Linux 3.10.107
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69
70 #include "internal.h"
71
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif
75
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
80
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
84
85 unsigned long num_physpages;
86 /*
87 * A number of key systems in x86 including ioremap() rely on the assumption
88 * that high_memory defines the upper bound on direct map memory, then end
89 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
90 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91 * and ZONE_HIGHMEM.
92 */
93 void * high_memory;
94
95 EXPORT_SYMBOL(num_physpages);
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99 * Randomize the address space (stacks, mmaps, brk, etc.).
100 *
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
103 */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 1;
107 #else
108 2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113 randomize_va_space = 0;
114 return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 /*
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123 */
124 static int __init init_zero_pfn(void)
125 {
126 zero_pfn = page_to_pfn(ZERO_PAGE(0));
127 return 0;
128 }
129 core_initcall(init_zero_pfn);
130
131
132 #if defined(SPLIT_RSS_COUNTING)
133
134 void sync_mm_rss(struct mm_struct *mm)
135 {
136 int i;
137
138 for (i = 0; i < NR_MM_COUNTERS; i++) {
139 if (current->rss_stat.count[i]) {
140 add_mm_counter(mm, i, current->rss_stat.count[i]);
141 current->rss_stat.count[i] = 0;
142 }
143 }
144 current->rss_stat.events = 0;
145 }
146
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148 {
149 struct task_struct *task = current;
150
151 if (likely(task->mm == mm))
152 task->rss_stat.count[member] += val;
153 else
154 add_mm_counter(mm, member, val);
155 }
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH (64)
161 static void check_sync_rss_stat(struct task_struct *task)
162 {
163 if (unlikely(task != current))
164 return;
165 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166 sync_mm_rss(task->mm);
167 }
168 #else /* SPLIT_RSS_COUNTING */
169
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 }
176
177 #endif /* SPLIT_RSS_COUNTING */
178
179 #ifdef HAVE_GENERIC_MMU_GATHER
180
181 static int tlb_next_batch(struct mmu_gather *tlb)
182 {
183 struct mmu_gather_batch *batch;
184
185 batch = tlb->active;
186 if (batch->next) {
187 tlb->active = batch->next;
188 return 1;
189 }
190
191 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192 return 0;
193
194 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195 if (!batch)
196 return 0;
197
198 tlb->batch_count++;
199 batch->next = NULL;
200 batch->nr = 0;
201 batch->max = MAX_GATHER_BATCH;
202
203 tlb->active->next = batch;
204 tlb->active = batch;
205
206 return 1;
207 }
208
209 /* tlb_gather_mmu
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
213 */
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
215 {
216 tlb->mm = mm;
217
218 /* Is it from 0 to ~0? */
219 tlb->fullmm = !(start | (end+1));
220 tlb->need_flush_all = 0;
221 tlb->start = start;
222 tlb->end = end;
223 tlb->need_flush = 0;
224 tlb->local.next = NULL;
225 tlb->local.nr = 0;
226 tlb->local.max = ARRAY_SIZE(tlb->__pages);
227 tlb->active = &tlb->local;
228 tlb->batch_count = 0;
229
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 tlb->batch = NULL;
232 #endif
233 }
234
235 void tlb_flush_mmu(struct mmu_gather *tlb)
236 {
237 struct mmu_gather_batch *batch;
238
239 if (!tlb->need_flush)
240 return;
241 tlb->need_flush = 0;
242 tlb_flush(tlb);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244 tlb_table_flush(tlb);
245 #endif
246
247 for (batch = &tlb->local; batch; batch = batch->next) {
248 free_pages_and_swap_cache(batch->pages, batch->nr);
249 batch->nr = 0;
250 }
251 tlb->active = &tlb->local;
252 }
253
254 /* tlb_finish_mmu
255 * Called at the end of the shootdown operation to free up any resources
256 * that were required.
257 */
258 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
259 {
260 struct mmu_gather_batch *batch, *next;
261
262 tlb_flush_mmu(tlb);
263
264 /* keep the page table cache within bounds */
265 check_pgt_cache();
266
267 for (batch = tlb->local.next; batch; batch = next) {
268 next = batch->next;
269 free_pages((unsigned long)batch, 0);
270 }
271 tlb->local.next = NULL;
272 }
273
274 /* __tlb_remove_page
275 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
276 * handling the additional races in SMP caused by other CPUs caching valid
277 * mappings in their TLBs. Returns the number of free page slots left.
278 * When out of page slots we must call tlb_flush_mmu().
279 */
280 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
281 {
282 struct mmu_gather_batch *batch;
283
284 VM_BUG_ON(!tlb->need_flush);
285
286 batch = tlb->active;
287 batch->pages[batch->nr++] = page;
288 if (batch->nr == batch->max) {
289 if (!tlb_next_batch(tlb))
290 return 0;
291 batch = tlb->active;
292 }
293 VM_BUG_ON(batch->nr > batch->max);
294
295 return batch->max - batch->nr;
296 }
297
298 #endif /* HAVE_GENERIC_MMU_GATHER */
299
300 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
301
302 /*
303 * See the comment near struct mmu_table_batch.
304 */
305
306 static void tlb_remove_table_smp_sync(void *arg)
307 {
308 /* Simply deliver the interrupt */
309 }
310
311 static void tlb_remove_table_one(void *table)
312 {
313 /*
314 * This isn't an RCU grace period and hence the page-tables cannot be
315 * assumed to be actually RCU-freed.
316 *
317 * It is however sufficient for software page-table walkers that rely on
318 * IRQ disabling. See the comment near struct mmu_table_batch.
319 */
320 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
321 __tlb_remove_table(table);
322 }
323
324 static void tlb_remove_table_rcu(struct rcu_head *head)
325 {
326 struct mmu_table_batch *batch;
327 int i;
328
329 batch = container_of(head, struct mmu_table_batch, rcu);
330
331 for (i = 0; i < batch->nr; i++)
332 __tlb_remove_table(batch->tables[i]);
333
334 free_page((unsigned long)batch);
335 }
336
337 void tlb_table_flush(struct mmu_gather *tlb)
338 {
339 struct mmu_table_batch **batch = &tlb->batch;
340
341 if (*batch) {
342 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
343 *batch = NULL;
344 }
345 }
346
347 void tlb_remove_table(struct mmu_gather *tlb, void *table)
348 {
349 struct mmu_table_batch **batch = &tlb->batch;
350
351 tlb->need_flush = 1;
352
353 /*
354 * When there's less then two users of this mm there cannot be a
355 * concurrent page-table walk.
356 */
357 if (atomic_read(&tlb->mm->mm_users) < 2) {
358 __tlb_remove_table(table);
359 return;
360 }
361
362 if (*batch == NULL) {
363 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
364 if (*batch == NULL) {
365 tlb_remove_table_one(table);
366 return;
367 }
368 (*batch)->nr = 0;
369 }
370 (*batch)->tables[(*batch)->nr++] = table;
371 if ((*batch)->nr == MAX_TABLE_BATCH)
372 tlb_table_flush(tlb);
373 }
374
375 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
376
377 /*
378 * If a p?d_bad entry is found while walking page tables, report
379 * the error, before resetting entry to p?d_none. Usually (but
380 * very seldom) called out from the p?d_none_or_clear_bad macros.
381 */
382
383 void pgd_clear_bad(pgd_t *pgd)
384 {
385 pgd_ERROR(*pgd);
386 pgd_clear(pgd);
387 }
388
389 void pud_clear_bad(pud_t *pud)
390 {
391 pud_ERROR(*pud);
392 pud_clear(pud);
393 }
394
395 void pmd_clear_bad(pmd_t *pmd)
396 {
397 pmd_ERROR(*pmd);
398 pmd_clear(pmd);
399 }
400
401 /*
402 * Note: this doesn't free the actual pages themselves. That
403 * has been handled earlier when unmapping all the memory regions.
404 */
405 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
406 unsigned long addr)
407 {
408 pgtable_t token = pmd_pgtable(*pmd);
409 pmd_clear(pmd);
410 pte_free_tlb(tlb, token, addr);
411 tlb->mm->nr_ptes--;
412 }
413
414 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
415 unsigned long addr, unsigned long end,
416 unsigned long floor, unsigned long ceiling)
417 {
418 pmd_t *pmd;
419 unsigned long next;
420 unsigned long start;
421
422 start = addr;
423 pmd = pmd_offset(pud, addr);
424 do {
425 next = pmd_addr_end(addr, end);
426 if (pmd_none_or_clear_bad(pmd))
427 continue;
428 free_pte_range(tlb, pmd, addr);
429 } while (pmd++, addr = next, addr != end);
430
431 start &= PUD_MASK;
432 if (start < floor)
433 return;
434 if (ceiling) {
435 ceiling &= PUD_MASK;
436 if (!ceiling)
437 return;
438 }
439 if (end - 1 > ceiling - 1)
440 return;
441
442 pmd = pmd_offset(pud, start);
443 pud_clear(pud);
444 pmd_free_tlb(tlb, pmd, start);
445 }
446
447 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
448 unsigned long addr, unsigned long end,
449 unsigned long floor, unsigned long ceiling)
450 {
451 pud_t *pud;
452 unsigned long next;
453 unsigned long start;
454
455 start = addr;
456 pud = pud_offset(pgd, addr);
457 do {
458 next = pud_addr_end(addr, end);
459 if (pud_none_or_clear_bad(pud))
460 continue;
461 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
462 } while (pud++, addr = next, addr != end);
463
464 start &= PGDIR_MASK;
465 if (start < floor)
466 return;
467 if (ceiling) {
468 ceiling &= PGDIR_MASK;
469 if (!ceiling)
470 return;
471 }
472 if (end - 1 > ceiling - 1)
473 return;
474
475 pud = pud_offset(pgd, start);
476 pgd_clear(pgd);
477 pud_free_tlb(tlb, pud, start);
478 }
479
480 /*
481 * This function frees user-level page tables of a process.
482 *
483 * Must be called with pagetable lock held.
484 */
485 void free_pgd_range(struct mmu_gather *tlb,
486 unsigned long addr, unsigned long end,
487 unsigned long floor, unsigned long ceiling)
488 {
489 pgd_t *pgd;
490 unsigned long next;
491
492 /*
493 * The next few lines have given us lots of grief...
494 *
495 * Why are we testing PMD* at this top level? Because often
496 * there will be no work to do at all, and we'd prefer not to
497 * go all the way down to the bottom just to discover that.
498 *
499 * Why all these "- 1"s? Because 0 represents both the bottom
500 * of the address space and the top of it (using -1 for the
501 * top wouldn't help much: the masks would do the wrong thing).
502 * The rule is that addr 0 and floor 0 refer to the bottom of
503 * the address space, but end 0 and ceiling 0 refer to the top
504 * Comparisons need to use "end - 1" and "ceiling - 1" (though
505 * that end 0 case should be mythical).
506 *
507 * Wherever addr is brought up or ceiling brought down, we must
508 * be careful to reject "the opposite 0" before it confuses the
509 * subsequent tests. But what about where end is brought down
510 * by PMD_SIZE below? no, end can't go down to 0 there.
511 *
512 * Whereas we round start (addr) and ceiling down, by different
513 * masks at different levels, in order to test whether a table
514 * now has no other vmas using it, so can be freed, we don't
515 * bother to round floor or end up - the tests don't need that.
516 */
517
518 addr &= PMD_MASK;
519 if (addr < floor) {
520 addr += PMD_SIZE;
521 if (!addr)
522 return;
523 }
524 if (ceiling) {
525 ceiling &= PMD_MASK;
526 if (!ceiling)
527 return;
528 }
529 if (end - 1 > ceiling - 1)
530 end -= PMD_SIZE;
531 if (addr > end - 1)
532 return;
533
534 pgd = pgd_offset(tlb->mm, addr);
535 do {
536 next = pgd_addr_end(addr, end);
537 if (pgd_none_or_clear_bad(pgd))
538 continue;
539 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
540 } while (pgd++, addr = next, addr != end);
541 }
542
543 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
544 unsigned long floor, unsigned long ceiling)
545 {
546 while (vma) {
547 struct vm_area_struct *next = vma->vm_next;
548 unsigned long addr = vma->vm_start;
549
550 /*
551 * Hide vma from rmap and truncate_pagecache before freeing
552 * pgtables
553 */
554 unlink_anon_vmas(vma);
555 unlink_file_vma(vma);
556
557 if (is_vm_hugetlb_page(vma)) {
558 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
559 floor, next? next->vm_start: ceiling);
560 } else {
561 /*
562 * Optimization: gather nearby vmas into one call down
563 */
564 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
565 && !is_vm_hugetlb_page(next)) {
566 vma = next;
567 next = vma->vm_next;
568 unlink_anon_vmas(vma);
569 unlink_file_vma(vma);
570 }
571 free_pgd_range(tlb, addr, vma->vm_end,
572 floor, next? next->vm_start: ceiling);
573 }
574 vma = next;
575 }
576 }
577
578 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
579 pmd_t *pmd, unsigned long address)
580 {
581 pgtable_t new = pte_alloc_one(mm, address);
582 int wait_split_huge_page;
583 if (!new)
584 return -ENOMEM;
585
586 /*
587 * Ensure all pte setup (eg. pte page lock and page clearing) are
588 * visible before the pte is made visible to other CPUs by being
589 * put into page tables.
590 *
591 * The other side of the story is the pointer chasing in the page
592 * table walking code (when walking the page table without locking;
593 * ie. most of the time). Fortunately, these data accesses consist
594 * of a chain of data-dependent loads, meaning most CPUs (alpha
595 * being the notable exception) will already guarantee loads are
596 * seen in-order. See the alpha page table accessors for the
597 * smp_read_barrier_depends() barriers in page table walking code.
598 */
599 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
600
601 spin_lock(&mm->page_table_lock);
602 wait_split_huge_page = 0;
603 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
604 mm->nr_ptes++;
605 pmd_populate(mm, pmd, new);
606 new = NULL;
607 } else if (unlikely(pmd_trans_splitting(*pmd)))
608 wait_split_huge_page = 1;
609 spin_unlock(&mm->page_table_lock);
610 if (new)
611 pte_free(mm, new);
612 if (wait_split_huge_page)
613 wait_split_huge_page(vma->anon_vma, pmd);
614 return 0;
615 }
616
617 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
618 {
619 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
620 if (!new)
621 return -ENOMEM;
622
623 smp_wmb(); /* See comment in __pte_alloc */
624
625 spin_lock(&init_mm.page_table_lock);
626 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
627 pmd_populate_kernel(&init_mm, pmd, new);
628 new = NULL;
629 } else
630 VM_BUG_ON(pmd_trans_splitting(*pmd));
631 spin_unlock(&init_mm.page_table_lock);
632 if (new)
633 pte_free_kernel(&init_mm, new);
634 return 0;
635 }
636
637 static inline void init_rss_vec(int *rss)
638 {
639 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
640 }
641
642 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
643 {
644 int i;
645
646 if (current->mm == mm)
647 sync_mm_rss(mm);
648 for (i = 0; i < NR_MM_COUNTERS; i++)
649 if (rss[i])
650 add_mm_counter(mm, i, rss[i]);
651 }
652
653 /*
654 * This function is called to print an error when a bad pte
655 * is found. For example, we might have a PFN-mapped pte in
656 * a region that doesn't allow it.
657 *
658 * The calling function must still handle the error.
659 */
660 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
661 pte_t pte, struct page *page)
662 {
663 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
664 pud_t *pud = pud_offset(pgd, addr);
665 pmd_t *pmd = pmd_offset(pud, addr);
666 struct address_space *mapping;
667 pgoff_t index;
668 static unsigned long resume;
669 static unsigned long nr_shown;
670 static unsigned long nr_unshown;
671
672 /*
673 * Allow a burst of 60 reports, then keep quiet for that minute;
674 * or allow a steady drip of one report per second.
675 */
676 if (nr_shown == 60) {
677 if (time_before(jiffies, resume)) {
678 nr_unshown++;
679 return;
680 }
681 if (nr_unshown) {
682 printk(KERN_ALERT
683 "BUG: Bad page map: %lu messages suppressed\n",
684 nr_unshown);
685 nr_unshown = 0;
686 }
687 nr_shown = 0;
688 }
689 if (nr_shown++ == 0)
690 resume = jiffies + 60 * HZ;
691
692 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
693 index = linear_page_index(vma, addr);
694
695 printk(KERN_ALERT
696 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
697 current->comm,
698 (long long)pte_val(pte), (long long)pmd_val(*pmd));
699 if (page)
700 dump_page(page);
701 printk(KERN_ALERT
702 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
703 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
704 /*
705 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
706 */
707 if (vma->vm_ops)
708 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
709 vma->vm_ops->fault);
710 if (vma->vm_file && vma->vm_file->f_op)
711 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
712 vma->vm_file->f_op->mmap);
713 dump_stack();
714 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
715 }
716
717 static inline bool is_cow_mapping(vm_flags_t flags)
718 {
719 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
720 }
721
722 /*
723 * vm_normal_page -- This function gets the "struct page" associated with a pte.
724 *
725 * "Special" mappings do not wish to be associated with a "struct page" (either
726 * it doesn't exist, or it exists but they don't want to touch it). In this
727 * case, NULL is returned here. "Normal" mappings do have a struct page.
728 *
729 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
730 * pte bit, in which case this function is trivial. Secondly, an architecture
731 * may not have a spare pte bit, which requires a more complicated scheme,
732 * described below.
733 *
734 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
735 * special mapping (even if there are underlying and valid "struct pages").
736 * COWed pages of a VM_PFNMAP are always normal.
737 *
738 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
739 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
740 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
741 * mapping will always honor the rule
742 *
743 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
744 *
745 * And for normal mappings this is false.
746 *
747 * This restricts such mappings to be a linear translation from virtual address
748 * to pfn. To get around this restriction, we allow arbitrary mappings so long
749 * as the vma is not a COW mapping; in that case, we know that all ptes are
750 * special (because none can have been COWed).
751 *
752 *
753 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
754 *
755 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
756 * page" backing, however the difference is that _all_ pages with a struct
757 * page (that is, those where pfn_valid is true) are refcounted and considered
758 * normal pages by the VM. The disadvantage is that pages are refcounted
759 * (which can be slower and simply not an option for some PFNMAP users). The
760 * advantage is that we don't have to follow the strict linearity rule of
761 * PFNMAP mappings in order to support COWable mappings.
762 *
763 */
764 #ifdef __HAVE_ARCH_PTE_SPECIAL
765 # define HAVE_PTE_SPECIAL 1
766 #else
767 # define HAVE_PTE_SPECIAL 0
768 #endif
769 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
770 pte_t pte)
771 {
772 unsigned long pfn = pte_pfn(pte);
773
774 if (HAVE_PTE_SPECIAL) {
775 if (likely(!pte_special(pte)))
776 goto check_pfn;
777 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
778 return NULL;
779 if (!is_zero_pfn(pfn))
780 print_bad_pte(vma, addr, pte, NULL);
781 return NULL;
782 }
783
784 /* !HAVE_PTE_SPECIAL case follows: */
785
786 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
787 if (vma->vm_flags & VM_MIXEDMAP) {
788 if (!pfn_valid(pfn))
789 return NULL;
790 goto out;
791 } else {
792 unsigned long off;
793 off = (addr - vma->vm_start) >> PAGE_SHIFT;
794 if (pfn == vma->vm_pgoff + off)
795 return NULL;
796 if (!is_cow_mapping(vma->vm_flags))
797 return NULL;
798 }
799 }
800
801 if (is_zero_pfn(pfn))
802 return NULL;
803 check_pfn:
804 if (unlikely(pfn > highest_memmap_pfn)) {
805 print_bad_pte(vma, addr, pte, NULL);
806 return NULL;
807 }
808
809 /*
810 * NOTE! We still have PageReserved() pages in the page tables.
811 * eg. VDSO mappings can cause them to exist.
812 */
813 out:
814 return pfn_to_page(pfn);
815 }
816
817 /*
818 * copy one vm_area from one task to the other. Assumes the page tables
819 * already present in the new task to be cleared in the whole range
820 * covered by this vma.
821 */
822
823 static inline unsigned long
824 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
825 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
826 unsigned long addr, int *rss)
827 {
828 unsigned long vm_flags = vma->vm_flags;
829 pte_t pte = *src_pte;
830 struct page *page;
831
832 /* pte contains position in swap or file, so copy. */
833 if (unlikely(!pte_present(pte))) {
834 if (!pte_file(pte)) {
835 swp_entry_t entry = pte_to_swp_entry(pte);
836
837 if (likely(!non_swap_entry(entry))) {
838 if (swap_duplicate(entry) < 0)
839 return entry.val;
840
841 /* make sure dst_mm is on swapoff's mmlist. */
842 if (unlikely(list_empty(&dst_mm->mmlist))) {
843 spin_lock(&mmlist_lock);
844 if (list_empty(&dst_mm->mmlist))
845 list_add(&dst_mm->mmlist,
846 &src_mm->mmlist);
847 spin_unlock(&mmlist_lock);
848 }
849 rss[MM_SWAPENTS]++;
850 } else if (is_migration_entry(entry)) {
851 page = migration_entry_to_page(entry);
852
853 if (PageAnon(page))
854 rss[MM_ANONPAGES]++;
855 else
856 rss[MM_FILEPAGES]++;
857
858 if (is_write_migration_entry(entry) &&
859 is_cow_mapping(vm_flags)) {
860 /*
861 * COW mappings require pages in both
862 * parent and child to be set to read.
863 */
864 make_migration_entry_read(&entry);
865 pte = swp_entry_to_pte(entry);
866 set_pte_at(src_mm, addr, src_pte, pte);
867 }
868 }
869 }
870 goto out_set_pte;
871 }
872
873 /*
874 * If it's a COW mapping, write protect it both
875 * in the parent and the child
876 */
877 if (is_cow_mapping(vm_flags)) {
878 ptep_set_wrprotect(src_mm, addr, src_pte);
879 pte = pte_wrprotect(pte);
880 }
881
882 /*
883 * If it's a shared mapping, mark it clean in
884 * the child
885 */
886 if (vm_flags & VM_SHARED)
887 pte = pte_mkclean(pte);
888 pte = pte_mkold(pte);
889
890 page = vm_normal_page(vma, addr, pte);
891 if (page) {
892 get_page(page);
893 page_dup_rmap(page);
894 if (PageAnon(page))
895 rss[MM_ANONPAGES]++;
896 else
897 rss[MM_FILEPAGES]++;
898 }
899
900 out_set_pte:
901 set_pte_at(dst_mm, addr, dst_pte, pte);
902 return 0;
903 }
904
905 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
906 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
907 unsigned long addr, unsigned long end)
908 {
909 pte_t *orig_src_pte, *orig_dst_pte;
910 pte_t *src_pte, *dst_pte;
911 spinlock_t *src_ptl, *dst_ptl;
912 int progress = 0;
913 int rss[NR_MM_COUNTERS];
914 swp_entry_t entry = (swp_entry_t){0};
915
916 again:
917 init_rss_vec(rss);
918
919 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
920 if (!dst_pte)
921 return -ENOMEM;
922 src_pte = pte_offset_map(src_pmd, addr);
923 src_ptl = pte_lockptr(src_mm, src_pmd);
924 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
925 orig_src_pte = src_pte;
926 orig_dst_pte = dst_pte;
927 arch_enter_lazy_mmu_mode();
928
929 do {
930 /*
931 * We are holding two locks at this point - either of them
932 * could generate latencies in another task on another CPU.
933 */
934 if (progress >= 32) {
935 progress = 0;
936 if (need_resched() ||
937 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
938 break;
939 }
940 if (pte_none(*src_pte)) {
941 progress++;
942 continue;
943 }
944 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
945 vma, addr, rss);
946 if (entry.val)
947 break;
948 progress += 8;
949 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
950
951 arch_leave_lazy_mmu_mode();
952 spin_unlock(src_ptl);
953 pte_unmap(orig_src_pte);
954 add_mm_rss_vec(dst_mm, rss);
955 pte_unmap_unlock(orig_dst_pte, dst_ptl);
956 cond_resched();
957
958 if (entry.val) {
959 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
960 return -ENOMEM;
961 progress = 0;
962 }
963 if (addr != end)
964 goto again;
965 return 0;
966 }
967
968 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
969 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
970 unsigned long addr, unsigned long end)
971 {
972 pmd_t *src_pmd, *dst_pmd;
973 unsigned long next;
974
975 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
976 if (!dst_pmd)
977 return -ENOMEM;
978 src_pmd = pmd_offset(src_pud, addr);
979 do {
980 next = pmd_addr_end(addr, end);
981 if (pmd_trans_huge(*src_pmd)) {
982 int err;
983 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
984 err = copy_huge_pmd(dst_mm, src_mm,
985 dst_pmd, src_pmd, addr, vma);
986 if (err == -ENOMEM)
987 return -ENOMEM;
988 if (!err)
989 continue;
990 /* fall through */
991 }
992 if (pmd_none_or_clear_bad(src_pmd))
993 continue;
994 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
995 vma, addr, next))
996 return -ENOMEM;
997 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
998 return 0;
999 }
1000
1001 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1002 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1003 unsigned long addr, unsigned long end)
1004 {
1005 pud_t *src_pud, *dst_pud;
1006 unsigned long next;
1007
1008 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1009 if (!dst_pud)
1010 return -ENOMEM;
1011 src_pud = pud_offset(src_pgd, addr);
1012 do {
1013 next = pud_addr_end(addr, end);
1014 if (pud_none_or_clear_bad(src_pud))
1015 continue;
1016 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1017 vma, addr, next))
1018 return -ENOMEM;
1019 } while (dst_pud++, src_pud++, addr = next, addr != end);
1020 return 0;
1021 }
1022
1023 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1024 struct vm_area_struct *vma)
1025 {
1026 pgd_t *src_pgd, *dst_pgd;
1027 unsigned long next;
1028 unsigned long addr = vma->vm_start;
1029 unsigned long end = vma->vm_end;
1030 unsigned long mmun_start; /* For mmu_notifiers */
1031 unsigned long mmun_end; /* For mmu_notifiers */
1032 bool is_cow;
1033 int ret;
1034
1035 /*
1036 * Don't copy ptes where a page fault will fill them correctly.
1037 * Fork becomes much lighter when there are big shared or private
1038 * readonly mappings. The tradeoff is that copy_page_range is more
1039 * efficient than faulting.
1040 */
1041 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1042 VM_PFNMAP | VM_MIXEDMAP))) {
1043 if (!vma->anon_vma)
1044 return 0;
1045 }
1046
1047 if (is_vm_hugetlb_page(vma))
1048 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1049
1050 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1051 /*
1052 * We do not free on error cases below as remove_vma
1053 * gets called on error from higher level routine
1054 */
1055 ret = track_pfn_copy(vma);
1056 if (ret)
1057 return ret;
1058 }
1059
1060 /*
1061 * We need to invalidate the secondary MMU mappings only when
1062 * there could be a permission downgrade on the ptes of the
1063 * parent mm. And a permission downgrade will only happen if
1064 * is_cow_mapping() returns true.
1065 */
1066 is_cow = is_cow_mapping(vma->vm_flags);
1067 mmun_start = addr;
1068 mmun_end = end;
1069 if (is_cow)
1070 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1071 mmun_end);
1072
1073 ret = 0;
1074 dst_pgd = pgd_offset(dst_mm, addr);
1075 src_pgd = pgd_offset(src_mm, addr);
1076 do {
1077 next = pgd_addr_end(addr, end);
1078 if (pgd_none_or_clear_bad(src_pgd))
1079 continue;
1080 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1081 vma, addr, next))) {
1082 ret = -ENOMEM;
1083 break;
1084 }
1085 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1086
1087 if (is_cow)
1088 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1089 return ret;
1090 }
1091
1092 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1093 struct vm_area_struct *vma, pmd_t *pmd,
1094 unsigned long addr, unsigned long end,
1095 struct zap_details *details)
1096 {
1097 struct mm_struct *mm = tlb->mm;
1098 int force_flush = 0;
1099 int rss[NR_MM_COUNTERS];
1100 spinlock_t *ptl;
1101 pte_t *start_pte;
1102 pte_t *pte;
1103
1104 again:
1105 init_rss_vec(rss);
1106 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1107 pte = start_pte;
1108 arch_enter_lazy_mmu_mode();
1109 do {
1110 pte_t ptent = *pte;
1111 if (pte_none(ptent)) {
1112 continue;
1113 }
1114
1115 if (pte_present(ptent)) {
1116 struct page *page;
1117
1118 page = vm_normal_page(vma, addr, ptent);
1119 if (unlikely(details) && page) {
1120 /*
1121 * unmap_shared_mapping_pages() wants to
1122 * invalidate cache without truncating:
1123 * unmap shared but keep private pages.
1124 */
1125 if (details->check_mapping &&
1126 details->check_mapping != page->mapping)
1127 continue;
1128 /*
1129 * Each page->index must be checked when
1130 * invalidating or truncating nonlinear.
1131 */
1132 if (details->nonlinear_vma &&
1133 (page->index < details->first_index ||
1134 page->index > details->last_index))
1135 continue;
1136 }
1137 ptent = ptep_get_and_clear_full(mm, addr, pte,
1138 tlb->fullmm);
1139 tlb_remove_tlb_entry(tlb, pte, addr);
1140 if (unlikely(!page))
1141 continue;
1142 if (unlikely(details) && details->nonlinear_vma
1143 && linear_page_index(details->nonlinear_vma,
1144 addr) != page->index)
1145 set_pte_at(mm, addr, pte,
1146 pgoff_to_pte(page->index));
1147 if (PageAnon(page))
1148 rss[MM_ANONPAGES]--;
1149 else {
1150 if (pte_dirty(ptent))
1151 set_page_dirty(page);
1152 if (pte_young(ptent) &&
1153 likely(!VM_SequentialReadHint(vma)))
1154 mark_page_accessed(page);
1155 rss[MM_FILEPAGES]--;
1156 }
1157 page_remove_rmap(page);
1158 if (unlikely(page_mapcount(page) < 0))
1159 print_bad_pte(vma, addr, ptent, page);
1160 force_flush = !__tlb_remove_page(tlb, page);
1161 if (force_flush)
1162 break;
1163 continue;
1164 }
1165 /*
1166 * If details->check_mapping, we leave swap entries;
1167 * if details->nonlinear_vma, we leave file entries.
1168 */
1169 if (unlikely(details))
1170 continue;
1171 if (pte_file(ptent)) {
1172 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1173 print_bad_pte(vma, addr, ptent, NULL);
1174 } else {
1175 swp_entry_t entry = pte_to_swp_entry(ptent);
1176
1177 if (!non_swap_entry(entry))
1178 rss[MM_SWAPENTS]--;
1179 else if (is_migration_entry(entry)) {
1180 struct page *page;
1181
1182 page = migration_entry_to_page(entry);
1183
1184 if (PageAnon(page))
1185 rss[MM_ANONPAGES]--;
1186 else
1187 rss[MM_FILEPAGES]--;
1188 }
1189 if (unlikely(!free_swap_and_cache(entry)))
1190 print_bad_pte(vma, addr, ptent, NULL);
1191 }
1192 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1193 } while (pte++, addr += PAGE_SIZE, addr != end);
1194
1195 add_mm_rss_vec(mm, rss);
1196 arch_leave_lazy_mmu_mode();
1197 pte_unmap_unlock(start_pte, ptl);
1198
1199 /*
1200 * mmu_gather ran out of room to batch pages, we break out of
1201 * the PTE lock to avoid doing the potential expensive TLB invalidate
1202 * and page-free while holding it.
1203 */
1204 if (force_flush) {
1205 unsigned long old_end;
1206
1207 force_flush = 0;
1208
1209 /*
1210 * Flush the TLB just for the previous segment,
1211 * then update the range to be the remaining
1212 * TLB range.
1213 */
1214 old_end = tlb->end;
1215 tlb->end = addr;
1216
1217 tlb_flush_mmu(tlb);
1218
1219 tlb->start = addr;
1220 tlb->end = old_end;
1221
1222 if (addr != end)
1223 goto again;
1224 }
1225
1226 return addr;
1227 }
1228
1229 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1230 struct vm_area_struct *vma, pud_t *pud,
1231 unsigned long addr, unsigned long end,
1232 struct zap_details *details)
1233 {
1234 pmd_t *pmd;
1235 unsigned long next;
1236
1237 pmd = pmd_offset(pud, addr);
1238 do {
1239 next = pmd_addr_end(addr, end);
1240 if (pmd_trans_huge(*pmd)) {
1241 if (next - addr != HPAGE_PMD_SIZE) {
1242 #ifdef CONFIG_DEBUG_VM
1243 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1244 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1245 __func__, addr, end,
1246 vma->vm_start,
1247 vma->vm_end);
1248 BUG();
1249 }
1250 #endif
1251 split_huge_page_pmd(vma, addr, pmd);
1252 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1253 goto next;
1254 /* fall through */
1255 }
1256 /*
1257 * Here there can be other concurrent MADV_DONTNEED or
1258 * trans huge page faults running, and if the pmd is
1259 * none or trans huge it can change under us. This is
1260 * because MADV_DONTNEED holds the mmap_sem in read
1261 * mode.
1262 */
1263 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1264 goto next;
1265 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1266 next:
1267 cond_resched();
1268 } while (pmd++, addr = next, addr != end);
1269
1270 return addr;
1271 }
1272
1273 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1274 struct vm_area_struct *vma, pgd_t *pgd,
1275 unsigned long addr, unsigned long end,
1276 struct zap_details *details)
1277 {
1278 pud_t *pud;
1279 unsigned long next;
1280
1281 pud = pud_offset(pgd, addr);
1282 do {
1283 next = pud_addr_end(addr, end);
1284 if (pud_none_or_clear_bad(pud))
1285 continue;
1286 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1287 } while (pud++, addr = next, addr != end);
1288
1289 return addr;
1290 }
1291
1292 static void unmap_page_range(struct mmu_gather *tlb,
1293 struct vm_area_struct *vma,
1294 unsigned long addr, unsigned long end,
1295 struct zap_details *details)
1296 {
1297 pgd_t *pgd;
1298 unsigned long next;
1299
1300 if (details && !details->check_mapping && !details->nonlinear_vma)
1301 details = NULL;
1302
1303 BUG_ON(addr >= end);
1304 mem_cgroup_uncharge_start();
1305 tlb_start_vma(tlb, vma);
1306 pgd = pgd_offset(vma->vm_mm, addr);
1307 do {
1308 next = pgd_addr_end(addr, end);
1309 if (pgd_none_or_clear_bad(pgd))
1310 continue;
1311 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1312 } while (pgd++, addr = next, addr != end);
1313 tlb_end_vma(tlb, vma);
1314 mem_cgroup_uncharge_end();
1315 }
1316
1317
1318 static void unmap_single_vma(struct mmu_gather *tlb,
1319 struct vm_area_struct *vma, unsigned long start_addr,
1320 unsigned long end_addr,
1321 struct zap_details *details)
1322 {
1323 unsigned long start = max(vma->vm_start, start_addr);
1324 unsigned long end;
1325
1326 if (start >= vma->vm_end)
1327 return;
1328 end = min(vma->vm_end, end_addr);
1329 if (end <= vma->vm_start)
1330 return;
1331
1332 if (vma->vm_file)
1333 uprobe_munmap(vma, start, end);
1334
1335 if (unlikely(vma->vm_flags & VM_PFNMAP))
1336 untrack_pfn(vma, 0, 0);
1337
1338 if (start != end) {
1339 if (unlikely(is_vm_hugetlb_page(vma))) {
1340 /*
1341 * It is undesirable to test vma->vm_file as it
1342 * should be non-null for valid hugetlb area.
1343 * However, vm_file will be NULL in the error
1344 * cleanup path of do_mmap_pgoff. When
1345 * hugetlbfs ->mmap method fails,
1346 * do_mmap_pgoff() nullifies vma->vm_file
1347 * before calling this function to clean up.
1348 * Since no pte has actually been setup, it is
1349 * safe to do nothing in this case.
1350 */
1351 if (vma->vm_file) {
1352 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1353 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1354 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1355 }
1356 } else
1357 unmap_page_range(tlb, vma, start, end, details);
1358 }
1359 }
1360
1361 /**
1362 * unmap_vmas - unmap a range of memory covered by a list of vma's
1363 * @tlb: address of the caller's struct mmu_gather
1364 * @vma: the starting vma
1365 * @start_addr: virtual address at which to start unmapping
1366 * @end_addr: virtual address at which to end unmapping
1367 *
1368 * Unmap all pages in the vma list.
1369 *
1370 * Only addresses between `start' and `end' will be unmapped.
1371 *
1372 * The VMA list must be sorted in ascending virtual address order.
1373 *
1374 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1375 * range after unmap_vmas() returns. So the only responsibility here is to
1376 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1377 * drops the lock and schedules.
1378 */
1379 void unmap_vmas(struct mmu_gather *tlb,
1380 struct vm_area_struct *vma, unsigned long start_addr,
1381 unsigned long end_addr)
1382 {
1383 struct mm_struct *mm = vma->vm_mm;
1384
1385 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1386 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1387 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1388 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1389 }
1390
1391 /**
1392 * zap_page_range - remove user pages in a given range
1393 * @vma: vm_area_struct holding the applicable pages
1394 * @start: starting address of pages to zap
1395 * @size: number of bytes to zap
1396 * @details: details of nonlinear truncation or shared cache invalidation
1397 *
1398 * Caller must protect the VMA list
1399 */
1400 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1401 unsigned long size, struct zap_details *details)
1402 {
1403 struct mm_struct *mm = vma->vm_mm;
1404 struct mmu_gather tlb;
1405 unsigned long end = start + size;
1406
1407 lru_add_drain();
1408 tlb_gather_mmu(&tlb, mm, start, end);
1409 update_hiwater_rss(mm);
1410 mmu_notifier_invalidate_range_start(mm, start, end);
1411 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1412 unmap_single_vma(&tlb, vma, start, end, details);
1413 mmu_notifier_invalidate_range_end(mm, start, end);
1414 tlb_finish_mmu(&tlb, start, end);
1415 }
1416
1417 /**
1418 * zap_page_range_single - remove user pages in a given range
1419 * @vma: vm_area_struct holding the applicable pages
1420 * @address: starting address of pages to zap
1421 * @size: number of bytes to zap
1422 * @details: details of nonlinear truncation or shared cache invalidation
1423 *
1424 * The range must fit into one VMA.
1425 */
1426 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1427 unsigned long size, struct zap_details *details)
1428 {
1429 struct mm_struct *mm = vma->vm_mm;
1430 struct mmu_gather tlb;
1431 unsigned long end = address + size;
1432
1433 lru_add_drain();
1434 tlb_gather_mmu(&tlb, mm, address, end);
1435 update_hiwater_rss(mm);
1436 mmu_notifier_invalidate_range_start(mm, address, end);
1437 unmap_single_vma(&tlb, vma, address, end, details);
1438 mmu_notifier_invalidate_range_end(mm, address, end);
1439 tlb_finish_mmu(&tlb, address, end);
1440 }
1441
1442 /**
1443 * zap_vma_ptes - remove ptes mapping the vma
1444 * @vma: vm_area_struct holding ptes to be zapped
1445 * @address: starting address of pages to zap
1446 * @size: number of bytes to zap
1447 *
1448 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1449 *
1450 * The entire address range must be fully contained within the vma.
1451 *
1452 * Returns 0 if successful.
1453 */
1454 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1455 unsigned long size)
1456 {
1457 if (address < vma->vm_start || address + size > vma->vm_end ||
1458 !(vma->vm_flags & VM_PFNMAP))
1459 return -1;
1460 zap_page_range_single(vma, address, size, NULL);
1461 return 0;
1462 }
1463 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1464
1465 /*
1466 * FOLL_FORCE can write to even unwritable pte's, but only
1467 * after we've gone through a COW cycle and they are dirty.
1468 */
1469 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
1470 {
1471 return pte_write(pte) ||
1472 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
1473 }
1474
1475 /**
1476 * follow_page_mask - look up a page descriptor from a user-virtual address
1477 * @vma: vm_area_struct mapping @address
1478 * @address: virtual address to look up
1479 * @flags: flags modifying lookup behaviour
1480 * @page_mask: on output, *page_mask is set according to the size of the page
1481 *
1482 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1483 *
1484 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1485 * an error pointer if there is a mapping to something not represented
1486 * by a page descriptor (see also vm_normal_page()).
1487 */
1488 struct page *follow_page_mask(struct vm_area_struct *vma,
1489 unsigned long address, unsigned int flags,
1490 unsigned int *page_mask)
1491 {
1492 pgd_t *pgd;
1493 pud_t *pud;
1494 pmd_t *pmd;
1495 pte_t *ptep, pte;
1496 spinlock_t *ptl;
1497 struct page *page;
1498 struct mm_struct *mm = vma->vm_mm;
1499
1500 *page_mask = 0;
1501
1502 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1503 if (!IS_ERR(page)) {
1504 BUG_ON(flags & FOLL_GET);
1505 goto out;
1506 }
1507
1508 page = NULL;
1509 pgd = pgd_offset(mm, address);
1510 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1511 goto no_page_table;
1512
1513 pud = pud_offset(pgd, address);
1514 if (pud_none(*pud))
1515 goto no_page_table;
1516 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1517 BUG_ON(flags & FOLL_GET);
1518 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1519 goto out;
1520 }
1521 if (unlikely(pud_bad(*pud)))
1522 goto no_page_table;
1523
1524 pmd = pmd_offset(pud, address);
1525 if (pmd_none(*pmd))
1526 goto no_page_table;
1527 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1528 BUG_ON(flags & FOLL_GET);
1529 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1530 goto out;
1531 }
1532 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1533 goto no_page_table;
1534 if (pmd_trans_huge(*pmd)) {
1535 if (flags & FOLL_SPLIT) {
1536 split_huge_page_pmd(vma, address, pmd);
1537 goto split_fallthrough;
1538 }
1539 spin_lock(&mm->page_table_lock);
1540 if (likely(pmd_trans_huge(*pmd))) {
1541 if (unlikely(pmd_trans_splitting(*pmd))) {
1542 spin_unlock(&mm->page_table_lock);
1543 wait_split_huge_page(vma->anon_vma, pmd);
1544 } else {
1545 page = follow_trans_huge_pmd(vma, address,
1546 pmd, flags);
1547 spin_unlock(&mm->page_table_lock);
1548 *page_mask = HPAGE_PMD_NR - 1;
1549 goto out;
1550 }
1551 } else
1552 spin_unlock(&mm->page_table_lock);
1553 /* fall through */
1554 }
1555 split_fallthrough:
1556 if (unlikely(pmd_bad(*pmd)))
1557 goto no_page_table;
1558
1559 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1560
1561 pte = *ptep;
1562 if (!pte_present(pte)) {
1563 swp_entry_t entry;
1564 /*
1565 * KSM's break_ksm() relies upon recognizing a ksm page
1566 * even while it is being migrated, so for that case we
1567 * need migration_entry_wait().
1568 */
1569 if (likely(!(flags & FOLL_MIGRATION)))
1570 goto no_page;
1571 if (pte_none(pte) || pte_file(pte))
1572 goto no_page;
1573 entry = pte_to_swp_entry(pte);
1574 if (!is_migration_entry(entry))
1575 goto no_page;
1576 pte_unmap_unlock(ptep, ptl);
1577 migration_entry_wait(mm, pmd, address);
1578 goto split_fallthrough;
1579 }
1580 if ((flags & FOLL_NUMA) && pte_numa(pte))
1581 goto no_page;
1582 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags))
1583 goto unlock;
1584
1585 page = vm_normal_page(vma, address, pte);
1586 if (unlikely(!page)) {
1587 if ((flags & FOLL_DUMP) ||
1588 !is_zero_pfn(pte_pfn(pte)))
1589 goto bad_page;
1590 page = pte_page(pte);
1591 }
1592
1593 if (flags & FOLL_GET)
1594 get_page_foll(page);
1595 if (flags & FOLL_TOUCH) {
1596 if ((flags & FOLL_WRITE) &&
1597 !pte_dirty(pte) && !PageDirty(page))
1598 set_page_dirty(page);
1599 /*
1600 * pte_mkyoung() would be more correct here, but atomic care
1601 * is needed to avoid losing the dirty bit: it is easier to use
1602 * mark_page_accessed().
1603 */
1604 mark_page_accessed(page);
1605 }
1606 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1607 /*
1608 * The preliminary mapping check is mainly to avoid the
1609 * pointless overhead of lock_page on the ZERO_PAGE
1610 * which might bounce very badly if there is contention.
1611 *
1612 * If the page is already locked, we don't need to
1613 * handle it now - vmscan will handle it later if and
1614 * when it attempts to reclaim the page.
1615 */
1616 if (page->mapping && trylock_page(page)) {
1617 lru_add_drain(); /* push cached pages to LRU */
1618 /*
1619 * Because we lock page here, and migration is
1620 * blocked by the pte's page reference, and we
1621 * know the page is still mapped, we don't even
1622 * need to check for file-cache page truncation.
1623 */
1624 mlock_vma_page(page);
1625 unlock_page(page);
1626 }
1627 }
1628 unlock:
1629 pte_unmap_unlock(ptep, ptl);
1630 out:
1631 return page;
1632
1633 bad_page:
1634 pte_unmap_unlock(ptep, ptl);
1635 return ERR_PTR(-EFAULT);
1636
1637 no_page:
1638 pte_unmap_unlock(ptep, ptl);
1639 if (!pte_none(pte))
1640 return page;
1641
1642 no_page_table:
1643 /*
1644 * When core dumping an enormous anonymous area that nobody
1645 * has touched so far, we don't want to allocate unnecessary pages or
1646 * page tables. Return error instead of NULL to skip handle_mm_fault,
1647 * then get_dump_page() will return NULL to leave a hole in the dump.
1648 * But we can only make this optimization where a hole would surely
1649 * be zero-filled if handle_mm_fault() actually did handle it.
1650 */
1651 if ((flags & FOLL_DUMP) &&
1652 (!vma->vm_ops || !vma->vm_ops->fault))
1653 return ERR_PTR(-EFAULT);
1654 return page;
1655 }
1656
1657 /**
1658 * __get_user_pages() - pin user pages in memory
1659 * @tsk: task_struct of target task
1660 * @mm: mm_struct of target mm
1661 * @start: starting user address
1662 * @nr_pages: number of pages from start to pin
1663 * @gup_flags: flags modifying pin behaviour
1664 * @pages: array that receives pointers to the pages pinned.
1665 * Should be at least nr_pages long. Or NULL, if caller
1666 * only intends to ensure the pages are faulted in.
1667 * @vmas: array of pointers to vmas corresponding to each page.
1668 * Or NULL if the caller does not require them.
1669 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1670 *
1671 * Returns number of pages pinned. This may be fewer than the number
1672 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1673 * were pinned, returns -errno. Each page returned must be released
1674 * with a put_page() call when it is finished with. vmas will only
1675 * remain valid while mmap_sem is held.
1676 *
1677 * Must be called with mmap_sem held for read or write.
1678 *
1679 * __get_user_pages walks a process's page tables and takes a reference to
1680 * each struct page that each user address corresponds to at a given
1681 * instant. That is, it takes the page that would be accessed if a user
1682 * thread accesses the given user virtual address at that instant.
1683 *
1684 * This does not guarantee that the page exists in the user mappings when
1685 * __get_user_pages returns, and there may even be a completely different
1686 * page there in some cases (eg. if mmapped pagecache has been invalidated
1687 * and subsequently re faulted). However it does guarantee that the page
1688 * won't be freed completely. And mostly callers simply care that the page
1689 * contains data that was valid *at some point in time*. Typically, an IO
1690 * or similar operation cannot guarantee anything stronger anyway because
1691 * locks can't be held over the syscall boundary.
1692 *
1693 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1694 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1695 * appropriate) must be called after the page is finished with, and
1696 * before put_page is called.
1697 *
1698 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1699 * or mmap_sem contention, and if waiting is needed to pin all pages,
1700 * *@nonblocking will be set to 0.
1701 *
1702 * In most cases, get_user_pages or get_user_pages_fast should be used
1703 * instead of __get_user_pages. __get_user_pages should be used only if
1704 * you need some special @gup_flags.
1705 */
1706 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1707 unsigned long start, unsigned long nr_pages,
1708 unsigned int gup_flags, struct page **pages,
1709 struct vm_area_struct **vmas, int *nonblocking)
1710 {
1711 long i;
1712 unsigned long vm_flags;
1713 unsigned int page_mask;
1714
1715 if (!nr_pages)
1716 return 0;
1717
1718 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1719
1720 /*
1721 * Require read or write permissions.
1722 * If FOLL_FORCE is set, we only require the "MAY" flags.
1723 */
1724 vm_flags = (gup_flags & FOLL_WRITE) ?
1725 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1726 vm_flags &= (gup_flags & FOLL_FORCE) ?
1727 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1728
1729 /*
1730 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1731 * would be called on PROT_NONE ranges. We must never invoke
1732 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1733 * page faults would unprotect the PROT_NONE ranges if
1734 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1735 * bitflag. So to avoid that, don't set FOLL_NUMA if
1736 * FOLL_FORCE is set.
1737 */
1738 if (!(gup_flags & FOLL_FORCE))
1739 gup_flags |= FOLL_NUMA;
1740
1741 i = 0;
1742
1743 do {
1744 struct vm_area_struct *vma;
1745
1746 vma = find_extend_vma(mm, start);
1747 if (!vma && in_gate_area(mm, start)) {
1748 unsigned long pg = start & PAGE_MASK;
1749 pgd_t *pgd;
1750 pud_t *pud;
1751 pmd_t *pmd;
1752 pte_t *pte;
1753
1754 /* user gate pages are read-only */
1755 if (gup_flags & FOLL_WRITE)
1756 return i ? : -EFAULT;
1757 if (pg > TASK_SIZE)
1758 pgd = pgd_offset_k(pg);
1759 else
1760 pgd = pgd_offset_gate(mm, pg);
1761 BUG_ON(pgd_none(*pgd));
1762 pud = pud_offset(pgd, pg);
1763 BUG_ON(pud_none(*pud));
1764 pmd = pmd_offset(pud, pg);
1765 if (pmd_none(*pmd))
1766 return i ? : -EFAULT;
1767 VM_BUG_ON(pmd_trans_huge(*pmd));
1768 pte = pte_offset_map(pmd, pg);
1769 if (pte_none(*pte)) {
1770 pte_unmap(pte);
1771 return i ? : -EFAULT;
1772 }
1773 vma = get_gate_vma(mm);
1774 if (pages) {
1775 struct page *page;
1776
1777 page = vm_normal_page(vma, start, *pte);
1778 if (!page) {
1779 if (!(gup_flags & FOLL_DUMP) &&
1780 is_zero_pfn(pte_pfn(*pte)))
1781 page = pte_page(*pte);
1782 else {
1783 pte_unmap(pte);
1784 return i ? : -EFAULT;
1785 }
1786 }
1787 pages[i] = page;
1788 get_page(page);
1789 }
1790 pte_unmap(pte);
1791 page_mask = 0;
1792 goto next_page;
1793 }
1794
1795 if (!vma ||
1796 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1797 !(vm_flags & vma->vm_flags))
1798 return i ? : -EFAULT;
1799
1800 if (is_vm_hugetlb_page(vma)) {
1801 i = follow_hugetlb_page(mm, vma, pages, vmas,
1802 &start, &nr_pages, i, gup_flags);
1803 continue;
1804 }
1805
1806 do {
1807 struct page *page;
1808 unsigned int foll_flags = gup_flags;
1809 unsigned int page_increm;
1810
1811 /*
1812 * If we have a pending SIGKILL, don't keep faulting
1813 * pages and potentially allocating memory.
1814 */
1815 if (unlikely(fatal_signal_pending(current)))
1816 return i ? i : -ERESTARTSYS;
1817
1818 cond_resched();
1819 while (!(page = follow_page_mask(vma, start,
1820 foll_flags, &page_mask))) {
1821 int ret;
1822 unsigned int fault_flags = 0;
1823
1824 if (foll_flags & FOLL_WRITE)
1825 fault_flags |= FAULT_FLAG_WRITE;
1826 if (nonblocking)
1827 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1828 if (foll_flags & FOLL_NOWAIT)
1829 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1830
1831 ret = handle_mm_fault(mm, vma, start,
1832 fault_flags);
1833
1834 if (ret & VM_FAULT_ERROR) {
1835 if (ret & VM_FAULT_OOM)
1836 return i ? i : -ENOMEM;
1837 if (ret & (VM_FAULT_HWPOISON |
1838 VM_FAULT_HWPOISON_LARGE)) {
1839 if (i)
1840 return i;
1841 else if (gup_flags & FOLL_HWPOISON)
1842 return -EHWPOISON;
1843 else
1844 return -EFAULT;
1845 }
1846 if (ret & (VM_FAULT_SIGBUS |
1847 VM_FAULT_SIGSEGV))
1848 return i ? i : -EFAULT;
1849 BUG();
1850 }
1851
1852 if (tsk) {
1853 if (ret & VM_FAULT_MAJOR)
1854 tsk->maj_flt++;
1855 else
1856 tsk->min_flt++;
1857 }
1858
1859 if (ret & VM_FAULT_RETRY) {
1860 if (nonblocking)
1861 *nonblocking = 0;
1862 return i;
1863 }
1864
1865 /*
1866 * The VM_FAULT_WRITE bit tells us that
1867 * do_wp_page has broken COW when necessary,
1868 * even if maybe_mkwrite decided not to set
1869 * pte_write. We can thus safely do subsequent
1870 * page lookups as if they were reads. But only
1871 * do so when looping for pte_write is futile:
1872 * in some cases userspace may also be wanting
1873 * to write to the gotten user page, which a
1874 * read fault here might prevent (a readonly
1875 * page might get reCOWed by userspace write).
1876 */
1877 if ((ret & VM_FAULT_WRITE) &&
1878 !(vma->vm_flags & VM_WRITE))
1879 foll_flags |= FOLL_COW;
1880
1881 cond_resched();
1882 }
1883 if (IS_ERR(page))
1884 return i ? i : PTR_ERR(page);
1885 if (pages) {
1886 pages[i] = page;
1887
1888 flush_anon_page(vma, page, start);
1889 flush_dcache_page(page);
1890 page_mask = 0;
1891 }
1892 next_page:
1893 if (vmas) {
1894 vmas[i] = vma;
1895 page_mask = 0;
1896 }
1897 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1898 if (page_increm > nr_pages)
1899 page_increm = nr_pages;
1900 i += page_increm;
1901 start += page_increm * PAGE_SIZE;
1902 nr_pages -= page_increm;
1903 } while (nr_pages && start < vma->vm_end);
1904 } while (nr_pages);
1905 return i;
1906 }
1907 EXPORT_SYMBOL(__get_user_pages);
1908
1909 /*
1910 * fixup_user_fault() - manually resolve a user page fault
1911 * @tsk: the task_struct to use for page fault accounting, or
1912 * NULL if faults are not to be recorded.
1913 * @mm: mm_struct of target mm
1914 * @address: user address
1915 * @fault_flags:flags to pass down to handle_mm_fault()
1916 *
1917 * This is meant to be called in the specific scenario where for locking reasons
1918 * we try to access user memory in atomic context (within a pagefault_disable()
1919 * section), this returns -EFAULT, and we want to resolve the user fault before
1920 * trying again.
1921 *
1922 * Typically this is meant to be used by the futex code.
1923 *
1924 * The main difference with get_user_pages() is that this function will
1925 * unconditionally call handle_mm_fault() which will in turn perform all the
1926 * necessary SW fixup of the dirty and young bits in the PTE, while
1927 * handle_mm_fault() only guarantees to update these in the struct page.
1928 *
1929 * This is important for some architectures where those bits also gate the
1930 * access permission to the page because they are maintained in software. On
1931 * such architectures, gup() will not be enough to make a subsequent access
1932 * succeed.
1933 *
1934 * This should be called with the mm_sem held for read.
1935 */
1936 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1937 unsigned long address, unsigned int fault_flags)
1938 {
1939 struct vm_area_struct *vma;
1940 vm_flags_t vm_flags;
1941 int ret;
1942
1943 vma = find_extend_vma(mm, address);
1944 if (!vma || address < vma->vm_start)
1945 return -EFAULT;
1946
1947 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1948 if (!(vm_flags & vma->vm_flags))
1949 return -EFAULT;
1950
1951 ret = handle_mm_fault(mm, vma, address, fault_flags);
1952 if (ret & VM_FAULT_ERROR) {
1953 if (ret & VM_FAULT_OOM)
1954 return -ENOMEM;
1955 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1956 return -EHWPOISON;
1957 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
1958 return -EFAULT;
1959 BUG();
1960 }
1961 if (tsk) {
1962 if (ret & VM_FAULT_MAJOR)
1963 tsk->maj_flt++;
1964 else
1965 tsk->min_flt++;
1966 }
1967 return 0;
1968 }
1969
1970 /*
1971 * get_user_pages() - pin user pages in memory
1972 * @tsk: the task_struct to use for page fault accounting, or
1973 * NULL if faults are not to be recorded.
1974 * @mm: mm_struct of target mm
1975 * @start: starting user address
1976 * @nr_pages: number of pages from start to pin
1977 * @write: whether pages will be written to by the caller
1978 * @force: whether to force write access even if user mapping is
1979 * readonly. This will result in the page being COWed even
1980 * in MAP_SHARED mappings. You do not want this.
1981 * @pages: array that receives pointers to the pages pinned.
1982 * Should be at least nr_pages long. Or NULL, if caller
1983 * only intends to ensure the pages are faulted in.
1984 * @vmas: array of pointers to vmas corresponding to each page.
1985 * Or NULL if the caller does not require them.
1986 *
1987 * Returns number of pages pinned. This may be fewer than the number
1988 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1989 * were pinned, returns -errno. Each page returned must be released
1990 * with a put_page() call when it is finished with. vmas will only
1991 * remain valid while mmap_sem is held.
1992 *
1993 * Must be called with mmap_sem held for read or write.
1994 *
1995 * get_user_pages walks a process's page tables and takes a reference to
1996 * each struct page that each user address corresponds to at a given
1997 * instant. That is, it takes the page that would be accessed if a user
1998 * thread accesses the given user virtual address at that instant.
1999 *
2000 * This does not guarantee that the page exists in the user mappings when
2001 * get_user_pages returns, and there may even be a completely different
2002 * page there in some cases (eg. if mmapped pagecache has been invalidated
2003 * and subsequently re faulted). However it does guarantee that the page
2004 * won't be freed completely. And mostly callers simply care that the page
2005 * contains data that was valid *at some point in time*. Typically, an IO
2006 * or similar operation cannot guarantee anything stronger anyway because
2007 * locks can't be held over the syscall boundary.
2008 *
2009 * If write=0, the page must not be written to. If the page is written to,
2010 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2011 * after the page is finished with, and before put_page is called.
2012 *
2013 * get_user_pages is typically used for fewer-copy IO operations, to get a
2014 * handle on the memory by some means other than accesses via the user virtual
2015 * addresses. The pages may be submitted for DMA to devices or accessed via
2016 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2017 * use the correct cache flushing APIs.
2018 *
2019 * See also get_user_pages_fast, for performance critical applications.
2020 */
2021 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2022 unsigned long start, unsigned long nr_pages, int write,
2023 int force, struct page **pages, struct vm_area_struct **vmas)
2024 {
2025 int flags = FOLL_TOUCH;
2026
2027 if (pages)
2028 flags |= FOLL_GET;
2029 if (write)
2030 flags |= FOLL_WRITE;
2031 if (force)
2032 flags |= FOLL_FORCE;
2033
2034 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2035 NULL);
2036 }
2037 EXPORT_SYMBOL(get_user_pages);
2038
2039 /**
2040 * get_dump_page() - pin user page in memory while writing it to core dump
2041 * @addr: user address
2042 *
2043 * Returns struct page pointer of user page pinned for dump,
2044 * to be freed afterwards by page_cache_release() or put_page().
2045 *
2046 * Returns NULL on any kind of failure - a hole must then be inserted into
2047 * the corefile, to preserve alignment with its headers; and also returns
2048 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2049 * allowing a hole to be left in the corefile to save diskspace.
2050 *
2051 * Called without mmap_sem, but after all other threads have been killed.
2052 */
2053 #ifdef CONFIG_ELF_CORE
2054 struct page *get_dump_page(unsigned long addr)
2055 {
2056 struct vm_area_struct *vma;
2057 struct page *page;
2058
2059 if (__get_user_pages(current, current->mm, addr, 1,
2060 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2061 NULL) < 1)
2062 return NULL;
2063 flush_cache_page(vma, addr, page_to_pfn(page));
2064 return page;
2065 }
2066 #endif /* CONFIG_ELF_CORE */
2067
2068 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2069 spinlock_t **ptl)
2070 {
2071 pgd_t * pgd = pgd_offset(mm, addr);
2072 pud_t * pud = pud_alloc(mm, pgd, addr);
2073 if (pud) {
2074 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2075 if (pmd) {
2076 VM_BUG_ON(pmd_trans_huge(*pmd));
2077 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2078 }
2079 }
2080 return NULL;
2081 }
2082
2083 /*
2084 * This is the old fallback for page remapping.
2085 *
2086 * For historical reasons, it only allows reserved pages. Only
2087 * old drivers should use this, and they needed to mark their
2088 * pages reserved for the old functions anyway.
2089 */
2090 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2091 struct page *page, pgprot_t prot)
2092 {
2093 struct mm_struct *mm = vma->vm_mm;
2094 int retval;
2095 pte_t *pte;
2096 spinlock_t *ptl;
2097
2098 retval = -EINVAL;
2099 if (PageAnon(page))
2100 goto out;
2101 retval = -ENOMEM;
2102 flush_dcache_page(page);
2103 pte = get_locked_pte(mm, addr, &ptl);
2104 if (!pte)
2105 goto out;
2106 retval = -EBUSY;
2107 if (!pte_none(*pte))
2108 goto out_unlock;
2109
2110 /* Ok, finally just insert the thing.. */
2111 get_page(page);
2112 inc_mm_counter_fast(mm, MM_FILEPAGES);
2113 page_add_file_rmap(page);
2114 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2115
2116 retval = 0;
2117 pte_unmap_unlock(pte, ptl);
2118 return retval;
2119 out_unlock:
2120 pte_unmap_unlock(pte, ptl);
2121 out:
2122 return retval;
2123 }
2124
2125 /**
2126 * vm_insert_page - insert single page into user vma
2127 * @vma: user vma to map to
2128 * @addr: target user address of this page
2129 * @page: source kernel page
2130 *
2131 * This allows drivers to insert individual pages they've allocated
2132 * into a user vma.
2133 *
2134 * The page has to be a nice clean _individual_ kernel allocation.
2135 * If you allocate a compound page, you need to have marked it as
2136 * such (__GFP_COMP), or manually just split the page up yourself
2137 * (see split_page()).
2138 *
2139 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2140 * took an arbitrary page protection parameter. This doesn't allow
2141 * that. Your vma protection will have to be set up correctly, which
2142 * means that if you want a shared writable mapping, you'd better
2143 * ask for a shared writable mapping!
2144 *
2145 * The page does not need to be reserved.
2146 *
2147 * Usually this function is called from f_op->mmap() handler
2148 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2149 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2150 * function from other places, for example from page-fault handler.
2151 */
2152 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2153 struct page *page)
2154 {
2155 if (addr < vma->vm_start || addr >= vma->vm_end)
2156 return -EFAULT;
2157 if (!page_count(page))
2158 return -EINVAL;
2159 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2160 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2161 BUG_ON(vma->vm_flags & VM_PFNMAP);
2162 vma->vm_flags |= VM_MIXEDMAP;
2163 }
2164 return insert_page(vma, addr, page, vma->vm_page_prot);
2165 }
2166 EXPORT_SYMBOL(vm_insert_page);
2167
2168 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2169 unsigned long pfn, pgprot_t prot)
2170 {
2171 struct mm_struct *mm = vma->vm_mm;
2172 int retval;
2173 pte_t *pte, entry;
2174 spinlock_t *ptl;
2175
2176 retval = -ENOMEM;
2177 pte = get_locked_pte(mm, addr, &ptl);
2178 if (!pte)
2179 goto out;
2180 retval = -EBUSY;
2181 if (!pte_none(*pte))
2182 goto out_unlock;
2183
2184 /* Ok, finally just insert the thing.. */
2185 entry = pte_mkspecial(pfn_pte(pfn, prot));
2186 set_pte_at(mm, addr, pte, entry);
2187 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2188
2189 retval = 0;
2190 out_unlock:
2191 pte_unmap_unlock(pte, ptl);
2192 out:
2193 return retval;
2194 }
2195
2196 /**
2197 * vm_insert_pfn - insert single pfn into user vma
2198 * @vma: user vma to map to
2199 * @addr: target user address of this page
2200 * @pfn: source kernel pfn
2201 *
2202 * Similar to vm_insert_page, this allows drivers to insert individual pages
2203 * they've allocated into a user vma. Same comments apply.
2204 *
2205 * This function should only be called from a vm_ops->fault handler, and
2206 * in that case the handler should return NULL.
2207 *
2208 * vma cannot be a COW mapping.
2209 *
2210 * As this is called only for pages that do not currently exist, we
2211 * do not need to flush old virtual caches or the TLB.
2212 */
2213 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2214 unsigned long pfn)
2215 {
2216 int ret;
2217 pgprot_t pgprot = vma->vm_page_prot;
2218 /*
2219 * Technically, architectures with pte_special can avoid all these
2220 * restrictions (same for remap_pfn_range). However we would like
2221 * consistency in testing and feature parity among all, so we should
2222 * try to keep these invariants in place for everybody.
2223 */
2224 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2225 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2226 (VM_PFNMAP|VM_MIXEDMAP));
2227 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2228 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2229
2230 if (addr < vma->vm_start || addr >= vma->vm_end)
2231 return -EFAULT;
2232 if (track_pfn_insert(vma, &pgprot, pfn))
2233 return -EINVAL;
2234
2235 ret = insert_pfn(vma, addr, pfn, pgprot);
2236
2237 return ret;
2238 }
2239 EXPORT_SYMBOL(vm_insert_pfn);
2240
2241 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2242 unsigned long pfn)
2243 {
2244 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2245
2246 if (addr < vma->vm_start || addr >= vma->vm_end)
2247 return -EFAULT;
2248
2249 /*
2250 * If we don't have pte special, then we have to use the pfn_valid()
2251 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2252 * refcount the page if pfn_valid is true (hence insert_page rather
2253 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2254 * without pte special, it would there be refcounted as a normal page.
2255 */
2256 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2257 struct page *page;
2258
2259 page = pfn_to_page(pfn);
2260 return insert_page(vma, addr, page, vma->vm_page_prot);
2261 }
2262 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2263 }
2264 EXPORT_SYMBOL(vm_insert_mixed);
2265
2266 /*
2267 * maps a range of physical memory into the requested pages. the old
2268 * mappings are removed. any references to nonexistent pages results
2269 * in null mappings (currently treated as "copy-on-access")
2270 */
2271 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2272 unsigned long addr, unsigned long end,
2273 unsigned long pfn, pgprot_t prot)
2274 {
2275 pte_t *pte;
2276 spinlock_t *ptl;
2277
2278 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2279 if (!pte)
2280 return -ENOMEM;
2281 arch_enter_lazy_mmu_mode();
2282 do {
2283 BUG_ON(!pte_none(*pte));
2284 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2285 pfn++;
2286 } while (pte++, addr += PAGE_SIZE, addr != end);
2287 arch_leave_lazy_mmu_mode();
2288 pte_unmap_unlock(pte - 1, ptl);
2289 return 0;
2290 }
2291
2292 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2293 unsigned long addr, unsigned long end,
2294 unsigned long pfn, pgprot_t prot)
2295 {
2296 pmd_t *pmd;
2297 unsigned long next;
2298
2299 pfn -= addr >> PAGE_SHIFT;
2300 pmd = pmd_alloc(mm, pud, addr);
2301 if (!pmd)
2302 return -ENOMEM;
2303 VM_BUG_ON(pmd_trans_huge(*pmd));
2304 do {
2305 next = pmd_addr_end(addr, end);
2306 if (remap_pte_range(mm, pmd, addr, next,
2307 pfn + (addr >> PAGE_SHIFT), prot))
2308 return -ENOMEM;
2309 } while (pmd++, addr = next, addr != end);
2310 return 0;
2311 }
2312
2313 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2314 unsigned long addr, unsigned long end,
2315 unsigned long pfn, pgprot_t prot)
2316 {
2317 pud_t *pud;
2318 unsigned long next;
2319
2320 pfn -= addr >> PAGE_SHIFT;
2321 pud = pud_alloc(mm, pgd, addr);
2322 if (!pud)
2323 return -ENOMEM;
2324 do {
2325 next = pud_addr_end(addr, end);
2326 if (remap_pmd_range(mm, pud, addr, next,
2327 pfn + (addr >> PAGE_SHIFT), prot))
2328 return -ENOMEM;
2329 } while (pud++, addr = next, addr != end);
2330 return 0;
2331 }
2332
2333 /**
2334 * remap_pfn_range - remap kernel memory to userspace
2335 * @vma: user vma to map to
2336 * @addr: target user address to start at
2337 * @pfn: physical address of kernel memory
2338 * @size: size of map area
2339 * @prot: page protection flags for this mapping
2340 *
2341 * Note: this is only safe if the mm semaphore is held when called.
2342 */
2343 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2344 unsigned long pfn, unsigned long size, pgprot_t prot)
2345 {
2346 pgd_t *pgd;
2347 unsigned long next;
2348 unsigned long end = addr + PAGE_ALIGN(size);
2349 struct mm_struct *mm = vma->vm_mm;
2350 int err;
2351
2352 /*
2353 * Physically remapped pages are special. Tell the
2354 * rest of the world about it:
2355 * VM_IO tells people not to look at these pages
2356 * (accesses can have side effects).
2357 * VM_PFNMAP tells the core MM that the base pages are just
2358 * raw PFN mappings, and do not have a "struct page" associated
2359 * with them.
2360 * VM_DONTEXPAND
2361 * Disable vma merging and expanding with mremap().
2362 * VM_DONTDUMP
2363 * Omit vma from core dump, even when VM_IO turned off.
2364 *
2365 * There's a horrible special case to handle copy-on-write
2366 * behaviour that some programs depend on. We mark the "original"
2367 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2368 * See vm_normal_page() for details.
2369 */
2370 if (is_cow_mapping(vma->vm_flags)) {
2371 if (addr != vma->vm_start || end != vma->vm_end)
2372 return -EINVAL;
2373 vma->vm_pgoff = pfn;
2374 }
2375
2376 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2377 if (err)
2378 return -EINVAL;
2379
2380 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2381
2382 BUG_ON(addr >= end);
2383 pfn -= addr >> PAGE_SHIFT;
2384 pgd = pgd_offset(mm, addr);
2385 flush_cache_range(vma, addr, end);
2386 do {
2387 next = pgd_addr_end(addr, end);
2388 err = remap_pud_range(mm, pgd, addr, next,
2389 pfn + (addr >> PAGE_SHIFT), prot);
2390 if (err)
2391 break;
2392 } while (pgd++, addr = next, addr != end);
2393
2394 if (err)
2395 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2396
2397 return err;
2398 }
2399 EXPORT_SYMBOL(remap_pfn_range);
2400
2401 /**
2402 * vm_iomap_memory - remap memory to userspace
2403 * @vma: user vma to map to
2404 * @start: start of area
2405 * @len: size of area
2406 *
2407 * This is a simplified io_remap_pfn_range() for common driver use. The
2408 * driver just needs to give us the physical memory range to be mapped,
2409 * we'll figure out the rest from the vma information.
2410 *
2411 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2412 * whatever write-combining details or similar.
2413 */
2414 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2415 {
2416 unsigned long vm_len, pfn, pages;
2417
2418 /* Check that the physical memory area passed in looks valid */
2419 if (start + len < start)
2420 return -EINVAL;
2421 /*
2422 * You *really* shouldn't map things that aren't page-aligned,
2423 * but we've historically allowed it because IO memory might
2424 * just have smaller alignment.
2425 */
2426 len += start & ~PAGE_MASK;
2427 pfn = start >> PAGE_SHIFT;
2428 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2429 if (pfn + pages < pfn)
2430 return -EINVAL;
2431
2432 /* We start the mapping 'vm_pgoff' pages into the area */
2433 if (vma->vm_pgoff > pages)
2434 return -EINVAL;
2435 pfn += vma->vm_pgoff;
2436 pages -= vma->vm_pgoff;
2437
2438 /* Can we fit all of the mapping? */
2439 vm_len = vma->vm_end - vma->vm_start;
2440 if (vm_len >> PAGE_SHIFT > pages)
2441 return -EINVAL;
2442
2443 /* Ok, let it rip */
2444 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2445 }
2446 EXPORT_SYMBOL(vm_iomap_memory);
2447
2448 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2449 unsigned long addr, unsigned long end,
2450 pte_fn_t fn, void *data)
2451 {
2452 pte_t *pte;
2453 int err;
2454 pgtable_t token;
2455 spinlock_t *uninitialized_var(ptl);
2456
2457 pte = (mm == &init_mm) ?
2458 pte_alloc_kernel(pmd, addr) :
2459 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2460 if (!pte)
2461 return -ENOMEM;
2462
2463 BUG_ON(pmd_huge(*pmd));
2464
2465 arch_enter_lazy_mmu_mode();
2466
2467 token = pmd_pgtable(*pmd);
2468
2469 do {
2470 err = fn(pte++, token, addr, data);
2471 if (err)
2472 break;
2473 } while (addr += PAGE_SIZE, addr != end);
2474
2475 arch_leave_lazy_mmu_mode();
2476
2477 if (mm != &init_mm)
2478 pte_unmap_unlock(pte-1, ptl);
2479 return err;
2480 }
2481
2482 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2483 unsigned long addr, unsigned long end,
2484 pte_fn_t fn, void *data)
2485 {
2486 pmd_t *pmd;
2487 unsigned long next;
2488 int err;
2489
2490 BUG_ON(pud_huge(*pud));
2491
2492 pmd = pmd_alloc(mm, pud, addr);
2493 if (!pmd)
2494 return -ENOMEM;
2495 do {
2496 next = pmd_addr_end(addr, end);
2497 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2498 if (err)
2499 break;
2500 } while (pmd++, addr = next, addr != end);
2501 return err;
2502 }
2503
2504 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2505 unsigned long addr, unsigned long end,
2506 pte_fn_t fn, void *data)
2507 {
2508 pud_t *pud;
2509 unsigned long next;
2510 int err;
2511
2512 pud = pud_alloc(mm, pgd, addr);
2513 if (!pud)
2514 return -ENOMEM;
2515 do {
2516 next = pud_addr_end(addr, end);
2517 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2518 if (err)
2519 break;
2520 } while (pud++, addr = next, addr != end);
2521 return err;
2522 }
2523
2524 /*
2525 * Scan a region of virtual memory, filling in page tables as necessary
2526 * and calling a provided function on each leaf page table.
2527 */
2528 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2529 unsigned long size, pte_fn_t fn, void *data)
2530 {
2531 pgd_t *pgd;
2532 unsigned long next;
2533 unsigned long end = addr + size;
2534 int err;
2535
2536 BUG_ON(addr >= end);
2537 pgd = pgd_offset(mm, addr);
2538 do {
2539 next = pgd_addr_end(addr, end);
2540 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2541 if (err)
2542 break;
2543 } while (pgd++, addr = next, addr != end);
2544
2545 return err;
2546 }
2547 EXPORT_SYMBOL_GPL(apply_to_page_range);
2548
2549 /*
2550 * handle_pte_fault chooses page fault handler according to an entry
2551 * which was read non-atomically. Before making any commitment, on
2552 * those architectures or configurations (e.g. i386 with PAE) which
2553 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2554 * must check under lock before unmapping the pte and proceeding
2555 * (but do_wp_page is only called after already making such a check;
2556 * and do_anonymous_page can safely check later on).
2557 */
2558 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2559 pte_t *page_table, pte_t orig_pte)
2560 {
2561 int same = 1;
2562 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2563 if (sizeof(pte_t) > sizeof(unsigned long)) {
2564 spinlock_t *ptl = pte_lockptr(mm, pmd);
2565 spin_lock(ptl);
2566 same = pte_same(*page_table, orig_pte);
2567 spin_unlock(ptl);
2568 }
2569 #endif
2570 pte_unmap(page_table);
2571 return same;
2572 }
2573
2574 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2575 {
2576 /*
2577 * If the source page was a PFN mapping, we don't have
2578 * a "struct page" for it. We do a best-effort copy by
2579 * just copying from the original user address. If that
2580 * fails, we just zero-fill it. Live with it.
2581 */
2582 if (unlikely(!src)) {
2583 void *kaddr = kmap_atomic(dst);
2584 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2585
2586 /*
2587 * This really shouldn't fail, because the page is there
2588 * in the page tables. But it might just be unreadable,
2589 * in which case we just give up and fill the result with
2590 * zeroes.
2591 */
2592 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2593 clear_page(kaddr);
2594 kunmap_atomic(kaddr);
2595 flush_dcache_page(dst);
2596 } else
2597 copy_user_highpage(dst, src, va, vma);
2598 }
2599
2600 /*
2601 * This routine handles present pages, when users try to write
2602 * to a shared page. It is done by copying the page to a new address
2603 * and decrementing the shared-page counter for the old page.
2604 *
2605 * Note that this routine assumes that the protection checks have been
2606 * done by the caller (the low-level page fault routine in most cases).
2607 * Thus we can safely just mark it writable once we've done any necessary
2608 * COW.
2609 *
2610 * We also mark the page dirty at this point even though the page will
2611 * change only once the write actually happens. This avoids a few races,
2612 * and potentially makes it more efficient.
2613 *
2614 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2615 * but allow concurrent faults), with pte both mapped and locked.
2616 * We return with mmap_sem still held, but pte unmapped and unlocked.
2617 */
2618 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2619 unsigned long address, pte_t *page_table, pmd_t *pmd,
2620 spinlock_t *ptl, pte_t orig_pte)
2621 __releases(ptl)
2622 {
2623 struct page *old_page, *new_page = NULL;
2624 pte_t entry;
2625 int ret = 0;
2626 int page_mkwrite = 0;
2627 struct page *dirty_page = NULL;
2628 unsigned long mmun_start = 0; /* For mmu_notifiers */
2629 unsigned long mmun_end = 0; /* For mmu_notifiers */
2630
2631 old_page = vm_normal_page(vma, address, orig_pte);
2632 if (!old_page) {
2633 /*
2634 * VM_MIXEDMAP !pfn_valid() case
2635 *
2636 * We should not cow pages in a shared writeable mapping.
2637 * Just mark the pages writable as we can't do any dirty
2638 * accounting on raw pfn maps.
2639 */
2640 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2641 (VM_WRITE|VM_SHARED))
2642 goto reuse;
2643 goto gotten;
2644 }
2645
2646 /*
2647 * Take out anonymous pages first, anonymous shared vmas are
2648 * not dirty accountable.
2649 */
2650 if (PageAnon(old_page) && !PageKsm(old_page)) {
2651 if (!trylock_page(old_page)) {
2652 page_cache_get(old_page);
2653 pte_unmap_unlock(page_table, ptl);
2654 lock_page(old_page);
2655 page_table = pte_offset_map_lock(mm, pmd, address,
2656 &ptl);
2657 if (!pte_same(*page_table, orig_pte)) {
2658 unlock_page(old_page);
2659 goto unlock;
2660 }
2661 page_cache_release(old_page);
2662 }
2663 if (reuse_swap_page(old_page)) {
2664 /*
2665 * The page is all ours. Move it to our anon_vma so
2666 * the rmap code will not search our parent or siblings.
2667 * Protected against the rmap code by the page lock.
2668 */
2669 page_move_anon_rmap(old_page, vma, address);
2670 unlock_page(old_page);
2671 goto reuse;
2672 }
2673 unlock_page(old_page);
2674 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2675 (VM_WRITE|VM_SHARED))) {
2676 /*
2677 * Only catch write-faults on shared writable pages,
2678 * read-only shared pages can get COWed by
2679 * get_user_pages(.write=1, .force=1).
2680 */
2681 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2682 struct vm_fault vmf;
2683 int tmp;
2684
2685 vmf.virtual_address = (void __user *)(address &
2686 PAGE_MASK);
2687 vmf.pgoff = old_page->index;
2688 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2689 vmf.page = old_page;
2690
2691 /*
2692 * Notify the address space that the page is about to
2693 * become writable so that it can prohibit this or wait
2694 * for the page to get into an appropriate state.
2695 *
2696 * We do this without the lock held, so that it can
2697 * sleep if it needs to.
2698 */
2699 page_cache_get(old_page);
2700 pte_unmap_unlock(page_table, ptl);
2701
2702 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2703 if (unlikely(tmp &
2704 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2705 ret = tmp;
2706 goto unwritable_page;
2707 }
2708 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2709 lock_page(old_page);
2710 if (!old_page->mapping) {
2711 ret = 0; /* retry the fault */
2712 unlock_page(old_page);
2713 goto unwritable_page;
2714 }
2715 } else
2716 VM_BUG_ON(!PageLocked(old_page));
2717
2718 /*
2719 * Since we dropped the lock we need to revalidate
2720 * the PTE as someone else may have changed it. If
2721 * they did, we just return, as we can count on the
2722 * MMU to tell us if they didn't also make it writable.
2723 */
2724 page_table = pte_offset_map_lock(mm, pmd, address,
2725 &ptl);
2726 if (!pte_same(*page_table, orig_pte)) {
2727 unlock_page(old_page);
2728 goto unlock;
2729 }
2730
2731 page_mkwrite = 1;
2732 }
2733 dirty_page = old_page;
2734 get_page(dirty_page);
2735
2736 reuse:
2737 flush_cache_page(vma, address, pte_pfn(orig_pte));
2738 entry = pte_mkyoung(orig_pte);
2739 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2740 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2741 update_mmu_cache(vma, address, page_table);
2742 pte_unmap_unlock(page_table, ptl);
2743 ret |= VM_FAULT_WRITE;
2744
2745 if (!dirty_page)
2746 return ret;
2747
2748 /*
2749 * Yes, Virginia, this is actually required to prevent a race
2750 * with clear_page_dirty_for_io() from clearing the page dirty
2751 * bit after it clear all dirty ptes, but before a racing
2752 * do_wp_page installs a dirty pte.
2753 *
2754 * __do_fault is protected similarly.
2755 */
2756 if (!page_mkwrite) {
2757 wait_on_page_locked(dirty_page);
2758 set_page_dirty_balance(dirty_page, page_mkwrite);
2759 /* file_update_time outside page_lock */
2760 if (vma->vm_file)
2761 file_update_time(vma->vm_file);
2762 }
2763 put_page(dirty_page);
2764 if (page_mkwrite) {
2765 struct address_space *mapping = dirty_page->mapping;
2766
2767 set_page_dirty(dirty_page);
2768 unlock_page(dirty_page);
2769 page_cache_release(dirty_page);
2770 if (mapping) {
2771 /*
2772 * Some device drivers do not set page.mapping
2773 * but still dirty their pages
2774 */
2775 balance_dirty_pages_ratelimited(mapping);
2776 }
2777 }
2778
2779 return ret;
2780 }
2781
2782 /*
2783 * Ok, we need to copy. Oh, well..
2784 */
2785 page_cache_get(old_page);
2786 gotten:
2787 pte_unmap_unlock(page_table, ptl);
2788
2789 if (unlikely(anon_vma_prepare(vma)))
2790 goto oom;
2791
2792 if (is_zero_pfn(pte_pfn(orig_pte))) {
2793 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2794 if (!new_page)
2795 goto oom;
2796 } else {
2797 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2798 if (!new_page)
2799 goto oom;
2800 cow_user_page(new_page, old_page, address, vma);
2801 }
2802 __SetPageUptodate(new_page);
2803
2804 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2805 goto oom_free_new;
2806
2807 mmun_start = address & PAGE_MASK;
2808 mmun_end = mmun_start + PAGE_SIZE;
2809 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2810
2811 /*
2812 * Re-check the pte - we dropped the lock
2813 */
2814 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2815 if (likely(pte_same(*page_table, orig_pte))) {
2816 if (old_page) {
2817 if (!PageAnon(old_page)) {
2818 dec_mm_counter_fast(mm, MM_FILEPAGES);
2819 inc_mm_counter_fast(mm, MM_ANONPAGES);
2820 }
2821 } else
2822 inc_mm_counter_fast(mm, MM_ANONPAGES);
2823 flush_cache_page(vma, address, pte_pfn(orig_pte));
2824 entry = mk_pte(new_page, vma->vm_page_prot);
2825 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2826 /*
2827 * Clear the pte entry and flush it first, before updating the
2828 * pte with the new entry. This will avoid a race condition
2829 * seen in the presence of one thread doing SMC and another
2830 * thread doing COW.
2831 */
2832 ptep_clear_flush(vma, address, page_table);
2833 page_add_new_anon_rmap(new_page, vma, address);
2834 /*
2835 * We call the notify macro here because, when using secondary
2836 * mmu page tables (such as kvm shadow page tables), we want the
2837 * new page to be mapped directly into the secondary page table.
2838 */
2839 set_pte_at_notify(mm, address, page_table, entry);
2840 update_mmu_cache(vma, address, page_table);
2841 if (old_page) {
2842 /*
2843 * Only after switching the pte to the new page may
2844 * we remove the mapcount here. Otherwise another
2845 * process may come and find the rmap count decremented
2846 * before the pte is switched to the new page, and
2847 * "reuse" the old page writing into it while our pte
2848 * here still points into it and can be read by other
2849 * threads.
2850 *
2851 * The critical issue is to order this
2852 * page_remove_rmap with the ptp_clear_flush above.
2853 * Those stores are ordered by (if nothing else,)
2854 * the barrier present in the atomic_add_negative
2855 * in page_remove_rmap.
2856 *
2857 * Then the TLB flush in ptep_clear_flush ensures that
2858 * no process can access the old page before the
2859 * decremented mapcount is visible. And the old page
2860 * cannot be reused until after the decremented
2861 * mapcount is visible. So transitively, TLBs to
2862 * old page will be flushed before it can be reused.
2863 */
2864 page_remove_rmap(old_page);
2865 }
2866
2867 /* Free the old page.. */
2868 new_page = old_page;
2869 ret |= VM_FAULT_WRITE;
2870 } else
2871 mem_cgroup_uncharge_page(new_page);
2872
2873 if (new_page)
2874 page_cache_release(new_page);
2875 unlock:
2876 pte_unmap_unlock(page_table, ptl);
2877 if (mmun_end > mmun_start)
2878 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2879 if (old_page) {
2880 /*
2881 * Don't let another task, with possibly unlocked vma,
2882 * keep the mlocked page.
2883 */
2884 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2885 lock_page(old_page); /* LRU manipulation */
2886 munlock_vma_page(old_page);
2887 unlock_page(old_page);
2888 }
2889 page_cache_release(old_page);
2890 }
2891 return ret;
2892 oom_free_new:
2893 page_cache_release(new_page);
2894 oom:
2895 if (old_page)
2896 page_cache_release(old_page);
2897 return VM_FAULT_OOM;
2898
2899 unwritable_page:
2900 page_cache_release(old_page);
2901 return ret;
2902 }
2903
2904 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2905 unsigned long start_addr, unsigned long end_addr,
2906 struct zap_details *details)
2907 {
2908 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2909 }
2910
2911 static inline void unmap_mapping_range_tree(struct rb_root *root,
2912 struct zap_details *details)
2913 {
2914 struct vm_area_struct *vma;
2915 pgoff_t vba, vea, zba, zea;
2916
2917 vma_interval_tree_foreach(vma, root,
2918 details->first_index, details->last_index) {
2919
2920 vba = vma->vm_pgoff;
2921 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2922 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2923 zba = details->first_index;
2924 if (zba < vba)
2925 zba = vba;
2926 zea = details->last_index;
2927 if (zea > vea)
2928 zea = vea;
2929
2930 unmap_mapping_range_vma(vma,
2931 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2932 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2933 details);
2934 }
2935 }
2936
2937 static inline void unmap_mapping_range_list(struct list_head *head,
2938 struct zap_details *details)
2939 {
2940 struct vm_area_struct *vma;
2941
2942 /*
2943 * In nonlinear VMAs there is no correspondence between virtual address
2944 * offset and file offset. So we must perform an exhaustive search
2945 * across *all* the pages in each nonlinear VMA, not just the pages
2946 * whose virtual address lies outside the file truncation point.
2947 */
2948 list_for_each_entry(vma, head, shared.nonlinear) {
2949 details->nonlinear_vma = vma;
2950 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2951 }
2952 }
2953
2954 /**
2955 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2956 * @mapping: the address space containing mmaps to be unmapped.
2957 * @holebegin: byte in first page to unmap, relative to the start of
2958 * the underlying file. This will be rounded down to a PAGE_SIZE
2959 * boundary. Note that this is different from truncate_pagecache(), which
2960 * must keep the partial page. In contrast, we must get rid of
2961 * partial pages.
2962 * @holelen: size of prospective hole in bytes. This will be rounded
2963 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2964 * end of the file.
2965 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2966 * but 0 when invalidating pagecache, don't throw away private data.
2967 */
2968 void unmap_mapping_range(struct address_space *mapping,
2969 loff_t const holebegin, loff_t const holelen, int even_cows)
2970 {
2971 struct zap_details details;
2972 pgoff_t hba = holebegin >> PAGE_SHIFT;
2973 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2974
2975 /* Check for overflow. */
2976 if (sizeof(holelen) > sizeof(hlen)) {
2977 long long holeend =
2978 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2979 if (holeend & ~(long long)ULONG_MAX)
2980 hlen = ULONG_MAX - hba + 1;
2981 }
2982
2983 details.check_mapping = even_cows? NULL: mapping;
2984 details.nonlinear_vma = NULL;
2985 details.first_index = hba;
2986 details.last_index = hba + hlen - 1;
2987 if (details.last_index < details.first_index)
2988 details.last_index = ULONG_MAX;
2989
2990
2991 mutex_lock(&mapping->i_mmap_mutex);
2992 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2993 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2994 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2995 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2996 mutex_unlock(&mapping->i_mmap_mutex);
2997 }
2998 EXPORT_SYMBOL(unmap_mapping_range);
2999
3000 /*
3001 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3002 * but allow concurrent faults), and pte mapped but not yet locked.
3003 * We return with mmap_sem still held, but pte unmapped and unlocked.
3004 */
3005 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3006 unsigned long address, pte_t *page_table, pmd_t *pmd,
3007 unsigned int flags, pte_t orig_pte)
3008 {
3009 spinlock_t *ptl;
3010 struct page *page, *swapcache;
3011 swp_entry_t entry;
3012 pte_t pte;
3013 int locked;
3014 struct mem_cgroup *ptr;
3015 int exclusive = 0;
3016 int ret = 0;
3017
3018 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3019 goto out;
3020
3021 entry = pte_to_swp_entry(orig_pte);
3022 if (unlikely(non_swap_entry(entry))) {
3023 if (is_migration_entry(entry)) {
3024 migration_entry_wait(mm, pmd, address);
3025 } else if (is_hwpoison_entry(entry)) {
3026 ret = VM_FAULT_HWPOISON;
3027 } else {
3028 print_bad_pte(vma, address, orig_pte, NULL);
3029 ret = VM_FAULT_SIGBUS;
3030 }
3031 goto out;
3032 }
3033 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3034 page = lookup_swap_cache(entry);
3035 if (!page) {
3036 page = swapin_readahead(entry,
3037 GFP_HIGHUSER_MOVABLE, vma, address);
3038 if (!page) {
3039 /*
3040 * Back out if somebody else faulted in this pte
3041 * while we released the pte lock.
3042 */
3043 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3044 if (likely(pte_same(*page_table, orig_pte)))
3045 ret = VM_FAULT_OOM;
3046 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3047 goto unlock;
3048 }
3049
3050 /* Had to read the page from swap area: Major fault */
3051 ret = VM_FAULT_MAJOR;
3052 count_vm_event(PGMAJFAULT);
3053 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3054 } else if (PageHWPoison(page)) {
3055 /*
3056 * hwpoisoned dirty swapcache pages are kept for killing
3057 * owner processes (which may be unknown at hwpoison time)
3058 */
3059 ret = VM_FAULT_HWPOISON;
3060 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3061 swapcache = page;
3062 goto out_release;
3063 }
3064
3065 swapcache = page;
3066 locked = lock_page_or_retry(page, mm, flags);
3067
3068 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3069 if (!locked) {
3070 ret |= VM_FAULT_RETRY;
3071 goto out_release;
3072 }
3073
3074 /*
3075 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3076 * release the swapcache from under us. The page pin, and pte_same
3077 * test below, are not enough to exclude that. Even if it is still
3078 * swapcache, we need to check that the page's swap has not changed.
3079 */
3080 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3081 goto out_page;
3082
3083 page = ksm_might_need_to_copy(page, vma, address);
3084 if (unlikely(!page)) {
3085 ret = VM_FAULT_OOM;
3086 page = swapcache;
3087 goto out_page;
3088 }
3089
3090 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3091 ret = VM_FAULT_OOM;
3092 goto out_page;
3093 }
3094
3095 /*
3096 * Back out if somebody else already faulted in this pte.
3097 */
3098 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3099 if (unlikely(!pte_same(*page_table, orig_pte)))
3100 goto out_nomap;
3101
3102 if (unlikely(!PageUptodate(page))) {
3103 ret = VM_FAULT_SIGBUS;
3104 goto out_nomap;
3105 }
3106
3107 /*
3108 * The page isn't present yet, go ahead with the fault.
3109 *
3110 * Be careful about the sequence of operations here.
3111 * To get its accounting right, reuse_swap_page() must be called
3112 * while the page is counted on swap but not yet in mapcount i.e.
3113 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3114 * must be called after the swap_free(), or it will never succeed.
3115 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3116 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3117 * in page->private. In this case, a record in swap_cgroup is silently
3118 * discarded at swap_free().
3119 */
3120
3121 inc_mm_counter_fast(mm, MM_ANONPAGES);
3122 dec_mm_counter_fast(mm, MM_SWAPENTS);
3123 pte = mk_pte(page, vma->vm_page_prot);
3124 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3125 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3126 flags &= ~FAULT_FLAG_WRITE;
3127 ret |= VM_FAULT_WRITE;
3128 exclusive = 1;
3129 }
3130 flush_icache_page(vma, page);
3131 set_pte_at(mm, address, page_table, pte);
3132 if (page == swapcache)
3133 do_page_add_anon_rmap(page, vma, address, exclusive);
3134 else /* ksm created a completely new copy */
3135 page_add_new_anon_rmap(page, vma, address);
3136 /* It's better to call commit-charge after rmap is established */
3137 mem_cgroup_commit_charge_swapin(page, ptr);
3138
3139 swap_free(entry);
3140 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3141 try_to_free_swap(page);
3142 unlock_page(page);
3143 if (page != swapcache) {
3144 /*
3145 * Hold the lock to avoid the swap entry to be reused
3146 * until we take the PT lock for the pte_same() check
3147 * (to avoid false positives from pte_same). For
3148 * further safety release the lock after the swap_free
3149 * so that the swap count won't change under a
3150 * parallel locked swapcache.
3151 */
3152 unlock_page(swapcache);
3153 page_cache_release(swapcache);
3154 }
3155
3156 if (flags & FAULT_FLAG_WRITE) {
3157 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3158 if (ret & VM_FAULT_ERROR)
3159 ret &= VM_FAULT_ERROR;
3160 goto out;
3161 }
3162
3163 /* No need to invalidate - it was non-present before */
3164 update_mmu_cache(vma, address, page_table);
3165 unlock:
3166 pte_unmap_unlock(page_table, ptl);
3167 out:
3168 return ret;
3169 out_nomap:
3170 mem_cgroup_cancel_charge_swapin(ptr);
3171 pte_unmap_unlock(page_table, ptl);
3172 out_page:
3173 unlock_page(page);
3174 out_release:
3175 page_cache_release(page);
3176 if (page != swapcache) {
3177 unlock_page(swapcache);
3178 page_cache_release(swapcache);
3179 }
3180 return ret;
3181 }
3182
3183 /*
3184 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3185 * but allow concurrent faults), and pte mapped but not yet locked.
3186 * We return with mmap_sem still held, but pte unmapped and unlocked.
3187 */
3188 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3189 unsigned long address, pte_t *page_table, pmd_t *pmd,
3190 unsigned int flags)
3191 {
3192 struct page *page;
3193 spinlock_t *ptl;
3194 pte_t entry;
3195
3196 pte_unmap(page_table);
3197
3198 /* File mapping without ->vm_ops ? */
3199 if (vma->vm_flags & VM_SHARED)
3200 return VM_FAULT_SIGBUS;
3201
3202 /* Use the zero-page for reads */
3203 if (!(flags & FAULT_FLAG_WRITE)) {
3204 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3205 vma->vm_page_prot));
3206 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3207 if (!pte_none(*page_table))
3208 goto unlock;
3209 goto setpte;
3210 }
3211
3212 /* Allocate our own private page. */
3213 if (unlikely(anon_vma_prepare(vma)))
3214 goto oom;
3215 page = alloc_zeroed_user_highpage_movable(vma, address);
3216 if (!page)
3217 goto oom;
3218 /*
3219 * The memory barrier inside __SetPageUptodate makes sure that
3220 * preceeding stores to the page contents become visible before
3221 * the set_pte_at() write.
3222 */
3223 __SetPageUptodate(page);
3224
3225 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3226 goto oom_free_page;
3227
3228 entry = mk_pte(page, vma->vm_page_prot);
3229 if (vma->vm_flags & VM_WRITE)
3230 entry = pte_mkwrite(pte_mkdirty(entry));
3231
3232 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3233 if (!pte_none(*page_table))
3234 goto release;
3235
3236 inc_mm_counter_fast(mm, MM_ANONPAGES);
3237 page_add_new_anon_rmap(page, vma, address);
3238 setpte:
3239 set_pte_at(mm, address, page_table, entry);
3240
3241 /* No need to invalidate - it was non-present before */
3242 update_mmu_cache(vma, address, page_table);
3243 unlock:
3244 pte_unmap_unlock(page_table, ptl);
3245 return 0;
3246 release:
3247 mem_cgroup_uncharge_page(page);
3248 page_cache_release(page);
3249 goto unlock;
3250 oom_free_page:
3251 page_cache_release(page);
3252 oom:
3253 return VM_FAULT_OOM;
3254 }
3255
3256 /*
3257 * __do_fault() tries to create a new page mapping. It aggressively
3258 * tries to share with existing pages, but makes a separate copy if
3259 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3260 * the next page fault.
3261 *
3262 * As this is called only for pages that do not currently exist, we
3263 * do not need to flush old virtual caches or the TLB.
3264 *
3265 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3266 * but allow concurrent faults), and pte neither mapped nor locked.
3267 * We return with mmap_sem still held, but pte unmapped and unlocked.
3268 */
3269 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3270 unsigned long address, pmd_t *pmd,
3271 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3272 {
3273 pte_t *page_table;
3274 spinlock_t *ptl;
3275 struct page *page;
3276 struct page *cow_page;
3277 pte_t entry;
3278 int anon = 0;
3279 struct page *dirty_page = NULL;
3280 struct vm_fault vmf;
3281 int ret;
3282 int page_mkwrite = 0;
3283
3284 /*
3285 * If we do COW later, allocate page befor taking lock_page()
3286 * on the file cache page. This will reduce lock holding time.
3287 */
3288 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3289
3290 if (unlikely(anon_vma_prepare(vma)))
3291 return VM_FAULT_OOM;
3292
3293 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3294 if (!cow_page)
3295 return VM_FAULT_OOM;
3296
3297 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3298 page_cache_release(cow_page);
3299 return VM_FAULT_OOM;
3300 }
3301 } else
3302 cow_page = NULL;
3303
3304 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3305 vmf.pgoff = pgoff;
3306 vmf.flags = flags;
3307 vmf.page = NULL;
3308
3309 ret = vma->vm_ops->fault(vma, &vmf);
3310 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3311 VM_FAULT_RETRY)))
3312 goto uncharge_out;
3313
3314 if (unlikely(PageHWPoison(vmf.page))) {
3315 if (ret & VM_FAULT_LOCKED)
3316 unlock_page(vmf.page);
3317 ret = VM_FAULT_HWPOISON;
3318 goto uncharge_out;
3319 }
3320
3321 /*
3322 * For consistency in subsequent calls, make the faulted page always
3323 * locked.
3324 */
3325 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3326 lock_page(vmf.page);
3327 else
3328 VM_BUG_ON(!PageLocked(vmf.page));
3329
3330 /*
3331 * Should we do an early C-O-W break?
3332 */
3333 page = vmf.page;
3334 if (flags & FAULT_FLAG_WRITE) {
3335 if (!(vma->vm_flags & VM_SHARED)) {
3336 page = cow_page;
3337 anon = 1;
3338 copy_user_highpage(page, vmf.page, address, vma);
3339 __SetPageUptodate(page);
3340 } else {
3341 /*
3342 * If the page will be shareable, see if the backing
3343 * address space wants to know that the page is about
3344 * to become writable
3345 */
3346 if (vma->vm_ops->page_mkwrite) {
3347 int tmp;
3348
3349 unlock_page(page);
3350 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3351 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3352 if (unlikely(tmp &
3353 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3354 ret = tmp;
3355 goto unwritable_page;
3356 }
3357 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3358 lock_page(page);
3359 if (!page->mapping) {
3360 ret = 0; /* retry the fault */
3361 unlock_page(page);
3362 goto unwritable_page;
3363 }
3364 } else
3365 VM_BUG_ON(!PageLocked(page));
3366 page_mkwrite = 1;
3367 }
3368 }
3369
3370 }
3371
3372 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3373
3374 /*
3375 * This silly early PAGE_DIRTY setting removes a race
3376 * due to the bad i386 page protection. But it's valid
3377 * for other architectures too.
3378 *
3379 * Note that if FAULT_FLAG_WRITE is set, we either now have
3380 * an exclusive copy of the page, or this is a shared mapping,
3381 * so we can make it writable and dirty to avoid having to
3382 * handle that later.
3383 */
3384 /* Only go through if we didn't race with anybody else... */
3385 if (likely(pte_same(*page_table, orig_pte))) {
3386 flush_icache_page(vma, page);
3387 entry = mk_pte(page, vma->vm_page_prot);
3388 if (flags & FAULT_FLAG_WRITE)
3389 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3390 if (anon) {
3391 inc_mm_counter_fast(mm, MM_ANONPAGES);
3392 page_add_new_anon_rmap(page, vma, address);
3393 } else {
3394 inc_mm_counter_fast(mm, MM_FILEPAGES);
3395 page_add_file_rmap(page);
3396 if (flags & FAULT_FLAG_WRITE) {
3397 dirty_page = page;
3398 get_page(dirty_page);
3399 }
3400 }
3401 set_pte_at(mm, address, page_table, entry);
3402
3403 /* no need to invalidate: a not-present page won't be cached */
3404 update_mmu_cache(vma, address, page_table);
3405 } else {
3406 if (cow_page)
3407 mem_cgroup_uncharge_page(cow_page);
3408 if (anon)
3409 page_cache_release(page);
3410 else
3411 anon = 1; /* no anon but release faulted_page */
3412 }
3413
3414 pte_unmap_unlock(page_table, ptl);
3415
3416 if (dirty_page) {
3417 struct address_space *mapping = page->mapping;
3418 int dirtied = 0;
3419
3420 if (set_page_dirty(dirty_page))
3421 dirtied = 1;
3422 unlock_page(dirty_page);
3423 put_page(dirty_page);
3424 if ((dirtied || page_mkwrite) && mapping) {
3425 /*
3426 * Some device drivers do not set page.mapping but still
3427 * dirty their pages
3428 */
3429 balance_dirty_pages_ratelimited(mapping);
3430 }
3431
3432 /* file_update_time outside page_lock */
3433 if (vma->vm_file && !page_mkwrite)
3434 file_update_time(vma->vm_file);
3435 } else {
3436 unlock_page(vmf.page);
3437 if (anon)
3438 page_cache_release(vmf.page);
3439 }
3440
3441 return ret;
3442
3443 unwritable_page:
3444 page_cache_release(page);
3445 return ret;
3446 uncharge_out:
3447 /* fs's fault handler get error */
3448 if (cow_page) {
3449 mem_cgroup_uncharge_page(cow_page);
3450 page_cache_release(cow_page);
3451 }
3452 return ret;
3453 }
3454
3455 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3456 unsigned long address, pte_t *page_table, pmd_t *pmd,
3457 unsigned int flags, pte_t orig_pte)
3458 {
3459 pgoff_t pgoff = (((address & PAGE_MASK)
3460 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3461
3462 pte_unmap(page_table);
3463 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3464 if (!vma->vm_ops->fault)
3465 return VM_FAULT_SIGBUS;
3466 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3467 }
3468
3469 /*
3470 * Fault of a previously existing named mapping. Repopulate the pte
3471 * from the encoded file_pte if possible. This enables swappable
3472 * nonlinear vmas.
3473 *
3474 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3475 * but allow concurrent faults), and pte mapped but not yet locked.
3476 * We return with mmap_sem still held, but pte unmapped and unlocked.
3477 */
3478 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3479 unsigned long address, pte_t *page_table, pmd_t *pmd,
3480 unsigned int flags, pte_t orig_pte)
3481 {
3482 pgoff_t pgoff;
3483
3484 flags |= FAULT_FLAG_NONLINEAR;
3485
3486 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3487 return 0;
3488
3489 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3490 /*
3491 * Page table corrupted: show pte and kill process.
3492 */
3493 print_bad_pte(vma, address, orig_pte, NULL);
3494 return VM_FAULT_SIGBUS;
3495 }
3496
3497 pgoff = pte_to_pgoff(orig_pte);
3498 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3499 }
3500
3501 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3502 unsigned long addr, int page_nid)
3503 {
3504 get_page(page);
3505
3506 count_vm_numa_event(NUMA_HINT_FAULTS);
3507 if (page_nid == numa_node_id())
3508 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3509
3510 return mpol_misplaced(page, vma, addr);
3511 }
3512
3513 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3514 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3515 {
3516 struct page *page = NULL;
3517 spinlock_t *ptl;
3518 int page_nid = -1;
3519 int target_nid;
3520 bool migrated = false;
3521
3522 /*
3523 * The "pte" at this point cannot be used safely without
3524 * validation through pte_unmap_same(). It's of NUMA type but
3525 * the pfn may be screwed if the read is non atomic.
3526 *
3527 * ptep_modify_prot_start is not called as this is clearing
3528 * the _PAGE_NUMA bit and it is not really expected that there
3529 * would be concurrent hardware modifications to the PTE.
3530 */
3531 ptl = pte_lockptr(mm, pmd);
3532 spin_lock(ptl);
3533 if (unlikely(!pte_same(*ptep, pte))) {
3534 pte_unmap_unlock(ptep, ptl);
3535 goto out;
3536 }
3537
3538 pte = pte_mknonnuma(pte);
3539 set_pte_at(mm, addr, ptep, pte);
3540 update_mmu_cache(vma, addr, ptep);
3541
3542 page = vm_normal_page(vma, addr, pte);
3543 if (!page) {
3544 pte_unmap_unlock(ptep, ptl);
3545 return 0;
3546 }
3547
3548 page_nid = page_to_nid(page);
3549 target_nid = numa_migrate_prep(page, vma, addr, page_nid);
3550 pte_unmap_unlock(ptep, ptl);
3551 if (target_nid == -1) {
3552 put_page(page);
3553 goto out;
3554 }
3555
3556 /* Migrate to the requested node */
3557 migrated = migrate_misplaced_page(page, target_nid);
3558 if (migrated)
3559 page_nid = target_nid;
3560
3561 out:
3562 if (page_nid != -1)
3563 task_numa_fault(page_nid, 1, migrated);
3564 return 0;
3565 }
3566
3567 /* NUMA hinting page fault entry point for regular pmds */
3568 #ifdef CONFIG_NUMA_BALANCING
3569 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3570 unsigned long addr, pmd_t *pmdp)
3571 {
3572 pmd_t pmd;
3573 pte_t *pte, *orig_pte;
3574 unsigned long _addr = addr & PMD_MASK;
3575 unsigned long offset;
3576 spinlock_t *ptl;
3577 bool numa = false;
3578
3579 spin_lock(&mm->page_table_lock);
3580 pmd = *pmdp;
3581 if (pmd_numa(pmd)) {
3582 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3583 numa = true;
3584 }
3585 spin_unlock(&mm->page_table_lock);
3586
3587 if (!numa)
3588 return 0;
3589
3590 /* we're in a page fault so some vma must be in the range */
3591 BUG_ON(!vma);
3592 BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3593 offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3594 VM_BUG_ON(offset >= PMD_SIZE);
3595 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3596 pte += offset >> PAGE_SHIFT;
3597 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3598 pte_t pteval = *pte;
3599 struct page *page;
3600 int page_nid = -1;
3601 int target_nid;
3602 bool migrated = false;
3603
3604 if (!pte_present(pteval))
3605 continue;
3606 if (!pte_numa(pteval))
3607 continue;
3608 if (addr >= vma->vm_end) {
3609 vma = find_vma(mm, addr);
3610 /* there's a pte present so there must be a vma */
3611 BUG_ON(!vma);
3612 BUG_ON(addr < vma->vm_start);
3613 }
3614 if (pte_numa(pteval)) {
3615 pteval = pte_mknonnuma(pteval);
3616 set_pte_at(mm, addr, pte, pteval);
3617 }
3618 page = vm_normal_page(vma, addr, pteval);
3619 if (unlikely(!page))
3620 continue;
3621 /* only check non-shared pages */
3622 if (unlikely(page_mapcount(page) != 1))
3623 continue;
3624
3625 page_nid = page_to_nid(page);
3626 target_nid = numa_migrate_prep(page, vma, addr, page_nid);
3627 pte_unmap_unlock(pte, ptl);
3628 if (target_nid != -1) {
3629 migrated = migrate_misplaced_page(page, target_nid);
3630 if (migrated)
3631 page_nid = target_nid;
3632 } else {
3633 put_page(page);
3634 }
3635
3636 if (page_nid != -1)
3637 task_numa_fault(page_nid, 1, migrated);
3638
3639 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3640 }
3641 pte_unmap_unlock(orig_pte, ptl);
3642
3643 return 0;
3644 }
3645 #else
3646 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3647 unsigned long addr, pmd_t *pmdp)
3648 {
3649 BUG();
3650 return 0;
3651 }
3652 #endif /* CONFIG_NUMA_BALANCING */
3653
3654 /*
3655 * These routines also need to handle stuff like marking pages dirty
3656 * and/or accessed for architectures that don't do it in hardware (most
3657 * RISC architectures). The early dirtying is also good on the i386.
3658 *
3659 * There is also a hook called "update_mmu_cache()" that architectures
3660 * with external mmu caches can use to update those (ie the Sparc or
3661 * PowerPC hashed page tables that act as extended TLBs).
3662 *
3663 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3664 * but allow concurrent faults), and pte mapped but not yet locked.
3665 * We return with mmap_sem still held, but pte unmapped and unlocked.
3666 */
3667 int handle_pte_fault(struct mm_struct *mm,
3668 struct vm_area_struct *vma, unsigned long address,
3669 pte_t *pte, pmd_t *pmd, unsigned int flags)
3670 {
3671 pte_t entry;
3672 spinlock_t *ptl;
3673
3674 entry = *pte;
3675 if (!pte_present(entry)) {
3676 if (pte_none(entry)) {
3677 if (vma->vm_ops)
3678 return do_linear_fault(mm, vma, address,
3679 pte, pmd, flags, entry);
3680 return do_anonymous_page(mm, vma, address,
3681 pte, pmd, flags);
3682 }
3683 if (pte_file(entry))
3684 return do_nonlinear_fault(mm, vma, address,
3685 pte, pmd, flags, entry);
3686 return do_swap_page(mm, vma, address,
3687 pte, pmd, flags, entry);
3688 }
3689
3690 if (pte_numa(entry))
3691 return do_numa_page(mm, vma, address, entry, pte, pmd);
3692
3693 ptl = pte_lockptr(mm, pmd);
3694 spin_lock(ptl);
3695 if (unlikely(!pte_same(*pte, entry)))
3696 goto unlock;
3697 if (flags & FAULT_FLAG_WRITE) {
3698 if (!pte_write(entry))
3699 return do_wp_page(mm, vma, address,
3700 pte, pmd, ptl, entry);
3701 entry = pte_mkdirty(entry);
3702 }
3703 entry = pte_mkyoung(entry);
3704 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3705 update_mmu_cache(vma, address, pte);
3706 } else {
3707 /*
3708 * This is needed only for protection faults but the arch code
3709 * is not yet telling us if this is a protection fault or not.
3710 * This still avoids useless tlb flushes for .text page faults
3711 * with threads.
3712 */
3713 if (flags & FAULT_FLAG_WRITE)
3714 flush_tlb_fix_spurious_fault(vma, address);
3715 }
3716 unlock:
3717 pte_unmap_unlock(pte, ptl);
3718 return 0;
3719 }
3720
3721 /*
3722 * By the time we get here, we already hold the mm semaphore
3723 */
3724 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3725 unsigned long address, unsigned int flags)
3726 {
3727 pgd_t *pgd;
3728 pud_t *pud;
3729 pmd_t *pmd;
3730 pte_t *pte;
3731
3732 if (unlikely(is_vm_hugetlb_page(vma)))
3733 return hugetlb_fault(mm, vma, address, flags);
3734
3735 retry:
3736 pgd = pgd_offset(mm, address);
3737 pud = pud_alloc(mm, pgd, address);
3738 if (!pud)
3739 return VM_FAULT_OOM;
3740 pmd = pmd_alloc(mm, pud, address);
3741 if (!pmd)
3742 return VM_FAULT_OOM;
3743 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3744 if (!vma->vm_ops)
3745 return do_huge_pmd_anonymous_page(mm, vma, address,
3746 pmd, flags);
3747 } else {
3748 pmd_t orig_pmd = *pmd;
3749 int ret;
3750
3751 barrier();
3752 if (pmd_trans_huge(orig_pmd)) {
3753 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3754
3755 /*
3756 * If the pmd is splitting, return and retry the
3757 * the fault. Alternative: wait until the split
3758 * is done, and goto retry.
3759 */
3760 if (pmd_trans_splitting(orig_pmd))
3761 return 0;
3762
3763 if (pmd_numa(orig_pmd))
3764 return do_huge_pmd_numa_page(mm, vma, address,
3765 orig_pmd, pmd);
3766
3767 if (dirty && !pmd_write(orig_pmd)) {
3768 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3769 orig_pmd);
3770 /*
3771 * If COW results in an oom, the huge pmd will
3772 * have been split, so retry the fault on the
3773 * pte for a smaller charge.
3774 */
3775 if (unlikely(ret & VM_FAULT_OOM))
3776 goto retry;
3777 return ret;
3778 } else {
3779 huge_pmd_set_accessed(mm, vma, address, pmd,
3780 orig_pmd, dirty);
3781 }
3782
3783 return 0;
3784 }
3785 }
3786
3787 if (pmd_numa(*pmd))
3788 return do_pmd_numa_page(mm, vma, address, pmd);
3789
3790 /*
3791 * Use __pte_alloc instead of pte_alloc_map, because we can't
3792 * run pte_offset_map on the pmd, if an huge pmd could
3793 * materialize from under us from a different thread.
3794 */
3795 if (unlikely(pmd_none(*pmd)) &&
3796 unlikely(__pte_alloc(mm, vma, pmd, address)))
3797 return VM_FAULT_OOM;
3798 /*
3799 * If a huge pmd materialized under us just retry later. Use
3800 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3801 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3802 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3803 * in a different thread of this mm, in turn leading to a misleading
3804 * pmd_trans_huge() retval. All we have to ensure is that it is a
3805 * regular pmd that we can walk with pte_offset_map() and we can do that
3806 * through an atomic read in C, which is what pmd_trans_unstable()
3807 * provides.
3808 */
3809 if (unlikely(pmd_trans_unstable(pmd)))
3810 return 0;
3811 /*
3812 * A regular pmd is established and it can't morph into a huge pmd
3813 * from under us anymore at this point because we hold the mmap_sem
3814 * read mode and khugepaged takes it in write mode. So now it's
3815 * safe to run pte_offset_map().
3816 */
3817 pte = pte_offset_map(pmd, address);
3818
3819 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3820 }
3821
3822 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3823 unsigned long address, unsigned int flags)
3824 {
3825 int ret;
3826
3827 __set_current_state(TASK_RUNNING);
3828
3829 count_vm_event(PGFAULT);
3830 mem_cgroup_count_vm_event(mm, PGFAULT);
3831
3832 /* do counter updates before entering really critical section. */
3833 check_sync_rss_stat(current);
3834
3835 /*
3836 * Enable the memcg OOM handling for faults triggered in user
3837 * space. Kernel faults are handled more gracefully.
3838 */
3839 if (flags & FAULT_FLAG_USER)
3840 mem_cgroup_oom_enable();
3841
3842 ret = __handle_mm_fault(mm, vma, address, flags);
3843
3844 if (flags & FAULT_FLAG_USER) {
3845 mem_cgroup_oom_disable();
3846 /*
3847 * The task may have entered a memcg OOM situation but
3848 * if the allocation error was handled gracefully (no
3849 * VM_FAULT_OOM), there is no need to kill anything.
3850 * Just clean up the OOM state peacefully.
3851 */
3852 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3853 mem_cgroup_oom_synchronize(false);
3854 }
3855
3856 return ret;
3857 }
3858
3859 #ifndef __PAGETABLE_PUD_FOLDED
3860 /*
3861 * Allocate page upper directory.
3862 * We've already handled the fast-path in-line.
3863 */
3864 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3865 {
3866 pud_t *new = pud_alloc_one(mm, address);
3867 if (!new)
3868 return -ENOMEM;
3869
3870 smp_wmb(); /* See comment in __pte_alloc */
3871
3872 spin_lock(&mm->page_table_lock);
3873 if (pgd_present(*pgd)) /* Another has populated it */
3874 pud_free(mm, new);
3875 else
3876 pgd_populate(mm, pgd, new);
3877 spin_unlock(&mm->page_table_lock);
3878 return 0;
3879 }
3880 #endif /* __PAGETABLE_PUD_FOLDED */
3881
3882 #ifndef __PAGETABLE_PMD_FOLDED
3883 /*
3884 * Allocate page middle directory.
3885 * We've already handled the fast-path in-line.
3886 */
3887 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3888 {
3889 pmd_t *new = pmd_alloc_one(mm, address);
3890 if (!new)
3891 return -ENOMEM;
3892
3893 smp_wmb(); /* See comment in __pte_alloc */
3894
3895 spin_lock(&mm->page_table_lock);
3896 #ifndef __ARCH_HAS_4LEVEL_HACK
3897 if (pud_present(*pud)) /* Another has populated it */
3898 pmd_free(mm, new);
3899 else
3900 pud_populate(mm, pud, new);
3901 #else
3902 if (pgd_present(*pud)) /* Another has populated it */
3903 pmd_free(mm, new);
3904 else
3905 pgd_populate(mm, pud, new);
3906 #endif /* __ARCH_HAS_4LEVEL_HACK */
3907 spin_unlock(&mm->page_table_lock);
3908 return 0;
3909 }
3910 #endif /* __PAGETABLE_PMD_FOLDED */
3911
3912 #if !defined(__HAVE_ARCH_GATE_AREA)
3913
3914 #if defined(AT_SYSINFO_EHDR)
3915 static struct vm_area_struct gate_vma;
3916
3917 static int __init gate_vma_init(void)
3918 {
3919 gate_vma.vm_mm = NULL;
3920 gate_vma.vm_start = FIXADDR_USER_START;
3921 gate_vma.vm_end = FIXADDR_USER_END;
3922 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3923 gate_vma.vm_page_prot = __P101;
3924
3925 return 0;
3926 }
3927 __initcall(gate_vma_init);
3928 #endif
3929
3930 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3931 {
3932 #ifdef AT_SYSINFO_EHDR
3933 return &gate_vma;
3934 #else
3935 return NULL;
3936 #endif
3937 }
3938
3939 int in_gate_area_no_mm(unsigned long addr)
3940 {
3941 #ifdef AT_SYSINFO_EHDR
3942 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3943 return 1;
3944 #endif
3945 return 0;
3946 }
3947
3948 #endif /* __HAVE_ARCH_GATE_AREA */
3949
3950 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3951 pte_t **ptepp, spinlock_t **ptlp)
3952 {
3953 pgd_t *pgd;
3954 pud_t *pud;
3955 pmd_t *pmd;
3956 pte_t *ptep;
3957
3958 pgd = pgd_offset(mm, address);
3959 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3960 goto out;
3961
3962 pud = pud_offset(pgd, address);
3963 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3964 goto out;
3965
3966 pmd = pmd_offset(pud, address);
3967 VM_BUG_ON(pmd_trans_huge(*pmd));
3968 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3969 goto out;
3970
3971 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3972 if (pmd_huge(*pmd))
3973 goto out;
3974
3975 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3976 if (!ptep)
3977 goto out;
3978 if (!pte_present(*ptep))
3979 goto unlock;
3980 *ptepp = ptep;
3981 return 0;
3982 unlock:
3983 pte_unmap_unlock(ptep, *ptlp);
3984 out:
3985 return -EINVAL;
3986 }
3987
3988 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3989 pte_t **ptepp, spinlock_t **ptlp)
3990 {
3991 int res;
3992
3993 /* (void) is needed to make gcc happy */
3994 (void) __cond_lock(*ptlp,
3995 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3996 return res;
3997 }
3998
3999 /**
4000 * follow_pfn - look up PFN at a user virtual address
4001 * @vma: memory mapping
4002 * @address: user virtual address
4003 * @pfn: location to store found PFN
4004 *
4005 * Only IO mappings and raw PFN mappings are allowed.
4006 *
4007 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4008 */
4009 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4010 unsigned long *pfn)
4011 {
4012 int ret = -EINVAL;
4013 spinlock_t *ptl;
4014 pte_t *ptep;
4015
4016 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4017 return ret;
4018
4019 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4020 if (ret)
4021 return ret;
4022 *pfn = pte_pfn(*ptep);
4023 pte_unmap_unlock(ptep, ptl);
4024 return 0;
4025 }
4026 EXPORT_SYMBOL(follow_pfn);
4027
4028 #ifdef CONFIG_HAVE_IOREMAP_PROT
4029 int follow_phys(struct vm_area_struct *vma,
4030 unsigned long address, unsigned int flags,
4031 unsigned long *prot, resource_size_t *phys)
4032 {
4033 int ret = -EINVAL;
4034 pte_t *ptep, pte;
4035 spinlock_t *ptl;
4036
4037 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4038 goto out;
4039
4040 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4041 goto out;
4042 pte = *ptep;
4043
4044 if ((flags & FOLL_WRITE) && !pte_write(pte))
4045 goto unlock;
4046
4047 *prot = pgprot_val(pte_pgprot(pte));
4048 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4049
4050 ret = 0;
4051 unlock:
4052 pte_unmap_unlock(ptep, ptl);
4053 out:
4054 return ret;
4055 }
4056
4057 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4058 void *buf, int len, int write)
4059 {
4060 resource_size_t phys_addr;
4061 unsigned long prot = 0;
4062 void __iomem *maddr;
4063 int offset = addr & (PAGE_SIZE-1);
4064
4065 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4066 return -EINVAL;
4067
4068 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4069 if (write)
4070 memcpy_toio(maddr + offset, buf, len);
4071 else
4072 memcpy_fromio(buf, maddr + offset, len);
4073 iounmap(maddr);
4074
4075 return len;
4076 }
4077 EXPORT_SYMBOL_GPL(generic_access_phys);
4078 #endif
4079
4080 /*
4081 * Access another process' address space as given in mm. If non-NULL, use the
4082 * given task for page fault accounting.
4083 */
4084 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4085 unsigned long addr, void *buf, int len, int write)
4086 {
4087 struct vm_area_struct *vma;
4088 void *old_buf = buf;
4089
4090 down_read(&mm->mmap_sem);
4091 /* ignore errors, just check how much was successfully transferred */
4092 while (len) {
4093 int bytes, ret, offset;
4094 void *maddr;
4095 struct page *page = NULL;
4096
4097 ret = get_user_pages(tsk, mm, addr, 1,
4098 write, 1, &page, &vma);
4099 if (ret <= 0) {
4100 /*
4101 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4102 * we can access using slightly different code.
4103 */
4104 #ifdef CONFIG_HAVE_IOREMAP_PROT
4105 vma = find_vma(mm, addr);
4106 if (!vma || vma->vm_start > addr)
4107 break;
4108 if (vma->vm_ops && vma->vm_ops->access)
4109 ret = vma->vm_ops->access(vma, addr, buf,
4110 len, write);
4111 if (ret <= 0)
4112 #endif
4113 break;
4114 bytes = ret;
4115 } else {
4116 bytes = len;
4117 offset = addr & (PAGE_SIZE-1);
4118 if (bytes > PAGE_SIZE-offset)
4119 bytes = PAGE_SIZE-offset;
4120
4121 maddr = kmap(page);
4122 if (write) {
4123 copy_to_user_page(vma, page, addr,
4124 maddr + offset, buf, bytes);
4125 set_page_dirty_lock(page);
4126 } else {
4127 copy_from_user_page(vma, page, addr,
4128 buf, maddr + offset, bytes);
4129 }
4130 kunmap(page);
4131 page_cache_release(page);
4132 }
4133 len -= bytes;
4134 buf += bytes;
4135 addr += bytes;
4136 }
4137 up_read(&mm->mmap_sem);
4138
4139 return buf - old_buf;
4140 }
4141
4142 /**
4143 * access_remote_vm - access another process' address space
4144 * @mm: the mm_struct of the target address space
4145 * @addr: start address to access
4146 * @buf: source or destination buffer
4147 * @len: number of bytes to transfer
4148 * @write: whether the access is a write
4149 *
4150 * The caller must hold a reference on @mm.
4151 */
4152 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4153 void *buf, int len, int write)
4154 {
4155 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4156 }
4157
4158 /*
4159 * Access another process' address space.
4160 * Source/target buffer must be kernel space,
4161 * Do not walk the page table directly, use get_user_pages
4162 */
4163 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4164 void *buf, int len, int write)
4165 {
4166 struct mm_struct *mm;
4167 int ret;
4168
4169 mm = get_task_mm(tsk);
4170 if (!mm)
4171 return 0;
4172
4173 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4174 mmput(mm);
4175
4176 return ret;
4177 }
4178
4179 /*
4180 * Print the name of a VMA.
4181 */
4182 void print_vma_addr(char *prefix, unsigned long ip)
4183 {
4184 struct mm_struct *mm = current->mm;
4185 struct vm_area_struct *vma;
4186
4187 /*
4188 * Do not print if we are in atomic
4189 * contexts (in exception stacks, etc.):
4190 */
4191 if (preempt_count())
4192 return;
4193
4194 down_read(&mm->mmap_sem);
4195 vma = find_vma(mm, ip);
4196 if (vma && vma->vm_file) {
4197 struct file *f = vma->vm_file;
4198 char *buf = (char *)__get_free_page(GFP_KERNEL);
4199 if (buf) {
4200 char *p;
4201
4202 p = d_path(&f->f_path, buf, PAGE_SIZE);
4203 if (IS_ERR(p))
4204 p = "?";
4205 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4206 vma->vm_start,
4207 vma->vm_end - vma->vm_start);
4208 free_page((unsigned long)buf);
4209 }
4210 }
4211 up_read(&mm->mmap_sem);
4212 }
4213
4214 #ifdef CONFIG_PROVE_LOCKING
4215 void might_fault(void)
4216 {
4217 /*
4218 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4219 * holding the mmap_sem, this is safe because kernel memory doesn't
4220 * get paged out, therefore we'll never actually fault, and the
4221 * below annotations will generate false positives.
4222 */
4223 if (segment_eq(get_fs(), KERNEL_DS))
4224 return;
4225
4226 might_sleep();
4227 /*
4228 * it would be nicer only to annotate paths which are not under
4229 * pagefault_disable, however that requires a larger audit and
4230 * providing helpers like get_user_atomic.
4231 */
4232 if (!in_atomic() && current->mm)
4233 might_lock_read(&current->mm->mmap_sem);
4234 }
4235 EXPORT_SYMBOL(might_fault);
4236 #endif
4237
4238 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4239 static void clear_gigantic_page(struct page *page,
4240 unsigned long addr,
4241 unsigned int pages_per_huge_page)
4242 {
4243 int i;
4244 struct page *p = page;
4245
4246 might_sleep();
4247 for (i = 0; i < pages_per_huge_page;
4248 i++, p = mem_map_next(p, page, i)) {
4249 cond_resched();
4250 clear_user_highpage(p, addr + i * PAGE_SIZE);
4251 }
4252 }
4253 void clear_huge_page(struct page *page,
4254 unsigned long addr, unsigned int pages_per_huge_page)
4255 {
4256 int i;
4257
4258 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4259 clear_gigantic_page(page, addr, pages_per_huge_page);
4260 return;
4261 }
4262
4263 might_sleep();
4264 for (i = 0; i < pages_per_huge_page; i++) {
4265 cond_resched();
4266 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4267 }
4268 }
4269
4270 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4271 unsigned long addr,
4272 struct vm_area_struct *vma,
4273 unsigned int pages_per_huge_page)
4274 {
4275 int i;
4276 struct page *dst_base = dst;
4277 struct page *src_base = src;
4278
4279 for (i = 0; i < pages_per_huge_page; ) {
4280 cond_resched();
4281 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4282
4283 i++;
4284 dst = mem_map_next(dst, dst_base, i);
4285 src = mem_map_next(src, src_base, i);
4286 }
4287 }
4288
4289 void copy_user_huge_page(struct page *dst, struct page *src,
4290 unsigned long addr, struct vm_area_struct *vma,
4291 unsigned int pages_per_huge_page)
4292 {
4293 int i;
4294
4295 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4296 copy_user_gigantic_page(dst, src, addr, vma,
4297 pages_per_huge_page);
4298 return;
4299 }
4300
4301 might_sleep();
4302 for (i = 0; i < pages_per_huge_page; i++) {
4303 cond_resched();
4304 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4305 }
4306 }
4307 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */