7f1bf93fa87f8dcd380b2c8995fe2265f71d67d9
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory_hotplug.c
1 /*
2 * linux/mm/memory_hotplug.c
3 *
4 * Copyright (C)
5 */
6
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/bootmem.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/highmem.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33
34 #include <asm/tlbflush.h>
35
36 #include "internal.h"
37
38 /*
39 * online_page_callback contains pointer to current page onlining function.
40 * Initially it is generic_online_page(). If it is required it could be
41 * changed by calling set_online_page_callback() for callback registration
42 * and restore_online_page_callback() for generic callback restore.
43 */
44
45 static void generic_online_page(struct page *page);
46
47 static online_page_callback_t online_page_callback = generic_online_page;
48
49 DEFINE_MUTEX(mem_hotplug_mutex);
50
51 void lock_memory_hotplug(void)
52 {
53 mutex_lock(&mem_hotplug_mutex);
54
55 /* for exclusive hibernation if CONFIG_HIBERNATION=y */
56 lock_system_sleep();
57 }
58
59 void unlock_memory_hotplug(void)
60 {
61 unlock_system_sleep();
62 mutex_unlock(&mem_hotplug_mutex);
63 }
64
65
66 /* add this memory to iomem resource */
67 static struct resource *register_memory_resource(u64 start, u64 size)
68 {
69 struct resource *res;
70 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
71 BUG_ON(!res);
72
73 res->name = "System RAM";
74 res->start = start;
75 res->end = start + size - 1;
76 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
77 if (request_resource(&iomem_resource, res) < 0) {
78 printk("System RAM resource %pR cannot be added\n", res);
79 kfree(res);
80 res = NULL;
81 }
82 return res;
83 }
84
85 static void release_memory_resource(struct resource *res)
86 {
87 if (!res)
88 return;
89 release_resource(res);
90 kfree(res);
91 return;
92 }
93
94 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
95 void get_page_bootmem(unsigned long info, struct page *page,
96 unsigned long type)
97 {
98 page->lru.next = (struct list_head *) type;
99 SetPagePrivate(page);
100 set_page_private(page, info);
101 atomic_inc(&page->_count);
102 }
103
104 /* reference to __meminit __free_pages_bootmem is valid
105 * so use __ref to tell modpost not to generate a warning */
106 void __ref put_page_bootmem(struct page *page)
107 {
108 unsigned long type;
109 static DEFINE_MUTEX(ppb_lock);
110
111 type = (unsigned long) page->lru.next;
112 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
113 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
114
115 if (atomic_dec_return(&page->_count) == 1) {
116 ClearPagePrivate(page);
117 set_page_private(page, 0);
118 INIT_LIST_HEAD(&page->lru);
119
120 /*
121 * Please refer to comment for __free_pages_bootmem()
122 * for why we serialize here.
123 */
124 mutex_lock(&ppb_lock);
125 __free_pages_bootmem(page, 0);
126 mutex_unlock(&ppb_lock);
127 totalram_pages++;
128 }
129
130 }
131
132 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
133 #ifndef CONFIG_SPARSEMEM_VMEMMAP
134 static void register_page_bootmem_info_section(unsigned long start_pfn)
135 {
136 unsigned long *usemap, mapsize, section_nr, i;
137 struct mem_section *ms;
138 struct page *page, *memmap;
139
140 section_nr = pfn_to_section_nr(start_pfn);
141 ms = __nr_to_section(section_nr);
142
143 /* Get section's memmap address */
144 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
145
146 /*
147 * Get page for the memmap's phys address
148 * XXX: need more consideration for sparse_vmemmap...
149 */
150 page = virt_to_page(memmap);
151 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
152 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
153
154 /* remember memmap's page */
155 for (i = 0; i < mapsize; i++, page++)
156 get_page_bootmem(section_nr, page, SECTION_INFO);
157
158 usemap = __nr_to_section(section_nr)->pageblock_flags;
159 page = virt_to_page(usemap);
160
161 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
162
163 for (i = 0; i < mapsize; i++, page++)
164 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
165
166 }
167 #else /* CONFIG_SPARSEMEM_VMEMMAP */
168 static void register_page_bootmem_info_section(unsigned long start_pfn)
169 {
170 unsigned long *usemap, mapsize, section_nr, i;
171 struct mem_section *ms;
172 struct page *page, *memmap;
173
174 if (!pfn_valid(start_pfn))
175 return;
176
177 section_nr = pfn_to_section_nr(start_pfn);
178 ms = __nr_to_section(section_nr);
179
180 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
181
182 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
183
184 usemap = __nr_to_section(section_nr)->pageblock_flags;
185 page = virt_to_page(usemap);
186
187 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
188
189 for (i = 0; i < mapsize; i++, page++)
190 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
191 }
192 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
193
194 void register_page_bootmem_info_node(struct pglist_data *pgdat)
195 {
196 unsigned long i, pfn, end_pfn, nr_pages;
197 int node = pgdat->node_id;
198 struct page *page;
199 struct zone *zone;
200
201 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
202 page = virt_to_page(pgdat);
203
204 for (i = 0; i < nr_pages; i++, page++)
205 get_page_bootmem(node, page, NODE_INFO);
206
207 zone = &pgdat->node_zones[0];
208 for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
209 if (zone->wait_table) {
210 nr_pages = zone->wait_table_hash_nr_entries
211 * sizeof(wait_queue_head_t);
212 nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
213 page = virt_to_page(zone->wait_table);
214
215 for (i = 0; i < nr_pages; i++, page++)
216 get_page_bootmem(node, page, NODE_INFO);
217 }
218 }
219
220 pfn = pgdat->node_start_pfn;
221 end_pfn = pgdat_end_pfn(pgdat);
222
223 /* register_section info */
224 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
225 /*
226 * Some platforms can assign the same pfn to multiple nodes - on
227 * node0 as well as nodeN. To avoid registering a pfn against
228 * multiple nodes we check that this pfn does not already
229 * reside in some other node.
230 */
231 if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
232 register_page_bootmem_info_section(pfn);
233 }
234 }
235 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
236
237 static void grow_zone_span(struct zone *zone, unsigned long start_pfn,
238 unsigned long end_pfn)
239 {
240 unsigned long old_zone_end_pfn;
241
242 zone_span_writelock(zone);
243
244 old_zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
245 if (!zone->spanned_pages || start_pfn < zone->zone_start_pfn)
246 zone->zone_start_pfn = start_pfn;
247
248 zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
249 zone->zone_start_pfn;
250
251 zone_span_writeunlock(zone);
252 }
253
254 static void resize_zone(struct zone *zone, unsigned long start_pfn,
255 unsigned long end_pfn)
256 {
257 zone_span_writelock(zone);
258
259 if (end_pfn - start_pfn) {
260 zone->zone_start_pfn = start_pfn;
261 zone->spanned_pages = end_pfn - start_pfn;
262 } else {
263 /*
264 * make it consist as free_area_init_core(),
265 * if spanned_pages = 0, then keep start_pfn = 0
266 */
267 zone->zone_start_pfn = 0;
268 zone->spanned_pages = 0;
269 }
270
271 zone_span_writeunlock(zone);
272 }
273
274 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
275 unsigned long end_pfn)
276 {
277 enum zone_type zid = zone_idx(zone);
278 int nid = zone->zone_pgdat->node_id;
279 unsigned long pfn;
280
281 for (pfn = start_pfn; pfn < end_pfn; pfn++)
282 set_page_links(pfn_to_page(pfn), zid, nid, pfn);
283 }
284
285 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
286 * alloc_bootmem_node_nopanic() */
287 static int __ref ensure_zone_is_initialized(struct zone *zone,
288 unsigned long start_pfn, unsigned long num_pages)
289 {
290 if (!zone_is_initialized(zone))
291 return init_currently_empty_zone(zone, start_pfn, num_pages,
292 MEMMAP_HOTPLUG);
293 return 0;
294 }
295
296 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
297 unsigned long start_pfn, unsigned long end_pfn)
298 {
299 int ret;
300 unsigned long flags;
301 unsigned long z1_start_pfn;
302
303 ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
304 if (ret)
305 return ret;
306
307 pgdat_resize_lock(z1->zone_pgdat, &flags);
308
309 /* can't move pfns which are higher than @z2 */
310 if (end_pfn > zone_end_pfn(z2))
311 goto out_fail;
312 /* the move out part mast at the left most of @z2 */
313 if (start_pfn > z2->zone_start_pfn)
314 goto out_fail;
315 /* must included/overlap */
316 if (end_pfn <= z2->zone_start_pfn)
317 goto out_fail;
318
319 /* use start_pfn for z1's start_pfn if z1 is empty */
320 if (z1->spanned_pages)
321 z1_start_pfn = z1->zone_start_pfn;
322 else
323 z1_start_pfn = start_pfn;
324
325 resize_zone(z1, z1_start_pfn, end_pfn);
326 resize_zone(z2, end_pfn, zone_end_pfn(z2));
327
328 pgdat_resize_unlock(z1->zone_pgdat, &flags);
329
330 fix_zone_id(z1, start_pfn, end_pfn);
331
332 return 0;
333 out_fail:
334 pgdat_resize_unlock(z1->zone_pgdat, &flags);
335 return -1;
336 }
337
338 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
339 unsigned long start_pfn, unsigned long end_pfn)
340 {
341 int ret;
342 unsigned long flags;
343 unsigned long z2_end_pfn;
344
345 ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
346 if (ret)
347 return ret;
348
349 pgdat_resize_lock(z1->zone_pgdat, &flags);
350
351 /* can't move pfns which are lower than @z1 */
352 if (z1->zone_start_pfn > start_pfn)
353 goto out_fail;
354 /* the move out part mast at the right most of @z1 */
355 if (zone_end_pfn(z1) > end_pfn)
356 goto out_fail;
357 /* must included/overlap */
358 if (start_pfn >= zone_end_pfn(z1))
359 goto out_fail;
360
361 /* use end_pfn for z2's end_pfn if z2 is empty */
362 if (z2->spanned_pages)
363 z2_end_pfn = zone_end_pfn(z2);
364 else
365 z2_end_pfn = end_pfn;
366
367 resize_zone(z1, z1->zone_start_pfn, start_pfn);
368 resize_zone(z2, start_pfn, z2_end_pfn);
369
370 pgdat_resize_unlock(z1->zone_pgdat, &flags);
371
372 fix_zone_id(z2, start_pfn, end_pfn);
373
374 return 0;
375 out_fail:
376 pgdat_resize_unlock(z1->zone_pgdat, &flags);
377 return -1;
378 }
379
380 static void grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
381 unsigned long end_pfn)
382 {
383 unsigned long old_pgdat_end_pfn =
384 pgdat->node_start_pfn + pgdat->node_spanned_pages;
385
386 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
387 pgdat->node_start_pfn = start_pfn;
388
389 pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
390 pgdat->node_start_pfn;
391 }
392
393 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
394 {
395 struct pglist_data *pgdat = zone->zone_pgdat;
396 int nr_pages = PAGES_PER_SECTION;
397 int nid = pgdat->node_id;
398 int zone_type;
399 unsigned long flags;
400 int ret;
401
402 zone_type = zone - pgdat->node_zones;
403 ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
404 if (ret)
405 return ret;
406
407 pgdat_resize_lock(zone->zone_pgdat, &flags);
408 grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
409 grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
410 phys_start_pfn + nr_pages);
411 pgdat_resize_unlock(zone->zone_pgdat, &flags);
412 memmap_init_zone(nr_pages, nid, zone_type,
413 phys_start_pfn, MEMMAP_HOTPLUG);
414 return 0;
415 }
416
417 static int __meminit __add_section(int nid, struct zone *zone,
418 unsigned long phys_start_pfn)
419 {
420 int nr_pages = PAGES_PER_SECTION;
421 int ret;
422
423 if (pfn_valid(phys_start_pfn))
424 return -EEXIST;
425
426 ret = sparse_add_one_section(zone, phys_start_pfn, nr_pages);
427
428 if (ret < 0)
429 return ret;
430
431 ret = __add_zone(zone, phys_start_pfn);
432
433 if (ret < 0)
434 return ret;
435
436 return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
437 }
438
439 /*
440 * Reasonably generic function for adding memory. It is
441 * expected that archs that support memory hotplug will
442 * call this function after deciding the zone to which to
443 * add the new pages.
444 */
445 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
446 unsigned long nr_pages)
447 {
448 unsigned long i;
449 int err = 0;
450 int start_sec, end_sec;
451 /* during initialize mem_map, align hot-added range to section */
452 start_sec = pfn_to_section_nr(phys_start_pfn);
453 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
454
455 for (i = start_sec; i <= end_sec; i++) {
456 err = __add_section(nid, zone, i << PFN_SECTION_SHIFT);
457
458 /*
459 * EEXIST is finally dealt with by ioresource collision
460 * check. see add_memory() => register_memory_resource()
461 * Warning will be printed if there is collision.
462 */
463 if (err && (err != -EEXIST))
464 break;
465 err = 0;
466 }
467
468 return err;
469 }
470 EXPORT_SYMBOL_GPL(__add_pages);
471
472 #ifdef CONFIG_MEMORY_HOTREMOVE
473 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
474 static int find_smallest_section_pfn(int nid, struct zone *zone,
475 unsigned long start_pfn,
476 unsigned long end_pfn)
477 {
478 struct mem_section *ms;
479
480 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
481 ms = __pfn_to_section(start_pfn);
482
483 if (unlikely(!valid_section(ms)))
484 continue;
485
486 if (unlikely(pfn_to_nid(start_pfn) != nid))
487 continue;
488
489 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
490 continue;
491
492 return start_pfn;
493 }
494
495 return 0;
496 }
497
498 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
499 static int find_biggest_section_pfn(int nid, struct zone *zone,
500 unsigned long start_pfn,
501 unsigned long end_pfn)
502 {
503 struct mem_section *ms;
504 unsigned long pfn;
505
506 /* pfn is the end pfn of a memory section. */
507 pfn = end_pfn - 1;
508 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
509 ms = __pfn_to_section(pfn);
510
511 if (unlikely(!valid_section(ms)))
512 continue;
513
514 if (unlikely(pfn_to_nid(pfn) != nid))
515 continue;
516
517 if (zone && zone != page_zone(pfn_to_page(pfn)))
518 continue;
519
520 return pfn;
521 }
522
523 return 0;
524 }
525
526 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
527 unsigned long end_pfn)
528 {
529 unsigned long zone_start_pfn = zone->zone_start_pfn;
530 unsigned long zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
531 unsigned long pfn;
532 struct mem_section *ms;
533 int nid = zone_to_nid(zone);
534
535 zone_span_writelock(zone);
536 if (zone_start_pfn == start_pfn) {
537 /*
538 * If the section is smallest section in the zone, it need
539 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
540 * In this case, we find second smallest valid mem_section
541 * for shrinking zone.
542 */
543 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
544 zone_end_pfn);
545 if (pfn) {
546 zone->zone_start_pfn = pfn;
547 zone->spanned_pages = zone_end_pfn - pfn;
548 }
549 } else if (zone_end_pfn == end_pfn) {
550 /*
551 * If the section is biggest section in the zone, it need
552 * shrink zone->spanned_pages.
553 * In this case, we find second biggest valid mem_section for
554 * shrinking zone.
555 */
556 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
557 start_pfn);
558 if (pfn)
559 zone->spanned_pages = pfn - zone_start_pfn + 1;
560 }
561
562 /*
563 * The section is not biggest or smallest mem_section in the zone, it
564 * only creates a hole in the zone. So in this case, we need not
565 * change the zone. But perhaps, the zone has only hole data. Thus
566 * it check the zone has only hole or not.
567 */
568 pfn = zone_start_pfn;
569 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
570 ms = __pfn_to_section(pfn);
571
572 if (unlikely(!valid_section(ms)))
573 continue;
574
575 if (page_zone(pfn_to_page(pfn)) != zone)
576 continue;
577
578 /* If the section is current section, it continues the loop */
579 if (start_pfn == pfn)
580 continue;
581
582 /* If we find valid section, we have nothing to do */
583 zone_span_writeunlock(zone);
584 return;
585 }
586
587 /* The zone has no valid section */
588 zone->zone_start_pfn = 0;
589 zone->spanned_pages = 0;
590 zone_span_writeunlock(zone);
591 }
592
593 static void shrink_pgdat_span(struct pglist_data *pgdat,
594 unsigned long start_pfn, unsigned long end_pfn)
595 {
596 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
597 unsigned long pgdat_end_pfn =
598 pgdat->node_start_pfn + pgdat->node_spanned_pages;
599 unsigned long pfn;
600 struct mem_section *ms;
601 int nid = pgdat->node_id;
602
603 if (pgdat_start_pfn == start_pfn) {
604 /*
605 * If the section is smallest section in the pgdat, it need
606 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
607 * In this case, we find second smallest valid mem_section
608 * for shrinking zone.
609 */
610 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
611 pgdat_end_pfn);
612 if (pfn) {
613 pgdat->node_start_pfn = pfn;
614 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
615 }
616 } else if (pgdat_end_pfn == end_pfn) {
617 /*
618 * If the section is biggest section in the pgdat, it need
619 * shrink pgdat->node_spanned_pages.
620 * In this case, we find second biggest valid mem_section for
621 * shrinking zone.
622 */
623 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
624 start_pfn);
625 if (pfn)
626 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
627 }
628
629 /*
630 * If the section is not biggest or smallest mem_section in the pgdat,
631 * it only creates a hole in the pgdat. So in this case, we need not
632 * change the pgdat.
633 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
634 * has only hole or not.
635 */
636 pfn = pgdat_start_pfn;
637 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
638 ms = __pfn_to_section(pfn);
639
640 if (unlikely(!valid_section(ms)))
641 continue;
642
643 if (pfn_to_nid(pfn) != nid)
644 continue;
645
646 /* If the section is current section, it continues the loop */
647 if (start_pfn == pfn)
648 continue;
649
650 /* If we find valid section, we have nothing to do */
651 return;
652 }
653
654 /* The pgdat has no valid section */
655 pgdat->node_start_pfn = 0;
656 pgdat->node_spanned_pages = 0;
657 }
658
659 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
660 {
661 struct pglist_data *pgdat = zone->zone_pgdat;
662 int nr_pages = PAGES_PER_SECTION;
663 int zone_type;
664 unsigned long flags;
665
666 zone_type = zone - pgdat->node_zones;
667
668 pgdat_resize_lock(zone->zone_pgdat, &flags);
669 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
670 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
671 pgdat_resize_unlock(zone->zone_pgdat, &flags);
672 }
673
674 static int __remove_section(struct zone *zone, struct mem_section *ms)
675 {
676 unsigned long start_pfn;
677 int scn_nr;
678 int ret = -EINVAL;
679
680 if (!valid_section(ms))
681 return ret;
682
683 ret = unregister_memory_section(ms);
684 if (ret)
685 return ret;
686
687 scn_nr = __section_nr(ms);
688 start_pfn = section_nr_to_pfn(scn_nr);
689 __remove_zone(zone, start_pfn);
690
691 sparse_remove_one_section(zone, ms);
692 return 0;
693 }
694
695 /**
696 * __remove_pages() - remove sections of pages from a zone
697 * @zone: zone from which pages need to be removed
698 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
699 * @nr_pages: number of pages to remove (must be multiple of section size)
700 *
701 * Generic helper function to remove section mappings and sysfs entries
702 * for the section of the memory we are removing. Caller needs to make
703 * sure that pages are marked reserved and zones are adjust properly by
704 * calling offline_pages().
705 */
706 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
707 unsigned long nr_pages)
708 {
709 unsigned long i;
710 int sections_to_remove;
711 resource_size_t start, size;
712 int ret = 0;
713
714 /*
715 * We can only remove entire sections
716 */
717 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
718 BUG_ON(nr_pages % PAGES_PER_SECTION);
719
720 start = phys_start_pfn << PAGE_SHIFT;
721 size = nr_pages * PAGE_SIZE;
722 ret = release_mem_region_adjustable(&iomem_resource, start, size);
723 if (ret) {
724 resource_size_t endres = start + size - 1;
725
726 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
727 &start, &endres, ret);
728 }
729
730 sections_to_remove = nr_pages / PAGES_PER_SECTION;
731 for (i = 0; i < sections_to_remove; i++) {
732 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
733 ret = __remove_section(zone, __pfn_to_section(pfn));
734 if (ret)
735 break;
736 }
737 return ret;
738 }
739 EXPORT_SYMBOL_GPL(__remove_pages);
740 #endif /* CONFIG_MEMORY_HOTREMOVE */
741
742 int set_online_page_callback(online_page_callback_t callback)
743 {
744 int rc = -EINVAL;
745
746 lock_memory_hotplug();
747
748 if (online_page_callback == generic_online_page) {
749 online_page_callback = callback;
750 rc = 0;
751 }
752
753 unlock_memory_hotplug();
754
755 return rc;
756 }
757 EXPORT_SYMBOL_GPL(set_online_page_callback);
758
759 int restore_online_page_callback(online_page_callback_t callback)
760 {
761 int rc = -EINVAL;
762
763 lock_memory_hotplug();
764
765 if (online_page_callback == callback) {
766 online_page_callback = generic_online_page;
767 rc = 0;
768 }
769
770 unlock_memory_hotplug();
771
772 return rc;
773 }
774 EXPORT_SYMBOL_GPL(restore_online_page_callback);
775
776 void __online_page_set_limits(struct page *page)
777 {
778 unsigned long pfn = page_to_pfn(page);
779
780 if (pfn >= num_physpages)
781 num_physpages = pfn + 1;
782 }
783 EXPORT_SYMBOL_GPL(__online_page_set_limits);
784
785 void __online_page_increment_counters(struct page *page)
786 {
787 totalram_pages++;
788
789 #ifdef CONFIG_HIGHMEM
790 if (PageHighMem(page))
791 totalhigh_pages++;
792 #endif
793 }
794 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
795
796 void __online_page_free(struct page *page)
797 {
798 ClearPageReserved(page);
799 init_page_count(page);
800 __free_page(page);
801 }
802 EXPORT_SYMBOL_GPL(__online_page_free);
803
804 static void generic_online_page(struct page *page)
805 {
806 __online_page_set_limits(page);
807 __online_page_increment_counters(page);
808 __online_page_free(page);
809 }
810
811 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
812 void *arg)
813 {
814 unsigned long i;
815 unsigned long onlined_pages = *(unsigned long *)arg;
816 struct page *page;
817 if (PageReserved(pfn_to_page(start_pfn)))
818 for (i = 0; i < nr_pages; i++) {
819 page = pfn_to_page(start_pfn + i);
820 (*online_page_callback)(page);
821 onlined_pages++;
822 }
823 *(unsigned long *)arg = onlined_pages;
824 return 0;
825 }
826
827 #ifdef CONFIG_MOVABLE_NODE
828 /*
829 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
830 * normal memory.
831 */
832 static bool can_online_high_movable(struct zone *zone)
833 {
834 return true;
835 }
836 #else /* CONFIG_MOVABLE_NODE */
837 /* ensure every online node has NORMAL memory */
838 static bool can_online_high_movable(struct zone *zone)
839 {
840 return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
841 }
842 #endif /* CONFIG_MOVABLE_NODE */
843
844 /* check which state of node_states will be changed when online memory */
845 static void node_states_check_changes_online(unsigned long nr_pages,
846 struct zone *zone, struct memory_notify *arg)
847 {
848 int nid = zone_to_nid(zone);
849 enum zone_type zone_last = ZONE_NORMAL;
850
851 /*
852 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
853 * contains nodes which have zones of 0...ZONE_NORMAL,
854 * set zone_last to ZONE_NORMAL.
855 *
856 * If we don't have HIGHMEM nor movable node,
857 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
858 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
859 */
860 if (N_MEMORY == N_NORMAL_MEMORY)
861 zone_last = ZONE_MOVABLE;
862
863 /*
864 * if the memory to be online is in a zone of 0...zone_last, and
865 * the zones of 0...zone_last don't have memory before online, we will
866 * need to set the node to node_states[N_NORMAL_MEMORY] after
867 * the memory is online.
868 */
869 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
870 arg->status_change_nid_normal = nid;
871 else
872 arg->status_change_nid_normal = -1;
873
874 #ifdef CONFIG_HIGHMEM
875 /*
876 * If we have movable node, node_states[N_HIGH_MEMORY]
877 * contains nodes which have zones of 0...ZONE_HIGHMEM,
878 * set zone_last to ZONE_HIGHMEM.
879 *
880 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
881 * contains nodes which have zones of 0...ZONE_MOVABLE,
882 * set zone_last to ZONE_MOVABLE.
883 */
884 zone_last = ZONE_HIGHMEM;
885 if (N_MEMORY == N_HIGH_MEMORY)
886 zone_last = ZONE_MOVABLE;
887
888 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
889 arg->status_change_nid_high = nid;
890 else
891 arg->status_change_nid_high = -1;
892 #else
893 arg->status_change_nid_high = arg->status_change_nid_normal;
894 #endif
895
896 /*
897 * if the node don't have memory befor online, we will need to
898 * set the node to node_states[N_MEMORY] after the memory
899 * is online.
900 */
901 if (!node_state(nid, N_MEMORY))
902 arg->status_change_nid = nid;
903 else
904 arg->status_change_nid = -1;
905 }
906
907 static void node_states_set_node(int node, struct memory_notify *arg)
908 {
909 if (arg->status_change_nid_normal >= 0)
910 node_set_state(node, N_NORMAL_MEMORY);
911
912 if (arg->status_change_nid_high >= 0)
913 node_set_state(node, N_HIGH_MEMORY);
914
915 node_set_state(node, N_MEMORY);
916 }
917
918
919 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
920 {
921 unsigned long onlined_pages = 0;
922 struct zone *zone;
923 int need_zonelists_rebuild = 0;
924 int nid;
925 int ret;
926 struct memory_notify arg;
927
928 lock_memory_hotplug();
929 /*
930 * This doesn't need a lock to do pfn_to_page().
931 * The section can't be removed here because of the
932 * memory_block->state_mutex.
933 */
934 zone = page_zone(pfn_to_page(pfn));
935
936 if ((zone_idx(zone) > ZONE_NORMAL || online_type == ONLINE_MOVABLE) &&
937 !can_online_high_movable(zone)) {
938 unlock_memory_hotplug();
939 return -1;
940 }
941
942 if (online_type == ONLINE_KERNEL && zone_idx(zone) == ZONE_MOVABLE) {
943 if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages)) {
944 unlock_memory_hotplug();
945 return -1;
946 }
947 }
948 if (online_type == ONLINE_MOVABLE && zone_idx(zone) == ZONE_MOVABLE - 1) {
949 if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages)) {
950 unlock_memory_hotplug();
951 return -1;
952 }
953 }
954
955 /* Previous code may changed the zone of the pfn range */
956 zone = page_zone(pfn_to_page(pfn));
957
958 arg.start_pfn = pfn;
959 arg.nr_pages = nr_pages;
960 node_states_check_changes_online(nr_pages, zone, &arg);
961
962 nid = page_to_nid(pfn_to_page(pfn));
963
964 ret = memory_notify(MEM_GOING_ONLINE, &arg);
965 ret = notifier_to_errno(ret);
966 if (ret) {
967 memory_notify(MEM_CANCEL_ONLINE, &arg);
968 unlock_memory_hotplug();
969 return ret;
970 }
971 /*
972 * If this zone is not populated, then it is not in zonelist.
973 * This means the page allocator ignores this zone.
974 * So, zonelist must be updated after online.
975 */
976 mutex_lock(&zonelists_mutex);
977 if (!populated_zone(zone)) {
978 need_zonelists_rebuild = 1;
979 build_all_zonelists(NULL, zone);
980 }
981
982 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
983 online_pages_range);
984 if (ret) {
985 if (need_zonelists_rebuild)
986 zone_pcp_reset(zone);
987 mutex_unlock(&zonelists_mutex);
988 printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n",
989 (unsigned long long) pfn << PAGE_SHIFT,
990 (((unsigned long long) pfn + nr_pages)
991 << PAGE_SHIFT) - 1);
992 memory_notify(MEM_CANCEL_ONLINE, &arg);
993 unlock_memory_hotplug();
994 return ret;
995 }
996
997 zone->managed_pages += onlined_pages;
998 zone->present_pages += onlined_pages;
999 zone->zone_pgdat->node_present_pages += onlined_pages;
1000 if (onlined_pages) {
1001 node_states_set_node(zone_to_nid(zone), &arg);
1002 if (need_zonelists_rebuild)
1003 build_all_zonelists(NULL, NULL);
1004 else
1005 zone_pcp_update(zone);
1006 }
1007
1008 mutex_unlock(&zonelists_mutex);
1009
1010 init_per_zone_wmark_min();
1011
1012 if (onlined_pages)
1013 kswapd_run(zone_to_nid(zone));
1014
1015 vm_total_pages = nr_free_pagecache_pages();
1016
1017 writeback_set_ratelimit();
1018
1019 if (onlined_pages)
1020 memory_notify(MEM_ONLINE, &arg);
1021 unlock_memory_hotplug();
1022
1023 return 0;
1024 }
1025 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1026
1027 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1028 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1029 {
1030 struct pglist_data *pgdat;
1031 unsigned long zones_size[MAX_NR_ZONES] = {0};
1032 unsigned long zholes_size[MAX_NR_ZONES] = {0};
1033 unsigned long start_pfn = start >> PAGE_SHIFT;
1034
1035 pgdat = NODE_DATA(nid);
1036 if (!pgdat) {
1037 pgdat = arch_alloc_nodedata(nid);
1038 if (!pgdat)
1039 return NULL;
1040
1041 arch_refresh_nodedata(nid, pgdat);
1042 } else {
1043 /* Reset the nr_zones and classzone_idx to 0 before reuse */
1044 pgdat->nr_zones = 0;
1045 pgdat->classzone_idx = 0;
1046 }
1047
1048 /* we can use NODE_DATA(nid) from here */
1049
1050 /* init node's zones as empty zones, we don't have any present pages.*/
1051 free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1052
1053 /*
1054 * The node we allocated has no zone fallback lists. For avoiding
1055 * to access not-initialized zonelist, build here.
1056 */
1057 mutex_lock(&zonelists_mutex);
1058 build_all_zonelists(pgdat, NULL);
1059 mutex_unlock(&zonelists_mutex);
1060
1061 return pgdat;
1062 }
1063
1064 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1065 {
1066 arch_refresh_nodedata(nid, NULL);
1067 arch_free_nodedata(pgdat);
1068 return;
1069 }
1070
1071
1072 /*
1073 * called by cpu_up() to online a node without onlined memory.
1074 */
1075 int mem_online_node(int nid)
1076 {
1077 pg_data_t *pgdat;
1078 int ret;
1079
1080 lock_memory_hotplug();
1081 pgdat = hotadd_new_pgdat(nid, 0);
1082 if (!pgdat) {
1083 ret = -ENOMEM;
1084 goto out;
1085 }
1086 node_set_online(nid);
1087 ret = register_one_node(nid);
1088 BUG_ON(ret);
1089
1090 out:
1091 unlock_memory_hotplug();
1092 return ret;
1093 }
1094
1095 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1096 int __ref add_memory(int nid, u64 start, u64 size)
1097 {
1098 pg_data_t *pgdat = NULL;
1099 bool new_pgdat;
1100 bool new_node;
1101 struct resource *res;
1102 int ret;
1103
1104 lock_memory_hotplug();
1105
1106 res = register_memory_resource(start, size);
1107 ret = -EEXIST;
1108 if (!res)
1109 goto out;
1110
1111 { /* Stupid hack to suppress address-never-null warning */
1112 void *p = NODE_DATA(nid);
1113 new_pgdat = !p;
1114 }
1115 new_node = !node_online(nid);
1116 if (new_node) {
1117 pgdat = hotadd_new_pgdat(nid, start);
1118 ret = -ENOMEM;
1119 if (!pgdat)
1120 goto error;
1121 }
1122
1123 /* call arch's memory hotadd */
1124 ret = arch_add_memory(nid, start, size);
1125
1126 if (ret < 0)
1127 goto error;
1128
1129 /* we online node here. we can't roll back from here. */
1130 node_set_online(nid);
1131
1132 if (new_node) {
1133 ret = register_one_node(nid);
1134 /*
1135 * If sysfs file of new node can't create, cpu on the node
1136 * can't be hot-added. There is no rollback way now.
1137 * So, check by BUG_ON() to catch it reluctantly..
1138 */
1139 BUG_ON(ret);
1140 }
1141
1142 /* create new memmap entry */
1143 firmware_map_add_hotplug(start, start + size, "System RAM");
1144
1145 goto out;
1146
1147 error:
1148 /* rollback pgdat allocation and others */
1149 if (new_pgdat)
1150 rollback_node_hotadd(nid, pgdat);
1151 release_memory_resource(res);
1152
1153 out:
1154 unlock_memory_hotplug();
1155 return ret;
1156 }
1157 EXPORT_SYMBOL_GPL(add_memory);
1158
1159 #ifdef CONFIG_MEMORY_HOTREMOVE
1160 /*
1161 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1162 * set and the size of the free page is given by page_order(). Using this,
1163 * the function determines if the pageblock contains only free pages.
1164 * Due to buddy contraints, a free page at least the size of a pageblock will
1165 * be located at the start of the pageblock
1166 */
1167 static inline int pageblock_free(struct page *page)
1168 {
1169 return PageBuddy(page) && page_order(page) >= pageblock_order;
1170 }
1171
1172 /* Return the start of the next active pageblock after a given page */
1173 static struct page *next_active_pageblock(struct page *page)
1174 {
1175 /* Ensure the starting page is pageblock-aligned */
1176 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1177
1178 /* If the entire pageblock is free, move to the end of free page */
1179 if (pageblock_free(page)) {
1180 int order;
1181 /* be careful. we don't have locks, page_order can be changed.*/
1182 order = page_order(page);
1183 if ((order < MAX_ORDER) && (order >= pageblock_order))
1184 return page + (1 << order);
1185 }
1186
1187 return page + pageblock_nr_pages;
1188 }
1189
1190 /* Checks if this range of memory is likely to be hot-removable. */
1191 int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1192 {
1193 struct page *page = pfn_to_page(start_pfn);
1194 struct page *end_page = page + nr_pages;
1195
1196 /* Check the starting page of each pageblock within the range */
1197 for (; page < end_page; page = next_active_pageblock(page)) {
1198 if (!is_pageblock_removable_nolock(page))
1199 return 0;
1200 cond_resched();
1201 }
1202
1203 /* All pageblocks in the memory block are likely to be hot-removable */
1204 return 1;
1205 }
1206
1207 /*
1208 * Confirm all pages in a range [start, end) is belongs to the same zone.
1209 */
1210 static int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1211 {
1212 unsigned long pfn, sec_end_pfn;
1213 struct zone *zone = NULL;
1214 struct page *page;
1215 int i;
1216 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn);
1217 pfn < end_pfn;
1218 pfn = sec_end_pfn + 1, sec_end_pfn += PAGES_PER_SECTION) {
1219 /* Make sure the memory section is present first */
1220 if (!present_section_nr(pfn_to_section_nr(pfn)))
1221 continue;
1222 for (; pfn < sec_end_pfn && pfn < end_pfn;
1223 pfn += MAX_ORDER_NR_PAGES) {
1224 i = 0;
1225 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1226 while ((i < MAX_ORDER_NR_PAGES) &&
1227 !pfn_valid_within(pfn + i))
1228 i++;
1229 if (i == MAX_ORDER_NR_PAGES)
1230 continue;
1231 page = pfn_to_page(pfn + i);
1232 if (zone && page_zone(page) != zone)
1233 return 0;
1234 zone = page_zone(page);
1235 }
1236 }
1237 return 1;
1238 }
1239
1240 /*
1241 * Scanning pfn is much easier than scanning lru list.
1242 * Scan pfn from start to end and Find LRU page.
1243 */
1244 static unsigned long scan_lru_pages(unsigned long start, unsigned long end)
1245 {
1246 unsigned long pfn;
1247 struct page *page;
1248 for (pfn = start; pfn < end; pfn++) {
1249 if (pfn_valid(pfn)) {
1250 page = pfn_to_page(pfn);
1251 if (PageLRU(page))
1252 return pfn;
1253 }
1254 }
1255 return 0;
1256 }
1257
1258 #define NR_OFFLINE_AT_ONCE_PAGES (256)
1259 static int
1260 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1261 {
1262 unsigned long pfn;
1263 struct page *page;
1264 int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1265 int not_managed = 0;
1266 int ret = 0;
1267 LIST_HEAD(source);
1268
1269 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1270 if (!pfn_valid(pfn))
1271 continue;
1272 page = pfn_to_page(pfn);
1273 if (!get_page_unless_zero(page))
1274 continue;
1275 /*
1276 * We can skip free pages. And we can only deal with pages on
1277 * LRU.
1278 */
1279 ret = isolate_lru_page(page);
1280 if (!ret) { /* Success */
1281 put_page(page);
1282 list_add_tail(&page->lru, &source);
1283 move_pages--;
1284 inc_zone_page_state(page, NR_ISOLATED_ANON +
1285 page_is_file_cache(page));
1286
1287 } else {
1288 #ifdef CONFIG_DEBUG_VM
1289 printk(KERN_ALERT "removing pfn %lx from LRU failed\n",
1290 pfn);
1291 dump_page(page);
1292 #endif
1293 put_page(page);
1294 /* Because we don't have big zone->lock. we should
1295 check this again here. */
1296 if (page_count(page)) {
1297 not_managed++;
1298 ret = -EBUSY;
1299 break;
1300 }
1301 }
1302 }
1303 if (!list_empty(&source)) {
1304 if (not_managed) {
1305 putback_lru_pages(&source);
1306 goto out;
1307 }
1308
1309 /*
1310 * alloc_migrate_target should be improooooved!!
1311 * migrate_pages returns # of failed pages.
1312 */
1313 ret = migrate_pages(&source, alloc_migrate_target, 0,
1314 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1315 if (ret)
1316 putback_lru_pages(&source);
1317 }
1318 out:
1319 return ret;
1320 }
1321
1322 /*
1323 * remove from free_area[] and mark all as Reserved.
1324 */
1325 static int
1326 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1327 void *data)
1328 {
1329 __offline_isolated_pages(start, start + nr_pages);
1330 return 0;
1331 }
1332
1333 static void
1334 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1335 {
1336 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1337 offline_isolated_pages_cb);
1338 }
1339
1340 /*
1341 * Check all pages in range, recoreded as memory resource, are isolated.
1342 */
1343 static int
1344 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1345 void *data)
1346 {
1347 int ret;
1348 long offlined = *(long *)data;
1349 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1350 offlined = nr_pages;
1351 if (!ret)
1352 *(long *)data += offlined;
1353 return ret;
1354 }
1355
1356 static long
1357 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1358 {
1359 long offlined = 0;
1360 int ret;
1361
1362 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1363 check_pages_isolated_cb);
1364 if (ret < 0)
1365 offlined = (long)ret;
1366 return offlined;
1367 }
1368
1369 #ifdef CONFIG_MOVABLE_NODE
1370 /*
1371 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1372 * normal memory.
1373 */
1374 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1375 {
1376 return true;
1377 }
1378 #else /* CONFIG_MOVABLE_NODE */
1379 /* ensure the node has NORMAL memory if it is still online */
1380 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1381 {
1382 struct pglist_data *pgdat = zone->zone_pgdat;
1383 unsigned long present_pages = 0;
1384 enum zone_type zt;
1385
1386 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1387 present_pages += pgdat->node_zones[zt].present_pages;
1388
1389 if (present_pages > nr_pages)
1390 return true;
1391
1392 present_pages = 0;
1393 for (; zt <= ZONE_MOVABLE; zt++)
1394 present_pages += pgdat->node_zones[zt].present_pages;
1395
1396 /*
1397 * we can't offline the last normal memory until all
1398 * higher memory is offlined.
1399 */
1400 return present_pages == 0;
1401 }
1402 #endif /* CONFIG_MOVABLE_NODE */
1403
1404 /* check which state of node_states will be changed when offline memory */
1405 static void node_states_check_changes_offline(unsigned long nr_pages,
1406 struct zone *zone, struct memory_notify *arg)
1407 {
1408 struct pglist_data *pgdat = zone->zone_pgdat;
1409 unsigned long present_pages = 0;
1410 enum zone_type zt, zone_last = ZONE_NORMAL;
1411
1412 /*
1413 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1414 * contains nodes which have zones of 0...ZONE_NORMAL,
1415 * set zone_last to ZONE_NORMAL.
1416 *
1417 * If we don't have HIGHMEM nor movable node,
1418 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1419 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1420 */
1421 if (N_MEMORY == N_NORMAL_MEMORY)
1422 zone_last = ZONE_MOVABLE;
1423
1424 /*
1425 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1426 * If the memory to be offline is in a zone of 0...zone_last,
1427 * and it is the last present memory, 0...zone_last will
1428 * become empty after offline , thus we can determind we will
1429 * need to clear the node from node_states[N_NORMAL_MEMORY].
1430 */
1431 for (zt = 0; zt <= zone_last; zt++)
1432 present_pages += pgdat->node_zones[zt].present_pages;
1433 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1434 arg->status_change_nid_normal = zone_to_nid(zone);
1435 else
1436 arg->status_change_nid_normal = -1;
1437
1438 #ifdef CONFIG_HIGHMEM
1439 /*
1440 * If we have movable node, node_states[N_HIGH_MEMORY]
1441 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1442 * set zone_last to ZONE_HIGHMEM.
1443 *
1444 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1445 * contains nodes which have zones of 0...ZONE_MOVABLE,
1446 * set zone_last to ZONE_MOVABLE.
1447 */
1448 zone_last = ZONE_HIGHMEM;
1449 if (N_MEMORY == N_HIGH_MEMORY)
1450 zone_last = ZONE_MOVABLE;
1451
1452 for (; zt <= zone_last; zt++)
1453 present_pages += pgdat->node_zones[zt].present_pages;
1454 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1455 arg->status_change_nid_high = zone_to_nid(zone);
1456 else
1457 arg->status_change_nid_high = -1;
1458 #else
1459 arg->status_change_nid_high = arg->status_change_nid_normal;
1460 #endif
1461
1462 /*
1463 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1464 */
1465 zone_last = ZONE_MOVABLE;
1466
1467 /*
1468 * check whether node_states[N_HIGH_MEMORY] will be changed
1469 * If we try to offline the last present @nr_pages from the node,
1470 * we can determind we will need to clear the node from
1471 * node_states[N_HIGH_MEMORY].
1472 */
1473 for (; zt <= zone_last; zt++)
1474 present_pages += pgdat->node_zones[zt].present_pages;
1475 if (nr_pages >= present_pages)
1476 arg->status_change_nid = zone_to_nid(zone);
1477 else
1478 arg->status_change_nid = -1;
1479 }
1480
1481 static void node_states_clear_node(int node, struct memory_notify *arg)
1482 {
1483 if (arg->status_change_nid_normal >= 0)
1484 node_clear_state(node, N_NORMAL_MEMORY);
1485
1486 if ((N_MEMORY != N_NORMAL_MEMORY) &&
1487 (arg->status_change_nid_high >= 0))
1488 node_clear_state(node, N_HIGH_MEMORY);
1489
1490 if ((N_MEMORY != N_HIGH_MEMORY) &&
1491 (arg->status_change_nid >= 0))
1492 node_clear_state(node, N_MEMORY);
1493 }
1494
1495 static int __ref __offline_pages(unsigned long start_pfn,
1496 unsigned long end_pfn, unsigned long timeout)
1497 {
1498 unsigned long pfn, nr_pages, expire;
1499 long offlined_pages;
1500 int ret, drain, retry_max, node;
1501 struct zone *zone;
1502 struct memory_notify arg;
1503
1504 BUG_ON(start_pfn >= end_pfn);
1505 /* at least, alignment against pageblock is necessary */
1506 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1507 return -EINVAL;
1508 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1509 return -EINVAL;
1510 /* This makes hotplug much easier...and readable.
1511 we assume this for now. .*/
1512 if (!test_pages_in_a_zone(start_pfn, end_pfn))
1513 return -EINVAL;
1514
1515 lock_memory_hotplug();
1516
1517 zone = page_zone(pfn_to_page(start_pfn));
1518 node = zone_to_nid(zone);
1519 nr_pages = end_pfn - start_pfn;
1520
1521 ret = -EINVAL;
1522 if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1523 goto out;
1524
1525 /* set above range as isolated */
1526 ret = start_isolate_page_range(start_pfn, end_pfn,
1527 MIGRATE_MOVABLE, true);
1528 if (ret)
1529 goto out;
1530
1531 arg.start_pfn = start_pfn;
1532 arg.nr_pages = nr_pages;
1533 node_states_check_changes_offline(nr_pages, zone, &arg);
1534
1535 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1536 ret = notifier_to_errno(ret);
1537 if (ret)
1538 goto failed_removal;
1539
1540 pfn = start_pfn;
1541 expire = jiffies + timeout;
1542 drain = 0;
1543 retry_max = 5;
1544 repeat:
1545 /* start memory hot removal */
1546 ret = -EAGAIN;
1547 if (time_after(jiffies, expire))
1548 goto failed_removal;
1549 ret = -EINTR;
1550 if (signal_pending(current))
1551 goto failed_removal;
1552 ret = 0;
1553 if (drain) {
1554 lru_add_drain_all();
1555 cond_resched();
1556 drain_all_pages();
1557 }
1558
1559 pfn = scan_lru_pages(start_pfn, end_pfn);
1560 if (pfn) { /* We have page on LRU */
1561 ret = do_migrate_range(pfn, end_pfn);
1562 if (!ret) {
1563 drain = 1;
1564 goto repeat;
1565 } else {
1566 if (ret < 0)
1567 if (--retry_max == 0)
1568 goto failed_removal;
1569 yield();
1570 drain = 1;
1571 goto repeat;
1572 }
1573 }
1574 /* drain all zone's lru pagevec, this is asynchronous... */
1575 lru_add_drain_all();
1576 yield();
1577 /* drain pcp pages, this is synchronous. */
1578 drain_all_pages();
1579 /* check again */
1580 offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1581 if (offlined_pages < 0) {
1582 ret = -EBUSY;
1583 goto failed_removal;
1584 }
1585 printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages);
1586 /* Ok, all of our target is isolated.
1587 We cannot do rollback at this point. */
1588 offline_isolated_pages(start_pfn, end_pfn);
1589 /* reset pagetype flags and makes migrate type to be MOVABLE */
1590 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1591 /* removal success */
1592 zone->managed_pages -= offlined_pages;
1593 zone->present_pages -= offlined_pages;
1594 zone->zone_pgdat->node_present_pages -= offlined_pages;
1595 totalram_pages -= offlined_pages;
1596
1597 init_per_zone_wmark_min();
1598
1599 if (!populated_zone(zone)) {
1600 zone_pcp_reset(zone);
1601 mutex_lock(&zonelists_mutex);
1602 build_all_zonelists(NULL, NULL);
1603 mutex_unlock(&zonelists_mutex);
1604 } else
1605 zone_pcp_update(zone);
1606
1607 node_states_clear_node(node, &arg);
1608 if (arg.status_change_nid >= 0)
1609 kswapd_stop(node);
1610
1611 vm_total_pages = nr_free_pagecache_pages();
1612 writeback_set_ratelimit();
1613
1614 memory_notify(MEM_OFFLINE, &arg);
1615 unlock_memory_hotplug();
1616 return 0;
1617
1618 failed_removal:
1619 printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n",
1620 (unsigned long long) start_pfn << PAGE_SHIFT,
1621 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1622 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1623 /* pushback to free area */
1624 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1625
1626 out:
1627 unlock_memory_hotplug();
1628 return ret;
1629 }
1630
1631 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1632 {
1633 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1634 }
1635
1636 /**
1637 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1638 * @start_pfn: start pfn of the memory range
1639 * @end_pfn: end pfn of the memory range
1640 * @arg: argument passed to func
1641 * @func: callback for each memory section walked
1642 *
1643 * This function walks through all present mem sections in range
1644 * [start_pfn, end_pfn) and call func on each mem section.
1645 *
1646 * Returns the return value of func.
1647 */
1648 static int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1649 void *arg, int (*func)(struct memory_block *, void *))
1650 {
1651 struct memory_block *mem = NULL;
1652 struct mem_section *section;
1653 unsigned long pfn, section_nr;
1654 int ret;
1655
1656 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1657 section_nr = pfn_to_section_nr(pfn);
1658 if (!present_section_nr(section_nr))
1659 continue;
1660
1661 section = __nr_to_section(section_nr);
1662 /* same memblock? */
1663 if (mem)
1664 if ((section_nr >= mem->start_section_nr) &&
1665 (section_nr <= mem->end_section_nr))
1666 continue;
1667
1668 mem = find_memory_block_hinted(section, mem);
1669 if (!mem)
1670 continue;
1671
1672 ret = func(mem, arg);
1673 if (ret) {
1674 kobject_put(&mem->dev.kobj);
1675 return ret;
1676 }
1677 }
1678
1679 if (mem)
1680 kobject_put(&mem->dev.kobj);
1681
1682 return 0;
1683 }
1684
1685 /**
1686 * offline_memory_block_cb - callback function for offlining memory block
1687 * @mem: the memory block to be offlined
1688 * @arg: buffer to hold error msg
1689 *
1690 * Always return 0, and put the error msg in arg if any.
1691 */
1692 static int offline_memory_block_cb(struct memory_block *mem, void *arg)
1693 {
1694 int *ret = arg;
1695 int error = offline_memory_block(mem);
1696
1697 if (error != 0 && *ret == 0)
1698 *ret = error;
1699
1700 return 0;
1701 }
1702
1703 static int is_memblock_offlined_cb(struct memory_block *mem, void *arg)
1704 {
1705 int ret = !is_memblock_offlined(mem);
1706
1707 if (unlikely(ret)) {
1708 phys_addr_t beginpa, endpa;
1709
1710 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1711 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1712 pr_warn("removing memory fails, because memory "
1713 "[%pa-%pa] is onlined\n",
1714 &beginpa, &endpa);
1715 }
1716
1717 return ret;
1718 }
1719
1720 static int check_cpu_on_node(void *data)
1721 {
1722 struct pglist_data *pgdat = data;
1723 int cpu;
1724
1725 for_each_present_cpu(cpu) {
1726 if (cpu_to_node(cpu) == pgdat->node_id)
1727 /*
1728 * the cpu on this node isn't removed, and we can't
1729 * offline this node.
1730 */
1731 return -EBUSY;
1732 }
1733
1734 return 0;
1735 }
1736
1737 static void unmap_cpu_on_node(void *data)
1738 {
1739 #ifdef CONFIG_ACPI_NUMA
1740 struct pglist_data *pgdat = data;
1741 int cpu;
1742
1743 for_each_possible_cpu(cpu)
1744 if (cpu_to_node(cpu) == pgdat->node_id)
1745 numa_clear_node(cpu);
1746 #endif
1747 }
1748
1749 static int check_and_unmap_cpu_on_node(void *data)
1750 {
1751 int ret = check_cpu_on_node(data);
1752
1753 if (ret)
1754 return ret;
1755
1756 /*
1757 * the node will be offlined when we come here, so we can clear
1758 * the cpu_to_node() now.
1759 */
1760
1761 unmap_cpu_on_node(data);
1762 return 0;
1763 }
1764
1765 /* offline the node if all memory sections of this node are removed */
1766 void try_offline_node(int nid)
1767 {
1768 pg_data_t *pgdat = NODE_DATA(nid);
1769 unsigned long start_pfn = pgdat->node_start_pfn;
1770 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1771 unsigned long pfn;
1772 struct page *pgdat_page = virt_to_page(pgdat);
1773 int i;
1774
1775 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1776 unsigned long section_nr = pfn_to_section_nr(pfn);
1777
1778 if (!present_section_nr(section_nr))
1779 continue;
1780
1781 if (pfn_to_nid(pfn) != nid)
1782 continue;
1783
1784 /*
1785 * some memory sections of this node are not removed, and we
1786 * can't offline node now.
1787 */
1788 return;
1789 }
1790
1791 if (stop_machine(check_and_unmap_cpu_on_node, pgdat, NULL))
1792 return;
1793
1794 /*
1795 * all memory/cpu of this node are removed, we can offline this
1796 * node now.
1797 */
1798 node_set_offline(nid);
1799 unregister_one_node(nid);
1800
1801 if (!PageSlab(pgdat_page) && !PageCompound(pgdat_page))
1802 /* node data is allocated from boot memory */
1803 return;
1804
1805 /* free waittable in each zone */
1806 for (i = 0; i < MAX_NR_ZONES; i++) {
1807 struct zone *zone = pgdat->node_zones + i;
1808
1809 /*
1810 * wait_table may be allocated from boot memory,
1811 * here only free if it's allocated by vmalloc.
1812 */
1813 if (is_vmalloc_addr(zone->wait_table)) {
1814 vfree(zone->wait_table);
1815 zone->wait_table = NULL;
1816 }
1817 }
1818 }
1819 EXPORT_SYMBOL(try_offline_node);
1820
1821 int __ref remove_memory(int nid, u64 start, u64 size)
1822 {
1823 unsigned long start_pfn, end_pfn;
1824 int ret = 0;
1825 int retry = 1;
1826
1827 start_pfn = PFN_DOWN(start);
1828 end_pfn = PFN_UP(start + size - 1);
1829
1830 /*
1831 * When CONFIG_MEMCG is on, one memory block may be used by other
1832 * blocks to store page cgroup when onlining pages. But we don't know
1833 * in what order pages are onlined. So we iterate twice to offline
1834 * memory:
1835 * 1st iterate: offline every non primary memory block.
1836 * 2nd iterate: offline primary (i.e. first added) memory block.
1837 */
1838 repeat:
1839 walk_memory_range(start_pfn, end_pfn, &ret,
1840 offline_memory_block_cb);
1841 if (ret) {
1842 if (!retry)
1843 return ret;
1844
1845 retry = 0;
1846 ret = 0;
1847 goto repeat;
1848 }
1849
1850 lock_memory_hotplug();
1851
1852 /*
1853 * we have offlined all memory blocks like this:
1854 * 1. lock memory hotplug
1855 * 2. offline a memory block
1856 * 3. unlock memory hotplug
1857 *
1858 * repeat step1-3 to offline the memory block. All memory blocks
1859 * must be offlined before removing memory. But we don't hold the
1860 * lock in the whole operation. So we should check whether all
1861 * memory blocks are offlined.
1862 */
1863
1864 ret = walk_memory_range(start_pfn, end_pfn, NULL,
1865 is_memblock_offlined_cb);
1866 if (ret) {
1867 unlock_memory_hotplug();
1868 return ret;
1869 }
1870
1871 /* remove memmap entry */
1872 firmware_map_remove(start, start + size, "System RAM");
1873
1874 arch_remove_memory(start, size);
1875
1876 try_offline_node(nid);
1877
1878 unlock_memory_hotplug();
1879
1880 return 0;
1881 }
1882 #else
1883 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1884 {
1885 return -EINVAL;
1886 }
1887 int remove_memory(int nid, u64 start, u64 size)
1888 {
1889 return -EINVAL;
1890 }
1891 #endif /* CONFIG_MEMORY_HOTREMOVE */
1892 EXPORT_SYMBOL_GPL(remove_memory);