Merge remote-tracking branch 'asoc/fix/tlv320aic3x' into asoc-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69
70 #include "internal.h"
71
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif
75
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
80
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
84
85 unsigned long num_physpages;
86 /*
87 * A number of key systems in x86 including ioremap() rely on the assumption
88 * that high_memory defines the upper bound on direct map memory, then end
89 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
90 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91 * and ZONE_HIGHMEM.
92 */
93 void * high_memory;
94
95 EXPORT_SYMBOL(num_physpages);
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99 * Randomize the address space (stacks, mmaps, brk, etc.).
100 *
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
103 */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 1;
107 #else
108 2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113 randomize_va_space = 0;
114 return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 /*
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123 */
124 static int __init init_zero_pfn(void)
125 {
126 zero_pfn = page_to_pfn(ZERO_PAGE(0));
127 return 0;
128 }
129 core_initcall(init_zero_pfn);
130
131
132 #if defined(SPLIT_RSS_COUNTING)
133
134 void sync_mm_rss(struct mm_struct *mm)
135 {
136 int i;
137
138 for (i = 0; i < NR_MM_COUNTERS; i++) {
139 if (current->rss_stat.count[i]) {
140 add_mm_counter(mm, i, current->rss_stat.count[i]);
141 current->rss_stat.count[i] = 0;
142 }
143 }
144 current->rss_stat.events = 0;
145 }
146
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148 {
149 struct task_struct *task = current;
150
151 if (likely(task->mm == mm))
152 task->rss_stat.count[member] += val;
153 else
154 add_mm_counter(mm, member, val);
155 }
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH (64)
161 static void check_sync_rss_stat(struct task_struct *task)
162 {
163 if (unlikely(task != current))
164 return;
165 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166 sync_mm_rss(task->mm);
167 }
168 #else /* SPLIT_RSS_COUNTING */
169
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 }
176
177 #endif /* SPLIT_RSS_COUNTING */
178
179 #ifdef HAVE_GENERIC_MMU_GATHER
180
181 static int tlb_next_batch(struct mmu_gather *tlb)
182 {
183 struct mmu_gather_batch *batch;
184
185 batch = tlb->active;
186 if (batch->next) {
187 tlb->active = batch->next;
188 return 1;
189 }
190
191 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192 return 0;
193
194 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195 if (!batch)
196 return 0;
197
198 tlb->batch_count++;
199 batch->next = NULL;
200 batch->nr = 0;
201 batch->max = MAX_GATHER_BATCH;
202
203 tlb->active->next = batch;
204 tlb->active = batch;
205
206 return 1;
207 }
208
209 /* tlb_gather_mmu
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
213 */
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
215 {
216 tlb->mm = mm;
217
218 tlb->fullmm = fullmm;
219 tlb->need_flush_all = 0;
220 tlb->start = -1UL;
221 tlb->end = 0;
222 tlb->need_flush = 0;
223 tlb->local.next = NULL;
224 tlb->local.nr = 0;
225 tlb->local.max = ARRAY_SIZE(tlb->__pages);
226 tlb->active = &tlb->local;
227 tlb->batch_count = 0;
228
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb->batch = NULL;
231 #endif
232 }
233
234 void tlb_flush_mmu(struct mmu_gather *tlb)
235 {
236 struct mmu_gather_batch *batch;
237
238 if (!tlb->need_flush)
239 return;
240 tlb->need_flush = 0;
241 tlb_flush(tlb);
242 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
243 tlb_table_flush(tlb);
244 #endif
245
246 for (batch = &tlb->local; batch; batch = batch->next) {
247 free_pages_and_swap_cache(batch->pages, batch->nr);
248 batch->nr = 0;
249 }
250 tlb->active = &tlb->local;
251 }
252
253 /* tlb_finish_mmu
254 * Called at the end of the shootdown operation to free up any resources
255 * that were required.
256 */
257 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
258 {
259 struct mmu_gather_batch *batch, *next;
260
261 tlb->start = start;
262 tlb->end = end;
263 tlb_flush_mmu(tlb);
264
265 /* keep the page table cache within bounds */
266 check_pgt_cache();
267
268 for (batch = tlb->local.next; batch; batch = next) {
269 next = batch->next;
270 free_pages((unsigned long)batch, 0);
271 }
272 tlb->local.next = NULL;
273 }
274
275 /* __tlb_remove_page
276 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
277 * handling the additional races in SMP caused by other CPUs caching valid
278 * mappings in their TLBs. Returns the number of free page slots left.
279 * When out of page slots we must call tlb_flush_mmu().
280 */
281 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
282 {
283 struct mmu_gather_batch *batch;
284
285 VM_BUG_ON(!tlb->need_flush);
286
287 batch = tlb->active;
288 batch->pages[batch->nr++] = page;
289 if (batch->nr == batch->max) {
290 if (!tlb_next_batch(tlb))
291 return 0;
292 batch = tlb->active;
293 }
294 VM_BUG_ON(batch->nr > batch->max);
295
296 return batch->max - batch->nr;
297 }
298
299 #endif /* HAVE_GENERIC_MMU_GATHER */
300
301 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
302
303 /*
304 * See the comment near struct mmu_table_batch.
305 */
306
307 static void tlb_remove_table_smp_sync(void *arg)
308 {
309 /* Simply deliver the interrupt */
310 }
311
312 static void tlb_remove_table_one(void *table)
313 {
314 /*
315 * This isn't an RCU grace period and hence the page-tables cannot be
316 * assumed to be actually RCU-freed.
317 *
318 * It is however sufficient for software page-table walkers that rely on
319 * IRQ disabling. See the comment near struct mmu_table_batch.
320 */
321 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
322 __tlb_remove_table(table);
323 }
324
325 static void tlb_remove_table_rcu(struct rcu_head *head)
326 {
327 struct mmu_table_batch *batch;
328 int i;
329
330 batch = container_of(head, struct mmu_table_batch, rcu);
331
332 for (i = 0; i < batch->nr; i++)
333 __tlb_remove_table(batch->tables[i]);
334
335 free_page((unsigned long)batch);
336 }
337
338 void tlb_table_flush(struct mmu_gather *tlb)
339 {
340 struct mmu_table_batch **batch = &tlb->batch;
341
342 if (*batch) {
343 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
344 *batch = NULL;
345 }
346 }
347
348 void tlb_remove_table(struct mmu_gather *tlb, void *table)
349 {
350 struct mmu_table_batch **batch = &tlb->batch;
351
352 tlb->need_flush = 1;
353
354 /*
355 * When there's less then two users of this mm there cannot be a
356 * concurrent page-table walk.
357 */
358 if (atomic_read(&tlb->mm->mm_users) < 2) {
359 __tlb_remove_table(table);
360 return;
361 }
362
363 if (*batch == NULL) {
364 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
365 if (*batch == NULL) {
366 tlb_remove_table_one(table);
367 return;
368 }
369 (*batch)->nr = 0;
370 }
371 (*batch)->tables[(*batch)->nr++] = table;
372 if ((*batch)->nr == MAX_TABLE_BATCH)
373 tlb_table_flush(tlb);
374 }
375
376 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
377
378 /*
379 * If a p?d_bad entry is found while walking page tables, report
380 * the error, before resetting entry to p?d_none. Usually (but
381 * very seldom) called out from the p?d_none_or_clear_bad macros.
382 */
383
384 void pgd_clear_bad(pgd_t *pgd)
385 {
386 pgd_ERROR(*pgd);
387 pgd_clear(pgd);
388 }
389
390 void pud_clear_bad(pud_t *pud)
391 {
392 pud_ERROR(*pud);
393 pud_clear(pud);
394 }
395
396 void pmd_clear_bad(pmd_t *pmd)
397 {
398 pmd_ERROR(*pmd);
399 pmd_clear(pmd);
400 }
401
402 /*
403 * Note: this doesn't free the actual pages themselves. That
404 * has been handled earlier when unmapping all the memory regions.
405 */
406 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
407 unsigned long addr)
408 {
409 pgtable_t token = pmd_pgtable(*pmd);
410 pmd_clear(pmd);
411 pte_free_tlb(tlb, token, addr);
412 tlb->mm->nr_ptes--;
413 }
414
415 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
416 unsigned long addr, unsigned long end,
417 unsigned long floor, unsigned long ceiling)
418 {
419 pmd_t *pmd;
420 unsigned long next;
421 unsigned long start;
422
423 start = addr;
424 pmd = pmd_offset(pud, addr);
425 do {
426 next = pmd_addr_end(addr, end);
427 if (pmd_none_or_clear_bad(pmd))
428 continue;
429 free_pte_range(tlb, pmd, addr);
430 } while (pmd++, addr = next, addr != end);
431
432 start &= PUD_MASK;
433 if (start < floor)
434 return;
435 if (ceiling) {
436 ceiling &= PUD_MASK;
437 if (!ceiling)
438 return;
439 }
440 if (end - 1 > ceiling - 1)
441 return;
442
443 pmd = pmd_offset(pud, start);
444 pud_clear(pud);
445 pmd_free_tlb(tlb, pmd, start);
446 }
447
448 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
449 unsigned long addr, unsigned long end,
450 unsigned long floor, unsigned long ceiling)
451 {
452 pud_t *pud;
453 unsigned long next;
454 unsigned long start;
455
456 start = addr;
457 pud = pud_offset(pgd, addr);
458 do {
459 next = pud_addr_end(addr, end);
460 if (pud_none_or_clear_bad(pud))
461 continue;
462 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
463 } while (pud++, addr = next, addr != end);
464
465 start &= PGDIR_MASK;
466 if (start < floor)
467 return;
468 if (ceiling) {
469 ceiling &= PGDIR_MASK;
470 if (!ceiling)
471 return;
472 }
473 if (end - 1 > ceiling - 1)
474 return;
475
476 pud = pud_offset(pgd, start);
477 pgd_clear(pgd);
478 pud_free_tlb(tlb, pud, start);
479 }
480
481 /*
482 * This function frees user-level page tables of a process.
483 *
484 * Must be called with pagetable lock held.
485 */
486 void free_pgd_range(struct mmu_gather *tlb,
487 unsigned long addr, unsigned long end,
488 unsigned long floor, unsigned long ceiling)
489 {
490 pgd_t *pgd;
491 unsigned long next;
492
493 /*
494 * The next few lines have given us lots of grief...
495 *
496 * Why are we testing PMD* at this top level? Because often
497 * there will be no work to do at all, and we'd prefer not to
498 * go all the way down to the bottom just to discover that.
499 *
500 * Why all these "- 1"s? Because 0 represents both the bottom
501 * of the address space and the top of it (using -1 for the
502 * top wouldn't help much: the masks would do the wrong thing).
503 * The rule is that addr 0 and floor 0 refer to the bottom of
504 * the address space, but end 0 and ceiling 0 refer to the top
505 * Comparisons need to use "end - 1" and "ceiling - 1" (though
506 * that end 0 case should be mythical).
507 *
508 * Wherever addr is brought up or ceiling brought down, we must
509 * be careful to reject "the opposite 0" before it confuses the
510 * subsequent tests. But what about where end is brought down
511 * by PMD_SIZE below? no, end can't go down to 0 there.
512 *
513 * Whereas we round start (addr) and ceiling down, by different
514 * masks at different levels, in order to test whether a table
515 * now has no other vmas using it, so can be freed, we don't
516 * bother to round floor or end up - the tests don't need that.
517 */
518
519 addr &= PMD_MASK;
520 if (addr < floor) {
521 addr += PMD_SIZE;
522 if (!addr)
523 return;
524 }
525 if (ceiling) {
526 ceiling &= PMD_MASK;
527 if (!ceiling)
528 return;
529 }
530 if (end - 1 > ceiling - 1)
531 end -= PMD_SIZE;
532 if (addr > end - 1)
533 return;
534
535 pgd = pgd_offset(tlb->mm, addr);
536 do {
537 next = pgd_addr_end(addr, end);
538 if (pgd_none_or_clear_bad(pgd))
539 continue;
540 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
541 } while (pgd++, addr = next, addr != end);
542 }
543
544 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
545 unsigned long floor, unsigned long ceiling)
546 {
547 while (vma) {
548 struct vm_area_struct *next = vma->vm_next;
549 unsigned long addr = vma->vm_start;
550
551 /*
552 * Hide vma from rmap and truncate_pagecache before freeing
553 * pgtables
554 */
555 unlink_anon_vmas(vma);
556 unlink_file_vma(vma);
557
558 if (is_vm_hugetlb_page(vma)) {
559 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
560 floor, next? next->vm_start: ceiling);
561 } else {
562 /*
563 * Optimization: gather nearby vmas into one call down
564 */
565 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
566 && !is_vm_hugetlb_page(next)) {
567 vma = next;
568 next = vma->vm_next;
569 unlink_anon_vmas(vma);
570 unlink_file_vma(vma);
571 }
572 free_pgd_range(tlb, addr, vma->vm_end,
573 floor, next? next->vm_start: ceiling);
574 }
575 vma = next;
576 }
577 }
578
579 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
580 pmd_t *pmd, unsigned long address)
581 {
582 pgtable_t new = pte_alloc_one(mm, address);
583 int wait_split_huge_page;
584 if (!new)
585 return -ENOMEM;
586
587 /*
588 * Ensure all pte setup (eg. pte page lock and page clearing) are
589 * visible before the pte is made visible to other CPUs by being
590 * put into page tables.
591 *
592 * The other side of the story is the pointer chasing in the page
593 * table walking code (when walking the page table without locking;
594 * ie. most of the time). Fortunately, these data accesses consist
595 * of a chain of data-dependent loads, meaning most CPUs (alpha
596 * being the notable exception) will already guarantee loads are
597 * seen in-order. See the alpha page table accessors for the
598 * smp_read_barrier_depends() barriers in page table walking code.
599 */
600 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
601
602 spin_lock(&mm->page_table_lock);
603 wait_split_huge_page = 0;
604 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
605 mm->nr_ptes++;
606 pmd_populate(mm, pmd, new);
607 new = NULL;
608 } else if (unlikely(pmd_trans_splitting(*pmd)))
609 wait_split_huge_page = 1;
610 spin_unlock(&mm->page_table_lock);
611 if (new)
612 pte_free(mm, new);
613 if (wait_split_huge_page)
614 wait_split_huge_page(vma->anon_vma, pmd);
615 return 0;
616 }
617
618 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
619 {
620 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
621 if (!new)
622 return -ENOMEM;
623
624 smp_wmb(); /* See comment in __pte_alloc */
625
626 spin_lock(&init_mm.page_table_lock);
627 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
628 pmd_populate_kernel(&init_mm, pmd, new);
629 new = NULL;
630 } else
631 VM_BUG_ON(pmd_trans_splitting(*pmd));
632 spin_unlock(&init_mm.page_table_lock);
633 if (new)
634 pte_free_kernel(&init_mm, new);
635 return 0;
636 }
637
638 static inline void init_rss_vec(int *rss)
639 {
640 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
641 }
642
643 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
644 {
645 int i;
646
647 if (current->mm == mm)
648 sync_mm_rss(mm);
649 for (i = 0; i < NR_MM_COUNTERS; i++)
650 if (rss[i])
651 add_mm_counter(mm, i, rss[i]);
652 }
653
654 /*
655 * This function is called to print an error when a bad pte
656 * is found. For example, we might have a PFN-mapped pte in
657 * a region that doesn't allow it.
658 *
659 * The calling function must still handle the error.
660 */
661 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
662 pte_t pte, struct page *page)
663 {
664 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
665 pud_t *pud = pud_offset(pgd, addr);
666 pmd_t *pmd = pmd_offset(pud, addr);
667 struct address_space *mapping;
668 pgoff_t index;
669 static unsigned long resume;
670 static unsigned long nr_shown;
671 static unsigned long nr_unshown;
672
673 /*
674 * Allow a burst of 60 reports, then keep quiet for that minute;
675 * or allow a steady drip of one report per second.
676 */
677 if (nr_shown == 60) {
678 if (time_before(jiffies, resume)) {
679 nr_unshown++;
680 return;
681 }
682 if (nr_unshown) {
683 printk(KERN_ALERT
684 "BUG: Bad page map: %lu messages suppressed\n",
685 nr_unshown);
686 nr_unshown = 0;
687 }
688 nr_shown = 0;
689 }
690 if (nr_shown++ == 0)
691 resume = jiffies + 60 * HZ;
692
693 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
694 index = linear_page_index(vma, addr);
695
696 printk(KERN_ALERT
697 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
698 current->comm,
699 (long long)pte_val(pte), (long long)pmd_val(*pmd));
700 if (page)
701 dump_page(page);
702 printk(KERN_ALERT
703 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
704 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
705 /*
706 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
707 */
708 if (vma->vm_ops)
709 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
710 vma->vm_ops->fault);
711 if (vma->vm_file && vma->vm_file->f_op)
712 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
713 vma->vm_file->f_op->mmap);
714 dump_stack();
715 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
716 }
717
718 static inline bool is_cow_mapping(vm_flags_t flags)
719 {
720 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
721 }
722
723 /*
724 * vm_normal_page -- This function gets the "struct page" associated with a pte.
725 *
726 * "Special" mappings do not wish to be associated with a "struct page" (either
727 * it doesn't exist, or it exists but they don't want to touch it). In this
728 * case, NULL is returned here. "Normal" mappings do have a struct page.
729 *
730 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
731 * pte bit, in which case this function is trivial. Secondly, an architecture
732 * may not have a spare pte bit, which requires a more complicated scheme,
733 * described below.
734 *
735 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
736 * special mapping (even if there are underlying and valid "struct pages").
737 * COWed pages of a VM_PFNMAP are always normal.
738 *
739 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
740 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
741 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
742 * mapping will always honor the rule
743 *
744 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
745 *
746 * And for normal mappings this is false.
747 *
748 * This restricts such mappings to be a linear translation from virtual address
749 * to pfn. To get around this restriction, we allow arbitrary mappings so long
750 * as the vma is not a COW mapping; in that case, we know that all ptes are
751 * special (because none can have been COWed).
752 *
753 *
754 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
755 *
756 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
757 * page" backing, however the difference is that _all_ pages with a struct
758 * page (that is, those where pfn_valid is true) are refcounted and considered
759 * normal pages by the VM. The disadvantage is that pages are refcounted
760 * (which can be slower and simply not an option for some PFNMAP users). The
761 * advantage is that we don't have to follow the strict linearity rule of
762 * PFNMAP mappings in order to support COWable mappings.
763 *
764 */
765 #ifdef __HAVE_ARCH_PTE_SPECIAL
766 # define HAVE_PTE_SPECIAL 1
767 #else
768 # define HAVE_PTE_SPECIAL 0
769 #endif
770 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
771 pte_t pte)
772 {
773 unsigned long pfn = pte_pfn(pte);
774
775 if (HAVE_PTE_SPECIAL) {
776 if (likely(!pte_special(pte)))
777 goto check_pfn;
778 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
779 return NULL;
780 if (!is_zero_pfn(pfn))
781 print_bad_pte(vma, addr, pte, NULL);
782 return NULL;
783 }
784
785 /* !HAVE_PTE_SPECIAL case follows: */
786
787 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
788 if (vma->vm_flags & VM_MIXEDMAP) {
789 if (!pfn_valid(pfn))
790 return NULL;
791 goto out;
792 } else {
793 unsigned long off;
794 off = (addr - vma->vm_start) >> PAGE_SHIFT;
795 if (pfn == vma->vm_pgoff + off)
796 return NULL;
797 if (!is_cow_mapping(vma->vm_flags))
798 return NULL;
799 }
800 }
801
802 if (is_zero_pfn(pfn))
803 return NULL;
804 check_pfn:
805 if (unlikely(pfn > highest_memmap_pfn)) {
806 print_bad_pte(vma, addr, pte, NULL);
807 return NULL;
808 }
809
810 /*
811 * NOTE! We still have PageReserved() pages in the page tables.
812 * eg. VDSO mappings can cause them to exist.
813 */
814 out:
815 return pfn_to_page(pfn);
816 }
817
818 /*
819 * copy one vm_area from one task to the other. Assumes the page tables
820 * already present in the new task to be cleared in the whole range
821 * covered by this vma.
822 */
823
824 static inline unsigned long
825 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
826 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
827 unsigned long addr, int *rss)
828 {
829 unsigned long vm_flags = vma->vm_flags;
830 pte_t pte = *src_pte;
831 struct page *page;
832
833 /* pte contains position in swap or file, so copy. */
834 if (unlikely(!pte_present(pte))) {
835 if (!pte_file(pte)) {
836 swp_entry_t entry = pte_to_swp_entry(pte);
837
838 if (swap_duplicate(entry) < 0)
839 return entry.val;
840
841 /* make sure dst_mm is on swapoff's mmlist. */
842 if (unlikely(list_empty(&dst_mm->mmlist))) {
843 spin_lock(&mmlist_lock);
844 if (list_empty(&dst_mm->mmlist))
845 list_add(&dst_mm->mmlist,
846 &src_mm->mmlist);
847 spin_unlock(&mmlist_lock);
848 }
849 if (likely(!non_swap_entry(entry)))
850 rss[MM_SWAPENTS]++;
851 else if (is_migration_entry(entry)) {
852 page = migration_entry_to_page(entry);
853
854 if (PageAnon(page))
855 rss[MM_ANONPAGES]++;
856 else
857 rss[MM_FILEPAGES]++;
858
859 if (is_write_migration_entry(entry) &&
860 is_cow_mapping(vm_flags)) {
861 /*
862 * COW mappings require pages in both
863 * parent and child to be set to read.
864 */
865 make_migration_entry_read(&entry);
866 pte = swp_entry_to_pte(entry);
867 set_pte_at(src_mm, addr, src_pte, pte);
868 }
869 }
870 }
871 goto out_set_pte;
872 }
873
874 /*
875 * If it's a COW mapping, write protect it both
876 * in the parent and the child
877 */
878 if (is_cow_mapping(vm_flags)) {
879 ptep_set_wrprotect(src_mm, addr, src_pte);
880 pte = pte_wrprotect(pte);
881 }
882
883 /*
884 * If it's a shared mapping, mark it clean in
885 * the child
886 */
887 if (vm_flags & VM_SHARED)
888 pte = pte_mkclean(pte);
889 pte = pte_mkold(pte);
890
891 page = vm_normal_page(vma, addr, pte);
892 if (page) {
893 get_page(page);
894 page_dup_rmap(page);
895 if (PageAnon(page))
896 rss[MM_ANONPAGES]++;
897 else
898 rss[MM_FILEPAGES]++;
899 }
900
901 out_set_pte:
902 set_pte_at(dst_mm, addr, dst_pte, pte);
903 return 0;
904 }
905
906 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
907 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
908 unsigned long addr, unsigned long end)
909 {
910 pte_t *orig_src_pte, *orig_dst_pte;
911 pte_t *src_pte, *dst_pte;
912 spinlock_t *src_ptl, *dst_ptl;
913 int progress = 0;
914 int rss[NR_MM_COUNTERS];
915 swp_entry_t entry = (swp_entry_t){0};
916
917 again:
918 init_rss_vec(rss);
919
920 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
921 if (!dst_pte)
922 return -ENOMEM;
923 src_pte = pte_offset_map(src_pmd, addr);
924 src_ptl = pte_lockptr(src_mm, src_pmd);
925 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
926 orig_src_pte = src_pte;
927 orig_dst_pte = dst_pte;
928 arch_enter_lazy_mmu_mode();
929
930 do {
931 /*
932 * We are holding two locks at this point - either of them
933 * could generate latencies in another task on another CPU.
934 */
935 if (progress >= 32) {
936 progress = 0;
937 if (need_resched() ||
938 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
939 break;
940 }
941 if (pte_none(*src_pte)) {
942 progress++;
943 continue;
944 }
945 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
946 vma, addr, rss);
947 if (entry.val)
948 break;
949 progress += 8;
950 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
951
952 arch_leave_lazy_mmu_mode();
953 spin_unlock(src_ptl);
954 pte_unmap(orig_src_pte);
955 add_mm_rss_vec(dst_mm, rss);
956 pte_unmap_unlock(orig_dst_pte, dst_ptl);
957 cond_resched();
958
959 if (entry.val) {
960 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
961 return -ENOMEM;
962 progress = 0;
963 }
964 if (addr != end)
965 goto again;
966 return 0;
967 }
968
969 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
970 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
971 unsigned long addr, unsigned long end)
972 {
973 pmd_t *src_pmd, *dst_pmd;
974 unsigned long next;
975
976 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
977 if (!dst_pmd)
978 return -ENOMEM;
979 src_pmd = pmd_offset(src_pud, addr);
980 do {
981 next = pmd_addr_end(addr, end);
982 if (pmd_trans_huge(*src_pmd)) {
983 int err;
984 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
985 err = copy_huge_pmd(dst_mm, src_mm,
986 dst_pmd, src_pmd, addr, vma);
987 if (err == -ENOMEM)
988 return -ENOMEM;
989 if (!err)
990 continue;
991 /* fall through */
992 }
993 if (pmd_none_or_clear_bad(src_pmd))
994 continue;
995 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
996 vma, addr, next))
997 return -ENOMEM;
998 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
999 return 0;
1000 }
1001
1002 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1003 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1004 unsigned long addr, unsigned long end)
1005 {
1006 pud_t *src_pud, *dst_pud;
1007 unsigned long next;
1008
1009 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1010 if (!dst_pud)
1011 return -ENOMEM;
1012 src_pud = pud_offset(src_pgd, addr);
1013 do {
1014 next = pud_addr_end(addr, end);
1015 if (pud_none_or_clear_bad(src_pud))
1016 continue;
1017 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1018 vma, addr, next))
1019 return -ENOMEM;
1020 } while (dst_pud++, src_pud++, addr = next, addr != end);
1021 return 0;
1022 }
1023
1024 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1025 struct vm_area_struct *vma)
1026 {
1027 pgd_t *src_pgd, *dst_pgd;
1028 unsigned long next;
1029 unsigned long addr = vma->vm_start;
1030 unsigned long end = vma->vm_end;
1031 unsigned long mmun_start; /* For mmu_notifiers */
1032 unsigned long mmun_end; /* For mmu_notifiers */
1033 bool is_cow;
1034 int ret;
1035
1036 /*
1037 * Don't copy ptes where a page fault will fill them correctly.
1038 * Fork becomes much lighter when there are big shared or private
1039 * readonly mappings. The tradeoff is that copy_page_range is more
1040 * efficient than faulting.
1041 */
1042 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1043 VM_PFNMAP | VM_MIXEDMAP))) {
1044 if (!vma->anon_vma)
1045 return 0;
1046 }
1047
1048 if (is_vm_hugetlb_page(vma))
1049 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1050
1051 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1052 /*
1053 * We do not free on error cases below as remove_vma
1054 * gets called on error from higher level routine
1055 */
1056 ret = track_pfn_copy(vma);
1057 if (ret)
1058 return ret;
1059 }
1060
1061 /*
1062 * We need to invalidate the secondary MMU mappings only when
1063 * there could be a permission downgrade on the ptes of the
1064 * parent mm. And a permission downgrade will only happen if
1065 * is_cow_mapping() returns true.
1066 */
1067 is_cow = is_cow_mapping(vma->vm_flags);
1068 mmun_start = addr;
1069 mmun_end = end;
1070 if (is_cow)
1071 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1072 mmun_end);
1073
1074 ret = 0;
1075 dst_pgd = pgd_offset(dst_mm, addr);
1076 src_pgd = pgd_offset(src_mm, addr);
1077 do {
1078 next = pgd_addr_end(addr, end);
1079 if (pgd_none_or_clear_bad(src_pgd))
1080 continue;
1081 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1082 vma, addr, next))) {
1083 ret = -ENOMEM;
1084 break;
1085 }
1086 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1087
1088 if (is_cow)
1089 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1090 return ret;
1091 }
1092
1093 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1094 struct vm_area_struct *vma, pmd_t *pmd,
1095 unsigned long addr, unsigned long end,
1096 struct zap_details *details)
1097 {
1098 struct mm_struct *mm = tlb->mm;
1099 int force_flush = 0;
1100 int rss[NR_MM_COUNTERS];
1101 spinlock_t *ptl;
1102 pte_t *start_pte;
1103 pte_t *pte;
1104
1105 again:
1106 init_rss_vec(rss);
1107 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1108 pte = start_pte;
1109 arch_enter_lazy_mmu_mode();
1110 do {
1111 pte_t ptent = *pte;
1112 if (pte_none(ptent)) {
1113 continue;
1114 }
1115
1116 if (pte_present(ptent)) {
1117 struct page *page;
1118
1119 page = vm_normal_page(vma, addr, ptent);
1120 if (unlikely(details) && page) {
1121 /*
1122 * unmap_shared_mapping_pages() wants to
1123 * invalidate cache without truncating:
1124 * unmap shared but keep private pages.
1125 */
1126 if (details->check_mapping &&
1127 details->check_mapping != page->mapping)
1128 continue;
1129 /*
1130 * Each page->index must be checked when
1131 * invalidating or truncating nonlinear.
1132 */
1133 if (details->nonlinear_vma &&
1134 (page->index < details->first_index ||
1135 page->index > details->last_index))
1136 continue;
1137 }
1138 ptent = ptep_get_and_clear_full(mm, addr, pte,
1139 tlb->fullmm);
1140 tlb_remove_tlb_entry(tlb, pte, addr);
1141 if (unlikely(!page))
1142 continue;
1143 if (unlikely(details) && details->nonlinear_vma
1144 && linear_page_index(details->nonlinear_vma,
1145 addr) != page->index)
1146 set_pte_at(mm, addr, pte,
1147 pgoff_to_pte(page->index));
1148 if (PageAnon(page))
1149 rss[MM_ANONPAGES]--;
1150 else {
1151 if (pte_dirty(ptent))
1152 set_page_dirty(page);
1153 if (pte_young(ptent) &&
1154 likely(!VM_SequentialReadHint(vma)))
1155 mark_page_accessed(page);
1156 rss[MM_FILEPAGES]--;
1157 }
1158 page_remove_rmap(page);
1159 if (unlikely(page_mapcount(page) < 0))
1160 print_bad_pte(vma, addr, ptent, page);
1161 force_flush = !__tlb_remove_page(tlb, page);
1162 if (force_flush)
1163 break;
1164 continue;
1165 }
1166 /*
1167 * If details->check_mapping, we leave swap entries;
1168 * if details->nonlinear_vma, we leave file entries.
1169 */
1170 if (unlikely(details))
1171 continue;
1172 if (pte_file(ptent)) {
1173 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1174 print_bad_pte(vma, addr, ptent, NULL);
1175 } else {
1176 swp_entry_t entry = pte_to_swp_entry(ptent);
1177
1178 if (!non_swap_entry(entry))
1179 rss[MM_SWAPENTS]--;
1180 else if (is_migration_entry(entry)) {
1181 struct page *page;
1182
1183 page = migration_entry_to_page(entry);
1184
1185 if (PageAnon(page))
1186 rss[MM_ANONPAGES]--;
1187 else
1188 rss[MM_FILEPAGES]--;
1189 }
1190 if (unlikely(!free_swap_and_cache(entry)))
1191 print_bad_pte(vma, addr, ptent, NULL);
1192 }
1193 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1194 } while (pte++, addr += PAGE_SIZE, addr != end);
1195
1196 add_mm_rss_vec(mm, rss);
1197 arch_leave_lazy_mmu_mode();
1198 pte_unmap_unlock(start_pte, ptl);
1199
1200 /*
1201 * mmu_gather ran out of room to batch pages, we break out of
1202 * the PTE lock to avoid doing the potential expensive TLB invalidate
1203 * and page-free while holding it.
1204 */
1205 if (force_flush) {
1206 force_flush = 0;
1207
1208 #ifdef HAVE_GENERIC_MMU_GATHER
1209 tlb->start = addr;
1210 tlb->end = end;
1211 #endif
1212 tlb_flush_mmu(tlb);
1213 if (addr != end)
1214 goto again;
1215 }
1216
1217 return addr;
1218 }
1219
1220 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1221 struct vm_area_struct *vma, pud_t *pud,
1222 unsigned long addr, unsigned long end,
1223 struct zap_details *details)
1224 {
1225 pmd_t *pmd;
1226 unsigned long next;
1227
1228 pmd = pmd_offset(pud, addr);
1229 do {
1230 next = pmd_addr_end(addr, end);
1231 if (pmd_trans_huge(*pmd)) {
1232 if (next - addr != HPAGE_PMD_SIZE) {
1233 #ifdef CONFIG_DEBUG_VM
1234 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1235 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1236 __func__, addr, end,
1237 vma->vm_start,
1238 vma->vm_end);
1239 BUG();
1240 }
1241 #endif
1242 split_huge_page_pmd(vma, addr, pmd);
1243 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1244 goto next;
1245 /* fall through */
1246 }
1247 /*
1248 * Here there can be other concurrent MADV_DONTNEED or
1249 * trans huge page faults running, and if the pmd is
1250 * none or trans huge it can change under us. This is
1251 * because MADV_DONTNEED holds the mmap_sem in read
1252 * mode.
1253 */
1254 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1255 goto next;
1256 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1257 next:
1258 cond_resched();
1259 } while (pmd++, addr = next, addr != end);
1260
1261 return addr;
1262 }
1263
1264 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1265 struct vm_area_struct *vma, pgd_t *pgd,
1266 unsigned long addr, unsigned long end,
1267 struct zap_details *details)
1268 {
1269 pud_t *pud;
1270 unsigned long next;
1271
1272 pud = pud_offset(pgd, addr);
1273 do {
1274 next = pud_addr_end(addr, end);
1275 if (pud_none_or_clear_bad(pud))
1276 continue;
1277 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1278 } while (pud++, addr = next, addr != end);
1279
1280 return addr;
1281 }
1282
1283 static void unmap_page_range(struct mmu_gather *tlb,
1284 struct vm_area_struct *vma,
1285 unsigned long addr, unsigned long end,
1286 struct zap_details *details)
1287 {
1288 pgd_t *pgd;
1289 unsigned long next;
1290
1291 if (details && !details->check_mapping && !details->nonlinear_vma)
1292 details = NULL;
1293
1294 BUG_ON(addr >= end);
1295 mem_cgroup_uncharge_start();
1296 tlb_start_vma(tlb, vma);
1297 pgd = pgd_offset(vma->vm_mm, addr);
1298 do {
1299 next = pgd_addr_end(addr, end);
1300 if (pgd_none_or_clear_bad(pgd))
1301 continue;
1302 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1303 } while (pgd++, addr = next, addr != end);
1304 tlb_end_vma(tlb, vma);
1305 mem_cgroup_uncharge_end();
1306 }
1307
1308
1309 static void unmap_single_vma(struct mmu_gather *tlb,
1310 struct vm_area_struct *vma, unsigned long start_addr,
1311 unsigned long end_addr,
1312 struct zap_details *details)
1313 {
1314 unsigned long start = max(vma->vm_start, start_addr);
1315 unsigned long end;
1316
1317 if (start >= vma->vm_end)
1318 return;
1319 end = min(vma->vm_end, end_addr);
1320 if (end <= vma->vm_start)
1321 return;
1322
1323 if (vma->vm_file)
1324 uprobe_munmap(vma, start, end);
1325
1326 if (unlikely(vma->vm_flags & VM_PFNMAP))
1327 untrack_pfn(vma, 0, 0);
1328
1329 if (start != end) {
1330 if (unlikely(is_vm_hugetlb_page(vma))) {
1331 /*
1332 * It is undesirable to test vma->vm_file as it
1333 * should be non-null for valid hugetlb area.
1334 * However, vm_file will be NULL in the error
1335 * cleanup path of do_mmap_pgoff. When
1336 * hugetlbfs ->mmap method fails,
1337 * do_mmap_pgoff() nullifies vma->vm_file
1338 * before calling this function to clean up.
1339 * Since no pte has actually been setup, it is
1340 * safe to do nothing in this case.
1341 */
1342 if (vma->vm_file) {
1343 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1344 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1345 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1346 }
1347 } else
1348 unmap_page_range(tlb, vma, start, end, details);
1349 }
1350 }
1351
1352 /**
1353 * unmap_vmas - unmap a range of memory covered by a list of vma's
1354 * @tlb: address of the caller's struct mmu_gather
1355 * @vma: the starting vma
1356 * @start_addr: virtual address at which to start unmapping
1357 * @end_addr: virtual address at which to end unmapping
1358 *
1359 * Unmap all pages in the vma list.
1360 *
1361 * Only addresses between `start' and `end' will be unmapped.
1362 *
1363 * The VMA list must be sorted in ascending virtual address order.
1364 *
1365 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1366 * range after unmap_vmas() returns. So the only responsibility here is to
1367 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1368 * drops the lock and schedules.
1369 */
1370 void unmap_vmas(struct mmu_gather *tlb,
1371 struct vm_area_struct *vma, unsigned long start_addr,
1372 unsigned long end_addr)
1373 {
1374 struct mm_struct *mm = vma->vm_mm;
1375
1376 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1377 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1378 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1379 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1380 }
1381
1382 /**
1383 * zap_page_range - remove user pages in a given range
1384 * @vma: vm_area_struct holding the applicable pages
1385 * @start: starting address of pages to zap
1386 * @size: number of bytes to zap
1387 * @details: details of nonlinear truncation or shared cache invalidation
1388 *
1389 * Caller must protect the VMA list
1390 */
1391 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1392 unsigned long size, struct zap_details *details)
1393 {
1394 struct mm_struct *mm = vma->vm_mm;
1395 struct mmu_gather tlb;
1396 unsigned long end = start + size;
1397
1398 lru_add_drain();
1399 tlb_gather_mmu(&tlb, mm, 0);
1400 update_hiwater_rss(mm);
1401 mmu_notifier_invalidate_range_start(mm, start, end);
1402 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1403 unmap_single_vma(&tlb, vma, start, end, details);
1404 mmu_notifier_invalidate_range_end(mm, start, end);
1405 tlb_finish_mmu(&tlb, start, end);
1406 }
1407
1408 /**
1409 * zap_page_range_single - remove user pages in a given range
1410 * @vma: vm_area_struct holding the applicable pages
1411 * @address: starting address of pages to zap
1412 * @size: number of bytes to zap
1413 * @details: details of nonlinear truncation or shared cache invalidation
1414 *
1415 * The range must fit into one VMA.
1416 */
1417 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1418 unsigned long size, struct zap_details *details)
1419 {
1420 struct mm_struct *mm = vma->vm_mm;
1421 struct mmu_gather tlb;
1422 unsigned long end = address + size;
1423
1424 lru_add_drain();
1425 tlb_gather_mmu(&tlb, mm, 0);
1426 update_hiwater_rss(mm);
1427 mmu_notifier_invalidate_range_start(mm, address, end);
1428 unmap_single_vma(&tlb, vma, address, end, details);
1429 mmu_notifier_invalidate_range_end(mm, address, end);
1430 tlb_finish_mmu(&tlb, address, end);
1431 }
1432
1433 /**
1434 * zap_vma_ptes - remove ptes mapping the vma
1435 * @vma: vm_area_struct holding ptes to be zapped
1436 * @address: starting address of pages to zap
1437 * @size: number of bytes to zap
1438 *
1439 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1440 *
1441 * The entire address range must be fully contained within the vma.
1442 *
1443 * Returns 0 if successful.
1444 */
1445 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1446 unsigned long size)
1447 {
1448 if (address < vma->vm_start || address + size > vma->vm_end ||
1449 !(vma->vm_flags & VM_PFNMAP))
1450 return -1;
1451 zap_page_range_single(vma, address, size, NULL);
1452 return 0;
1453 }
1454 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1455
1456 /**
1457 * follow_page_mask - look up a page descriptor from a user-virtual address
1458 * @vma: vm_area_struct mapping @address
1459 * @address: virtual address to look up
1460 * @flags: flags modifying lookup behaviour
1461 * @page_mask: on output, *page_mask is set according to the size of the page
1462 *
1463 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1464 *
1465 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1466 * an error pointer if there is a mapping to something not represented
1467 * by a page descriptor (see also vm_normal_page()).
1468 */
1469 struct page *follow_page_mask(struct vm_area_struct *vma,
1470 unsigned long address, unsigned int flags,
1471 unsigned int *page_mask)
1472 {
1473 pgd_t *pgd;
1474 pud_t *pud;
1475 pmd_t *pmd;
1476 pte_t *ptep, pte;
1477 spinlock_t *ptl;
1478 struct page *page;
1479 struct mm_struct *mm = vma->vm_mm;
1480
1481 *page_mask = 0;
1482
1483 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1484 if (!IS_ERR(page)) {
1485 BUG_ON(flags & FOLL_GET);
1486 goto out;
1487 }
1488
1489 page = NULL;
1490 pgd = pgd_offset(mm, address);
1491 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1492 goto no_page_table;
1493
1494 pud = pud_offset(pgd, address);
1495 if (pud_none(*pud))
1496 goto no_page_table;
1497 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1498 BUG_ON(flags & FOLL_GET);
1499 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1500 goto out;
1501 }
1502 if (unlikely(pud_bad(*pud)))
1503 goto no_page_table;
1504
1505 pmd = pmd_offset(pud, address);
1506 if (pmd_none(*pmd))
1507 goto no_page_table;
1508 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1509 BUG_ON(flags & FOLL_GET);
1510 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1511 goto out;
1512 }
1513 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1514 goto no_page_table;
1515 if (pmd_trans_huge(*pmd)) {
1516 if (flags & FOLL_SPLIT) {
1517 split_huge_page_pmd(vma, address, pmd);
1518 goto split_fallthrough;
1519 }
1520 spin_lock(&mm->page_table_lock);
1521 if (likely(pmd_trans_huge(*pmd))) {
1522 if (unlikely(pmd_trans_splitting(*pmd))) {
1523 spin_unlock(&mm->page_table_lock);
1524 wait_split_huge_page(vma->anon_vma, pmd);
1525 } else {
1526 page = follow_trans_huge_pmd(vma, address,
1527 pmd, flags);
1528 spin_unlock(&mm->page_table_lock);
1529 *page_mask = HPAGE_PMD_NR - 1;
1530 goto out;
1531 }
1532 } else
1533 spin_unlock(&mm->page_table_lock);
1534 /* fall through */
1535 }
1536 split_fallthrough:
1537 if (unlikely(pmd_bad(*pmd)))
1538 goto no_page_table;
1539
1540 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1541
1542 pte = *ptep;
1543 if (!pte_present(pte)) {
1544 swp_entry_t entry;
1545 /*
1546 * KSM's break_ksm() relies upon recognizing a ksm page
1547 * even while it is being migrated, so for that case we
1548 * need migration_entry_wait().
1549 */
1550 if (likely(!(flags & FOLL_MIGRATION)))
1551 goto no_page;
1552 if (pte_none(pte) || pte_file(pte))
1553 goto no_page;
1554 entry = pte_to_swp_entry(pte);
1555 if (!is_migration_entry(entry))
1556 goto no_page;
1557 pte_unmap_unlock(ptep, ptl);
1558 migration_entry_wait(mm, pmd, address);
1559 goto split_fallthrough;
1560 }
1561 if ((flags & FOLL_NUMA) && pte_numa(pte))
1562 goto no_page;
1563 if ((flags & FOLL_WRITE) && !pte_write(pte))
1564 goto unlock;
1565
1566 page = vm_normal_page(vma, address, pte);
1567 if (unlikely(!page)) {
1568 if ((flags & FOLL_DUMP) ||
1569 !is_zero_pfn(pte_pfn(pte)))
1570 goto bad_page;
1571 page = pte_page(pte);
1572 }
1573
1574 if (flags & FOLL_GET)
1575 get_page_foll(page);
1576 if (flags & FOLL_TOUCH) {
1577 if ((flags & FOLL_WRITE) &&
1578 !pte_dirty(pte) && !PageDirty(page))
1579 set_page_dirty(page);
1580 /*
1581 * pte_mkyoung() would be more correct here, but atomic care
1582 * is needed to avoid losing the dirty bit: it is easier to use
1583 * mark_page_accessed().
1584 */
1585 mark_page_accessed(page);
1586 }
1587 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1588 /*
1589 * The preliminary mapping check is mainly to avoid the
1590 * pointless overhead of lock_page on the ZERO_PAGE
1591 * which might bounce very badly if there is contention.
1592 *
1593 * If the page is already locked, we don't need to
1594 * handle it now - vmscan will handle it later if and
1595 * when it attempts to reclaim the page.
1596 */
1597 if (page->mapping && trylock_page(page)) {
1598 lru_add_drain(); /* push cached pages to LRU */
1599 /*
1600 * Because we lock page here, and migration is
1601 * blocked by the pte's page reference, and we
1602 * know the page is still mapped, we don't even
1603 * need to check for file-cache page truncation.
1604 */
1605 mlock_vma_page(page);
1606 unlock_page(page);
1607 }
1608 }
1609 unlock:
1610 pte_unmap_unlock(ptep, ptl);
1611 out:
1612 return page;
1613
1614 bad_page:
1615 pte_unmap_unlock(ptep, ptl);
1616 return ERR_PTR(-EFAULT);
1617
1618 no_page:
1619 pte_unmap_unlock(ptep, ptl);
1620 if (!pte_none(pte))
1621 return page;
1622
1623 no_page_table:
1624 /*
1625 * When core dumping an enormous anonymous area that nobody
1626 * has touched so far, we don't want to allocate unnecessary pages or
1627 * page tables. Return error instead of NULL to skip handle_mm_fault,
1628 * then get_dump_page() will return NULL to leave a hole in the dump.
1629 * But we can only make this optimization where a hole would surely
1630 * be zero-filled if handle_mm_fault() actually did handle it.
1631 */
1632 if ((flags & FOLL_DUMP) &&
1633 (!vma->vm_ops || !vma->vm_ops->fault))
1634 return ERR_PTR(-EFAULT);
1635 return page;
1636 }
1637
1638 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1639 {
1640 return stack_guard_page_start(vma, addr) ||
1641 stack_guard_page_end(vma, addr+PAGE_SIZE);
1642 }
1643
1644 /**
1645 * __get_user_pages() - pin user pages in memory
1646 * @tsk: task_struct of target task
1647 * @mm: mm_struct of target mm
1648 * @start: starting user address
1649 * @nr_pages: number of pages from start to pin
1650 * @gup_flags: flags modifying pin behaviour
1651 * @pages: array that receives pointers to the pages pinned.
1652 * Should be at least nr_pages long. Or NULL, if caller
1653 * only intends to ensure the pages are faulted in.
1654 * @vmas: array of pointers to vmas corresponding to each page.
1655 * Or NULL if the caller does not require them.
1656 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1657 *
1658 * Returns number of pages pinned. This may be fewer than the number
1659 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1660 * were pinned, returns -errno. Each page returned must be released
1661 * with a put_page() call when it is finished with. vmas will only
1662 * remain valid while mmap_sem is held.
1663 *
1664 * Must be called with mmap_sem held for read or write.
1665 *
1666 * __get_user_pages walks a process's page tables and takes a reference to
1667 * each struct page that each user address corresponds to at a given
1668 * instant. That is, it takes the page that would be accessed if a user
1669 * thread accesses the given user virtual address at that instant.
1670 *
1671 * This does not guarantee that the page exists in the user mappings when
1672 * __get_user_pages returns, and there may even be a completely different
1673 * page there in some cases (eg. if mmapped pagecache has been invalidated
1674 * and subsequently re faulted). However it does guarantee that the page
1675 * won't be freed completely. And mostly callers simply care that the page
1676 * contains data that was valid *at some point in time*. Typically, an IO
1677 * or similar operation cannot guarantee anything stronger anyway because
1678 * locks can't be held over the syscall boundary.
1679 *
1680 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1681 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1682 * appropriate) must be called after the page is finished with, and
1683 * before put_page is called.
1684 *
1685 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1686 * or mmap_sem contention, and if waiting is needed to pin all pages,
1687 * *@nonblocking will be set to 0.
1688 *
1689 * In most cases, get_user_pages or get_user_pages_fast should be used
1690 * instead of __get_user_pages. __get_user_pages should be used only if
1691 * you need some special @gup_flags.
1692 */
1693 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1694 unsigned long start, unsigned long nr_pages,
1695 unsigned int gup_flags, struct page **pages,
1696 struct vm_area_struct **vmas, int *nonblocking)
1697 {
1698 long i;
1699 unsigned long vm_flags;
1700 unsigned int page_mask;
1701
1702 if (!nr_pages)
1703 return 0;
1704
1705 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1706
1707 /*
1708 * Require read or write permissions.
1709 * If FOLL_FORCE is set, we only require the "MAY" flags.
1710 */
1711 vm_flags = (gup_flags & FOLL_WRITE) ?
1712 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1713 vm_flags &= (gup_flags & FOLL_FORCE) ?
1714 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1715
1716 /*
1717 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1718 * would be called on PROT_NONE ranges. We must never invoke
1719 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1720 * page faults would unprotect the PROT_NONE ranges if
1721 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1722 * bitflag. So to avoid that, don't set FOLL_NUMA if
1723 * FOLL_FORCE is set.
1724 */
1725 if (!(gup_flags & FOLL_FORCE))
1726 gup_flags |= FOLL_NUMA;
1727
1728 i = 0;
1729
1730 do {
1731 struct vm_area_struct *vma;
1732
1733 vma = find_extend_vma(mm, start);
1734 if (!vma && in_gate_area(mm, start)) {
1735 unsigned long pg = start & PAGE_MASK;
1736 pgd_t *pgd;
1737 pud_t *pud;
1738 pmd_t *pmd;
1739 pte_t *pte;
1740
1741 /* user gate pages are read-only */
1742 if (gup_flags & FOLL_WRITE)
1743 return i ? : -EFAULT;
1744 if (pg > TASK_SIZE)
1745 pgd = pgd_offset_k(pg);
1746 else
1747 pgd = pgd_offset_gate(mm, pg);
1748 BUG_ON(pgd_none(*pgd));
1749 pud = pud_offset(pgd, pg);
1750 BUG_ON(pud_none(*pud));
1751 pmd = pmd_offset(pud, pg);
1752 if (pmd_none(*pmd))
1753 return i ? : -EFAULT;
1754 VM_BUG_ON(pmd_trans_huge(*pmd));
1755 pte = pte_offset_map(pmd, pg);
1756 if (pte_none(*pte)) {
1757 pte_unmap(pte);
1758 return i ? : -EFAULT;
1759 }
1760 vma = get_gate_vma(mm);
1761 if (pages) {
1762 struct page *page;
1763
1764 page = vm_normal_page(vma, start, *pte);
1765 if (!page) {
1766 if (!(gup_flags & FOLL_DUMP) &&
1767 is_zero_pfn(pte_pfn(*pte)))
1768 page = pte_page(*pte);
1769 else {
1770 pte_unmap(pte);
1771 return i ? : -EFAULT;
1772 }
1773 }
1774 pages[i] = page;
1775 get_page(page);
1776 }
1777 pte_unmap(pte);
1778 page_mask = 0;
1779 goto next_page;
1780 }
1781
1782 if (!vma ||
1783 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1784 !(vm_flags & vma->vm_flags))
1785 return i ? : -EFAULT;
1786
1787 if (is_vm_hugetlb_page(vma)) {
1788 i = follow_hugetlb_page(mm, vma, pages, vmas,
1789 &start, &nr_pages, i, gup_flags);
1790 continue;
1791 }
1792
1793 do {
1794 struct page *page;
1795 unsigned int foll_flags = gup_flags;
1796 unsigned int page_increm;
1797
1798 /*
1799 * If we have a pending SIGKILL, don't keep faulting
1800 * pages and potentially allocating memory.
1801 */
1802 if (unlikely(fatal_signal_pending(current)))
1803 return i ? i : -ERESTARTSYS;
1804
1805 cond_resched();
1806 while (!(page = follow_page_mask(vma, start,
1807 foll_flags, &page_mask))) {
1808 int ret;
1809 unsigned int fault_flags = 0;
1810
1811 /* For mlock, just skip the stack guard page. */
1812 if (foll_flags & FOLL_MLOCK) {
1813 if (stack_guard_page(vma, start))
1814 goto next_page;
1815 }
1816 if (foll_flags & FOLL_WRITE)
1817 fault_flags |= FAULT_FLAG_WRITE;
1818 if (nonblocking)
1819 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1820 if (foll_flags & FOLL_NOWAIT)
1821 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1822
1823 ret = handle_mm_fault(mm, vma, start,
1824 fault_flags);
1825
1826 if (ret & VM_FAULT_ERROR) {
1827 if (ret & VM_FAULT_OOM)
1828 return i ? i : -ENOMEM;
1829 if (ret & (VM_FAULT_HWPOISON |
1830 VM_FAULT_HWPOISON_LARGE)) {
1831 if (i)
1832 return i;
1833 else if (gup_flags & FOLL_HWPOISON)
1834 return -EHWPOISON;
1835 else
1836 return -EFAULT;
1837 }
1838 if (ret & VM_FAULT_SIGBUS)
1839 return i ? i : -EFAULT;
1840 BUG();
1841 }
1842
1843 if (tsk) {
1844 if (ret & VM_FAULT_MAJOR)
1845 tsk->maj_flt++;
1846 else
1847 tsk->min_flt++;
1848 }
1849
1850 if (ret & VM_FAULT_RETRY) {
1851 if (nonblocking)
1852 *nonblocking = 0;
1853 return i;
1854 }
1855
1856 /*
1857 * The VM_FAULT_WRITE bit tells us that
1858 * do_wp_page has broken COW when necessary,
1859 * even if maybe_mkwrite decided not to set
1860 * pte_write. We can thus safely do subsequent
1861 * page lookups as if they were reads. But only
1862 * do so when looping for pte_write is futile:
1863 * in some cases userspace may also be wanting
1864 * to write to the gotten user page, which a
1865 * read fault here might prevent (a readonly
1866 * page might get reCOWed by userspace write).
1867 */
1868 if ((ret & VM_FAULT_WRITE) &&
1869 !(vma->vm_flags & VM_WRITE))
1870 foll_flags &= ~FOLL_WRITE;
1871
1872 cond_resched();
1873 }
1874 if (IS_ERR(page))
1875 return i ? i : PTR_ERR(page);
1876 if (pages) {
1877 pages[i] = page;
1878
1879 flush_anon_page(vma, page, start);
1880 flush_dcache_page(page);
1881 page_mask = 0;
1882 }
1883 next_page:
1884 if (vmas) {
1885 vmas[i] = vma;
1886 page_mask = 0;
1887 }
1888 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1889 if (page_increm > nr_pages)
1890 page_increm = nr_pages;
1891 i += page_increm;
1892 start += page_increm * PAGE_SIZE;
1893 nr_pages -= page_increm;
1894 } while (nr_pages && start < vma->vm_end);
1895 } while (nr_pages);
1896 return i;
1897 }
1898 EXPORT_SYMBOL(__get_user_pages);
1899
1900 /*
1901 * fixup_user_fault() - manually resolve a user page fault
1902 * @tsk: the task_struct to use for page fault accounting, or
1903 * NULL if faults are not to be recorded.
1904 * @mm: mm_struct of target mm
1905 * @address: user address
1906 * @fault_flags:flags to pass down to handle_mm_fault()
1907 *
1908 * This is meant to be called in the specific scenario where for locking reasons
1909 * we try to access user memory in atomic context (within a pagefault_disable()
1910 * section), this returns -EFAULT, and we want to resolve the user fault before
1911 * trying again.
1912 *
1913 * Typically this is meant to be used by the futex code.
1914 *
1915 * The main difference with get_user_pages() is that this function will
1916 * unconditionally call handle_mm_fault() which will in turn perform all the
1917 * necessary SW fixup of the dirty and young bits in the PTE, while
1918 * handle_mm_fault() only guarantees to update these in the struct page.
1919 *
1920 * This is important for some architectures where those bits also gate the
1921 * access permission to the page because they are maintained in software. On
1922 * such architectures, gup() will not be enough to make a subsequent access
1923 * succeed.
1924 *
1925 * This should be called with the mm_sem held for read.
1926 */
1927 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1928 unsigned long address, unsigned int fault_flags)
1929 {
1930 struct vm_area_struct *vma;
1931 int ret;
1932
1933 vma = find_extend_vma(mm, address);
1934 if (!vma || address < vma->vm_start)
1935 return -EFAULT;
1936
1937 ret = handle_mm_fault(mm, vma, address, fault_flags);
1938 if (ret & VM_FAULT_ERROR) {
1939 if (ret & VM_FAULT_OOM)
1940 return -ENOMEM;
1941 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1942 return -EHWPOISON;
1943 if (ret & VM_FAULT_SIGBUS)
1944 return -EFAULT;
1945 BUG();
1946 }
1947 if (tsk) {
1948 if (ret & VM_FAULT_MAJOR)
1949 tsk->maj_flt++;
1950 else
1951 tsk->min_flt++;
1952 }
1953 return 0;
1954 }
1955
1956 /*
1957 * get_user_pages() - pin user pages in memory
1958 * @tsk: the task_struct to use for page fault accounting, or
1959 * NULL if faults are not to be recorded.
1960 * @mm: mm_struct of target mm
1961 * @start: starting user address
1962 * @nr_pages: number of pages from start to pin
1963 * @write: whether pages will be written to by the caller
1964 * @force: whether to force write access even if user mapping is
1965 * readonly. This will result in the page being COWed even
1966 * in MAP_SHARED mappings. You do not want this.
1967 * @pages: array that receives pointers to the pages pinned.
1968 * Should be at least nr_pages long. Or NULL, if caller
1969 * only intends to ensure the pages are faulted in.
1970 * @vmas: array of pointers to vmas corresponding to each page.
1971 * Or NULL if the caller does not require them.
1972 *
1973 * Returns number of pages pinned. This may be fewer than the number
1974 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1975 * were pinned, returns -errno. Each page returned must be released
1976 * with a put_page() call when it is finished with. vmas will only
1977 * remain valid while mmap_sem is held.
1978 *
1979 * Must be called with mmap_sem held for read or write.
1980 *
1981 * get_user_pages walks a process's page tables and takes a reference to
1982 * each struct page that each user address corresponds to at a given
1983 * instant. That is, it takes the page that would be accessed if a user
1984 * thread accesses the given user virtual address at that instant.
1985 *
1986 * This does not guarantee that the page exists in the user mappings when
1987 * get_user_pages returns, and there may even be a completely different
1988 * page there in some cases (eg. if mmapped pagecache has been invalidated
1989 * and subsequently re faulted). However it does guarantee that the page
1990 * won't be freed completely. And mostly callers simply care that the page
1991 * contains data that was valid *at some point in time*. Typically, an IO
1992 * or similar operation cannot guarantee anything stronger anyway because
1993 * locks can't be held over the syscall boundary.
1994 *
1995 * If write=0, the page must not be written to. If the page is written to,
1996 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1997 * after the page is finished with, and before put_page is called.
1998 *
1999 * get_user_pages is typically used for fewer-copy IO operations, to get a
2000 * handle on the memory by some means other than accesses via the user virtual
2001 * addresses. The pages may be submitted for DMA to devices or accessed via
2002 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2003 * use the correct cache flushing APIs.
2004 *
2005 * See also get_user_pages_fast, for performance critical applications.
2006 */
2007 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2008 unsigned long start, unsigned long nr_pages, int write,
2009 int force, struct page **pages, struct vm_area_struct **vmas)
2010 {
2011 int flags = FOLL_TOUCH;
2012
2013 if (pages)
2014 flags |= FOLL_GET;
2015 if (write)
2016 flags |= FOLL_WRITE;
2017 if (force)
2018 flags |= FOLL_FORCE;
2019
2020 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2021 NULL);
2022 }
2023 EXPORT_SYMBOL(get_user_pages);
2024
2025 /**
2026 * get_dump_page() - pin user page in memory while writing it to core dump
2027 * @addr: user address
2028 *
2029 * Returns struct page pointer of user page pinned for dump,
2030 * to be freed afterwards by page_cache_release() or put_page().
2031 *
2032 * Returns NULL on any kind of failure - a hole must then be inserted into
2033 * the corefile, to preserve alignment with its headers; and also returns
2034 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2035 * allowing a hole to be left in the corefile to save diskspace.
2036 *
2037 * Called without mmap_sem, but after all other threads have been killed.
2038 */
2039 #ifdef CONFIG_ELF_CORE
2040 struct page *get_dump_page(unsigned long addr)
2041 {
2042 struct vm_area_struct *vma;
2043 struct page *page;
2044
2045 if (__get_user_pages(current, current->mm, addr, 1,
2046 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2047 NULL) < 1)
2048 return NULL;
2049 flush_cache_page(vma, addr, page_to_pfn(page));
2050 return page;
2051 }
2052 #endif /* CONFIG_ELF_CORE */
2053
2054 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2055 spinlock_t **ptl)
2056 {
2057 pgd_t * pgd = pgd_offset(mm, addr);
2058 pud_t * pud = pud_alloc(mm, pgd, addr);
2059 if (pud) {
2060 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2061 if (pmd) {
2062 VM_BUG_ON(pmd_trans_huge(*pmd));
2063 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2064 }
2065 }
2066 return NULL;
2067 }
2068
2069 /*
2070 * This is the old fallback for page remapping.
2071 *
2072 * For historical reasons, it only allows reserved pages. Only
2073 * old drivers should use this, and they needed to mark their
2074 * pages reserved for the old functions anyway.
2075 */
2076 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2077 struct page *page, pgprot_t prot)
2078 {
2079 struct mm_struct *mm = vma->vm_mm;
2080 int retval;
2081 pte_t *pte;
2082 spinlock_t *ptl;
2083
2084 retval = -EINVAL;
2085 if (PageAnon(page))
2086 goto out;
2087 retval = -ENOMEM;
2088 flush_dcache_page(page);
2089 pte = get_locked_pte(mm, addr, &ptl);
2090 if (!pte)
2091 goto out;
2092 retval = -EBUSY;
2093 if (!pte_none(*pte))
2094 goto out_unlock;
2095
2096 /* Ok, finally just insert the thing.. */
2097 get_page(page);
2098 inc_mm_counter_fast(mm, MM_FILEPAGES);
2099 page_add_file_rmap(page);
2100 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2101
2102 retval = 0;
2103 pte_unmap_unlock(pte, ptl);
2104 return retval;
2105 out_unlock:
2106 pte_unmap_unlock(pte, ptl);
2107 out:
2108 return retval;
2109 }
2110
2111 /**
2112 * vm_insert_page - insert single page into user vma
2113 * @vma: user vma to map to
2114 * @addr: target user address of this page
2115 * @page: source kernel page
2116 *
2117 * This allows drivers to insert individual pages they've allocated
2118 * into a user vma.
2119 *
2120 * The page has to be a nice clean _individual_ kernel allocation.
2121 * If you allocate a compound page, you need to have marked it as
2122 * such (__GFP_COMP), or manually just split the page up yourself
2123 * (see split_page()).
2124 *
2125 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2126 * took an arbitrary page protection parameter. This doesn't allow
2127 * that. Your vma protection will have to be set up correctly, which
2128 * means that if you want a shared writable mapping, you'd better
2129 * ask for a shared writable mapping!
2130 *
2131 * The page does not need to be reserved.
2132 *
2133 * Usually this function is called from f_op->mmap() handler
2134 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2135 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2136 * function from other places, for example from page-fault handler.
2137 */
2138 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2139 struct page *page)
2140 {
2141 if (addr < vma->vm_start || addr >= vma->vm_end)
2142 return -EFAULT;
2143 if (!page_count(page))
2144 return -EINVAL;
2145 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2146 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2147 BUG_ON(vma->vm_flags & VM_PFNMAP);
2148 vma->vm_flags |= VM_MIXEDMAP;
2149 }
2150 return insert_page(vma, addr, page, vma->vm_page_prot);
2151 }
2152 EXPORT_SYMBOL(vm_insert_page);
2153
2154 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2155 unsigned long pfn, pgprot_t prot)
2156 {
2157 struct mm_struct *mm = vma->vm_mm;
2158 int retval;
2159 pte_t *pte, entry;
2160 spinlock_t *ptl;
2161
2162 retval = -ENOMEM;
2163 pte = get_locked_pte(mm, addr, &ptl);
2164 if (!pte)
2165 goto out;
2166 retval = -EBUSY;
2167 if (!pte_none(*pte))
2168 goto out_unlock;
2169
2170 /* Ok, finally just insert the thing.. */
2171 entry = pte_mkspecial(pfn_pte(pfn, prot));
2172 set_pte_at(mm, addr, pte, entry);
2173 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2174
2175 retval = 0;
2176 out_unlock:
2177 pte_unmap_unlock(pte, ptl);
2178 out:
2179 return retval;
2180 }
2181
2182 /**
2183 * vm_insert_pfn - insert single pfn into user vma
2184 * @vma: user vma to map to
2185 * @addr: target user address of this page
2186 * @pfn: source kernel pfn
2187 *
2188 * Similar to vm_insert_page, this allows drivers to insert individual pages
2189 * they've allocated into a user vma. Same comments apply.
2190 *
2191 * This function should only be called from a vm_ops->fault handler, and
2192 * in that case the handler should return NULL.
2193 *
2194 * vma cannot be a COW mapping.
2195 *
2196 * As this is called only for pages that do not currently exist, we
2197 * do not need to flush old virtual caches or the TLB.
2198 */
2199 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2200 unsigned long pfn)
2201 {
2202 int ret;
2203 pgprot_t pgprot = vma->vm_page_prot;
2204 /*
2205 * Technically, architectures with pte_special can avoid all these
2206 * restrictions (same for remap_pfn_range). However we would like
2207 * consistency in testing and feature parity among all, so we should
2208 * try to keep these invariants in place for everybody.
2209 */
2210 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2211 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2212 (VM_PFNMAP|VM_MIXEDMAP));
2213 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2214 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2215
2216 if (addr < vma->vm_start || addr >= vma->vm_end)
2217 return -EFAULT;
2218 if (track_pfn_insert(vma, &pgprot, pfn))
2219 return -EINVAL;
2220
2221 ret = insert_pfn(vma, addr, pfn, pgprot);
2222
2223 return ret;
2224 }
2225 EXPORT_SYMBOL(vm_insert_pfn);
2226
2227 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2228 unsigned long pfn)
2229 {
2230 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2231
2232 if (addr < vma->vm_start || addr >= vma->vm_end)
2233 return -EFAULT;
2234
2235 /*
2236 * If we don't have pte special, then we have to use the pfn_valid()
2237 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2238 * refcount the page if pfn_valid is true (hence insert_page rather
2239 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2240 * without pte special, it would there be refcounted as a normal page.
2241 */
2242 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2243 struct page *page;
2244
2245 page = pfn_to_page(pfn);
2246 return insert_page(vma, addr, page, vma->vm_page_prot);
2247 }
2248 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2249 }
2250 EXPORT_SYMBOL(vm_insert_mixed);
2251
2252 /*
2253 * maps a range of physical memory into the requested pages. the old
2254 * mappings are removed. any references to nonexistent pages results
2255 * in null mappings (currently treated as "copy-on-access")
2256 */
2257 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2258 unsigned long addr, unsigned long end,
2259 unsigned long pfn, pgprot_t prot)
2260 {
2261 pte_t *pte;
2262 spinlock_t *ptl;
2263
2264 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2265 if (!pte)
2266 return -ENOMEM;
2267 arch_enter_lazy_mmu_mode();
2268 do {
2269 BUG_ON(!pte_none(*pte));
2270 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2271 pfn++;
2272 } while (pte++, addr += PAGE_SIZE, addr != end);
2273 arch_leave_lazy_mmu_mode();
2274 pte_unmap_unlock(pte - 1, ptl);
2275 return 0;
2276 }
2277
2278 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2279 unsigned long addr, unsigned long end,
2280 unsigned long pfn, pgprot_t prot)
2281 {
2282 pmd_t *pmd;
2283 unsigned long next;
2284
2285 pfn -= addr >> PAGE_SHIFT;
2286 pmd = pmd_alloc(mm, pud, addr);
2287 if (!pmd)
2288 return -ENOMEM;
2289 VM_BUG_ON(pmd_trans_huge(*pmd));
2290 do {
2291 next = pmd_addr_end(addr, end);
2292 if (remap_pte_range(mm, pmd, addr, next,
2293 pfn + (addr >> PAGE_SHIFT), prot))
2294 return -ENOMEM;
2295 } while (pmd++, addr = next, addr != end);
2296 return 0;
2297 }
2298
2299 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2300 unsigned long addr, unsigned long end,
2301 unsigned long pfn, pgprot_t prot)
2302 {
2303 pud_t *pud;
2304 unsigned long next;
2305
2306 pfn -= addr >> PAGE_SHIFT;
2307 pud = pud_alloc(mm, pgd, addr);
2308 if (!pud)
2309 return -ENOMEM;
2310 do {
2311 next = pud_addr_end(addr, end);
2312 if (remap_pmd_range(mm, pud, addr, next,
2313 pfn + (addr >> PAGE_SHIFT), prot))
2314 return -ENOMEM;
2315 } while (pud++, addr = next, addr != end);
2316 return 0;
2317 }
2318
2319 /**
2320 * remap_pfn_range - remap kernel memory to userspace
2321 * @vma: user vma to map to
2322 * @addr: target user address to start at
2323 * @pfn: physical address of kernel memory
2324 * @size: size of map area
2325 * @prot: page protection flags for this mapping
2326 *
2327 * Note: this is only safe if the mm semaphore is held when called.
2328 */
2329 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2330 unsigned long pfn, unsigned long size, pgprot_t prot)
2331 {
2332 pgd_t *pgd;
2333 unsigned long next;
2334 unsigned long end = addr + PAGE_ALIGN(size);
2335 struct mm_struct *mm = vma->vm_mm;
2336 int err;
2337
2338 /*
2339 * Physically remapped pages are special. Tell the
2340 * rest of the world about it:
2341 * VM_IO tells people not to look at these pages
2342 * (accesses can have side effects).
2343 * VM_PFNMAP tells the core MM that the base pages are just
2344 * raw PFN mappings, and do not have a "struct page" associated
2345 * with them.
2346 * VM_DONTEXPAND
2347 * Disable vma merging and expanding with mremap().
2348 * VM_DONTDUMP
2349 * Omit vma from core dump, even when VM_IO turned off.
2350 *
2351 * There's a horrible special case to handle copy-on-write
2352 * behaviour that some programs depend on. We mark the "original"
2353 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2354 * See vm_normal_page() for details.
2355 */
2356 if (is_cow_mapping(vma->vm_flags)) {
2357 if (addr != vma->vm_start || end != vma->vm_end)
2358 return -EINVAL;
2359 vma->vm_pgoff = pfn;
2360 }
2361
2362 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2363 if (err)
2364 return -EINVAL;
2365
2366 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2367
2368 BUG_ON(addr >= end);
2369 pfn -= addr >> PAGE_SHIFT;
2370 pgd = pgd_offset(mm, addr);
2371 flush_cache_range(vma, addr, end);
2372 do {
2373 next = pgd_addr_end(addr, end);
2374 err = remap_pud_range(mm, pgd, addr, next,
2375 pfn + (addr >> PAGE_SHIFT), prot);
2376 if (err)
2377 break;
2378 } while (pgd++, addr = next, addr != end);
2379
2380 if (err)
2381 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2382
2383 return err;
2384 }
2385 EXPORT_SYMBOL(remap_pfn_range);
2386
2387 /**
2388 * vm_iomap_memory - remap memory to userspace
2389 * @vma: user vma to map to
2390 * @start: start of area
2391 * @len: size of area
2392 *
2393 * This is a simplified io_remap_pfn_range() for common driver use. The
2394 * driver just needs to give us the physical memory range to be mapped,
2395 * we'll figure out the rest from the vma information.
2396 *
2397 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2398 * whatever write-combining details or similar.
2399 */
2400 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2401 {
2402 unsigned long vm_len, pfn, pages;
2403
2404 /* Check that the physical memory area passed in looks valid */
2405 if (start + len < start)
2406 return -EINVAL;
2407 /*
2408 * You *really* shouldn't map things that aren't page-aligned,
2409 * but we've historically allowed it because IO memory might
2410 * just have smaller alignment.
2411 */
2412 len += start & ~PAGE_MASK;
2413 pfn = start >> PAGE_SHIFT;
2414 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2415 if (pfn + pages < pfn)
2416 return -EINVAL;
2417
2418 /* We start the mapping 'vm_pgoff' pages into the area */
2419 if (vma->vm_pgoff > pages)
2420 return -EINVAL;
2421 pfn += vma->vm_pgoff;
2422 pages -= vma->vm_pgoff;
2423
2424 /* Can we fit all of the mapping? */
2425 vm_len = vma->vm_end - vma->vm_start;
2426 if (vm_len >> PAGE_SHIFT > pages)
2427 return -EINVAL;
2428
2429 /* Ok, let it rip */
2430 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2431 }
2432 EXPORT_SYMBOL(vm_iomap_memory);
2433
2434 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2435 unsigned long addr, unsigned long end,
2436 pte_fn_t fn, void *data)
2437 {
2438 pte_t *pte;
2439 int err;
2440 pgtable_t token;
2441 spinlock_t *uninitialized_var(ptl);
2442
2443 pte = (mm == &init_mm) ?
2444 pte_alloc_kernel(pmd, addr) :
2445 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2446 if (!pte)
2447 return -ENOMEM;
2448
2449 BUG_ON(pmd_huge(*pmd));
2450
2451 arch_enter_lazy_mmu_mode();
2452
2453 token = pmd_pgtable(*pmd);
2454
2455 do {
2456 err = fn(pte++, token, addr, data);
2457 if (err)
2458 break;
2459 } while (addr += PAGE_SIZE, addr != end);
2460
2461 arch_leave_lazy_mmu_mode();
2462
2463 if (mm != &init_mm)
2464 pte_unmap_unlock(pte-1, ptl);
2465 return err;
2466 }
2467
2468 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2469 unsigned long addr, unsigned long end,
2470 pte_fn_t fn, void *data)
2471 {
2472 pmd_t *pmd;
2473 unsigned long next;
2474 int err;
2475
2476 BUG_ON(pud_huge(*pud));
2477
2478 pmd = pmd_alloc(mm, pud, addr);
2479 if (!pmd)
2480 return -ENOMEM;
2481 do {
2482 next = pmd_addr_end(addr, end);
2483 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2484 if (err)
2485 break;
2486 } while (pmd++, addr = next, addr != end);
2487 return err;
2488 }
2489
2490 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2491 unsigned long addr, unsigned long end,
2492 pte_fn_t fn, void *data)
2493 {
2494 pud_t *pud;
2495 unsigned long next;
2496 int err;
2497
2498 pud = pud_alloc(mm, pgd, addr);
2499 if (!pud)
2500 return -ENOMEM;
2501 do {
2502 next = pud_addr_end(addr, end);
2503 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2504 if (err)
2505 break;
2506 } while (pud++, addr = next, addr != end);
2507 return err;
2508 }
2509
2510 /*
2511 * Scan a region of virtual memory, filling in page tables as necessary
2512 * and calling a provided function on each leaf page table.
2513 */
2514 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2515 unsigned long size, pte_fn_t fn, void *data)
2516 {
2517 pgd_t *pgd;
2518 unsigned long next;
2519 unsigned long end = addr + size;
2520 int err;
2521
2522 BUG_ON(addr >= end);
2523 pgd = pgd_offset(mm, addr);
2524 do {
2525 next = pgd_addr_end(addr, end);
2526 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2527 if (err)
2528 break;
2529 } while (pgd++, addr = next, addr != end);
2530
2531 return err;
2532 }
2533 EXPORT_SYMBOL_GPL(apply_to_page_range);
2534
2535 /*
2536 * handle_pte_fault chooses page fault handler according to an entry
2537 * which was read non-atomically. Before making any commitment, on
2538 * those architectures or configurations (e.g. i386 with PAE) which
2539 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2540 * must check under lock before unmapping the pte and proceeding
2541 * (but do_wp_page is only called after already making such a check;
2542 * and do_anonymous_page can safely check later on).
2543 */
2544 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2545 pte_t *page_table, pte_t orig_pte)
2546 {
2547 int same = 1;
2548 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2549 if (sizeof(pte_t) > sizeof(unsigned long)) {
2550 spinlock_t *ptl = pte_lockptr(mm, pmd);
2551 spin_lock(ptl);
2552 same = pte_same(*page_table, orig_pte);
2553 spin_unlock(ptl);
2554 }
2555 #endif
2556 pte_unmap(page_table);
2557 return same;
2558 }
2559
2560 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2561 {
2562 /*
2563 * If the source page was a PFN mapping, we don't have
2564 * a "struct page" for it. We do a best-effort copy by
2565 * just copying from the original user address. If that
2566 * fails, we just zero-fill it. Live with it.
2567 */
2568 if (unlikely(!src)) {
2569 void *kaddr = kmap_atomic(dst);
2570 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2571
2572 /*
2573 * This really shouldn't fail, because the page is there
2574 * in the page tables. But it might just be unreadable,
2575 * in which case we just give up and fill the result with
2576 * zeroes.
2577 */
2578 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2579 clear_page(kaddr);
2580 kunmap_atomic(kaddr);
2581 flush_dcache_page(dst);
2582 } else
2583 copy_user_highpage(dst, src, va, vma);
2584 }
2585
2586 /*
2587 * This routine handles present pages, when users try to write
2588 * to a shared page. It is done by copying the page to a new address
2589 * and decrementing the shared-page counter for the old page.
2590 *
2591 * Note that this routine assumes that the protection checks have been
2592 * done by the caller (the low-level page fault routine in most cases).
2593 * Thus we can safely just mark it writable once we've done any necessary
2594 * COW.
2595 *
2596 * We also mark the page dirty at this point even though the page will
2597 * change only once the write actually happens. This avoids a few races,
2598 * and potentially makes it more efficient.
2599 *
2600 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2601 * but allow concurrent faults), with pte both mapped and locked.
2602 * We return with mmap_sem still held, but pte unmapped and unlocked.
2603 */
2604 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2605 unsigned long address, pte_t *page_table, pmd_t *pmd,
2606 spinlock_t *ptl, pte_t orig_pte)
2607 __releases(ptl)
2608 {
2609 struct page *old_page, *new_page = NULL;
2610 pte_t entry;
2611 int ret = 0;
2612 int page_mkwrite = 0;
2613 struct page *dirty_page = NULL;
2614 unsigned long mmun_start = 0; /* For mmu_notifiers */
2615 unsigned long mmun_end = 0; /* For mmu_notifiers */
2616
2617 old_page = vm_normal_page(vma, address, orig_pte);
2618 if (!old_page) {
2619 /*
2620 * VM_MIXEDMAP !pfn_valid() case
2621 *
2622 * We should not cow pages in a shared writeable mapping.
2623 * Just mark the pages writable as we can't do any dirty
2624 * accounting on raw pfn maps.
2625 */
2626 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2627 (VM_WRITE|VM_SHARED))
2628 goto reuse;
2629 goto gotten;
2630 }
2631
2632 /*
2633 * Take out anonymous pages first, anonymous shared vmas are
2634 * not dirty accountable.
2635 */
2636 if (PageAnon(old_page) && !PageKsm(old_page)) {
2637 if (!trylock_page(old_page)) {
2638 page_cache_get(old_page);
2639 pte_unmap_unlock(page_table, ptl);
2640 lock_page(old_page);
2641 page_table = pte_offset_map_lock(mm, pmd, address,
2642 &ptl);
2643 if (!pte_same(*page_table, orig_pte)) {
2644 unlock_page(old_page);
2645 goto unlock;
2646 }
2647 page_cache_release(old_page);
2648 }
2649 if (reuse_swap_page(old_page)) {
2650 /*
2651 * The page is all ours. Move it to our anon_vma so
2652 * the rmap code will not search our parent or siblings.
2653 * Protected against the rmap code by the page lock.
2654 */
2655 page_move_anon_rmap(old_page, vma, address);
2656 unlock_page(old_page);
2657 goto reuse;
2658 }
2659 unlock_page(old_page);
2660 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2661 (VM_WRITE|VM_SHARED))) {
2662 /*
2663 * Only catch write-faults on shared writable pages,
2664 * read-only shared pages can get COWed by
2665 * get_user_pages(.write=1, .force=1).
2666 */
2667 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2668 struct vm_fault vmf;
2669 int tmp;
2670
2671 vmf.virtual_address = (void __user *)(address &
2672 PAGE_MASK);
2673 vmf.pgoff = old_page->index;
2674 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2675 vmf.page = old_page;
2676
2677 /*
2678 * Notify the address space that the page is about to
2679 * become writable so that it can prohibit this or wait
2680 * for the page to get into an appropriate state.
2681 *
2682 * We do this without the lock held, so that it can
2683 * sleep if it needs to.
2684 */
2685 page_cache_get(old_page);
2686 pte_unmap_unlock(page_table, ptl);
2687
2688 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2689 if (unlikely(tmp &
2690 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2691 ret = tmp;
2692 goto unwritable_page;
2693 }
2694 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2695 lock_page(old_page);
2696 if (!old_page->mapping) {
2697 ret = 0; /* retry the fault */
2698 unlock_page(old_page);
2699 goto unwritable_page;
2700 }
2701 } else
2702 VM_BUG_ON(!PageLocked(old_page));
2703
2704 /*
2705 * Since we dropped the lock we need to revalidate
2706 * the PTE as someone else may have changed it. If
2707 * they did, we just return, as we can count on the
2708 * MMU to tell us if they didn't also make it writable.
2709 */
2710 page_table = pte_offset_map_lock(mm, pmd, address,
2711 &ptl);
2712 if (!pte_same(*page_table, orig_pte)) {
2713 unlock_page(old_page);
2714 goto unlock;
2715 }
2716
2717 page_mkwrite = 1;
2718 }
2719 dirty_page = old_page;
2720 get_page(dirty_page);
2721
2722 reuse:
2723 flush_cache_page(vma, address, pte_pfn(orig_pte));
2724 entry = pte_mkyoung(orig_pte);
2725 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2726 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2727 update_mmu_cache(vma, address, page_table);
2728 pte_unmap_unlock(page_table, ptl);
2729 ret |= VM_FAULT_WRITE;
2730
2731 if (!dirty_page)
2732 return ret;
2733
2734 /*
2735 * Yes, Virginia, this is actually required to prevent a race
2736 * with clear_page_dirty_for_io() from clearing the page dirty
2737 * bit after it clear all dirty ptes, but before a racing
2738 * do_wp_page installs a dirty pte.
2739 *
2740 * __do_fault is protected similarly.
2741 */
2742 if (!page_mkwrite) {
2743 wait_on_page_locked(dirty_page);
2744 set_page_dirty_balance(dirty_page, page_mkwrite);
2745 /* file_update_time outside page_lock */
2746 if (vma->vm_file)
2747 file_update_time(vma->vm_file);
2748 }
2749 put_page(dirty_page);
2750 if (page_mkwrite) {
2751 struct address_space *mapping = dirty_page->mapping;
2752
2753 set_page_dirty(dirty_page);
2754 unlock_page(dirty_page);
2755 page_cache_release(dirty_page);
2756 if (mapping) {
2757 /*
2758 * Some device drivers do not set page.mapping
2759 * but still dirty their pages
2760 */
2761 balance_dirty_pages_ratelimited(mapping);
2762 }
2763 }
2764
2765 return ret;
2766 }
2767
2768 /*
2769 * Ok, we need to copy. Oh, well..
2770 */
2771 page_cache_get(old_page);
2772 gotten:
2773 pte_unmap_unlock(page_table, ptl);
2774
2775 if (unlikely(anon_vma_prepare(vma)))
2776 goto oom;
2777
2778 if (is_zero_pfn(pte_pfn(orig_pte))) {
2779 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2780 if (!new_page)
2781 goto oom;
2782 } else {
2783 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2784 if (!new_page)
2785 goto oom;
2786 cow_user_page(new_page, old_page, address, vma);
2787 }
2788 __SetPageUptodate(new_page);
2789
2790 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2791 goto oom_free_new;
2792
2793 mmun_start = address & PAGE_MASK;
2794 mmun_end = mmun_start + PAGE_SIZE;
2795 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2796
2797 /*
2798 * Re-check the pte - we dropped the lock
2799 */
2800 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2801 if (likely(pte_same(*page_table, orig_pte))) {
2802 if (old_page) {
2803 if (!PageAnon(old_page)) {
2804 dec_mm_counter_fast(mm, MM_FILEPAGES);
2805 inc_mm_counter_fast(mm, MM_ANONPAGES);
2806 }
2807 } else
2808 inc_mm_counter_fast(mm, MM_ANONPAGES);
2809 flush_cache_page(vma, address, pte_pfn(orig_pte));
2810 entry = mk_pte(new_page, vma->vm_page_prot);
2811 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2812 /*
2813 * Clear the pte entry and flush it first, before updating the
2814 * pte with the new entry. This will avoid a race condition
2815 * seen in the presence of one thread doing SMC and another
2816 * thread doing COW.
2817 */
2818 ptep_clear_flush(vma, address, page_table);
2819 page_add_new_anon_rmap(new_page, vma, address);
2820 /*
2821 * We call the notify macro here because, when using secondary
2822 * mmu page tables (such as kvm shadow page tables), we want the
2823 * new page to be mapped directly into the secondary page table.
2824 */
2825 set_pte_at_notify(mm, address, page_table, entry);
2826 update_mmu_cache(vma, address, page_table);
2827 if (old_page) {
2828 /*
2829 * Only after switching the pte to the new page may
2830 * we remove the mapcount here. Otherwise another
2831 * process may come and find the rmap count decremented
2832 * before the pte is switched to the new page, and
2833 * "reuse" the old page writing into it while our pte
2834 * here still points into it and can be read by other
2835 * threads.
2836 *
2837 * The critical issue is to order this
2838 * page_remove_rmap with the ptp_clear_flush above.
2839 * Those stores are ordered by (if nothing else,)
2840 * the barrier present in the atomic_add_negative
2841 * in page_remove_rmap.
2842 *
2843 * Then the TLB flush in ptep_clear_flush ensures that
2844 * no process can access the old page before the
2845 * decremented mapcount is visible. And the old page
2846 * cannot be reused until after the decremented
2847 * mapcount is visible. So transitively, TLBs to
2848 * old page will be flushed before it can be reused.
2849 */
2850 page_remove_rmap(old_page);
2851 }
2852
2853 /* Free the old page.. */
2854 new_page = old_page;
2855 ret |= VM_FAULT_WRITE;
2856 } else
2857 mem_cgroup_uncharge_page(new_page);
2858
2859 if (new_page)
2860 page_cache_release(new_page);
2861 unlock:
2862 pte_unmap_unlock(page_table, ptl);
2863 if (mmun_end > mmun_start)
2864 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2865 if (old_page) {
2866 /*
2867 * Don't let another task, with possibly unlocked vma,
2868 * keep the mlocked page.
2869 */
2870 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2871 lock_page(old_page); /* LRU manipulation */
2872 munlock_vma_page(old_page);
2873 unlock_page(old_page);
2874 }
2875 page_cache_release(old_page);
2876 }
2877 return ret;
2878 oom_free_new:
2879 page_cache_release(new_page);
2880 oom:
2881 if (old_page)
2882 page_cache_release(old_page);
2883 return VM_FAULT_OOM;
2884
2885 unwritable_page:
2886 page_cache_release(old_page);
2887 return ret;
2888 }
2889
2890 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2891 unsigned long start_addr, unsigned long end_addr,
2892 struct zap_details *details)
2893 {
2894 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2895 }
2896
2897 static inline void unmap_mapping_range_tree(struct rb_root *root,
2898 struct zap_details *details)
2899 {
2900 struct vm_area_struct *vma;
2901 pgoff_t vba, vea, zba, zea;
2902
2903 vma_interval_tree_foreach(vma, root,
2904 details->first_index, details->last_index) {
2905
2906 vba = vma->vm_pgoff;
2907 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2908 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2909 zba = details->first_index;
2910 if (zba < vba)
2911 zba = vba;
2912 zea = details->last_index;
2913 if (zea > vea)
2914 zea = vea;
2915
2916 unmap_mapping_range_vma(vma,
2917 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2918 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2919 details);
2920 }
2921 }
2922
2923 static inline void unmap_mapping_range_list(struct list_head *head,
2924 struct zap_details *details)
2925 {
2926 struct vm_area_struct *vma;
2927
2928 /*
2929 * In nonlinear VMAs there is no correspondence between virtual address
2930 * offset and file offset. So we must perform an exhaustive search
2931 * across *all* the pages in each nonlinear VMA, not just the pages
2932 * whose virtual address lies outside the file truncation point.
2933 */
2934 list_for_each_entry(vma, head, shared.nonlinear) {
2935 details->nonlinear_vma = vma;
2936 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2937 }
2938 }
2939
2940 /**
2941 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2942 * @mapping: the address space containing mmaps to be unmapped.
2943 * @holebegin: byte in first page to unmap, relative to the start of
2944 * the underlying file. This will be rounded down to a PAGE_SIZE
2945 * boundary. Note that this is different from truncate_pagecache(), which
2946 * must keep the partial page. In contrast, we must get rid of
2947 * partial pages.
2948 * @holelen: size of prospective hole in bytes. This will be rounded
2949 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2950 * end of the file.
2951 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2952 * but 0 when invalidating pagecache, don't throw away private data.
2953 */
2954 void unmap_mapping_range(struct address_space *mapping,
2955 loff_t const holebegin, loff_t const holelen, int even_cows)
2956 {
2957 struct zap_details details;
2958 pgoff_t hba = holebegin >> PAGE_SHIFT;
2959 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2960
2961 /* Check for overflow. */
2962 if (sizeof(holelen) > sizeof(hlen)) {
2963 long long holeend =
2964 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2965 if (holeend & ~(long long)ULONG_MAX)
2966 hlen = ULONG_MAX - hba + 1;
2967 }
2968
2969 details.check_mapping = even_cows? NULL: mapping;
2970 details.nonlinear_vma = NULL;
2971 details.first_index = hba;
2972 details.last_index = hba + hlen - 1;
2973 if (details.last_index < details.first_index)
2974 details.last_index = ULONG_MAX;
2975
2976
2977 mutex_lock(&mapping->i_mmap_mutex);
2978 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2979 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2980 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2981 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2982 mutex_unlock(&mapping->i_mmap_mutex);
2983 }
2984 EXPORT_SYMBOL(unmap_mapping_range);
2985
2986 /*
2987 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2988 * but allow concurrent faults), and pte mapped but not yet locked.
2989 * We return with mmap_sem still held, but pte unmapped and unlocked.
2990 */
2991 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2992 unsigned long address, pte_t *page_table, pmd_t *pmd,
2993 unsigned int flags, pte_t orig_pte)
2994 {
2995 spinlock_t *ptl;
2996 struct page *page, *swapcache;
2997 swp_entry_t entry;
2998 pte_t pte;
2999 int locked;
3000 struct mem_cgroup *ptr;
3001 int exclusive = 0;
3002 int ret = 0;
3003
3004 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3005 goto out;
3006
3007 entry = pte_to_swp_entry(orig_pte);
3008 if (unlikely(non_swap_entry(entry))) {
3009 if (is_migration_entry(entry)) {
3010 migration_entry_wait(mm, pmd, address);
3011 } else if (is_hwpoison_entry(entry)) {
3012 ret = VM_FAULT_HWPOISON;
3013 } else {
3014 print_bad_pte(vma, address, orig_pte, NULL);
3015 ret = VM_FAULT_SIGBUS;
3016 }
3017 goto out;
3018 }
3019 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3020 page = lookup_swap_cache(entry);
3021 if (!page) {
3022 page = swapin_readahead(entry,
3023 GFP_HIGHUSER_MOVABLE, vma, address);
3024 if (!page) {
3025 /*
3026 * Back out if somebody else faulted in this pte
3027 * while we released the pte lock.
3028 */
3029 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3030 if (likely(pte_same(*page_table, orig_pte)))
3031 ret = VM_FAULT_OOM;
3032 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3033 goto unlock;
3034 }
3035
3036 /* Had to read the page from swap area: Major fault */
3037 ret = VM_FAULT_MAJOR;
3038 count_vm_event(PGMAJFAULT);
3039 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3040 } else if (PageHWPoison(page)) {
3041 /*
3042 * hwpoisoned dirty swapcache pages are kept for killing
3043 * owner processes (which may be unknown at hwpoison time)
3044 */
3045 ret = VM_FAULT_HWPOISON;
3046 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3047 swapcache = page;
3048 goto out_release;
3049 }
3050
3051 swapcache = page;
3052 locked = lock_page_or_retry(page, mm, flags);
3053
3054 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3055 if (!locked) {
3056 ret |= VM_FAULT_RETRY;
3057 goto out_release;
3058 }
3059
3060 /*
3061 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3062 * release the swapcache from under us. The page pin, and pte_same
3063 * test below, are not enough to exclude that. Even if it is still
3064 * swapcache, we need to check that the page's swap has not changed.
3065 */
3066 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3067 goto out_page;
3068
3069 page = ksm_might_need_to_copy(page, vma, address);
3070 if (unlikely(!page)) {
3071 ret = VM_FAULT_OOM;
3072 page = swapcache;
3073 goto out_page;
3074 }
3075
3076 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3077 ret = VM_FAULT_OOM;
3078 goto out_page;
3079 }
3080
3081 /*
3082 * Back out if somebody else already faulted in this pte.
3083 */
3084 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3085 if (unlikely(!pte_same(*page_table, orig_pte)))
3086 goto out_nomap;
3087
3088 if (unlikely(!PageUptodate(page))) {
3089 ret = VM_FAULT_SIGBUS;
3090 goto out_nomap;
3091 }
3092
3093 /*
3094 * The page isn't present yet, go ahead with the fault.
3095 *
3096 * Be careful about the sequence of operations here.
3097 * To get its accounting right, reuse_swap_page() must be called
3098 * while the page is counted on swap but not yet in mapcount i.e.
3099 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3100 * must be called after the swap_free(), or it will never succeed.
3101 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3102 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3103 * in page->private. In this case, a record in swap_cgroup is silently
3104 * discarded at swap_free().
3105 */
3106
3107 inc_mm_counter_fast(mm, MM_ANONPAGES);
3108 dec_mm_counter_fast(mm, MM_SWAPENTS);
3109 pte = mk_pte(page, vma->vm_page_prot);
3110 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3111 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3112 flags &= ~FAULT_FLAG_WRITE;
3113 ret |= VM_FAULT_WRITE;
3114 exclusive = 1;
3115 }
3116 flush_icache_page(vma, page);
3117 set_pte_at(mm, address, page_table, pte);
3118 if (page == swapcache)
3119 do_page_add_anon_rmap(page, vma, address, exclusive);
3120 else /* ksm created a completely new copy */
3121 page_add_new_anon_rmap(page, vma, address);
3122 /* It's better to call commit-charge after rmap is established */
3123 mem_cgroup_commit_charge_swapin(page, ptr);
3124
3125 swap_free(entry);
3126 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3127 try_to_free_swap(page);
3128 unlock_page(page);
3129 if (page != swapcache) {
3130 /*
3131 * Hold the lock to avoid the swap entry to be reused
3132 * until we take the PT lock for the pte_same() check
3133 * (to avoid false positives from pte_same). For
3134 * further safety release the lock after the swap_free
3135 * so that the swap count won't change under a
3136 * parallel locked swapcache.
3137 */
3138 unlock_page(swapcache);
3139 page_cache_release(swapcache);
3140 }
3141
3142 if (flags & FAULT_FLAG_WRITE) {
3143 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3144 if (ret & VM_FAULT_ERROR)
3145 ret &= VM_FAULT_ERROR;
3146 goto out;
3147 }
3148
3149 /* No need to invalidate - it was non-present before */
3150 update_mmu_cache(vma, address, page_table);
3151 unlock:
3152 pte_unmap_unlock(page_table, ptl);
3153 out:
3154 return ret;
3155 out_nomap:
3156 mem_cgroup_cancel_charge_swapin(ptr);
3157 pte_unmap_unlock(page_table, ptl);
3158 out_page:
3159 unlock_page(page);
3160 out_release:
3161 page_cache_release(page);
3162 if (page != swapcache) {
3163 unlock_page(swapcache);
3164 page_cache_release(swapcache);
3165 }
3166 return ret;
3167 }
3168
3169 /*
3170 * This is like a special single-page "expand_{down|up}wards()",
3171 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3172 * doesn't hit another vma.
3173 */
3174 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3175 {
3176 address &= PAGE_MASK;
3177 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3178 struct vm_area_struct *prev = vma->vm_prev;
3179
3180 /*
3181 * Is there a mapping abutting this one below?
3182 *
3183 * That's only ok if it's the same stack mapping
3184 * that has gotten split..
3185 */
3186 if (prev && prev->vm_end == address)
3187 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3188
3189 expand_downwards(vma, address - PAGE_SIZE);
3190 }
3191 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3192 struct vm_area_struct *next = vma->vm_next;
3193
3194 /* As VM_GROWSDOWN but s/below/above/ */
3195 if (next && next->vm_start == address + PAGE_SIZE)
3196 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3197
3198 expand_upwards(vma, address + PAGE_SIZE);
3199 }
3200 return 0;
3201 }
3202
3203 /*
3204 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3205 * but allow concurrent faults), and pte mapped but not yet locked.
3206 * We return with mmap_sem still held, but pte unmapped and unlocked.
3207 */
3208 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3209 unsigned long address, pte_t *page_table, pmd_t *pmd,
3210 unsigned int flags)
3211 {
3212 struct page *page;
3213 spinlock_t *ptl;
3214 pte_t entry;
3215
3216 pte_unmap(page_table);
3217
3218 /* Check if we need to add a guard page to the stack */
3219 if (check_stack_guard_page(vma, address) < 0)
3220 return VM_FAULT_SIGBUS;
3221
3222 /* Use the zero-page for reads */
3223 if (!(flags & FAULT_FLAG_WRITE)) {
3224 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3225 vma->vm_page_prot));
3226 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3227 if (!pte_none(*page_table))
3228 goto unlock;
3229 goto setpte;
3230 }
3231
3232 /* Allocate our own private page. */
3233 if (unlikely(anon_vma_prepare(vma)))
3234 goto oom;
3235 page = alloc_zeroed_user_highpage_movable(vma, address);
3236 if (!page)
3237 goto oom;
3238 /*
3239 * The memory barrier inside __SetPageUptodate makes sure that
3240 * preceeding stores to the page contents become visible before
3241 * the set_pte_at() write.
3242 */
3243 __SetPageUptodate(page);
3244
3245 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3246 goto oom_free_page;
3247
3248 entry = mk_pte(page, vma->vm_page_prot);
3249 if (vma->vm_flags & VM_WRITE)
3250 entry = pte_mkwrite(pte_mkdirty(entry));
3251
3252 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3253 if (!pte_none(*page_table))
3254 goto release;
3255
3256 inc_mm_counter_fast(mm, MM_ANONPAGES);
3257 page_add_new_anon_rmap(page, vma, address);
3258 setpte:
3259 set_pte_at(mm, address, page_table, entry);
3260
3261 /* No need to invalidate - it was non-present before */
3262 update_mmu_cache(vma, address, page_table);
3263 unlock:
3264 pte_unmap_unlock(page_table, ptl);
3265 return 0;
3266 release:
3267 mem_cgroup_uncharge_page(page);
3268 page_cache_release(page);
3269 goto unlock;
3270 oom_free_page:
3271 page_cache_release(page);
3272 oom:
3273 return VM_FAULT_OOM;
3274 }
3275
3276 /*
3277 * __do_fault() tries to create a new page mapping. It aggressively
3278 * tries to share with existing pages, but makes a separate copy if
3279 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3280 * the next page fault.
3281 *
3282 * As this is called only for pages that do not currently exist, we
3283 * do not need to flush old virtual caches or the TLB.
3284 *
3285 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3286 * but allow concurrent faults), and pte neither mapped nor locked.
3287 * We return with mmap_sem still held, but pte unmapped and unlocked.
3288 */
3289 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3290 unsigned long address, pmd_t *pmd,
3291 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3292 {
3293 pte_t *page_table;
3294 spinlock_t *ptl;
3295 struct page *page;
3296 struct page *cow_page;
3297 pte_t entry;
3298 int anon = 0;
3299 struct page *dirty_page = NULL;
3300 struct vm_fault vmf;
3301 int ret;
3302 int page_mkwrite = 0;
3303
3304 /*
3305 * If we do COW later, allocate page befor taking lock_page()
3306 * on the file cache page. This will reduce lock holding time.
3307 */
3308 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3309
3310 if (unlikely(anon_vma_prepare(vma)))
3311 return VM_FAULT_OOM;
3312
3313 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3314 if (!cow_page)
3315 return VM_FAULT_OOM;
3316
3317 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3318 page_cache_release(cow_page);
3319 return VM_FAULT_OOM;
3320 }
3321 } else
3322 cow_page = NULL;
3323
3324 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3325 vmf.pgoff = pgoff;
3326 vmf.flags = flags;
3327 vmf.page = NULL;
3328
3329 ret = vma->vm_ops->fault(vma, &vmf);
3330 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3331 VM_FAULT_RETRY)))
3332 goto uncharge_out;
3333
3334 if (unlikely(PageHWPoison(vmf.page))) {
3335 if (ret & VM_FAULT_LOCKED)
3336 unlock_page(vmf.page);
3337 ret = VM_FAULT_HWPOISON;
3338 goto uncharge_out;
3339 }
3340
3341 /*
3342 * For consistency in subsequent calls, make the faulted page always
3343 * locked.
3344 */
3345 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3346 lock_page(vmf.page);
3347 else
3348 VM_BUG_ON(!PageLocked(vmf.page));
3349
3350 /*
3351 * Should we do an early C-O-W break?
3352 */
3353 page = vmf.page;
3354 if (flags & FAULT_FLAG_WRITE) {
3355 if (!(vma->vm_flags & VM_SHARED)) {
3356 page = cow_page;
3357 anon = 1;
3358 copy_user_highpage(page, vmf.page, address, vma);
3359 __SetPageUptodate(page);
3360 } else {
3361 /*
3362 * If the page will be shareable, see if the backing
3363 * address space wants to know that the page is about
3364 * to become writable
3365 */
3366 if (vma->vm_ops->page_mkwrite) {
3367 int tmp;
3368
3369 unlock_page(page);
3370 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3371 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3372 if (unlikely(tmp &
3373 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3374 ret = tmp;
3375 goto unwritable_page;
3376 }
3377 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3378 lock_page(page);
3379 if (!page->mapping) {
3380 ret = 0; /* retry the fault */
3381 unlock_page(page);
3382 goto unwritable_page;
3383 }
3384 } else
3385 VM_BUG_ON(!PageLocked(page));
3386 page_mkwrite = 1;
3387 }
3388 }
3389
3390 }
3391
3392 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3393
3394 /*
3395 * This silly early PAGE_DIRTY setting removes a race
3396 * due to the bad i386 page protection. But it's valid
3397 * for other architectures too.
3398 *
3399 * Note that if FAULT_FLAG_WRITE is set, we either now have
3400 * an exclusive copy of the page, or this is a shared mapping,
3401 * so we can make it writable and dirty to avoid having to
3402 * handle that later.
3403 */
3404 /* Only go through if we didn't race with anybody else... */
3405 if (likely(pte_same(*page_table, orig_pte))) {
3406 flush_icache_page(vma, page);
3407 entry = mk_pte(page, vma->vm_page_prot);
3408 if (flags & FAULT_FLAG_WRITE)
3409 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3410 if (anon) {
3411 inc_mm_counter_fast(mm, MM_ANONPAGES);
3412 page_add_new_anon_rmap(page, vma, address);
3413 } else {
3414 inc_mm_counter_fast(mm, MM_FILEPAGES);
3415 page_add_file_rmap(page);
3416 if (flags & FAULT_FLAG_WRITE) {
3417 dirty_page = page;
3418 get_page(dirty_page);
3419 }
3420 }
3421 set_pte_at(mm, address, page_table, entry);
3422
3423 /* no need to invalidate: a not-present page won't be cached */
3424 update_mmu_cache(vma, address, page_table);
3425 } else {
3426 if (cow_page)
3427 mem_cgroup_uncharge_page(cow_page);
3428 if (anon)
3429 page_cache_release(page);
3430 else
3431 anon = 1; /* no anon but release faulted_page */
3432 }
3433
3434 pte_unmap_unlock(page_table, ptl);
3435
3436 if (dirty_page) {
3437 struct address_space *mapping = page->mapping;
3438 int dirtied = 0;
3439
3440 if (set_page_dirty(dirty_page))
3441 dirtied = 1;
3442 unlock_page(dirty_page);
3443 put_page(dirty_page);
3444 if ((dirtied || page_mkwrite) && mapping) {
3445 /*
3446 * Some device drivers do not set page.mapping but still
3447 * dirty their pages
3448 */
3449 balance_dirty_pages_ratelimited(mapping);
3450 }
3451
3452 /* file_update_time outside page_lock */
3453 if (vma->vm_file && !page_mkwrite)
3454 file_update_time(vma->vm_file);
3455 } else {
3456 unlock_page(vmf.page);
3457 if (anon)
3458 page_cache_release(vmf.page);
3459 }
3460
3461 return ret;
3462
3463 unwritable_page:
3464 page_cache_release(page);
3465 return ret;
3466 uncharge_out:
3467 /* fs's fault handler get error */
3468 if (cow_page) {
3469 mem_cgroup_uncharge_page(cow_page);
3470 page_cache_release(cow_page);
3471 }
3472 return ret;
3473 }
3474
3475 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3476 unsigned long address, pte_t *page_table, pmd_t *pmd,
3477 unsigned int flags, pte_t orig_pte)
3478 {
3479 pgoff_t pgoff = (((address & PAGE_MASK)
3480 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3481
3482 pte_unmap(page_table);
3483 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3484 }
3485
3486 /*
3487 * Fault of a previously existing named mapping. Repopulate the pte
3488 * from the encoded file_pte if possible. This enables swappable
3489 * nonlinear vmas.
3490 *
3491 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3492 * but allow concurrent faults), and pte mapped but not yet locked.
3493 * We return with mmap_sem still held, but pte unmapped and unlocked.
3494 */
3495 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3496 unsigned long address, pte_t *page_table, pmd_t *pmd,
3497 unsigned int flags, pte_t orig_pte)
3498 {
3499 pgoff_t pgoff;
3500
3501 flags |= FAULT_FLAG_NONLINEAR;
3502
3503 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3504 return 0;
3505
3506 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3507 /*
3508 * Page table corrupted: show pte and kill process.
3509 */
3510 print_bad_pte(vma, address, orig_pte, NULL);
3511 return VM_FAULT_SIGBUS;
3512 }
3513
3514 pgoff = pte_to_pgoff(orig_pte);
3515 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3516 }
3517
3518 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3519 unsigned long addr, int current_nid)
3520 {
3521 get_page(page);
3522
3523 count_vm_numa_event(NUMA_HINT_FAULTS);
3524 if (current_nid == numa_node_id())
3525 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3526
3527 return mpol_misplaced(page, vma, addr);
3528 }
3529
3530 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3531 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3532 {
3533 struct page *page = NULL;
3534 spinlock_t *ptl;
3535 int current_nid = -1;
3536 int target_nid;
3537 bool migrated = false;
3538
3539 /*
3540 * The "pte" at this point cannot be used safely without
3541 * validation through pte_unmap_same(). It's of NUMA type but
3542 * the pfn may be screwed if the read is non atomic.
3543 *
3544 * ptep_modify_prot_start is not called as this is clearing
3545 * the _PAGE_NUMA bit and it is not really expected that there
3546 * would be concurrent hardware modifications to the PTE.
3547 */
3548 ptl = pte_lockptr(mm, pmd);
3549 spin_lock(ptl);
3550 if (unlikely(!pte_same(*ptep, pte))) {
3551 pte_unmap_unlock(ptep, ptl);
3552 goto out;
3553 }
3554
3555 pte = pte_mknonnuma(pte);
3556 set_pte_at(mm, addr, ptep, pte);
3557 update_mmu_cache(vma, addr, ptep);
3558
3559 page = vm_normal_page(vma, addr, pte);
3560 if (!page) {
3561 pte_unmap_unlock(ptep, ptl);
3562 return 0;
3563 }
3564
3565 current_nid = page_to_nid(page);
3566 target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3567 pte_unmap_unlock(ptep, ptl);
3568 if (target_nid == -1) {
3569 /*
3570 * Account for the fault against the current node if it not
3571 * being replaced regardless of where the page is located.
3572 */
3573 current_nid = numa_node_id();
3574 put_page(page);
3575 goto out;
3576 }
3577
3578 /* Migrate to the requested node */
3579 migrated = migrate_misplaced_page(page, target_nid);
3580 if (migrated)
3581 current_nid = target_nid;
3582
3583 out:
3584 if (current_nid != -1)
3585 task_numa_fault(current_nid, 1, migrated);
3586 return 0;
3587 }
3588
3589 /* NUMA hinting page fault entry point for regular pmds */
3590 #ifdef CONFIG_NUMA_BALANCING
3591 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3592 unsigned long addr, pmd_t *pmdp)
3593 {
3594 pmd_t pmd;
3595 pte_t *pte, *orig_pte;
3596 unsigned long _addr = addr & PMD_MASK;
3597 unsigned long offset;
3598 spinlock_t *ptl;
3599 bool numa = false;
3600 int local_nid = numa_node_id();
3601
3602 spin_lock(&mm->page_table_lock);
3603 pmd = *pmdp;
3604 if (pmd_numa(pmd)) {
3605 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3606 numa = true;
3607 }
3608 spin_unlock(&mm->page_table_lock);
3609
3610 if (!numa)
3611 return 0;
3612
3613 /* we're in a page fault so some vma must be in the range */
3614 BUG_ON(!vma);
3615 BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3616 offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3617 VM_BUG_ON(offset >= PMD_SIZE);
3618 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3619 pte += offset >> PAGE_SHIFT;
3620 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3621 pte_t pteval = *pte;
3622 struct page *page;
3623 int curr_nid = local_nid;
3624 int target_nid;
3625 bool migrated;
3626 if (!pte_present(pteval))
3627 continue;
3628 if (!pte_numa(pteval))
3629 continue;
3630 if (addr >= vma->vm_end) {
3631 vma = find_vma(mm, addr);
3632 /* there's a pte present so there must be a vma */
3633 BUG_ON(!vma);
3634 BUG_ON(addr < vma->vm_start);
3635 }
3636 if (pte_numa(pteval)) {
3637 pteval = pte_mknonnuma(pteval);
3638 set_pte_at(mm, addr, pte, pteval);
3639 }
3640 page = vm_normal_page(vma, addr, pteval);
3641 if (unlikely(!page))
3642 continue;
3643 /* only check non-shared pages */
3644 if (unlikely(page_mapcount(page) != 1))
3645 continue;
3646
3647 /*
3648 * Note that the NUMA fault is later accounted to either
3649 * the node that is currently running or where the page is
3650 * migrated to.
3651 */
3652 curr_nid = local_nid;
3653 target_nid = numa_migrate_prep(page, vma, addr,
3654 page_to_nid(page));
3655 if (target_nid == -1) {
3656 put_page(page);
3657 continue;
3658 }
3659
3660 /* Migrate to the requested node */
3661 pte_unmap_unlock(pte, ptl);
3662 migrated = migrate_misplaced_page(page, target_nid);
3663 if (migrated)
3664 curr_nid = target_nid;
3665 task_numa_fault(curr_nid, 1, migrated);
3666
3667 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3668 }
3669 pte_unmap_unlock(orig_pte, ptl);
3670
3671 return 0;
3672 }
3673 #else
3674 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3675 unsigned long addr, pmd_t *pmdp)
3676 {
3677 BUG();
3678 return 0;
3679 }
3680 #endif /* CONFIG_NUMA_BALANCING */
3681
3682 /*
3683 * These routines also need to handle stuff like marking pages dirty
3684 * and/or accessed for architectures that don't do it in hardware (most
3685 * RISC architectures). The early dirtying is also good on the i386.
3686 *
3687 * There is also a hook called "update_mmu_cache()" that architectures
3688 * with external mmu caches can use to update those (ie the Sparc or
3689 * PowerPC hashed page tables that act as extended TLBs).
3690 *
3691 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3692 * but allow concurrent faults), and pte mapped but not yet locked.
3693 * We return with mmap_sem still held, but pte unmapped and unlocked.
3694 */
3695 int handle_pte_fault(struct mm_struct *mm,
3696 struct vm_area_struct *vma, unsigned long address,
3697 pte_t *pte, pmd_t *pmd, unsigned int flags)
3698 {
3699 pte_t entry;
3700 spinlock_t *ptl;
3701
3702 entry = *pte;
3703 if (!pte_present(entry)) {
3704 if (pte_none(entry)) {
3705 if (vma->vm_ops) {
3706 if (likely(vma->vm_ops->fault))
3707 return do_linear_fault(mm, vma, address,
3708 pte, pmd, flags, entry);
3709 }
3710 return do_anonymous_page(mm, vma, address,
3711 pte, pmd, flags);
3712 }
3713 if (pte_file(entry))
3714 return do_nonlinear_fault(mm, vma, address,
3715 pte, pmd, flags, entry);
3716 return do_swap_page(mm, vma, address,
3717 pte, pmd, flags, entry);
3718 }
3719
3720 if (pte_numa(entry))
3721 return do_numa_page(mm, vma, address, entry, pte, pmd);
3722
3723 ptl = pte_lockptr(mm, pmd);
3724 spin_lock(ptl);
3725 if (unlikely(!pte_same(*pte, entry)))
3726 goto unlock;
3727 if (flags & FAULT_FLAG_WRITE) {
3728 if (!pte_write(entry))
3729 return do_wp_page(mm, vma, address,
3730 pte, pmd, ptl, entry);
3731 entry = pte_mkdirty(entry);
3732 }
3733 entry = pte_mkyoung(entry);
3734 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3735 update_mmu_cache(vma, address, pte);
3736 } else {
3737 /*
3738 * This is needed only for protection faults but the arch code
3739 * is not yet telling us if this is a protection fault or not.
3740 * This still avoids useless tlb flushes for .text page faults
3741 * with threads.
3742 */
3743 if (flags & FAULT_FLAG_WRITE)
3744 flush_tlb_fix_spurious_fault(vma, address);
3745 }
3746 unlock:
3747 pte_unmap_unlock(pte, ptl);
3748 return 0;
3749 }
3750
3751 /*
3752 * By the time we get here, we already hold the mm semaphore
3753 */
3754 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3755 unsigned long address, unsigned int flags)
3756 {
3757 pgd_t *pgd;
3758 pud_t *pud;
3759 pmd_t *pmd;
3760 pte_t *pte;
3761
3762 __set_current_state(TASK_RUNNING);
3763
3764 count_vm_event(PGFAULT);
3765 mem_cgroup_count_vm_event(mm, PGFAULT);
3766
3767 /* do counter updates before entering really critical section. */
3768 check_sync_rss_stat(current);
3769
3770 if (unlikely(is_vm_hugetlb_page(vma)))
3771 return hugetlb_fault(mm, vma, address, flags);
3772
3773 retry:
3774 pgd = pgd_offset(mm, address);
3775 pud = pud_alloc(mm, pgd, address);
3776 if (!pud)
3777 return VM_FAULT_OOM;
3778 pmd = pmd_alloc(mm, pud, address);
3779 if (!pmd)
3780 return VM_FAULT_OOM;
3781 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3782 if (!vma->vm_ops)
3783 return do_huge_pmd_anonymous_page(mm, vma, address,
3784 pmd, flags);
3785 } else {
3786 pmd_t orig_pmd = *pmd;
3787 int ret;
3788
3789 barrier();
3790 if (pmd_trans_huge(orig_pmd)) {
3791 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3792
3793 /*
3794 * If the pmd is splitting, return and retry the
3795 * the fault. Alternative: wait until the split
3796 * is done, and goto retry.
3797 */
3798 if (pmd_trans_splitting(orig_pmd))
3799 return 0;
3800
3801 if (pmd_numa(orig_pmd))
3802 return do_huge_pmd_numa_page(mm, vma, address,
3803 orig_pmd, pmd);
3804
3805 if (dirty && !pmd_write(orig_pmd)) {
3806 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3807 orig_pmd);
3808 /*
3809 * If COW results in an oom, the huge pmd will
3810 * have been split, so retry the fault on the
3811 * pte for a smaller charge.
3812 */
3813 if (unlikely(ret & VM_FAULT_OOM))
3814 goto retry;
3815 return ret;
3816 } else {
3817 huge_pmd_set_accessed(mm, vma, address, pmd,
3818 orig_pmd, dirty);
3819 }
3820
3821 return 0;
3822 }
3823 }
3824
3825 if (pmd_numa(*pmd))
3826 return do_pmd_numa_page(mm, vma, address, pmd);
3827
3828 /*
3829 * Use __pte_alloc instead of pte_alloc_map, because we can't
3830 * run pte_offset_map on the pmd, if an huge pmd could
3831 * materialize from under us from a different thread.
3832 */
3833 if (unlikely(pmd_none(*pmd)) &&
3834 unlikely(__pte_alloc(mm, vma, pmd, address)))
3835 return VM_FAULT_OOM;
3836 /* if an huge pmd materialized from under us just retry later */
3837 if (unlikely(pmd_trans_huge(*pmd)))
3838 return 0;
3839 /*
3840 * A regular pmd is established and it can't morph into a huge pmd
3841 * from under us anymore at this point because we hold the mmap_sem
3842 * read mode and khugepaged takes it in write mode. So now it's
3843 * safe to run pte_offset_map().
3844 */
3845 pte = pte_offset_map(pmd, address);
3846
3847 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3848 }
3849
3850 #ifndef __PAGETABLE_PUD_FOLDED
3851 /*
3852 * Allocate page upper directory.
3853 * We've already handled the fast-path in-line.
3854 */
3855 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3856 {
3857 pud_t *new = pud_alloc_one(mm, address);
3858 if (!new)
3859 return -ENOMEM;
3860
3861 smp_wmb(); /* See comment in __pte_alloc */
3862
3863 spin_lock(&mm->page_table_lock);
3864 if (pgd_present(*pgd)) /* Another has populated it */
3865 pud_free(mm, new);
3866 else
3867 pgd_populate(mm, pgd, new);
3868 spin_unlock(&mm->page_table_lock);
3869 return 0;
3870 }
3871 #endif /* __PAGETABLE_PUD_FOLDED */
3872
3873 #ifndef __PAGETABLE_PMD_FOLDED
3874 /*
3875 * Allocate page middle directory.
3876 * We've already handled the fast-path in-line.
3877 */
3878 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3879 {
3880 pmd_t *new = pmd_alloc_one(mm, address);
3881 if (!new)
3882 return -ENOMEM;
3883
3884 smp_wmb(); /* See comment in __pte_alloc */
3885
3886 spin_lock(&mm->page_table_lock);
3887 #ifndef __ARCH_HAS_4LEVEL_HACK
3888 if (pud_present(*pud)) /* Another has populated it */
3889 pmd_free(mm, new);
3890 else
3891 pud_populate(mm, pud, new);
3892 #else
3893 if (pgd_present(*pud)) /* Another has populated it */
3894 pmd_free(mm, new);
3895 else
3896 pgd_populate(mm, pud, new);
3897 #endif /* __ARCH_HAS_4LEVEL_HACK */
3898 spin_unlock(&mm->page_table_lock);
3899 return 0;
3900 }
3901 #endif /* __PAGETABLE_PMD_FOLDED */
3902
3903 #if !defined(__HAVE_ARCH_GATE_AREA)
3904
3905 #if defined(AT_SYSINFO_EHDR)
3906 static struct vm_area_struct gate_vma;
3907
3908 static int __init gate_vma_init(void)
3909 {
3910 gate_vma.vm_mm = NULL;
3911 gate_vma.vm_start = FIXADDR_USER_START;
3912 gate_vma.vm_end = FIXADDR_USER_END;
3913 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3914 gate_vma.vm_page_prot = __P101;
3915
3916 return 0;
3917 }
3918 __initcall(gate_vma_init);
3919 #endif
3920
3921 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3922 {
3923 #ifdef AT_SYSINFO_EHDR
3924 return &gate_vma;
3925 #else
3926 return NULL;
3927 #endif
3928 }
3929
3930 int in_gate_area_no_mm(unsigned long addr)
3931 {
3932 #ifdef AT_SYSINFO_EHDR
3933 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3934 return 1;
3935 #endif
3936 return 0;
3937 }
3938
3939 #endif /* __HAVE_ARCH_GATE_AREA */
3940
3941 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3942 pte_t **ptepp, spinlock_t **ptlp)
3943 {
3944 pgd_t *pgd;
3945 pud_t *pud;
3946 pmd_t *pmd;
3947 pte_t *ptep;
3948
3949 pgd = pgd_offset(mm, address);
3950 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3951 goto out;
3952
3953 pud = pud_offset(pgd, address);
3954 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3955 goto out;
3956
3957 pmd = pmd_offset(pud, address);
3958 VM_BUG_ON(pmd_trans_huge(*pmd));
3959 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3960 goto out;
3961
3962 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3963 if (pmd_huge(*pmd))
3964 goto out;
3965
3966 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3967 if (!ptep)
3968 goto out;
3969 if (!pte_present(*ptep))
3970 goto unlock;
3971 *ptepp = ptep;
3972 return 0;
3973 unlock:
3974 pte_unmap_unlock(ptep, *ptlp);
3975 out:
3976 return -EINVAL;
3977 }
3978
3979 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3980 pte_t **ptepp, spinlock_t **ptlp)
3981 {
3982 int res;
3983
3984 /* (void) is needed to make gcc happy */
3985 (void) __cond_lock(*ptlp,
3986 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3987 return res;
3988 }
3989
3990 /**
3991 * follow_pfn - look up PFN at a user virtual address
3992 * @vma: memory mapping
3993 * @address: user virtual address
3994 * @pfn: location to store found PFN
3995 *
3996 * Only IO mappings and raw PFN mappings are allowed.
3997 *
3998 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3999 */
4000 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4001 unsigned long *pfn)
4002 {
4003 int ret = -EINVAL;
4004 spinlock_t *ptl;
4005 pte_t *ptep;
4006
4007 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4008 return ret;
4009
4010 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4011 if (ret)
4012 return ret;
4013 *pfn = pte_pfn(*ptep);
4014 pte_unmap_unlock(ptep, ptl);
4015 return 0;
4016 }
4017 EXPORT_SYMBOL(follow_pfn);
4018
4019 #ifdef CONFIG_HAVE_IOREMAP_PROT
4020 int follow_phys(struct vm_area_struct *vma,
4021 unsigned long address, unsigned int flags,
4022 unsigned long *prot, resource_size_t *phys)
4023 {
4024 int ret = -EINVAL;
4025 pte_t *ptep, pte;
4026 spinlock_t *ptl;
4027
4028 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4029 goto out;
4030
4031 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4032 goto out;
4033 pte = *ptep;
4034
4035 if ((flags & FOLL_WRITE) && !pte_write(pte))
4036 goto unlock;
4037
4038 *prot = pgprot_val(pte_pgprot(pte));
4039 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4040
4041 ret = 0;
4042 unlock:
4043 pte_unmap_unlock(ptep, ptl);
4044 out:
4045 return ret;
4046 }
4047
4048 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4049 void *buf, int len, int write)
4050 {
4051 resource_size_t phys_addr;
4052 unsigned long prot = 0;
4053 void __iomem *maddr;
4054 int offset = addr & (PAGE_SIZE-1);
4055
4056 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4057 return -EINVAL;
4058
4059 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4060 if (write)
4061 memcpy_toio(maddr + offset, buf, len);
4062 else
4063 memcpy_fromio(buf, maddr + offset, len);
4064 iounmap(maddr);
4065
4066 return len;
4067 }
4068 #endif
4069
4070 /*
4071 * Access another process' address space as given in mm. If non-NULL, use the
4072 * given task for page fault accounting.
4073 */
4074 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4075 unsigned long addr, void *buf, int len, int write)
4076 {
4077 struct vm_area_struct *vma;
4078 void *old_buf = buf;
4079
4080 down_read(&mm->mmap_sem);
4081 /* ignore errors, just check how much was successfully transferred */
4082 while (len) {
4083 int bytes, ret, offset;
4084 void *maddr;
4085 struct page *page = NULL;
4086
4087 ret = get_user_pages(tsk, mm, addr, 1,
4088 write, 1, &page, &vma);
4089 if (ret <= 0) {
4090 /*
4091 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4092 * we can access using slightly different code.
4093 */
4094 #ifdef CONFIG_HAVE_IOREMAP_PROT
4095 vma = find_vma(mm, addr);
4096 if (!vma || vma->vm_start > addr)
4097 break;
4098 if (vma->vm_ops && vma->vm_ops->access)
4099 ret = vma->vm_ops->access(vma, addr, buf,
4100 len, write);
4101 if (ret <= 0)
4102 #endif
4103 break;
4104 bytes = ret;
4105 } else {
4106 bytes = len;
4107 offset = addr & (PAGE_SIZE-1);
4108 if (bytes > PAGE_SIZE-offset)
4109 bytes = PAGE_SIZE-offset;
4110
4111 maddr = kmap(page);
4112 if (write) {
4113 copy_to_user_page(vma, page, addr,
4114 maddr + offset, buf, bytes);
4115 set_page_dirty_lock(page);
4116 } else {
4117 copy_from_user_page(vma, page, addr,
4118 buf, maddr + offset, bytes);
4119 }
4120 kunmap(page);
4121 page_cache_release(page);
4122 }
4123 len -= bytes;
4124 buf += bytes;
4125 addr += bytes;
4126 }
4127 up_read(&mm->mmap_sem);
4128
4129 return buf - old_buf;
4130 }
4131
4132 /**
4133 * access_remote_vm - access another process' address space
4134 * @mm: the mm_struct of the target address space
4135 * @addr: start address to access
4136 * @buf: source or destination buffer
4137 * @len: number of bytes to transfer
4138 * @write: whether the access is a write
4139 *
4140 * The caller must hold a reference on @mm.
4141 */
4142 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4143 void *buf, int len, int write)
4144 {
4145 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4146 }
4147
4148 /*
4149 * Access another process' address space.
4150 * Source/target buffer must be kernel space,
4151 * Do not walk the page table directly, use get_user_pages
4152 */
4153 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4154 void *buf, int len, int write)
4155 {
4156 struct mm_struct *mm;
4157 int ret;
4158
4159 mm = get_task_mm(tsk);
4160 if (!mm)
4161 return 0;
4162
4163 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4164 mmput(mm);
4165
4166 return ret;
4167 }
4168
4169 /*
4170 * Print the name of a VMA.
4171 */
4172 void print_vma_addr(char *prefix, unsigned long ip)
4173 {
4174 struct mm_struct *mm = current->mm;
4175 struct vm_area_struct *vma;
4176
4177 /*
4178 * Do not print if we are in atomic
4179 * contexts (in exception stacks, etc.):
4180 */
4181 if (preempt_count())
4182 return;
4183
4184 down_read(&mm->mmap_sem);
4185 vma = find_vma(mm, ip);
4186 if (vma && vma->vm_file) {
4187 struct file *f = vma->vm_file;
4188 char *buf = (char *)__get_free_page(GFP_KERNEL);
4189 if (buf) {
4190 char *p;
4191
4192 p = d_path(&f->f_path, buf, PAGE_SIZE);
4193 if (IS_ERR(p))
4194 p = "?";
4195 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4196 vma->vm_start,
4197 vma->vm_end - vma->vm_start);
4198 free_page((unsigned long)buf);
4199 }
4200 }
4201 up_read(&mm->mmap_sem);
4202 }
4203
4204 #ifdef CONFIG_PROVE_LOCKING
4205 void might_fault(void)
4206 {
4207 /*
4208 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4209 * holding the mmap_sem, this is safe because kernel memory doesn't
4210 * get paged out, therefore we'll never actually fault, and the
4211 * below annotations will generate false positives.
4212 */
4213 if (segment_eq(get_fs(), KERNEL_DS))
4214 return;
4215
4216 might_sleep();
4217 /*
4218 * it would be nicer only to annotate paths which are not under
4219 * pagefault_disable, however that requires a larger audit and
4220 * providing helpers like get_user_atomic.
4221 */
4222 if (!in_atomic() && current->mm)
4223 might_lock_read(&current->mm->mmap_sem);
4224 }
4225 EXPORT_SYMBOL(might_fault);
4226 #endif
4227
4228 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4229 static void clear_gigantic_page(struct page *page,
4230 unsigned long addr,
4231 unsigned int pages_per_huge_page)
4232 {
4233 int i;
4234 struct page *p = page;
4235
4236 might_sleep();
4237 for (i = 0; i < pages_per_huge_page;
4238 i++, p = mem_map_next(p, page, i)) {
4239 cond_resched();
4240 clear_user_highpage(p, addr + i * PAGE_SIZE);
4241 }
4242 }
4243 void clear_huge_page(struct page *page,
4244 unsigned long addr, unsigned int pages_per_huge_page)
4245 {
4246 int i;
4247
4248 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4249 clear_gigantic_page(page, addr, pages_per_huge_page);
4250 return;
4251 }
4252
4253 might_sleep();
4254 for (i = 0; i < pages_per_huge_page; i++) {
4255 cond_resched();
4256 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4257 }
4258 }
4259
4260 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4261 unsigned long addr,
4262 struct vm_area_struct *vma,
4263 unsigned int pages_per_huge_page)
4264 {
4265 int i;
4266 struct page *dst_base = dst;
4267 struct page *src_base = src;
4268
4269 for (i = 0; i < pages_per_huge_page; ) {
4270 cond_resched();
4271 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4272
4273 i++;
4274 dst = mem_map_next(dst, dst_base, i);
4275 src = mem_map_next(src, src_base, i);
4276 }
4277 }
4278
4279 void copy_user_huge_page(struct page *dst, struct page *src,
4280 unsigned long addr, struct vm_area_struct *vma,
4281 unsigned int pages_per_huge_page)
4282 {
4283 int i;
4284
4285 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4286 copy_user_gigantic_page(dst, src, addr, vma,
4287 pages_per_huge_page);
4288 return;
4289 }
4290
4291 might_sleep();
4292 for (i = 0; i < pages_per_huge_page; i++) {
4293 cond_resched();
4294 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4295 }
4296 }
4297 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */