mm: replace vma prio_tree with an interval tree
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100 1;
101 #else
102 2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107 randomize_va_space = 0;
108 return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118 static int __init init_zero_pfn(void)
119 {
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 void sync_mm_rss(struct mm_struct *mm)
129 {
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (current->rss_stat.count[i]) {
134 add_mm_counter(mm, i, current->rss_stat.count[i]);
135 current->rss_stat.count[i] = 0;
136 }
137 }
138 current->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 sync_mm_rss(task->mm);
161 }
162 #else /* SPLIT_RSS_COUNTING */
163
164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166
167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169 }
170
171 #endif /* SPLIT_RSS_COUNTING */
172
173 #ifdef HAVE_GENERIC_MMU_GATHER
174
175 static int tlb_next_batch(struct mmu_gather *tlb)
176 {
177 struct mmu_gather_batch *batch;
178
179 batch = tlb->active;
180 if (batch->next) {
181 tlb->active = batch->next;
182 return 1;
183 }
184
185 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186 if (!batch)
187 return 0;
188
189 batch->next = NULL;
190 batch->nr = 0;
191 batch->max = MAX_GATHER_BATCH;
192
193 tlb->active->next = batch;
194 tlb->active = batch;
195
196 return 1;
197 }
198
199 /* tlb_gather_mmu
200 * Called to initialize an (on-stack) mmu_gather structure for page-table
201 * tear-down from @mm. The @fullmm argument is used when @mm is without
202 * users and we're going to destroy the full address space (exit/execve).
203 */
204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
205 {
206 tlb->mm = mm;
207
208 tlb->fullmm = fullmm;
209 tlb->start = -1UL;
210 tlb->end = 0;
211 tlb->need_flush = 0;
212 tlb->fast_mode = (num_possible_cpus() == 1);
213 tlb->local.next = NULL;
214 tlb->local.nr = 0;
215 tlb->local.max = ARRAY_SIZE(tlb->__pages);
216 tlb->active = &tlb->local;
217
218 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
219 tlb->batch = NULL;
220 #endif
221 }
222
223 void tlb_flush_mmu(struct mmu_gather *tlb)
224 {
225 struct mmu_gather_batch *batch;
226
227 if (!tlb->need_flush)
228 return;
229 tlb->need_flush = 0;
230 tlb_flush(tlb);
231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
232 tlb_table_flush(tlb);
233 #endif
234
235 if (tlb_fast_mode(tlb))
236 return;
237
238 for (batch = &tlb->local; batch; batch = batch->next) {
239 free_pages_and_swap_cache(batch->pages, batch->nr);
240 batch->nr = 0;
241 }
242 tlb->active = &tlb->local;
243 }
244
245 /* tlb_finish_mmu
246 * Called at the end of the shootdown operation to free up any resources
247 * that were required.
248 */
249 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
250 {
251 struct mmu_gather_batch *batch, *next;
252
253 tlb->start = start;
254 tlb->end = end;
255 tlb_flush_mmu(tlb);
256
257 /* keep the page table cache within bounds */
258 check_pgt_cache();
259
260 for (batch = tlb->local.next; batch; batch = next) {
261 next = batch->next;
262 free_pages((unsigned long)batch, 0);
263 }
264 tlb->local.next = NULL;
265 }
266
267 /* __tlb_remove_page
268 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
269 * handling the additional races in SMP caused by other CPUs caching valid
270 * mappings in their TLBs. Returns the number of free page slots left.
271 * When out of page slots we must call tlb_flush_mmu().
272 */
273 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
274 {
275 struct mmu_gather_batch *batch;
276
277 VM_BUG_ON(!tlb->need_flush);
278
279 if (tlb_fast_mode(tlb)) {
280 free_page_and_swap_cache(page);
281 return 1; /* avoid calling tlb_flush_mmu() */
282 }
283
284 batch = tlb->active;
285 batch->pages[batch->nr++] = page;
286 if (batch->nr == batch->max) {
287 if (!tlb_next_batch(tlb))
288 return 0;
289 batch = tlb->active;
290 }
291 VM_BUG_ON(batch->nr > batch->max);
292
293 return batch->max - batch->nr;
294 }
295
296 #endif /* HAVE_GENERIC_MMU_GATHER */
297
298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
299
300 /*
301 * See the comment near struct mmu_table_batch.
302 */
303
304 static void tlb_remove_table_smp_sync(void *arg)
305 {
306 /* Simply deliver the interrupt */
307 }
308
309 static void tlb_remove_table_one(void *table)
310 {
311 /*
312 * This isn't an RCU grace period and hence the page-tables cannot be
313 * assumed to be actually RCU-freed.
314 *
315 * It is however sufficient for software page-table walkers that rely on
316 * IRQ disabling. See the comment near struct mmu_table_batch.
317 */
318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319 __tlb_remove_table(table);
320 }
321
322 static void tlb_remove_table_rcu(struct rcu_head *head)
323 {
324 struct mmu_table_batch *batch;
325 int i;
326
327 batch = container_of(head, struct mmu_table_batch, rcu);
328
329 for (i = 0; i < batch->nr; i++)
330 __tlb_remove_table(batch->tables[i]);
331
332 free_page((unsigned long)batch);
333 }
334
335 void tlb_table_flush(struct mmu_gather *tlb)
336 {
337 struct mmu_table_batch **batch = &tlb->batch;
338
339 if (*batch) {
340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341 *batch = NULL;
342 }
343 }
344
345 void tlb_remove_table(struct mmu_gather *tlb, void *table)
346 {
347 struct mmu_table_batch **batch = &tlb->batch;
348
349 tlb->need_flush = 1;
350
351 /*
352 * When there's less then two users of this mm there cannot be a
353 * concurrent page-table walk.
354 */
355 if (atomic_read(&tlb->mm->mm_users) < 2) {
356 __tlb_remove_table(table);
357 return;
358 }
359
360 if (*batch == NULL) {
361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362 if (*batch == NULL) {
363 tlb_remove_table_one(table);
364 return;
365 }
366 (*batch)->nr = 0;
367 }
368 (*batch)->tables[(*batch)->nr++] = table;
369 if ((*batch)->nr == MAX_TABLE_BATCH)
370 tlb_table_flush(tlb);
371 }
372
373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
374
375 /*
376 * If a p?d_bad entry is found while walking page tables, report
377 * the error, before resetting entry to p?d_none. Usually (but
378 * very seldom) called out from the p?d_none_or_clear_bad macros.
379 */
380
381 void pgd_clear_bad(pgd_t *pgd)
382 {
383 pgd_ERROR(*pgd);
384 pgd_clear(pgd);
385 }
386
387 void pud_clear_bad(pud_t *pud)
388 {
389 pud_ERROR(*pud);
390 pud_clear(pud);
391 }
392
393 void pmd_clear_bad(pmd_t *pmd)
394 {
395 pmd_ERROR(*pmd);
396 pmd_clear(pmd);
397 }
398
399 /*
400 * Note: this doesn't free the actual pages themselves. That
401 * has been handled earlier when unmapping all the memory regions.
402 */
403 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
404 unsigned long addr)
405 {
406 pgtable_t token = pmd_pgtable(*pmd);
407 pmd_clear(pmd);
408 pte_free_tlb(tlb, token, addr);
409 tlb->mm->nr_ptes--;
410 }
411
412 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
413 unsigned long addr, unsigned long end,
414 unsigned long floor, unsigned long ceiling)
415 {
416 pmd_t *pmd;
417 unsigned long next;
418 unsigned long start;
419
420 start = addr;
421 pmd = pmd_offset(pud, addr);
422 do {
423 next = pmd_addr_end(addr, end);
424 if (pmd_none_or_clear_bad(pmd))
425 continue;
426 free_pte_range(tlb, pmd, addr);
427 } while (pmd++, addr = next, addr != end);
428
429 start &= PUD_MASK;
430 if (start < floor)
431 return;
432 if (ceiling) {
433 ceiling &= PUD_MASK;
434 if (!ceiling)
435 return;
436 }
437 if (end - 1 > ceiling - 1)
438 return;
439
440 pmd = pmd_offset(pud, start);
441 pud_clear(pud);
442 pmd_free_tlb(tlb, pmd, start);
443 }
444
445 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
446 unsigned long addr, unsigned long end,
447 unsigned long floor, unsigned long ceiling)
448 {
449 pud_t *pud;
450 unsigned long next;
451 unsigned long start;
452
453 start = addr;
454 pud = pud_offset(pgd, addr);
455 do {
456 next = pud_addr_end(addr, end);
457 if (pud_none_or_clear_bad(pud))
458 continue;
459 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
460 } while (pud++, addr = next, addr != end);
461
462 start &= PGDIR_MASK;
463 if (start < floor)
464 return;
465 if (ceiling) {
466 ceiling &= PGDIR_MASK;
467 if (!ceiling)
468 return;
469 }
470 if (end - 1 > ceiling - 1)
471 return;
472
473 pud = pud_offset(pgd, start);
474 pgd_clear(pgd);
475 pud_free_tlb(tlb, pud, start);
476 }
477
478 /*
479 * This function frees user-level page tables of a process.
480 *
481 * Must be called with pagetable lock held.
482 */
483 void free_pgd_range(struct mmu_gather *tlb,
484 unsigned long addr, unsigned long end,
485 unsigned long floor, unsigned long ceiling)
486 {
487 pgd_t *pgd;
488 unsigned long next;
489
490 /*
491 * The next few lines have given us lots of grief...
492 *
493 * Why are we testing PMD* at this top level? Because often
494 * there will be no work to do at all, and we'd prefer not to
495 * go all the way down to the bottom just to discover that.
496 *
497 * Why all these "- 1"s? Because 0 represents both the bottom
498 * of the address space and the top of it (using -1 for the
499 * top wouldn't help much: the masks would do the wrong thing).
500 * The rule is that addr 0 and floor 0 refer to the bottom of
501 * the address space, but end 0 and ceiling 0 refer to the top
502 * Comparisons need to use "end - 1" and "ceiling - 1" (though
503 * that end 0 case should be mythical).
504 *
505 * Wherever addr is brought up or ceiling brought down, we must
506 * be careful to reject "the opposite 0" before it confuses the
507 * subsequent tests. But what about where end is brought down
508 * by PMD_SIZE below? no, end can't go down to 0 there.
509 *
510 * Whereas we round start (addr) and ceiling down, by different
511 * masks at different levels, in order to test whether a table
512 * now has no other vmas using it, so can be freed, we don't
513 * bother to round floor or end up - the tests don't need that.
514 */
515
516 addr &= PMD_MASK;
517 if (addr < floor) {
518 addr += PMD_SIZE;
519 if (!addr)
520 return;
521 }
522 if (ceiling) {
523 ceiling &= PMD_MASK;
524 if (!ceiling)
525 return;
526 }
527 if (end - 1 > ceiling - 1)
528 end -= PMD_SIZE;
529 if (addr > end - 1)
530 return;
531
532 pgd = pgd_offset(tlb->mm, addr);
533 do {
534 next = pgd_addr_end(addr, end);
535 if (pgd_none_or_clear_bad(pgd))
536 continue;
537 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
538 } while (pgd++, addr = next, addr != end);
539 }
540
541 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
542 unsigned long floor, unsigned long ceiling)
543 {
544 while (vma) {
545 struct vm_area_struct *next = vma->vm_next;
546 unsigned long addr = vma->vm_start;
547
548 /*
549 * Hide vma from rmap and truncate_pagecache before freeing
550 * pgtables
551 */
552 unlink_anon_vmas(vma);
553 unlink_file_vma(vma);
554
555 if (is_vm_hugetlb_page(vma)) {
556 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
557 floor, next? next->vm_start: ceiling);
558 } else {
559 /*
560 * Optimization: gather nearby vmas into one call down
561 */
562 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
563 && !is_vm_hugetlb_page(next)) {
564 vma = next;
565 next = vma->vm_next;
566 unlink_anon_vmas(vma);
567 unlink_file_vma(vma);
568 }
569 free_pgd_range(tlb, addr, vma->vm_end,
570 floor, next? next->vm_start: ceiling);
571 }
572 vma = next;
573 }
574 }
575
576 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
577 pmd_t *pmd, unsigned long address)
578 {
579 pgtable_t new = pte_alloc_one(mm, address);
580 int wait_split_huge_page;
581 if (!new)
582 return -ENOMEM;
583
584 /*
585 * Ensure all pte setup (eg. pte page lock and page clearing) are
586 * visible before the pte is made visible to other CPUs by being
587 * put into page tables.
588 *
589 * The other side of the story is the pointer chasing in the page
590 * table walking code (when walking the page table without locking;
591 * ie. most of the time). Fortunately, these data accesses consist
592 * of a chain of data-dependent loads, meaning most CPUs (alpha
593 * being the notable exception) will already guarantee loads are
594 * seen in-order. See the alpha page table accessors for the
595 * smp_read_barrier_depends() barriers in page table walking code.
596 */
597 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
598
599 spin_lock(&mm->page_table_lock);
600 wait_split_huge_page = 0;
601 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
602 mm->nr_ptes++;
603 pmd_populate(mm, pmd, new);
604 new = NULL;
605 } else if (unlikely(pmd_trans_splitting(*pmd)))
606 wait_split_huge_page = 1;
607 spin_unlock(&mm->page_table_lock);
608 if (new)
609 pte_free(mm, new);
610 if (wait_split_huge_page)
611 wait_split_huge_page(vma->anon_vma, pmd);
612 return 0;
613 }
614
615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
616 {
617 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
618 if (!new)
619 return -ENOMEM;
620
621 smp_wmb(); /* See comment in __pte_alloc */
622
623 spin_lock(&init_mm.page_table_lock);
624 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
625 pmd_populate_kernel(&init_mm, pmd, new);
626 new = NULL;
627 } else
628 VM_BUG_ON(pmd_trans_splitting(*pmd));
629 spin_unlock(&init_mm.page_table_lock);
630 if (new)
631 pte_free_kernel(&init_mm, new);
632 return 0;
633 }
634
635 static inline void init_rss_vec(int *rss)
636 {
637 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
638 }
639
640 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
641 {
642 int i;
643
644 if (current->mm == mm)
645 sync_mm_rss(mm);
646 for (i = 0; i < NR_MM_COUNTERS; i++)
647 if (rss[i])
648 add_mm_counter(mm, i, rss[i]);
649 }
650
651 /*
652 * This function is called to print an error when a bad pte
653 * is found. For example, we might have a PFN-mapped pte in
654 * a region that doesn't allow it.
655 *
656 * The calling function must still handle the error.
657 */
658 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
659 pte_t pte, struct page *page)
660 {
661 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
662 pud_t *pud = pud_offset(pgd, addr);
663 pmd_t *pmd = pmd_offset(pud, addr);
664 struct address_space *mapping;
665 pgoff_t index;
666 static unsigned long resume;
667 static unsigned long nr_shown;
668 static unsigned long nr_unshown;
669
670 /*
671 * Allow a burst of 60 reports, then keep quiet for that minute;
672 * or allow a steady drip of one report per second.
673 */
674 if (nr_shown == 60) {
675 if (time_before(jiffies, resume)) {
676 nr_unshown++;
677 return;
678 }
679 if (nr_unshown) {
680 printk(KERN_ALERT
681 "BUG: Bad page map: %lu messages suppressed\n",
682 nr_unshown);
683 nr_unshown = 0;
684 }
685 nr_shown = 0;
686 }
687 if (nr_shown++ == 0)
688 resume = jiffies + 60 * HZ;
689
690 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
691 index = linear_page_index(vma, addr);
692
693 printk(KERN_ALERT
694 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
695 current->comm,
696 (long long)pte_val(pte), (long long)pmd_val(*pmd));
697 if (page)
698 dump_page(page);
699 printk(KERN_ALERT
700 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
701 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
702 /*
703 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
704 */
705 if (vma->vm_ops)
706 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
707 (unsigned long)vma->vm_ops->fault);
708 if (vma->vm_file && vma->vm_file->f_op)
709 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
710 (unsigned long)vma->vm_file->f_op->mmap);
711 dump_stack();
712 add_taint(TAINT_BAD_PAGE);
713 }
714
715 static inline int is_cow_mapping(vm_flags_t flags)
716 {
717 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
718 }
719
720 #ifndef is_zero_pfn
721 static inline int is_zero_pfn(unsigned long pfn)
722 {
723 return pfn == zero_pfn;
724 }
725 #endif
726
727 #ifndef my_zero_pfn
728 static inline unsigned long my_zero_pfn(unsigned long addr)
729 {
730 return zero_pfn;
731 }
732 #endif
733
734 /*
735 * vm_normal_page -- This function gets the "struct page" associated with a pte.
736 *
737 * "Special" mappings do not wish to be associated with a "struct page" (either
738 * it doesn't exist, or it exists but they don't want to touch it). In this
739 * case, NULL is returned here. "Normal" mappings do have a struct page.
740 *
741 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
742 * pte bit, in which case this function is trivial. Secondly, an architecture
743 * may not have a spare pte bit, which requires a more complicated scheme,
744 * described below.
745 *
746 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
747 * special mapping (even if there are underlying and valid "struct pages").
748 * COWed pages of a VM_PFNMAP are always normal.
749 *
750 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
751 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
752 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
753 * mapping will always honor the rule
754 *
755 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
756 *
757 * And for normal mappings this is false.
758 *
759 * This restricts such mappings to be a linear translation from virtual address
760 * to pfn. To get around this restriction, we allow arbitrary mappings so long
761 * as the vma is not a COW mapping; in that case, we know that all ptes are
762 * special (because none can have been COWed).
763 *
764 *
765 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
766 *
767 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
768 * page" backing, however the difference is that _all_ pages with a struct
769 * page (that is, those where pfn_valid is true) are refcounted and considered
770 * normal pages by the VM. The disadvantage is that pages are refcounted
771 * (which can be slower and simply not an option for some PFNMAP users). The
772 * advantage is that we don't have to follow the strict linearity rule of
773 * PFNMAP mappings in order to support COWable mappings.
774 *
775 */
776 #ifdef __HAVE_ARCH_PTE_SPECIAL
777 # define HAVE_PTE_SPECIAL 1
778 #else
779 # define HAVE_PTE_SPECIAL 0
780 #endif
781 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
782 pte_t pte)
783 {
784 unsigned long pfn = pte_pfn(pte);
785
786 if (HAVE_PTE_SPECIAL) {
787 if (likely(!pte_special(pte)))
788 goto check_pfn;
789 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
790 return NULL;
791 if (!is_zero_pfn(pfn))
792 print_bad_pte(vma, addr, pte, NULL);
793 return NULL;
794 }
795
796 /* !HAVE_PTE_SPECIAL case follows: */
797
798 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
799 if (vma->vm_flags & VM_MIXEDMAP) {
800 if (!pfn_valid(pfn))
801 return NULL;
802 goto out;
803 } else {
804 unsigned long off;
805 off = (addr - vma->vm_start) >> PAGE_SHIFT;
806 if (pfn == vma->vm_pgoff + off)
807 return NULL;
808 if (!is_cow_mapping(vma->vm_flags))
809 return NULL;
810 }
811 }
812
813 if (is_zero_pfn(pfn))
814 return NULL;
815 check_pfn:
816 if (unlikely(pfn > highest_memmap_pfn)) {
817 print_bad_pte(vma, addr, pte, NULL);
818 return NULL;
819 }
820
821 /*
822 * NOTE! We still have PageReserved() pages in the page tables.
823 * eg. VDSO mappings can cause them to exist.
824 */
825 out:
826 return pfn_to_page(pfn);
827 }
828
829 /*
830 * copy one vm_area from one task to the other. Assumes the page tables
831 * already present in the new task to be cleared in the whole range
832 * covered by this vma.
833 */
834
835 static inline unsigned long
836 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
837 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
838 unsigned long addr, int *rss)
839 {
840 unsigned long vm_flags = vma->vm_flags;
841 pte_t pte = *src_pte;
842 struct page *page;
843
844 /* pte contains position in swap or file, so copy. */
845 if (unlikely(!pte_present(pte))) {
846 if (!pte_file(pte)) {
847 swp_entry_t entry = pte_to_swp_entry(pte);
848
849 if (swap_duplicate(entry) < 0)
850 return entry.val;
851
852 /* make sure dst_mm is on swapoff's mmlist. */
853 if (unlikely(list_empty(&dst_mm->mmlist))) {
854 spin_lock(&mmlist_lock);
855 if (list_empty(&dst_mm->mmlist))
856 list_add(&dst_mm->mmlist,
857 &src_mm->mmlist);
858 spin_unlock(&mmlist_lock);
859 }
860 if (likely(!non_swap_entry(entry)))
861 rss[MM_SWAPENTS]++;
862 else if (is_migration_entry(entry)) {
863 page = migration_entry_to_page(entry);
864
865 if (PageAnon(page))
866 rss[MM_ANONPAGES]++;
867 else
868 rss[MM_FILEPAGES]++;
869
870 if (is_write_migration_entry(entry) &&
871 is_cow_mapping(vm_flags)) {
872 /*
873 * COW mappings require pages in both
874 * parent and child to be set to read.
875 */
876 make_migration_entry_read(&entry);
877 pte = swp_entry_to_pte(entry);
878 set_pte_at(src_mm, addr, src_pte, pte);
879 }
880 }
881 }
882 goto out_set_pte;
883 }
884
885 /*
886 * If it's a COW mapping, write protect it both
887 * in the parent and the child
888 */
889 if (is_cow_mapping(vm_flags)) {
890 ptep_set_wrprotect(src_mm, addr, src_pte);
891 pte = pte_wrprotect(pte);
892 }
893
894 /*
895 * If it's a shared mapping, mark it clean in
896 * the child
897 */
898 if (vm_flags & VM_SHARED)
899 pte = pte_mkclean(pte);
900 pte = pte_mkold(pte);
901
902 page = vm_normal_page(vma, addr, pte);
903 if (page) {
904 get_page(page);
905 page_dup_rmap(page);
906 if (PageAnon(page))
907 rss[MM_ANONPAGES]++;
908 else
909 rss[MM_FILEPAGES]++;
910 }
911
912 out_set_pte:
913 set_pte_at(dst_mm, addr, dst_pte, pte);
914 return 0;
915 }
916
917 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
918 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
919 unsigned long addr, unsigned long end)
920 {
921 pte_t *orig_src_pte, *orig_dst_pte;
922 pte_t *src_pte, *dst_pte;
923 spinlock_t *src_ptl, *dst_ptl;
924 int progress = 0;
925 int rss[NR_MM_COUNTERS];
926 swp_entry_t entry = (swp_entry_t){0};
927
928 again:
929 init_rss_vec(rss);
930
931 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
932 if (!dst_pte)
933 return -ENOMEM;
934 src_pte = pte_offset_map(src_pmd, addr);
935 src_ptl = pte_lockptr(src_mm, src_pmd);
936 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
937 orig_src_pte = src_pte;
938 orig_dst_pte = dst_pte;
939 arch_enter_lazy_mmu_mode();
940
941 do {
942 /*
943 * We are holding two locks at this point - either of them
944 * could generate latencies in another task on another CPU.
945 */
946 if (progress >= 32) {
947 progress = 0;
948 if (need_resched() ||
949 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
950 break;
951 }
952 if (pte_none(*src_pte)) {
953 progress++;
954 continue;
955 }
956 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
957 vma, addr, rss);
958 if (entry.val)
959 break;
960 progress += 8;
961 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
962
963 arch_leave_lazy_mmu_mode();
964 spin_unlock(src_ptl);
965 pte_unmap(orig_src_pte);
966 add_mm_rss_vec(dst_mm, rss);
967 pte_unmap_unlock(orig_dst_pte, dst_ptl);
968 cond_resched();
969
970 if (entry.val) {
971 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
972 return -ENOMEM;
973 progress = 0;
974 }
975 if (addr != end)
976 goto again;
977 return 0;
978 }
979
980 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
981 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
982 unsigned long addr, unsigned long end)
983 {
984 pmd_t *src_pmd, *dst_pmd;
985 unsigned long next;
986
987 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
988 if (!dst_pmd)
989 return -ENOMEM;
990 src_pmd = pmd_offset(src_pud, addr);
991 do {
992 next = pmd_addr_end(addr, end);
993 if (pmd_trans_huge(*src_pmd)) {
994 int err;
995 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
996 err = copy_huge_pmd(dst_mm, src_mm,
997 dst_pmd, src_pmd, addr, vma);
998 if (err == -ENOMEM)
999 return -ENOMEM;
1000 if (!err)
1001 continue;
1002 /* fall through */
1003 }
1004 if (pmd_none_or_clear_bad(src_pmd))
1005 continue;
1006 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1007 vma, addr, next))
1008 return -ENOMEM;
1009 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1010 return 0;
1011 }
1012
1013 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1014 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1015 unsigned long addr, unsigned long end)
1016 {
1017 pud_t *src_pud, *dst_pud;
1018 unsigned long next;
1019
1020 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1021 if (!dst_pud)
1022 return -ENOMEM;
1023 src_pud = pud_offset(src_pgd, addr);
1024 do {
1025 next = pud_addr_end(addr, end);
1026 if (pud_none_or_clear_bad(src_pud))
1027 continue;
1028 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1029 vma, addr, next))
1030 return -ENOMEM;
1031 } while (dst_pud++, src_pud++, addr = next, addr != end);
1032 return 0;
1033 }
1034
1035 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1036 struct vm_area_struct *vma)
1037 {
1038 pgd_t *src_pgd, *dst_pgd;
1039 unsigned long next;
1040 unsigned long addr = vma->vm_start;
1041 unsigned long end = vma->vm_end;
1042 int ret;
1043
1044 /*
1045 * Don't copy ptes where a page fault will fill them correctly.
1046 * Fork becomes much lighter when there are big shared or private
1047 * readonly mappings. The tradeoff is that copy_page_range is more
1048 * efficient than faulting.
1049 */
1050 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1051 VM_PFNMAP | VM_MIXEDMAP))) {
1052 if (!vma->anon_vma)
1053 return 0;
1054 }
1055
1056 if (is_vm_hugetlb_page(vma))
1057 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1058
1059 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1060 /*
1061 * We do not free on error cases below as remove_vma
1062 * gets called on error from higher level routine
1063 */
1064 ret = track_pfn_copy(vma);
1065 if (ret)
1066 return ret;
1067 }
1068
1069 /*
1070 * We need to invalidate the secondary MMU mappings only when
1071 * there could be a permission downgrade on the ptes of the
1072 * parent mm. And a permission downgrade will only happen if
1073 * is_cow_mapping() returns true.
1074 */
1075 if (is_cow_mapping(vma->vm_flags))
1076 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1077
1078 ret = 0;
1079 dst_pgd = pgd_offset(dst_mm, addr);
1080 src_pgd = pgd_offset(src_mm, addr);
1081 do {
1082 next = pgd_addr_end(addr, end);
1083 if (pgd_none_or_clear_bad(src_pgd))
1084 continue;
1085 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1086 vma, addr, next))) {
1087 ret = -ENOMEM;
1088 break;
1089 }
1090 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1091
1092 if (is_cow_mapping(vma->vm_flags))
1093 mmu_notifier_invalidate_range_end(src_mm,
1094 vma->vm_start, end);
1095 return ret;
1096 }
1097
1098 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1099 struct vm_area_struct *vma, pmd_t *pmd,
1100 unsigned long addr, unsigned long end,
1101 struct zap_details *details)
1102 {
1103 struct mm_struct *mm = tlb->mm;
1104 int force_flush = 0;
1105 int rss[NR_MM_COUNTERS];
1106 spinlock_t *ptl;
1107 pte_t *start_pte;
1108 pte_t *pte;
1109
1110 again:
1111 init_rss_vec(rss);
1112 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1113 pte = start_pte;
1114 arch_enter_lazy_mmu_mode();
1115 do {
1116 pte_t ptent = *pte;
1117 if (pte_none(ptent)) {
1118 continue;
1119 }
1120
1121 if (pte_present(ptent)) {
1122 struct page *page;
1123
1124 page = vm_normal_page(vma, addr, ptent);
1125 if (unlikely(details) && page) {
1126 /*
1127 * unmap_shared_mapping_pages() wants to
1128 * invalidate cache without truncating:
1129 * unmap shared but keep private pages.
1130 */
1131 if (details->check_mapping &&
1132 details->check_mapping != page->mapping)
1133 continue;
1134 /*
1135 * Each page->index must be checked when
1136 * invalidating or truncating nonlinear.
1137 */
1138 if (details->nonlinear_vma &&
1139 (page->index < details->first_index ||
1140 page->index > details->last_index))
1141 continue;
1142 }
1143 ptent = ptep_get_and_clear_full(mm, addr, pte,
1144 tlb->fullmm);
1145 tlb_remove_tlb_entry(tlb, pte, addr);
1146 if (unlikely(!page))
1147 continue;
1148 if (unlikely(details) && details->nonlinear_vma
1149 && linear_page_index(details->nonlinear_vma,
1150 addr) != page->index)
1151 set_pte_at(mm, addr, pte,
1152 pgoff_to_pte(page->index));
1153 if (PageAnon(page))
1154 rss[MM_ANONPAGES]--;
1155 else {
1156 if (pte_dirty(ptent))
1157 set_page_dirty(page);
1158 if (pte_young(ptent) &&
1159 likely(!VM_SequentialReadHint(vma)))
1160 mark_page_accessed(page);
1161 rss[MM_FILEPAGES]--;
1162 }
1163 page_remove_rmap(page);
1164 if (unlikely(page_mapcount(page) < 0))
1165 print_bad_pte(vma, addr, ptent, page);
1166 force_flush = !__tlb_remove_page(tlb, page);
1167 if (force_flush)
1168 break;
1169 continue;
1170 }
1171 /*
1172 * If details->check_mapping, we leave swap entries;
1173 * if details->nonlinear_vma, we leave file entries.
1174 */
1175 if (unlikely(details))
1176 continue;
1177 if (pte_file(ptent)) {
1178 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1179 print_bad_pte(vma, addr, ptent, NULL);
1180 } else {
1181 swp_entry_t entry = pte_to_swp_entry(ptent);
1182
1183 if (!non_swap_entry(entry))
1184 rss[MM_SWAPENTS]--;
1185 else if (is_migration_entry(entry)) {
1186 struct page *page;
1187
1188 page = migration_entry_to_page(entry);
1189
1190 if (PageAnon(page))
1191 rss[MM_ANONPAGES]--;
1192 else
1193 rss[MM_FILEPAGES]--;
1194 }
1195 if (unlikely(!free_swap_and_cache(entry)))
1196 print_bad_pte(vma, addr, ptent, NULL);
1197 }
1198 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1199 } while (pte++, addr += PAGE_SIZE, addr != end);
1200
1201 add_mm_rss_vec(mm, rss);
1202 arch_leave_lazy_mmu_mode();
1203 pte_unmap_unlock(start_pte, ptl);
1204
1205 /*
1206 * mmu_gather ran out of room to batch pages, we break out of
1207 * the PTE lock to avoid doing the potential expensive TLB invalidate
1208 * and page-free while holding it.
1209 */
1210 if (force_flush) {
1211 force_flush = 0;
1212
1213 #ifdef HAVE_GENERIC_MMU_GATHER
1214 tlb->start = addr;
1215 tlb->end = end;
1216 #endif
1217 tlb_flush_mmu(tlb);
1218 if (addr != end)
1219 goto again;
1220 }
1221
1222 return addr;
1223 }
1224
1225 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1226 struct vm_area_struct *vma, pud_t *pud,
1227 unsigned long addr, unsigned long end,
1228 struct zap_details *details)
1229 {
1230 pmd_t *pmd;
1231 unsigned long next;
1232
1233 pmd = pmd_offset(pud, addr);
1234 do {
1235 next = pmd_addr_end(addr, end);
1236 if (pmd_trans_huge(*pmd)) {
1237 if (next - addr != HPAGE_PMD_SIZE) {
1238 #ifdef CONFIG_DEBUG_VM
1239 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1240 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1241 __func__, addr, end,
1242 vma->vm_start,
1243 vma->vm_end);
1244 BUG();
1245 }
1246 #endif
1247 split_huge_page_pmd(vma->vm_mm, pmd);
1248 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1249 goto next;
1250 /* fall through */
1251 }
1252 /*
1253 * Here there can be other concurrent MADV_DONTNEED or
1254 * trans huge page faults running, and if the pmd is
1255 * none or trans huge it can change under us. This is
1256 * because MADV_DONTNEED holds the mmap_sem in read
1257 * mode.
1258 */
1259 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1260 goto next;
1261 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1262 next:
1263 cond_resched();
1264 } while (pmd++, addr = next, addr != end);
1265
1266 return addr;
1267 }
1268
1269 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1270 struct vm_area_struct *vma, pgd_t *pgd,
1271 unsigned long addr, unsigned long end,
1272 struct zap_details *details)
1273 {
1274 pud_t *pud;
1275 unsigned long next;
1276
1277 pud = pud_offset(pgd, addr);
1278 do {
1279 next = pud_addr_end(addr, end);
1280 if (pud_none_or_clear_bad(pud))
1281 continue;
1282 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1283 } while (pud++, addr = next, addr != end);
1284
1285 return addr;
1286 }
1287
1288 static void unmap_page_range(struct mmu_gather *tlb,
1289 struct vm_area_struct *vma,
1290 unsigned long addr, unsigned long end,
1291 struct zap_details *details)
1292 {
1293 pgd_t *pgd;
1294 unsigned long next;
1295
1296 if (details && !details->check_mapping && !details->nonlinear_vma)
1297 details = NULL;
1298
1299 BUG_ON(addr >= end);
1300 mem_cgroup_uncharge_start();
1301 tlb_start_vma(tlb, vma);
1302 pgd = pgd_offset(vma->vm_mm, addr);
1303 do {
1304 next = pgd_addr_end(addr, end);
1305 if (pgd_none_or_clear_bad(pgd))
1306 continue;
1307 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1308 } while (pgd++, addr = next, addr != end);
1309 tlb_end_vma(tlb, vma);
1310 mem_cgroup_uncharge_end();
1311 }
1312
1313
1314 static void unmap_single_vma(struct mmu_gather *tlb,
1315 struct vm_area_struct *vma, unsigned long start_addr,
1316 unsigned long end_addr,
1317 struct zap_details *details)
1318 {
1319 unsigned long start = max(vma->vm_start, start_addr);
1320 unsigned long end;
1321
1322 if (start >= vma->vm_end)
1323 return;
1324 end = min(vma->vm_end, end_addr);
1325 if (end <= vma->vm_start)
1326 return;
1327
1328 if (vma->vm_file)
1329 uprobe_munmap(vma, start, end);
1330
1331 if (unlikely(vma->vm_flags & VM_PFNMAP))
1332 untrack_pfn(vma, 0, 0);
1333
1334 if (start != end) {
1335 if (unlikely(is_vm_hugetlb_page(vma))) {
1336 /*
1337 * It is undesirable to test vma->vm_file as it
1338 * should be non-null for valid hugetlb area.
1339 * However, vm_file will be NULL in the error
1340 * cleanup path of do_mmap_pgoff. When
1341 * hugetlbfs ->mmap method fails,
1342 * do_mmap_pgoff() nullifies vma->vm_file
1343 * before calling this function to clean up.
1344 * Since no pte has actually been setup, it is
1345 * safe to do nothing in this case.
1346 */
1347 if (vma->vm_file) {
1348 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1349 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1350 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1351 }
1352 } else
1353 unmap_page_range(tlb, vma, start, end, details);
1354 }
1355 }
1356
1357 /**
1358 * unmap_vmas - unmap a range of memory covered by a list of vma's
1359 * @tlb: address of the caller's struct mmu_gather
1360 * @vma: the starting vma
1361 * @start_addr: virtual address at which to start unmapping
1362 * @end_addr: virtual address at which to end unmapping
1363 *
1364 * Unmap all pages in the vma list.
1365 *
1366 * Only addresses between `start' and `end' will be unmapped.
1367 *
1368 * The VMA list must be sorted in ascending virtual address order.
1369 *
1370 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1371 * range after unmap_vmas() returns. So the only responsibility here is to
1372 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1373 * drops the lock and schedules.
1374 */
1375 void unmap_vmas(struct mmu_gather *tlb,
1376 struct vm_area_struct *vma, unsigned long start_addr,
1377 unsigned long end_addr)
1378 {
1379 struct mm_struct *mm = vma->vm_mm;
1380
1381 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1382 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1383 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1384 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1385 }
1386
1387 /**
1388 * zap_page_range - remove user pages in a given range
1389 * @vma: vm_area_struct holding the applicable pages
1390 * @start: starting address of pages to zap
1391 * @size: number of bytes to zap
1392 * @details: details of nonlinear truncation or shared cache invalidation
1393 *
1394 * Caller must protect the VMA list
1395 */
1396 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1397 unsigned long size, struct zap_details *details)
1398 {
1399 struct mm_struct *mm = vma->vm_mm;
1400 struct mmu_gather tlb;
1401 unsigned long end = start + size;
1402
1403 lru_add_drain();
1404 tlb_gather_mmu(&tlb, mm, 0);
1405 update_hiwater_rss(mm);
1406 mmu_notifier_invalidate_range_start(mm, start, end);
1407 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1408 unmap_single_vma(&tlb, vma, start, end, details);
1409 mmu_notifier_invalidate_range_end(mm, start, end);
1410 tlb_finish_mmu(&tlb, start, end);
1411 }
1412
1413 /**
1414 * zap_page_range_single - remove user pages in a given range
1415 * @vma: vm_area_struct holding the applicable pages
1416 * @address: starting address of pages to zap
1417 * @size: number of bytes to zap
1418 * @details: details of nonlinear truncation or shared cache invalidation
1419 *
1420 * The range must fit into one VMA.
1421 */
1422 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1423 unsigned long size, struct zap_details *details)
1424 {
1425 struct mm_struct *mm = vma->vm_mm;
1426 struct mmu_gather tlb;
1427 unsigned long end = address + size;
1428
1429 lru_add_drain();
1430 tlb_gather_mmu(&tlb, mm, 0);
1431 update_hiwater_rss(mm);
1432 mmu_notifier_invalidate_range_start(mm, address, end);
1433 unmap_single_vma(&tlb, vma, address, end, details);
1434 mmu_notifier_invalidate_range_end(mm, address, end);
1435 tlb_finish_mmu(&tlb, address, end);
1436 }
1437
1438 /**
1439 * zap_vma_ptes - remove ptes mapping the vma
1440 * @vma: vm_area_struct holding ptes to be zapped
1441 * @address: starting address of pages to zap
1442 * @size: number of bytes to zap
1443 *
1444 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1445 *
1446 * The entire address range must be fully contained within the vma.
1447 *
1448 * Returns 0 if successful.
1449 */
1450 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1451 unsigned long size)
1452 {
1453 if (address < vma->vm_start || address + size > vma->vm_end ||
1454 !(vma->vm_flags & VM_PFNMAP))
1455 return -1;
1456 zap_page_range_single(vma, address, size, NULL);
1457 return 0;
1458 }
1459 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1460
1461 /**
1462 * follow_page - look up a page descriptor from a user-virtual address
1463 * @vma: vm_area_struct mapping @address
1464 * @address: virtual address to look up
1465 * @flags: flags modifying lookup behaviour
1466 *
1467 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1468 *
1469 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1470 * an error pointer if there is a mapping to something not represented
1471 * by a page descriptor (see also vm_normal_page()).
1472 */
1473 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1474 unsigned int flags)
1475 {
1476 pgd_t *pgd;
1477 pud_t *pud;
1478 pmd_t *pmd;
1479 pte_t *ptep, pte;
1480 spinlock_t *ptl;
1481 struct page *page;
1482 struct mm_struct *mm = vma->vm_mm;
1483
1484 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1485 if (!IS_ERR(page)) {
1486 BUG_ON(flags & FOLL_GET);
1487 goto out;
1488 }
1489
1490 page = NULL;
1491 pgd = pgd_offset(mm, address);
1492 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1493 goto no_page_table;
1494
1495 pud = pud_offset(pgd, address);
1496 if (pud_none(*pud))
1497 goto no_page_table;
1498 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1499 BUG_ON(flags & FOLL_GET);
1500 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1501 goto out;
1502 }
1503 if (unlikely(pud_bad(*pud)))
1504 goto no_page_table;
1505
1506 pmd = pmd_offset(pud, address);
1507 if (pmd_none(*pmd))
1508 goto no_page_table;
1509 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1510 BUG_ON(flags & FOLL_GET);
1511 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1512 goto out;
1513 }
1514 if (pmd_trans_huge(*pmd)) {
1515 if (flags & FOLL_SPLIT) {
1516 split_huge_page_pmd(mm, pmd);
1517 goto split_fallthrough;
1518 }
1519 spin_lock(&mm->page_table_lock);
1520 if (likely(pmd_trans_huge(*pmd))) {
1521 if (unlikely(pmd_trans_splitting(*pmd))) {
1522 spin_unlock(&mm->page_table_lock);
1523 wait_split_huge_page(vma->anon_vma, pmd);
1524 } else {
1525 page = follow_trans_huge_pmd(mm, address,
1526 pmd, flags);
1527 spin_unlock(&mm->page_table_lock);
1528 goto out;
1529 }
1530 } else
1531 spin_unlock(&mm->page_table_lock);
1532 /* fall through */
1533 }
1534 split_fallthrough:
1535 if (unlikely(pmd_bad(*pmd)))
1536 goto no_page_table;
1537
1538 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1539
1540 pte = *ptep;
1541 if (!pte_present(pte))
1542 goto no_page;
1543 if ((flags & FOLL_WRITE) && !pte_write(pte))
1544 goto unlock;
1545
1546 page = vm_normal_page(vma, address, pte);
1547 if (unlikely(!page)) {
1548 if ((flags & FOLL_DUMP) ||
1549 !is_zero_pfn(pte_pfn(pte)))
1550 goto bad_page;
1551 page = pte_page(pte);
1552 }
1553
1554 if (flags & FOLL_GET)
1555 get_page_foll(page);
1556 if (flags & FOLL_TOUCH) {
1557 if ((flags & FOLL_WRITE) &&
1558 !pte_dirty(pte) && !PageDirty(page))
1559 set_page_dirty(page);
1560 /*
1561 * pte_mkyoung() would be more correct here, but atomic care
1562 * is needed to avoid losing the dirty bit: it is easier to use
1563 * mark_page_accessed().
1564 */
1565 mark_page_accessed(page);
1566 }
1567 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1568 /*
1569 * The preliminary mapping check is mainly to avoid the
1570 * pointless overhead of lock_page on the ZERO_PAGE
1571 * which might bounce very badly if there is contention.
1572 *
1573 * If the page is already locked, we don't need to
1574 * handle it now - vmscan will handle it later if and
1575 * when it attempts to reclaim the page.
1576 */
1577 if (page->mapping && trylock_page(page)) {
1578 lru_add_drain(); /* push cached pages to LRU */
1579 /*
1580 * Because we lock page here and migration is
1581 * blocked by the pte's page reference, we need
1582 * only check for file-cache page truncation.
1583 */
1584 if (page->mapping)
1585 mlock_vma_page(page);
1586 unlock_page(page);
1587 }
1588 }
1589 unlock:
1590 pte_unmap_unlock(ptep, ptl);
1591 out:
1592 return page;
1593
1594 bad_page:
1595 pte_unmap_unlock(ptep, ptl);
1596 return ERR_PTR(-EFAULT);
1597
1598 no_page:
1599 pte_unmap_unlock(ptep, ptl);
1600 if (!pte_none(pte))
1601 return page;
1602
1603 no_page_table:
1604 /*
1605 * When core dumping an enormous anonymous area that nobody
1606 * has touched so far, we don't want to allocate unnecessary pages or
1607 * page tables. Return error instead of NULL to skip handle_mm_fault,
1608 * then get_dump_page() will return NULL to leave a hole in the dump.
1609 * But we can only make this optimization where a hole would surely
1610 * be zero-filled if handle_mm_fault() actually did handle it.
1611 */
1612 if ((flags & FOLL_DUMP) &&
1613 (!vma->vm_ops || !vma->vm_ops->fault))
1614 return ERR_PTR(-EFAULT);
1615 return page;
1616 }
1617
1618 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1619 {
1620 return stack_guard_page_start(vma, addr) ||
1621 stack_guard_page_end(vma, addr+PAGE_SIZE);
1622 }
1623
1624 /**
1625 * __get_user_pages() - pin user pages in memory
1626 * @tsk: task_struct of target task
1627 * @mm: mm_struct of target mm
1628 * @start: starting user address
1629 * @nr_pages: number of pages from start to pin
1630 * @gup_flags: flags modifying pin behaviour
1631 * @pages: array that receives pointers to the pages pinned.
1632 * Should be at least nr_pages long. Or NULL, if caller
1633 * only intends to ensure the pages are faulted in.
1634 * @vmas: array of pointers to vmas corresponding to each page.
1635 * Or NULL if the caller does not require them.
1636 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1637 *
1638 * Returns number of pages pinned. This may be fewer than the number
1639 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1640 * were pinned, returns -errno. Each page returned must be released
1641 * with a put_page() call when it is finished with. vmas will only
1642 * remain valid while mmap_sem is held.
1643 *
1644 * Must be called with mmap_sem held for read or write.
1645 *
1646 * __get_user_pages walks a process's page tables and takes a reference to
1647 * each struct page that each user address corresponds to at a given
1648 * instant. That is, it takes the page that would be accessed if a user
1649 * thread accesses the given user virtual address at that instant.
1650 *
1651 * This does not guarantee that the page exists in the user mappings when
1652 * __get_user_pages returns, and there may even be a completely different
1653 * page there in some cases (eg. if mmapped pagecache has been invalidated
1654 * and subsequently re faulted). However it does guarantee that the page
1655 * won't be freed completely. And mostly callers simply care that the page
1656 * contains data that was valid *at some point in time*. Typically, an IO
1657 * or similar operation cannot guarantee anything stronger anyway because
1658 * locks can't be held over the syscall boundary.
1659 *
1660 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1661 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1662 * appropriate) must be called after the page is finished with, and
1663 * before put_page is called.
1664 *
1665 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1666 * or mmap_sem contention, and if waiting is needed to pin all pages,
1667 * *@nonblocking will be set to 0.
1668 *
1669 * In most cases, get_user_pages or get_user_pages_fast should be used
1670 * instead of __get_user_pages. __get_user_pages should be used only if
1671 * you need some special @gup_flags.
1672 */
1673 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1674 unsigned long start, int nr_pages, unsigned int gup_flags,
1675 struct page **pages, struct vm_area_struct **vmas,
1676 int *nonblocking)
1677 {
1678 int i;
1679 unsigned long vm_flags;
1680
1681 if (nr_pages <= 0)
1682 return 0;
1683
1684 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1685
1686 /*
1687 * Require read or write permissions.
1688 * If FOLL_FORCE is set, we only require the "MAY" flags.
1689 */
1690 vm_flags = (gup_flags & FOLL_WRITE) ?
1691 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1692 vm_flags &= (gup_flags & FOLL_FORCE) ?
1693 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1694 i = 0;
1695
1696 do {
1697 struct vm_area_struct *vma;
1698
1699 vma = find_extend_vma(mm, start);
1700 if (!vma && in_gate_area(mm, start)) {
1701 unsigned long pg = start & PAGE_MASK;
1702 pgd_t *pgd;
1703 pud_t *pud;
1704 pmd_t *pmd;
1705 pte_t *pte;
1706
1707 /* user gate pages are read-only */
1708 if (gup_flags & FOLL_WRITE)
1709 return i ? : -EFAULT;
1710 if (pg > TASK_SIZE)
1711 pgd = pgd_offset_k(pg);
1712 else
1713 pgd = pgd_offset_gate(mm, pg);
1714 BUG_ON(pgd_none(*pgd));
1715 pud = pud_offset(pgd, pg);
1716 BUG_ON(pud_none(*pud));
1717 pmd = pmd_offset(pud, pg);
1718 if (pmd_none(*pmd))
1719 return i ? : -EFAULT;
1720 VM_BUG_ON(pmd_trans_huge(*pmd));
1721 pte = pte_offset_map(pmd, pg);
1722 if (pte_none(*pte)) {
1723 pte_unmap(pte);
1724 return i ? : -EFAULT;
1725 }
1726 vma = get_gate_vma(mm);
1727 if (pages) {
1728 struct page *page;
1729
1730 page = vm_normal_page(vma, start, *pte);
1731 if (!page) {
1732 if (!(gup_flags & FOLL_DUMP) &&
1733 is_zero_pfn(pte_pfn(*pte)))
1734 page = pte_page(*pte);
1735 else {
1736 pte_unmap(pte);
1737 return i ? : -EFAULT;
1738 }
1739 }
1740 pages[i] = page;
1741 get_page(page);
1742 }
1743 pte_unmap(pte);
1744 goto next_page;
1745 }
1746
1747 if (!vma ||
1748 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1749 !(vm_flags & vma->vm_flags))
1750 return i ? : -EFAULT;
1751
1752 if (is_vm_hugetlb_page(vma)) {
1753 i = follow_hugetlb_page(mm, vma, pages, vmas,
1754 &start, &nr_pages, i, gup_flags);
1755 continue;
1756 }
1757
1758 do {
1759 struct page *page;
1760 unsigned int foll_flags = gup_flags;
1761
1762 /*
1763 * If we have a pending SIGKILL, don't keep faulting
1764 * pages and potentially allocating memory.
1765 */
1766 if (unlikely(fatal_signal_pending(current)))
1767 return i ? i : -ERESTARTSYS;
1768
1769 cond_resched();
1770 while (!(page = follow_page(vma, start, foll_flags))) {
1771 int ret;
1772 unsigned int fault_flags = 0;
1773
1774 /* For mlock, just skip the stack guard page. */
1775 if (foll_flags & FOLL_MLOCK) {
1776 if (stack_guard_page(vma, start))
1777 goto next_page;
1778 }
1779 if (foll_flags & FOLL_WRITE)
1780 fault_flags |= FAULT_FLAG_WRITE;
1781 if (nonblocking)
1782 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1783 if (foll_flags & FOLL_NOWAIT)
1784 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1785
1786 ret = handle_mm_fault(mm, vma, start,
1787 fault_flags);
1788
1789 if (ret & VM_FAULT_ERROR) {
1790 if (ret & VM_FAULT_OOM)
1791 return i ? i : -ENOMEM;
1792 if (ret & (VM_FAULT_HWPOISON |
1793 VM_FAULT_HWPOISON_LARGE)) {
1794 if (i)
1795 return i;
1796 else if (gup_flags & FOLL_HWPOISON)
1797 return -EHWPOISON;
1798 else
1799 return -EFAULT;
1800 }
1801 if (ret & VM_FAULT_SIGBUS)
1802 return i ? i : -EFAULT;
1803 BUG();
1804 }
1805
1806 if (tsk) {
1807 if (ret & VM_FAULT_MAJOR)
1808 tsk->maj_flt++;
1809 else
1810 tsk->min_flt++;
1811 }
1812
1813 if (ret & VM_FAULT_RETRY) {
1814 if (nonblocking)
1815 *nonblocking = 0;
1816 return i;
1817 }
1818
1819 /*
1820 * The VM_FAULT_WRITE bit tells us that
1821 * do_wp_page has broken COW when necessary,
1822 * even if maybe_mkwrite decided not to set
1823 * pte_write. We can thus safely do subsequent
1824 * page lookups as if they were reads. But only
1825 * do so when looping for pte_write is futile:
1826 * in some cases userspace may also be wanting
1827 * to write to the gotten user page, which a
1828 * read fault here might prevent (a readonly
1829 * page might get reCOWed by userspace write).
1830 */
1831 if ((ret & VM_FAULT_WRITE) &&
1832 !(vma->vm_flags & VM_WRITE))
1833 foll_flags &= ~FOLL_WRITE;
1834
1835 cond_resched();
1836 }
1837 if (IS_ERR(page))
1838 return i ? i : PTR_ERR(page);
1839 if (pages) {
1840 pages[i] = page;
1841
1842 flush_anon_page(vma, page, start);
1843 flush_dcache_page(page);
1844 }
1845 next_page:
1846 if (vmas)
1847 vmas[i] = vma;
1848 i++;
1849 start += PAGE_SIZE;
1850 nr_pages--;
1851 } while (nr_pages && start < vma->vm_end);
1852 } while (nr_pages);
1853 return i;
1854 }
1855 EXPORT_SYMBOL(__get_user_pages);
1856
1857 /*
1858 * fixup_user_fault() - manually resolve a user page fault
1859 * @tsk: the task_struct to use for page fault accounting, or
1860 * NULL if faults are not to be recorded.
1861 * @mm: mm_struct of target mm
1862 * @address: user address
1863 * @fault_flags:flags to pass down to handle_mm_fault()
1864 *
1865 * This is meant to be called in the specific scenario where for locking reasons
1866 * we try to access user memory in atomic context (within a pagefault_disable()
1867 * section), this returns -EFAULT, and we want to resolve the user fault before
1868 * trying again.
1869 *
1870 * Typically this is meant to be used by the futex code.
1871 *
1872 * The main difference with get_user_pages() is that this function will
1873 * unconditionally call handle_mm_fault() which will in turn perform all the
1874 * necessary SW fixup of the dirty and young bits in the PTE, while
1875 * handle_mm_fault() only guarantees to update these in the struct page.
1876 *
1877 * This is important for some architectures where those bits also gate the
1878 * access permission to the page because they are maintained in software. On
1879 * such architectures, gup() will not be enough to make a subsequent access
1880 * succeed.
1881 *
1882 * This should be called with the mm_sem held for read.
1883 */
1884 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1885 unsigned long address, unsigned int fault_flags)
1886 {
1887 struct vm_area_struct *vma;
1888 int ret;
1889
1890 vma = find_extend_vma(mm, address);
1891 if (!vma || address < vma->vm_start)
1892 return -EFAULT;
1893
1894 ret = handle_mm_fault(mm, vma, address, fault_flags);
1895 if (ret & VM_FAULT_ERROR) {
1896 if (ret & VM_FAULT_OOM)
1897 return -ENOMEM;
1898 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1899 return -EHWPOISON;
1900 if (ret & VM_FAULT_SIGBUS)
1901 return -EFAULT;
1902 BUG();
1903 }
1904 if (tsk) {
1905 if (ret & VM_FAULT_MAJOR)
1906 tsk->maj_flt++;
1907 else
1908 tsk->min_flt++;
1909 }
1910 return 0;
1911 }
1912
1913 /*
1914 * get_user_pages() - pin user pages in memory
1915 * @tsk: the task_struct to use for page fault accounting, or
1916 * NULL if faults are not to be recorded.
1917 * @mm: mm_struct of target mm
1918 * @start: starting user address
1919 * @nr_pages: number of pages from start to pin
1920 * @write: whether pages will be written to by the caller
1921 * @force: whether to force write access even if user mapping is
1922 * readonly. This will result in the page being COWed even
1923 * in MAP_SHARED mappings. You do not want this.
1924 * @pages: array that receives pointers to the pages pinned.
1925 * Should be at least nr_pages long. Or NULL, if caller
1926 * only intends to ensure the pages are faulted in.
1927 * @vmas: array of pointers to vmas corresponding to each page.
1928 * Or NULL if the caller does not require them.
1929 *
1930 * Returns number of pages pinned. This may be fewer than the number
1931 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1932 * were pinned, returns -errno. Each page returned must be released
1933 * with a put_page() call when it is finished with. vmas will only
1934 * remain valid while mmap_sem is held.
1935 *
1936 * Must be called with mmap_sem held for read or write.
1937 *
1938 * get_user_pages walks a process's page tables and takes a reference to
1939 * each struct page that each user address corresponds to at a given
1940 * instant. That is, it takes the page that would be accessed if a user
1941 * thread accesses the given user virtual address at that instant.
1942 *
1943 * This does not guarantee that the page exists in the user mappings when
1944 * get_user_pages returns, and there may even be a completely different
1945 * page there in some cases (eg. if mmapped pagecache has been invalidated
1946 * and subsequently re faulted). However it does guarantee that the page
1947 * won't be freed completely. And mostly callers simply care that the page
1948 * contains data that was valid *at some point in time*. Typically, an IO
1949 * or similar operation cannot guarantee anything stronger anyway because
1950 * locks can't be held over the syscall boundary.
1951 *
1952 * If write=0, the page must not be written to. If the page is written to,
1953 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1954 * after the page is finished with, and before put_page is called.
1955 *
1956 * get_user_pages is typically used for fewer-copy IO operations, to get a
1957 * handle on the memory by some means other than accesses via the user virtual
1958 * addresses. The pages may be submitted for DMA to devices or accessed via
1959 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1960 * use the correct cache flushing APIs.
1961 *
1962 * See also get_user_pages_fast, for performance critical applications.
1963 */
1964 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1965 unsigned long start, int nr_pages, int write, int force,
1966 struct page **pages, struct vm_area_struct **vmas)
1967 {
1968 int flags = FOLL_TOUCH;
1969
1970 if (pages)
1971 flags |= FOLL_GET;
1972 if (write)
1973 flags |= FOLL_WRITE;
1974 if (force)
1975 flags |= FOLL_FORCE;
1976
1977 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1978 NULL);
1979 }
1980 EXPORT_SYMBOL(get_user_pages);
1981
1982 /**
1983 * get_dump_page() - pin user page in memory while writing it to core dump
1984 * @addr: user address
1985 *
1986 * Returns struct page pointer of user page pinned for dump,
1987 * to be freed afterwards by page_cache_release() or put_page().
1988 *
1989 * Returns NULL on any kind of failure - a hole must then be inserted into
1990 * the corefile, to preserve alignment with its headers; and also returns
1991 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1992 * allowing a hole to be left in the corefile to save diskspace.
1993 *
1994 * Called without mmap_sem, but after all other threads have been killed.
1995 */
1996 #ifdef CONFIG_ELF_CORE
1997 struct page *get_dump_page(unsigned long addr)
1998 {
1999 struct vm_area_struct *vma;
2000 struct page *page;
2001
2002 if (__get_user_pages(current, current->mm, addr, 1,
2003 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2004 NULL) < 1)
2005 return NULL;
2006 flush_cache_page(vma, addr, page_to_pfn(page));
2007 return page;
2008 }
2009 #endif /* CONFIG_ELF_CORE */
2010
2011 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2012 spinlock_t **ptl)
2013 {
2014 pgd_t * pgd = pgd_offset(mm, addr);
2015 pud_t * pud = pud_alloc(mm, pgd, addr);
2016 if (pud) {
2017 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2018 if (pmd) {
2019 VM_BUG_ON(pmd_trans_huge(*pmd));
2020 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2021 }
2022 }
2023 return NULL;
2024 }
2025
2026 /*
2027 * This is the old fallback for page remapping.
2028 *
2029 * For historical reasons, it only allows reserved pages. Only
2030 * old drivers should use this, and they needed to mark their
2031 * pages reserved for the old functions anyway.
2032 */
2033 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2034 struct page *page, pgprot_t prot)
2035 {
2036 struct mm_struct *mm = vma->vm_mm;
2037 int retval;
2038 pte_t *pte;
2039 spinlock_t *ptl;
2040
2041 retval = -EINVAL;
2042 if (PageAnon(page))
2043 goto out;
2044 retval = -ENOMEM;
2045 flush_dcache_page(page);
2046 pte = get_locked_pte(mm, addr, &ptl);
2047 if (!pte)
2048 goto out;
2049 retval = -EBUSY;
2050 if (!pte_none(*pte))
2051 goto out_unlock;
2052
2053 /* Ok, finally just insert the thing.. */
2054 get_page(page);
2055 inc_mm_counter_fast(mm, MM_FILEPAGES);
2056 page_add_file_rmap(page);
2057 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2058
2059 retval = 0;
2060 pte_unmap_unlock(pte, ptl);
2061 return retval;
2062 out_unlock:
2063 pte_unmap_unlock(pte, ptl);
2064 out:
2065 return retval;
2066 }
2067
2068 /**
2069 * vm_insert_page - insert single page into user vma
2070 * @vma: user vma to map to
2071 * @addr: target user address of this page
2072 * @page: source kernel page
2073 *
2074 * This allows drivers to insert individual pages they've allocated
2075 * into a user vma.
2076 *
2077 * The page has to be a nice clean _individual_ kernel allocation.
2078 * If you allocate a compound page, you need to have marked it as
2079 * such (__GFP_COMP), or manually just split the page up yourself
2080 * (see split_page()).
2081 *
2082 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2083 * took an arbitrary page protection parameter. This doesn't allow
2084 * that. Your vma protection will have to be set up correctly, which
2085 * means that if you want a shared writable mapping, you'd better
2086 * ask for a shared writable mapping!
2087 *
2088 * The page does not need to be reserved.
2089 *
2090 * Usually this function is called from f_op->mmap() handler
2091 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2092 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2093 * function from other places, for example from page-fault handler.
2094 */
2095 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2096 struct page *page)
2097 {
2098 if (addr < vma->vm_start || addr >= vma->vm_end)
2099 return -EFAULT;
2100 if (!page_count(page))
2101 return -EINVAL;
2102 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2103 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2104 BUG_ON(vma->vm_flags & VM_PFNMAP);
2105 vma->vm_flags |= VM_MIXEDMAP;
2106 }
2107 return insert_page(vma, addr, page, vma->vm_page_prot);
2108 }
2109 EXPORT_SYMBOL(vm_insert_page);
2110
2111 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2112 unsigned long pfn, pgprot_t prot)
2113 {
2114 struct mm_struct *mm = vma->vm_mm;
2115 int retval;
2116 pte_t *pte, entry;
2117 spinlock_t *ptl;
2118
2119 retval = -ENOMEM;
2120 pte = get_locked_pte(mm, addr, &ptl);
2121 if (!pte)
2122 goto out;
2123 retval = -EBUSY;
2124 if (!pte_none(*pte))
2125 goto out_unlock;
2126
2127 /* Ok, finally just insert the thing.. */
2128 entry = pte_mkspecial(pfn_pte(pfn, prot));
2129 set_pte_at(mm, addr, pte, entry);
2130 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2131
2132 retval = 0;
2133 out_unlock:
2134 pte_unmap_unlock(pte, ptl);
2135 out:
2136 return retval;
2137 }
2138
2139 /**
2140 * vm_insert_pfn - insert single pfn into user vma
2141 * @vma: user vma to map to
2142 * @addr: target user address of this page
2143 * @pfn: source kernel pfn
2144 *
2145 * Similar to vm_inert_page, this allows drivers to insert individual pages
2146 * they've allocated into a user vma. Same comments apply.
2147 *
2148 * This function should only be called from a vm_ops->fault handler, and
2149 * in that case the handler should return NULL.
2150 *
2151 * vma cannot be a COW mapping.
2152 *
2153 * As this is called only for pages that do not currently exist, we
2154 * do not need to flush old virtual caches or the TLB.
2155 */
2156 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2157 unsigned long pfn)
2158 {
2159 int ret;
2160 pgprot_t pgprot = vma->vm_page_prot;
2161 /*
2162 * Technically, architectures with pte_special can avoid all these
2163 * restrictions (same for remap_pfn_range). However we would like
2164 * consistency in testing and feature parity among all, so we should
2165 * try to keep these invariants in place for everybody.
2166 */
2167 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2168 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2169 (VM_PFNMAP|VM_MIXEDMAP));
2170 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2171 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2172
2173 if (addr < vma->vm_start || addr >= vma->vm_end)
2174 return -EFAULT;
2175 if (track_pfn_insert(vma, &pgprot, pfn))
2176 return -EINVAL;
2177
2178 ret = insert_pfn(vma, addr, pfn, pgprot);
2179
2180 return ret;
2181 }
2182 EXPORT_SYMBOL(vm_insert_pfn);
2183
2184 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2185 unsigned long pfn)
2186 {
2187 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2188
2189 if (addr < vma->vm_start || addr >= vma->vm_end)
2190 return -EFAULT;
2191
2192 /*
2193 * If we don't have pte special, then we have to use the pfn_valid()
2194 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2195 * refcount the page if pfn_valid is true (hence insert_page rather
2196 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2197 * without pte special, it would there be refcounted as a normal page.
2198 */
2199 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2200 struct page *page;
2201
2202 page = pfn_to_page(pfn);
2203 return insert_page(vma, addr, page, vma->vm_page_prot);
2204 }
2205 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2206 }
2207 EXPORT_SYMBOL(vm_insert_mixed);
2208
2209 /*
2210 * maps a range of physical memory into the requested pages. the old
2211 * mappings are removed. any references to nonexistent pages results
2212 * in null mappings (currently treated as "copy-on-access")
2213 */
2214 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2215 unsigned long addr, unsigned long end,
2216 unsigned long pfn, pgprot_t prot)
2217 {
2218 pte_t *pte;
2219 spinlock_t *ptl;
2220
2221 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2222 if (!pte)
2223 return -ENOMEM;
2224 arch_enter_lazy_mmu_mode();
2225 do {
2226 BUG_ON(!pte_none(*pte));
2227 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2228 pfn++;
2229 } while (pte++, addr += PAGE_SIZE, addr != end);
2230 arch_leave_lazy_mmu_mode();
2231 pte_unmap_unlock(pte - 1, ptl);
2232 return 0;
2233 }
2234
2235 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2236 unsigned long addr, unsigned long end,
2237 unsigned long pfn, pgprot_t prot)
2238 {
2239 pmd_t *pmd;
2240 unsigned long next;
2241
2242 pfn -= addr >> PAGE_SHIFT;
2243 pmd = pmd_alloc(mm, pud, addr);
2244 if (!pmd)
2245 return -ENOMEM;
2246 VM_BUG_ON(pmd_trans_huge(*pmd));
2247 do {
2248 next = pmd_addr_end(addr, end);
2249 if (remap_pte_range(mm, pmd, addr, next,
2250 pfn + (addr >> PAGE_SHIFT), prot))
2251 return -ENOMEM;
2252 } while (pmd++, addr = next, addr != end);
2253 return 0;
2254 }
2255
2256 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2257 unsigned long addr, unsigned long end,
2258 unsigned long pfn, pgprot_t prot)
2259 {
2260 pud_t *pud;
2261 unsigned long next;
2262
2263 pfn -= addr >> PAGE_SHIFT;
2264 pud = pud_alloc(mm, pgd, addr);
2265 if (!pud)
2266 return -ENOMEM;
2267 do {
2268 next = pud_addr_end(addr, end);
2269 if (remap_pmd_range(mm, pud, addr, next,
2270 pfn + (addr >> PAGE_SHIFT), prot))
2271 return -ENOMEM;
2272 } while (pud++, addr = next, addr != end);
2273 return 0;
2274 }
2275
2276 /**
2277 * remap_pfn_range - remap kernel memory to userspace
2278 * @vma: user vma to map to
2279 * @addr: target user address to start at
2280 * @pfn: physical address of kernel memory
2281 * @size: size of map area
2282 * @prot: page protection flags for this mapping
2283 *
2284 * Note: this is only safe if the mm semaphore is held when called.
2285 */
2286 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2287 unsigned long pfn, unsigned long size, pgprot_t prot)
2288 {
2289 pgd_t *pgd;
2290 unsigned long next;
2291 unsigned long end = addr + PAGE_ALIGN(size);
2292 struct mm_struct *mm = vma->vm_mm;
2293 int err;
2294
2295 /*
2296 * Physically remapped pages are special. Tell the
2297 * rest of the world about it:
2298 * VM_IO tells people not to look at these pages
2299 * (accesses can have side effects).
2300 * VM_PFNMAP tells the core MM that the base pages are just
2301 * raw PFN mappings, and do not have a "struct page" associated
2302 * with them.
2303 * VM_DONTEXPAND
2304 * Disable vma merging and expanding with mremap().
2305 * VM_DONTDUMP
2306 * Omit vma from core dump, even when VM_IO turned off.
2307 *
2308 * There's a horrible special case to handle copy-on-write
2309 * behaviour that some programs depend on. We mark the "original"
2310 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2311 * See vm_normal_page() for details.
2312 */
2313 if (is_cow_mapping(vma->vm_flags)) {
2314 if (addr != vma->vm_start || end != vma->vm_end)
2315 return -EINVAL;
2316 vma->vm_pgoff = pfn;
2317 }
2318
2319 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2320 if (err)
2321 return -EINVAL;
2322
2323 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2324
2325 BUG_ON(addr >= end);
2326 pfn -= addr >> PAGE_SHIFT;
2327 pgd = pgd_offset(mm, addr);
2328 flush_cache_range(vma, addr, end);
2329 do {
2330 next = pgd_addr_end(addr, end);
2331 err = remap_pud_range(mm, pgd, addr, next,
2332 pfn + (addr >> PAGE_SHIFT), prot);
2333 if (err)
2334 break;
2335 } while (pgd++, addr = next, addr != end);
2336
2337 if (err)
2338 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2339
2340 return err;
2341 }
2342 EXPORT_SYMBOL(remap_pfn_range);
2343
2344 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2345 unsigned long addr, unsigned long end,
2346 pte_fn_t fn, void *data)
2347 {
2348 pte_t *pte;
2349 int err;
2350 pgtable_t token;
2351 spinlock_t *uninitialized_var(ptl);
2352
2353 pte = (mm == &init_mm) ?
2354 pte_alloc_kernel(pmd, addr) :
2355 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2356 if (!pte)
2357 return -ENOMEM;
2358
2359 BUG_ON(pmd_huge(*pmd));
2360
2361 arch_enter_lazy_mmu_mode();
2362
2363 token = pmd_pgtable(*pmd);
2364
2365 do {
2366 err = fn(pte++, token, addr, data);
2367 if (err)
2368 break;
2369 } while (addr += PAGE_SIZE, addr != end);
2370
2371 arch_leave_lazy_mmu_mode();
2372
2373 if (mm != &init_mm)
2374 pte_unmap_unlock(pte-1, ptl);
2375 return err;
2376 }
2377
2378 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2379 unsigned long addr, unsigned long end,
2380 pte_fn_t fn, void *data)
2381 {
2382 pmd_t *pmd;
2383 unsigned long next;
2384 int err;
2385
2386 BUG_ON(pud_huge(*pud));
2387
2388 pmd = pmd_alloc(mm, pud, addr);
2389 if (!pmd)
2390 return -ENOMEM;
2391 do {
2392 next = pmd_addr_end(addr, end);
2393 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2394 if (err)
2395 break;
2396 } while (pmd++, addr = next, addr != end);
2397 return err;
2398 }
2399
2400 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2401 unsigned long addr, unsigned long end,
2402 pte_fn_t fn, void *data)
2403 {
2404 pud_t *pud;
2405 unsigned long next;
2406 int err;
2407
2408 pud = pud_alloc(mm, pgd, addr);
2409 if (!pud)
2410 return -ENOMEM;
2411 do {
2412 next = pud_addr_end(addr, end);
2413 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2414 if (err)
2415 break;
2416 } while (pud++, addr = next, addr != end);
2417 return err;
2418 }
2419
2420 /*
2421 * Scan a region of virtual memory, filling in page tables as necessary
2422 * and calling a provided function on each leaf page table.
2423 */
2424 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2425 unsigned long size, pte_fn_t fn, void *data)
2426 {
2427 pgd_t *pgd;
2428 unsigned long next;
2429 unsigned long end = addr + size;
2430 int err;
2431
2432 BUG_ON(addr >= end);
2433 pgd = pgd_offset(mm, addr);
2434 do {
2435 next = pgd_addr_end(addr, end);
2436 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2437 if (err)
2438 break;
2439 } while (pgd++, addr = next, addr != end);
2440
2441 return err;
2442 }
2443 EXPORT_SYMBOL_GPL(apply_to_page_range);
2444
2445 /*
2446 * handle_pte_fault chooses page fault handler according to an entry
2447 * which was read non-atomically. Before making any commitment, on
2448 * those architectures or configurations (e.g. i386 with PAE) which
2449 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2450 * must check under lock before unmapping the pte and proceeding
2451 * (but do_wp_page is only called after already making such a check;
2452 * and do_anonymous_page can safely check later on).
2453 */
2454 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2455 pte_t *page_table, pte_t orig_pte)
2456 {
2457 int same = 1;
2458 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2459 if (sizeof(pte_t) > sizeof(unsigned long)) {
2460 spinlock_t *ptl = pte_lockptr(mm, pmd);
2461 spin_lock(ptl);
2462 same = pte_same(*page_table, orig_pte);
2463 spin_unlock(ptl);
2464 }
2465 #endif
2466 pte_unmap(page_table);
2467 return same;
2468 }
2469
2470 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2471 {
2472 /*
2473 * If the source page was a PFN mapping, we don't have
2474 * a "struct page" for it. We do a best-effort copy by
2475 * just copying from the original user address. If that
2476 * fails, we just zero-fill it. Live with it.
2477 */
2478 if (unlikely(!src)) {
2479 void *kaddr = kmap_atomic(dst);
2480 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2481
2482 /*
2483 * This really shouldn't fail, because the page is there
2484 * in the page tables. But it might just be unreadable,
2485 * in which case we just give up and fill the result with
2486 * zeroes.
2487 */
2488 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2489 clear_page(kaddr);
2490 kunmap_atomic(kaddr);
2491 flush_dcache_page(dst);
2492 } else
2493 copy_user_highpage(dst, src, va, vma);
2494 }
2495
2496 /*
2497 * This routine handles present pages, when users try to write
2498 * to a shared page. It is done by copying the page to a new address
2499 * and decrementing the shared-page counter for the old page.
2500 *
2501 * Note that this routine assumes that the protection checks have been
2502 * done by the caller (the low-level page fault routine in most cases).
2503 * Thus we can safely just mark it writable once we've done any necessary
2504 * COW.
2505 *
2506 * We also mark the page dirty at this point even though the page will
2507 * change only once the write actually happens. This avoids a few races,
2508 * and potentially makes it more efficient.
2509 *
2510 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2511 * but allow concurrent faults), with pte both mapped and locked.
2512 * We return with mmap_sem still held, but pte unmapped and unlocked.
2513 */
2514 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2515 unsigned long address, pte_t *page_table, pmd_t *pmd,
2516 spinlock_t *ptl, pte_t orig_pte)
2517 __releases(ptl)
2518 {
2519 struct page *old_page, *new_page;
2520 pte_t entry;
2521 int ret = 0;
2522 int page_mkwrite = 0;
2523 struct page *dirty_page = NULL;
2524
2525 old_page = vm_normal_page(vma, address, orig_pte);
2526 if (!old_page) {
2527 /*
2528 * VM_MIXEDMAP !pfn_valid() case
2529 *
2530 * We should not cow pages in a shared writeable mapping.
2531 * Just mark the pages writable as we can't do any dirty
2532 * accounting on raw pfn maps.
2533 */
2534 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2535 (VM_WRITE|VM_SHARED))
2536 goto reuse;
2537 goto gotten;
2538 }
2539
2540 /*
2541 * Take out anonymous pages first, anonymous shared vmas are
2542 * not dirty accountable.
2543 */
2544 if (PageAnon(old_page) && !PageKsm(old_page)) {
2545 if (!trylock_page(old_page)) {
2546 page_cache_get(old_page);
2547 pte_unmap_unlock(page_table, ptl);
2548 lock_page(old_page);
2549 page_table = pte_offset_map_lock(mm, pmd, address,
2550 &ptl);
2551 if (!pte_same(*page_table, orig_pte)) {
2552 unlock_page(old_page);
2553 goto unlock;
2554 }
2555 page_cache_release(old_page);
2556 }
2557 if (reuse_swap_page(old_page)) {
2558 /*
2559 * The page is all ours. Move it to our anon_vma so
2560 * the rmap code will not search our parent or siblings.
2561 * Protected against the rmap code by the page lock.
2562 */
2563 page_move_anon_rmap(old_page, vma, address);
2564 unlock_page(old_page);
2565 goto reuse;
2566 }
2567 unlock_page(old_page);
2568 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2569 (VM_WRITE|VM_SHARED))) {
2570 /*
2571 * Only catch write-faults on shared writable pages,
2572 * read-only shared pages can get COWed by
2573 * get_user_pages(.write=1, .force=1).
2574 */
2575 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2576 struct vm_fault vmf;
2577 int tmp;
2578
2579 vmf.virtual_address = (void __user *)(address &
2580 PAGE_MASK);
2581 vmf.pgoff = old_page->index;
2582 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2583 vmf.page = old_page;
2584
2585 /*
2586 * Notify the address space that the page is about to
2587 * become writable so that it can prohibit this or wait
2588 * for the page to get into an appropriate state.
2589 *
2590 * We do this without the lock held, so that it can
2591 * sleep if it needs to.
2592 */
2593 page_cache_get(old_page);
2594 pte_unmap_unlock(page_table, ptl);
2595
2596 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2597 if (unlikely(tmp &
2598 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2599 ret = tmp;
2600 goto unwritable_page;
2601 }
2602 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2603 lock_page(old_page);
2604 if (!old_page->mapping) {
2605 ret = 0; /* retry the fault */
2606 unlock_page(old_page);
2607 goto unwritable_page;
2608 }
2609 } else
2610 VM_BUG_ON(!PageLocked(old_page));
2611
2612 /*
2613 * Since we dropped the lock we need to revalidate
2614 * the PTE as someone else may have changed it. If
2615 * they did, we just return, as we can count on the
2616 * MMU to tell us if they didn't also make it writable.
2617 */
2618 page_table = pte_offset_map_lock(mm, pmd, address,
2619 &ptl);
2620 if (!pte_same(*page_table, orig_pte)) {
2621 unlock_page(old_page);
2622 goto unlock;
2623 }
2624
2625 page_mkwrite = 1;
2626 }
2627 dirty_page = old_page;
2628 get_page(dirty_page);
2629
2630 reuse:
2631 flush_cache_page(vma, address, pte_pfn(orig_pte));
2632 entry = pte_mkyoung(orig_pte);
2633 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2634 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2635 update_mmu_cache(vma, address, page_table);
2636 pte_unmap_unlock(page_table, ptl);
2637 ret |= VM_FAULT_WRITE;
2638
2639 if (!dirty_page)
2640 return ret;
2641
2642 /*
2643 * Yes, Virginia, this is actually required to prevent a race
2644 * with clear_page_dirty_for_io() from clearing the page dirty
2645 * bit after it clear all dirty ptes, but before a racing
2646 * do_wp_page installs a dirty pte.
2647 *
2648 * __do_fault is protected similarly.
2649 */
2650 if (!page_mkwrite) {
2651 wait_on_page_locked(dirty_page);
2652 set_page_dirty_balance(dirty_page, page_mkwrite);
2653 /* file_update_time outside page_lock */
2654 if (vma->vm_file)
2655 file_update_time(vma->vm_file);
2656 }
2657 put_page(dirty_page);
2658 if (page_mkwrite) {
2659 struct address_space *mapping = dirty_page->mapping;
2660
2661 set_page_dirty(dirty_page);
2662 unlock_page(dirty_page);
2663 page_cache_release(dirty_page);
2664 if (mapping) {
2665 /*
2666 * Some device drivers do not set page.mapping
2667 * but still dirty their pages
2668 */
2669 balance_dirty_pages_ratelimited(mapping);
2670 }
2671 }
2672
2673 return ret;
2674 }
2675
2676 /*
2677 * Ok, we need to copy. Oh, well..
2678 */
2679 page_cache_get(old_page);
2680 gotten:
2681 pte_unmap_unlock(page_table, ptl);
2682
2683 if (unlikely(anon_vma_prepare(vma)))
2684 goto oom;
2685
2686 if (is_zero_pfn(pte_pfn(orig_pte))) {
2687 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2688 if (!new_page)
2689 goto oom;
2690 } else {
2691 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2692 if (!new_page)
2693 goto oom;
2694 cow_user_page(new_page, old_page, address, vma);
2695 }
2696 __SetPageUptodate(new_page);
2697
2698 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2699 goto oom_free_new;
2700
2701 /*
2702 * Re-check the pte - we dropped the lock
2703 */
2704 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2705 if (likely(pte_same(*page_table, orig_pte))) {
2706 if (old_page) {
2707 if (!PageAnon(old_page)) {
2708 dec_mm_counter_fast(mm, MM_FILEPAGES);
2709 inc_mm_counter_fast(mm, MM_ANONPAGES);
2710 }
2711 } else
2712 inc_mm_counter_fast(mm, MM_ANONPAGES);
2713 flush_cache_page(vma, address, pte_pfn(orig_pte));
2714 entry = mk_pte(new_page, vma->vm_page_prot);
2715 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2716 /*
2717 * Clear the pte entry and flush it first, before updating the
2718 * pte with the new entry. This will avoid a race condition
2719 * seen in the presence of one thread doing SMC and another
2720 * thread doing COW.
2721 */
2722 ptep_clear_flush(vma, address, page_table);
2723 page_add_new_anon_rmap(new_page, vma, address);
2724 /*
2725 * We call the notify macro here because, when using secondary
2726 * mmu page tables (such as kvm shadow page tables), we want the
2727 * new page to be mapped directly into the secondary page table.
2728 */
2729 set_pte_at_notify(mm, address, page_table, entry);
2730 update_mmu_cache(vma, address, page_table);
2731 if (old_page) {
2732 /*
2733 * Only after switching the pte to the new page may
2734 * we remove the mapcount here. Otherwise another
2735 * process may come and find the rmap count decremented
2736 * before the pte is switched to the new page, and
2737 * "reuse" the old page writing into it while our pte
2738 * here still points into it and can be read by other
2739 * threads.
2740 *
2741 * The critical issue is to order this
2742 * page_remove_rmap with the ptp_clear_flush above.
2743 * Those stores are ordered by (if nothing else,)
2744 * the barrier present in the atomic_add_negative
2745 * in page_remove_rmap.
2746 *
2747 * Then the TLB flush in ptep_clear_flush ensures that
2748 * no process can access the old page before the
2749 * decremented mapcount is visible. And the old page
2750 * cannot be reused until after the decremented
2751 * mapcount is visible. So transitively, TLBs to
2752 * old page will be flushed before it can be reused.
2753 */
2754 page_remove_rmap(old_page);
2755 }
2756
2757 /* Free the old page.. */
2758 new_page = old_page;
2759 ret |= VM_FAULT_WRITE;
2760 } else
2761 mem_cgroup_uncharge_page(new_page);
2762
2763 if (new_page)
2764 page_cache_release(new_page);
2765 unlock:
2766 pte_unmap_unlock(page_table, ptl);
2767 if (old_page) {
2768 /*
2769 * Don't let another task, with possibly unlocked vma,
2770 * keep the mlocked page.
2771 */
2772 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2773 lock_page(old_page); /* LRU manipulation */
2774 munlock_vma_page(old_page);
2775 unlock_page(old_page);
2776 }
2777 page_cache_release(old_page);
2778 }
2779 return ret;
2780 oom_free_new:
2781 page_cache_release(new_page);
2782 oom:
2783 if (old_page) {
2784 if (page_mkwrite) {
2785 unlock_page(old_page);
2786 page_cache_release(old_page);
2787 }
2788 page_cache_release(old_page);
2789 }
2790 return VM_FAULT_OOM;
2791
2792 unwritable_page:
2793 page_cache_release(old_page);
2794 return ret;
2795 }
2796
2797 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2798 unsigned long start_addr, unsigned long end_addr,
2799 struct zap_details *details)
2800 {
2801 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2802 }
2803
2804 static inline void unmap_mapping_range_tree(struct rb_root *root,
2805 struct zap_details *details)
2806 {
2807 struct vm_area_struct *vma;
2808 pgoff_t vba, vea, zba, zea;
2809
2810 vma_interval_tree_foreach(vma, root,
2811 details->first_index, details->last_index) {
2812
2813 vba = vma->vm_pgoff;
2814 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2815 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2816 zba = details->first_index;
2817 if (zba < vba)
2818 zba = vba;
2819 zea = details->last_index;
2820 if (zea > vea)
2821 zea = vea;
2822
2823 unmap_mapping_range_vma(vma,
2824 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2825 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2826 details);
2827 }
2828 }
2829
2830 static inline void unmap_mapping_range_list(struct list_head *head,
2831 struct zap_details *details)
2832 {
2833 struct vm_area_struct *vma;
2834
2835 /*
2836 * In nonlinear VMAs there is no correspondence between virtual address
2837 * offset and file offset. So we must perform an exhaustive search
2838 * across *all* the pages in each nonlinear VMA, not just the pages
2839 * whose virtual address lies outside the file truncation point.
2840 */
2841 list_for_each_entry(vma, head, shared.nonlinear) {
2842 details->nonlinear_vma = vma;
2843 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2844 }
2845 }
2846
2847 /**
2848 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2849 * @mapping: the address space containing mmaps to be unmapped.
2850 * @holebegin: byte in first page to unmap, relative to the start of
2851 * the underlying file. This will be rounded down to a PAGE_SIZE
2852 * boundary. Note that this is different from truncate_pagecache(), which
2853 * must keep the partial page. In contrast, we must get rid of
2854 * partial pages.
2855 * @holelen: size of prospective hole in bytes. This will be rounded
2856 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2857 * end of the file.
2858 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2859 * but 0 when invalidating pagecache, don't throw away private data.
2860 */
2861 void unmap_mapping_range(struct address_space *mapping,
2862 loff_t const holebegin, loff_t const holelen, int even_cows)
2863 {
2864 struct zap_details details;
2865 pgoff_t hba = holebegin >> PAGE_SHIFT;
2866 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2867
2868 /* Check for overflow. */
2869 if (sizeof(holelen) > sizeof(hlen)) {
2870 long long holeend =
2871 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2872 if (holeend & ~(long long)ULONG_MAX)
2873 hlen = ULONG_MAX - hba + 1;
2874 }
2875
2876 details.check_mapping = even_cows? NULL: mapping;
2877 details.nonlinear_vma = NULL;
2878 details.first_index = hba;
2879 details.last_index = hba + hlen - 1;
2880 if (details.last_index < details.first_index)
2881 details.last_index = ULONG_MAX;
2882
2883
2884 mutex_lock(&mapping->i_mmap_mutex);
2885 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2886 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2887 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2888 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2889 mutex_unlock(&mapping->i_mmap_mutex);
2890 }
2891 EXPORT_SYMBOL(unmap_mapping_range);
2892
2893 /*
2894 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2895 * but allow concurrent faults), and pte mapped but not yet locked.
2896 * We return with mmap_sem still held, but pte unmapped and unlocked.
2897 */
2898 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2899 unsigned long address, pte_t *page_table, pmd_t *pmd,
2900 unsigned int flags, pte_t orig_pte)
2901 {
2902 spinlock_t *ptl;
2903 struct page *page, *swapcache = NULL;
2904 swp_entry_t entry;
2905 pte_t pte;
2906 int locked;
2907 struct mem_cgroup *ptr;
2908 int exclusive = 0;
2909 int ret = 0;
2910
2911 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2912 goto out;
2913
2914 entry = pte_to_swp_entry(orig_pte);
2915 if (unlikely(non_swap_entry(entry))) {
2916 if (is_migration_entry(entry)) {
2917 migration_entry_wait(mm, pmd, address);
2918 } else if (is_hwpoison_entry(entry)) {
2919 ret = VM_FAULT_HWPOISON;
2920 } else {
2921 print_bad_pte(vma, address, orig_pte, NULL);
2922 ret = VM_FAULT_SIGBUS;
2923 }
2924 goto out;
2925 }
2926 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2927 page = lookup_swap_cache(entry);
2928 if (!page) {
2929 page = swapin_readahead(entry,
2930 GFP_HIGHUSER_MOVABLE, vma, address);
2931 if (!page) {
2932 /*
2933 * Back out if somebody else faulted in this pte
2934 * while we released the pte lock.
2935 */
2936 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2937 if (likely(pte_same(*page_table, orig_pte)))
2938 ret = VM_FAULT_OOM;
2939 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2940 goto unlock;
2941 }
2942
2943 /* Had to read the page from swap area: Major fault */
2944 ret = VM_FAULT_MAJOR;
2945 count_vm_event(PGMAJFAULT);
2946 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2947 } else if (PageHWPoison(page)) {
2948 /*
2949 * hwpoisoned dirty swapcache pages are kept for killing
2950 * owner processes (which may be unknown at hwpoison time)
2951 */
2952 ret = VM_FAULT_HWPOISON;
2953 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2954 goto out_release;
2955 }
2956
2957 locked = lock_page_or_retry(page, mm, flags);
2958
2959 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2960 if (!locked) {
2961 ret |= VM_FAULT_RETRY;
2962 goto out_release;
2963 }
2964
2965 /*
2966 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2967 * release the swapcache from under us. The page pin, and pte_same
2968 * test below, are not enough to exclude that. Even if it is still
2969 * swapcache, we need to check that the page's swap has not changed.
2970 */
2971 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2972 goto out_page;
2973
2974 if (ksm_might_need_to_copy(page, vma, address)) {
2975 swapcache = page;
2976 page = ksm_does_need_to_copy(page, vma, address);
2977
2978 if (unlikely(!page)) {
2979 ret = VM_FAULT_OOM;
2980 page = swapcache;
2981 swapcache = NULL;
2982 goto out_page;
2983 }
2984 }
2985
2986 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2987 ret = VM_FAULT_OOM;
2988 goto out_page;
2989 }
2990
2991 /*
2992 * Back out if somebody else already faulted in this pte.
2993 */
2994 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2995 if (unlikely(!pte_same(*page_table, orig_pte)))
2996 goto out_nomap;
2997
2998 if (unlikely(!PageUptodate(page))) {
2999 ret = VM_FAULT_SIGBUS;
3000 goto out_nomap;
3001 }
3002
3003 /*
3004 * The page isn't present yet, go ahead with the fault.
3005 *
3006 * Be careful about the sequence of operations here.
3007 * To get its accounting right, reuse_swap_page() must be called
3008 * while the page is counted on swap but not yet in mapcount i.e.
3009 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3010 * must be called after the swap_free(), or it will never succeed.
3011 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3012 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3013 * in page->private. In this case, a record in swap_cgroup is silently
3014 * discarded at swap_free().
3015 */
3016
3017 inc_mm_counter_fast(mm, MM_ANONPAGES);
3018 dec_mm_counter_fast(mm, MM_SWAPENTS);
3019 pte = mk_pte(page, vma->vm_page_prot);
3020 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3021 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3022 flags &= ~FAULT_FLAG_WRITE;
3023 ret |= VM_FAULT_WRITE;
3024 exclusive = 1;
3025 }
3026 flush_icache_page(vma, page);
3027 set_pte_at(mm, address, page_table, pte);
3028 do_page_add_anon_rmap(page, vma, address, exclusive);
3029 /* It's better to call commit-charge after rmap is established */
3030 mem_cgroup_commit_charge_swapin(page, ptr);
3031
3032 swap_free(entry);
3033 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3034 try_to_free_swap(page);
3035 unlock_page(page);
3036 if (swapcache) {
3037 /*
3038 * Hold the lock to avoid the swap entry to be reused
3039 * until we take the PT lock for the pte_same() check
3040 * (to avoid false positives from pte_same). For
3041 * further safety release the lock after the swap_free
3042 * so that the swap count won't change under a
3043 * parallel locked swapcache.
3044 */
3045 unlock_page(swapcache);
3046 page_cache_release(swapcache);
3047 }
3048
3049 if (flags & FAULT_FLAG_WRITE) {
3050 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3051 if (ret & VM_FAULT_ERROR)
3052 ret &= VM_FAULT_ERROR;
3053 goto out;
3054 }
3055
3056 /* No need to invalidate - it was non-present before */
3057 update_mmu_cache(vma, address, page_table);
3058 unlock:
3059 pte_unmap_unlock(page_table, ptl);
3060 out:
3061 return ret;
3062 out_nomap:
3063 mem_cgroup_cancel_charge_swapin(ptr);
3064 pte_unmap_unlock(page_table, ptl);
3065 out_page:
3066 unlock_page(page);
3067 out_release:
3068 page_cache_release(page);
3069 if (swapcache) {
3070 unlock_page(swapcache);
3071 page_cache_release(swapcache);
3072 }
3073 return ret;
3074 }
3075
3076 /*
3077 * This is like a special single-page "expand_{down|up}wards()",
3078 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3079 * doesn't hit another vma.
3080 */
3081 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3082 {
3083 address &= PAGE_MASK;
3084 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3085 struct vm_area_struct *prev = vma->vm_prev;
3086
3087 /*
3088 * Is there a mapping abutting this one below?
3089 *
3090 * That's only ok if it's the same stack mapping
3091 * that has gotten split..
3092 */
3093 if (prev && prev->vm_end == address)
3094 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3095
3096 expand_downwards(vma, address - PAGE_SIZE);
3097 }
3098 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3099 struct vm_area_struct *next = vma->vm_next;
3100
3101 /* As VM_GROWSDOWN but s/below/above/ */
3102 if (next && next->vm_start == address + PAGE_SIZE)
3103 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3104
3105 expand_upwards(vma, address + PAGE_SIZE);
3106 }
3107 return 0;
3108 }
3109
3110 /*
3111 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3112 * but allow concurrent faults), and pte mapped but not yet locked.
3113 * We return with mmap_sem still held, but pte unmapped and unlocked.
3114 */
3115 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3116 unsigned long address, pte_t *page_table, pmd_t *pmd,
3117 unsigned int flags)
3118 {
3119 struct page *page;
3120 spinlock_t *ptl;
3121 pte_t entry;
3122
3123 pte_unmap(page_table);
3124
3125 /* Check if we need to add a guard page to the stack */
3126 if (check_stack_guard_page(vma, address) < 0)
3127 return VM_FAULT_SIGBUS;
3128
3129 /* Use the zero-page for reads */
3130 if (!(flags & FAULT_FLAG_WRITE)) {
3131 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3132 vma->vm_page_prot));
3133 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3134 if (!pte_none(*page_table))
3135 goto unlock;
3136 goto setpte;
3137 }
3138
3139 /* Allocate our own private page. */
3140 if (unlikely(anon_vma_prepare(vma)))
3141 goto oom;
3142 page = alloc_zeroed_user_highpage_movable(vma, address);
3143 if (!page)
3144 goto oom;
3145 __SetPageUptodate(page);
3146
3147 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3148 goto oom_free_page;
3149
3150 entry = mk_pte(page, vma->vm_page_prot);
3151 if (vma->vm_flags & VM_WRITE)
3152 entry = pte_mkwrite(pte_mkdirty(entry));
3153
3154 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3155 if (!pte_none(*page_table))
3156 goto release;
3157
3158 inc_mm_counter_fast(mm, MM_ANONPAGES);
3159 page_add_new_anon_rmap(page, vma, address);
3160 setpte:
3161 set_pte_at(mm, address, page_table, entry);
3162
3163 /* No need to invalidate - it was non-present before */
3164 update_mmu_cache(vma, address, page_table);
3165 unlock:
3166 pte_unmap_unlock(page_table, ptl);
3167 return 0;
3168 release:
3169 mem_cgroup_uncharge_page(page);
3170 page_cache_release(page);
3171 goto unlock;
3172 oom_free_page:
3173 page_cache_release(page);
3174 oom:
3175 return VM_FAULT_OOM;
3176 }
3177
3178 /*
3179 * __do_fault() tries to create a new page mapping. It aggressively
3180 * tries to share with existing pages, but makes a separate copy if
3181 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3182 * the next page fault.
3183 *
3184 * As this is called only for pages that do not currently exist, we
3185 * do not need to flush old virtual caches or the TLB.
3186 *
3187 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3188 * but allow concurrent faults), and pte neither mapped nor locked.
3189 * We return with mmap_sem still held, but pte unmapped and unlocked.
3190 */
3191 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3192 unsigned long address, pmd_t *pmd,
3193 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3194 {
3195 pte_t *page_table;
3196 spinlock_t *ptl;
3197 struct page *page;
3198 struct page *cow_page;
3199 pte_t entry;
3200 int anon = 0;
3201 struct page *dirty_page = NULL;
3202 struct vm_fault vmf;
3203 int ret;
3204 int page_mkwrite = 0;
3205
3206 /*
3207 * If we do COW later, allocate page befor taking lock_page()
3208 * on the file cache page. This will reduce lock holding time.
3209 */
3210 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3211
3212 if (unlikely(anon_vma_prepare(vma)))
3213 return VM_FAULT_OOM;
3214
3215 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3216 if (!cow_page)
3217 return VM_FAULT_OOM;
3218
3219 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3220 page_cache_release(cow_page);
3221 return VM_FAULT_OOM;
3222 }
3223 } else
3224 cow_page = NULL;
3225
3226 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3227 vmf.pgoff = pgoff;
3228 vmf.flags = flags;
3229 vmf.page = NULL;
3230
3231 ret = vma->vm_ops->fault(vma, &vmf);
3232 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3233 VM_FAULT_RETRY)))
3234 goto uncharge_out;
3235
3236 if (unlikely(PageHWPoison(vmf.page))) {
3237 if (ret & VM_FAULT_LOCKED)
3238 unlock_page(vmf.page);
3239 ret = VM_FAULT_HWPOISON;
3240 goto uncharge_out;
3241 }
3242
3243 /*
3244 * For consistency in subsequent calls, make the faulted page always
3245 * locked.
3246 */
3247 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3248 lock_page(vmf.page);
3249 else
3250 VM_BUG_ON(!PageLocked(vmf.page));
3251
3252 /*
3253 * Should we do an early C-O-W break?
3254 */
3255 page = vmf.page;
3256 if (flags & FAULT_FLAG_WRITE) {
3257 if (!(vma->vm_flags & VM_SHARED)) {
3258 page = cow_page;
3259 anon = 1;
3260 copy_user_highpage(page, vmf.page, address, vma);
3261 __SetPageUptodate(page);
3262 } else {
3263 /*
3264 * If the page will be shareable, see if the backing
3265 * address space wants to know that the page is about
3266 * to become writable
3267 */
3268 if (vma->vm_ops->page_mkwrite) {
3269 int tmp;
3270
3271 unlock_page(page);
3272 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3273 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3274 if (unlikely(tmp &
3275 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3276 ret = tmp;
3277 goto unwritable_page;
3278 }
3279 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3280 lock_page(page);
3281 if (!page->mapping) {
3282 ret = 0; /* retry the fault */
3283 unlock_page(page);
3284 goto unwritable_page;
3285 }
3286 } else
3287 VM_BUG_ON(!PageLocked(page));
3288 page_mkwrite = 1;
3289 }
3290 }
3291
3292 }
3293
3294 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3295
3296 /*
3297 * This silly early PAGE_DIRTY setting removes a race
3298 * due to the bad i386 page protection. But it's valid
3299 * for other architectures too.
3300 *
3301 * Note that if FAULT_FLAG_WRITE is set, we either now have
3302 * an exclusive copy of the page, or this is a shared mapping,
3303 * so we can make it writable and dirty to avoid having to
3304 * handle that later.
3305 */
3306 /* Only go through if we didn't race with anybody else... */
3307 if (likely(pte_same(*page_table, orig_pte))) {
3308 flush_icache_page(vma, page);
3309 entry = mk_pte(page, vma->vm_page_prot);
3310 if (flags & FAULT_FLAG_WRITE)
3311 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3312 if (anon) {
3313 inc_mm_counter_fast(mm, MM_ANONPAGES);
3314 page_add_new_anon_rmap(page, vma, address);
3315 } else {
3316 inc_mm_counter_fast(mm, MM_FILEPAGES);
3317 page_add_file_rmap(page);
3318 if (flags & FAULT_FLAG_WRITE) {
3319 dirty_page = page;
3320 get_page(dirty_page);
3321 }
3322 }
3323 set_pte_at(mm, address, page_table, entry);
3324
3325 /* no need to invalidate: a not-present page won't be cached */
3326 update_mmu_cache(vma, address, page_table);
3327 } else {
3328 if (cow_page)
3329 mem_cgroup_uncharge_page(cow_page);
3330 if (anon)
3331 page_cache_release(page);
3332 else
3333 anon = 1; /* no anon but release faulted_page */
3334 }
3335
3336 pte_unmap_unlock(page_table, ptl);
3337
3338 if (dirty_page) {
3339 struct address_space *mapping = page->mapping;
3340 int dirtied = 0;
3341
3342 if (set_page_dirty(dirty_page))
3343 dirtied = 1;
3344 unlock_page(dirty_page);
3345 put_page(dirty_page);
3346 if ((dirtied || page_mkwrite) && mapping) {
3347 /*
3348 * Some device drivers do not set page.mapping but still
3349 * dirty their pages
3350 */
3351 balance_dirty_pages_ratelimited(mapping);
3352 }
3353
3354 /* file_update_time outside page_lock */
3355 if (vma->vm_file && !page_mkwrite)
3356 file_update_time(vma->vm_file);
3357 } else {
3358 unlock_page(vmf.page);
3359 if (anon)
3360 page_cache_release(vmf.page);
3361 }
3362
3363 return ret;
3364
3365 unwritable_page:
3366 page_cache_release(page);
3367 return ret;
3368 uncharge_out:
3369 /* fs's fault handler get error */
3370 if (cow_page) {
3371 mem_cgroup_uncharge_page(cow_page);
3372 page_cache_release(cow_page);
3373 }
3374 return ret;
3375 }
3376
3377 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3378 unsigned long address, pte_t *page_table, pmd_t *pmd,
3379 unsigned int flags, pte_t orig_pte)
3380 {
3381 pgoff_t pgoff = (((address & PAGE_MASK)
3382 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3383
3384 pte_unmap(page_table);
3385 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3386 }
3387
3388 /*
3389 * Fault of a previously existing named mapping. Repopulate the pte
3390 * from the encoded file_pte if possible. This enables swappable
3391 * nonlinear vmas.
3392 *
3393 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3394 * but allow concurrent faults), and pte mapped but not yet locked.
3395 * We return with mmap_sem still held, but pte unmapped and unlocked.
3396 */
3397 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3398 unsigned long address, pte_t *page_table, pmd_t *pmd,
3399 unsigned int flags, pte_t orig_pte)
3400 {
3401 pgoff_t pgoff;
3402
3403 flags |= FAULT_FLAG_NONLINEAR;
3404
3405 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3406 return 0;
3407
3408 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3409 /*
3410 * Page table corrupted: show pte and kill process.
3411 */
3412 print_bad_pte(vma, address, orig_pte, NULL);
3413 return VM_FAULT_SIGBUS;
3414 }
3415
3416 pgoff = pte_to_pgoff(orig_pte);
3417 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3418 }
3419
3420 /*
3421 * These routines also need to handle stuff like marking pages dirty
3422 * and/or accessed for architectures that don't do it in hardware (most
3423 * RISC architectures). The early dirtying is also good on the i386.
3424 *
3425 * There is also a hook called "update_mmu_cache()" that architectures
3426 * with external mmu caches can use to update those (ie the Sparc or
3427 * PowerPC hashed page tables that act as extended TLBs).
3428 *
3429 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3430 * but allow concurrent faults), and pte mapped but not yet locked.
3431 * We return with mmap_sem still held, but pte unmapped and unlocked.
3432 */
3433 int handle_pte_fault(struct mm_struct *mm,
3434 struct vm_area_struct *vma, unsigned long address,
3435 pte_t *pte, pmd_t *pmd, unsigned int flags)
3436 {
3437 pte_t entry;
3438 spinlock_t *ptl;
3439
3440 entry = *pte;
3441 if (!pte_present(entry)) {
3442 if (pte_none(entry)) {
3443 if (vma->vm_ops) {
3444 if (likely(vma->vm_ops->fault))
3445 return do_linear_fault(mm, vma, address,
3446 pte, pmd, flags, entry);
3447 }
3448 return do_anonymous_page(mm, vma, address,
3449 pte, pmd, flags);
3450 }
3451 if (pte_file(entry))
3452 return do_nonlinear_fault(mm, vma, address,
3453 pte, pmd, flags, entry);
3454 return do_swap_page(mm, vma, address,
3455 pte, pmd, flags, entry);
3456 }
3457
3458 ptl = pte_lockptr(mm, pmd);
3459 spin_lock(ptl);
3460 if (unlikely(!pte_same(*pte, entry)))
3461 goto unlock;
3462 if (flags & FAULT_FLAG_WRITE) {
3463 if (!pte_write(entry))
3464 return do_wp_page(mm, vma, address,
3465 pte, pmd, ptl, entry);
3466 entry = pte_mkdirty(entry);
3467 }
3468 entry = pte_mkyoung(entry);
3469 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3470 update_mmu_cache(vma, address, pte);
3471 } else {
3472 /*
3473 * This is needed only for protection faults but the arch code
3474 * is not yet telling us if this is a protection fault or not.
3475 * This still avoids useless tlb flushes for .text page faults
3476 * with threads.
3477 */
3478 if (flags & FAULT_FLAG_WRITE)
3479 flush_tlb_fix_spurious_fault(vma, address);
3480 }
3481 unlock:
3482 pte_unmap_unlock(pte, ptl);
3483 return 0;
3484 }
3485
3486 /*
3487 * By the time we get here, we already hold the mm semaphore
3488 */
3489 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3490 unsigned long address, unsigned int flags)
3491 {
3492 pgd_t *pgd;
3493 pud_t *pud;
3494 pmd_t *pmd;
3495 pte_t *pte;
3496
3497 __set_current_state(TASK_RUNNING);
3498
3499 count_vm_event(PGFAULT);
3500 mem_cgroup_count_vm_event(mm, PGFAULT);
3501
3502 /* do counter updates before entering really critical section. */
3503 check_sync_rss_stat(current);
3504
3505 if (unlikely(is_vm_hugetlb_page(vma)))
3506 return hugetlb_fault(mm, vma, address, flags);
3507
3508 retry:
3509 pgd = pgd_offset(mm, address);
3510 pud = pud_alloc(mm, pgd, address);
3511 if (!pud)
3512 return VM_FAULT_OOM;
3513 pmd = pmd_alloc(mm, pud, address);
3514 if (!pmd)
3515 return VM_FAULT_OOM;
3516 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3517 if (!vma->vm_ops)
3518 return do_huge_pmd_anonymous_page(mm, vma, address,
3519 pmd, flags);
3520 } else {
3521 pmd_t orig_pmd = *pmd;
3522 int ret;
3523
3524 barrier();
3525 if (pmd_trans_huge(orig_pmd)) {
3526 if (flags & FAULT_FLAG_WRITE &&
3527 !pmd_write(orig_pmd) &&
3528 !pmd_trans_splitting(orig_pmd)) {
3529 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3530 orig_pmd);
3531 /*
3532 * If COW results in an oom, the huge pmd will
3533 * have been split, so retry the fault on the
3534 * pte for a smaller charge.
3535 */
3536 if (unlikely(ret & VM_FAULT_OOM))
3537 goto retry;
3538 return ret;
3539 }
3540 return 0;
3541 }
3542 }
3543
3544 /*
3545 * Use __pte_alloc instead of pte_alloc_map, because we can't
3546 * run pte_offset_map on the pmd, if an huge pmd could
3547 * materialize from under us from a different thread.
3548 */
3549 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3550 return VM_FAULT_OOM;
3551 /* if an huge pmd materialized from under us just retry later */
3552 if (unlikely(pmd_trans_huge(*pmd)))
3553 return 0;
3554 /*
3555 * A regular pmd is established and it can't morph into a huge pmd
3556 * from under us anymore at this point because we hold the mmap_sem
3557 * read mode and khugepaged takes it in write mode. So now it's
3558 * safe to run pte_offset_map().
3559 */
3560 pte = pte_offset_map(pmd, address);
3561
3562 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3563 }
3564
3565 #ifndef __PAGETABLE_PUD_FOLDED
3566 /*
3567 * Allocate page upper directory.
3568 * We've already handled the fast-path in-line.
3569 */
3570 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3571 {
3572 pud_t *new = pud_alloc_one(mm, address);
3573 if (!new)
3574 return -ENOMEM;
3575
3576 smp_wmb(); /* See comment in __pte_alloc */
3577
3578 spin_lock(&mm->page_table_lock);
3579 if (pgd_present(*pgd)) /* Another has populated it */
3580 pud_free(mm, new);
3581 else
3582 pgd_populate(mm, pgd, new);
3583 spin_unlock(&mm->page_table_lock);
3584 return 0;
3585 }
3586 #endif /* __PAGETABLE_PUD_FOLDED */
3587
3588 #ifndef __PAGETABLE_PMD_FOLDED
3589 /*
3590 * Allocate page middle directory.
3591 * We've already handled the fast-path in-line.
3592 */
3593 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3594 {
3595 pmd_t *new = pmd_alloc_one(mm, address);
3596 if (!new)
3597 return -ENOMEM;
3598
3599 smp_wmb(); /* See comment in __pte_alloc */
3600
3601 spin_lock(&mm->page_table_lock);
3602 #ifndef __ARCH_HAS_4LEVEL_HACK
3603 if (pud_present(*pud)) /* Another has populated it */
3604 pmd_free(mm, new);
3605 else
3606 pud_populate(mm, pud, new);
3607 #else
3608 if (pgd_present(*pud)) /* Another has populated it */
3609 pmd_free(mm, new);
3610 else
3611 pgd_populate(mm, pud, new);
3612 #endif /* __ARCH_HAS_4LEVEL_HACK */
3613 spin_unlock(&mm->page_table_lock);
3614 return 0;
3615 }
3616 #endif /* __PAGETABLE_PMD_FOLDED */
3617
3618 int make_pages_present(unsigned long addr, unsigned long end)
3619 {
3620 int ret, len, write;
3621 struct vm_area_struct * vma;
3622
3623 vma = find_vma(current->mm, addr);
3624 if (!vma)
3625 return -ENOMEM;
3626 /*
3627 * We want to touch writable mappings with a write fault in order
3628 * to break COW, except for shared mappings because these don't COW
3629 * and we would not want to dirty them for nothing.
3630 */
3631 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3632 BUG_ON(addr >= end);
3633 BUG_ON(end > vma->vm_end);
3634 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3635 ret = get_user_pages(current, current->mm, addr,
3636 len, write, 0, NULL, NULL);
3637 if (ret < 0)
3638 return ret;
3639 return ret == len ? 0 : -EFAULT;
3640 }
3641
3642 #if !defined(__HAVE_ARCH_GATE_AREA)
3643
3644 #if defined(AT_SYSINFO_EHDR)
3645 static struct vm_area_struct gate_vma;
3646
3647 static int __init gate_vma_init(void)
3648 {
3649 gate_vma.vm_mm = NULL;
3650 gate_vma.vm_start = FIXADDR_USER_START;
3651 gate_vma.vm_end = FIXADDR_USER_END;
3652 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3653 gate_vma.vm_page_prot = __P101;
3654
3655 return 0;
3656 }
3657 __initcall(gate_vma_init);
3658 #endif
3659
3660 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3661 {
3662 #ifdef AT_SYSINFO_EHDR
3663 return &gate_vma;
3664 #else
3665 return NULL;
3666 #endif
3667 }
3668
3669 int in_gate_area_no_mm(unsigned long addr)
3670 {
3671 #ifdef AT_SYSINFO_EHDR
3672 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3673 return 1;
3674 #endif
3675 return 0;
3676 }
3677
3678 #endif /* __HAVE_ARCH_GATE_AREA */
3679
3680 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3681 pte_t **ptepp, spinlock_t **ptlp)
3682 {
3683 pgd_t *pgd;
3684 pud_t *pud;
3685 pmd_t *pmd;
3686 pte_t *ptep;
3687
3688 pgd = pgd_offset(mm, address);
3689 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3690 goto out;
3691
3692 pud = pud_offset(pgd, address);
3693 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3694 goto out;
3695
3696 pmd = pmd_offset(pud, address);
3697 VM_BUG_ON(pmd_trans_huge(*pmd));
3698 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3699 goto out;
3700
3701 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3702 if (pmd_huge(*pmd))
3703 goto out;
3704
3705 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3706 if (!ptep)
3707 goto out;
3708 if (!pte_present(*ptep))
3709 goto unlock;
3710 *ptepp = ptep;
3711 return 0;
3712 unlock:
3713 pte_unmap_unlock(ptep, *ptlp);
3714 out:
3715 return -EINVAL;
3716 }
3717
3718 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3719 pte_t **ptepp, spinlock_t **ptlp)
3720 {
3721 int res;
3722
3723 /* (void) is needed to make gcc happy */
3724 (void) __cond_lock(*ptlp,
3725 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3726 return res;
3727 }
3728
3729 /**
3730 * follow_pfn - look up PFN at a user virtual address
3731 * @vma: memory mapping
3732 * @address: user virtual address
3733 * @pfn: location to store found PFN
3734 *
3735 * Only IO mappings and raw PFN mappings are allowed.
3736 *
3737 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3738 */
3739 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3740 unsigned long *pfn)
3741 {
3742 int ret = -EINVAL;
3743 spinlock_t *ptl;
3744 pte_t *ptep;
3745
3746 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3747 return ret;
3748
3749 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3750 if (ret)
3751 return ret;
3752 *pfn = pte_pfn(*ptep);
3753 pte_unmap_unlock(ptep, ptl);
3754 return 0;
3755 }
3756 EXPORT_SYMBOL(follow_pfn);
3757
3758 #ifdef CONFIG_HAVE_IOREMAP_PROT
3759 int follow_phys(struct vm_area_struct *vma,
3760 unsigned long address, unsigned int flags,
3761 unsigned long *prot, resource_size_t *phys)
3762 {
3763 int ret = -EINVAL;
3764 pte_t *ptep, pte;
3765 spinlock_t *ptl;
3766
3767 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3768 goto out;
3769
3770 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3771 goto out;
3772 pte = *ptep;
3773
3774 if ((flags & FOLL_WRITE) && !pte_write(pte))
3775 goto unlock;
3776
3777 *prot = pgprot_val(pte_pgprot(pte));
3778 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3779
3780 ret = 0;
3781 unlock:
3782 pte_unmap_unlock(ptep, ptl);
3783 out:
3784 return ret;
3785 }
3786
3787 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3788 void *buf, int len, int write)
3789 {
3790 resource_size_t phys_addr;
3791 unsigned long prot = 0;
3792 void __iomem *maddr;
3793 int offset = addr & (PAGE_SIZE-1);
3794
3795 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3796 return -EINVAL;
3797
3798 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3799 if (write)
3800 memcpy_toio(maddr + offset, buf, len);
3801 else
3802 memcpy_fromio(buf, maddr + offset, len);
3803 iounmap(maddr);
3804
3805 return len;
3806 }
3807 #endif
3808
3809 /*
3810 * Access another process' address space as given in mm. If non-NULL, use the
3811 * given task for page fault accounting.
3812 */
3813 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3814 unsigned long addr, void *buf, int len, int write)
3815 {
3816 struct vm_area_struct *vma;
3817 void *old_buf = buf;
3818
3819 down_read(&mm->mmap_sem);
3820 /* ignore errors, just check how much was successfully transferred */
3821 while (len) {
3822 int bytes, ret, offset;
3823 void *maddr;
3824 struct page *page = NULL;
3825
3826 ret = get_user_pages(tsk, mm, addr, 1,
3827 write, 1, &page, &vma);
3828 if (ret <= 0) {
3829 /*
3830 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3831 * we can access using slightly different code.
3832 */
3833 #ifdef CONFIG_HAVE_IOREMAP_PROT
3834 vma = find_vma(mm, addr);
3835 if (!vma || vma->vm_start > addr)
3836 break;
3837 if (vma->vm_ops && vma->vm_ops->access)
3838 ret = vma->vm_ops->access(vma, addr, buf,
3839 len, write);
3840 if (ret <= 0)
3841 #endif
3842 break;
3843 bytes = ret;
3844 } else {
3845 bytes = len;
3846 offset = addr & (PAGE_SIZE-1);
3847 if (bytes > PAGE_SIZE-offset)
3848 bytes = PAGE_SIZE-offset;
3849
3850 maddr = kmap(page);
3851 if (write) {
3852 copy_to_user_page(vma, page, addr,
3853 maddr + offset, buf, bytes);
3854 set_page_dirty_lock(page);
3855 } else {
3856 copy_from_user_page(vma, page, addr,
3857 buf, maddr + offset, bytes);
3858 }
3859 kunmap(page);
3860 page_cache_release(page);
3861 }
3862 len -= bytes;
3863 buf += bytes;
3864 addr += bytes;
3865 }
3866 up_read(&mm->mmap_sem);
3867
3868 return buf - old_buf;
3869 }
3870
3871 /**
3872 * access_remote_vm - access another process' address space
3873 * @mm: the mm_struct of the target address space
3874 * @addr: start address to access
3875 * @buf: source or destination buffer
3876 * @len: number of bytes to transfer
3877 * @write: whether the access is a write
3878 *
3879 * The caller must hold a reference on @mm.
3880 */
3881 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3882 void *buf, int len, int write)
3883 {
3884 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3885 }
3886
3887 /*
3888 * Access another process' address space.
3889 * Source/target buffer must be kernel space,
3890 * Do not walk the page table directly, use get_user_pages
3891 */
3892 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3893 void *buf, int len, int write)
3894 {
3895 struct mm_struct *mm;
3896 int ret;
3897
3898 mm = get_task_mm(tsk);
3899 if (!mm)
3900 return 0;
3901
3902 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3903 mmput(mm);
3904
3905 return ret;
3906 }
3907
3908 /*
3909 * Print the name of a VMA.
3910 */
3911 void print_vma_addr(char *prefix, unsigned long ip)
3912 {
3913 struct mm_struct *mm = current->mm;
3914 struct vm_area_struct *vma;
3915
3916 /*
3917 * Do not print if we are in atomic
3918 * contexts (in exception stacks, etc.):
3919 */
3920 if (preempt_count())
3921 return;
3922
3923 down_read(&mm->mmap_sem);
3924 vma = find_vma(mm, ip);
3925 if (vma && vma->vm_file) {
3926 struct file *f = vma->vm_file;
3927 char *buf = (char *)__get_free_page(GFP_KERNEL);
3928 if (buf) {
3929 char *p, *s;
3930
3931 p = d_path(&f->f_path, buf, PAGE_SIZE);
3932 if (IS_ERR(p))
3933 p = "?";
3934 s = strrchr(p, '/');
3935 if (s)
3936 p = s+1;
3937 printk("%s%s[%lx+%lx]", prefix, p,
3938 vma->vm_start,
3939 vma->vm_end - vma->vm_start);
3940 free_page((unsigned long)buf);
3941 }
3942 }
3943 up_read(&mm->mmap_sem);
3944 }
3945
3946 #ifdef CONFIG_PROVE_LOCKING
3947 void might_fault(void)
3948 {
3949 /*
3950 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3951 * holding the mmap_sem, this is safe because kernel memory doesn't
3952 * get paged out, therefore we'll never actually fault, and the
3953 * below annotations will generate false positives.
3954 */
3955 if (segment_eq(get_fs(), KERNEL_DS))
3956 return;
3957
3958 might_sleep();
3959 /*
3960 * it would be nicer only to annotate paths which are not under
3961 * pagefault_disable, however that requires a larger audit and
3962 * providing helpers like get_user_atomic.
3963 */
3964 if (!in_atomic() && current->mm)
3965 might_lock_read(&current->mm->mmap_sem);
3966 }
3967 EXPORT_SYMBOL(might_fault);
3968 #endif
3969
3970 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3971 static void clear_gigantic_page(struct page *page,
3972 unsigned long addr,
3973 unsigned int pages_per_huge_page)
3974 {
3975 int i;
3976 struct page *p = page;
3977
3978 might_sleep();
3979 for (i = 0; i < pages_per_huge_page;
3980 i++, p = mem_map_next(p, page, i)) {
3981 cond_resched();
3982 clear_user_highpage(p, addr + i * PAGE_SIZE);
3983 }
3984 }
3985 void clear_huge_page(struct page *page,
3986 unsigned long addr, unsigned int pages_per_huge_page)
3987 {
3988 int i;
3989
3990 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3991 clear_gigantic_page(page, addr, pages_per_huge_page);
3992 return;
3993 }
3994
3995 might_sleep();
3996 for (i = 0; i < pages_per_huge_page; i++) {
3997 cond_resched();
3998 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3999 }
4000 }
4001
4002 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4003 unsigned long addr,
4004 struct vm_area_struct *vma,
4005 unsigned int pages_per_huge_page)
4006 {
4007 int i;
4008 struct page *dst_base = dst;
4009 struct page *src_base = src;
4010
4011 for (i = 0; i < pages_per_huge_page; ) {
4012 cond_resched();
4013 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4014
4015 i++;
4016 dst = mem_map_next(dst, dst_base, i);
4017 src = mem_map_next(src, src_base, i);
4018 }
4019 }
4020
4021 void copy_user_huge_page(struct page *dst, struct page *src,
4022 unsigned long addr, struct vm_area_struct *vma,
4023 unsigned int pages_per_huge_page)
4024 {
4025 int i;
4026
4027 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4028 copy_user_gigantic_page(dst, src, addr, vma,
4029 pages_per_huge_page);
4030 return;
4031 }
4032
4033 might_sleep();
4034 for (i = 0; i < pages_per_huge_page; i++) {
4035 cond_resched();
4036 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4037 }
4038 }
4039 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */