);
355 if (current->il_next >= MAX_NUMNODES)
356 current->il_next = numa_node_id();
357 }
358 }
359
360 static void mpol_rebind_preferred(struct mempolicy *pol,
361 const nodemask_t *nodes,
362 enum mpol_rebind_step step)
363 {
364 nodemask_t tmp;
365
366 if (pol->flags & MPOL_F_STATIC_NODES) {
367 int node = first_node(pol->w.user_nodemask);
368
369 if (node_isset(node, *nodes)) {
370 pol->v.preferred_node = node;
371 pol->flags &= ~MPOL_F_LOCAL;
372 } else
373 pol->flags |= MPOL_F_LOCAL;
374 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
375 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
376 pol->v.preferred_node = first_node(tmp);
377 } else if (!(pol->flags & MPOL_F_LOCAL)) {
378 pol->v.preferred_node = node_remap(pol->v.preferred_node,
379 pol->w.cpuset_mems_allowed,
380 *nodes);
381 pol->w.cpuset_mems_allowed = *nodes;
382 }
383 }
384
385 /*
386 * mpol_rebind_policy - Migrate a policy to a different set of nodes
387 *
388 * If read-side task has no lock to protect task->mempolicy, write-side
389 * task will rebind the task->mempolicy by two step. The first step is
390 * setting all the newly nodes, and the second step is cleaning all the
391 * disallowed nodes. In this way, we can avoid finding no node to alloc
392 * page.
393 * If we have a lock to protect task->mempolicy in read-side, we do
394 * rebind directly.
395 *
396 * step:
397 * MPOL_REBIND_ONCE - do rebind work at once
398 * MPOL_REBIND_STEP1 - set all the newly nodes
399 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
400 */
401 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
402 enum mpol_rebind_step step)
403 {
404 if (!pol)
405 return;
406 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
407 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
408 return;
409
410 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
411 return;
412
413 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
414 BUG();
415
416 if (step == MPOL_REBIND_STEP1)
417 pol->flags |= MPOL_F_REBINDING;
418 else if (step == MPOL_REBIND_STEP2)
419 pol->flags &= ~MPOL_F_REBINDING;
420 else if (step >= MPOL_REBIND_NSTEP)
421 BUG();
422
423 mpol_ops[pol->mode].rebind(pol, newmask, step);
424 }
425
426 /*
427 * Wrapper for mpol_rebind_policy() that just requires task
428 * pointer, and updates task mempolicy.
429 *
430 * Called with task's alloc_lock held.
431 */
432
433 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
434 enum mpol_rebind_step step)
435 {
436 mpol_rebind_policy(tsk->mempolicy, new, step);
437 }
438
439 /*
440 * Rebind each vma in mm to new nodemask.
441 *
442 * Call holding a reference to mm. Takes mm->mmap_sem during call.
443 */
444
445 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
446 {
447 struct vm_area_struct *vma;
448
449 down_write(&mm->mmap_sem);
450 for (vma = mm->mmap; vma; vma = vma->vm_next)
451 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
452 up_write(&mm->mmap_sem);
453 }
454
455 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
456 [MPOL_DEFAULT] = {
457 .rebind = mpol_rebind_default,
458 },
459 [MPOL_INTERLEAVE] = {
460 .create = mpol_new_interleave,
461 .rebind = mpol_rebind_nodemask,
462 },
463 [MPOL_PREFERRED] = {
464 .create = mpol_new_preferred,
465 .rebind = mpol_rebind_preferred,
466 },
467 [MPOL_BIND] = {
468 .create = mpol_new_bind,
469 .rebind = mpol_rebind_nodemask,
470 },
471 };
472
473 static void migrate_page_add(struct page *page, struct list_head *pagelist,
474 unsigned long flags);
475
476 /* Scan through pages checking if pages follow certain conditions. */
477 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
478 unsigned long addr, unsigned long end,
479 const nodemask_t *nodes, unsigned long flags,
480 void *private)
481 {
482 pte_t *orig_pte;
483 pte_t *pte;
484 spinlock_t *ptl;
485
486 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
487 do {
488 struct page *page;
489 int nid;
490
491 if (!pte_present(*pte))
492 continue;
493 page = vm_normal_page(vma, addr, *pte);
494 if (!page)
495 continue;
496 /*
497 * vm_normal_page() filters out zero pages, but there might
498 * still be PageReserved pages to skip, perhaps in a VDSO.
499 */
500 if (PageReserved(page))
501 continue;
502 nid = page_to_nid(page);
503 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
504 continue;
505
506 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
507 migrate_page_add(page, private, flags);
508 else
509 break;
510 } while (pte++, addr += PAGE_SIZE, addr != end);
511 pte_unmap_unlock(orig_pte, ptl);
512 return addr != end;
513 }
514
515 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
516 unsigned long addr, unsigned long end,
517 const nodemask_t *nodes, unsigned long flags,
518 void *private)
519 {
520 pmd_t *pmd;
521 unsigned long next;
522
523 pmd = pmd_offset(pud, addr);
524 do {
525 next = pmd_addr_end(addr, end);
526 split_huge_page_pmd(vma, addr, pmd);
527 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
528 continue;
529 if (check_pte_range(vma, pmd, addr, next, nodes,
530 flags, private))
531 return -EIO;
532 } while (pmd++, addr = next, addr != end);
533 return 0;
534 }
535
536 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
537 unsigned long addr, unsigned long end,
538 const nodemask_t *nodes, unsigned long flags,
539 void *private)
540 {
541 pud_t *pud;
542 unsigned long next;
543
544 pud = pud_offset(pgd, addr);
545 do {
546 next = pud_addr_end(addr, end);
547 if (pud_none_or_clear_bad(pud))
548 continue;
549 if (check_pmd_range(vma, pud, addr, next, nodes,
550 flags, private))
551 return -EIO;
552 } while (pud++, addr = next, addr != end);
553 return 0;
554 }
555
556 static inline int check_pgd_range(struct vm_area_struct *vma,
557 unsigned long addr, unsigned long end,
558 const nodemask_t *nodes, unsigned long flags,
559 void *private)
560 {
561 pgd_t *pgd;
562 unsigned long next;
563
564 pgd = pgd_offset(vma->vm_mm, addr);
565 do {
566 next = pgd_addr_end(addr, end);
567 if (pgd_none_or_clear_bad(pgd))
568 continue;
569 if (check_pud_range(vma, pgd, addr, next, nodes,
570 flags, private))
571 return -EIO;
572 } while (pgd++, addr = next, addr != end);
573 return 0;
574 }
575
576 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
577 /*
578 * This is used to mark a range of virtual addresses to be inaccessible.
579 * These are later cleared by a NUMA hinting fault. Depending on these
580 * faults, pages may be migrated for better NUMA placement.
581 *
582 * This is assuming that NUMA faults are handled using PROT_NONE. If
583 * an architecture makes a different choice, it will need further
584 * changes to the core.
585 */
586 unsigned long change_prot_numa(struct vm_area_struct *vma,
587 unsigned long addr, unsigned long end)
588 {
589 int nr_updated;
590 BUILD_BUG_ON(_PAGE_NUMA != _PAGE_PROTNONE);
591
592 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
593 if (nr_updated)
594 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
595
596 return nr_updated;
597 }
598 #else
599 static unsigned long change_prot_numa(struct vm_area_struct *vma,
600 unsigned long addr, unsigned long end)
601 {
602 return 0;
603 }
604 #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
605
606 /*
607 * Check if all pages in a range are on a set of nodes.
608 * If pagelist != NULL then isolate pages from the LRU and
609 * put them on the pagelist.
610 */
611 static int
612 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
613 const nodemask_t *nodes, unsigned long flags, void *private)
614 {
615 int err = 0;
616 struct vm_area_struct *vma, *prev;
617
618 vma = find_vma(mm, start);
619 if (!vma)
620 return -EFAULT;
621 prev = NULL;
622 for (; vma && vma->vm_start < end; vma = vma->vm_next) {
623 unsigned long endvma = vma->vm_end;
624
625 if (endvma > end)
626 endvma = end;
627 if (vma->vm_start > start)
628 start = vma->vm_start;
629
630 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
631 if (!vma->vm_next && vma->vm_end < end)
632 return -EFAULT;
633 if (prev && prev->vm_end < vma->vm_start)
634 return -EFAULT;
635 }
636
637 if (is_vm_hugetlb_page(vma))
638 goto next;
639
640 if (flags & MPOL_MF_LAZY) {
641 change_prot_numa(vma, start, endvma);
642 goto next;
643 }
644
645 if ((flags & MPOL_MF_STRICT) ||
646 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
647 vma_migratable(vma))) {
648
649 err = check_pgd_range(vma, start, endvma, nodes,
650 flags, private);
651 if (err)
652 break;
653 }
654 next:
655 prev = vma;
656 }
657 return err;
658 }
659
660 /*
661 * Apply policy to a single VMA
662 * This must be called with the mmap_sem held for writing.
663 */
664 static int vma_replace_policy(struct vm_area_struct *vma,
665 struct mempolicy *pol)
666 {
667 int err;
668 struct mempolicy *old;
669 struct mempolicy *new;
670
671 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
672 vma->vm_start, vma->vm_end, vma->vm_pgoff,
673 vma->vm_ops, vma->vm_file,
674 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
675
676 new = mpol_dup(pol);
677 if (IS_ERR(new))
678 return PTR_ERR(new);
679
680 if (vma->vm_ops && vma->vm_ops->set_policy) {
681 err = vma->vm_ops->set_policy(vma, new);
682 if (err)
683 goto err_out;
684 }
685
686 old = vma->vm_policy;
687 vma->vm_policy = new; /* protected by mmap_sem */
688 mpol_put(old);
689
690 return 0;
691 err_out:
692 mpol_put(new);
693 return err;
694 }
695
696 /* Step 2: apply policy to a range and do splits. */
697 static int mbind_range(struct mm_struct *mm, unsigned long start,
698 unsigned long end, struct mempolicy *new_pol)
699 {
700 struct vm_area_struct *next;
701 struct vm_area_struct *prev;
702 struct vm_area_struct *vma;
703 int err = 0;
704 pgoff_t pgoff;
705 unsigned long vmstart;
706 unsigned long vmend;
707
708 vma = find_vma(mm, start);
709 if (!vma || vma->vm_start > start)
710 return -EFAULT;
711
712 prev = vma->vm_prev;
713 if (start > vma->vm_start)
714 prev = vma;
715
716 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
717 next = vma->vm_next;
718 vmstart = max(start, vma->vm_start);
719 vmend = min(end, vma->vm_end);
720
721 if (mpol_equal(vma_policy(vma), new_pol))
722 continue;
723
724 pgoff = vma->vm_pgoff +
725 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
726 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
727 vma->anon_vma, vma->vm_file, pgoff,
728 new_pol, vma_get_anon_name(vma));
729 if (prev) {
730 vma = prev;
731 next = vma->vm_next;
732 if (mpol_equal(vma_policy(vma), new_pol))
733 continue;
734 /* vma_merge() joined vma && vma->next, case 8 */
735 goto replace;
736 }
737 if (vma->vm_start != vmstart) {
738 err = split_vma(vma->vm_mm, vma, vmstart, 1);
739 if (err)
740 goto out;
741 }
742 if (vma->vm_end != vmend) {
743 err = split_vma(vma->vm_mm, vma, vmend, 0);
744 if (err)
745 goto out;
746 }
747 replace:
748 err = vma_replace_policy(vma, new_pol);
749 if (err)
750 goto out;
751 }
752
753 out:
754 return err;
755 }
756
757 /*
758 * Update task->flags PF_MEMPOLICY bit: set iff non-default
759 * mempolicy. Allows more rapid checking of this (combined perhaps
760 * with other PF_* flag bits) on memory allocation hot code paths.
761 *
762 * If called from outside this file, the task 'p' should -only- be
763 * a newly forked child not yet visible on the task list, because
764 * manipulating the task flags of a visible task is not safe.
765 *
766 * The above limitation is why this routine has the funny name
767 * mpol_fix_fork_child_flag().
768 *
769 * It is also safe to call this with a task pointer of current,
770 * which the static wrapper mpol_set_task_struct_flag() does,
771 * for use within this file.
772 */
773
774 void mpol_fix_fork_child_flag(struct task_struct *p)
775 {
776 if (p->mempolicy)
777 p->flags |= PF_MEMPOLICY;
778 else
779 p->flags &= ~PF_MEMPOLICY;
780 }
781
782 static void mpol_set_task_struct_flag(void)
783 {
784 mpol_fix_fork_child_flag(current);
785 }
786
787 /* Set the process memory policy */
788 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
789 nodemask_t *nodes)
790 {
791 struct mempolicy *new, *old;
792 struct mm_struct *mm = current->mm;
793 NODEMASK_SCRATCH(scratch);
794 int ret;
795
796 if (!scratch)
797 return -ENOMEM;
798
799 new = mpol_new(mode, flags, nodes);
800 if (IS_ERR(new)) {
801 ret = PTR_ERR(new);
802 goto out;
803 }
804 /*
805 * prevent changing our mempolicy while show_numa_maps()
806 * is using it.
807 * Note: do_set_mempolicy() can be called at init time
808 * with no 'mm'.
809 */
810 if (mm)
811 down_write(&mm->mmap_sem);
812 task_lock(current);
813 ret = mpol_set_nodemask(new, nodes, scratch);
814 if (ret) {
815 task_unlock(current);
816 if (mm)
817 up_write(&mm->mmap_sem);
818 mpol_put(new);
819 goto out;
820 }
821 old = current->mempolicy;
822 current->mempolicy = new;
823 mpol_set_task_struct_flag();
824 if (new && new->mode == MPOL_INTERLEAVE &&
825 nodes_weight(new->v.nodes))
826 current->il_next = first_node(new->v.nodes);
827 task_unlock(current);
828 if (mm)
829 up_write(&mm->mmap_sem);
830
831 mpol_put(old);
832 ret = 0;
833 out:
834 NODEMASK_SCRATCH_FREE(scratch);
835 return ret;
836 }
837
838 /*
839 * Return nodemask for policy for get_mempolicy() query
840 *
841 * Called with task's alloc_lock held
842 */
843 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
844 {
845 nodes_clear(*nodes);
846 if (p == &default_policy)
847 return;
848
849 switch (p->mode) {
850 case MPOL_BIND:
851 /* Fall through */
852 case MPOL_INTERLEAVE:
853 *nodes = p->v.nodes;
854 break;
855 case MPOL_PREFERRED:
856 if (!(p->flags & MPOL_F_LOCAL))
857 node_set(p->v.preferred_node, *nodes);
858 /* else return empty node mask for local allocation */
859 break;
860 default:
861 BUG();
862 }
863 }
864
865 static int lookup_node(struct mm_struct *mm, unsigned long addr)
866 {
867 struct page *p;
868 int err;
869
870 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
871 if (err >= 0) {
872 err = page_to_nid(p);
873 put_page(p);
874 }
875 return err;
876 }
877
878 /* Retrieve NUMA policy */
879 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
880 unsigned long addr, unsigned long flags)
881 {
882 int err;
883 struct mm_struct *mm = current->mm;
884 struct vm_area_struct *vma = NULL;
885 struct mempolicy *pol = current->mempolicy;
886
887 if (flags &
888 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
889 return -EINVAL;
890
891 if (flags & MPOL_F_MEMS_ALLOWED) {
892 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
893 return -EINVAL;
894 *policy = 0; /* just so it's initialized */
895 task_lock(current);
896 *nmask = cpuset_current_mems_allowed;
897 task_unlock(current);
898 return 0;
899 }
900
901 if (flags & MPOL_F_ADDR) {
902 /*
903 * Do NOT fall back to task policy if the
904 * vma/shared policy at addr is NULL. We
905 * want to return MPOL_DEFAULT in this case.
906 */
907 down_read(&mm->mmap_sem);
908 vma = find_vma_intersection(mm, addr, addr+1);
909 if (!vma) {
910 up_read(&mm->mmap_sem);
911 return -EFAULT;
912 }
913 if (vma->vm_ops && vma->vm_ops->get_policy)
914 pol = vma->vm_ops->get_policy(vma, addr);
915 else
916 pol = vma->vm_policy;
917 } else if (addr)
918 return -EINVAL;
919
920 if (!pol)
921 pol = &default_policy; /* indicates default behavior */
922
923 if (flags & MPOL_F_NODE) {
924 if (flags & MPOL_F_ADDR) {
925 err = lookup_node(mm, addr);
926 if (err < 0)
927 goto out;
928 *policy = err;
929 } else if (pol == current->mempolicy &&
930 pol->mode == MPOL_INTERLEAVE) {
931 *policy = current->il_next;
932 } else {
933 err = -EINVAL;
934 goto out;
935 }
936 } else {
937 *policy = pol == &default_policy ? MPOL_DEFAULT :
938 pol->mode;
939 /*
940 * Internal mempolicy flags must be masked off before exposing
941 * the policy to userspace.
942 */
943 *policy |= (pol->flags & MPOL_MODE_FLAGS);
944 }
945
946 if (vma) {
947 up_read(&current->mm->mmap_sem);
948 vma = NULL;
949 }
950
951 err = 0;
952 if (nmask) {
953 if (mpol_store_user_nodemask(pol)) {
954 *nmask = pol->w.user_nodemask;
955 } else {
956 task_lock(current);
957 get_policy_nodemask(pol, nmask);
958 task_unlock(current);
959 }
960 }
961
962 out:
963 mpol_cond_put(pol);
964 if (vma)
965 up_read(&current->mm->mmap_sem);
966 return err;
967 }
968
969 #ifdef CONFIG_MIGRATION
970 /*
971 * page migration
972 */
973 static void migrate_page_add(struct page *page, struct list_head *pagelist,
974 unsigned long flags)
975 {
976 /*
977 * Avoid migrating a page that is shared with others.
978 */
979 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
980 if (!isolate_lru_page(page)) {
981 list_add_tail(&page->lru, pagelist);
982 inc_zone_page_state(page, NR_ISOLATED_ANON +
983 page_is_file_cache(page));
984 }
985 }
986 }
987
988 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
989 {
990 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
991 }
992
993 /*
994 * Migrate pages from one node to a target node.
995 * Returns error or the number of pages not migrated.
996 */
997 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
998 int flags)
999 {
1000 nodemask_t nmask;
1001 LIST_HEAD(pagelist);
1002 int err = 0;
1003
1004 nodes_clear(nmask);
1005 node_set(source, nmask);
1006
1007 /*
1008 * This does not "check" the range but isolates all pages that
1009 * need migration. Between passing in the full user address
1010 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1011 */
1012 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1013 check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1014 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1015
1016 if (!list_empty(&pagelist)) {
1017 err = migrate_pages(&pagelist, new_node_page, dest,
1018 MIGRATE_SYNC, MR_SYSCALL);
1019 if (err)
1020 putback_lru_pages(&pagelist);
1021 }
1022
1023 return err;
1024 }
1025
1026 /*
1027 * Move pages between the two nodesets so as to preserve the physical
1028 * layout as much as possible.
1029 *
1030 * Returns the number of page that could not be moved.
1031 */
1032 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1033 const nodemask_t *to, int flags)
1034 {
1035 int busy = 0;
1036 int err;
1037 nodemask_t tmp;
1038
1039 err = migrate_prep();
1040 if (err)
1041 return err;
1042
1043 down_read(&mm->mmap_sem);
1044
1045 err = migrate_vmas(mm, from, to, flags);
1046 if (err)
1047 goto out;
1048
1049 /*
1050 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1051 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1052 * bit in 'tmp', and return that <source, dest> pair for migration.
1053 * The pair of nodemasks 'to' and 'from' define the map.
1054 *
1055 * If no pair of bits is found that way, fallback to picking some
1056 * pair of 'source' and 'dest' bits that are not the same. If the
1057 * 'source' and 'dest' bits are the same, this represents a node
1058 * that will be migrating to itself, so no pages need move.
1059 *
1060 * If no bits are left in 'tmp', or if all remaining bits left
1061 * in 'tmp' correspond to the same bit in 'to', return false
1062 * (nothing left to migrate).
1063 *
1064 * This lets us pick a pair of nodes to migrate between, such that
1065 * if possible the dest node is not already occupied by some other
1066 * source node, minimizing the risk of overloading the memory on a
1067 * node that would happen if we migrated incoming memory to a node
1068 * before migrating outgoing memory source that same node.
1069 *
1070 * A single scan of tmp is sufficient. As we go, we remember the
1071 * most recent <s, d> pair that moved (s != d). If we find a pair
1072 * that not only moved, but what's better, moved to an empty slot
1073 * (d is not set in tmp), then we break out then, with that pair.
1074 * Otherwise when we finish scanning from_tmp, we at least have the
1075 * most recent <s, d> pair that moved. If we get all the way through
1076 * the scan of tmp without finding any node that moved, much less
1077 * moved to an empty node, then there is nothing left worth migrating.
1078 */
1079
1080 tmp = *from;
1081 while (!nodes_empty(tmp)) {
1082 int s,d;
1083 int source = -1;
1084 int dest = 0;
1085
1086 for_each_node_mask(s, tmp) {
1087
1088 /*
1089 * do_migrate_pages() tries to maintain the relative
1090 * node relationship of the pages established between
1091 * threads and memory areas.
1092 *
1093 * However if the number of source nodes is not equal to
1094 * the number of destination nodes we can not preserve
1095 * this node relative relationship. In that case, skip
1096 * copying memory from a node that is in the destination
1097 * mask.
1098 *
1099 * Example: [2,3,4] -> [3,4,5] moves everything.
1100 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1101 */
1102
1103 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1104 (node_isset(s, *to)))
1105 continue;
1106
1107 d = node_remap(s, *from, *to);
1108 if (s == d)
1109 continue;
1110
1111 source = s; /* Node moved. Memorize */
1112 dest = d;
1113
1114 /* dest not in remaining from nodes? */
1115 if (!node_isset(dest, tmp))
1116 break;
1117 }
1118 if (source == -1)
1119 break;
1120
1121 node_clear(source, tmp);
1122 err = migrate_to_node(mm, source, dest, flags);
1123 if (err > 0)
1124 busy += err;
1125 if (err < 0)
1126 break;
1127 }
1128 out:
1129 up_read(&mm->mmap_sem);
1130 if (err < 0)
1131 return err;
1132 return busy;
1133
1134 }
1135
1136 /*
1137 * Allocate a new page for page migration based on vma policy.
1138 * Start by assuming the page is mapped by the same vma as contains @start.
1139 * Search forward from there, if not. N.B., this assumes that the
1140 * list of pages handed to migrate_pages()--which is how we get here--
1141 * is in virtual address order.
1142 */
1143 static struct page *new_page(struct page *page, unsigned long start, int **x)
1144 {
1145 struct vm_area_struct *vma;
1146 unsigned long uninitialized_var(address);
1147
1148 vma = find_vma(current->mm, start);
1149 while (vma) {
1150 address = page_address_in_vma(page, vma);
1151 if (address != -EFAULT)
1152 break;
1153 vma = vma->vm_next;
1154 }
1155
1156 /*
1157 * if !vma, alloc_page_vma() will use task or system default policy
1158 */
1159 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1160 }
1161 #else
1162
1163 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1164 unsigned long flags)
1165 {
1166 }
1167
1168 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1169 const nodemask_t *to, int flags)
1170 {
1171 return -ENOSYS;
1172 }
1173
1174 static struct page *new_page(struct page *page, unsigned long start, int **x)
1175 {
1176 return NULL;
1177 }
1178 #endif
1179
1180 static long do_mbind(unsigned long start, unsigned long len,
1181 unsigned short mode, unsigned short mode_flags,
1182 nodemask_t *nmask, unsigned long flags)
1183 {
1184 struct mm_struct *mm = current->mm;
1185 struct mempolicy *new;
1186 unsigned long end;
1187 int err;
1188 LIST_HEAD(pagelist);
1189
1190 if (flags & ~(unsigned long)MPOL_MF_VALID)
1191 return -EINVAL;
1192 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1193 return -EPERM;
1194
1195 if (start & ~PAGE_MASK)
1196 return -EINVAL;
1197
1198 if (mode == MPOL_DEFAULT)
1199 flags &= ~MPOL_MF_STRICT;
1200
1201 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1202 end = start + len;
1203
1204 if (end < start)
1205 return -EINVAL;
1206 if (end == start)
1207 return 0;
1208
1209 new = mpol_new(mode, mode_flags, nmask);
1210 if (IS_ERR(new))
1211 return PTR_ERR(new);
1212
1213 if (flags & MPOL_MF_LAZY)
1214 new->flags |= MPOL_F_MOF;
1215
1216 /*
1217 * If we are using the default policy then operation
1218 * on discontinuous address spaces is okay after all
1219 */
1220 if (!new)
1221 flags |= MPOL_MF_DISCONTIG_OK;
1222
1223 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1224 start, start + len, mode, mode_flags,
1225 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1226
1227 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1228
1229 err = migrate_prep();
1230 if (err)
1231 goto mpol_out;
1232 }
1233 {
1234 NODEMASK_SCRATCH(scratch);
1235 if (scratch) {
1236 down_write(&mm->mmap_sem);
1237 task_lock(current);
1238 err = mpol_set_nodemask(new, nmask, scratch);
1239 task_unlock(current);
1240 if (err)
1241 up_write(&mm->mmap_sem);
1242 } else
1243 err = -ENOMEM;
1244 NODEMASK_SCRATCH_FREE(scratch);
1245 }
1246 if (err)
1247 goto mpol_out;
1248
1249 err = check_range(mm, start, end, nmask,
1250 flags | MPOL_MF_INVERT, &pagelist);
1251 if (!err)
1252 err = mbind_range(mm, start, end, new);
1253
1254 if (!err) {
1255 int nr_failed = 0;
1256
1257 if (!list_empty(&pagelist)) {
1258 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1259 nr_failed = migrate_pages(&pagelist, new_page,
1260 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1261 if (nr_failed)
1262 putback_lru_pages(&pagelist);
1263 }
1264
1265 if (nr_failed && (flags & MPOL_MF_STRICT))
1266 err = -EIO;
1267 } else
1268 putback_lru_pages(&pagelist);
1269
1270 up_write(&mm->mmap_sem);
1271 mpol_out:
1272 mpol_put(new);
1273 return err;
1274 }
1275
1276 /*
1277 * User space interface with variable sized bitmaps for nodelists.
1278 */
1279
1280 /* Copy a node mask from user space. */
1281 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1282 unsigned long maxnode)
1283 {
1284 unsigned long k;
1285 unsigned long nlongs;
1286 unsigned long endmask;
1287
1288 --maxnode;
1289 nodes_clear(*nodes);
1290 if (maxnode == 0 || !nmask)
1291 return 0;
1292 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1293 return -EINVAL;
1294
1295 nlongs = BITS_TO_LONGS(maxnode);
1296 if ((maxnode % BITS_PER_LONG) == 0)
1297 endmask = ~0UL;
1298 else
1299 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1300
1301 /* When the user specified more nodes than supported just check
1302 if the non supported part is all zero. */
1303 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1304 if (nlongs > PAGE_SIZE/sizeof(long))
1305 return -EINVAL;
1306 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1307 unsigned long t;
1308 if (get_user(t, nmask + k))
1309 return -EFAULT;
1310 if (k == nlongs - 1) {
1311 if (t & endmask)
1312 return -EINVAL;
1313 } else if (t)
1314 return -EINVAL;
1315 }
1316 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1317 endmask = ~0UL;
1318 }
1319
1320 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1321 return -EFAULT;
1322 nodes_addr(*nodes)[nlongs-1] &= endmask;
1323 return 0;
1324 }
1325
1326 /* Copy a kernel node mask to user space */
1327 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1328 nodemask_t *nodes)
1329 {
1330 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1331 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1332
1333 if (copy > nbytes) {
1334 if (copy > PAGE_SIZE)
1335 return -EINVAL;
1336 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1337 return -EFAULT;
1338 copy = nbytes;
1339 }
1340 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1341 }
1342
1343 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1344 unsigned long, mode, unsigned long __user *, nmask,
1345 unsigned long, maxnode, unsigned, flags)
1346 {
1347 nodemask_t nodes;
1348 int err;
1349 unsigned short mode_flags;
1350
1351 mode_flags = mode & MPOL_MODE_FLAGS;
1352 mode &= ~MPOL_MODE_FLAGS;
1353 if (mode >= MPOL_MAX)
1354 return -EINVAL;
1355 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1356 (mode_flags & MPOL_F_RELATIVE_NODES))
1357 return -EINVAL;
1358 err = get_nodes(&nodes, nmask, maxnode);
1359 if (err)
1360 return err;
1361 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1362 }
1363
1364 /* Set the process memory policy */
1365 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1366 unsigned long, maxnode)
1367 {
1368 int err;
1369 nodemask_t nodes;
1370 unsigned short flags;
1371
1372 flags = mode & MPOL_MODE_FLAGS;
1373 mode &= ~MPOL_MODE_FLAGS;
1374 if ((unsigned int)mode >= MPOL_MAX)
1375 return -EINVAL;
1376 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1377 return -EINVAL;
1378 err = get_nodes(&nodes, nmask, maxnode);
1379 if (err)
1380 return err;
1381 return do_set_mempolicy(mode, flags, &nodes);
1382 }
1383
1384 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1385 const unsigned long __user *, old_nodes,
1386 const unsigned long __user *, new_nodes)
1387 {
1388 const struct cred *cred = current_cred(), *tcred;
1389 struct mm_struct *mm = NULL;
1390 struct task_struct *task;
1391 nodemask_t task_nodes;
1392 int err;
1393 nodemask_t *old;
1394 nodemask_t *new;
1395 NODEMASK_SCRATCH(scratch);
1396
1397 if (!scratch)
1398 return -ENOMEM;
1399
1400 old = &scratch->mask1;
1401 new = &scratch->mask2;
1402
1403 err = get_nodes(old, old_nodes, maxnode);
1404 if (err)
1405 goto out;
1406
1407 err = get_nodes(new, new_nodes, maxnode);
1408 if (err)
1409 goto out;
1410
1411 /* Find the mm_struct */
1412 rcu_read_lock();
1413 task = pid ? find_task_by_vpid(pid) : current;
1414 if (!task) {
1415 rcu_read_unlock();
1416 err = -ESRCH;
1417 goto out;
1418 }
1419 get_task_struct(task);
1420
1421 err = -EINVAL;
1422
1423 /*
1424 * Check if this process has the right to modify the specified
1425 * process. The right exists if the process has administrative
1426 * capabilities, superuser privileges or the same
1427 * userid as the target process.
1428 */
1429 tcred = __task_cred(task);
1430 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1431 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1432 !capable(CAP_SYS_NICE)) {
1433 rcu_read_unlock();
1434 err = -EPERM;
1435 goto out_put;
1436 }
1437 rcu_read_unlock();
1438
1439 task_nodes = cpuset_mems_allowed(task);
1440 /* Is the user allowed to access the target nodes? */
1441 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1442 err = -EPERM;
1443 goto out_put;
1444 }
1445
1446 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1447 err = -EINVAL;
1448 goto out_put;
1449 }
1450
1451 err = security_task_movememory(task);
1452 if (err)
1453 goto out_put;
1454
1455 mm = get_task_mm(task);
1456 put_task_struct(task);
1457
1458 if (!mm) {
1459 err = -EINVAL;
1460 goto out;
1461 }
1462
1463 err = do_migrate_pages(mm, old, new,
1464 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1465
1466 mmput(mm);
1467 out:
1468 NODEMASK_SCRATCH_FREE(scratch);
1469
1470 return err;
1471
1472 out_put:
1473 put_task_struct(task);
1474 goto out;
1475
1476 }
1477
1478
1479 /* Retrieve NUMA policy */
1480 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1481 unsigned long __user *, nmask, unsigned long, maxnode,
1482 unsigned long, addr, unsigned long, flags)
1483 {
1484 int err;
1485 int uninitialized_var(pval);
1486 nodemask_t nodes;
1487
1488 if (nmask != NULL && maxnode < MAX_NUMNODES)
1489 return -EINVAL;
1490
1491 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1492
1493 if (err)
1494 return err;
1495
1496 if (policy && put_user(pval, policy))
1497 return -EFAULT;
1498
1499 if (nmask)
1500 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1501
1502 return err;
1503 }
1504
1505 #ifdef CONFIG_COMPAT
1506
1507 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1508 compat_ulong_t __user *nmask,
1509 compat_ulong_t maxnode,
1510 compat_ulong_t addr, compat_ulong_t flags)
1511 {
1512 long err;
1513 unsigned long __user *nm = NULL;
1514 unsigned long nr_bits, alloc_size;
1515 DECLARE_BITMAP(bm, MAX_NUMNODES);
1516
1517 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1518 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1519
1520 if (nmask)
1521 nm = compat_alloc_user_space(alloc_size);
1522
1523 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1524
1525 if (!err && nmask) {
1526 unsigned long copy_size;
1527 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1528 err = copy_from_user(bm, nm, copy_size);
1529 /* ensure entire bitmap is zeroed */
1530 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1531 err |= compat_put_bitmap(nmask, bm, nr_bits);
1532 }
1533
1534 return err;
1535 }
1536
1537 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1538 compat_ulong_t maxnode)
1539 {
1540 long err = 0;
1541 unsigned long __user *nm = NULL;
1542 unsigned long nr_bits, alloc_size;
1543 DECLARE_BITMAP(bm, MAX_NUMNODES);
1544
1545 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1546 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1547
1548 if (nmask) {
1549 err = compat_get_bitmap(bm, nmask, nr_bits);
1550 nm = compat_alloc_user_space(alloc_size);
1551 err |= copy_to_user(nm, bm, alloc_size);
1552 }
1553
1554 if (err)
1555 return -EFAULT;
1556
1557 return sys_set_mempolicy(mode, nm, nr_bits+1);
1558 }
1559
1560 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1561 compat_ulong_t mode, compat_ulong_t __user *nmask,
1562 compat_ulong_t maxnode, compat_ulong_t flags)
1563 {
1564 long err = 0;
1565 unsigned long __user *nm = NULL;
1566 unsigned long nr_bits, alloc_size;
1567 nodemask_t bm;
1568
1569 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1570 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1571
1572 if (nmask) {
1573 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1574 nm = compat_alloc_user_space(alloc_size);
1575 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1576 }
1577
1578 if (err)
1579 return -EFAULT;
1580
1581 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1582 }
1583
1584 #endif
1585
1586 /*
1587 * get_vma_policy(@task, @vma, @addr)
1588 * @task - task for fallback if vma policy == default
1589 * @vma - virtual memory area whose policy is sought
1590 * @addr - address in @vma for shared policy lookup
1591 *
1592 * Returns effective policy for a VMA at specified address.
1593 * Falls back to @task or system default policy, as necessary.
1594 * Current or other task's task mempolicy and non-shared vma policies must be
1595 * protected by task_lock(task) by the caller.
1596 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1597 * count--added by the get_policy() vm_op, as appropriate--to protect against
1598 * freeing by another task. It is the caller's responsibility to free the
1599 * extra reference for shared policies.
1600 */
1601 struct mempolicy *get_vma_policy(struct task_struct *task,
1602 struct vm_area_struct *vma, unsigned long addr)
1603 {
1604 struct mempolicy *pol = get_task_policy(task);
1605
1606 if (vma) {
1607 if (vma->vm_ops && vma->vm_ops->get_policy) {
1608 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1609 addr);
1610 if (vpol)
1611 pol = vpol;
1612 } else if (vma->vm_policy) {
1613 pol = vma->vm_policy;
1614
1615 /*
1616 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1617 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1618 * count on these policies which will be dropped by
1619 * mpol_cond_put() later
1620 */
1621 if (mpol_needs_cond_ref(pol))
1622 mpol_get(pol);
1623 }
1624 }
1625 if (!pol)
1626 pol = &default_policy;
1627 return pol;
1628 }
1629
1630 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1631 {
1632 enum zone_type dynamic_policy_zone = policy_zone;
1633
1634 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1635
1636 /*
1637 * if policy->v.nodes has movable memory only,
1638 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1639 *
1640 * policy->v.nodes is intersect with node_states[N_MEMORY].
1641 * so if the following test faile, it implies
1642 * policy->v.nodes has movable memory only.
1643 */
1644 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1645 dynamic_policy_zone = ZONE_MOVABLE;
1646
1647 return zone >= dynamic_policy_zone;
1648 }
1649
1650 /*
1651 * Return a nodemask representing a mempolicy for filtering nodes for
1652 * page allocation
1653 */
1654 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1655 {
1656 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1657 if (unlikely(policy->mode == MPOL_BIND) &&
1658 apply_policy_zone(policy, gfp_zone(gfp)) &&
1659 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1660 return &policy->v.nodes;
1661
1662 return NULL;
1663 }
1664
1665 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1666 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1667 int nd)
1668 {
1669 switch (policy->mode) {
1670 case MPOL_PREFERRED:
1671 if (!(policy->flags & MPOL_F_LOCAL))
1672 nd = policy->v.preferred_node;
1673 break;
1674 case MPOL_BIND:
1675 /*
1676 * Normally, MPOL_BIND allocations are node-local within the
1677 * allowed nodemask. However, if __GFP_THISNODE is set and the
1678 * current node isn't part of the mask, we use the zonelist for
1679 * the first node in the mask instead.
1680 */
1681 if (unlikely(gfp & __GFP_THISNODE) &&
1682 unlikely(!node_isset(nd, policy->v.nodes)))
1683 nd = first_node(policy->v.nodes);
1684 break;
1685 default:
1686 BUG();
1687 }
1688 return node_zonelist(nd, gfp);
1689 }
1690
1691 /* Do dynamic interleaving for a process */
1692 static unsigned interleave_nodes(struct mempolicy *policy)
1693 {
1694 unsigned nid, next;
1695 struct task_struct *me = current;
1696
1697 nid = me->il_next;
1698 next = next_node(nid, policy->v.nodes);
1699 if (next >= MAX_NUMNODES)
1700 next = first_node(policy->v.nodes);
1701 if (next < MAX_NUMNODES)
1702 me->il_next = next;
1703 return nid;
1704 }
1705
1706 /*
1707 * Depending on the memory policy provide a node from which to allocate the
1708 * next slab entry.
1709 * @policy must be protected by freeing by the caller. If @policy is
1710 * the current task's mempolicy, this protection is implicit, as only the
1711 * task can change it's policy. The system default policy requires no
1712 * such protection.
1713 */
1714 unsigned slab_node(void)
1715 {
1716 struct mempolicy *policy;
1717
1718 if (in_interrupt())
1719 return numa_node_id();
1720
1721 policy = current->mempolicy;
1722 if (!policy || policy->flags & MPOL_F_LOCAL)
1723 return numa_node_id();
1724
1725 switch (policy->mode) {
1726 case MPOL_PREFERRED:
1727 /*
1728 * handled MPOL_F_LOCAL above
1729 */
1730 return policy->v.preferred_node;
1731
1732 case MPOL_INTERLEAVE:
1733 return interleave_nodes(policy);
1734
1735 case MPOL_BIND: {
1736 /*
1737 * Follow bind policy behavior and start allocation at the
1738 * first node.
1739 */
1740 struct zonelist *zonelist;
1741 struct zone *zone;
1742 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1743 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1744 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1745 &policy->v.nodes,
1746 &zone);
1747 return zone ? zone->node : numa_node_id();
1748 }
1749
1750 default:
1751 BUG();
1752 }
1753 }
1754
1755 /* Do static interleaving for a VMA with known offset. */
1756 static unsigned offset_il_node(struct mempolicy *pol,
1757 struct vm_area_struct *vma, unsigned long off)
1758 {
1759 unsigned nnodes = nodes_weight(pol->v.nodes);
1760 unsigned target;
1761 int c;
1762 int nid = -1;
1763
1764 if (!nnodes)
1765 return numa_node_id();
1766 target = (unsigned int)off % nnodes;
1767 c = 0;
1768 do {
1769 nid = next_node(nid, pol->v.nodes);
1770 c++;
1771 } while (c <= target);
1772 return nid;
1773 }
1774
1775 /* Determine a node number for interleave */
1776 static inline unsigned interleave_nid(struct mempolicy *pol,
1777 struct vm_area_struct *vma, unsigned long addr, int shift)
1778 {
1779 if (vma) {
1780 unsigned long off;
1781
1782 /*
1783 * for small pages, there is no difference between
1784 * shift and PAGE_SHIFT, so the bit-shift is safe.
1785 * for huge pages, since vm_pgoff is in units of small
1786 * pages, we need to shift off the always 0 bits to get
1787 * a useful offset.
1788 */
1789 BUG_ON(shift < PAGE_SHIFT);
1790 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1791 off += (addr - vma->vm_start) >> shift;
1792 return offset_il_node(pol, vma, off);
1793 } else
1794 return interleave_nodes(pol);
1795 }
1796
1797 /*
1798 * Return the bit number of a random bit set in the nodemask.
1799 * (returns -1 if nodemask is empty)
1800 */
1801 int node_random(const nodemask_t *maskp)
1802 {
1803 int w, bit = -1;
1804
1805 w = nodes_weight(*maskp);
1806 if (w)
1807 bit = bitmap_ord_to_pos(maskp->bits,
1808 get_random_int() % w, MAX_NUMNODES);
1809 return bit;
1810 }
1811
1812 #ifdef CONFIG_HUGETLBFS
1813 /*
1814 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1815 * @vma = virtual memory area whose policy is sought
1816 * @addr = address in @vma for shared policy lookup and interleave policy
1817 * @gfp_flags = for requested zone
1818 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1819 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1820 *
1821 * Returns a zonelist suitable for a huge page allocation and a pointer
1822 * to the struct mempolicy for conditional unref after allocation.
1823 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1824 * @nodemask for filtering the zonelist.
1825 *
1826 * Must be protected by get_mems_allowed()
1827 */
1828 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1829 gfp_t gfp_flags, struct mempolicy **mpol,
1830 nodemask_t **nodemask)
1831 {
1832 struct zonelist *zl;
1833
1834 *mpol = get_vma_policy(current, vma, addr);
1835 *nodemask = NULL; /* assume !MPOL_BIND */
1836
1837 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1838 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1839 huge_page_shift(hstate_vma(vma))), gfp_flags);
1840 } else {
1841 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1842 if ((*mpol)->mode == MPOL_BIND)
1843 *nodemask = &(*mpol)->v.nodes;
1844 }
1845 return zl;
1846 }
1847
1848 /*
1849 * init_nodemask_of_mempolicy
1850 *
1851 * If the current task's mempolicy is "default" [NULL], return 'false'
1852 * to indicate default policy. Otherwise, extract the policy nodemask
1853 * for 'bind' or 'interleave' policy into the argument nodemask, or
1854 * initialize the argument nodemask to contain the single node for
1855 * 'preferred' or 'local' policy and return 'true' to indicate presence
1856 * of non-default mempolicy.
1857 *
1858 * We don't bother with reference counting the mempolicy [mpol_get/put]
1859 * because the current task is examining it's own mempolicy and a task's
1860 * mempolicy is only ever changed by the task itself.
1861 *
1862 * N.B., it is the caller's responsibility to free a returned nodemask.
1863 */
1864 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1865 {
1866 struct mempolicy *mempolicy;
1867 int nid;
1868
1869 if (!(mask && current->mempolicy))
1870 return false;
1871
1872 task_lock(current);
1873 mempolicy = current->mempolicy;
1874 switch (mempolicy->mode) {
1875 case MPOL_PREFERRED:
1876 if (mempolicy->flags & MPOL_F_LOCAL)
1877 nid = numa_node_id();
1878 else
1879 nid = mempolicy->v.preferred_node;
1880 init_nodemask_of_node(mask, nid);
1881 break;
1882
1883 case MPOL_BIND:
1884 /* Fall through */
1885 case MPOL_INTERLEAVE:
1886 *mask = mempolicy->v.nodes;
1887 break;
1888
1889 default:
1890 BUG();
1891 }
1892 task_unlock(current);
1893
1894 return true;
1895 }
1896 #endif
1897
1898 /*
1899 * mempolicy_nodemask_intersects
1900 *
1901 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1902 * policy. Otherwise, check for intersection between mask and the policy
1903 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1904 * policy, always return true since it may allocate elsewhere on fallback.
1905 *
1906 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1907 */
1908 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1909 const nodemask_t *mask)
1910 {
1911 struct mempolicy *mempolicy;
1912 bool ret = true;
1913
1914 if (!mask)
1915 return ret;
1916 task_lock(tsk);
1917 mempolicy = tsk->mempolicy;
1918 if (!mempolicy)
1919 goto out;
1920
1921 switch (mempolicy->mode) {
1922 case MPOL_PREFERRED:
1923 /*
1924 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1925 * allocate from, they may fallback to other nodes when oom.
1926 * Thus, it's possible for tsk to have allocated memory from
1927 * nodes in mask.
1928 */
1929 break;
1930 case MPOL_BIND:
1931 case MPOL_INTERLEAVE:
1932 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1933 break;
1934 default:
1935 BUG();
1936 }
1937 out:
1938 task_unlock(tsk);
1939 return ret;
1940 }
1941
1942 /* Allocate a page in interleaved policy.
1943 Own path because it needs to do special accounting. */
1944 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1945 unsigned nid)
1946 {
1947 struct zonelist *zl;
1948 struct page *page;
1949
1950 zl = node_zonelist(nid, gfp);
1951 page = __alloc_pages(gfp, order, zl);
1952 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1953 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1954 return page;
1955 }
1956
1957 /**
1958 * alloc_pages_vma - Allocate a page for a VMA.
1959 *
1960 * @gfp:
1961 * %GFP_USER user allocation.
1962 * %GFP_KERNEL kernel allocations,
1963 * %GFP_HIGHMEM highmem/user allocations,
1964 * %GFP_FS allocation should not call back into a file system.
1965 * %GFP_ATOMIC don't sleep.
1966 *
1967 * @order:Order of the GFP allocation.
1968 * @vma: Pointer to VMA or NULL if not available.
1969 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1970 *
1971 * This function allocates a page from the kernel page pool and applies
1972 * a NUMA policy associated with the VMA or the current process.
1973 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1974 * mm_struct of the VMA to prevent it from going away. Should be used for
1975 * all allocations for pages that will be mapped into
1976 * user space. Returns NULL when no page can be allocated.
1977 *
1978 * Should be called with the mm_sem of the vma hold.
1979 */
1980 struct page *
1981 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1982 unsigned long addr, int node)
1983 {
1984 struct mempolicy *pol;
1985 struct page *page;
1986 unsigned int cpuset_mems_cookie;
1987
1988 retry_cpuset:
1989 pol = get_vma_policy(current, vma, addr);
1990 cpuset_mems_cookie = get_mems_allowed();
1991
1992 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1993 unsigned nid;
1994
1995 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1996 mpol_cond_put(pol);
1997 page = alloc_page_interleave(gfp, order, nid);
1998 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1999 goto retry_cpuset;
2000
2001 return page;
2002 }
2003 page = __alloc_pages_nodemask(gfp, order,
2004 policy_zonelist(gfp, pol, node),
2005 policy_nodemask(gfp, pol));
2006 if (unlikely(mpol_needs_cond_ref(pol)))
2007 __mpol_put(pol);
2008 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2009 goto retry_cpuset;
2010 return page;
2011 }
2012
2013 /**
2014 * alloc_pages_current - Allocate pages.
2015 *
2016 * @gfp:
2017 * %GFP_USER user allocation,
2018 * %GFP_KERNEL kernel allocation,
2019 * %GFP_HIGHMEM highmem allocation,
2020 * %GFP_FS don't call back into a file system.
2021 * %GFP_ATOMIC don't sleep.
2022 * @order: Power of two of allocation size in pages. 0 is a single page.
2023 *
2024 * Allocate a page from the kernel page pool. When not in
2025 * interrupt context and apply the current process NUMA policy.
2026 * Returns NULL when no page can be allocated.
2027 *
2028 * Don't call cpuset_update_task_memory_state() unless
2029 * 1) it's ok to take cpuset_sem (can WAIT), and
2030 * 2) allocating for current task (not interrupt).
2031 */
2032 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2033 {
2034 struct mempolicy *pol = get_task_policy(current);
2035 struct page *page;
2036 unsigned int cpuset_mems_cookie;
2037
2038 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2039 pol = &default_policy;
2040
2041 retry_cpuset:
2042 cpuset_mems_cookie = get_mems_allowed();
2043
2044 /*
2045 * No reference counting needed for current->mempolicy
2046 * nor system default_policy
2047 */
2048 if (pol->mode == MPOL_INTERLEAVE)
2049 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2050 else
2051 page = __alloc_pages_nodemask(gfp, order,
2052 policy_zonelist(gfp, pol, numa_node_id()),
2053 policy_nodemask(gfp, pol));
2054
2055 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2056 goto retry_cpuset;
2057
2058 return page;
2059 }
2060 EXPORT_SYMBOL(alloc_pages_current);
2061
2062 /*
2063 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2064 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2065 * with the mems_allowed returned by cpuset_mems_allowed(). This
2066 * keeps mempolicies cpuset relative after its cpuset moves. See
2067 * further kernel/cpuset.c update_nodemask().
2068 *
2069 * current's mempolicy may be rebinded by the other task(the task that changes
2070 * cpuset's mems), so we needn't do rebind work for current task.
2071 */
2072
2073 /* Slow path of a mempolicy duplicate */
2074 struct mempolicy *__mpol_dup(struct mempolicy *old)
2075 {
2076 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2077
2078 if (!new)
2079 return ERR_PTR(-ENOMEM);
2080
2081 /* task's mempolicy is protected by alloc_lock */
2082 if (old == current->mempolicy) {
2083 task_lock(current);
2084 *new = *old;
2085 task_unlock(current);
2086 } else
2087 *new = *old;
2088
2089 if (current_cpuset_is_being_rebound()) {
2090 nodemask_t mems = cpuset_mems_allowed(current);
2091 if (new->flags & MPOL_F_REBINDING)
2092 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2093 else
2094 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2095 }
2096 atomic_set(&new->refcnt, 1);
2097 return new;
2098 }
2099
2100 /* Slow path of a mempolicy comparison */
2101 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2102 {
2103 if (!a || !b)
2104 return false;
2105 if (a->mode != b->mode)
2106 return false;
2107 if (a->flags != b->flags)
2108 return false;
2109 if (mpol_store_user_nodemask(a))
2110 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2111 return false;
2112
2113 switch (a->mode) {
2114 case MPOL_BIND:
2115 /* Fall through */
2116 case MPOL_INTERLEAVE:
2117 return !!nodes_equal(a->v.nodes, b->v.nodes);
2118 case MPOL_PREFERRED:
2119 return a->v.preferred_node == b->v.preferred_node;
2120 default:
2121 BUG();
2122 return false;
2123 }
2124 }
2125
2126 /*
2127 * Shared memory backing store policy support.
2128 *
2129 * Remember policies even when nobody has shared memory mapped.
2130 * The policies are kept in Red-Black tree linked from the inode.
2131 * They are protected by the sp->lock spinlock, which should be held
2132 * for any accesses to the tree.
2133 */
2134
2135 /* lookup first element intersecting start-end */
2136 /* Caller holds sp->lock */
2137 static struct sp_node *
2138 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2139 {
2140 struct rb_node *n = sp->root.rb_node;
2141
2142 while (n) {
2143 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2144
2145 if (start >= p->end)
2146 n = n->rb_right;
2147 else if (end <= p->start)
2148 n = n->rb_left;
2149 else
2150 break;
2151 }
2152 if (!n)
2153 return NULL;
2154 for (;;) {
2155 struct sp_node *w = NULL;
2156 struct rb_node *prev = rb_prev(n);
2157 if (!prev)
2158 break;
2159 w = rb_entry(prev, struct sp_node, nd);
2160 if (w->end <= start)
2161 break;
2162 n = prev;
2163 }
2164 return rb_entry(n, struct sp_node, nd);
2165 }
2166
2167 /* Insert a new shared policy into the list. */
2168 /* Caller holds sp->lock */
2169 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2170 {
2171 struct rb_node **p = &sp->root.rb_node;
2172 struct rb_node *parent = NULL;
2173 struct sp_node *nd;
2174
2175 while (*p) {
2176 parent = *p;
2177 nd = rb_entry(parent, struct sp_node, nd);
2178 if (new->start < nd->start)
2179 p = &(*p)->rb_left;
2180 else if (new->end > nd->end)
2181 p = &(*p)->rb_right;
2182 else
2183 BUG();
2184 }
2185 rb_link_node(&new->nd, parent, p);
2186 rb_insert_color(&new->nd, &sp->root);
2187 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2188 new->policy ? new->policy->mode : 0);
2189 }
2190
2191 /* Find shared policy intersecting idx */
2192 struct mempolicy *
2193 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2194 {
2195 struct mempolicy *pol = NULL;
2196 struct sp_node *sn;
2197
2198 if (!sp->root.rb_node)
2199 return NULL;
2200 spin_lock(&sp->lock);
2201 sn = sp_lookup(sp, idx, idx+1);
2202 if (sn) {
2203 mpol_get(sn->policy);
2204 pol = sn->policy;
2205 }
2206 spin_unlock(&sp->lock);
2207 return pol;
2208 }
2209
2210 static void sp_free(struct sp_node *n)
2211 {
2212 mpol_put(n->policy);
2213 kmem_cache_free(sn_cache, n);
2214 }
2215
2216 /**
2217 * mpol_misplaced - check whether current page node is valid in policy
2218 *
2219 * @page - page to be checked
2220 * @vma - vm area where page mapped
2221 * @addr - virtual address where page mapped
2222 *
2223 * Lookup current policy node id for vma,addr and "compare to" page's
2224 * node id.
2225 *
2226 * Returns:
2227 * -1 - not misplaced, page is in the right node
2228 * node - node id where the page should be
2229 *
2230 * Policy determination "mimics" alloc_page_vma().
2231 * Called from fault path where we know the vma and faulting address.
2232 */
2233 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2234 {
2235 struct mempolicy *pol;
2236 struct zone *zone;
2237 int curnid = page_to_nid(page);
2238 unsigned long pgoff;
2239 int polnid = -1;
2240 int ret = -1;
2241
2242 BUG_ON(!vma);
2243
2244 pol = get_vma_policy(current, vma, addr);
2245 if (!(pol->flags & MPOL_F_MOF))
2246 goto out;
2247
2248 switch (pol->mode) {
2249 case MPOL_INTERLEAVE:
2250 BUG_ON(addr >= vma->vm_end);
2251 BUG_ON(addr < vma->vm_start);
2252
2253 pgoff = vma->vm_pgoff;
2254 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2255 polnid = offset_il_node(pol, vma, pgoff);
2256 break;
2257
2258 case MPOL_PREFERRED:
2259 if (pol->flags & MPOL_F_LOCAL)
2260 polnid = numa_node_id();
2261 else
2262 polnid = pol->v.preferred_node;
2263 break;
2264
2265 case MPOL_BIND:
2266 /*
2267 * allows binding to multiple nodes.
2268 * use current page if in policy nodemask,
2269 * else select nearest allowed node, if any.
2270 * If no allowed nodes, use current [!misplaced].
2271 */
2272 if (node_isset(curnid, pol->v.nodes))
2273 goto out;
2274 (void)first_zones_zonelist(
2275 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2276 gfp_zone(GFP_HIGHUSER),
2277 &pol->v.nodes, &zone);
2278 polnid = zone->node;
2279 break;
2280
2281 default:
2282 BUG();
2283 }
2284
2285 /* Migrate the page towards the node whose CPU is referencing it */
2286 if (pol->flags & MPOL_F_MORON) {
2287 int last_nid;
2288
2289 polnid = numa_node_id();
2290
2291 /*
2292 * Multi-stage node selection is used in conjunction
2293 * with a periodic migration fault to build a temporal
2294 * task<->page relation. By using a two-stage filter we
2295 * remove short/unlikely relations.
2296 *
2297 * Using P(p) ~ n_p / n_t as per frequentist
2298 * probability, we can equate a task's usage of a
2299 * particular page (n_p) per total usage of this
2300 * page (n_t) (in a given time-span) to a probability.
2301 *
2302 * Our periodic faults will sample this probability and
2303 * getting the same result twice in a row, given these
2304 * samples are fully independent, is then given by
2305 * P(n)^2, provided our sample period is sufficiently
2306 * short compared to the usage pattern.
2307 *
2308 * This quadric squishes small probabilities, making
2309 * it less likely we act on an unlikely task<->page
2310 * relation.
2311 */
2312 last_nid = page_nid_xchg_last(page, polnid);
2313 if (last_nid != polnid)
2314 goto out;
2315 }
2316
2317 if (curnid != polnid)
2318 ret = polnid;
2319 out:
2320 mpol_cond_put(pol);
2321
2322 return ret;
2323 }
2324
2325 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2326 {
2327 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2328 rb_erase(&n->nd, &sp->root);
2329 sp_free(n);
2330 }
2331
2332 static void sp_node_init(struct sp_node *node, unsigned long start,
2333 unsigned long end, struct mempolicy *pol)
2334 {
2335 node->start = start;
2336 node->end = end;
2337 node->policy = pol;
2338 }
2339
2340 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2341 struct mempolicy *pol)
2342 {
2343 struct sp_node *n;
2344 struct mempolicy *newpol;
2345
2346 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2347 if (!n)
2348 return NULL;
2349
2350 newpol = mpol_dup(pol);
2351 if (IS_ERR(newpol)) {
2352 kmem_cache_free(sn_cache, n);
2353 return NULL;
2354 }
2355 newpol->flags |= MPOL_F_SHARED;
2356 sp_node_init(n, start, end, newpol);
2357
2358 return n;
2359 }
2360
2361 /* Replace a policy range. */
2362 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2363 unsigned long end, struct sp_node *new)
2364 {
2365 struct sp_node *n;
2366 struct sp_node *n_new = NULL;
2367 struct mempolicy *mpol_new = NULL;
2368 int ret = 0;
2369
2370 restart:
2371 spin_lock(&sp->lock);
2372 n = sp_lookup(sp, start, end);
2373 /* Take care of old policies in the same range. */
2374 while (n && n->start < end) {
2375 struct rb_node *next = rb_next(&n->nd);
2376 if (n->start >= start) {
2377 if (n->end <= end)
2378 sp_delete(sp, n);
2379 else
2380 n->start = end;
2381 } else {
2382 /* Old policy spanning whole new range. */
2383 if (n->end > end) {
2384 if (!n_new)
2385 goto alloc_new;
2386
2387 *mpol_new = *n->policy;
2388 atomic_set(&mpol_new->refcnt, 1);
2389 sp_node_init(n_new, end, n->end, mpol_new);
2390 n->end = start;
2391 sp_insert(sp, n_new);
2392 n_new = NULL;
2393 mpol_new = NULL;
2394 break;
2395 } else
2396 n->end = start;
2397 }
2398 if (!next)
2399 break;
2400 n = rb_entry(next, struct sp_node, nd);
2401 }
2402 if (new)
2403 sp_insert(sp, new);
2404 spin_unlock(&sp->lock);
2405 ret = 0;
2406
2407 err_out:
2408 if (mpol_new)
2409 mpol_put(mpol_new);
2410 if (n_new)
2411 kmem_cache_free(sn_cache, n_new);
2412
2413 return ret;
2414
2415 alloc_new:
2416 spin_unlock(&sp->lock);
2417 ret = -ENOMEM;
2418 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2419 if (!n_new)
2420 goto err_out;
2421 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2422 if (!mpol_new)
2423 goto err_out;
2424 goto restart;
2425 }
2426
2427 /**
2428 * mpol_shared_policy_init - initialize shared policy for inode
2429 * @sp: pointer to inode shared policy
2430 * @mpol: struct mempolicy to install
2431 *
2432 * Install non-NULL @mpol in inode's shared policy rb-tree.
2433 * On entry, the current task has a reference on a non-NULL @mpol.
2434 * This must be released on exit.
2435 * This is called at get_inode() calls and we can use GFP_KERNEL.
2436 */
2437 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2438 {
2439 int ret;
2440
2441 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2442 spin_lock_init(&sp->lock);
2443
2444 if (mpol) {
2445 struct vm_area_struct pvma;
2446 struct mempolicy *new;
2447 NODEMASK_SCRATCH(scratch);
2448
2449 if (!scratch)
2450 goto put_mpol;
2451 /* contextualize the tmpfs mount point mempolicy */
2452 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2453 if (IS_ERR(new))
2454 goto free_scratch; /* no valid nodemask intersection */
2455
2456 task_lock(current);
2457 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2458 task_unlock(current);
2459 if (ret)
2460 goto put_new;
2461
2462 /* Create pseudo-vma that contains just the policy */
2463 memset(&pvma, 0, sizeof(struct vm_area_struct));
2464 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2465 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2466
2467 put_new:
2468 mpol_put(new); /* drop initial ref */
2469 free_scratch:
2470 NODEMASK_SCRATCH_FREE(scratch);
2471 put_mpol:
2472 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2473 }
2474 }
2475
2476 int mpol_set_shared_policy(struct shared_policy *info,
2477 struct vm_area_struct *vma, struct mempolicy *npol)
2478 {
2479 int err;
2480 struct sp_node *new = NULL;
2481 unsigned long sz = vma_pages(vma);
2482
2483 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2484 vma->vm_pgoff,
2485 sz, npol ? npol->mode : -1,
2486 npol ? npol->flags : -1,
2487 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2488
2489 if (npol) {
2490 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2491 if (!new)
2492 return -ENOMEM;
2493 }
2494 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2495 if (err && new)
2496 sp_free(new);
2497 return err;
2498 }
2499
2500 /* Free a backing policy store on inode delete. */
2501 void mpol_free_shared_policy(struct shared_policy *p)
2502 {
2503 struct sp_node *n;
2504 struct rb_node *next;
2505
2506 if (!p->root.rb_node)
2507 return;
2508 spin_lock(&p->lock);
2509 next = rb_first(&p->root);
2510 while (next) {
2511 n = rb_entry(next, struct sp_node, nd);
2512 next = rb_next(&n->nd);
2513 sp_delete(p, n);
2514 }
2515 spin_unlock(&p->lock);
2516 }
2517
2518 #ifdef CONFIG_NUMA_BALANCING
2519 static bool __initdata numabalancing_override;
2520
2521 static void __init check_numabalancing_enable(void)
2522 {
2523 bool numabalancing_default = false;
2524
2525 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2526 numabalancing_default = true;
2527
2528 if (nr_node_ids > 1 && !numabalancing_override) {
2529 printk(KERN_INFO "Enabling automatic NUMA balancing. "
2530 "Configure with numa_balancing= or sysctl");
2531 set_numabalancing_state(numabalancing_default);
2532 }
2533 }
2534
2535 static int __init setup_numabalancing(char *str)
2536 {
2537 int ret = 0;
2538 if (!str)
2539 goto out;
2540 numabalancing_override = true;
2541
2542 if (!strcmp(str, "enable")) {
2543 set_numabalancing_state(true);
2544 ret = 1;
2545 } else if (!strcmp(str, "disable")) {
2546 set_numabalancing_state(false);
2547 ret = 1;
2548 }
2549 out:
2550 if (!ret)
2551 printk(KERN_WARNING "Unable to parse numa_balancing=\n");
2552
2553 return ret;
2554 }
2555 __setup("numa_balancing=", setup_numabalancing);
2556 #else
2557 static inline void __init check_numabalancing_enable(void)
2558 {
2559 }
2560 #endif /* CONFIG_NUMA_BALANCING */
2561
2562 /* assumes fs == KERNEL_DS */
2563 void __init numa_policy_init(void)
2564 {
2565 nodemask_t interleave_nodes;
2566 unsigned long largest = 0;
2567 int nid, prefer = 0;
2568
2569 policy_cache = kmem_cache_create("numa_policy",
2570 sizeof(struct mempolicy),
2571 0, SLAB_PANIC, NULL);
2572
2573 sn_cache = kmem_cache_create("shared_policy_node",
2574 sizeof(struct sp_node),
2575 0, SLAB_PANIC, NULL);
2576
2577 for_each_node(nid) {
2578 preferred_node_policy[nid] = (struct mempolicy) {
2579 .refcnt = ATOMIC_INIT(1),
2580 .mode = MPOL_PREFERRED,
2581 .flags = MPOL_F_MOF | MPOL_F_MORON,
2582 .v = { .preferred_node = nid, },
2583 };
2584 }
2585
2586 /*
2587 * Set interleaving policy for system init. Interleaving is only
2588 * enabled across suitably sized nodes (default is >= 16MB), or
2589 * fall back to the largest node if they're all smaller.
2590 */
2591 nodes_clear(interleave_nodes);
2592 for_each_node_state(nid, N_MEMORY) {
2593 unsigned long total_pages = node_present_pages(nid);
2594
2595 /* Preserve the largest node */
2596 if (largest < total_pages) {
2597 largest = total_pages;
2598 prefer = nid;
2599 }
2600
2601 /* Interleave this node? */
2602 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2603 node_set(nid, interleave_nodes);
2604 }
2605
2606 /* All too small, use the largest */
2607 if (unlikely(nodes_empty(interleave_nodes)))
2608 node_set(prefer, interleave_nodes);
2609
2610 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2611 printk("numa_policy_init: interleaving failed\n");
2612
2613 check_numabalancing_enable();
2614 }
2615
2616 /* Reset policy of current process to default */
2617 void numa_default_policy(void)
2618 {
2619 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2620 }
2621
2622 /*
2623 * Parse and format mempolicy from/to strings
2624 */
2625
2626 /*
2627 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2628 */
2629 static const char * const policy_modes[] =
2630 {
2631 [MPOL_DEFAULT] = "default",
2632 [MPOL_PREFERRED] = "prefer",
2633 [MPOL_BIND] = "bind",
2634 [MPOL_INTERLEAVE] = "interleave",
2635 [MPOL_LOCAL] = "local",
2636 };
2637
2638
2639 #ifdef CONFIG_TMPFS
2640 /**
2641 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2642 * @str: string containing mempolicy to parse
2643 * @mpol: pointer to struct mempolicy pointer, returned on success.
2644 *
2645 * Format of input:
2646 * <mode>[=<flags>][:<nodelist>]
2647 *
2648 * On success, returns 0, else 1
2649 */
2650 int mpol_parse_str(char *str, struct mempolicy **mpol)
2651 {
2652 struct mempolicy *new = NULL;
2653 unsigned short mode;
2654 unsigned short mode_flags;
2655 nodemask_t nodes;
2656 char *nodelist = strchr(str, ':');
2657 char *flags = strchr(str, '=');
2658 int err = 1;
2659
2660 if (nodelist) {
2661 /* NUL-terminate mode or flags string */
2662 *nodelist++ = '\0';
2663 if (nodelist_parse(nodelist, nodes))
2664 goto out;
2665 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2666 goto out;
2667 } else
2668 nodes_clear(nodes);
2669
2670 if (flags)
2671 *flags++ = '\0'; /* terminate mode string */
2672
2673 for (mode = 0; mode < MPOL_MAX; mode++) {
2674 if (!strcmp(str, policy_modes[mode])) {
2675 break;
2676 }
2677 }
2678 if (mode >= MPOL_MAX)
2679 goto out;
2680
2681 switch (mode) {
2682 case MPOL_PREFERRED:
2683 /*
2684 * Insist on a nodelist of one node only
2685 */
2686 if (nodelist) {
2687 char *rest = nodelist;
2688 while (isdigit(*rest))
2689 rest++;
2690 if (*rest)
2691 goto out;
2692 }
2693 break;
2694 case MPOL_INTERLEAVE:
2695 /*
2696 * Default to online nodes with memory if no nodelist
2697 */
2698 if (!nodelist)
2699 nodes = node_states[N_MEMORY];
2700 break;
2701 case MPOL_LOCAL:
2702 /*
2703 * Don't allow a nodelist; mpol_new() checks flags
2704 */
2705 if (nodelist)
2706 goto out;
2707 mode = MPOL_PREFERRED;
2708 break;
2709 case MPOL_DEFAULT:
2710 /*
2711 * Insist on a empty nodelist
2712 */
2713 if (!nodelist)
2714 err = 0;
2715 goto out;
2716 case MPOL_BIND:
2717 /*
2718 * Insist on a nodelist
2719 */
2720 if (!nodelist)
2721 goto out;
2722 }
2723
2724 mode_flags = 0;
2725 if (flags) {
2726 /*
2727 * Currently, we only support two mutually exclusive
2728 * mode flags.
2729 */
2730 if (!strcmp(flags, "static"))
2731 mode_flags |= MPOL_F_STATIC_NODES;
2732 else if (!strcmp(flags, "relative"))
2733 mode_flags |= MPOL_F_RELATIVE_NODES;
2734 else
2735 goto out;
2736 }
2737
2738 new = mpol_new(mode, mode_flags, &nodes);
2739 if (IS_ERR(new))
2740 goto out;
2741
2742 /*
2743 * Save nodes for mpol_to_str() to show the tmpfs mount options
2744 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2745 */
2746 if (mode != MPOL_PREFERRED)
2747 new->v.nodes = nodes;
2748 else if (nodelist)
2749 new->v.preferred_node = first_node(nodes);
2750 else
2751 new->flags |= MPOL_F_LOCAL;
2752
2753 /*
2754 * Save nodes for contextualization: this will be used to "clone"
2755 * the mempolicy in a specific context [cpuset] at a later time.
2756 */
2757 new->w.user_nodemask = nodes;
2758
2759 err = 0;
2760
2761 out:
2762 /* Restore string for error message */
2763 if (nodelist)
2764 *--nodelist = ':';
2765 if (flags)
2766 *--flags = '=';
2767 if (!err)
2768 *mpol = new;
2769 return err;
2770 }
2771 #endif /* CONFIG_TMPFS */
2772
2773 /**
2774 * mpol_to_str - format a mempolicy structure for printing
2775 * @buffer: to contain formatted mempolicy string
2776 * @maxlen: length of @buffer
2777 * @pol: pointer to mempolicy to be formatted
2778 *
2779 * Convert a mempolicy into a string.
2780 * Returns the number of characters in buffer (if positive)
2781 * or an error (negative)
2782 */
2783 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2784 {
2785 char *p = buffer;
2786 int l;
2787 nodemask_t nodes;
2788 unsigned short mode;
2789 unsigned short flags = pol ? pol->flags : 0;
2790
2791 /*
2792 * Sanity check: room for longest mode, flag and some nodes
2793 */
2794 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2795
2796 if (!pol || pol == &default_policy || (pol->flags & MPOL_F_MORON))
2797 mode = MPOL_DEFAULT;
2798 else
2799 mode = pol->mode;
2800
2801 switch (mode) {
2802 case MPOL_DEFAULT:
2803 nodes_clear(nodes);
2804 break;
2805
2806 case MPOL_PREFERRED:
2807 nodes_clear(nodes);
2808 if (flags & MPOL_F_LOCAL)
2809 mode = MPOL_LOCAL;
2810 else
2811 node_set(pol->v.preferred_node, nodes);
2812 break;
2813
2814 case MPOL_BIND:
2815 /* Fall through */
2816 case MPOL_INTERLEAVE:
2817 nodes = pol->v.nodes;
2818 break;
2819
2820 default:
2821 return -EINVAL;
2822 }
2823
2824 l = strlen(policy_modes[mode]);
2825 if (buffer + maxlen < p + l + 1)
2826 return -ENOSPC;
2827
2828 strcpy(p, policy_modes[mode]);
2829 p += l;
2830
2831 if (flags & MPOL_MODE_FLAGS) {
2832 if (buffer + maxlen < p + 2)
2833 return -ENOSPC;
2834 *p++ = '=';
2835
2836 /*
2837 * Currently, the only defined flags are mutually exclusive
2838 */
2839 if (flags & MPOL_F_STATIC_NODES)
2840 p += snprintf(p, buffer + maxlen - p, "static");
2841 else if (flags & MPOL_F_RELATIVE_NODES)
2842 p += snprintf(p, buffer + maxlen - p, "relative");
2843 }
2844
2845 if (!nodes_empty(nodes)) {
2846 if (buffer + maxlen < p + 2)
2847 return -ENOSPC;
2848 *p++ = ':';
2849 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2850 }
2851 return p - buffer;
2852 }