Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100 1;
101 #else
102 2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107 randomize_va_space = 0;
108 return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118 static int __init init_zero_pfn(void)
119 {
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 void sync_mm_rss(struct mm_struct *mm)
129 {
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (current->rss_stat.count[i]) {
134 add_mm_counter(mm, i, current->rss_stat.count[i]);
135 current->rss_stat.count[i] = 0;
136 }
137 }
138 current->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 sync_mm_rss(task->mm);
161 }
162 #else /* SPLIT_RSS_COUNTING */
163
164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166
167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169 }
170
171 #endif /* SPLIT_RSS_COUNTING */
172
173 #ifdef HAVE_GENERIC_MMU_GATHER
174
175 static int tlb_next_batch(struct mmu_gather *tlb)
176 {
177 struct mmu_gather_batch *batch;
178
179 batch = tlb->active;
180 if (batch->next) {
181 tlb->active = batch->next;
182 return 1;
183 }
184
185 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186 if (!batch)
187 return 0;
188
189 batch->next = NULL;
190 batch->nr = 0;
191 batch->max = MAX_GATHER_BATCH;
192
193 tlb->active->next = batch;
194 tlb->active = batch;
195
196 return 1;
197 }
198
199 /* tlb_gather_mmu
200 * Called to initialize an (on-stack) mmu_gather structure for page-table
201 * tear-down from @mm. The @fullmm argument is used when @mm is without
202 * users and we're going to destroy the full address space (exit/execve).
203 */
204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
205 {
206 tlb->mm = mm;
207
208 tlb->fullmm = fullmm;
209 tlb->start = -1UL;
210 tlb->end = 0;
211 tlb->need_flush = 0;
212 tlb->fast_mode = (num_possible_cpus() == 1);
213 tlb->local.next = NULL;
214 tlb->local.nr = 0;
215 tlb->local.max = ARRAY_SIZE(tlb->__pages);
216 tlb->active = &tlb->local;
217
218 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
219 tlb->batch = NULL;
220 #endif
221 }
222
223 void tlb_flush_mmu(struct mmu_gather *tlb)
224 {
225 struct mmu_gather_batch *batch;
226
227 if (!tlb->need_flush)
228 return;
229 tlb->need_flush = 0;
230 tlb_flush(tlb);
231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
232 tlb_table_flush(tlb);
233 #endif
234
235 if (tlb_fast_mode(tlb))
236 return;
237
238 for (batch = &tlb->local; batch; batch = batch->next) {
239 free_pages_and_swap_cache(batch->pages, batch->nr);
240 batch->nr = 0;
241 }
242 tlb->active = &tlb->local;
243 }
244
245 /* tlb_finish_mmu
246 * Called at the end of the shootdown operation to free up any resources
247 * that were required.
248 */
249 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
250 {
251 struct mmu_gather_batch *batch, *next;
252
253 tlb->start = start;
254 tlb->end = end;
255 tlb_flush_mmu(tlb);
256
257 /* keep the page table cache within bounds */
258 check_pgt_cache();
259
260 for (batch = tlb->local.next; batch; batch = next) {
261 next = batch->next;
262 free_pages((unsigned long)batch, 0);
263 }
264 tlb->local.next = NULL;
265 }
266
267 /* __tlb_remove_page
268 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
269 * handling the additional races in SMP caused by other CPUs caching valid
270 * mappings in their TLBs. Returns the number of free page slots left.
271 * When out of page slots we must call tlb_flush_mmu().
272 */
273 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
274 {
275 struct mmu_gather_batch *batch;
276
277 VM_BUG_ON(!tlb->need_flush);
278
279 if (tlb_fast_mode(tlb)) {
280 free_page_and_swap_cache(page);
281 return 1; /* avoid calling tlb_flush_mmu() */
282 }
283
284 batch = tlb->active;
285 batch->pages[batch->nr++] = page;
286 if (batch->nr == batch->max) {
287 if (!tlb_next_batch(tlb))
288 return 0;
289 batch = tlb->active;
290 }
291 VM_BUG_ON(batch->nr > batch->max);
292
293 return batch->max - batch->nr;
294 }
295
296 #endif /* HAVE_GENERIC_MMU_GATHER */
297
298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
299
300 /*
301 * See the comment near struct mmu_table_batch.
302 */
303
304 static void tlb_remove_table_smp_sync(void *arg)
305 {
306 /* Simply deliver the interrupt */
307 }
308
309 static void tlb_remove_table_one(void *table)
310 {
311 /*
312 * This isn't an RCU grace period and hence the page-tables cannot be
313 * assumed to be actually RCU-freed.
314 *
315 * It is however sufficient for software page-table walkers that rely on
316 * IRQ disabling. See the comment near struct mmu_table_batch.
317 */
318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319 __tlb_remove_table(table);
320 }
321
322 static void tlb_remove_table_rcu(struct rcu_head *head)
323 {
324 struct mmu_table_batch *batch;
325 int i;
326
327 batch = container_of(head, struct mmu_table_batch, rcu);
328
329 for (i = 0; i < batch->nr; i++)
330 __tlb_remove_table(batch->tables[i]);
331
332 free_page((unsigned long)batch);
333 }
334
335 void tlb_table_flush(struct mmu_gather *tlb)
336 {
337 struct mmu_table_batch **batch = &tlb->batch;
338
339 if (*batch) {
340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341 *batch = NULL;
342 }
343 }
344
345 void tlb_remove_table(struct mmu_gather *tlb, void *table)
346 {
347 struct mmu_table_batch **batch = &tlb->batch;
348
349 tlb->need_flush = 1;
350
351 /*
352 * When there's less then two users of this mm there cannot be a
353 * concurrent page-table walk.
354 */
355 if (atomic_read(&tlb->mm->mm_users) < 2) {
356 __tlb_remove_table(table);
357 return;
358 }
359
360 if (*batch == NULL) {
361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362 if (*batch == NULL) {
363 tlb_remove_table_one(table);
364 return;
365 }
366 (*batch)->nr = 0;
367 }
368 (*batch)->tables[(*batch)->nr++] = table;
369 if ((*batch)->nr == MAX_TABLE_BATCH)
370 tlb_table_flush(tlb);
371 }
372
373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
374
375 /*
376 * If a p?d_bad entry is found while walking page tables, report
377 * the error, before resetting entry to p?d_none. Usually (but
378 * very seldom) called out from the p?d_none_or_clear_bad macros.
379 */
380
381 void pgd_clear_bad(pgd_t *pgd)
382 {
383 pgd_ERROR(*pgd);
384 pgd_clear(pgd);
385 }
386
387 void pud_clear_bad(pud_t *pud)
388 {
389 pud_ERROR(*pud);
390 pud_clear(pud);
391 }
392
393 void pmd_clear_bad(pmd_t *pmd)
394 {
395 pmd_ERROR(*pmd);
396 pmd_clear(pmd);
397 }
398
399 /*
400 * Note: this doesn't free the actual pages themselves. That
401 * has been handled earlier when unmapping all the memory regions.
402 */
403 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
404 unsigned long addr)
405 {
406 pgtable_t token = pmd_pgtable(*pmd);
407 pmd_clear(pmd);
408 pte_free_tlb(tlb, token, addr);
409 tlb->mm->nr_ptes--;
410 }
411
412 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
413 unsigned long addr, unsigned long end,
414 unsigned long floor, unsigned long ceiling)
415 {
416 pmd_t *pmd;
417 unsigned long next;
418 unsigned long start;
419
420 start = addr;
421 pmd = pmd_offset(pud, addr);
422 do {
423 next = pmd_addr_end(addr, end);
424 if (pmd_none_or_clear_bad(pmd))
425 continue;
426 free_pte_range(tlb, pmd, addr);
427 } while (pmd++, addr = next, addr != end);
428
429 start &= PUD_MASK;
430 if (start < floor)
431 return;
432 if (ceiling) {
433 ceiling &= PUD_MASK;
434 if (!ceiling)
435 return;
436 }
437 if (end - 1 > ceiling - 1)
438 return;
439
440 pmd = pmd_offset(pud, start);
441 pud_clear(pud);
442 pmd_free_tlb(tlb, pmd, start);
443 }
444
445 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
446 unsigned long addr, unsigned long end,
447 unsigned long floor, unsigned long ceiling)
448 {
449 pud_t *pud;
450 unsigned long next;
451 unsigned long start;
452
453 start = addr;
454 pud = pud_offset(pgd, addr);
455 do {
456 next = pud_addr_end(addr, end);
457 if (pud_none_or_clear_bad(pud))
458 continue;
459 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
460 } while (pud++, addr = next, addr != end);
461
462 start &= PGDIR_MASK;
463 if (start < floor)
464 return;
465 if (ceiling) {
466 ceiling &= PGDIR_MASK;
467 if (!ceiling)
468 return;
469 }
470 if (end - 1 > ceiling - 1)
471 return;
472
473 pud = pud_offset(pgd, start);
474 pgd_clear(pgd);
475 pud_free_tlb(tlb, pud, start);
476 }
477
478 /*
479 * This function frees user-level page tables of a process.
480 *
481 * Must be called with pagetable lock held.
482 */
483 void free_pgd_range(struct mmu_gather *tlb,
484 unsigned long addr, unsigned long end,
485 unsigned long floor, unsigned long ceiling)
486 {
487 pgd_t *pgd;
488 unsigned long next;
489
490 /*
491 * The next few lines have given us lots of grief...
492 *
493 * Why are we testing PMD* at this top level? Because often
494 * there will be no work to do at all, and we'd prefer not to
495 * go all the way down to the bottom just to discover that.
496 *
497 * Why all these "- 1"s? Because 0 represents both the bottom
498 * of the address space and the top of it (using -1 for the
499 * top wouldn't help much: the masks would do the wrong thing).
500 * The rule is that addr 0 and floor 0 refer to the bottom of
501 * the address space, but end 0 and ceiling 0 refer to the top
502 * Comparisons need to use "end - 1" and "ceiling - 1" (though
503 * that end 0 case should be mythical).
504 *
505 * Wherever addr is brought up or ceiling brought down, we must
506 * be careful to reject "the opposite 0" before it confuses the
507 * subsequent tests. But what about where end is brought down
508 * by PMD_SIZE below? no, end can't go down to 0 there.
509 *
510 * Whereas we round start (addr) and ceiling down, by different
511 * masks at different levels, in order to test whether a table
512 * now has no other vmas using it, so can be freed, we don't
513 * bother to round floor or end up - the tests don't need that.
514 */
515
516 addr &= PMD_MASK;
517 if (addr < floor) {
518 addr += PMD_SIZE;
519 if (!addr)
520 return;
521 }
522 if (ceiling) {
523 ceiling &= PMD_MASK;
524 if (!ceiling)
525 return;
526 }
527 if (end - 1 > ceiling - 1)
528 end -= PMD_SIZE;
529 if (addr > end - 1)
530 return;
531
532 pgd = pgd_offset(tlb->mm, addr);
533 do {
534 next = pgd_addr_end(addr, end);
535 if (pgd_none_or_clear_bad(pgd))
536 continue;
537 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
538 } while (pgd++, addr = next, addr != end);
539 }
540
541 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
542 unsigned long floor, unsigned long ceiling)
543 {
544 while (vma) {
545 struct vm_area_struct *next = vma->vm_next;
546 unsigned long addr = vma->vm_start;
547
548 /*
549 * Hide vma from rmap and truncate_pagecache before freeing
550 * pgtables
551 */
552 unlink_anon_vmas(vma);
553 unlink_file_vma(vma);
554
555 if (is_vm_hugetlb_page(vma)) {
556 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
557 floor, next? next->vm_start: ceiling);
558 } else {
559 /*
560 * Optimization: gather nearby vmas into one call down
561 */
562 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
563 && !is_vm_hugetlb_page(next)) {
564 vma = next;
565 next = vma->vm_next;
566 unlink_anon_vmas(vma);
567 unlink_file_vma(vma);
568 }
569 free_pgd_range(tlb, addr, vma->vm_end,
570 floor, next? next->vm_start: ceiling);
571 }
572 vma = next;
573 }
574 }
575
576 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
577 pmd_t *pmd, unsigned long address)
578 {
579 pgtable_t new = pte_alloc_one(mm, address);
580 int wait_split_huge_page;
581 if (!new)
582 return -ENOMEM;
583
584 /*
585 * Ensure all pte setup (eg. pte page lock and page clearing) are
586 * visible before the pte is made visible to other CPUs by being
587 * put into page tables.
588 *
589 * The other side of the story is the pointer chasing in the page
590 * table walking code (when walking the page table without locking;
591 * ie. most of the time). Fortunately, these data accesses consist
592 * of a chain of data-dependent loads, meaning most CPUs (alpha
593 * being the notable exception) will already guarantee loads are
594 * seen in-order. See the alpha page table accessors for the
595 * smp_read_barrier_depends() barriers in page table walking code.
596 */
597 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
598
599 spin_lock(&mm->page_table_lock);
600 wait_split_huge_page = 0;
601 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
602 mm->nr_ptes++;
603 pmd_populate(mm, pmd, new);
604 new = NULL;
605 } else if (unlikely(pmd_trans_splitting(*pmd)))
606 wait_split_huge_page = 1;
607 spin_unlock(&mm->page_table_lock);
608 if (new)
609 pte_free(mm, new);
610 if (wait_split_huge_page)
611 wait_split_huge_page(vma->anon_vma, pmd);
612 return 0;
613 }
614
615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
616 {
617 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
618 if (!new)
619 return -ENOMEM;
620
621 smp_wmb(); /* See comment in __pte_alloc */
622
623 spin_lock(&init_mm.page_table_lock);
624 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
625 pmd_populate_kernel(&init_mm, pmd, new);
626 new = NULL;
627 } else
628 VM_BUG_ON(pmd_trans_splitting(*pmd));
629 spin_unlock(&init_mm.page_table_lock);
630 if (new)
631 pte_free_kernel(&init_mm, new);
632 return 0;
633 }
634
635 static inline void init_rss_vec(int *rss)
636 {
637 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
638 }
639
640 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
641 {
642 int i;
643
644 if (current->mm == mm)
645 sync_mm_rss(mm);
646 for (i = 0; i < NR_MM_COUNTERS; i++)
647 if (rss[i])
648 add_mm_counter(mm, i, rss[i]);
649 }
650
651 /*
652 * This function is called to print an error when a bad pte
653 * is found. For example, we might have a PFN-mapped pte in
654 * a region that doesn't allow it.
655 *
656 * The calling function must still handle the error.
657 */
658 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
659 pte_t pte, struct page *page)
660 {
661 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
662 pud_t *pud = pud_offset(pgd, addr);
663 pmd_t *pmd = pmd_offset(pud, addr);
664 struct address_space *mapping;
665 pgoff_t index;
666 static unsigned long resume;
667 static unsigned long nr_shown;
668 static unsigned long nr_unshown;
669
670 /*
671 * Allow a burst of 60 reports, then keep quiet for that minute;
672 * or allow a steady drip of one report per second.
673 */
674 if (nr_shown == 60) {
675 if (time_before(jiffies, resume)) {
676 nr_unshown++;
677 return;
678 }
679 if (nr_unshown) {
680 printk(KERN_ALERT
681 "BUG: Bad page map: %lu messages suppressed\n",
682 nr_unshown);
683 nr_unshown = 0;
684 }
685 nr_shown = 0;
686 }
687 if (nr_shown++ == 0)
688 resume = jiffies + 60 * HZ;
689
690 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
691 index = linear_page_index(vma, addr);
692
693 printk(KERN_ALERT
694 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
695 current->comm,
696 (long long)pte_val(pte), (long long)pmd_val(*pmd));
697 if (page)
698 dump_page(page);
699 printk(KERN_ALERT
700 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
701 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
702 /*
703 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
704 */
705 if (vma->vm_ops)
706 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
707 (unsigned long)vma->vm_ops->fault);
708 if (vma->vm_file && vma->vm_file->f_op)
709 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
710 (unsigned long)vma->vm_file->f_op->mmap);
711 dump_stack();
712 add_taint(TAINT_BAD_PAGE);
713 }
714
715 static inline int is_cow_mapping(vm_flags_t flags)
716 {
717 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
718 }
719
720 #ifndef is_zero_pfn
721 static inline int is_zero_pfn(unsigned long pfn)
722 {
723 return pfn == zero_pfn;
724 }
725 #endif
726
727 #ifndef my_zero_pfn
728 static inline unsigned long my_zero_pfn(unsigned long addr)
729 {
730 return zero_pfn;
731 }
732 #endif
733
734 /*
735 * vm_normal_page -- This function gets the "struct page" associated with a pte.
736 *
737 * "Special" mappings do not wish to be associated with a "struct page" (either
738 * it doesn't exist, or it exists but they don't want to touch it). In this
739 * case, NULL is returned here. "Normal" mappings do have a struct page.
740 *
741 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
742 * pte bit, in which case this function is trivial. Secondly, an architecture
743 * may not have a spare pte bit, which requires a more complicated scheme,
744 * described below.
745 *
746 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
747 * special mapping (even if there are underlying and valid "struct pages").
748 * COWed pages of a VM_PFNMAP are always normal.
749 *
750 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
751 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
752 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
753 * mapping will always honor the rule
754 *
755 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
756 *
757 * And for normal mappings this is false.
758 *
759 * This restricts such mappings to be a linear translation from virtual address
760 * to pfn. To get around this restriction, we allow arbitrary mappings so long
761 * as the vma is not a COW mapping; in that case, we know that all ptes are
762 * special (because none can have been COWed).
763 *
764 *
765 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
766 *
767 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
768 * page" backing, however the difference is that _all_ pages with a struct
769 * page (that is, those where pfn_valid is true) are refcounted and considered
770 * normal pages by the VM. The disadvantage is that pages are refcounted
771 * (which can be slower and simply not an option for some PFNMAP users). The
772 * advantage is that we don't have to follow the strict linearity rule of
773 * PFNMAP mappings in order to support COWable mappings.
774 *
775 */
776 #ifdef __HAVE_ARCH_PTE_SPECIAL
777 # define HAVE_PTE_SPECIAL 1
778 #else
779 # define HAVE_PTE_SPECIAL 0
780 #endif
781 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
782 pte_t pte)
783 {
784 unsigned long pfn = pte_pfn(pte);
785
786 if (HAVE_PTE_SPECIAL) {
787 if (likely(!pte_special(pte)))
788 goto check_pfn;
789 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
790 return NULL;
791 if (!is_zero_pfn(pfn))
792 print_bad_pte(vma, addr, pte, NULL);
793 return NULL;
794 }
795
796 /* !HAVE_PTE_SPECIAL case follows: */
797
798 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
799 if (vma->vm_flags & VM_MIXEDMAP) {
800 if (!pfn_valid(pfn))
801 return NULL;
802 goto out;
803 } else {
804 unsigned long off;
805 off = (addr - vma->vm_start) >> PAGE_SHIFT;
806 if (pfn == vma->vm_pgoff + off)
807 return NULL;
808 if (!is_cow_mapping(vma->vm_flags))
809 return NULL;
810 }
811 }
812
813 if (is_zero_pfn(pfn))
814 return NULL;
815 check_pfn:
816 if (unlikely(pfn > highest_memmap_pfn)) {
817 print_bad_pte(vma, addr, pte, NULL);
818 return NULL;
819 }
820
821 /*
822 * NOTE! We still have PageReserved() pages in the page tables.
823 * eg. VDSO mappings can cause them to exist.
824 */
825 out:
826 return pfn_to_page(pfn);
827 }
828
829 /*
830 * copy one vm_area from one task to the other. Assumes the page tables
831 * already present in the new task to be cleared in the whole range
832 * covered by this vma.
833 */
834
835 static inline unsigned long
836 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
837 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
838 unsigned long addr, int *rss)
839 {
840 unsigned long vm_flags = vma->vm_flags;
841 pte_t pte = *src_pte;
842 struct page *page;
843
844 /* pte contains position in swap or file, so copy. */
845 if (unlikely(!pte_present(pte))) {
846 if (!pte_file(pte)) {
847 swp_entry_t entry = pte_to_swp_entry(pte);
848
849 if (swap_duplicate(entry) < 0)
850 return entry.val;
851
852 /* make sure dst_mm is on swapoff's mmlist. */
853 if (unlikely(list_empty(&dst_mm->mmlist))) {
854 spin_lock(&mmlist_lock);
855 if (list_empty(&dst_mm->mmlist))
856 list_add(&dst_mm->mmlist,
857 &src_mm->mmlist);
858 spin_unlock(&mmlist_lock);
859 }
860 if (likely(!non_swap_entry(entry)))
861 rss[MM_SWAPENTS]++;
862 else if (is_migration_entry(entry)) {
863 page = migration_entry_to_page(entry);
864
865 if (PageAnon(page))
866 rss[MM_ANONPAGES]++;
867 else
868 rss[MM_FILEPAGES]++;
869
870 if (is_write_migration_entry(entry) &&
871 is_cow_mapping(vm_flags)) {
872 /*
873 * COW mappings require pages in both
874 * parent and child to be set to read.
875 */
876 make_migration_entry_read(&entry);
877 pte = swp_entry_to_pte(entry);
878 set_pte_at(src_mm, addr, src_pte, pte);
879 }
880 }
881 }
882 goto out_set_pte;
883 }
884
885 /*
886 * If it's a COW mapping, write protect it both
887 * in the parent and the child
888 */
889 if (is_cow_mapping(vm_flags)) {
890 ptep_set_wrprotect(src_mm, addr, src_pte);
891 pte = pte_wrprotect(pte);
892 }
893
894 /*
895 * If it's a shared mapping, mark it clean in
896 * the child
897 */
898 if (vm_flags & VM_SHARED)
899 pte = pte_mkclean(pte);
900 pte = pte_mkold(pte);
901
902 page = vm_normal_page(vma, addr, pte);
903 if (page) {
904 get_page(page);
905 page_dup_rmap(page);
906 if (PageAnon(page))
907 rss[MM_ANONPAGES]++;
908 else
909 rss[MM_FILEPAGES]++;
910 }
911
912 out_set_pte:
913 set_pte_at(dst_mm, addr, dst_pte, pte);
914 return 0;
915 }
916
917 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
918 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
919 unsigned long addr, unsigned long end)
920 {
921 pte_t *orig_src_pte, *orig_dst_pte;
922 pte_t *src_pte, *dst_pte;
923 spinlock_t *src_ptl, *dst_ptl;
924 int progress = 0;
925 int rss[NR_MM_COUNTERS];
926 swp_entry_t entry = (swp_entry_t){0};
927
928 again:
929 init_rss_vec(rss);
930
931 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
932 if (!dst_pte)
933 return -ENOMEM;
934 src_pte = pte_offset_map(src_pmd, addr);
935 src_ptl = pte_lockptr(src_mm, src_pmd);
936 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
937 orig_src_pte = src_pte;
938 orig_dst_pte = dst_pte;
939 arch_enter_lazy_mmu_mode();
940
941 do {
942 /*
943 * We are holding two locks at this point - either of them
944 * could generate latencies in another task on another CPU.
945 */
946 if (progress >= 32) {
947 progress = 0;
948 if (need_resched() ||
949 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
950 break;
951 }
952 if (pte_none(*src_pte)) {
953 progress++;
954 continue;
955 }
956 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
957 vma, addr, rss);
958 if (entry.val)
959 break;
960 progress += 8;
961 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
962
963 arch_leave_lazy_mmu_mode();
964 spin_unlock(src_ptl);
965 pte_unmap(orig_src_pte);
966 add_mm_rss_vec(dst_mm, rss);
967 pte_unmap_unlock(orig_dst_pte, dst_ptl);
968 cond_resched();
969
970 if (entry.val) {
971 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
972 return -ENOMEM;
973 progress = 0;
974 }
975 if (addr != end)
976 goto again;
977 return 0;
978 }
979
980 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
981 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
982 unsigned long addr, unsigned long end)
983 {
984 pmd_t *src_pmd, *dst_pmd;
985 unsigned long next;
986
987 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
988 if (!dst_pmd)
989 return -ENOMEM;
990 src_pmd = pmd_offset(src_pud, addr);
991 do {
992 next = pmd_addr_end(addr, end);
993 if (pmd_trans_huge(*src_pmd)) {
994 int err;
995 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
996 err = copy_huge_pmd(dst_mm, src_mm,
997 dst_pmd, src_pmd, addr, vma);
998 if (err == -ENOMEM)
999 return -ENOMEM;
1000 if (!err)
1001 continue;
1002 /* fall through */
1003 }
1004 if (pmd_none_or_clear_bad(src_pmd))
1005 continue;
1006 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1007 vma, addr, next))
1008 return -ENOMEM;
1009 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1010 return 0;
1011 }
1012
1013 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1014 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1015 unsigned long addr, unsigned long end)
1016 {
1017 pud_t *src_pud, *dst_pud;
1018 unsigned long next;
1019
1020 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1021 if (!dst_pud)
1022 return -ENOMEM;
1023 src_pud = pud_offset(src_pgd, addr);
1024 do {
1025 next = pud_addr_end(addr, end);
1026 if (pud_none_or_clear_bad(src_pud))
1027 continue;
1028 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1029 vma, addr, next))
1030 return -ENOMEM;
1031 } while (dst_pud++, src_pud++, addr = next, addr != end);
1032 return 0;
1033 }
1034
1035 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1036 struct vm_area_struct *vma)
1037 {
1038 pgd_t *src_pgd, *dst_pgd;
1039 unsigned long next;
1040 unsigned long addr = vma->vm_start;
1041 unsigned long end = vma->vm_end;
1042 int ret;
1043
1044 /*
1045 * Don't copy ptes where a page fault will fill them correctly.
1046 * Fork becomes much lighter when there are big shared or private
1047 * readonly mappings. The tradeoff is that copy_page_range is more
1048 * efficient than faulting.
1049 */
1050 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1051 if (!vma->anon_vma)
1052 return 0;
1053 }
1054
1055 if (is_vm_hugetlb_page(vma))
1056 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1057
1058 if (unlikely(is_pfn_mapping(vma))) {
1059 /*
1060 * We do not free on error cases below as remove_vma
1061 * gets called on error from higher level routine
1062 */
1063 ret = track_pfn_vma_copy(vma);
1064 if (ret)
1065 return ret;
1066 }
1067
1068 /*
1069 * We need to invalidate the secondary MMU mappings only when
1070 * there could be a permission downgrade on the ptes of the
1071 * parent mm. And a permission downgrade will only happen if
1072 * is_cow_mapping() returns true.
1073 */
1074 if (is_cow_mapping(vma->vm_flags))
1075 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1076
1077 ret = 0;
1078 dst_pgd = pgd_offset(dst_mm, addr);
1079 src_pgd = pgd_offset(src_mm, addr);
1080 do {
1081 next = pgd_addr_end(addr, end);
1082 if (pgd_none_or_clear_bad(src_pgd))
1083 continue;
1084 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1085 vma, addr, next))) {
1086 ret = -ENOMEM;
1087 break;
1088 }
1089 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1090
1091 if (is_cow_mapping(vma->vm_flags))
1092 mmu_notifier_invalidate_range_end(src_mm,
1093 vma->vm_start, end);
1094 return ret;
1095 }
1096
1097 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1098 struct vm_area_struct *vma, pmd_t *pmd,
1099 unsigned long addr, unsigned long end,
1100 struct zap_details *details)
1101 {
1102 struct mm_struct *mm = tlb->mm;
1103 int force_flush = 0;
1104 int rss[NR_MM_COUNTERS];
1105 spinlock_t *ptl;
1106 pte_t *start_pte;
1107 pte_t *pte;
1108
1109 again:
1110 init_rss_vec(rss);
1111 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1112 pte = start_pte;
1113 arch_enter_lazy_mmu_mode();
1114 do {
1115 pte_t ptent = *pte;
1116 if (pte_none(ptent)) {
1117 continue;
1118 }
1119
1120 if (pte_present(ptent)) {
1121 struct page *page;
1122
1123 page = vm_normal_page(vma, addr, ptent);
1124 if (unlikely(details) && page) {
1125 /*
1126 * unmap_shared_mapping_pages() wants to
1127 * invalidate cache without truncating:
1128 * unmap shared but keep private pages.
1129 */
1130 if (details->check_mapping &&
1131 details->check_mapping != page->mapping)
1132 continue;
1133 /*
1134 * Each page->index must be checked when
1135 * invalidating or truncating nonlinear.
1136 */
1137 if (details->nonlinear_vma &&
1138 (page->index < details->first_index ||
1139 page->index > details->last_index))
1140 continue;
1141 }
1142 ptent = ptep_get_and_clear_full(mm, addr, pte,
1143 tlb->fullmm);
1144 tlb_remove_tlb_entry(tlb, pte, addr);
1145 if (unlikely(!page))
1146 continue;
1147 if (unlikely(details) && details->nonlinear_vma
1148 && linear_page_index(details->nonlinear_vma,
1149 addr) != page->index)
1150 set_pte_at(mm, addr, pte,
1151 pgoff_to_pte(page->index));
1152 if (PageAnon(page))
1153 rss[MM_ANONPAGES]--;
1154 else {
1155 if (pte_dirty(ptent))
1156 set_page_dirty(page);
1157 if (pte_young(ptent) &&
1158 likely(!VM_SequentialReadHint(vma)))
1159 mark_page_accessed(page);
1160 rss[MM_FILEPAGES]--;
1161 }
1162 page_remove_rmap(page);
1163 if (unlikely(page_mapcount(page) < 0))
1164 print_bad_pte(vma, addr, ptent, page);
1165 force_flush = !__tlb_remove_page(tlb, page);
1166 if (force_flush)
1167 break;
1168 continue;
1169 }
1170 /*
1171 * If details->check_mapping, we leave swap entries;
1172 * if details->nonlinear_vma, we leave file entries.
1173 */
1174 if (unlikely(details))
1175 continue;
1176 if (pte_file(ptent)) {
1177 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1178 print_bad_pte(vma, addr, ptent, NULL);
1179 } else {
1180 swp_entry_t entry = pte_to_swp_entry(ptent);
1181
1182 if (!non_swap_entry(entry))
1183 rss[MM_SWAPENTS]--;
1184 else if (is_migration_entry(entry)) {
1185 struct page *page;
1186
1187 page = migration_entry_to_page(entry);
1188
1189 if (PageAnon(page))
1190 rss[MM_ANONPAGES]--;
1191 else
1192 rss[MM_FILEPAGES]--;
1193 }
1194 if (unlikely(!free_swap_and_cache(entry)))
1195 print_bad_pte(vma, addr, ptent, NULL);
1196 }
1197 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198 } while (pte++, addr += PAGE_SIZE, addr != end);
1199
1200 add_mm_rss_vec(mm, rss);
1201 arch_leave_lazy_mmu_mode();
1202 pte_unmap_unlock(start_pte, ptl);
1203
1204 /*
1205 * mmu_gather ran out of room to batch pages, we break out of
1206 * the PTE lock to avoid doing the potential expensive TLB invalidate
1207 * and page-free while holding it.
1208 */
1209 if (force_flush) {
1210 force_flush = 0;
1211
1212 #ifdef HAVE_GENERIC_MMU_GATHER
1213 tlb->start = addr;
1214 tlb->end = end;
1215 #endif
1216 tlb_flush_mmu(tlb);
1217 if (addr != end)
1218 goto again;
1219 }
1220
1221 return addr;
1222 }
1223
1224 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1225 struct vm_area_struct *vma, pud_t *pud,
1226 unsigned long addr, unsigned long end,
1227 struct zap_details *details)
1228 {
1229 pmd_t *pmd;
1230 unsigned long next;
1231
1232 pmd = pmd_offset(pud, addr);
1233 do {
1234 next = pmd_addr_end(addr, end);
1235 if (pmd_trans_huge(*pmd)) {
1236 if (next - addr != HPAGE_PMD_SIZE) {
1237 #ifdef CONFIG_DEBUG_VM
1238 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1239 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1240 __func__, addr, end,
1241 vma->vm_start,
1242 vma->vm_end);
1243 BUG();
1244 }
1245 #endif
1246 split_huge_page_pmd(vma->vm_mm, pmd);
1247 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1248 goto next;
1249 /* fall through */
1250 }
1251 /*
1252 * Here there can be other concurrent MADV_DONTNEED or
1253 * trans huge page faults running, and if the pmd is
1254 * none or trans huge it can change under us. This is
1255 * because MADV_DONTNEED holds the mmap_sem in read
1256 * mode.
1257 */
1258 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1259 goto next;
1260 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1261 next:
1262 cond_resched();
1263 } while (pmd++, addr = next, addr != end);
1264
1265 return addr;
1266 }
1267
1268 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1269 struct vm_area_struct *vma, pgd_t *pgd,
1270 unsigned long addr, unsigned long end,
1271 struct zap_details *details)
1272 {
1273 pud_t *pud;
1274 unsigned long next;
1275
1276 pud = pud_offset(pgd, addr);
1277 do {
1278 next = pud_addr_end(addr, end);
1279 if (pud_none_or_clear_bad(pud))
1280 continue;
1281 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1282 } while (pud++, addr = next, addr != end);
1283
1284 return addr;
1285 }
1286
1287 static void unmap_page_range(struct mmu_gather *tlb,
1288 struct vm_area_struct *vma,
1289 unsigned long addr, unsigned long end,
1290 struct zap_details *details)
1291 {
1292 pgd_t *pgd;
1293 unsigned long next;
1294
1295 if (details && !details->check_mapping && !details->nonlinear_vma)
1296 details = NULL;
1297
1298 BUG_ON(addr >= end);
1299 mem_cgroup_uncharge_start();
1300 tlb_start_vma(tlb, vma);
1301 pgd = pgd_offset(vma->vm_mm, addr);
1302 do {
1303 next = pgd_addr_end(addr, end);
1304 if (pgd_none_or_clear_bad(pgd))
1305 continue;
1306 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1307 } while (pgd++, addr = next, addr != end);
1308 tlb_end_vma(tlb, vma);
1309 mem_cgroup_uncharge_end();
1310 }
1311
1312
1313 static void unmap_single_vma(struct mmu_gather *tlb,
1314 struct vm_area_struct *vma, unsigned long start_addr,
1315 unsigned long end_addr,
1316 struct zap_details *details)
1317 {
1318 unsigned long start = max(vma->vm_start, start_addr);
1319 unsigned long end;
1320
1321 if (start >= vma->vm_end)
1322 return;
1323 end = min(vma->vm_end, end_addr);
1324 if (end <= vma->vm_start)
1325 return;
1326
1327 if (vma->vm_file)
1328 uprobe_munmap(vma, start, end);
1329
1330 if (unlikely(is_pfn_mapping(vma)))
1331 untrack_pfn_vma(vma, 0, 0);
1332
1333 if (start != end) {
1334 if (unlikely(is_vm_hugetlb_page(vma))) {
1335 /*
1336 * It is undesirable to test vma->vm_file as it
1337 * should be non-null for valid hugetlb area.
1338 * However, vm_file will be NULL in the error
1339 * cleanup path of do_mmap_pgoff. When
1340 * hugetlbfs ->mmap method fails,
1341 * do_mmap_pgoff() nullifies vma->vm_file
1342 * before calling this function to clean up.
1343 * Since no pte has actually been setup, it is
1344 * safe to do nothing in this case.
1345 */
1346 if (vma->vm_file)
1347 unmap_hugepage_range(vma, start, end, NULL);
1348 } else
1349 unmap_page_range(tlb, vma, start, end, details);
1350 }
1351 }
1352
1353 /**
1354 * unmap_vmas - unmap a range of memory covered by a list of vma's
1355 * @tlb: address of the caller's struct mmu_gather
1356 * @vma: the starting vma
1357 * @start_addr: virtual address at which to start unmapping
1358 * @end_addr: virtual address at which to end unmapping
1359 *
1360 * Unmap all pages in the vma list.
1361 *
1362 * Only addresses between `start' and `end' will be unmapped.
1363 *
1364 * The VMA list must be sorted in ascending virtual address order.
1365 *
1366 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1367 * range after unmap_vmas() returns. So the only responsibility here is to
1368 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1369 * drops the lock and schedules.
1370 */
1371 void unmap_vmas(struct mmu_gather *tlb,
1372 struct vm_area_struct *vma, unsigned long start_addr,
1373 unsigned long end_addr)
1374 {
1375 struct mm_struct *mm = vma->vm_mm;
1376
1377 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1378 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1379 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1380 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1381 }
1382
1383 /**
1384 * zap_page_range - remove user pages in a given range
1385 * @vma: vm_area_struct holding the applicable pages
1386 * @start: starting address of pages to zap
1387 * @size: number of bytes to zap
1388 * @details: details of nonlinear truncation or shared cache invalidation
1389 *
1390 * Caller must protect the VMA list
1391 */
1392 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1393 unsigned long size, struct zap_details *details)
1394 {
1395 struct mm_struct *mm = vma->vm_mm;
1396 struct mmu_gather tlb;
1397 unsigned long end = start + size;
1398
1399 lru_add_drain();
1400 tlb_gather_mmu(&tlb, mm, 0);
1401 update_hiwater_rss(mm);
1402 mmu_notifier_invalidate_range_start(mm, start, end);
1403 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1404 unmap_single_vma(&tlb, vma, start, end, details);
1405 mmu_notifier_invalidate_range_end(mm, start, end);
1406 tlb_finish_mmu(&tlb, start, end);
1407 }
1408
1409 /**
1410 * zap_page_range_single - remove user pages in a given range
1411 * @vma: vm_area_struct holding the applicable pages
1412 * @address: starting address of pages to zap
1413 * @size: number of bytes to zap
1414 * @details: details of nonlinear truncation or shared cache invalidation
1415 *
1416 * The range must fit into one VMA.
1417 */
1418 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1419 unsigned long size, struct zap_details *details)
1420 {
1421 struct mm_struct *mm = vma->vm_mm;
1422 struct mmu_gather tlb;
1423 unsigned long end = address + size;
1424
1425 lru_add_drain();
1426 tlb_gather_mmu(&tlb, mm, 0);
1427 update_hiwater_rss(mm);
1428 mmu_notifier_invalidate_range_start(mm, address, end);
1429 unmap_single_vma(&tlb, vma, address, end, details);
1430 mmu_notifier_invalidate_range_end(mm, address, end);
1431 tlb_finish_mmu(&tlb, address, end);
1432 }
1433
1434 /**
1435 * zap_vma_ptes - remove ptes mapping the vma
1436 * @vma: vm_area_struct holding ptes to be zapped
1437 * @address: starting address of pages to zap
1438 * @size: number of bytes to zap
1439 *
1440 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1441 *
1442 * The entire address range must be fully contained within the vma.
1443 *
1444 * Returns 0 if successful.
1445 */
1446 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1447 unsigned long size)
1448 {
1449 if (address < vma->vm_start || address + size > vma->vm_end ||
1450 !(vma->vm_flags & VM_PFNMAP))
1451 return -1;
1452 zap_page_range_single(vma, address, size, NULL);
1453 return 0;
1454 }
1455 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1456
1457 /**
1458 * follow_page - look up a page descriptor from a user-virtual address
1459 * @vma: vm_area_struct mapping @address
1460 * @address: virtual address to look up
1461 * @flags: flags modifying lookup behaviour
1462 *
1463 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1464 *
1465 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1466 * an error pointer if there is a mapping to something not represented
1467 * by a page descriptor (see also vm_normal_page()).
1468 */
1469 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1470 unsigned int flags)
1471 {
1472 pgd_t *pgd;
1473 pud_t *pud;
1474 pmd_t *pmd;
1475 pte_t *ptep, pte;
1476 spinlock_t *ptl;
1477 struct page *page;
1478 struct mm_struct *mm = vma->vm_mm;
1479
1480 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1481 if (!IS_ERR(page)) {
1482 BUG_ON(flags & FOLL_GET);
1483 goto out;
1484 }
1485
1486 page = NULL;
1487 pgd = pgd_offset(mm, address);
1488 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1489 goto no_page_table;
1490
1491 pud = pud_offset(pgd, address);
1492 if (pud_none(*pud))
1493 goto no_page_table;
1494 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1495 BUG_ON(flags & FOLL_GET);
1496 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1497 goto out;
1498 }
1499 if (unlikely(pud_bad(*pud)))
1500 goto no_page_table;
1501
1502 pmd = pmd_offset(pud, address);
1503 if (pmd_none(*pmd))
1504 goto no_page_table;
1505 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1506 BUG_ON(flags & FOLL_GET);
1507 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1508 goto out;
1509 }
1510 if (pmd_trans_huge(*pmd)) {
1511 if (flags & FOLL_SPLIT) {
1512 split_huge_page_pmd(mm, pmd);
1513 goto split_fallthrough;
1514 }
1515 spin_lock(&mm->page_table_lock);
1516 if (likely(pmd_trans_huge(*pmd))) {
1517 if (unlikely(pmd_trans_splitting(*pmd))) {
1518 spin_unlock(&mm->page_table_lock);
1519 wait_split_huge_page(vma->anon_vma, pmd);
1520 } else {
1521 page = follow_trans_huge_pmd(mm, address,
1522 pmd, flags);
1523 spin_unlock(&mm->page_table_lock);
1524 goto out;
1525 }
1526 } else
1527 spin_unlock(&mm->page_table_lock);
1528 /* fall through */
1529 }
1530 split_fallthrough:
1531 if (unlikely(pmd_bad(*pmd)))
1532 goto no_page_table;
1533
1534 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1535
1536 pte = *ptep;
1537 if (!pte_present(pte))
1538 goto no_page;
1539 if ((flags & FOLL_WRITE) && !pte_write(pte))
1540 goto unlock;
1541
1542 page = vm_normal_page(vma, address, pte);
1543 if (unlikely(!page)) {
1544 if ((flags & FOLL_DUMP) ||
1545 !is_zero_pfn(pte_pfn(pte)))
1546 goto bad_page;
1547 page = pte_page(pte);
1548 }
1549
1550 if (flags & FOLL_GET)
1551 get_page_foll(page);
1552 if (flags & FOLL_TOUCH) {
1553 if ((flags & FOLL_WRITE) &&
1554 !pte_dirty(pte) && !PageDirty(page))
1555 set_page_dirty(page);
1556 /*
1557 * pte_mkyoung() would be more correct here, but atomic care
1558 * is needed to avoid losing the dirty bit: it is easier to use
1559 * mark_page_accessed().
1560 */
1561 mark_page_accessed(page);
1562 }
1563 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1564 /*
1565 * The preliminary mapping check is mainly to avoid the
1566 * pointless overhead of lock_page on the ZERO_PAGE
1567 * which might bounce very badly if there is contention.
1568 *
1569 * If the page is already locked, we don't need to
1570 * handle it now - vmscan will handle it later if and
1571 * when it attempts to reclaim the page.
1572 */
1573 if (page->mapping && trylock_page(page)) {
1574 lru_add_drain(); /* push cached pages to LRU */
1575 /*
1576 * Because we lock page here and migration is
1577 * blocked by the pte's page reference, we need
1578 * only check for file-cache page truncation.
1579 */
1580 if (page->mapping)
1581 mlock_vma_page(page);
1582 unlock_page(page);
1583 }
1584 }
1585 unlock:
1586 pte_unmap_unlock(ptep, ptl);
1587 out:
1588 return page;
1589
1590 bad_page:
1591 pte_unmap_unlock(ptep, ptl);
1592 return ERR_PTR(-EFAULT);
1593
1594 no_page:
1595 pte_unmap_unlock(ptep, ptl);
1596 if (!pte_none(pte))
1597 return page;
1598
1599 no_page_table:
1600 /*
1601 * When core dumping an enormous anonymous area that nobody
1602 * has touched so far, we don't want to allocate unnecessary pages or
1603 * page tables. Return error instead of NULL to skip handle_mm_fault,
1604 * then get_dump_page() will return NULL to leave a hole in the dump.
1605 * But we can only make this optimization where a hole would surely
1606 * be zero-filled if handle_mm_fault() actually did handle it.
1607 */
1608 if ((flags & FOLL_DUMP) &&
1609 (!vma->vm_ops || !vma->vm_ops->fault))
1610 return ERR_PTR(-EFAULT);
1611 return page;
1612 }
1613
1614 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1615 {
1616 return stack_guard_page_start(vma, addr) ||
1617 stack_guard_page_end(vma, addr+PAGE_SIZE);
1618 }
1619
1620 /**
1621 * __get_user_pages() - pin user pages in memory
1622 * @tsk: task_struct of target task
1623 * @mm: mm_struct of target mm
1624 * @start: starting user address
1625 * @nr_pages: number of pages from start to pin
1626 * @gup_flags: flags modifying pin behaviour
1627 * @pages: array that receives pointers to the pages pinned.
1628 * Should be at least nr_pages long. Or NULL, if caller
1629 * only intends to ensure the pages are faulted in.
1630 * @vmas: array of pointers to vmas corresponding to each page.
1631 * Or NULL if the caller does not require them.
1632 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1633 *
1634 * Returns number of pages pinned. This may be fewer than the number
1635 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1636 * were pinned, returns -errno. Each page returned must be released
1637 * with a put_page() call when it is finished with. vmas will only
1638 * remain valid while mmap_sem is held.
1639 *
1640 * Must be called with mmap_sem held for read or write.
1641 *
1642 * __get_user_pages walks a process's page tables and takes a reference to
1643 * each struct page that each user address corresponds to at a given
1644 * instant. That is, it takes the page that would be accessed if a user
1645 * thread accesses the given user virtual address at that instant.
1646 *
1647 * This does not guarantee that the page exists in the user mappings when
1648 * __get_user_pages returns, and there may even be a completely different
1649 * page there in some cases (eg. if mmapped pagecache has been invalidated
1650 * and subsequently re faulted). However it does guarantee that the page
1651 * won't be freed completely. And mostly callers simply care that the page
1652 * contains data that was valid *at some point in time*. Typically, an IO
1653 * or similar operation cannot guarantee anything stronger anyway because
1654 * locks can't be held over the syscall boundary.
1655 *
1656 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1657 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1658 * appropriate) must be called after the page is finished with, and
1659 * before put_page is called.
1660 *
1661 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1662 * or mmap_sem contention, and if waiting is needed to pin all pages,
1663 * *@nonblocking will be set to 0.
1664 *
1665 * In most cases, get_user_pages or get_user_pages_fast should be used
1666 * instead of __get_user_pages. __get_user_pages should be used only if
1667 * you need some special @gup_flags.
1668 */
1669 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1670 unsigned long start, int nr_pages, unsigned int gup_flags,
1671 struct page **pages, struct vm_area_struct **vmas,
1672 int *nonblocking)
1673 {
1674 int i;
1675 unsigned long vm_flags;
1676
1677 if (nr_pages <= 0)
1678 return 0;
1679
1680 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1681
1682 /*
1683 * Require read or write permissions.
1684 * If FOLL_FORCE is set, we only require the "MAY" flags.
1685 */
1686 vm_flags = (gup_flags & FOLL_WRITE) ?
1687 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1688 vm_flags &= (gup_flags & FOLL_FORCE) ?
1689 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1690 i = 0;
1691
1692 do {
1693 struct vm_area_struct *vma;
1694
1695 vma = find_extend_vma(mm, start);
1696 if (!vma && in_gate_area(mm, start)) {
1697 unsigned long pg = start & PAGE_MASK;
1698 pgd_t *pgd;
1699 pud_t *pud;
1700 pmd_t *pmd;
1701 pte_t *pte;
1702
1703 /* user gate pages are read-only */
1704 if (gup_flags & FOLL_WRITE)
1705 return i ? : -EFAULT;
1706 if (pg > TASK_SIZE)
1707 pgd = pgd_offset_k(pg);
1708 else
1709 pgd = pgd_offset_gate(mm, pg);
1710 BUG_ON(pgd_none(*pgd));
1711 pud = pud_offset(pgd, pg);
1712 BUG_ON(pud_none(*pud));
1713 pmd = pmd_offset(pud, pg);
1714 if (pmd_none(*pmd))
1715 return i ? : -EFAULT;
1716 VM_BUG_ON(pmd_trans_huge(*pmd));
1717 pte = pte_offset_map(pmd, pg);
1718 if (pte_none(*pte)) {
1719 pte_unmap(pte);
1720 return i ? : -EFAULT;
1721 }
1722 vma = get_gate_vma(mm);
1723 if (pages) {
1724 struct page *page;
1725
1726 page = vm_normal_page(vma, start, *pte);
1727 if (!page) {
1728 if (!(gup_flags & FOLL_DUMP) &&
1729 is_zero_pfn(pte_pfn(*pte)))
1730 page = pte_page(*pte);
1731 else {
1732 pte_unmap(pte);
1733 return i ? : -EFAULT;
1734 }
1735 }
1736 pages[i] = page;
1737 get_page(page);
1738 }
1739 pte_unmap(pte);
1740 goto next_page;
1741 }
1742
1743 if (!vma ||
1744 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1745 !(vm_flags & vma->vm_flags))
1746 return i ? : -EFAULT;
1747
1748 if (is_vm_hugetlb_page(vma)) {
1749 i = follow_hugetlb_page(mm, vma, pages, vmas,
1750 &start, &nr_pages, i, gup_flags);
1751 continue;
1752 }
1753
1754 do {
1755 struct page *page;
1756 unsigned int foll_flags = gup_flags;
1757
1758 /*
1759 * If we have a pending SIGKILL, don't keep faulting
1760 * pages and potentially allocating memory.
1761 */
1762 if (unlikely(fatal_signal_pending(current)))
1763 return i ? i : -ERESTARTSYS;
1764
1765 cond_resched();
1766 while (!(page = follow_page(vma, start, foll_flags))) {
1767 int ret;
1768 unsigned int fault_flags = 0;
1769
1770 /* For mlock, just skip the stack guard page. */
1771 if (foll_flags & FOLL_MLOCK) {
1772 if (stack_guard_page(vma, start))
1773 goto next_page;
1774 }
1775 if (foll_flags & FOLL_WRITE)
1776 fault_flags |= FAULT_FLAG_WRITE;
1777 if (nonblocking)
1778 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1779 if (foll_flags & FOLL_NOWAIT)
1780 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1781
1782 ret = handle_mm_fault(mm, vma, start,
1783 fault_flags);
1784
1785 if (ret & VM_FAULT_ERROR) {
1786 if (ret & VM_FAULT_OOM)
1787 return i ? i : -ENOMEM;
1788 if (ret & (VM_FAULT_HWPOISON |
1789 VM_FAULT_HWPOISON_LARGE)) {
1790 if (i)
1791 return i;
1792 else if (gup_flags & FOLL_HWPOISON)
1793 return -EHWPOISON;
1794 else
1795 return -EFAULT;
1796 }
1797 if (ret & VM_FAULT_SIGBUS)
1798 return i ? i : -EFAULT;
1799 BUG();
1800 }
1801
1802 if (tsk) {
1803 if (ret & VM_FAULT_MAJOR)
1804 tsk->maj_flt++;
1805 else
1806 tsk->min_flt++;
1807 }
1808
1809 if (ret & VM_FAULT_RETRY) {
1810 if (nonblocking)
1811 *nonblocking = 0;
1812 return i;
1813 }
1814
1815 /*
1816 * The VM_FAULT_WRITE bit tells us that
1817 * do_wp_page has broken COW when necessary,
1818 * even if maybe_mkwrite decided not to set
1819 * pte_write. We can thus safely do subsequent
1820 * page lookups as if they were reads. But only
1821 * do so when looping for pte_write is futile:
1822 * in some cases userspace may also be wanting
1823 * to write to the gotten user page, which a
1824 * read fault here might prevent (a readonly
1825 * page might get reCOWed by userspace write).
1826 */
1827 if ((ret & VM_FAULT_WRITE) &&
1828 !(vma->vm_flags & VM_WRITE))
1829 foll_flags &= ~FOLL_WRITE;
1830
1831 cond_resched();
1832 }
1833 if (IS_ERR(page))
1834 return i ? i : PTR_ERR(page);
1835 if (pages) {
1836 pages[i] = page;
1837
1838 flush_anon_page(vma, page, start);
1839 flush_dcache_page(page);
1840 }
1841 next_page:
1842 if (vmas)
1843 vmas[i] = vma;
1844 i++;
1845 start += PAGE_SIZE;
1846 nr_pages--;
1847 } while (nr_pages && start < vma->vm_end);
1848 } while (nr_pages);
1849 return i;
1850 }
1851 EXPORT_SYMBOL(__get_user_pages);
1852
1853 /*
1854 * fixup_user_fault() - manually resolve a user page fault
1855 * @tsk: the task_struct to use for page fault accounting, or
1856 * NULL if faults are not to be recorded.
1857 * @mm: mm_struct of target mm
1858 * @address: user address
1859 * @fault_flags:flags to pass down to handle_mm_fault()
1860 *
1861 * This is meant to be called in the specific scenario where for locking reasons
1862 * we try to access user memory in atomic context (within a pagefault_disable()
1863 * section), this returns -EFAULT, and we want to resolve the user fault before
1864 * trying again.
1865 *
1866 * Typically this is meant to be used by the futex code.
1867 *
1868 * The main difference with get_user_pages() is that this function will
1869 * unconditionally call handle_mm_fault() which will in turn perform all the
1870 * necessary SW fixup of the dirty and young bits in the PTE, while
1871 * handle_mm_fault() only guarantees to update these in the struct page.
1872 *
1873 * This is important for some architectures where those bits also gate the
1874 * access permission to the page because they are maintained in software. On
1875 * such architectures, gup() will not be enough to make a subsequent access
1876 * succeed.
1877 *
1878 * This should be called with the mm_sem held for read.
1879 */
1880 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1881 unsigned long address, unsigned int fault_flags)
1882 {
1883 struct vm_area_struct *vma;
1884 int ret;
1885
1886 vma = find_extend_vma(mm, address);
1887 if (!vma || address < vma->vm_start)
1888 return -EFAULT;
1889
1890 ret = handle_mm_fault(mm, vma, address, fault_flags);
1891 if (ret & VM_FAULT_ERROR) {
1892 if (ret & VM_FAULT_OOM)
1893 return -ENOMEM;
1894 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1895 return -EHWPOISON;
1896 if (ret & VM_FAULT_SIGBUS)
1897 return -EFAULT;
1898 BUG();
1899 }
1900 if (tsk) {
1901 if (ret & VM_FAULT_MAJOR)
1902 tsk->maj_flt++;
1903 else
1904 tsk->min_flt++;
1905 }
1906 return 0;
1907 }
1908
1909 /*
1910 * get_user_pages() - pin user pages in memory
1911 * @tsk: the task_struct to use for page fault accounting, or
1912 * NULL if faults are not to be recorded.
1913 * @mm: mm_struct of target mm
1914 * @start: starting user address
1915 * @nr_pages: number of pages from start to pin
1916 * @write: whether pages will be written to by the caller
1917 * @force: whether to force write access even if user mapping is
1918 * readonly. This will result in the page being COWed even
1919 * in MAP_SHARED mappings. You do not want this.
1920 * @pages: array that receives pointers to the pages pinned.
1921 * Should be at least nr_pages long. Or NULL, if caller
1922 * only intends to ensure the pages are faulted in.
1923 * @vmas: array of pointers to vmas corresponding to each page.
1924 * Or NULL if the caller does not require them.
1925 *
1926 * Returns number of pages pinned. This may be fewer than the number
1927 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1928 * were pinned, returns -errno. Each page returned must be released
1929 * with a put_page() call when it is finished with. vmas will only
1930 * remain valid while mmap_sem is held.
1931 *
1932 * Must be called with mmap_sem held for read or write.
1933 *
1934 * get_user_pages walks a process's page tables and takes a reference to
1935 * each struct page that each user address corresponds to at a given
1936 * instant. That is, it takes the page that would be accessed if a user
1937 * thread accesses the given user virtual address at that instant.
1938 *
1939 * This does not guarantee that the page exists in the user mappings when
1940 * get_user_pages returns, and there may even be a completely different
1941 * page there in some cases (eg. if mmapped pagecache has been invalidated
1942 * and subsequently re faulted). However it does guarantee that the page
1943 * won't be freed completely. And mostly callers simply care that the page
1944 * contains data that was valid *at some point in time*. Typically, an IO
1945 * or similar operation cannot guarantee anything stronger anyway because
1946 * locks can't be held over the syscall boundary.
1947 *
1948 * If write=0, the page must not be written to. If the page is written to,
1949 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1950 * after the page is finished with, and before put_page is called.
1951 *
1952 * get_user_pages is typically used for fewer-copy IO operations, to get a
1953 * handle on the memory by some means other than accesses via the user virtual
1954 * addresses. The pages may be submitted for DMA to devices or accessed via
1955 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1956 * use the correct cache flushing APIs.
1957 *
1958 * See also get_user_pages_fast, for performance critical applications.
1959 */
1960 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1961 unsigned long start, int nr_pages, int write, int force,
1962 struct page **pages, struct vm_area_struct **vmas)
1963 {
1964 int flags = FOLL_TOUCH;
1965
1966 if (pages)
1967 flags |= FOLL_GET;
1968 if (write)
1969 flags |= FOLL_WRITE;
1970 if (force)
1971 flags |= FOLL_FORCE;
1972
1973 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1974 NULL);
1975 }
1976 EXPORT_SYMBOL(get_user_pages);
1977
1978 /**
1979 * get_dump_page() - pin user page in memory while writing it to core dump
1980 * @addr: user address
1981 *
1982 * Returns struct page pointer of user page pinned for dump,
1983 * to be freed afterwards by page_cache_release() or put_page().
1984 *
1985 * Returns NULL on any kind of failure - a hole must then be inserted into
1986 * the corefile, to preserve alignment with its headers; and also returns
1987 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1988 * allowing a hole to be left in the corefile to save diskspace.
1989 *
1990 * Called without mmap_sem, but after all other threads have been killed.
1991 */
1992 #ifdef CONFIG_ELF_CORE
1993 struct page *get_dump_page(unsigned long addr)
1994 {
1995 struct vm_area_struct *vma;
1996 struct page *page;
1997
1998 if (__get_user_pages(current, current->mm, addr, 1,
1999 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2000 NULL) < 1)
2001 return NULL;
2002 flush_cache_page(vma, addr, page_to_pfn(page));
2003 return page;
2004 }
2005 #endif /* CONFIG_ELF_CORE */
2006
2007 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2008 spinlock_t **ptl)
2009 {
2010 pgd_t * pgd = pgd_offset(mm, addr);
2011 pud_t * pud = pud_alloc(mm, pgd, addr);
2012 if (pud) {
2013 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2014 if (pmd) {
2015 VM_BUG_ON(pmd_trans_huge(*pmd));
2016 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2017 }
2018 }
2019 return NULL;
2020 }
2021
2022 /*
2023 * This is the old fallback for page remapping.
2024 *
2025 * For historical reasons, it only allows reserved pages. Only
2026 * old drivers should use this, and they needed to mark their
2027 * pages reserved for the old functions anyway.
2028 */
2029 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2030 struct page *page, pgprot_t prot)
2031 {
2032 struct mm_struct *mm = vma->vm_mm;
2033 int retval;
2034 pte_t *pte;
2035 spinlock_t *ptl;
2036
2037 retval = -EINVAL;
2038 if (PageAnon(page))
2039 goto out;
2040 retval = -ENOMEM;
2041 flush_dcache_page(page);
2042 pte = get_locked_pte(mm, addr, &ptl);
2043 if (!pte)
2044 goto out;
2045 retval = -EBUSY;
2046 if (!pte_none(*pte))
2047 goto out_unlock;
2048
2049 /* Ok, finally just insert the thing.. */
2050 get_page(page);
2051 inc_mm_counter_fast(mm, MM_FILEPAGES);
2052 page_add_file_rmap(page);
2053 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2054
2055 retval = 0;
2056 pte_unmap_unlock(pte, ptl);
2057 return retval;
2058 out_unlock:
2059 pte_unmap_unlock(pte, ptl);
2060 out:
2061 return retval;
2062 }
2063
2064 /**
2065 * vm_insert_page - insert single page into user vma
2066 * @vma: user vma to map to
2067 * @addr: target user address of this page
2068 * @page: source kernel page
2069 *
2070 * This allows drivers to insert individual pages they've allocated
2071 * into a user vma.
2072 *
2073 * The page has to be a nice clean _individual_ kernel allocation.
2074 * If you allocate a compound page, you need to have marked it as
2075 * such (__GFP_COMP), or manually just split the page up yourself
2076 * (see split_page()).
2077 *
2078 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2079 * took an arbitrary page protection parameter. This doesn't allow
2080 * that. Your vma protection will have to be set up correctly, which
2081 * means that if you want a shared writable mapping, you'd better
2082 * ask for a shared writable mapping!
2083 *
2084 * The page does not need to be reserved.
2085 */
2086 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2087 struct page *page)
2088 {
2089 if (addr < vma->vm_start || addr >= vma->vm_end)
2090 return -EFAULT;
2091 if (!page_count(page))
2092 return -EINVAL;
2093 vma->vm_flags |= VM_INSERTPAGE;
2094 return insert_page(vma, addr, page, vma->vm_page_prot);
2095 }
2096 EXPORT_SYMBOL(vm_insert_page);
2097
2098 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2099 unsigned long pfn, pgprot_t prot)
2100 {
2101 struct mm_struct *mm = vma->vm_mm;
2102 int retval;
2103 pte_t *pte, entry;
2104 spinlock_t *ptl;
2105
2106 retval = -ENOMEM;
2107 pte = get_locked_pte(mm, addr, &ptl);
2108 if (!pte)
2109 goto out;
2110 retval = -EBUSY;
2111 if (!pte_none(*pte))
2112 goto out_unlock;
2113
2114 /* Ok, finally just insert the thing.. */
2115 entry = pte_mkspecial(pfn_pte(pfn, prot));
2116 set_pte_at(mm, addr, pte, entry);
2117 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2118
2119 retval = 0;
2120 out_unlock:
2121 pte_unmap_unlock(pte, ptl);
2122 out:
2123 return retval;
2124 }
2125
2126 /**
2127 * vm_insert_pfn - insert single pfn into user vma
2128 * @vma: user vma to map to
2129 * @addr: target user address of this page
2130 * @pfn: source kernel pfn
2131 *
2132 * Similar to vm_inert_page, this allows drivers to insert individual pages
2133 * they've allocated into a user vma. Same comments apply.
2134 *
2135 * This function should only be called from a vm_ops->fault handler, and
2136 * in that case the handler should return NULL.
2137 *
2138 * vma cannot be a COW mapping.
2139 *
2140 * As this is called only for pages that do not currently exist, we
2141 * do not need to flush old virtual caches or the TLB.
2142 */
2143 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2144 unsigned long pfn)
2145 {
2146 int ret;
2147 pgprot_t pgprot = vma->vm_page_prot;
2148 /*
2149 * Technically, architectures with pte_special can avoid all these
2150 * restrictions (same for remap_pfn_range). However we would like
2151 * consistency in testing and feature parity among all, so we should
2152 * try to keep these invariants in place for everybody.
2153 */
2154 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2155 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2156 (VM_PFNMAP|VM_MIXEDMAP));
2157 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2158 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2159
2160 if (addr < vma->vm_start || addr >= vma->vm_end)
2161 return -EFAULT;
2162 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2163 return -EINVAL;
2164
2165 ret = insert_pfn(vma, addr, pfn, pgprot);
2166
2167 if (ret)
2168 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2169
2170 return ret;
2171 }
2172 EXPORT_SYMBOL(vm_insert_pfn);
2173
2174 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2175 unsigned long pfn)
2176 {
2177 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2178
2179 if (addr < vma->vm_start || addr >= vma->vm_end)
2180 return -EFAULT;
2181
2182 /*
2183 * If we don't have pte special, then we have to use the pfn_valid()
2184 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2185 * refcount the page if pfn_valid is true (hence insert_page rather
2186 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2187 * without pte special, it would there be refcounted as a normal page.
2188 */
2189 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2190 struct page *page;
2191
2192 page = pfn_to_page(pfn);
2193 return insert_page(vma, addr, page, vma->vm_page_prot);
2194 }
2195 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2196 }
2197 EXPORT_SYMBOL(vm_insert_mixed);
2198
2199 /*
2200 * maps a range of physical memory into the requested pages. the old
2201 * mappings are removed. any references to nonexistent pages results
2202 * in null mappings (currently treated as "copy-on-access")
2203 */
2204 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2205 unsigned long addr, unsigned long end,
2206 unsigned long pfn, pgprot_t prot)
2207 {
2208 pte_t *pte;
2209 spinlock_t *ptl;
2210
2211 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2212 if (!pte)
2213 return -ENOMEM;
2214 arch_enter_lazy_mmu_mode();
2215 do {
2216 BUG_ON(!pte_none(*pte));
2217 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2218 pfn++;
2219 } while (pte++, addr += PAGE_SIZE, addr != end);
2220 arch_leave_lazy_mmu_mode();
2221 pte_unmap_unlock(pte - 1, ptl);
2222 return 0;
2223 }
2224
2225 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2226 unsigned long addr, unsigned long end,
2227 unsigned long pfn, pgprot_t prot)
2228 {
2229 pmd_t *pmd;
2230 unsigned long next;
2231
2232 pfn -= addr >> PAGE_SHIFT;
2233 pmd = pmd_alloc(mm, pud, addr);
2234 if (!pmd)
2235 return -ENOMEM;
2236 VM_BUG_ON(pmd_trans_huge(*pmd));
2237 do {
2238 next = pmd_addr_end(addr, end);
2239 if (remap_pte_range(mm, pmd, addr, next,
2240 pfn + (addr >> PAGE_SHIFT), prot))
2241 return -ENOMEM;
2242 } while (pmd++, addr = next, addr != end);
2243 return 0;
2244 }
2245
2246 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2247 unsigned long addr, unsigned long end,
2248 unsigned long pfn, pgprot_t prot)
2249 {
2250 pud_t *pud;
2251 unsigned long next;
2252
2253 pfn -= addr >> PAGE_SHIFT;
2254 pud = pud_alloc(mm, pgd, addr);
2255 if (!pud)
2256 return -ENOMEM;
2257 do {
2258 next = pud_addr_end(addr, end);
2259 if (remap_pmd_range(mm, pud, addr, next,
2260 pfn + (addr >> PAGE_SHIFT), prot))
2261 return -ENOMEM;
2262 } while (pud++, addr = next, addr != end);
2263 return 0;
2264 }
2265
2266 /**
2267 * remap_pfn_range - remap kernel memory to userspace
2268 * @vma: user vma to map to
2269 * @addr: target user address to start at
2270 * @pfn: physical address of kernel memory
2271 * @size: size of map area
2272 * @prot: page protection flags for this mapping
2273 *
2274 * Note: this is only safe if the mm semaphore is held when called.
2275 */
2276 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2277 unsigned long pfn, unsigned long size, pgprot_t prot)
2278 {
2279 pgd_t *pgd;
2280 unsigned long next;
2281 unsigned long end = addr + PAGE_ALIGN(size);
2282 struct mm_struct *mm = vma->vm_mm;
2283 int err;
2284
2285 /*
2286 * Physically remapped pages are special. Tell the
2287 * rest of the world about it:
2288 * VM_IO tells people not to look at these pages
2289 * (accesses can have side effects).
2290 * VM_RESERVED is specified all over the place, because
2291 * in 2.4 it kept swapout's vma scan off this vma; but
2292 * in 2.6 the LRU scan won't even find its pages, so this
2293 * flag means no more than count its pages in reserved_vm,
2294 * and omit it from core dump, even when VM_IO turned off.
2295 * VM_PFNMAP tells the core MM that the base pages are just
2296 * raw PFN mappings, and do not have a "struct page" associated
2297 * with them.
2298 *
2299 * There's a horrible special case to handle copy-on-write
2300 * behaviour that some programs depend on. We mark the "original"
2301 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2302 */
2303 if (addr == vma->vm_start && end == vma->vm_end) {
2304 vma->vm_pgoff = pfn;
2305 vma->vm_flags |= VM_PFN_AT_MMAP;
2306 } else if (is_cow_mapping(vma->vm_flags))
2307 return -EINVAL;
2308
2309 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2310
2311 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2312 if (err) {
2313 /*
2314 * To indicate that track_pfn related cleanup is not
2315 * needed from higher level routine calling unmap_vmas
2316 */
2317 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2318 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2319 return -EINVAL;
2320 }
2321
2322 BUG_ON(addr >= end);
2323 pfn -= addr >> PAGE_SHIFT;
2324 pgd = pgd_offset(mm, addr);
2325 flush_cache_range(vma, addr, end);
2326 do {
2327 next = pgd_addr_end(addr, end);
2328 err = remap_pud_range(mm, pgd, addr, next,
2329 pfn + (addr >> PAGE_SHIFT), prot);
2330 if (err)
2331 break;
2332 } while (pgd++, addr = next, addr != end);
2333
2334 if (err)
2335 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2336
2337 return err;
2338 }
2339 EXPORT_SYMBOL(remap_pfn_range);
2340
2341 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2342 unsigned long addr, unsigned long end,
2343 pte_fn_t fn, void *data)
2344 {
2345 pte_t *pte;
2346 int err;
2347 pgtable_t token;
2348 spinlock_t *uninitialized_var(ptl);
2349
2350 pte = (mm == &init_mm) ?
2351 pte_alloc_kernel(pmd, addr) :
2352 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2353 if (!pte)
2354 return -ENOMEM;
2355
2356 BUG_ON(pmd_huge(*pmd));
2357
2358 arch_enter_lazy_mmu_mode();
2359
2360 token = pmd_pgtable(*pmd);
2361
2362 do {
2363 err = fn(pte++, token, addr, data);
2364 if (err)
2365 break;
2366 } while (addr += PAGE_SIZE, addr != end);
2367
2368 arch_leave_lazy_mmu_mode();
2369
2370 if (mm != &init_mm)
2371 pte_unmap_unlock(pte-1, ptl);
2372 return err;
2373 }
2374
2375 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2376 unsigned long addr, unsigned long end,
2377 pte_fn_t fn, void *data)
2378 {
2379 pmd_t *pmd;
2380 unsigned long next;
2381 int err;
2382
2383 BUG_ON(pud_huge(*pud));
2384
2385 pmd = pmd_alloc(mm, pud, addr);
2386 if (!pmd)
2387 return -ENOMEM;
2388 do {
2389 next = pmd_addr_end(addr, end);
2390 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2391 if (err)
2392 break;
2393 } while (pmd++, addr = next, addr != end);
2394 return err;
2395 }
2396
2397 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2398 unsigned long addr, unsigned long end,
2399 pte_fn_t fn, void *data)
2400 {
2401 pud_t *pud;
2402 unsigned long next;
2403 int err;
2404
2405 pud = pud_alloc(mm, pgd, addr);
2406 if (!pud)
2407 return -ENOMEM;
2408 do {
2409 next = pud_addr_end(addr, end);
2410 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2411 if (err)
2412 break;
2413 } while (pud++, addr = next, addr != end);
2414 return err;
2415 }
2416
2417 /*
2418 * Scan a region of virtual memory, filling in page tables as necessary
2419 * and calling a provided function on each leaf page table.
2420 */
2421 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2422 unsigned long size, pte_fn_t fn, void *data)
2423 {
2424 pgd_t *pgd;
2425 unsigned long next;
2426 unsigned long end = addr + size;
2427 int err;
2428
2429 BUG_ON(addr >= end);
2430 pgd = pgd_offset(mm, addr);
2431 do {
2432 next = pgd_addr_end(addr, end);
2433 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2434 if (err)
2435 break;
2436 } while (pgd++, addr = next, addr != end);
2437
2438 return err;
2439 }
2440 EXPORT_SYMBOL_GPL(apply_to_page_range);
2441
2442 /*
2443 * handle_pte_fault chooses page fault handler according to an entry
2444 * which was read non-atomically. Before making any commitment, on
2445 * those architectures or configurations (e.g. i386 with PAE) which
2446 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2447 * must check under lock before unmapping the pte and proceeding
2448 * (but do_wp_page is only called after already making such a check;
2449 * and do_anonymous_page can safely check later on).
2450 */
2451 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2452 pte_t *page_table, pte_t orig_pte)
2453 {
2454 int same = 1;
2455 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2456 if (sizeof(pte_t) > sizeof(unsigned long)) {
2457 spinlock_t *ptl = pte_lockptr(mm, pmd);
2458 spin_lock(ptl);
2459 same = pte_same(*page_table, orig_pte);
2460 spin_unlock(ptl);
2461 }
2462 #endif
2463 pte_unmap(page_table);
2464 return same;
2465 }
2466
2467 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2468 {
2469 /*
2470 * If the source page was a PFN mapping, we don't have
2471 * a "struct page" for it. We do a best-effort copy by
2472 * just copying from the original user address. If that
2473 * fails, we just zero-fill it. Live with it.
2474 */
2475 if (unlikely(!src)) {
2476 void *kaddr = kmap_atomic(dst);
2477 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2478
2479 /*
2480 * This really shouldn't fail, because the page is there
2481 * in the page tables. But it might just be unreadable,
2482 * in which case we just give up and fill the result with
2483 * zeroes.
2484 */
2485 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2486 clear_page(kaddr);
2487 kunmap_atomic(kaddr);
2488 flush_dcache_page(dst);
2489 } else
2490 copy_user_highpage(dst, src, va, vma);
2491 }
2492
2493 /*
2494 * This routine handles present pages, when users try to write
2495 * to a shared page. It is done by copying the page to a new address
2496 * and decrementing the shared-page counter for the old page.
2497 *
2498 * Note that this routine assumes that the protection checks have been
2499 * done by the caller (the low-level page fault routine in most cases).
2500 * Thus we can safely just mark it writable once we've done any necessary
2501 * COW.
2502 *
2503 * We also mark the page dirty at this point even though the page will
2504 * change only once the write actually happens. This avoids a few races,
2505 * and potentially makes it more efficient.
2506 *
2507 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2508 * but allow concurrent faults), with pte both mapped and locked.
2509 * We return with mmap_sem still held, but pte unmapped and unlocked.
2510 */
2511 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2512 unsigned long address, pte_t *page_table, pmd_t *pmd,
2513 spinlock_t *ptl, pte_t orig_pte)
2514 __releases(ptl)
2515 {
2516 struct page *old_page, *new_page;
2517 pte_t entry;
2518 int ret = 0;
2519 int page_mkwrite = 0;
2520 struct page *dirty_page = NULL;
2521
2522 old_page = vm_normal_page(vma, address, orig_pte);
2523 if (!old_page) {
2524 /*
2525 * VM_MIXEDMAP !pfn_valid() case
2526 *
2527 * We should not cow pages in a shared writeable mapping.
2528 * Just mark the pages writable as we can't do any dirty
2529 * accounting on raw pfn maps.
2530 */
2531 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2532 (VM_WRITE|VM_SHARED))
2533 goto reuse;
2534 goto gotten;
2535 }
2536
2537 /*
2538 * Take out anonymous pages first, anonymous shared vmas are
2539 * not dirty accountable.
2540 */
2541 if (PageAnon(old_page) && !PageKsm(old_page)) {
2542 if (!trylock_page(old_page)) {
2543 page_cache_get(old_page);
2544 pte_unmap_unlock(page_table, ptl);
2545 lock_page(old_page);
2546 page_table = pte_offset_map_lock(mm, pmd, address,
2547 &ptl);
2548 if (!pte_same(*page_table, orig_pte)) {
2549 unlock_page(old_page);
2550 goto unlock;
2551 }
2552 page_cache_release(old_page);
2553 }
2554 if (reuse_swap_page(old_page)) {
2555 /*
2556 * The page is all ours. Move it to our anon_vma so
2557 * the rmap code will not search our parent or siblings.
2558 * Protected against the rmap code by the page lock.
2559 */
2560 page_move_anon_rmap(old_page, vma, address);
2561 unlock_page(old_page);
2562 goto reuse;
2563 }
2564 unlock_page(old_page);
2565 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2566 (VM_WRITE|VM_SHARED))) {
2567 /*
2568 * Only catch write-faults on shared writable pages,
2569 * read-only shared pages can get COWed by
2570 * get_user_pages(.write=1, .force=1).
2571 */
2572 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2573 struct vm_fault vmf;
2574 int tmp;
2575
2576 vmf.virtual_address = (void __user *)(address &
2577 PAGE_MASK);
2578 vmf.pgoff = old_page->index;
2579 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2580 vmf.page = old_page;
2581
2582 /*
2583 * Notify the address space that the page is about to
2584 * become writable so that it can prohibit this or wait
2585 * for the page to get into an appropriate state.
2586 *
2587 * We do this without the lock held, so that it can
2588 * sleep if it needs to.
2589 */
2590 page_cache_get(old_page);
2591 pte_unmap_unlock(page_table, ptl);
2592
2593 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2594 if (unlikely(tmp &
2595 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2596 ret = tmp;
2597 goto unwritable_page;
2598 }
2599 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2600 lock_page(old_page);
2601 if (!old_page->mapping) {
2602 ret = 0; /* retry the fault */
2603 unlock_page(old_page);
2604 goto unwritable_page;
2605 }
2606 } else
2607 VM_BUG_ON(!PageLocked(old_page));
2608
2609 /*
2610 * Since we dropped the lock we need to revalidate
2611 * the PTE as someone else may have changed it. If
2612 * they did, we just return, as we can count on the
2613 * MMU to tell us if they didn't also make it writable.
2614 */
2615 page_table = pte_offset_map_lock(mm, pmd, address,
2616 &ptl);
2617 if (!pte_same(*page_table, orig_pte)) {
2618 unlock_page(old_page);
2619 goto unlock;
2620 }
2621
2622 page_mkwrite = 1;
2623 }
2624 dirty_page = old_page;
2625 get_page(dirty_page);
2626
2627 reuse:
2628 flush_cache_page(vma, address, pte_pfn(orig_pte));
2629 entry = pte_mkyoung(orig_pte);
2630 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2631 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2632 update_mmu_cache(vma, address, page_table);
2633 pte_unmap_unlock(page_table, ptl);
2634 ret |= VM_FAULT_WRITE;
2635
2636 if (!dirty_page)
2637 return ret;
2638
2639 /*
2640 * Yes, Virginia, this is actually required to prevent a race
2641 * with clear_page_dirty_for_io() from clearing the page dirty
2642 * bit after it clear all dirty ptes, but before a racing
2643 * do_wp_page installs a dirty pte.
2644 *
2645 * __do_fault is protected similarly.
2646 */
2647 if (!page_mkwrite) {
2648 wait_on_page_locked(dirty_page);
2649 set_page_dirty_balance(dirty_page, page_mkwrite);
2650 }
2651 put_page(dirty_page);
2652 if (page_mkwrite) {
2653 struct address_space *mapping = dirty_page->mapping;
2654
2655 set_page_dirty(dirty_page);
2656 unlock_page(dirty_page);
2657 page_cache_release(dirty_page);
2658 if (mapping) {
2659 /*
2660 * Some device drivers do not set page.mapping
2661 * but still dirty their pages
2662 */
2663 balance_dirty_pages_ratelimited(mapping);
2664 }
2665 }
2666
2667 /* file_update_time outside page_lock */
2668 if (vma->vm_file)
2669 file_update_time(vma->vm_file);
2670
2671 return ret;
2672 }
2673
2674 /*
2675 * Ok, we need to copy. Oh, well..
2676 */
2677 page_cache_get(old_page);
2678 gotten:
2679 pte_unmap_unlock(page_table, ptl);
2680
2681 if (unlikely(anon_vma_prepare(vma)))
2682 goto oom;
2683
2684 if (is_zero_pfn(pte_pfn(orig_pte))) {
2685 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2686 if (!new_page)
2687 goto oom;
2688 } else {
2689 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2690 if (!new_page)
2691 goto oom;
2692 cow_user_page(new_page, old_page, address, vma);
2693 }
2694 __SetPageUptodate(new_page);
2695
2696 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2697 goto oom_free_new;
2698
2699 /*
2700 * Re-check the pte - we dropped the lock
2701 */
2702 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2703 if (likely(pte_same(*page_table, orig_pte))) {
2704 if (old_page) {
2705 if (!PageAnon(old_page)) {
2706 dec_mm_counter_fast(mm, MM_FILEPAGES);
2707 inc_mm_counter_fast(mm, MM_ANONPAGES);
2708 }
2709 } else
2710 inc_mm_counter_fast(mm, MM_ANONPAGES);
2711 flush_cache_page(vma, address, pte_pfn(orig_pte));
2712 entry = mk_pte(new_page, vma->vm_page_prot);
2713 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2714 /*
2715 * Clear the pte entry and flush it first, before updating the
2716 * pte with the new entry. This will avoid a race condition
2717 * seen in the presence of one thread doing SMC and another
2718 * thread doing COW.
2719 */
2720 ptep_clear_flush(vma, address, page_table);
2721 page_add_new_anon_rmap(new_page, vma, address);
2722 /*
2723 * We call the notify macro here because, when using secondary
2724 * mmu page tables (such as kvm shadow page tables), we want the
2725 * new page to be mapped directly into the secondary page table.
2726 */
2727 set_pte_at_notify(mm, address, page_table, entry);
2728 update_mmu_cache(vma, address, page_table);
2729 if (old_page) {
2730 /*
2731 * Only after switching the pte to the new page may
2732 * we remove the mapcount here. Otherwise another
2733 * process may come and find the rmap count decremented
2734 * before the pte is switched to the new page, and
2735 * "reuse" the old page writing into it while our pte
2736 * here still points into it and can be read by other
2737 * threads.
2738 *
2739 * The critical issue is to order this
2740 * page_remove_rmap with the ptp_clear_flush above.
2741 * Those stores are ordered by (if nothing else,)
2742 * the barrier present in the atomic_add_negative
2743 * in page_remove_rmap.
2744 *
2745 * Then the TLB flush in ptep_clear_flush ensures that
2746 * no process can access the old page before the
2747 * decremented mapcount is visible. And the old page
2748 * cannot be reused until after the decremented
2749 * mapcount is visible. So transitively, TLBs to
2750 * old page will be flushed before it can be reused.
2751 */
2752 page_remove_rmap(old_page);
2753 }
2754
2755 /* Free the old page.. */
2756 new_page = old_page;
2757 ret |= VM_FAULT_WRITE;
2758 } else
2759 mem_cgroup_uncharge_page(new_page);
2760
2761 if (new_page)
2762 page_cache_release(new_page);
2763 unlock:
2764 pte_unmap_unlock(page_table, ptl);
2765 if (old_page) {
2766 /*
2767 * Don't let another task, with possibly unlocked vma,
2768 * keep the mlocked page.
2769 */
2770 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2771 lock_page(old_page); /* LRU manipulation */
2772 munlock_vma_page(old_page);
2773 unlock_page(old_page);
2774 }
2775 page_cache_release(old_page);
2776 }
2777 return ret;
2778 oom_free_new:
2779 page_cache_release(new_page);
2780 oom:
2781 if (old_page) {
2782 if (page_mkwrite) {
2783 unlock_page(old_page);
2784 page_cache_release(old_page);
2785 }
2786 page_cache_release(old_page);
2787 }
2788 return VM_FAULT_OOM;
2789
2790 unwritable_page:
2791 page_cache_release(old_page);
2792 return ret;
2793 }
2794
2795 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2796 unsigned long start_addr, unsigned long end_addr,
2797 struct zap_details *details)
2798 {
2799 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2800 }
2801
2802 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2803 struct zap_details *details)
2804 {
2805 struct vm_area_struct *vma;
2806 struct prio_tree_iter iter;
2807 pgoff_t vba, vea, zba, zea;
2808
2809 vma_prio_tree_foreach(vma, &iter, root,
2810 details->first_index, details->last_index) {
2811
2812 vba = vma->vm_pgoff;
2813 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2814 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2815 zba = details->first_index;
2816 if (zba < vba)
2817 zba = vba;
2818 zea = details->last_index;
2819 if (zea > vea)
2820 zea = vea;
2821
2822 unmap_mapping_range_vma(vma,
2823 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2824 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2825 details);
2826 }
2827 }
2828
2829 static inline void unmap_mapping_range_list(struct list_head *head,
2830 struct zap_details *details)
2831 {
2832 struct vm_area_struct *vma;
2833
2834 /*
2835 * In nonlinear VMAs there is no correspondence between virtual address
2836 * offset and file offset. So we must perform an exhaustive search
2837 * across *all* the pages in each nonlinear VMA, not just the pages
2838 * whose virtual address lies outside the file truncation point.
2839 */
2840 list_for_each_entry(vma, head, shared.vm_set.list) {
2841 details->nonlinear_vma = vma;
2842 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2843 }
2844 }
2845
2846 /**
2847 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2848 * @mapping: the address space containing mmaps to be unmapped.
2849 * @holebegin: byte in first page to unmap, relative to the start of
2850 * the underlying file. This will be rounded down to a PAGE_SIZE
2851 * boundary. Note that this is different from truncate_pagecache(), which
2852 * must keep the partial page. In contrast, we must get rid of
2853 * partial pages.
2854 * @holelen: size of prospective hole in bytes. This will be rounded
2855 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2856 * end of the file.
2857 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2858 * but 0 when invalidating pagecache, don't throw away private data.
2859 */
2860 void unmap_mapping_range(struct address_space *mapping,
2861 loff_t const holebegin, loff_t const holelen, int even_cows)
2862 {
2863 struct zap_details details;
2864 pgoff_t hba = holebegin >> PAGE_SHIFT;
2865 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2866
2867 /* Check for overflow. */
2868 if (sizeof(holelen) > sizeof(hlen)) {
2869 long long holeend =
2870 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2871 if (holeend & ~(long long)ULONG_MAX)
2872 hlen = ULONG_MAX - hba + 1;
2873 }
2874
2875 details.check_mapping = even_cows? NULL: mapping;
2876 details.nonlinear_vma = NULL;
2877 details.first_index = hba;
2878 details.last_index = hba + hlen - 1;
2879 if (details.last_index < details.first_index)
2880 details.last_index = ULONG_MAX;
2881
2882
2883 mutex_lock(&mapping->i_mmap_mutex);
2884 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2885 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2886 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2887 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2888 mutex_unlock(&mapping->i_mmap_mutex);
2889 }
2890 EXPORT_SYMBOL(unmap_mapping_range);
2891
2892 /*
2893 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2894 * but allow concurrent faults), and pte mapped but not yet locked.
2895 * We return with mmap_sem still held, but pte unmapped and unlocked.
2896 */
2897 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2898 unsigned long address, pte_t *page_table, pmd_t *pmd,
2899 unsigned int flags, pte_t orig_pte)
2900 {
2901 spinlock_t *ptl;
2902 struct page *page, *swapcache = NULL;
2903 swp_entry_t entry;
2904 pte_t pte;
2905 int locked;
2906 struct mem_cgroup *ptr;
2907 int exclusive = 0;
2908 int ret = 0;
2909
2910 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2911 goto out;
2912
2913 entry = pte_to_swp_entry(orig_pte);
2914 if (unlikely(non_swap_entry(entry))) {
2915 if (is_migration_entry(entry)) {
2916 migration_entry_wait(mm, pmd, address);
2917 } else if (is_hwpoison_entry(entry)) {
2918 ret = VM_FAULT_HWPOISON;
2919 } else {
2920 print_bad_pte(vma, address, orig_pte, NULL);
2921 ret = VM_FAULT_SIGBUS;
2922 }
2923 goto out;
2924 }
2925 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2926 page = lookup_swap_cache(entry);
2927 if (!page) {
2928 page = swapin_readahead(entry,
2929 GFP_HIGHUSER_MOVABLE, vma, address);
2930 if (!page) {
2931 /*
2932 * Back out if somebody else faulted in this pte
2933 * while we released the pte lock.
2934 */
2935 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2936 if (likely(pte_same(*page_table, orig_pte)))
2937 ret = VM_FAULT_OOM;
2938 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2939 goto unlock;
2940 }
2941
2942 /* Had to read the page from swap area: Major fault */
2943 ret = VM_FAULT_MAJOR;
2944 count_vm_event(PGMAJFAULT);
2945 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2946 } else if (PageHWPoison(page)) {
2947 /*
2948 * hwpoisoned dirty swapcache pages are kept for killing
2949 * owner processes (which may be unknown at hwpoison time)
2950 */
2951 ret = VM_FAULT_HWPOISON;
2952 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2953 goto out_release;
2954 }
2955
2956 locked = lock_page_or_retry(page, mm, flags);
2957
2958 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2959 if (!locked) {
2960 ret |= VM_FAULT_RETRY;
2961 goto out_release;
2962 }
2963
2964 /*
2965 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2966 * release the swapcache from under us. The page pin, and pte_same
2967 * test below, are not enough to exclude that. Even if it is still
2968 * swapcache, we need to check that the page's swap has not changed.
2969 */
2970 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2971 goto out_page;
2972
2973 if (ksm_might_need_to_copy(page, vma, address)) {
2974 swapcache = page;
2975 page = ksm_does_need_to_copy(page, vma, address);
2976
2977 if (unlikely(!page)) {
2978 ret = VM_FAULT_OOM;
2979 page = swapcache;
2980 swapcache = NULL;
2981 goto out_page;
2982 }
2983 }
2984
2985 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2986 ret = VM_FAULT_OOM;
2987 goto out_page;
2988 }
2989
2990 /*
2991 * Back out if somebody else already faulted in this pte.
2992 */
2993 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2994 if (unlikely(!pte_same(*page_table, orig_pte)))
2995 goto out_nomap;
2996
2997 if (unlikely(!PageUptodate(page))) {
2998 ret = VM_FAULT_SIGBUS;
2999 goto out_nomap;
3000 }
3001
3002 /*
3003 * The page isn't present yet, go ahead with the fault.
3004 *
3005 * Be careful about the sequence of operations here.
3006 * To get its accounting right, reuse_swap_page() must be called
3007 * while the page is counted on swap but not yet in mapcount i.e.
3008 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3009 * must be called after the swap_free(), or it will never succeed.
3010 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3011 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3012 * in page->private. In this case, a record in swap_cgroup is silently
3013 * discarded at swap_free().
3014 */
3015
3016 inc_mm_counter_fast(mm, MM_ANONPAGES);
3017 dec_mm_counter_fast(mm, MM_SWAPENTS);
3018 pte = mk_pte(page, vma->vm_page_prot);
3019 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3020 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3021 flags &= ~FAULT_FLAG_WRITE;
3022 ret |= VM_FAULT_WRITE;
3023 exclusive = 1;
3024 }
3025 flush_icache_page(vma, page);
3026 set_pte_at(mm, address, page_table, pte);
3027 do_page_add_anon_rmap(page, vma, address, exclusive);
3028 /* It's better to call commit-charge after rmap is established */
3029 mem_cgroup_commit_charge_swapin(page, ptr);
3030
3031 swap_free(entry);
3032 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3033 try_to_free_swap(page);
3034 unlock_page(page);
3035 if (swapcache) {
3036 /*
3037 * Hold the lock to avoid the swap entry to be reused
3038 * until we take the PT lock for the pte_same() check
3039 * (to avoid false positives from pte_same). For
3040 * further safety release the lock after the swap_free
3041 * so that the swap count won't change under a
3042 * parallel locked swapcache.
3043 */
3044 unlock_page(swapcache);
3045 page_cache_release(swapcache);
3046 }
3047
3048 if (flags & FAULT_FLAG_WRITE) {
3049 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3050 if (ret & VM_FAULT_ERROR)
3051 ret &= VM_FAULT_ERROR;
3052 goto out;
3053 }
3054
3055 /* No need to invalidate - it was non-present before */
3056 update_mmu_cache(vma, address, page_table);
3057 unlock:
3058 pte_unmap_unlock(page_table, ptl);
3059 out:
3060 return ret;
3061 out_nomap:
3062 mem_cgroup_cancel_charge_swapin(ptr);
3063 pte_unmap_unlock(page_table, ptl);
3064 out_page:
3065 unlock_page(page);
3066 out_release:
3067 page_cache_release(page);
3068 if (swapcache) {
3069 unlock_page(swapcache);
3070 page_cache_release(swapcache);
3071 }
3072 return ret;
3073 }
3074
3075 /*
3076 * This is like a special single-page "expand_{down|up}wards()",
3077 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3078 * doesn't hit another vma.
3079 */
3080 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3081 {
3082 address &= PAGE_MASK;
3083 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3084 struct vm_area_struct *prev = vma->vm_prev;
3085
3086 /*
3087 * Is there a mapping abutting this one below?
3088 *
3089 * That's only ok if it's the same stack mapping
3090 * that has gotten split..
3091 */
3092 if (prev && prev->vm_end == address)
3093 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3094
3095 expand_downwards(vma, address - PAGE_SIZE);
3096 }
3097 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3098 struct vm_area_struct *next = vma->vm_next;
3099
3100 /* As VM_GROWSDOWN but s/below/above/ */
3101 if (next && next->vm_start == address + PAGE_SIZE)
3102 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3103
3104 expand_upwards(vma, address + PAGE_SIZE);
3105 }
3106 return 0;
3107 }
3108
3109 /*
3110 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3111 * but allow concurrent faults), and pte mapped but not yet locked.
3112 * We return with mmap_sem still held, but pte unmapped and unlocked.
3113 */
3114 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3115 unsigned long address, pte_t *page_table, pmd_t *pmd,
3116 unsigned int flags)
3117 {
3118 struct page *page;
3119 spinlock_t *ptl;
3120 pte_t entry;
3121
3122 pte_unmap(page_table);
3123
3124 /* Check if we need to add a guard page to the stack */
3125 if (check_stack_guard_page(vma, address) < 0)
3126 return VM_FAULT_SIGBUS;
3127
3128 /* Use the zero-page for reads */
3129 if (!(flags & FAULT_FLAG_WRITE)) {
3130 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3131 vma->vm_page_prot));
3132 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3133 if (!pte_none(*page_table))
3134 goto unlock;
3135 goto setpte;
3136 }
3137
3138 /* Allocate our own private page. */
3139 if (unlikely(anon_vma_prepare(vma)))
3140 goto oom;
3141 page = alloc_zeroed_user_highpage_movable(vma, address);
3142 if (!page)
3143 goto oom;
3144 __SetPageUptodate(page);
3145
3146 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3147 goto oom_free_page;
3148
3149 entry = mk_pte(page, vma->vm_page_prot);
3150 if (vma->vm_flags & VM_WRITE)
3151 entry = pte_mkwrite(pte_mkdirty(entry));
3152
3153 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3154 if (!pte_none(*page_table))
3155 goto release;
3156
3157 inc_mm_counter_fast(mm, MM_ANONPAGES);
3158 page_add_new_anon_rmap(page, vma, address);
3159 setpte:
3160 set_pte_at(mm, address, page_table, entry);
3161
3162 /* No need to invalidate - it was non-present before */
3163 update_mmu_cache(vma, address, page_table);
3164 unlock:
3165 pte_unmap_unlock(page_table, ptl);
3166 return 0;
3167 release:
3168 mem_cgroup_uncharge_page(page);
3169 page_cache_release(page);
3170 goto unlock;
3171 oom_free_page:
3172 page_cache_release(page);
3173 oom:
3174 return VM_FAULT_OOM;
3175 }
3176
3177 /*
3178 * __do_fault() tries to create a new page mapping. It aggressively
3179 * tries to share with existing pages, but makes a separate copy if
3180 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3181 * the next page fault.
3182 *
3183 * As this is called only for pages that do not currently exist, we
3184 * do not need to flush old virtual caches or the TLB.
3185 *
3186 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3187 * but allow concurrent faults), and pte neither mapped nor locked.
3188 * We return with mmap_sem still held, but pte unmapped and unlocked.
3189 */
3190 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3191 unsigned long address, pmd_t *pmd,
3192 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3193 {
3194 pte_t *page_table;
3195 spinlock_t *ptl;
3196 struct page *page;
3197 struct page *cow_page;
3198 pte_t entry;
3199 int anon = 0;
3200 struct page *dirty_page = NULL;
3201 struct vm_fault vmf;
3202 int ret;
3203 int page_mkwrite = 0;
3204
3205 /*
3206 * If we do COW later, allocate page befor taking lock_page()
3207 * on the file cache page. This will reduce lock holding time.
3208 */
3209 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3210
3211 if (unlikely(anon_vma_prepare(vma)))
3212 return VM_FAULT_OOM;
3213
3214 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3215 if (!cow_page)
3216 return VM_FAULT_OOM;
3217
3218 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3219 page_cache_release(cow_page);
3220 return VM_FAULT_OOM;
3221 }
3222 } else
3223 cow_page = NULL;
3224
3225 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3226 vmf.pgoff = pgoff;
3227 vmf.flags = flags;
3228 vmf.page = NULL;
3229
3230 ret = vma->vm_ops->fault(vma, &vmf);
3231 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3232 VM_FAULT_RETRY)))
3233 goto uncharge_out;
3234
3235 if (unlikely(PageHWPoison(vmf.page))) {
3236 if (ret & VM_FAULT_LOCKED)
3237 unlock_page(vmf.page);
3238 ret = VM_FAULT_HWPOISON;
3239 goto uncharge_out;
3240 }
3241
3242 /*
3243 * For consistency in subsequent calls, make the faulted page always
3244 * locked.
3245 */
3246 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3247 lock_page(vmf.page);
3248 else
3249 VM_BUG_ON(!PageLocked(vmf.page));
3250
3251 /*
3252 * Should we do an early C-O-W break?
3253 */
3254 page = vmf.page;
3255 if (flags & FAULT_FLAG_WRITE) {
3256 if (!(vma->vm_flags & VM_SHARED)) {
3257 page = cow_page;
3258 anon = 1;
3259 copy_user_highpage(page, vmf.page, address, vma);
3260 __SetPageUptodate(page);
3261 } else {
3262 /*
3263 * If the page will be shareable, see if the backing
3264 * address space wants to know that the page is about
3265 * to become writable
3266 */
3267 if (vma->vm_ops->page_mkwrite) {
3268 int tmp;
3269
3270 unlock_page(page);
3271 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3272 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3273 if (unlikely(tmp &
3274 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3275 ret = tmp;
3276 goto unwritable_page;
3277 }
3278 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3279 lock_page(page);
3280 if (!page->mapping) {
3281 ret = 0; /* retry the fault */
3282 unlock_page(page);
3283 goto unwritable_page;
3284 }
3285 } else
3286 VM_BUG_ON(!PageLocked(page));
3287 page_mkwrite = 1;
3288 }
3289 }
3290
3291 }
3292
3293 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3294
3295 /*
3296 * This silly early PAGE_DIRTY setting removes a race
3297 * due to the bad i386 page protection. But it's valid
3298 * for other architectures too.
3299 *
3300 * Note that if FAULT_FLAG_WRITE is set, we either now have
3301 * an exclusive copy of the page, or this is a shared mapping,
3302 * so we can make it writable and dirty to avoid having to
3303 * handle that later.
3304 */
3305 /* Only go through if we didn't race with anybody else... */
3306 if (likely(pte_same(*page_table, orig_pte))) {
3307 flush_icache_page(vma, page);
3308 entry = mk_pte(page, vma->vm_page_prot);
3309 if (flags & FAULT_FLAG_WRITE)
3310 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3311 if (anon) {
3312 inc_mm_counter_fast(mm, MM_ANONPAGES);
3313 page_add_new_anon_rmap(page, vma, address);
3314 } else {
3315 inc_mm_counter_fast(mm, MM_FILEPAGES);
3316 page_add_file_rmap(page);
3317 if (flags & FAULT_FLAG_WRITE) {
3318 dirty_page = page;
3319 get_page(dirty_page);
3320 }
3321 }
3322 set_pte_at(mm, address, page_table, entry);
3323
3324 /* no need to invalidate: a not-present page won't be cached */
3325 update_mmu_cache(vma, address, page_table);
3326 } else {
3327 if (cow_page)
3328 mem_cgroup_uncharge_page(cow_page);
3329 if (anon)
3330 page_cache_release(page);
3331 else
3332 anon = 1; /* no anon but release faulted_page */
3333 }
3334
3335 pte_unmap_unlock(page_table, ptl);
3336
3337 if (dirty_page) {
3338 struct address_space *mapping = page->mapping;
3339
3340 if (set_page_dirty(dirty_page))
3341 page_mkwrite = 1;
3342 unlock_page(dirty_page);
3343 put_page(dirty_page);
3344 if (page_mkwrite && mapping) {
3345 /*
3346 * Some device drivers do not set page.mapping but still
3347 * dirty their pages
3348 */
3349 balance_dirty_pages_ratelimited(mapping);
3350 }
3351
3352 /* file_update_time outside page_lock */
3353 if (vma->vm_file)
3354 file_update_time(vma->vm_file);
3355 } else {
3356 unlock_page(vmf.page);
3357 if (anon)
3358 page_cache_release(vmf.page);
3359 }
3360
3361 return ret;
3362
3363 unwritable_page:
3364 page_cache_release(page);
3365 return ret;
3366 uncharge_out:
3367 /* fs's fault handler get error */
3368 if (cow_page) {
3369 mem_cgroup_uncharge_page(cow_page);
3370 page_cache_release(cow_page);
3371 }
3372 return ret;
3373 }
3374
3375 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3376 unsigned long address, pte_t *page_table, pmd_t *pmd,
3377 unsigned int flags, pte_t orig_pte)
3378 {
3379 pgoff_t pgoff = (((address & PAGE_MASK)
3380 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3381
3382 pte_unmap(page_table);
3383 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3384 }
3385
3386 /*
3387 * Fault of a previously existing named mapping. Repopulate the pte
3388 * from the encoded file_pte if possible. This enables swappable
3389 * nonlinear vmas.
3390 *
3391 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3392 * but allow concurrent faults), and pte mapped but not yet locked.
3393 * We return with mmap_sem still held, but pte unmapped and unlocked.
3394 */
3395 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3396 unsigned long address, pte_t *page_table, pmd_t *pmd,
3397 unsigned int flags, pte_t orig_pte)
3398 {
3399 pgoff_t pgoff;
3400
3401 flags |= FAULT_FLAG_NONLINEAR;
3402
3403 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3404 return 0;
3405
3406 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3407 /*
3408 * Page table corrupted: show pte and kill process.
3409 */
3410 print_bad_pte(vma, address, orig_pte, NULL);
3411 return VM_FAULT_SIGBUS;
3412 }
3413
3414 pgoff = pte_to_pgoff(orig_pte);
3415 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3416 }
3417
3418 /*
3419 * These routines also need to handle stuff like marking pages dirty
3420 * and/or accessed for architectures that don't do it in hardware (most
3421 * RISC architectures). The early dirtying is also good on the i386.
3422 *
3423 * There is also a hook called "update_mmu_cache()" that architectures
3424 * with external mmu caches can use to update those (ie the Sparc or
3425 * PowerPC hashed page tables that act as extended TLBs).
3426 *
3427 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3428 * but allow concurrent faults), and pte mapped but not yet locked.
3429 * We return with mmap_sem still held, but pte unmapped and unlocked.
3430 */
3431 int handle_pte_fault(struct mm_struct *mm,
3432 struct vm_area_struct *vma, unsigned long address,
3433 pte_t *pte, pmd_t *pmd, unsigned int flags)
3434 {
3435 pte_t entry;
3436 spinlock_t *ptl;
3437
3438 entry = *pte;
3439 if (!pte_present(entry)) {
3440 if (pte_none(entry)) {
3441 if (vma->vm_ops) {
3442 if (likely(vma->vm_ops->fault))
3443 return do_linear_fault(mm, vma, address,
3444 pte, pmd, flags, entry);
3445 }
3446 return do_anonymous_page(mm, vma, address,
3447 pte, pmd, flags);
3448 }
3449 if (pte_file(entry))
3450 return do_nonlinear_fault(mm, vma, address,
3451 pte, pmd, flags, entry);
3452 return do_swap_page(mm, vma, address,
3453 pte, pmd, flags, entry);
3454 }
3455
3456 ptl = pte_lockptr(mm, pmd);
3457 spin_lock(ptl);
3458 if (unlikely(!pte_same(*pte, entry)))
3459 goto unlock;
3460 if (flags & FAULT_FLAG_WRITE) {
3461 if (!pte_write(entry))
3462 return do_wp_page(mm, vma, address,
3463 pte, pmd, ptl, entry);
3464 entry = pte_mkdirty(entry);
3465 }
3466 entry = pte_mkyoung(entry);
3467 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3468 update_mmu_cache(vma, address, pte);
3469 } else {
3470 /*
3471 * This is needed only for protection faults but the arch code
3472 * is not yet telling us if this is a protection fault or not.
3473 * This still avoids useless tlb flushes for .text page faults
3474 * with threads.
3475 */
3476 if (flags & FAULT_FLAG_WRITE)
3477 flush_tlb_fix_spurious_fault(vma, address);
3478 }
3479 unlock:
3480 pte_unmap_unlock(pte, ptl);
3481 return 0;
3482 }
3483
3484 /*
3485 * By the time we get here, we already hold the mm semaphore
3486 */
3487 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3488 unsigned long address, unsigned int flags)
3489 {
3490 pgd_t *pgd;
3491 pud_t *pud;
3492 pmd_t *pmd;
3493 pte_t *pte;
3494
3495 __set_current_state(TASK_RUNNING);
3496
3497 count_vm_event(PGFAULT);
3498 mem_cgroup_count_vm_event(mm, PGFAULT);
3499
3500 /* do counter updates before entering really critical section. */
3501 check_sync_rss_stat(current);
3502
3503 if (unlikely(is_vm_hugetlb_page(vma)))
3504 return hugetlb_fault(mm, vma, address, flags);
3505
3506 retry:
3507 pgd = pgd_offset(mm, address);
3508 pud = pud_alloc(mm, pgd, address);
3509 if (!pud)
3510 return VM_FAULT_OOM;
3511 pmd = pmd_alloc(mm, pud, address);
3512 if (!pmd)
3513 return VM_FAULT_OOM;
3514 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3515 if (!vma->vm_ops)
3516 return do_huge_pmd_anonymous_page(mm, vma, address,
3517 pmd, flags);
3518 } else {
3519 pmd_t orig_pmd = *pmd;
3520 int ret;
3521
3522 barrier();
3523 if (pmd_trans_huge(orig_pmd)) {
3524 if (flags & FAULT_FLAG_WRITE &&
3525 !pmd_write(orig_pmd) &&
3526 !pmd_trans_splitting(orig_pmd)) {
3527 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3528 orig_pmd);
3529 /*
3530 * If COW results in an oom, the huge pmd will
3531 * have been split, so retry the fault on the
3532 * pte for a smaller charge.
3533 */
3534 if (unlikely(ret & VM_FAULT_OOM))
3535 goto retry;
3536 return ret;
3537 }
3538 return 0;
3539 }
3540 }
3541
3542 /*
3543 * Use __pte_alloc instead of pte_alloc_map, because we can't
3544 * run pte_offset_map on the pmd, if an huge pmd could
3545 * materialize from under us from a different thread.
3546 */
3547 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3548 return VM_FAULT_OOM;
3549 /* if an huge pmd materialized from under us just retry later */
3550 if (unlikely(pmd_trans_huge(*pmd)))
3551 return 0;
3552 /*
3553 * A regular pmd is established and it can't morph into a huge pmd
3554 * from under us anymore at this point because we hold the mmap_sem
3555 * read mode and khugepaged takes it in write mode. So now it's
3556 * safe to run pte_offset_map().
3557 */
3558 pte = pte_offset_map(pmd, address);
3559
3560 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3561 }
3562
3563 #ifndef __PAGETABLE_PUD_FOLDED
3564 /*
3565 * Allocate page upper directory.
3566 * We've already handled the fast-path in-line.
3567 */
3568 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3569 {
3570 pud_t *new = pud_alloc_one(mm, address);
3571 if (!new)
3572 return -ENOMEM;
3573
3574 smp_wmb(); /* See comment in __pte_alloc */
3575
3576 spin_lock(&mm->page_table_lock);
3577 if (pgd_present(*pgd)) /* Another has populated it */
3578 pud_free(mm, new);
3579 else
3580 pgd_populate(mm, pgd, new);
3581 spin_unlock(&mm->page_table_lock);
3582 return 0;
3583 }
3584 #endif /* __PAGETABLE_PUD_FOLDED */
3585
3586 #ifndef __PAGETABLE_PMD_FOLDED
3587 /*
3588 * Allocate page middle directory.
3589 * We've already handled the fast-path in-line.
3590 */
3591 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3592 {
3593 pmd_t *new = pmd_alloc_one(mm, address);
3594 if (!new)
3595 return -ENOMEM;
3596
3597 smp_wmb(); /* See comment in __pte_alloc */
3598
3599 spin_lock(&mm->page_table_lock);
3600 #ifndef __ARCH_HAS_4LEVEL_HACK
3601 if (pud_present(*pud)) /* Another has populated it */
3602 pmd_free(mm, new);
3603 else
3604 pud_populate(mm, pud, new);
3605 #else
3606 if (pgd_present(*pud)) /* Another has populated it */
3607 pmd_free(mm, new);
3608 else
3609 pgd_populate(mm, pud, new);
3610 #endif /* __ARCH_HAS_4LEVEL_HACK */
3611 spin_unlock(&mm->page_table_lock);
3612 return 0;
3613 }
3614 #endif /* __PAGETABLE_PMD_FOLDED */
3615
3616 int make_pages_present(unsigned long addr, unsigned long end)
3617 {
3618 int ret, len, write;
3619 struct vm_area_struct * vma;
3620
3621 vma = find_vma(current->mm, addr);
3622 if (!vma)
3623 return -ENOMEM;
3624 /*
3625 * We want to touch writable mappings with a write fault in order
3626 * to break COW, except for shared mappings because these don't COW
3627 * and we would not want to dirty them for nothing.
3628 */
3629 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3630 BUG_ON(addr >= end);
3631 BUG_ON(end > vma->vm_end);
3632 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3633 ret = get_user_pages(current, current->mm, addr,
3634 len, write, 0, NULL, NULL);
3635 if (ret < 0)
3636 return ret;
3637 return ret == len ? 0 : -EFAULT;
3638 }
3639
3640 #if !defined(__HAVE_ARCH_GATE_AREA)
3641
3642 #if defined(AT_SYSINFO_EHDR)
3643 static struct vm_area_struct gate_vma;
3644
3645 static int __init gate_vma_init(void)
3646 {
3647 gate_vma.vm_mm = NULL;
3648 gate_vma.vm_start = FIXADDR_USER_START;
3649 gate_vma.vm_end = FIXADDR_USER_END;
3650 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3651 gate_vma.vm_page_prot = __P101;
3652
3653 return 0;
3654 }
3655 __initcall(gate_vma_init);
3656 #endif
3657
3658 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3659 {
3660 #ifdef AT_SYSINFO_EHDR
3661 return &gate_vma;
3662 #else
3663 return NULL;
3664 #endif
3665 }
3666
3667 int in_gate_area_no_mm(unsigned long addr)
3668 {
3669 #ifdef AT_SYSINFO_EHDR
3670 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3671 return 1;
3672 #endif
3673 return 0;
3674 }
3675
3676 #endif /* __HAVE_ARCH_GATE_AREA */
3677
3678 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3679 pte_t **ptepp, spinlock_t **ptlp)
3680 {
3681 pgd_t *pgd;
3682 pud_t *pud;
3683 pmd_t *pmd;
3684 pte_t *ptep;
3685
3686 pgd = pgd_offset(mm, address);
3687 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3688 goto out;
3689
3690 pud = pud_offset(pgd, address);
3691 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3692 goto out;
3693
3694 pmd = pmd_offset(pud, address);
3695 VM_BUG_ON(pmd_trans_huge(*pmd));
3696 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3697 goto out;
3698
3699 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3700 if (pmd_huge(*pmd))
3701 goto out;
3702
3703 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3704 if (!ptep)
3705 goto out;
3706 if (!pte_present(*ptep))
3707 goto unlock;
3708 *ptepp = ptep;
3709 return 0;
3710 unlock:
3711 pte_unmap_unlock(ptep, *ptlp);
3712 out:
3713 return -EINVAL;
3714 }
3715
3716 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3717 pte_t **ptepp, spinlock_t **ptlp)
3718 {
3719 int res;
3720
3721 /* (void) is needed to make gcc happy */
3722 (void) __cond_lock(*ptlp,
3723 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3724 return res;
3725 }
3726
3727 /**
3728 * follow_pfn - look up PFN at a user virtual address
3729 * @vma: memory mapping
3730 * @address: user virtual address
3731 * @pfn: location to store found PFN
3732 *
3733 * Only IO mappings and raw PFN mappings are allowed.
3734 *
3735 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3736 */
3737 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3738 unsigned long *pfn)
3739 {
3740 int ret = -EINVAL;
3741 spinlock_t *ptl;
3742 pte_t *ptep;
3743
3744 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3745 return ret;
3746
3747 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3748 if (ret)
3749 return ret;
3750 *pfn = pte_pfn(*ptep);
3751 pte_unmap_unlock(ptep, ptl);
3752 return 0;
3753 }
3754 EXPORT_SYMBOL(follow_pfn);
3755
3756 #ifdef CONFIG_HAVE_IOREMAP_PROT
3757 int follow_phys(struct vm_area_struct *vma,
3758 unsigned long address, unsigned int flags,
3759 unsigned long *prot, resource_size_t *phys)
3760 {
3761 int ret = -EINVAL;
3762 pte_t *ptep, pte;
3763 spinlock_t *ptl;
3764
3765 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3766 goto out;
3767
3768 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3769 goto out;
3770 pte = *ptep;
3771
3772 if ((flags & FOLL_WRITE) && !pte_write(pte))
3773 goto unlock;
3774
3775 *prot = pgprot_val(pte_pgprot(pte));
3776 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3777
3778 ret = 0;
3779 unlock:
3780 pte_unmap_unlock(ptep, ptl);
3781 out:
3782 return ret;
3783 }
3784
3785 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3786 void *buf, int len, int write)
3787 {
3788 resource_size_t phys_addr;
3789 unsigned long prot = 0;
3790 void __iomem *maddr;
3791 int offset = addr & (PAGE_SIZE-1);
3792
3793 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3794 return -EINVAL;
3795
3796 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3797 if (write)
3798 memcpy_toio(maddr + offset, buf, len);
3799 else
3800 memcpy_fromio(buf, maddr + offset, len);
3801 iounmap(maddr);
3802
3803 return len;
3804 }
3805 #endif
3806
3807 /*
3808 * Access another process' address space as given in mm. If non-NULL, use the
3809 * given task for page fault accounting.
3810 */
3811 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3812 unsigned long addr, void *buf, int len, int write)
3813 {
3814 struct vm_area_struct *vma;
3815 void *old_buf = buf;
3816
3817 down_read(&mm->mmap_sem);
3818 /* ignore errors, just check how much was successfully transferred */
3819 while (len) {
3820 int bytes, ret, offset;
3821 void *maddr;
3822 struct page *page = NULL;
3823
3824 ret = get_user_pages(tsk, mm, addr, 1,
3825 write, 1, &page, &vma);
3826 if (ret <= 0) {
3827 /*
3828 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3829 * we can access using slightly different code.
3830 */
3831 #ifdef CONFIG_HAVE_IOREMAP_PROT
3832 vma = find_vma(mm, addr);
3833 if (!vma || vma->vm_start > addr)
3834 break;
3835 if (vma->vm_ops && vma->vm_ops->access)
3836 ret = vma->vm_ops->access(vma, addr, buf,
3837 len, write);
3838 if (ret <= 0)
3839 #endif
3840 break;
3841 bytes = ret;
3842 } else {
3843 bytes = len;
3844 offset = addr & (PAGE_SIZE-1);
3845 if (bytes > PAGE_SIZE-offset)
3846 bytes = PAGE_SIZE-offset;
3847
3848 maddr = kmap(page);
3849 if (write) {
3850 copy_to_user_page(vma, page, addr,
3851 maddr + offset, buf, bytes);
3852 set_page_dirty_lock(page);
3853 } else {
3854 copy_from_user_page(vma, page, addr,
3855 buf, maddr + offset, bytes);
3856 }
3857 kunmap(page);
3858 page_cache_release(page);
3859 }
3860 len -= bytes;
3861 buf += bytes;
3862 addr += bytes;
3863 }
3864 up_read(&mm->mmap_sem);
3865
3866 return buf - old_buf;
3867 }
3868
3869 /**
3870 * access_remote_vm - access another process' address space
3871 * @mm: the mm_struct of the target address space
3872 * @addr: start address to access
3873 * @buf: source or destination buffer
3874 * @len: number of bytes to transfer
3875 * @write: whether the access is a write
3876 *
3877 * The caller must hold a reference on @mm.
3878 */
3879 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3880 void *buf, int len, int write)
3881 {
3882 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3883 }
3884
3885 /*
3886 * Access another process' address space.
3887 * Source/target buffer must be kernel space,
3888 * Do not walk the page table directly, use get_user_pages
3889 */
3890 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3891 void *buf, int len, int write)
3892 {
3893 struct mm_struct *mm;
3894 int ret;
3895
3896 mm = get_task_mm(tsk);
3897 if (!mm)
3898 return 0;
3899
3900 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3901 mmput(mm);
3902
3903 return ret;
3904 }
3905
3906 /*
3907 * Print the name of a VMA.
3908 */
3909 void print_vma_addr(char *prefix, unsigned long ip)
3910 {
3911 struct mm_struct *mm = current->mm;
3912 struct vm_area_struct *vma;
3913
3914 /*
3915 * Do not print if we are in atomic
3916 * contexts (in exception stacks, etc.):
3917 */
3918 if (preempt_count())
3919 return;
3920
3921 down_read(&mm->mmap_sem);
3922 vma = find_vma(mm, ip);
3923 if (vma && vma->vm_file) {
3924 struct file *f = vma->vm_file;
3925 char *buf = (char *)__get_free_page(GFP_KERNEL);
3926 if (buf) {
3927 char *p, *s;
3928
3929 p = d_path(&f->f_path, buf, PAGE_SIZE);
3930 if (IS_ERR(p))
3931 p = "?";
3932 s = strrchr(p, '/');
3933 if (s)
3934 p = s+1;
3935 printk("%s%s[%lx+%lx]", prefix, p,
3936 vma->vm_start,
3937 vma->vm_end - vma->vm_start);
3938 free_page((unsigned long)buf);
3939 }
3940 }
3941 up_read(&current->mm->mmap_sem);
3942 }
3943
3944 #ifdef CONFIG_PROVE_LOCKING
3945 void might_fault(void)
3946 {
3947 /*
3948 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3949 * holding the mmap_sem, this is safe because kernel memory doesn't
3950 * get paged out, therefore we'll never actually fault, and the
3951 * below annotations will generate false positives.
3952 */
3953 if (segment_eq(get_fs(), KERNEL_DS))
3954 return;
3955
3956 might_sleep();
3957 /*
3958 * it would be nicer only to annotate paths which are not under
3959 * pagefault_disable, however that requires a larger audit and
3960 * providing helpers like get_user_atomic.
3961 */
3962 if (!in_atomic() && current->mm)
3963 might_lock_read(&current->mm->mmap_sem);
3964 }
3965 EXPORT_SYMBOL(might_fault);
3966 #endif
3967
3968 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3969 static void clear_gigantic_page(struct page *page,
3970 unsigned long addr,
3971 unsigned int pages_per_huge_page)
3972 {
3973 int i;
3974 struct page *p = page;
3975
3976 might_sleep();
3977 for (i = 0; i < pages_per_huge_page;
3978 i++, p = mem_map_next(p, page, i)) {
3979 cond_resched();
3980 clear_user_highpage(p, addr + i * PAGE_SIZE);
3981 }
3982 }
3983 void clear_huge_page(struct page *page,
3984 unsigned long addr, unsigned int pages_per_huge_page)
3985 {
3986 int i;
3987
3988 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3989 clear_gigantic_page(page, addr, pages_per_huge_page);
3990 return;
3991 }
3992
3993 might_sleep();
3994 for (i = 0; i < pages_per_huge_page; i++) {
3995 cond_resched();
3996 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3997 }
3998 }
3999
4000 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4001 unsigned long addr,
4002 struct vm_area_struct *vma,
4003 unsigned int pages_per_huge_page)
4004 {
4005 int i;
4006 struct page *dst_base = dst;
4007 struct page *src_base = src;
4008
4009 for (i = 0; i < pages_per_huge_page; ) {
4010 cond_resched();
4011 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4012
4013 i++;
4014 dst = mem_map_next(dst, dst_base, i);
4015 src = mem_map_next(src, src_base, i);
4016 }
4017 }
4018
4019 void copy_user_huge_page(struct page *dst, struct page *src,
4020 unsigned long addr, struct vm_area_struct *vma,
4021 unsigned int pages_per_huge_page)
4022 {
4023 int i;
4024
4025 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4026 copy_user_gigantic_page(dst, src, addr, vma,
4027 pages_per_huge_page);
4028 return;
4029 }
4030
4031 might_sleep();
4032 for (i = 0; i < pages_per_huge_page; i++) {
4033 cond_resched();
4034 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4035 }
4036 }
4037 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */