Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69
70 #include "internal.h"
71
72 #ifdef CONFIG_MTK_EXTMEM
73 extern bool extmem_in_mspace(struct vm_area_struct *vma);
74 extern unsigned long get_virt_from_mspace(unsigned long pa);
75 #endif
76
77 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
78 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
79 #endif
80
81 #ifndef CONFIG_NEED_MULTIPLE_NODES
82 /* use the per-pgdat data instead for discontigmem - mbligh */
83 unsigned long max_mapnr;
84 struct page *mem_map;
85
86 EXPORT_SYMBOL(max_mapnr);
87 EXPORT_SYMBOL(mem_map);
88 #endif
89
90 unsigned long num_physpages;
91 /*
92 * A number of key systems in x86 including ioremap() rely on the assumption
93 * that high_memory defines the upper bound on direct map memory, then end
94 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
95 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96 * and ZONE_HIGHMEM.
97 */
98 void * high_memory;
99
100 EXPORT_SYMBOL(num_physpages);
101 EXPORT_SYMBOL(high_memory);
102
103 /*
104 * Randomize the address space (stacks, mmaps, brk, etc.).
105 *
106 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
107 * as ancient (libc5 based) binaries can segfault. )
108 */
109 int randomize_va_space __read_mostly =
110 #ifdef CONFIG_COMPAT_BRK
111 1;
112 #else
113 2;
114 #endif
115
116 static int __init disable_randmaps(char *s)
117 {
118 randomize_va_space = 0;
119 return 1;
120 }
121 __setup("norandmaps", disable_randmaps);
122
123 unsigned long zero_pfn __read_mostly;
124 unsigned long highest_memmap_pfn __read_mostly;
125
126 /*
127 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
128 */
129 static int __init init_zero_pfn(void)
130 {
131 zero_pfn = page_to_pfn(ZERO_PAGE(0));
132 return 0;
133 }
134 core_initcall(init_zero_pfn);
135
136
137 #if defined(SPLIT_RSS_COUNTING)
138
139 void sync_mm_rss(struct mm_struct *mm)
140 {
141 int i;
142
143 for (i = 0; i < NR_MM_COUNTERS; i++) {
144 if (current->rss_stat.count[i]) {
145 add_mm_counter(mm, i, current->rss_stat.count[i]);
146 current->rss_stat.count[i] = 0;
147 }
148 }
149 current->rss_stat.events = 0;
150 }
151
152 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
153 {
154 struct task_struct *task = current;
155
156 if (likely(task->mm == mm))
157 task->rss_stat.count[member] += val;
158 else
159 add_mm_counter(mm, member, val);
160 }
161 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
162 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
163
164 /* sync counter once per 64 page faults */
165 #define TASK_RSS_EVENTS_THRESH (64)
166 static void check_sync_rss_stat(struct task_struct *task)
167 {
168 if (unlikely(task != current))
169 return;
170 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
171 sync_mm_rss(task->mm);
172 }
173 #else /* SPLIT_RSS_COUNTING */
174
175 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
176 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
177
178 static void check_sync_rss_stat(struct task_struct *task)
179 {
180 }
181
182 #endif /* SPLIT_RSS_COUNTING */
183
184 #ifdef HAVE_GENERIC_MMU_GATHER
185
186 static int tlb_next_batch(struct mmu_gather *tlb)
187 {
188 struct mmu_gather_batch *batch;
189
190 batch = tlb->active;
191 if (batch->next) {
192 tlb->active = batch->next;
193 return 1;
194 }
195
196 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
197 return 0;
198
199 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
200 if (!batch)
201 return 0;
202
203 tlb->batch_count++;
204 batch->next = NULL;
205 batch->nr = 0;
206 batch->max = MAX_GATHER_BATCH;
207
208 tlb->active->next = batch;
209 tlb->active = batch;
210
211 return 1;
212 }
213
214 /* tlb_gather_mmu
215 * Called to initialize an (on-stack) mmu_gather structure for page-table
216 * tear-down from @mm. The @fullmm argument is used when @mm is without
217 * users and we're going to destroy the full address space (exit/execve).
218 */
219 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
220 {
221 tlb->mm = mm;
222
223 /* Is it from 0 to ~0? */
224 tlb->fullmm = !(start | (end+1));
225 tlb->need_flush_all = 0;
226 tlb->start = start;
227 tlb->end = end;
228 tlb->need_flush = 0;
229 tlb->local.next = NULL;
230 tlb->local.nr = 0;
231 tlb->local.max = ARRAY_SIZE(tlb->__pages);
232 tlb->active = &tlb->local;
233 tlb->batch_count = 0;
234
235 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
236 tlb->batch = NULL;
237 #endif
238 }
239
240 void tlb_flush_mmu(struct mmu_gather *tlb)
241 {
242 struct mmu_gather_batch *batch;
243
244 if (!tlb->need_flush)
245 return;
246 tlb->need_flush = 0;
247 tlb_flush(tlb);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
250 #endif
251
252 for (batch = &tlb->local; batch; batch = batch->next) {
253 free_pages_and_swap_cache(batch->pages, batch->nr);
254 batch->nr = 0;
255 }
256 tlb->active = &tlb->local;
257 }
258
259 /* tlb_finish_mmu
260 * Called at the end of the shootdown operation to free up any resources
261 * that were required.
262 */
263 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
264 {
265 struct mmu_gather_batch *batch, *next;
266
267 tlb_flush_mmu(tlb);
268
269 /* keep the page table cache within bounds */
270 check_pgt_cache();
271
272 for (batch = tlb->local.next; batch; batch = next) {
273 next = batch->next;
274 free_pages((unsigned long)batch, 0);
275 }
276 tlb->local.next = NULL;
277 }
278
279 /* __tlb_remove_page
280 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
281 * handling the additional races in SMP caused by other CPUs caching valid
282 * mappings in their TLBs. Returns the number of free page slots left.
283 * When out of page slots we must call tlb_flush_mmu().
284 */
285 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
286 {
287 struct mmu_gather_batch *batch;
288
289 VM_BUG_ON(!tlb->need_flush);
290
291 batch = tlb->active;
292 batch->pages[batch->nr++] = page;
293 if (batch->nr == batch->max) {
294 if (!tlb_next_batch(tlb))
295 return 0;
296 batch = tlb->active;
297 }
298 VM_BUG_ON(batch->nr > batch->max);
299
300 return batch->max - batch->nr;
301 }
302
303 #endif /* HAVE_GENERIC_MMU_GATHER */
304
305 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
306
307 /*
308 * See the comment near struct mmu_table_batch.
309 */
310
311 static void tlb_remove_table_smp_sync(void *arg)
312 {
313 /* Simply deliver the interrupt */
314 }
315
316 static void tlb_remove_table_one(void *table)
317 {
318 /*
319 * This isn't an RCU grace period and hence the page-tables cannot be
320 * assumed to be actually RCU-freed.
321 *
322 * It is however sufficient for software page-table walkers that rely on
323 * IRQ disabling. See the comment near struct mmu_table_batch.
324 */
325 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
326 __tlb_remove_table(table);
327 }
328
329 static void tlb_remove_table_rcu(struct rcu_head *head)
330 {
331 struct mmu_table_batch *batch;
332 int i;
333
334 batch = container_of(head, struct mmu_table_batch, rcu);
335
336 for (i = 0; i < batch->nr; i++)
337 __tlb_remove_table(batch->tables[i]);
338
339 free_page((unsigned long)batch);
340 }
341
342 void tlb_table_flush(struct mmu_gather *tlb)
343 {
344 struct mmu_table_batch **batch = &tlb->batch;
345
346 if (*batch) {
347 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
348 *batch = NULL;
349 }
350 }
351
352 void tlb_remove_table(struct mmu_gather *tlb, void *table)
353 {
354 struct mmu_table_batch **batch = &tlb->batch;
355
356 tlb->need_flush = 1;
357
358 /*
359 * When there's less then two users of this mm there cannot be a
360 * concurrent page-table walk.
361 */
362 if (atomic_read(&tlb->mm->mm_users) < 2) {
363 __tlb_remove_table(table);
364 return;
365 }
366
367 if (*batch == NULL) {
368 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
369 if (*batch == NULL) {
370 tlb_remove_table_one(table);
371 return;
372 }
373 (*batch)->nr = 0;
374 }
375 (*batch)->tables[(*batch)->nr++] = table;
376 if ((*batch)->nr == MAX_TABLE_BATCH)
377 tlb_table_flush(tlb);
378 }
379
380 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
381
382 /*
383 * If a p?d_bad entry is found while walking page tables, report
384 * the error, before resetting entry to p?d_none. Usually (but
385 * very seldom) called out from the p?d_none_or_clear_bad macros.
386 */
387
388 void pgd_clear_bad(pgd_t *pgd)
389 {
390 pgd_ERROR(*pgd);
391 pgd_clear(pgd);
392 }
393
394 void pud_clear_bad(pud_t *pud)
395 {
396 pud_ERROR(*pud);
397 pud_clear(pud);
398 }
399
400 void pmd_clear_bad(pmd_t *pmd)
401 {
402 pmd_ERROR(*pmd);
403 pmd_clear(pmd);
404 }
405
406 /*
407 * Note: this doesn't free the actual pages themselves. That
408 * has been handled earlier when unmapping all the memory regions.
409 */
410 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
411 unsigned long addr)
412 {
413 pgtable_t token = pmd_pgtable(*pmd);
414 pmd_clear(pmd);
415 pte_free_tlb(tlb, token, addr);
416 tlb->mm->nr_ptes--;
417 }
418
419 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
420 unsigned long addr, unsigned long end,
421 unsigned long floor, unsigned long ceiling)
422 {
423 pmd_t *pmd;
424 unsigned long next;
425 unsigned long start;
426
427 start = addr;
428 pmd = pmd_offset(pud, addr);
429 do {
430 next = pmd_addr_end(addr, end);
431 if (pmd_none_or_clear_bad(pmd))
432 continue;
433 free_pte_range(tlb, pmd, addr);
434 } while (pmd++, addr = next, addr != end);
435
436 start &= PUD_MASK;
437 if (start < floor)
438 return;
439 if (ceiling) {
440 ceiling &= PUD_MASK;
441 if (!ceiling)
442 return;
443 }
444 if (end - 1 > ceiling - 1)
445 return;
446
447 pmd = pmd_offset(pud, start);
448 pud_clear(pud);
449 pmd_free_tlb(tlb, pmd, start);
450 }
451
452 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
453 unsigned long addr, unsigned long end,
454 unsigned long floor, unsigned long ceiling)
455 {
456 pud_t *pud;
457 unsigned long next;
458 unsigned long start;
459
460 start = addr;
461 pud = pud_offset(pgd, addr);
462 do {
463 next = pud_addr_end(addr, end);
464 if (pud_none_or_clear_bad(pud))
465 continue;
466 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
467 } while (pud++, addr = next, addr != end);
468
469 start &= PGDIR_MASK;
470 if (start < floor)
471 return;
472 if (ceiling) {
473 ceiling &= PGDIR_MASK;
474 if (!ceiling)
475 return;
476 }
477 if (end - 1 > ceiling - 1)
478 return;
479
480 pud = pud_offset(pgd, start);
481 pgd_clear(pgd);
482 pud_free_tlb(tlb, pud, start);
483 }
484
485 /*
486 * This function frees user-level page tables of a process.
487 *
488 * Must be called with pagetable lock held.
489 */
490 void free_pgd_range(struct mmu_gather *tlb,
491 unsigned long addr, unsigned long end,
492 unsigned long floor, unsigned long ceiling)
493 {
494 pgd_t *pgd;
495 unsigned long next;
496
497 /*
498 * The next few lines have given us lots of grief...
499 *
500 * Why are we testing PMD* at this top level? Because often
501 * there will be no work to do at all, and we'd prefer not to
502 * go all the way down to the bottom just to discover that.
503 *
504 * Why all these "- 1"s? Because 0 represents both the bottom
505 * of the address space and the top of it (using -1 for the
506 * top wouldn't help much: the masks would do the wrong thing).
507 * The rule is that addr 0 and floor 0 refer to the bottom of
508 * the address space, but end 0 and ceiling 0 refer to the top
509 * Comparisons need to use "end - 1" and "ceiling - 1" (though
510 * that end 0 case should be mythical).
511 *
512 * Wherever addr is brought up or ceiling brought down, we must
513 * be careful to reject "the opposite 0" before it confuses the
514 * subsequent tests. But what about where end is brought down
515 * by PMD_SIZE below? no, end can't go down to 0 there.
516 *
517 * Whereas we round start (addr) and ceiling down, by different
518 * masks at different levels, in order to test whether a table
519 * now has no other vmas using it, so can be freed, we don't
520 * bother to round floor or end up - the tests don't need that.
521 */
522
523 addr &= PMD_MASK;
524 if (addr < floor) {
525 addr += PMD_SIZE;
526 if (!addr)
527 return;
528 }
529 if (ceiling) {
530 ceiling &= PMD_MASK;
531 if (!ceiling)
532 return;
533 }
534 if (end - 1 > ceiling - 1)
535 end -= PMD_SIZE;
536 if (addr > end - 1)
537 return;
538
539 pgd = pgd_offset(tlb->mm, addr);
540 do {
541 next = pgd_addr_end(addr, end);
542 if (pgd_none_or_clear_bad(pgd))
543 continue;
544 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
545 } while (pgd++, addr = next, addr != end);
546 }
547
548 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
549 unsigned long floor, unsigned long ceiling)
550 {
551 while (vma) {
552 struct vm_area_struct *next = vma->vm_next;
553 unsigned long addr = vma->vm_start;
554
555 /*
556 * Hide vma from rmap and truncate_pagecache before freeing
557 * pgtables
558 */
559 unlink_anon_vmas(vma);
560 unlink_file_vma(vma);
561
562 if (is_vm_hugetlb_page(vma)) {
563 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
564 floor, next? next->vm_start: ceiling);
565 } else {
566 /*
567 * Optimization: gather nearby vmas into one call down
568 */
569 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
570 && !is_vm_hugetlb_page(next)) {
571 vma = next;
572 next = vma->vm_next;
573 unlink_anon_vmas(vma);
574 unlink_file_vma(vma);
575 }
576 free_pgd_range(tlb, addr, vma->vm_end,
577 floor, next? next->vm_start: ceiling);
578 }
579 vma = next;
580 }
581 }
582
583 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
584 pmd_t *pmd, unsigned long address)
585 {
586 pgtable_t new = pte_alloc_one(mm, address);
587 int wait_split_huge_page;
588 if (!new)
589 return -ENOMEM;
590
591 /*
592 * Ensure all pte setup (eg. pte page lock and page clearing) are
593 * visible before the pte is made visible to other CPUs by being
594 * put into page tables.
595 *
596 * The other side of the story is the pointer chasing in the page
597 * table walking code (when walking the page table without locking;
598 * ie. most of the time). Fortunately, these data accesses consist
599 * of a chain of data-dependent loads, meaning most CPUs (alpha
600 * being the notable exception) will already guarantee loads are
601 * seen in-order. See the alpha page table accessors for the
602 * smp_read_barrier_depends() barriers in page table walking code.
603 */
604 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
605
606 spin_lock(&mm->page_table_lock);
607 wait_split_huge_page = 0;
608 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
609 mm->nr_ptes++;
610 pmd_populate(mm, pmd, new);
611 new = NULL;
612 } else if (unlikely(pmd_trans_splitting(*pmd)))
613 wait_split_huge_page = 1;
614 spin_unlock(&mm->page_table_lock);
615 if (new)
616 pte_free(mm, new);
617 if (wait_split_huge_page)
618 wait_split_huge_page(vma->anon_vma, pmd);
619 return 0;
620 }
621
622 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
623 {
624 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
625 if (!new)
626 return -ENOMEM;
627
628 smp_wmb(); /* See comment in __pte_alloc */
629
630 spin_lock(&init_mm.page_table_lock);
631 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
632 pmd_populate_kernel(&init_mm, pmd, new);
633 new = NULL;
634 } else
635 VM_BUG_ON(pmd_trans_splitting(*pmd));
636 spin_unlock(&init_mm.page_table_lock);
637 if (new)
638 pte_free_kernel(&init_mm, new);
639 return 0;
640 }
641
642 static inline void init_rss_vec(int *rss)
643 {
644 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
645 }
646
647 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
648 {
649 int i;
650
651 if (current->mm == mm)
652 sync_mm_rss(mm);
653 for (i = 0; i < NR_MM_COUNTERS; i++)
654 if (rss[i])
655 add_mm_counter(mm, i, rss[i]);
656 }
657
658 /*
659 * This function is called to print an error when a bad pte
660 * is found. For example, we might have a PFN-mapped pte in
661 * a region that doesn't allow it.
662 *
663 * The calling function must still handle the error.
664 */
665 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
666 pte_t pte, struct page *page)
667 {
668 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
669 pud_t *pud = pud_offset(pgd, addr);
670 pmd_t *pmd = pmd_offset(pud, addr);
671 struct address_space *mapping;
672 pgoff_t index;
673 static unsigned long resume;
674 static unsigned long nr_shown;
675 static unsigned long nr_unshown;
676
677 /*
678 * Allow a burst of 60 reports, then keep quiet for that minute;
679 * or allow a steady drip of one report per second.
680 */
681 if (nr_shown == 60) {
682 if (time_before(jiffies, resume)) {
683 nr_unshown++;
684 return;
685 }
686 if (nr_unshown) {
687 printk(KERN_ALERT
688 "BUG: Bad page map: %lu messages suppressed\n",
689 nr_unshown);
690 nr_unshown = 0;
691 }
692 nr_shown = 0;
693 }
694 if (nr_shown++ == 0)
695 resume = jiffies + 60 * HZ;
696
697 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
698 index = linear_page_index(vma, addr);
699
700 printk(KERN_ALERT
701 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
702 current->comm,
703 (long long)pte_val(pte), (long long)pmd_val(*pmd));
704 if (page)
705 dump_page(page);
706 printk(KERN_ALERT
707 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
708 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
709 /*
710 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
711 */
712 if (vma->vm_ops)
713 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
714 vma->vm_ops->fault);
715 if (vma->vm_file && vma->vm_file->f_op)
716 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
717 vma->vm_file->f_op->mmap);
718 dump_stack();
719 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
720 }
721
722 static inline bool is_cow_mapping(vm_flags_t flags)
723 {
724 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
725 }
726
727 /*
728 * vm_normal_page -- This function gets the "struct page" associated with a pte.
729 *
730 * "Special" mappings do not wish to be associated with a "struct page" (either
731 * it doesn't exist, or it exists but they don't want to touch it). In this
732 * case, NULL is returned here. "Normal" mappings do have a struct page.
733 *
734 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
735 * pte bit, in which case this function is trivial. Secondly, an architecture
736 * may not have a spare pte bit, which requires a more complicated scheme,
737 * described below.
738 *
739 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
740 * special mapping (even if there are underlying and valid "struct pages").
741 * COWed pages of a VM_PFNMAP are always normal.
742 *
743 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
744 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
745 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
746 * mapping will always honor the rule
747 *
748 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
749 *
750 * And for normal mappings this is false.
751 *
752 * This restricts such mappings to be a linear translation from virtual address
753 * to pfn. To get around this restriction, we allow arbitrary mappings so long
754 * as the vma is not a COW mapping; in that case, we know that all ptes are
755 * special (because none can have been COWed).
756 *
757 *
758 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
759 *
760 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
761 * page" backing, however the difference is that _all_ pages with a struct
762 * page (that is, those where pfn_valid is true) are refcounted and considered
763 * normal pages by the VM. The disadvantage is that pages are refcounted
764 * (which can be slower and simply not an option for some PFNMAP users). The
765 * advantage is that we don't have to follow the strict linearity rule of
766 * PFNMAP mappings in order to support COWable mappings.
767 *
768 */
769 #ifdef __HAVE_ARCH_PTE_SPECIAL
770 # define HAVE_PTE_SPECIAL 1
771 #else
772 # define HAVE_PTE_SPECIAL 0
773 #endif
774 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
775 pte_t pte)
776 {
777 unsigned long pfn = pte_pfn(pte);
778
779 if (HAVE_PTE_SPECIAL) {
780 if (likely(!pte_special(pte)))
781 goto check_pfn;
782 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
783 return NULL;
784 if (!is_zero_pfn(pfn))
785 print_bad_pte(vma, addr, pte, NULL);
786 return NULL;
787 }
788
789 /* !HAVE_PTE_SPECIAL case follows: */
790
791 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
792 if (vma->vm_flags & VM_MIXEDMAP) {
793 if (!pfn_valid(pfn))
794 return NULL;
795 goto out;
796 } else {
797 unsigned long off;
798 off = (addr - vma->vm_start) >> PAGE_SHIFT;
799 if (pfn == vma->vm_pgoff + off)
800 return NULL;
801 if (!is_cow_mapping(vma->vm_flags))
802 return NULL;
803 }
804 }
805
806 if (is_zero_pfn(pfn))
807 return NULL;
808 check_pfn:
809 if (unlikely(pfn > highest_memmap_pfn)) {
810 print_bad_pte(vma, addr, pte, NULL);
811 return NULL;
812 }
813
814 /*
815 * NOTE! We still have PageReserved() pages in the page tables.
816 * eg. VDSO mappings can cause them to exist.
817 */
818 out:
819 return pfn_to_page(pfn);
820 }
821
822 /*
823 * copy one vm_area from one task to the other. Assumes the page tables
824 * already present in the new task to be cleared in the whole range
825 * covered by this vma.
826 */
827
828 static inline unsigned long
829 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
830 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
831 unsigned long addr, int *rss)
832 {
833 unsigned long vm_flags = vma->vm_flags;
834 pte_t pte = *src_pte;
835 struct page *page;
836
837 /* pte contains position in swap or file, so copy. */
838 if (unlikely(!pte_present(pte))) {
839 if (!pte_file(pte)) {
840 swp_entry_t entry = pte_to_swp_entry(pte);
841
842 if (likely(!non_swap_entry(entry))) {
843 if (swap_duplicate(entry) < 0)
844 return entry.val;
845
846 /* make sure dst_mm is on swapoff's mmlist. */
847 if (unlikely(list_empty(&dst_mm->mmlist))) {
848 spin_lock(&mmlist_lock);
849 if (list_empty(&dst_mm->mmlist))
850 list_add(&dst_mm->mmlist,
851 &src_mm->mmlist);
852 spin_unlock(&mmlist_lock);
853 }
854 rss[MM_SWAPENTS]++;
855 } else if (is_migration_entry(entry)) {
856 page = migration_entry_to_page(entry);
857
858 if (PageAnon(page))
859 rss[MM_ANONPAGES]++;
860 else
861 rss[MM_FILEPAGES]++;
862
863 if (is_write_migration_entry(entry) &&
864 is_cow_mapping(vm_flags)) {
865 /*
866 * COW mappings require pages in both
867 * parent and child to be set to read.
868 */
869 make_migration_entry_read(&entry);
870 pte = swp_entry_to_pte(entry);
871 set_pte_at(src_mm, addr, src_pte, pte);
872 }
873 }
874 }
875 goto out_set_pte;
876 }
877
878 /*
879 * If it's a COW mapping, write protect it both
880 * in the parent and the child
881 */
882 if (is_cow_mapping(vm_flags)) {
883 ptep_set_wrprotect(src_mm, addr, src_pte);
884 pte = pte_wrprotect(pte);
885 }
886
887 /*
888 * If it's a shared mapping, mark it clean in
889 * the child
890 */
891 if (vm_flags & VM_SHARED)
892 pte = pte_mkclean(pte);
893 pte = pte_mkold(pte);
894
895 page = vm_normal_page(vma, addr, pte);
896 if (page) {
897 get_page(page);
898 page_dup_rmap(page);
899 if (PageAnon(page))
900 rss[MM_ANONPAGES]++;
901 else
902 rss[MM_FILEPAGES]++;
903 }
904
905 out_set_pte:
906 set_pte_at(dst_mm, addr, dst_pte, pte);
907 return 0;
908 }
909
910 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
911 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
912 unsigned long addr, unsigned long end)
913 {
914 pte_t *orig_src_pte, *orig_dst_pte;
915 pte_t *src_pte, *dst_pte;
916 spinlock_t *src_ptl, *dst_ptl;
917 int progress = 0;
918 int rss[NR_MM_COUNTERS];
919 swp_entry_t entry = (swp_entry_t){0};
920
921 again:
922 init_rss_vec(rss);
923
924 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
925 if (!dst_pte)
926 return -ENOMEM;
927 src_pte = pte_offset_map(src_pmd, addr);
928 src_ptl = pte_lockptr(src_mm, src_pmd);
929 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
930 orig_src_pte = src_pte;
931 orig_dst_pte = dst_pte;
932 arch_enter_lazy_mmu_mode();
933
934 do {
935 /*
936 * We are holding two locks at this point - either of them
937 * could generate latencies in another task on another CPU.
938 */
939 if (progress >= 32) {
940 progress = 0;
941 if (need_resched() ||
942 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
943 break;
944 }
945 if (pte_none(*src_pte)) {
946 progress++;
947 continue;
948 }
949 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
950 vma, addr, rss);
951 if (entry.val)
952 break;
953 progress += 8;
954 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
955
956 arch_leave_lazy_mmu_mode();
957 spin_unlock(src_ptl);
958 pte_unmap(orig_src_pte);
959 add_mm_rss_vec(dst_mm, rss);
960 pte_unmap_unlock(orig_dst_pte, dst_ptl);
961 cond_resched();
962
963 if (entry.val) {
964 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
965 return -ENOMEM;
966 progress = 0;
967 }
968 if (addr != end)
969 goto again;
970 return 0;
971 }
972
973 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
974 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
975 unsigned long addr, unsigned long end)
976 {
977 pmd_t *src_pmd, *dst_pmd;
978 unsigned long next;
979
980 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
981 if (!dst_pmd)
982 return -ENOMEM;
983 src_pmd = pmd_offset(src_pud, addr);
984 do {
985 next = pmd_addr_end(addr, end);
986 if (pmd_trans_huge(*src_pmd)) {
987 int err;
988 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
989 err = copy_huge_pmd(dst_mm, src_mm,
990 dst_pmd, src_pmd, addr, vma);
991 if (err == -ENOMEM)
992 return -ENOMEM;
993 if (!err)
994 continue;
995 /* fall through */
996 }
997 if (pmd_none_or_clear_bad(src_pmd))
998 continue;
999 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1000 vma, addr, next))
1001 return -ENOMEM;
1002 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1003 return 0;
1004 }
1005
1006 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1007 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1008 unsigned long addr, unsigned long end)
1009 {
1010 pud_t *src_pud, *dst_pud;
1011 unsigned long next;
1012
1013 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1014 if (!dst_pud)
1015 return -ENOMEM;
1016 src_pud = pud_offset(src_pgd, addr);
1017 do {
1018 next = pud_addr_end(addr, end);
1019 if (pud_none_or_clear_bad(src_pud))
1020 continue;
1021 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1022 vma, addr, next))
1023 return -ENOMEM;
1024 } while (dst_pud++, src_pud++, addr = next, addr != end);
1025 return 0;
1026 }
1027
1028 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1029 struct vm_area_struct *vma)
1030 {
1031 pgd_t *src_pgd, *dst_pgd;
1032 unsigned long next;
1033 unsigned long addr = vma->vm_start;
1034 unsigned long end = vma->vm_end;
1035 unsigned long mmun_start; /* For mmu_notifiers */
1036 unsigned long mmun_end; /* For mmu_notifiers */
1037 bool is_cow;
1038 int ret;
1039
1040 /*
1041 * Don't copy ptes where a page fault will fill them correctly.
1042 * Fork becomes much lighter when there are big shared or private
1043 * readonly mappings. The tradeoff is that copy_page_range is more
1044 * efficient than faulting.
1045 */
1046 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1047 VM_PFNMAP | VM_MIXEDMAP))) {
1048 if (!vma->anon_vma)
1049 return 0;
1050 }
1051
1052 if (is_vm_hugetlb_page(vma))
1053 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1054
1055 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1056 /*
1057 * We do not free on error cases below as remove_vma
1058 * gets called on error from higher level routine
1059 */
1060 ret = track_pfn_copy(vma);
1061 if (ret)
1062 return ret;
1063 }
1064
1065 /*
1066 * We need to invalidate the secondary MMU mappings only when
1067 * there could be a permission downgrade on the ptes of the
1068 * parent mm. And a permission downgrade will only happen if
1069 * is_cow_mapping() returns true.
1070 */
1071 is_cow = is_cow_mapping(vma->vm_flags);
1072 mmun_start = addr;
1073 mmun_end = end;
1074 if (is_cow)
1075 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1076 mmun_end);
1077
1078 ret = 0;
1079 dst_pgd = pgd_offset(dst_mm, addr);
1080 src_pgd = pgd_offset(src_mm, addr);
1081 do {
1082 next = pgd_addr_end(addr, end);
1083 if (pgd_none_or_clear_bad(src_pgd))
1084 continue;
1085 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1086 vma, addr, next))) {
1087 ret = -ENOMEM;
1088 break;
1089 }
1090 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1091
1092 if (is_cow)
1093 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1094 return ret;
1095 }
1096
1097 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1098 struct vm_area_struct *vma, pmd_t *pmd,
1099 unsigned long addr, unsigned long end,
1100 struct zap_details *details)
1101 {
1102 struct mm_struct *mm = tlb->mm;
1103 int force_flush = 0;
1104 int rss[NR_MM_COUNTERS];
1105 spinlock_t *ptl;
1106 pte_t *start_pte;
1107 pte_t *pte;
1108
1109 again:
1110 init_rss_vec(rss);
1111 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1112 pte = start_pte;
1113 arch_enter_lazy_mmu_mode();
1114 do {
1115 pte_t ptent = *pte;
1116 if (pte_none(ptent)) {
1117 continue;
1118 }
1119
1120 if (pte_present(ptent)) {
1121 struct page *page;
1122
1123 page = vm_normal_page(vma, addr, ptent);
1124 if (unlikely(details) && page) {
1125 /*
1126 * unmap_shared_mapping_pages() wants to
1127 * invalidate cache without truncating:
1128 * unmap shared but keep private pages.
1129 */
1130 if (details->check_mapping &&
1131 details->check_mapping != page->mapping)
1132 continue;
1133 /*
1134 * Each page->index must be checked when
1135 * invalidating or truncating nonlinear.
1136 */
1137 if (details->nonlinear_vma &&
1138 (page->index < details->first_index ||
1139 page->index > details->last_index))
1140 continue;
1141 }
1142 ptent = ptep_get_and_clear_full(mm, addr, pte,
1143 tlb->fullmm);
1144 tlb_remove_tlb_entry(tlb, pte, addr);
1145 if (unlikely(!page))
1146 continue;
1147 if (unlikely(details) && details->nonlinear_vma
1148 && linear_page_index(details->nonlinear_vma,
1149 addr) != page->index)
1150 set_pte_at(mm, addr, pte,
1151 pgoff_to_pte(page->index));
1152 if (PageAnon(page))
1153 rss[MM_ANONPAGES]--;
1154 else {
1155 if (pte_dirty(ptent))
1156 set_page_dirty(page);
1157 if (pte_young(ptent) &&
1158 likely(!VM_SequentialReadHint(vma)))
1159 mark_page_accessed(page);
1160 rss[MM_FILEPAGES]--;
1161 }
1162 page_remove_rmap(page);
1163 if (unlikely(page_mapcount(page) < 0))
1164 print_bad_pte(vma, addr, ptent, page);
1165 force_flush = !__tlb_remove_page(tlb, page);
1166 if (force_flush)
1167 break;
1168 continue;
1169 }
1170 /*
1171 * If details->check_mapping, we leave swap entries;
1172 * if details->nonlinear_vma, we leave file entries.
1173 */
1174 if (unlikely(details))
1175 continue;
1176 if (pte_file(ptent)) {
1177 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1178 print_bad_pte(vma, addr, ptent, NULL);
1179 } else {
1180 swp_entry_t entry = pte_to_swp_entry(ptent);
1181
1182 if (!non_swap_entry(entry))
1183 rss[MM_SWAPENTS]--;
1184 else if (is_migration_entry(entry)) {
1185 struct page *page;
1186
1187 page = migration_entry_to_page(entry);
1188
1189 if (PageAnon(page))
1190 rss[MM_ANONPAGES]--;
1191 else
1192 rss[MM_FILEPAGES]--;
1193 }
1194 if (unlikely(!free_swap_and_cache(entry)))
1195 print_bad_pte(vma, addr, ptent, NULL);
1196 }
1197 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198 } while (pte++, addr += PAGE_SIZE, addr != end);
1199
1200 add_mm_rss_vec(mm, rss);
1201 arch_leave_lazy_mmu_mode();
1202 pte_unmap_unlock(start_pte, ptl);
1203
1204 /*
1205 * mmu_gather ran out of room to batch pages, we break out of
1206 * the PTE lock to avoid doing the potential expensive TLB invalidate
1207 * and page-free while holding it.
1208 */
1209 if (force_flush) {
1210 unsigned long old_end;
1211
1212 force_flush = 0;
1213
1214 /*
1215 * Flush the TLB just for the previous segment,
1216 * then update the range to be the remaining
1217 * TLB range.
1218 */
1219 old_end = tlb->end;
1220 tlb->end = addr;
1221
1222 tlb_flush_mmu(tlb);
1223
1224 tlb->start = addr;
1225 tlb->end = old_end;
1226
1227 if (addr != end)
1228 goto again;
1229 }
1230
1231 return addr;
1232 }
1233
1234 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1235 struct vm_area_struct *vma, pud_t *pud,
1236 unsigned long addr, unsigned long end,
1237 struct zap_details *details)
1238 {
1239 pmd_t *pmd;
1240 unsigned long next;
1241
1242 pmd = pmd_offset(pud, addr);
1243 do {
1244 next = pmd_addr_end(addr, end);
1245 if (pmd_trans_huge(*pmd)) {
1246 if (next - addr != HPAGE_PMD_SIZE) {
1247 #ifdef CONFIG_DEBUG_VM
1248 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1249 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1250 __func__, addr, end,
1251 vma->vm_start,
1252 vma->vm_end);
1253 BUG();
1254 }
1255 #endif
1256 split_huge_page_pmd(vma, addr, pmd);
1257 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1258 goto next;
1259 /* fall through */
1260 }
1261 /*
1262 * Here there can be other concurrent MADV_DONTNEED or
1263 * trans huge page faults running, and if the pmd is
1264 * none or trans huge it can change under us. This is
1265 * because MADV_DONTNEED holds the mmap_sem in read
1266 * mode.
1267 */
1268 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1269 goto next;
1270 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1271 next:
1272 cond_resched();
1273 } while (pmd++, addr = next, addr != end);
1274
1275 return addr;
1276 }
1277
1278 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1279 struct vm_area_struct *vma, pgd_t *pgd,
1280 unsigned long addr, unsigned long end,
1281 struct zap_details *details)
1282 {
1283 pud_t *pud;
1284 unsigned long next;
1285
1286 pud = pud_offset(pgd, addr);
1287 do {
1288 next = pud_addr_end(addr, end);
1289 if (pud_none_or_clear_bad(pud))
1290 continue;
1291 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1292 } while (pud++, addr = next, addr != end);
1293
1294 return addr;
1295 }
1296
1297 static void unmap_page_range(struct mmu_gather *tlb,
1298 struct vm_area_struct *vma,
1299 unsigned long addr, unsigned long end,
1300 struct zap_details *details)
1301 {
1302 pgd_t *pgd;
1303 unsigned long next;
1304
1305 if (details && !details->check_mapping && !details->nonlinear_vma)
1306 details = NULL;
1307
1308 BUG_ON(addr >= end);
1309 mem_cgroup_uncharge_start();
1310 tlb_start_vma(tlb, vma);
1311 pgd = pgd_offset(vma->vm_mm, addr);
1312 do {
1313 next = pgd_addr_end(addr, end);
1314 if (pgd_none_or_clear_bad(pgd))
1315 continue;
1316 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1317 } while (pgd++, addr = next, addr != end);
1318 tlb_end_vma(tlb, vma);
1319 mem_cgroup_uncharge_end();
1320 }
1321
1322
1323 static void unmap_single_vma(struct mmu_gather *tlb,
1324 struct vm_area_struct *vma, unsigned long start_addr,
1325 unsigned long end_addr,
1326 struct zap_details *details)
1327 {
1328 unsigned long start = max(vma->vm_start, start_addr);
1329 unsigned long end;
1330
1331 if (start >= vma->vm_end)
1332 return;
1333 end = min(vma->vm_end, end_addr);
1334 if (end <= vma->vm_start)
1335 return;
1336
1337 if (vma->vm_file)
1338 uprobe_munmap(vma, start, end);
1339
1340 if (unlikely(vma->vm_flags & VM_PFNMAP))
1341 untrack_pfn(vma, 0, 0);
1342
1343 if (start != end) {
1344 if (unlikely(is_vm_hugetlb_page(vma))) {
1345 /*
1346 * It is undesirable to test vma->vm_file as it
1347 * should be non-null for valid hugetlb area.
1348 * However, vm_file will be NULL in the error
1349 * cleanup path of do_mmap_pgoff. When
1350 * hugetlbfs ->mmap method fails,
1351 * do_mmap_pgoff() nullifies vma->vm_file
1352 * before calling this function to clean up.
1353 * Since no pte has actually been setup, it is
1354 * safe to do nothing in this case.
1355 */
1356 if (vma->vm_file) {
1357 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1358 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1359 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1360 }
1361 } else
1362 unmap_page_range(tlb, vma, start, end, details);
1363 }
1364 }
1365
1366 /**
1367 * unmap_vmas - unmap a range of memory covered by a list of vma's
1368 * @tlb: address of the caller's struct mmu_gather
1369 * @vma: the starting vma
1370 * @start_addr: virtual address at which to start unmapping
1371 * @end_addr: virtual address at which to end unmapping
1372 *
1373 * Unmap all pages in the vma list.
1374 *
1375 * Only addresses between `start' and `end' will be unmapped.
1376 *
1377 * The VMA list must be sorted in ascending virtual address order.
1378 *
1379 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1380 * range after unmap_vmas() returns. So the only responsibility here is to
1381 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1382 * drops the lock and schedules.
1383 */
1384 void unmap_vmas(struct mmu_gather *tlb,
1385 struct vm_area_struct *vma, unsigned long start_addr,
1386 unsigned long end_addr)
1387 {
1388 struct mm_struct *mm = vma->vm_mm;
1389
1390 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1391 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1392 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1393 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1394 }
1395
1396 /**
1397 * zap_page_range - remove user pages in a given range
1398 * @vma: vm_area_struct holding the applicable pages
1399 * @start: starting address of pages to zap
1400 * @size: number of bytes to zap
1401 * @details: details of nonlinear truncation or shared cache invalidation
1402 *
1403 * Caller must protect the VMA list
1404 */
1405 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1406 unsigned long size, struct zap_details *details)
1407 {
1408 struct mm_struct *mm = vma->vm_mm;
1409 struct mmu_gather tlb;
1410 unsigned long end = start + size;
1411
1412 lru_add_drain();
1413 tlb_gather_mmu(&tlb, mm, start, end);
1414 update_hiwater_rss(mm);
1415 mmu_notifier_invalidate_range_start(mm, start, end);
1416 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1417 unmap_single_vma(&tlb, vma, start, end, details);
1418 mmu_notifier_invalidate_range_end(mm, start, end);
1419 tlb_finish_mmu(&tlb, start, end);
1420 }
1421
1422 /**
1423 * zap_page_range_single - remove user pages in a given range
1424 * @vma: vm_area_struct holding the applicable pages
1425 * @address: starting address of pages to zap
1426 * @size: number of bytes to zap
1427 * @details: details of nonlinear truncation or shared cache invalidation
1428 *
1429 * The range must fit into one VMA.
1430 */
1431 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1432 unsigned long size, struct zap_details *details)
1433 {
1434 struct mm_struct *mm = vma->vm_mm;
1435 struct mmu_gather tlb;
1436 unsigned long end = address + size;
1437
1438 lru_add_drain();
1439 tlb_gather_mmu(&tlb, mm, address, end);
1440 update_hiwater_rss(mm);
1441 mmu_notifier_invalidate_range_start(mm, address, end);
1442 unmap_single_vma(&tlb, vma, address, end, details);
1443 mmu_notifier_invalidate_range_end(mm, address, end);
1444 tlb_finish_mmu(&tlb, address, end);
1445 }
1446
1447 /**
1448 * zap_vma_ptes - remove ptes mapping the vma
1449 * @vma: vm_area_struct holding ptes to be zapped
1450 * @address: starting address of pages to zap
1451 * @size: number of bytes to zap
1452 *
1453 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1454 *
1455 * The entire address range must be fully contained within the vma.
1456 *
1457 * Returns 0 if successful.
1458 */
1459 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1460 unsigned long size)
1461 {
1462 if (address < vma->vm_start || address + size > vma->vm_end ||
1463 !(vma->vm_flags & VM_PFNMAP))
1464 return -1;
1465 zap_page_range_single(vma, address, size, NULL);
1466 return 0;
1467 }
1468 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1469
1470 /*
1471 * FOLL_FORCE can write to even unwritable pte's, but only
1472 * after we've gone through a COW cycle and they are dirty.
1473 */
1474 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
1475 {
1476 return pte_write(pte) ||
1477 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
1478 }
1479
1480 /**
1481 * follow_page_mask - look up a page descriptor from a user-virtual address
1482 * @vma: vm_area_struct mapping @address
1483 * @address: virtual address to look up
1484 * @flags: flags modifying lookup behaviour
1485 * @page_mask: on output, *page_mask is set according to the size of the page
1486 *
1487 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1488 *
1489 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1490 * an error pointer if there is a mapping to something not represented
1491 * by a page descriptor (see also vm_normal_page()).
1492 */
1493 struct page *follow_page_mask(struct vm_area_struct *vma,
1494 unsigned long address, unsigned int flags,
1495 unsigned int *page_mask)
1496 {
1497 pgd_t *pgd;
1498 pud_t *pud;
1499 pmd_t *pmd;
1500 pte_t *ptep, pte;
1501 spinlock_t *ptl;
1502 struct page *page;
1503 struct mm_struct *mm = vma->vm_mm;
1504
1505 *page_mask = 0;
1506
1507 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1508 if (!IS_ERR(page)) {
1509 BUG_ON(flags & FOLL_GET);
1510 goto out;
1511 }
1512
1513 page = NULL;
1514 pgd = pgd_offset(mm, address);
1515 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1516 goto no_page_table;
1517
1518 pud = pud_offset(pgd, address);
1519 if (pud_none(*pud))
1520 goto no_page_table;
1521 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1522 BUG_ON(flags & FOLL_GET);
1523 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1524 goto out;
1525 }
1526 if (unlikely(pud_bad(*pud)))
1527 goto no_page_table;
1528
1529 pmd = pmd_offset(pud, address);
1530 if (pmd_none(*pmd))
1531 goto no_page_table;
1532 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1533 BUG_ON(flags & FOLL_GET);
1534 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1535 goto out;
1536 }
1537 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1538 goto no_page_table;
1539 if (pmd_trans_huge(*pmd)) {
1540 if (flags & FOLL_SPLIT) {
1541 split_huge_page_pmd(vma, address, pmd);
1542 goto split_fallthrough;
1543 }
1544 spin_lock(&mm->page_table_lock);
1545 if (likely(pmd_trans_huge(*pmd))) {
1546 if (unlikely(pmd_trans_splitting(*pmd))) {
1547 spin_unlock(&mm->page_table_lock);
1548 wait_split_huge_page(vma->anon_vma, pmd);
1549 } else {
1550 page = follow_trans_huge_pmd(vma, address,
1551 pmd, flags);
1552 spin_unlock(&mm->page_table_lock);
1553 *page_mask = HPAGE_PMD_NR - 1;
1554 goto out;
1555 }
1556 } else
1557 spin_unlock(&mm->page_table_lock);
1558 /* fall through */
1559 }
1560 split_fallthrough:
1561 if (unlikely(pmd_bad(*pmd)))
1562 goto no_page_table;
1563
1564 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1565
1566 pte = *ptep;
1567 if (!pte_present(pte)) {
1568 swp_entry_t entry;
1569 /*
1570 * KSM's break_ksm() relies upon recognizing a ksm page
1571 * even while it is being migrated, so for that case we
1572 * need migration_entry_wait().
1573 */
1574 if (likely(!(flags & FOLL_MIGRATION)))
1575 goto no_page;
1576 if (pte_none(pte) || pte_file(pte))
1577 goto no_page;
1578 entry = pte_to_swp_entry(pte);
1579 if (!is_migration_entry(entry))
1580 goto no_page;
1581 pte_unmap_unlock(ptep, ptl);
1582 migration_entry_wait(mm, pmd, address);
1583 goto split_fallthrough;
1584 }
1585 if ((flags & FOLL_NUMA) && pte_numa(pte))
1586 goto no_page;
1587 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags))
1588 goto unlock;
1589
1590 page = vm_normal_page(vma, address, pte);
1591 if (unlikely(!page)) {
1592 if ((flags & FOLL_DUMP) ||
1593 !is_zero_pfn(pte_pfn(pte)))
1594 goto bad_page;
1595 page = pte_page(pte);
1596 }
1597
1598 if (flags & FOLL_GET)
1599 get_page_foll(page);
1600 if (flags & FOLL_TOUCH) {
1601 if ((flags & FOLL_WRITE) &&
1602 !pte_dirty(pte) && !PageDirty(page))
1603 set_page_dirty(page);
1604 /*
1605 * pte_mkyoung() would be more correct here, but atomic care
1606 * is needed to avoid losing the dirty bit: it is easier to use
1607 * mark_page_accessed().
1608 */
1609 mark_page_accessed(page);
1610 }
1611 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1612 /*
1613 * The preliminary mapping check is mainly to avoid the
1614 * pointless overhead of lock_page on the ZERO_PAGE
1615 * which might bounce very badly if there is contention.
1616 *
1617 * If the page is already locked, we don't need to
1618 * handle it now - vmscan will handle it later if and
1619 * when it attempts to reclaim the page.
1620 */
1621 if (page->mapping && trylock_page(page)) {
1622 lru_add_drain(); /* push cached pages to LRU */
1623 /*
1624 * Because we lock page here, and migration is
1625 * blocked by the pte's page reference, and we
1626 * know the page is still mapped, we don't even
1627 * need to check for file-cache page truncation.
1628 */
1629 mlock_vma_page(page);
1630 unlock_page(page);
1631 }
1632 }
1633 unlock:
1634 pte_unmap_unlock(ptep, ptl);
1635 out:
1636 return page;
1637
1638 bad_page:
1639 pte_unmap_unlock(ptep, ptl);
1640 return ERR_PTR(-EFAULT);
1641
1642 no_page:
1643 pte_unmap_unlock(ptep, ptl);
1644 if (!pte_none(pte))
1645 return page;
1646
1647 no_page_table:
1648 /*
1649 * When core dumping an enormous anonymous area that nobody
1650 * has touched so far, we don't want to allocate unnecessary pages or
1651 * page tables. Return error instead of NULL to skip handle_mm_fault,
1652 * then get_dump_page() will return NULL to leave a hole in the dump.
1653 * But we can only make this optimization where a hole would surely
1654 * be zero-filled if handle_mm_fault() actually did handle it.
1655 */
1656 if ((flags & FOLL_DUMP) &&
1657 (!vma->vm_ops || !vma->vm_ops->fault))
1658 return ERR_PTR(-EFAULT);
1659 return page;
1660 }
1661 EXPORT_SYMBOL_GPL(follow_page_mask);
1662
1663 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1664 {
1665 return stack_guard_page_start(vma, addr) ||
1666 stack_guard_page_end(vma, addr+PAGE_SIZE);
1667 }
1668
1669 /**
1670 * __get_user_pages() - pin user pages in memory
1671 * @tsk: task_struct of target task
1672 * @mm: mm_struct of target mm
1673 * @start: starting user address
1674 * @nr_pages: number of pages from start to pin
1675 * @gup_flags: flags modifying pin behaviour
1676 * @pages: array that receives pointers to the pages pinned.
1677 * Should be at least nr_pages long. Or NULL, if caller
1678 * only intends to ensure the pages are faulted in.
1679 * @vmas: array of pointers to vmas corresponding to each page.
1680 * Or NULL if the caller does not require them.
1681 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1682 *
1683 * Returns number of pages pinned. This may be fewer than the number
1684 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1685 * were pinned, returns -errno. Each page returned must be released
1686 * with a put_page() call when it is finished with. vmas will only
1687 * remain valid while mmap_sem is held.
1688 *
1689 * Must be called with mmap_sem held for read or write.
1690 *
1691 * __get_user_pages walks a process's page tables and takes a reference to
1692 * each struct page that each user address corresponds to at a given
1693 * instant. That is, it takes the page that would be accessed if a user
1694 * thread accesses the given user virtual address at that instant.
1695 *
1696 * This does not guarantee that the page exists in the user mappings when
1697 * __get_user_pages returns, and there may even be a completely different
1698 * page there in some cases (eg. if mmapped pagecache has been invalidated
1699 * and subsequently re faulted). However it does guarantee that the page
1700 * won't be freed completely. And mostly callers simply care that the page
1701 * contains data that was valid *at some point in time*. Typically, an IO
1702 * or similar operation cannot guarantee anything stronger anyway because
1703 * locks can't be held over the syscall boundary.
1704 *
1705 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1706 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1707 * appropriate) must be called after the page is finished with, and
1708 * before put_page is called.
1709 *
1710 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1711 * or mmap_sem contention, and if waiting is needed to pin all pages,
1712 * *@nonblocking will be set to 0.
1713 *
1714 * In most cases, get_user_pages or get_user_pages_fast should be used
1715 * instead of __get_user_pages. __get_user_pages should be used only if
1716 * you need some special @gup_flags.
1717 */
1718 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1719 unsigned long start, unsigned long nr_pages,
1720 unsigned int gup_flags, struct page **pages,
1721 struct vm_area_struct **vmas, int *nonblocking)
1722 {
1723 long i;
1724 unsigned long vm_flags;
1725 unsigned int page_mask;
1726
1727 if (!nr_pages)
1728 return 0;
1729
1730 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1731
1732 /*
1733 * Require read or write permissions.
1734 * If FOLL_FORCE is set, we only require the "MAY" flags.
1735 */
1736 vm_flags = (gup_flags & FOLL_WRITE) ?
1737 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1738 vm_flags &= (gup_flags & FOLL_FORCE) ?
1739 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1740
1741 /*
1742 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1743 * would be called on PROT_NONE ranges. We must never invoke
1744 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1745 * page faults would unprotect the PROT_NONE ranges if
1746 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1747 * bitflag. So to avoid that, don't set FOLL_NUMA if
1748 * FOLL_FORCE is set.
1749 */
1750 if (!(gup_flags & FOLL_FORCE))
1751 gup_flags |= FOLL_NUMA;
1752
1753 i = 0;
1754
1755 do {
1756 struct vm_area_struct *vma;
1757
1758 vma = find_extend_vma(mm, start);
1759 if (!vma && in_gate_area(mm, start)) {
1760 unsigned long pg = start & PAGE_MASK;
1761 pgd_t *pgd;
1762 pud_t *pud;
1763 pmd_t *pmd;
1764 pte_t *pte;
1765
1766 /* user gate pages are read-only */
1767 if (gup_flags & FOLL_WRITE)
1768 return i ? : -EFAULT;
1769 if (pg > TASK_SIZE)
1770 pgd = pgd_offset_k(pg);
1771 else
1772 pgd = pgd_offset_gate(mm, pg);
1773 BUG_ON(pgd_none(*pgd));
1774 pud = pud_offset(pgd, pg);
1775 BUG_ON(pud_none(*pud));
1776 pmd = pmd_offset(pud, pg);
1777 if (pmd_none(*pmd))
1778 return i ? : -EFAULT;
1779 VM_BUG_ON(pmd_trans_huge(*pmd));
1780 pte = pte_offset_map(pmd, pg);
1781 if (pte_none(*pte)) {
1782 pte_unmap(pte);
1783 return i ? : -EFAULT;
1784 }
1785 vma = get_gate_vma(mm);
1786 if (pages) {
1787 struct page *page;
1788
1789 page = vm_normal_page(vma, start, *pte);
1790 if (!page) {
1791 if (!(gup_flags & FOLL_DUMP) &&
1792 is_zero_pfn(pte_pfn(*pte)))
1793 page = pte_page(*pte);
1794 else {
1795 pte_unmap(pte);
1796 return i ? : -EFAULT;
1797 }
1798 }
1799 pages[i] = page;
1800 get_page(page);
1801 }
1802 pte_unmap(pte);
1803 page_mask = 0;
1804 goto next_page;
1805 }
1806 #ifdef CONFIG_MTK_EXTMEM
1807 if (!vma || !(vm_flags & vma->vm_flags))
1808 {
1809 return i ? : -EFAULT;
1810 }
1811
1812 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1813 {
1814 /*Would pass VM_IO | VM_RESERVED | VM_PFNMAP. (for Reserved Physical Memory PFN Mapping Usage)*/
1815 if(!((vma->vm_flags&VM_IO)&&(vma->vm_flags&VM_RESERVED)&&(vma->vm_flags&VM_PFNMAP)))
1816 return i ? : -EFAULT;
1817 }
1818 #else
1819 if (!vma ||
1820 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1821 !(vm_flags & vma->vm_flags))
1822 return i ? : -EFAULT;
1823 #endif
1824
1825 if (is_vm_hugetlb_page(vma)) {
1826 i = follow_hugetlb_page(mm, vma, pages, vmas,
1827 &start, &nr_pages, i, gup_flags);
1828 continue;
1829 }
1830
1831 do {
1832 struct page *page;
1833 unsigned int foll_flags = gup_flags;
1834 unsigned int page_increm;
1835
1836 /*
1837 * If we have a pending SIGKILL, don't keep faulting
1838 * pages and potentially allocating memory.
1839 */
1840 if (unlikely(fatal_signal_pending(current)))
1841 return i ? i : -ERESTARTSYS;
1842
1843 cond_resched();
1844 while (!(page = follow_page_mask(vma, start,
1845 foll_flags, &page_mask))) {
1846 int ret;
1847 unsigned int fault_flags = 0;
1848
1849 /* For mlock, just skip the stack guard page. */
1850 if (foll_flags & FOLL_MLOCK) {
1851 if (stack_guard_page(vma, start))
1852 goto next_page;
1853 }
1854 if (foll_flags & FOLL_WRITE)
1855 fault_flags |= FAULT_FLAG_WRITE;
1856 if (nonblocking)
1857 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1858 if (foll_flags & FOLL_NOWAIT)
1859 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1860
1861 ret = handle_mm_fault(mm, vma, start,
1862 fault_flags);
1863
1864 if (ret & VM_FAULT_ERROR) {
1865 if (ret & VM_FAULT_OOM)
1866 return i ? i : -ENOMEM;
1867 if (ret & (VM_FAULT_HWPOISON |
1868 VM_FAULT_HWPOISON_LARGE)) {
1869 if (i)
1870 return i;
1871 else if (gup_flags & FOLL_HWPOISON)
1872 return -EHWPOISON;
1873 else
1874 return -EFAULT;
1875 }
1876 if (ret & VM_FAULT_SIGBUS)
1877 return i ? i : -EFAULT;
1878 BUG();
1879 }
1880
1881 if (tsk) {
1882 if (ret & VM_FAULT_MAJOR)
1883 tsk->maj_flt++;
1884 else
1885 tsk->min_flt++;
1886 }
1887
1888 if (ret & VM_FAULT_RETRY) {
1889 if (nonblocking)
1890 *nonblocking = 0;
1891 return i;
1892 }
1893
1894 /*
1895 * The VM_FAULT_WRITE bit tells us that
1896 * do_wp_page has broken COW when necessary,
1897 * even if maybe_mkwrite decided not to set
1898 * pte_write. We can thus safely do subsequent
1899 * page lookups as if they were reads. But only
1900 * do so when looping for pte_write is futile:
1901 * in some cases userspace may also be wanting
1902 * to write to the gotten user page, which a
1903 * read fault here might prevent (a readonly
1904 * page might get reCOWed by userspace write).
1905 */
1906 if ((ret & VM_FAULT_WRITE) &&
1907 !(vma->vm_flags & VM_WRITE))
1908 foll_flags |= FOLL_COW;
1909
1910 cond_resched();
1911 }
1912 if (IS_ERR(page))
1913 return i ? i : PTR_ERR(page);
1914 if (pages) {
1915 pages[i] = page;
1916
1917 flush_anon_page(vma, page, start);
1918 flush_dcache_page(page);
1919 page_mask = 0;
1920 }
1921 next_page:
1922 if (vmas) {
1923 vmas[i] = vma;
1924 page_mask = 0;
1925 }
1926 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1927 if (page_increm > nr_pages)
1928 page_increm = nr_pages;
1929 i += page_increm;
1930 start += page_increm * PAGE_SIZE;
1931 nr_pages -= page_increm;
1932 } while (nr_pages && start < vma->vm_end);
1933 } while (nr_pages);
1934 return i;
1935 }
1936 EXPORT_SYMBOL(__get_user_pages);
1937
1938 /*
1939 * fixup_user_fault() - manually resolve a user page fault
1940 * @tsk: the task_struct to use for page fault accounting, or
1941 * NULL if faults are not to be recorded.
1942 * @mm: mm_struct of target mm
1943 * @address: user address
1944 * @fault_flags:flags to pass down to handle_mm_fault()
1945 *
1946 * This is meant to be called in the specific scenario where for locking reasons
1947 * we try to access user memory in atomic context (within a pagefault_disable()
1948 * section), this returns -EFAULT, and we want to resolve the user fault before
1949 * trying again.
1950 *
1951 * Typically this is meant to be used by the futex code.
1952 *
1953 * The main difference with get_user_pages() is that this function will
1954 * unconditionally call handle_mm_fault() which will in turn perform all the
1955 * necessary SW fixup of the dirty and young bits in the PTE, while
1956 * handle_mm_fault() only guarantees to update these in the struct page.
1957 *
1958 * This is important for some architectures where those bits also gate the
1959 * access permission to the page because they are maintained in software. On
1960 * such architectures, gup() will not be enough to make a subsequent access
1961 * succeed.
1962 *
1963 * This should be called with the mm_sem held for read.
1964 */
1965 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1966 unsigned long address, unsigned int fault_flags)
1967 {
1968 struct vm_area_struct *vma;
1969 vm_flags_t vm_flags;
1970 int ret;
1971
1972 vma = find_extend_vma(mm, address);
1973 if (!vma || address < vma->vm_start)
1974 return -EFAULT;
1975
1976 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1977 if (!(vm_flags & vma->vm_flags))
1978 return -EFAULT;
1979
1980 ret = handle_mm_fault(mm, vma, address, fault_flags);
1981 if (ret & VM_FAULT_ERROR) {
1982 if (ret & VM_FAULT_OOM)
1983 return -ENOMEM;
1984 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1985 return -EHWPOISON;
1986 if (ret & VM_FAULT_SIGBUS)
1987 return -EFAULT;
1988 BUG();
1989 }
1990 if (tsk) {
1991 if (ret & VM_FAULT_MAJOR)
1992 tsk->maj_flt++;
1993 else
1994 tsk->min_flt++;
1995 }
1996 return 0;
1997 }
1998
1999 /*
2000 * get_user_pages() - pin user pages in memory
2001 * @tsk: the task_struct to use for page fault accounting, or
2002 * NULL if faults are not to be recorded.
2003 * @mm: mm_struct of target mm
2004 * @start: starting user address
2005 * @nr_pages: number of pages from start to pin
2006 * @write: whether pages will be written to by the caller
2007 * @force: whether to force write access even if user mapping is
2008 * readonly. This will result in the page being COWed even
2009 * in MAP_SHARED mappings. You do not want this.
2010 * @pages: array that receives pointers to the pages pinned.
2011 * Should be at least nr_pages long. Or NULL, if caller
2012 * only intends to ensure the pages are faulted in.
2013 * @vmas: array of pointers to vmas corresponding to each page.
2014 * Or NULL if the caller does not require them.
2015 *
2016 * Returns number of pages pinned. This may be fewer than the number
2017 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2018 * were pinned, returns -errno. Each page returned must be released
2019 * with a put_page() call when it is finished with. vmas will only
2020 * remain valid while mmap_sem is held.
2021 *
2022 * Must be called with mmap_sem held for read or write.
2023 *
2024 * get_user_pages walks a process's page tables and takes a reference to
2025 * each struct page that each user address corresponds to at a given
2026 * instant. That is, it takes the page that would be accessed if a user
2027 * thread accesses the given user virtual address at that instant.
2028 *
2029 * This does not guarantee that the page exists in the user mappings when
2030 * get_user_pages returns, and there may even be a completely different
2031 * page there in some cases (eg. if mmapped pagecache has been invalidated
2032 * and subsequently re faulted). However it does guarantee that the page
2033 * won't be freed completely. And mostly callers simply care that the page
2034 * contains data that was valid *at some point in time*. Typically, an IO
2035 * or similar operation cannot guarantee anything stronger anyway because
2036 * locks can't be held over the syscall boundary.
2037 *
2038 * If write=0, the page must not be written to. If the page is written to,
2039 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2040 * after the page is finished with, and before put_page is called.
2041 *
2042 * get_user_pages is typically used for fewer-copy IO operations, to get a
2043 * handle on the memory by some means other than accesses via the user virtual
2044 * addresses. The pages may be submitted for DMA to devices or accessed via
2045 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2046 * use the correct cache flushing APIs.
2047 *
2048 * See also get_user_pages_fast, for performance critical applications.
2049 */
2050 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2051 unsigned long start, unsigned long nr_pages, int write,
2052 int force, struct page **pages, struct vm_area_struct **vmas)
2053 {
2054 int flags = FOLL_TOUCH;
2055
2056 if (pages)
2057 flags |= FOLL_GET;
2058 if (write)
2059 flags |= FOLL_WRITE;
2060 if (force)
2061 flags |= FOLL_FORCE;
2062
2063 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2064 NULL);
2065 }
2066 EXPORT_SYMBOL(get_user_pages);
2067
2068 /**
2069 * get_dump_page() - pin user page in memory while writing it to core dump
2070 * @addr: user address
2071 *
2072 * Returns struct page pointer of user page pinned for dump,
2073 * to be freed afterwards by page_cache_release() or put_page().
2074 *
2075 * Returns NULL on any kind of failure - a hole must then be inserted into
2076 * the corefile, to preserve alignment with its headers; and also returns
2077 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2078 * allowing a hole to be left in the corefile to save diskspace.
2079 *
2080 * Called without mmap_sem, but after all other threads have been killed.
2081 */
2082 #ifdef CONFIG_ELF_CORE
2083 struct page *get_dump_page(unsigned long addr)
2084 {
2085 struct vm_area_struct *vma;
2086 struct page *page;
2087
2088 if (__get_user_pages(current, current->mm, addr, 1,
2089 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2090 NULL) < 1)
2091 return NULL;
2092 flush_cache_page(vma, addr, page_to_pfn(page));
2093 return page;
2094 }
2095 #endif /* CONFIG_ELF_CORE */
2096
2097 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2098 spinlock_t **ptl)
2099 {
2100 pgd_t * pgd = pgd_offset(mm, addr);
2101 pud_t * pud = pud_alloc(mm, pgd, addr);
2102 if (pud) {
2103 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2104 if (pmd) {
2105 VM_BUG_ON(pmd_trans_huge(*pmd));
2106 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2107 }
2108 }
2109 return NULL;
2110 }
2111
2112 /*
2113 * This is the old fallback for page remapping.
2114 *
2115 * For historical reasons, it only allows reserved pages. Only
2116 * old drivers should use this, and they needed to mark their
2117 * pages reserved for the old functions anyway.
2118 */
2119 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2120 struct page *page, pgprot_t prot)
2121 {
2122 struct mm_struct *mm = vma->vm_mm;
2123 int retval;
2124 pte_t *pte;
2125 spinlock_t *ptl;
2126
2127 retval = -EINVAL;
2128 if (PageAnon(page))
2129 goto out;
2130 retval = -ENOMEM;
2131 flush_dcache_page(page);
2132 pte = get_locked_pte(mm, addr, &ptl);
2133 if (!pte)
2134 goto out;
2135 retval = -EBUSY;
2136 if (!pte_none(*pte))
2137 goto out_unlock;
2138
2139 /* Ok, finally just insert the thing.. */
2140 get_page(page);
2141 inc_mm_counter_fast(mm, MM_FILEPAGES);
2142 page_add_file_rmap(page);
2143 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2144
2145 retval = 0;
2146 pte_unmap_unlock(pte, ptl);
2147 return retval;
2148 out_unlock:
2149 pte_unmap_unlock(pte, ptl);
2150 out:
2151 return retval;
2152 }
2153
2154 /**
2155 * vm_insert_page - insert single page into user vma
2156 * @vma: user vma to map to
2157 * @addr: target user address of this page
2158 * @page: source kernel page
2159 *
2160 * This allows drivers to insert individual pages they've allocated
2161 * into a user vma.
2162 *
2163 * The page has to be a nice clean _individual_ kernel allocation.
2164 * If you allocate a compound page, you need to have marked it as
2165 * such (__GFP_COMP), or manually just split the page up yourself
2166 * (see split_page()).
2167 *
2168 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2169 * took an arbitrary page protection parameter. This doesn't allow
2170 * that. Your vma protection will have to be set up correctly, which
2171 * means that if you want a shared writable mapping, you'd better
2172 * ask for a shared writable mapping!
2173 *
2174 * The page does not need to be reserved.
2175 *
2176 * Usually this function is called from f_op->mmap() handler
2177 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2178 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2179 * function from other places, for example from page-fault handler.
2180 */
2181 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2182 struct page *page)
2183 {
2184 if (addr < vma->vm_start || addr >= vma->vm_end)
2185 return -EFAULT;
2186 if (!page_count(page))
2187 return -EINVAL;
2188 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2189 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2190 BUG_ON(vma->vm_flags & VM_PFNMAP);
2191 vma->vm_flags |= VM_MIXEDMAP;
2192 }
2193 return insert_page(vma, addr, page, vma->vm_page_prot);
2194 }
2195 EXPORT_SYMBOL(vm_insert_page);
2196
2197 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2198 unsigned long pfn, pgprot_t prot)
2199 {
2200 struct mm_struct *mm = vma->vm_mm;
2201 int retval;
2202 pte_t *pte, entry;
2203 spinlock_t *ptl;
2204
2205 retval = -ENOMEM;
2206 pte = get_locked_pte(mm, addr, &ptl);
2207 if (!pte)
2208 goto out;
2209 retval = -EBUSY;
2210 if (!pte_none(*pte))
2211 goto out_unlock;
2212
2213 /* Ok, finally just insert the thing.. */
2214 entry = pte_mkspecial(pfn_pte(pfn, prot));
2215 set_pte_at(mm, addr, pte, entry);
2216 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2217
2218 retval = 0;
2219 out_unlock:
2220 pte_unmap_unlock(pte, ptl);
2221 out:
2222 return retval;
2223 }
2224
2225 /**
2226 * vm_insert_pfn - insert single pfn into user vma
2227 * @vma: user vma to map to
2228 * @addr: target user address of this page
2229 * @pfn: source kernel pfn
2230 *
2231 * Similar to vm_insert_page, this allows drivers to insert individual pages
2232 * they've allocated into a user vma. Same comments apply.
2233 *
2234 * This function should only be called from a vm_ops->fault handler, and
2235 * in that case the handler should return NULL.
2236 *
2237 * vma cannot be a COW mapping.
2238 *
2239 * As this is called only for pages that do not currently exist, we
2240 * do not need to flush old virtual caches or the TLB.
2241 */
2242 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2243 unsigned long pfn)
2244 {
2245 int ret;
2246 pgprot_t pgprot = vma->vm_page_prot;
2247 /*
2248 * Technically, architectures with pte_special can avoid all these
2249 * restrictions (same for remap_pfn_range). However we would like
2250 * consistency in testing and feature parity among all, so we should
2251 * try to keep these invariants in place for everybody.
2252 */
2253 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2254 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2255 (VM_PFNMAP|VM_MIXEDMAP));
2256 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2257 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2258
2259 if (addr < vma->vm_start || addr >= vma->vm_end)
2260 return -EFAULT;
2261 if (track_pfn_insert(vma, &pgprot, pfn))
2262 return -EINVAL;
2263
2264 ret = insert_pfn(vma, addr, pfn, pgprot);
2265
2266 return ret;
2267 }
2268 EXPORT_SYMBOL(vm_insert_pfn);
2269
2270 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2271 unsigned long pfn)
2272 {
2273 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2274
2275 if (addr < vma->vm_start || addr >= vma->vm_end)
2276 return -EFAULT;
2277
2278 /*
2279 * If we don't have pte special, then we have to use the pfn_valid()
2280 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2281 * refcount the page if pfn_valid is true (hence insert_page rather
2282 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2283 * without pte special, it would there be refcounted as a normal page.
2284 */
2285 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2286 struct page *page;
2287
2288 page = pfn_to_page(pfn);
2289 return insert_page(vma, addr, page, vma->vm_page_prot);
2290 }
2291 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2292 }
2293 EXPORT_SYMBOL(vm_insert_mixed);
2294
2295 /*
2296 * maps a range of physical memory into the requested pages. the old
2297 * mappings are removed. any references to nonexistent pages results
2298 * in null mappings (currently treated as "copy-on-access")
2299 */
2300 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2301 unsigned long addr, unsigned long end,
2302 unsigned long pfn, pgprot_t prot)
2303 {
2304 pte_t *pte;
2305 spinlock_t *ptl;
2306
2307 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2308 if (!pte)
2309 return -ENOMEM;
2310 arch_enter_lazy_mmu_mode();
2311 do {
2312 BUG_ON(!pte_none(*pte));
2313 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2314 pfn++;
2315 } while (pte++, addr += PAGE_SIZE, addr != end);
2316 arch_leave_lazy_mmu_mode();
2317 pte_unmap_unlock(pte - 1, ptl);
2318 return 0;
2319 }
2320
2321 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2322 unsigned long addr, unsigned long end,
2323 unsigned long pfn, pgprot_t prot)
2324 {
2325 pmd_t *pmd;
2326 unsigned long next;
2327
2328 pfn -= addr >> PAGE_SHIFT;
2329 pmd = pmd_alloc(mm, pud, addr);
2330 if (!pmd)
2331 return -ENOMEM;
2332 VM_BUG_ON(pmd_trans_huge(*pmd));
2333 do {
2334 next = pmd_addr_end(addr, end);
2335 if (remap_pte_range(mm, pmd, addr, next,
2336 pfn + (addr >> PAGE_SHIFT), prot))
2337 return -ENOMEM;
2338 } while (pmd++, addr = next, addr != end);
2339 return 0;
2340 }
2341
2342 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2343 unsigned long addr, unsigned long end,
2344 unsigned long pfn, pgprot_t prot)
2345 {
2346 pud_t *pud;
2347 unsigned long next;
2348
2349 pfn -= addr >> PAGE_SHIFT;
2350 pud = pud_alloc(mm, pgd, addr);
2351 if (!pud)
2352 return -ENOMEM;
2353 do {
2354 next = pud_addr_end(addr, end);
2355 if (remap_pmd_range(mm, pud, addr, next,
2356 pfn + (addr >> PAGE_SHIFT), prot))
2357 return -ENOMEM;
2358 } while (pud++, addr = next, addr != end);
2359 return 0;
2360 }
2361
2362 /**
2363 * remap_pfn_range - remap kernel memory to userspace
2364 * @vma: user vma to map to
2365 * @addr: target user address to start at
2366 * @pfn: physical address of kernel memory
2367 * @size: size of map area
2368 * @prot: page protection flags for this mapping
2369 *
2370 * Note: this is only safe if the mm semaphore is held when called.
2371 */
2372 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2373 unsigned long pfn, unsigned long size, pgprot_t prot)
2374 {
2375 pgd_t *pgd;
2376 unsigned long next;
2377 unsigned long end = addr + PAGE_ALIGN(size);
2378 struct mm_struct *mm = vma->vm_mm;
2379 int err;
2380
2381 /*
2382 * Physically remapped pages are special. Tell the
2383 * rest of the world about it:
2384 * VM_IO tells people not to look at these pages
2385 * (accesses can have side effects).
2386 * VM_PFNMAP tells the core MM that the base pages are just
2387 * raw PFN mappings, and do not have a "struct page" associated
2388 * with them.
2389 * VM_DONTEXPAND
2390 * Disable vma merging and expanding with mremap().
2391 * VM_DONTDUMP
2392 * Omit vma from core dump, even when VM_IO turned off.
2393 *
2394 * There's a horrible special case to handle copy-on-write
2395 * behaviour that some programs depend on. We mark the "original"
2396 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2397 * See vm_normal_page() for details.
2398 */
2399 #ifdef CONFIG_MTK_EXTMEM
2400 if (addr == vma->vm_start && end == vma->vm_end) {
2401 vma->vm_pgoff = pfn;
2402 } else if (is_cow_mapping(vma->vm_flags))
2403 return -EINVAL;
2404 #else
2405 if (is_cow_mapping(vma->vm_flags)) {
2406 if (addr != vma->vm_start || end != vma->vm_end)
2407 return -EINVAL;
2408 vma->vm_pgoff = pfn;
2409 }
2410 #endif
2411 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2412 if (err)
2413 return -EINVAL;
2414
2415 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2416
2417 BUG_ON(addr >= end);
2418 pfn -= addr >> PAGE_SHIFT;
2419 pgd = pgd_offset(mm, addr);
2420 flush_cache_range(vma, addr, end);
2421 do {
2422 next = pgd_addr_end(addr, end);
2423 err = remap_pud_range(mm, pgd, addr, next,
2424 pfn + (addr >> PAGE_SHIFT), prot);
2425 if (err)
2426 break;
2427 } while (pgd++, addr = next, addr != end);
2428
2429 if (err)
2430 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2431
2432 return err;
2433 }
2434 EXPORT_SYMBOL(remap_pfn_range);
2435
2436 /**
2437 * vm_iomap_memory - remap memory to userspace
2438 * @vma: user vma to map to
2439 * @start: start of area
2440 * @len: size of area
2441 *
2442 * This is a simplified io_remap_pfn_range() for common driver use. The
2443 * driver just needs to give us the physical memory range to be mapped,
2444 * we'll figure out the rest from the vma information.
2445 *
2446 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2447 * whatever write-combining details or similar.
2448 */
2449 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2450 {
2451 unsigned long vm_len, pfn, pages;
2452
2453 /* Check that the physical memory area passed in looks valid */
2454 if (start + len < start)
2455 return -EINVAL;
2456 /*
2457 * You *really* shouldn't map things that aren't page-aligned,
2458 * but we've historically allowed it because IO memory might
2459 * just have smaller alignment.
2460 */
2461 len += start & ~PAGE_MASK;
2462 pfn = start >> PAGE_SHIFT;
2463 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2464 if (pfn + pages < pfn)
2465 return -EINVAL;
2466
2467 /* We start the mapping 'vm_pgoff' pages into the area */
2468 if (vma->vm_pgoff > pages)
2469 return -EINVAL;
2470 pfn += vma->vm_pgoff;
2471 pages -= vma->vm_pgoff;
2472
2473 /* Can we fit all of the mapping? */
2474 vm_len = vma->vm_end - vma->vm_start;
2475 if (vm_len >> PAGE_SHIFT > pages)
2476 return -EINVAL;
2477
2478 /* Ok, let it rip */
2479 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2480 }
2481 EXPORT_SYMBOL(vm_iomap_memory);
2482
2483 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2484 unsigned long addr, unsigned long end,
2485 pte_fn_t fn, void *data)
2486 {
2487 pte_t *pte;
2488 int err;
2489 pgtable_t token;
2490 spinlock_t *uninitialized_var(ptl);
2491
2492 pte = (mm == &init_mm) ?
2493 pte_alloc_kernel(pmd, addr) :
2494 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2495 if (!pte)
2496 return -ENOMEM;
2497
2498 BUG_ON(pmd_huge(*pmd));
2499
2500 arch_enter_lazy_mmu_mode();
2501
2502 token = pmd_pgtable(*pmd);
2503
2504 do {
2505 err = fn(pte++, token, addr, data);
2506 if (err)
2507 break;
2508 } while (addr += PAGE_SIZE, addr != end);
2509
2510 arch_leave_lazy_mmu_mode();
2511
2512 if (mm != &init_mm)
2513 pte_unmap_unlock(pte-1, ptl);
2514 return err;
2515 }
2516
2517 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2518 unsigned long addr, unsigned long end,
2519 pte_fn_t fn, void *data)
2520 {
2521 pmd_t *pmd;
2522 unsigned long next;
2523 int err;
2524
2525 BUG_ON(pud_huge(*pud));
2526
2527 pmd = pmd_alloc(mm, pud, addr);
2528 if (!pmd)
2529 return -ENOMEM;
2530 do {
2531 next = pmd_addr_end(addr, end);
2532 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2533 if (err)
2534 break;
2535 } while (pmd++, addr = next, addr != end);
2536 return err;
2537 }
2538
2539 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2540 unsigned long addr, unsigned long end,
2541 pte_fn_t fn, void *data)
2542 {
2543 pud_t *pud;
2544 unsigned long next;
2545 int err;
2546
2547 pud = pud_alloc(mm, pgd, addr);
2548 if (!pud)
2549 return -ENOMEM;
2550 do {
2551 next = pud_addr_end(addr, end);
2552 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2553 if (err)
2554 break;
2555 } while (pud++, addr = next, addr != end);
2556 return err;
2557 }
2558
2559 /*
2560 * Scan a region of virtual memory, filling in page tables as necessary
2561 * and calling a provided function on each leaf page table.
2562 */
2563 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2564 unsigned long size, pte_fn_t fn, void *data)
2565 {
2566 pgd_t *pgd;
2567 unsigned long next;
2568 unsigned long end = addr + size;
2569 int err;
2570
2571 BUG_ON(addr >= end);
2572 pgd = pgd_offset(mm, addr);
2573 do {
2574 next = pgd_addr_end(addr, end);
2575 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2576 if (err)
2577 break;
2578 } while (pgd++, addr = next, addr != end);
2579
2580 return err;
2581 }
2582 EXPORT_SYMBOL_GPL(apply_to_page_range);
2583
2584 /*
2585 * handle_pte_fault chooses page fault handler according to an entry
2586 * which was read non-atomically. Before making any commitment, on
2587 * those architectures or configurations (e.g. i386 with PAE) which
2588 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2589 * must check under lock before unmapping the pte and proceeding
2590 * (but do_wp_page is only called after already making such a check;
2591 * and do_anonymous_page can safely check later on).
2592 */
2593 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2594 pte_t *page_table, pte_t orig_pte)
2595 {
2596 int same = 1;
2597 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2598 if (sizeof(pte_t) > sizeof(unsigned long)) {
2599 spinlock_t *ptl = pte_lockptr(mm, pmd);
2600 spin_lock(ptl);
2601 same = pte_same(*page_table, orig_pte);
2602 spin_unlock(ptl);
2603 }
2604 #endif
2605 pte_unmap(page_table);
2606 return same;
2607 }
2608
2609 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2610 {
2611 /*
2612 * If the source page was a PFN mapping, we don't have
2613 * a "struct page" for it. We do a best-effort copy by
2614 * just copying from the original user address. If that
2615 * fails, we just zero-fill it. Live with it.
2616 */
2617 if (unlikely(!src)) {
2618 void *kaddr = kmap_atomic(dst);
2619 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2620
2621 /*
2622 * This really shouldn't fail, because the page is there
2623 * in the page tables. But it might just be unreadable,
2624 * in which case we just give up and fill the result with
2625 * zeroes.
2626 */
2627 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2628 clear_page(kaddr);
2629 kunmap_atomic(kaddr);
2630 flush_dcache_page(dst);
2631 } else
2632 copy_user_highpage(dst, src, va, vma);
2633 }
2634
2635 /*
2636 * This routine handles present pages, when users try to write
2637 * to a shared page. It is done by copying the page to a new address
2638 * and decrementing the shared-page counter for the old page.
2639 *
2640 * Note that this routine assumes that the protection checks have been
2641 * done by the caller (the low-level page fault routine in most cases).
2642 * Thus we can safely just mark it writable once we've done any necessary
2643 * COW.
2644 *
2645 * We also mark the page dirty at this point even though the page will
2646 * change only once the write actually happens. This avoids a few races,
2647 * and potentially makes it more efficient.
2648 *
2649 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2650 * but allow concurrent faults), with pte both mapped and locked.
2651 * We return with mmap_sem still held, but pte unmapped and unlocked.
2652 */
2653 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2654 unsigned long address, pte_t *page_table, pmd_t *pmd,
2655 spinlock_t *ptl, pte_t orig_pte)
2656 __releases(ptl)
2657 {
2658 struct page *old_page, *new_page = NULL;
2659 pte_t entry;
2660 int ret = 0;
2661 int page_mkwrite = 0;
2662 struct page *dirty_page = NULL;
2663 unsigned long mmun_start = 0; /* For mmu_notifiers */
2664 unsigned long mmun_end = 0; /* For mmu_notifiers */
2665
2666 old_page = vm_normal_page(vma, address, orig_pte);
2667 if (!old_page) {
2668 /*
2669 * VM_MIXEDMAP !pfn_valid() case
2670 *
2671 * We should not cow pages in a shared writeable mapping.
2672 * Just mark the pages writable as we can't do any dirty
2673 * accounting on raw pfn maps.
2674 */
2675 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2676 (VM_WRITE|VM_SHARED))
2677 goto reuse;
2678 goto gotten;
2679 }
2680
2681 /*
2682 * Take out anonymous pages first, anonymous shared vmas are
2683 * not dirty accountable.
2684 */
2685 if (PageAnon(old_page) && !PageKsm(old_page)) {
2686 if (!trylock_page(old_page)) {
2687 page_cache_get(old_page);
2688 pte_unmap_unlock(page_table, ptl);
2689 lock_page(old_page);
2690 page_table = pte_offset_map_lock(mm, pmd, address,
2691 &ptl);
2692 if (!pte_same(*page_table, orig_pte)) {
2693 unlock_page(old_page);
2694 goto unlock;
2695 }
2696 page_cache_release(old_page);
2697 }
2698 if (reuse_swap_page(old_page)) {
2699 /*
2700 * The page is all ours. Move it to our anon_vma so
2701 * the rmap code will not search our parent or siblings.
2702 * Protected against the rmap code by the page lock.
2703 */
2704 page_move_anon_rmap(old_page, vma, address);
2705 unlock_page(old_page);
2706 goto reuse;
2707 }
2708 unlock_page(old_page);
2709 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2710 (VM_WRITE|VM_SHARED))) {
2711 /*
2712 * Only catch write-faults on shared writable pages,
2713 * read-only shared pages can get COWed by
2714 * get_user_pages(.write=1, .force=1).
2715 */
2716 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2717 struct vm_fault vmf;
2718 int tmp;
2719
2720 vmf.virtual_address = (void __user *)(address &
2721 PAGE_MASK);
2722 vmf.pgoff = old_page->index;
2723 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2724 vmf.page = old_page;
2725
2726 /*
2727 * Notify the address space that the page is about to
2728 * become writable so that it can prohibit this or wait
2729 * for the page to get into an appropriate state.
2730 *
2731 * We do this without the lock held, so that it can
2732 * sleep if it needs to.
2733 */
2734 page_cache_get(old_page);
2735 pte_unmap_unlock(page_table, ptl);
2736
2737 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2738 if (unlikely(tmp &
2739 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2740 ret = tmp;
2741 goto unwritable_page;
2742 }
2743 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2744 lock_page(old_page);
2745 if (!old_page->mapping) {
2746 ret = 0; /* retry the fault */
2747 unlock_page(old_page);
2748 goto unwritable_page;
2749 }
2750 } else
2751 VM_BUG_ON(!PageLocked(old_page));
2752
2753 /*
2754 * Since we dropped the lock we need to revalidate
2755 * the PTE as someone else may have changed it. If
2756 * they did, we just return, as we can count on the
2757 * MMU to tell us if they didn't also make it writable.
2758 */
2759 page_table = pte_offset_map_lock(mm, pmd, address,
2760 &ptl);
2761 if (!pte_same(*page_table, orig_pte)) {
2762 unlock_page(old_page);
2763 goto unlock;
2764 }
2765
2766 page_mkwrite = 1;
2767 }
2768 dirty_page = old_page;
2769 get_page(dirty_page);
2770
2771 reuse:
2772 flush_cache_page(vma, address, pte_pfn(orig_pte));
2773 entry = pte_mkyoung(orig_pte);
2774 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2775 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2776 update_mmu_cache(vma, address, page_table);
2777 pte_unmap_unlock(page_table, ptl);
2778 ret |= VM_FAULT_WRITE;
2779
2780 if (!dirty_page)
2781 return ret;
2782
2783 /*
2784 * Yes, Virginia, this is actually required to prevent a race
2785 * with clear_page_dirty_for_io() from clearing the page dirty
2786 * bit after it clear all dirty ptes, but before a racing
2787 * do_wp_page installs a dirty pte.
2788 *
2789 * __do_fault is protected similarly.
2790 */
2791 if (!page_mkwrite) {
2792 wait_on_page_locked(dirty_page);
2793 set_page_dirty_balance(dirty_page, page_mkwrite);
2794 /* file_update_time outside page_lock */
2795 if (vma->vm_file)
2796 file_update_time(vma->vm_file);
2797 }
2798 put_page(dirty_page);
2799 if (page_mkwrite) {
2800 struct address_space *mapping = dirty_page->mapping;
2801
2802 set_page_dirty(dirty_page);
2803 unlock_page(dirty_page);
2804 page_cache_release(dirty_page);
2805 if (mapping) {
2806 /*
2807 * Some device drivers do not set page.mapping
2808 * but still dirty their pages
2809 */
2810 balance_dirty_pages_ratelimited(mapping);
2811 }
2812 }
2813
2814 return ret;
2815 }
2816
2817 /*
2818 * Ok, we need to copy. Oh, well..
2819 */
2820 page_cache_get(old_page);
2821 gotten:
2822 pte_unmap_unlock(page_table, ptl);
2823
2824 if (unlikely(anon_vma_prepare(vma)))
2825 goto oom;
2826
2827 if (is_zero_pfn(pte_pfn(orig_pte))) {
2828 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2829 if (!new_page)
2830 goto oom;
2831 } else {
2832 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2833 if (!new_page)
2834 goto oom;
2835 cow_user_page(new_page, old_page, address, vma);
2836 }
2837 __SetPageUptodate(new_page);
2838
2839 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2840 goto oom_free_new;
2841
2842 mmun_start = address & PAGE_MASK;
2843 mmun_end = mmun_start + PAGE_SIZE;
2844 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2845
2846 /*
2847 * Re-check the pte - we dropped the lock
2848 */
2849 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2850 if (likely(pte_same(*page_table, orig_pte))) {
2851 if (old_page) {
2852 if (!PageAnon(old_page)) {
2853 dec_mm_counter_fast(mm, MM_FILEPAGES);
2854 inc_mm_counter_fast(mm, MM_ANONPAGES);
2855 }
2856 } else
2857 inc_mm_counter_fast(mm, MM_ANONPAGES);
2858 flush_cache_page(vma, address, pte_pfn(orig_pte));
2859 entry = mk_pte(new_page, vma->vm_page_prot);
2860 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2861 /*
2862 * Clear the pte entry and flush it first, before updating the
2863 * pte with the new entry. This will avoid a race condition
2864 * seen in the presence of one thread doing SMC and another
2865 * thread doing COW.
2866 */
2867 ptep_clear_flush(vma, address, page_table);
2868 page_add_new_anon_rmap(new_page, vma, address);
2869 /*
2870 * We call the notify macro here because, when using secondary
2871 * mmu page tables (such as kvm shadow page tables), we want the
2872 * new page to be mapped directly into the secondary page table.
2873 */
2874 set_pte_at_notify(mm, address, page_table, entry);
2875 update_mmu_cache(vma, address, page_table);
2876 if (old_page) {
2877 /*
2878 * Only after switching the pte to the new page may
2879 * we remove the mapcount here. Otherwise another
2880 * process may come and find the rmap count decremented
2881 * before the pte is switched to the new page, and
2882 * "reuse" the old page writing into it while our pte
2883 * here still points into it and can be read by other
2884 * threads.
2885 *
2886 * The critical issue is to order this
2887 * page_remove_rmap with the ptp_clear_flush above.
2888 * Those stores are ordered by (if nothing else,)
2889 * the barrier present in the atomic_add_negative
2890 * in page_remove_rmap.
2891 *
2892 * Then the TLB flush in ptep_clear_flush ensures that
2893 * no process can access the old page before the
2894 * decremented mapcount is visible. And the old page
2895 * cannot be reused until after the decremented
2896 * mapcount is visible. So transitively, TLBs to
2897 * old page will be flushed before it can be reused.
2898 */
2899 page_remove_rmap(old_page);
2900 }
2901
2902 /* Free the old page.. */
2903 new_page = old_page;
2904 ret |= VM_FAULT_WRITE;
2905 } else
2906 mem_cgroup_uncharge_page(new_page);
2907
2908 if (new_page)
2909 page_cache_release(new_page);
2910 unlock:
2911 pte_unmap_unlock(page_table, ptl);
2912 if (mmun_end > mmun_start)
2913 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2914 if (old_page) {
2915 /*
2916 * Don't let another task, with possibly unlocked vma,
2917 * keep the mlocked page.
2918 */
2919 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2920 lock_page(old_page); /* LRU manipulation */
2921 munlock_vma_page(old_page);
2922 unlock_page(old_page);
2923 }
2924 page_cache_release(old_page);
2925 }
2926 return ret;
2927 oom_free_new:
2928 page_cache_release(new_page);
2929 oom:
2930 if (old_page)
2931 page_cache_release(old_page);
2932 return VM_FAULT_OOM;
2933
2934 unwritable_page:
2935 page_cache_release(old_page);
2936 return ret;
2937 }
2938
2939 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2940 unsigned long start_addr, unsigned long end_addr,
2941 struct zap_details *details)
2942 {
2943 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2944 }
2945
2946 static inline void unmap_mapping_range_tree(struct rb_root *root,
2947 struct zap_details *details)
2948 {
2949 struct vm_area_struct *vma;
2950 pgoff_t vba, vea, zba, zea;
2951
2952 vma_interval_tree_foreach(vma, root,
2953 details->first_index, details->last_index) {
2954
2955 vba = vma->vm_pgoff;
2956 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2957 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2958 zba = details->first_index;
2959 if (zba < vba)
2960 zba = vba;
2961 zea = details->last_index;
2962 if (zea > vea)
2963 zea = vea;
2964
2965 unmap_mapping_range_vma(vma,
2966 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2967 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2968 details);
2969 }
2970 }
2971
2972 static inline void unmap_mapping_range_list(struct list_head *head,
2973 struct zap_details *details)
2974 {
2975 struct vm_area_struct *vma;
2976
2977 /*
2978 * In nonlinear VMAs there is no correspondence between virtual address
2979 * offset and file offset. So we must perform an exhaustive search
2980 * across *all* the pages in each nonlinear VMA, not just the pages
2981 * whose virtual address lies outside the file truncation point.
2982 */
2983 list_for_each_entry(vma, head, shared.nonlinear) {
2984 details->nonlinear_vma = vma;
2985 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2986 }
2987 }
2988
2989 /**
2990 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2991 * @mapping: the address space containing mmaps to be unmapped.
2992 * @holebegin: byte in first page to unmap, relative to the start of
2993 * the underlying file. This will be rounded down to a PAGE_SIZE
2994 * boundary. Note that this is different from truncate_pagecache(), which
2995 * must keep the partial page. In contrast, we must get rid of
2996 * partial pages.
2997 * @holelen: size of prospective hole in bytes. This will be rounded
2998 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2999 * end of the file.
3000 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3001 * but 0 when invalidating pagecache, don't throw away private data.
3002 */
3003 void unmap_mapping_range(struct address_space *mapping,
3004 loff_t const holebegin, loff_t const holelen, int even_cows)
3005 {
3006 struct zap_details details;
3007 pgoff_t hba = holebegin >> PAGE_SHIFT;
3008 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3009
3010 /* Check for overflow. */
3011 if (sizeof(holelen) > sizeof(hlen)) {
3012 long long holeend =
3013 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3014 if (holeend & ~(long long)ULONG_MAX)
3015 hlen = ULONG_MAX - hba + 1;
3016 }
3017
3018 details.check_mapping = even_cows? NULL: mapping;
3019 details.nonlinear_vma = NULL;
3020 details.first_index = hba;
3021 details.last_index = hba + hlen - 1;
3022 if (details.last_index < details.first_index)
3023 details.last_index = ULONG_MAX;
3024
3025
3026 mutex_lock(&mapping->i_mmap_mutex);
3027 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
3028 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3029 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
3030 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3031 mutex_unlock(&mapping->i_mmap_mutex);
3032 }
3033 EXPORT_SYMBOL(unmap_mapping_range);
3034
3035 /*
3036 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3037 * but allow concurrent faults), and pte mapped but not yet locked.
3038 * We return with mmap_sem still held, but pte unmapped and unlocked.
3039 */
3040 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3041 unsigned long address, pte_t *page_table, pmd_t *pmd,
3042 unsigned int flags, pte_t orig_pte)
3043 {
3044 spinlock_t *ptl;
3045 struct page *page, *swapcache;
3046 swp_entry_t entry;
3047 pte_t pte;
3048 int locked;
3049 struct mem_cgroup *ptr;
3050 int exclusive = 0;
3051 int ret = 0;
3052
3053 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3054 goto out;
3055
3056 entry = pte_to_swp_entry(orig_pte);
3057 if (unlikely(non_swap_entry(entry))) {
3058 if (is_migration_entry(entry)) {
3059 migration_entry_wait(mm, pmd, address);
3060 } else if (is_hwpoison_entry(entry)) {
3061 ret = VM_FAULT_HWPOISON;
3062 } else {
3063 print_bad_pte(vma, address, orig_pte, NULL);
3064 ret = VM_FAULT_SIGBUS;
3065 }
3066 goto out;
3067 }
3068 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3069 page = lookup_swap_cache(entry);
3070 if (!page) {
3071 page = swapin_readahead(entry,
3072 GFP_HIGHUSER_MOVABLE, vma, address);
3073 if (!page) {
3074 /*
3075 * Back out if somebody else faulted in this pte
3076 * while we released the pte lock.
3077 */
3078 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3079 if (likely(pte_same(*page_table, orig_pte)))
3080 ret = VM_FAULT_OOM;
3081 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3082 goto unlock;
3083 }
3084
3085 /* Had to read the page from swap area: Major fault */
3086 ret = VM_FAULT_MAJOR;
3087 count_vm_event(PGMAJFAULT);
3088 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3089 } else if (PageHWPoison(page)) {
3090 /*
3091 * hwpoisoned dirty swapcache pages are kept for killing
3092 * owner processes (which may be unknown at hwpoison time)
3093 */
3094 ret = VM_FAULT_HWPOISON;
3095 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3096 swapcache = page;
3097 goto out_release;
3098 }
3099
3100 swapcache = page;
3101 locked = lock_page_or_retry(page, mm, flags);
3102
3103 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3104 if (!locked) {
3105 ret |= VM_FAULT_RETRY;
3106 goto out_release;
3107 }
3108
3109 /*
3110 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3111 * release the swapcache from under us. The page pin, and pte_same
3112 * test below, are not enough to exclude that. Even if it is still
3113 * swapcache, we need to check that the page's swap has not changed.
3114 */
3115 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3116 goto out_page;
3117
3118 page = ksm_might_need_to_copy(page, vma, address);
3119 if (unlikely(!page)) {
3120 ret = VM_FAULT_OOM;
3121 page = swapcache;
3122 goto out_page;
3123 }
3124
3125 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3126 ret = VM_FAULT_OOM;
3127 goto out_page;
3128 }
3129
3130 /*
3131 * Back out if somebody else already faulted in this pte.
3132 */
3133 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3134 if (unlikely(!pte_same(*page_table, orig_pte)))
3135 goto out_nomap;
3136
3137 if (unlikely(!PageUptodate(page))) {
3138 ret = VM_FAULT_SIGBUS;
3139 goto out_nomap;
3140 }
3141
3142 /*
3143 * The page isn't present yet, go ahead with the fault.
3144 *
3145 * Be careful about the sequence of operations here.
3146 * To get its accounting right, reuse_swap_page() must be called
3147 * while the page is counted on swap but not yet in mapcount i.e.
3148 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3149 * must be called after the swap_free(), or it will never succeed.
3150 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3151 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3152 * in page->private. In this case, a record in swap_cgroup is silently
3153 * discarded at swap_free().
3154 */
3155
3156 inc_mm_counter_fast(mm, MM_ANONPAGES);
3157 dec_mm_counter_fast(mm, MM_SWAPENTS);
3158 pte = mk_pte(page, vma->vm_page_prot);
3159 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3160 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3161 flags &= ~FAULT_FLAG_WRITE;
3162 ret |= VM_FAULT_WRITE;
3163 exclusive = 1;
3164 }
3165 flush_icache_page(vma, page);
3166 set_pte_at(mm, address, page_table, pte);
3167 if (page == swapcache)
3168 do_page_add_anon_rmap(page, vma, address, exclusive);
3169 else /* ksm created a completely new copy */
3170 page_add_new_anon_rmap(page, vma, address);
3171 /* It's better to call commit-charge after rmap is established */
3172 mem_cgroup_commit_charge_swapin(page, ptr);
3173
3174 swap_free(entry);
3175 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3176 try_to_free_swap(page);
3177 unlock_page(page);
3178 if (page != swapcache) {
3179 /*
3180 * Hold the lock to avoid the swap entry to be reused
3181 * until we take the PT lock for the pte_same() check
3182 * (to avoid false positives from pte_same). For
3183 * further safety release the lock after the swap_free
3184 * so that the swap count won't change under a
3185 * parallel locked swapcache.
3186 */
3187 unlock_page(swapcache);
3188 page_cache_release(swapcache);
3189 }
3190
3191 if (flags & FAULT_FLAG_WRITE) {
3192 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3193 if (ret & VM_FAULT_ERROR)
3194 ret &= VM_FAULT_ERROR;
3195 goto out;
3196 }
3197
3198 /* No need to invalidate - it was non-present before */
3199 update_mmu_cache(vma, address, page_table);
3200 unlock:
3201 pte_unmap_unlock(page_table, ptl);
3202 out:
3203 return ret;
3204 out_nomap:
3205 mem_cgroup_cancel_charge_swapin(ptr);
3206 pte_unmap_unlock(page_table, ptl);
3207 out_page:
3208 unlock_page(page);
3209 out_release:
3210 page_cache_release(page);
3211 if (page != swapcache) {
3212 unlock_page(swapcache);
3213 page_cache_release(swapcache);
3214 }
3215 return ret;
3216 }
3217
3218 /*
3219 * This is like a special single-page "expand_{down|up}wards()",
3220 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3221 * doesn't hit another vma.
3222 */
3223 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3224 {
3225 address &= PAGE_MASK;
3226 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3227 struct vm_area_struct *prev = vma->vm_prev;
3228
3229 /*
3230 * Is there a mapping abutting this one below?
3231 *
3232 * That's only ok if it's the same stack mapping
3233 * that has gotten split..
3234 */
3235 if (prev && prev->vm_end == address)
3236 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3237
3238 return expand_downwards(vma, address - PAGE_SIZE);
3239 }
3240 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3241 struct vm_area_struct *next = vma->vm_next;
3242
3243 /* As VM_GROWSDOWN but s/below/above/ */
3244 if (next && next->vm_start == address + PAGE_SIZE)
3245 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3246
3247 return expand_upwards(vma, address + PAGE_SIZE);
3248 }
3249 return 0;
3250 }
3251
3252 /*
3253 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3254 * but allow concurrent faults), and pte mapped but not yet locked.
3255 * We return with mmap_sem still held, but pte unmapped and unlocked.
3256 */
3257 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3258 unsigned long address, pte_t *page_table, pmd_t *pmd,
3259 unsigned int flags)
3260 {
3261 struct page *page;
3262 spinlock_t *ptl;
3263 pte_t entry;
3264
3265 pte_unmap(page_table);
3266
3267 /* File mapping without ->vm_ops ? */
3268 if (vma->vm_flags & VM_SHARED)
3269 return VM_FAULT_SIGBUS;
3270
3271 /* Check if we need to add a guard page to the stack */
3272 if (check_stack_guard_page(vma, address) < 0)
3273 return VM_FAULT_SIGBUS;
3274
3275 /* Use the zero-page for reads */
3276 if (!(flags & FAULT_FLAG_WRITE)) {
3277 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3278 vma->vm_page_prot));
3279 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3280 if (!pte_none(*page_table))
3281 goto unlock;
3282 goto setpte;
3283 }
3284
3285 /* Allocate our own private page. */
3286 if (unlikely(anon_vma_prepare(vma)))
3287 goto oom;
3288 page = alloc_zeroed_user_highpage_movable(vma, address);
3289 if (!page)
3290 goto oom;
3291 /*
3292 * The memory barrier inside __SetPageUptodate makes sure that
3293 * preceeding stores to the page contents become visible before
3294 * the set_pte_at() write.
3295 */
3296 __SetPageUptodate(page);
3297
3298 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3299 goto oom_free_page;
3300
3301 entry = mk_pte(page, vma->vm_page_prot);
3302 if (vma->vm_flags & VM_WRITE)
3303 entry = pte_mkwrite(pte_mkdirty(entry));
3304
3305 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3306 if (!pte_none(*page_table))
3307 goto release;
3308
3309 inc_mm_counter_fast(mm, MM_ANONPAGES);
3310 page_add_new_anon_rmap(page, vma, address);
3311 setpte:
3312 set_pte_at(mm, address, page_table, entry);
3313
3314 /* No need to invalidate - it was non-present before */
3315 update_mmu_cache(vma, address, page_table);
3316 unlock:
3317 pte_unmap_unlock(page_table, ptl);
3318 return 0;
3319 release:
3320 mem_cgroup_uncharge_page(page);
3321 page_cache_release(page);
3322 goto unlock;
3323 oom_free_page:
3324 page_cache_release(page);
3325 oom:
3326 return VM_FAULT_OOM;
3327 }
3328
3329 /*
3330 * __do_fault() tries to create a new page mapping. It aggressively
3331 * tries to share with existing pages, but makes a separate copy if
3332 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3333 * the next page fault.
3334 *
3335 * As this is called only for pages that do not currently exist, we
3336 * do not need to flush old virtual caches or the TLB.
3337 *
3338 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3339 * but allow concurrent faults), and pte neither mapped nor locked.
3340 * We return with mmap_sem still held, but pte unmapped and unlocked.
3341 */
3342 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3343 unsigned long address, pmd_t *pmd,
3344 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3345 {
3346 pte_t *page_table;
3347 spinlock_t *ptl;
3348 struct page *page;
3349 struct page *cow_page;
3350 pte_t entry;
3351 int anon = 0;
3352 struct page *dirty_page = NULL;
3353 struct vm_fault vmf;
3354 int ret;
3355 int page_mkwrite = 0;
3356
3357 /*
3358 * If we do COW later, allocate page befor taking lock_page()
3359 * on the file cache page. This will reduce lock holding time.
3360 */
3361 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3362
3363 if (unlikely(anon_vma_prepare(vma)))
3364 return VM_FAULT_OOM;
3365
3366 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3367 if (!cow_page)
3368 return VM_FAULT_OOM;
3369
3370 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3371 page_cache_release(cow_page);
3372 return VM_FAULT_OOM;
3373 }
3374 } else
3375 cow_page = NULL;
3376
3377 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3378 vmf.pgoff = pgoff;
3379 vmf.flags = flags;
3380 vmf.page = NULL;
3381
3382 ret = vma->vm_ops->fault(vma, &vmf);
3383 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3384 VM_FAULT_RETRY)))
3385 goto uncharge_out;
3386
3387 if (unlikely(PageHWPoison(vmf.page))) {
3388 if (ret & VM_FAULT_LOCKED)
3389 unlock_page(vmf.page);
3390 ret = VM_FAULT_HWPOISON;
3391 goto uncharge_out;
3392 }
3393
3394 /*
3395 * For consistency in subsequent calls, make the faulted page always
3396 * locked.
3397 */
3398 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3399 lock_page(vmf.page);
3400 else
3401 VM_BUG_ON(!PageLocked(vmf.page));
3402
3403 /*
3404 * Should we do an early C-O-W break?
3405 */
3406 page = vmf.page;
3407 if (flags & FAULT_FLAG_WRITE) {
3408 if (!(vma->vm_flags & VM_SHARED)) {
3409 page = cow_page;
3410 anon = 1;
3411 copy_user_highpage(page, vmf.page, address, vma);
3412 __SetPageUptodate(page);
3413 } else {
3414 /*
3415 * If the page will be shareable, see if the backing
3416 * address space wants to know that the page is about
3417 * to become writable
3418 */
3419 if (vma->vm_ops->page_mkwrite) {
3420 int tmp;
3421
3422 unlock_page(page);
3423 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3424 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3425 if (unlikely(tmp &
3426 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3427 ret = tmp;
3428 goto unwritable_page;
3429 }
3430 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3431 lock_page(page);
3432 if (!page->mapping) {
3433 ret = 0; /* retry the fault */
3434 unlock_page(page);
3435 goto unwritable_page;
3436 }
3437 } else
3438 VM_BUG_ON(!PageLocked(page));
3439 page_mkwrite = 1;
3440 }
3441 }
3442
3443 }
3444
3445 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3446
3447 /*
3448 * This silly early PAGE_DIRTY setting removes a race
3449 * due to the bad i386 page protection. But it's valid
3450 * for other architectures too.
3451 *
3452 * Note that if FAULT_FLAG_WRITE is set, we either now have
3453 * an exclusive copy of the page, or this is a shared mapping,
3454 * so we can make it writable and dirty to avoid having to
3455 * handle that later.
3456 */
3457 /* Only go through if we didn't race with anybody else... */
3458 if (likely(pte_same(*page_table, orig_pte))) {
3459 flush_icache_page(vma, page);
3460 entry = mk_pte(page, vma->vm_page_prot);
3461 if (flags & FAULT_FLAG_WRITE)
3462 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3463 if (anon) {
3464 inc_mm_counter_fast(mm, MM_ANONPAGES);
3465 page_add_new_anon_rmap(page, vma, address);
3466 } else {
3467 inc_mm_counter_fast(mm, MM_FILEPAGES);
3468 page_add_file_rmap(page);
3469 if (flags & FAULT_FLAG_WRITE) {
3470 dirty_page = page;
3471 get_page(dirty_page);
3472 }
3473 }
3474 set_pte_at(mm, address, page_table, entry);
3475
3476 /* no need to invalidate: a not-present page won't be cached */
3477 update_mmu_cache(vma, address, page_table);
3478 } else {
3479 if (cow_page)
3480 mem_cgroup_uncharge_page(cow_page);
3481 if (anon)
3482 page_cache_release(page);
3483 else
3484 anon = 1; /* no anon but release faulted_page */
3485 }
3486
3487 pte_unmap_unlock(page_table, ptl);
3488
3489 if (dirty_page) {
3490 struct address_space *mapping = page->mapping;
3491 int dirtied = 0;
3492
3493 if (set_page_dirty(dirty_page))
3494 dirtied = 1;
3495 unlock_page(dirty_page);
3496 put_page(dirty_page);
3497 if ((dirtied || page_mkwrite) && mapping) {
3498 /*
3499 * Some device drivers do not set page.mapping but still
3500 * dirty their pages
3501 */
3502 balance_dirty_pages_ratelimited(mapping);
3503 }
3504
3505 /* file_update_time outside page_lock */
3506 if (vma->vm_file && !page_mkwrite)
3507 file_update_time(vma->vm_file);
3508 } else {
3509 unlock_page(vmf.page);
3510 if (anon)
3511 page_cache_release(vmf.page);
3512 }
3513
3514 return ret;
3515
3516 unwritable_page:
3517 page_cache_release(page);
3518 return ret;
3519 uncharge_out:
3520 /* fs's fault handler get error */
3521 if (cow_page) {
3522 mem_cgroup_uncharge_page(cow_page);
3523 page_cache_release(cow_page);
3524 }
3525 return ret;
3526 }
3527
3528 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3529 unsigned long address, pte_t *page_table, pmd_t *pmd,
3530 unsigned int flags, pte_t orig_pte)
3531 {
3532 pgoff_t pgoff = (((address & PAGE_MASK)
3533 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3534
3535 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3536 if (!vma->vm_ops->fault)
3537 return VM_FAULT_SIGBUS;
3538
3539 pte_unmap(page_table);
3540 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3541 }
3542
3543 /*
3544 * Fault of a previously existing named mapping. Repopulate the pte
3545 * from the encoded file_pte if possible. This enables swappable
3546 * nonlinear vmas.
3547 *
3548 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3549 * but allow concurrent faults), and pte mapped but not yet locked.
3550 * We return with mmap_sem still held, but pte unmapped and unlocked.
3551 */
3552 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3553 unsigned long address, pte_t *page_table, pmd_t *pmd,
3554 unsigned int flags, pte_t orig_pte)
3555 {
3556 pgoff_t pgoff;
3557
3558 flags |= FAULT_FLAG_NONLINEAR;
3559
3560 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3561 return 0;
3562
3563 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3564 /*
3565 * Page table corrupted: show pte and kill process.
3566 */
3567 print_bad_pte(vma, address, orig_pte, NULL);
3568 return VM_FAULT_SIGBUS;
3569 }
3570
3571 pgoff = pte_to_pgoff(orig_pte);
3572 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3573 }
3574
3575 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3576 unsigned long addr, int page_nid)
3577 {
3578 get_page(page);
3579
3580 count_vm_numa_event(NUMA_HINT_FAULTS);
3581 if (page_nid == numa_node_id())
3582 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3583
3584 return mpol_misplaced(page, vma, addr);
3585 }
3586
3587 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3588 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3589 {
3590 struct page *page = NULL;
3591 spinlock_t *ptl;
3592 int page_nid = -1;
3593 int target_nid;
3594 bool migrated = false;
3595
3596 /*
3597 * The "pte" at this point cannot be used safely without
3598 * validation through pte_unmap_same(). It's of NUMA type but
3599 * the pfn may be screwed if the read is non atomic.
3600 *
3601 * ptep_modify_prot_start is not called as this is clearing
3602 * the _PAGE_NUMA bit and it is not really expected that there
3603 * would be concurrent hardware modifications to the PTE.
3604 */
3605 ptl = pte_lockptr(mm, pmd);
3606 spin_lock(ptl);
3607 if (unlikely(!pte_same(*ptep, pte))) {
3608 pte_unmap_unlock(ptep, ptl);
3609 goto out;
3610 }
3611
3612 pte = pte_mknonnuma(pte);
3613 set_pte_at(mm, addr, ptep, pte);
3614 update_mmu_cache(vma, addr, ptep);
3615
3616 page = vm_normal_page(vma, addr, pte);
3617 if (!page) {
3618 pte_unmap_unlock(ptep, ptl);
3619 return 0;
3620 }
3621
3622 page_nid = page_to_nid(page);
3623 target_nid = numa_migrate_prep(page, vma, addr, page_nid);
3624 pte_unmap_unlock(ptep, ptl);
3625 if (target_nid == -1) {
3626 put_page(page);
3627 goto out;
3628 }
3629
3630 /* Migrate to the requested node */
3631 migrated = migrate_misplaced_page(page, target_nid);
3632 if (migrated)
3633 page_nid = target_nid;
3634
3635 out:
3636 if (page_nid != -1)
3637 task_numa_fault(page_nid, 1, migrated);
3638 return 0;
3639 }
3640
3641 /* NUMA hinting page fault entry point for regular pmds */
3642 #ifdef CONFIG_NUMA_BALANCING
3643 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3644 unsigned long addr, pmd_t *pmdp)
3645 {
3646 pmd_t pmd;
3647 pte_t *pte, *orig_pte;
3648 unsigned long _addr = addr & PMD_MASK;
3649 unsigned long offset;
3650 spinlock_t *ptl;
3651 bool numa = false;
3652
3653 spin_lock(&mm->page_table_lock);
3654 pmd = *pmdp;
3655 if (pmd_numa(pmd)) {
3656 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3657 numa = true;
3658 }
3659 spin_unlock(&mm->page_table_lock);
3660
3661 if (!numa)
3662 return 0;
3663
3664 /* we're in a page fault so some vma must be in the range */
3665 BUG_ON(!vma);
3666 BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3667 offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3668 VM_BUG_ON(offset >= PMD_SIZE);
3669 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3670 pte += offset >> PAGE_SHIFT;
3671 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3672 pte_t pteval = *pte;
3673 struct page *page;
3674 int page_nid = -1;
3675 int target_nid;
3676 bool migrated = false;
3677
3678 if (!pte_present(pteval))
3679 continue;
3680 if (!pte_numa(pteval))
3681 continue;
3682 if (addr >= vma->vm_end) {
3683 vma = find_vma(mm, addr);
3684 /* there's a pte present so there must be a vma */
3685 BUG_ON(!vma);
3686 BUG_ON(addr < vma->vm_start);
3687 }
3688 if (pte_numa(pteval)) {
3689 pteval = pte_mknonnuma(pteval);
3690 set_pte_at(mm, addr, pte, pteval);
3691 }
3692 page = vm_normal_page(vma, addr, pteval);
3693 if (unlikely(!page))
3694 continue;
3695 /* only check non-shared pages */
3696 if (unlikely(page_mapcount(page) != 1))
3697 continue;
3698
3699 page_nid = page_to_nid(page);
3700 target_nid = numa_migrate_prep(page, vma, addr, page_nid);
3701 pte_unmap_unlock(pte, ptl);
3702 if (target_nid != -1) {
3703 migrated = migrate_misplaced_page(page, target_nid);
3704 if (migrated)
3705 page_nid = target_nid;
3706 } else {
3707 put_page(page);
3708 }
3709
3710 if (page_nid != -1)
3711 task_numa_fault(page_nid, 1, migrated);
3712
3713 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3714 }
3715 pte_unmap_unlock(orig_pte, ptl);
3716
3717 return 0;
3718 }
3719 #else
3720 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3721 unsigned long addr, pmd_t *pmdp)
3722 {
3723 BUG();
3724 return 0;
3725 }
3726 #endif /* CONFIG_NUMA_BALANCING */
3727
3728 /*
3729 * These routines also need to handle stuff like marking pages dirty
3730 * and/or accessed for architectures that don't do it in hardware (most
3731 * RISC architectures). The early dirtying is also good on the i386.
3732 *
3733 * There is also a hook called "update_mmu_cache()" that architectures
3734 * with external mmu caches can use to update those (ie the Sparc or
3735 * PowerPC hashed page tables that act as extended TLBs).
3736 *
3737 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3738 * but allow concurrent faults), and pte mapped but not yet locked.
3739 * We return with mmap_sem still held, but pte unmapped and unlocked.
3740 */
3741 int handle_pte_fault(struct mm_struct *mm,
3742 struct vm_area_struct *vma, unsigned long address,
3743 pte_t *pte, pmd_t *pmd, unsigned int flags)
3744 {
3745 pte_t entry;
3746 spinlock_t *ptl;
3747
3748 entry = *pte;
3749 if (!pte_present(entry)) {
3750 if (pte_none(entry)) {
3751 if (vma->vm_ops) {
3752 return do_linear_fault(mm, vma, address,
3753 pte, pmd, flags, entry);
3754 }
3755 return do_anonymous_page(mm, vma, address,
3756 pte, pmd, flags);
3757 }
3758 if (pte_file(entry))
3759 return do_nonlinear_fault(mm, vma, address,
3760 pte, pmd, flags, entry);
3761 return do_swap_page(mm, vma, address,
3762 pte, pmd, flags, entry);
3763 }
3764
3765 if (pte_numa(entry))
3766 return do_numa_page(mm, vma, address, entry, pte, pmd);
3767
3768 ptl = pte_lockptr(mm, pmd);
3769 spin_lock(ptl);
3770 if (unlikely(!pte_same(*pte, entry)))
3771 goto unlock;
3772 if (flags & FAULT_FLAG_WRITE) {
3773 if (!pte_write(entry))
3774 return do_wp_page(mm, vma, address,
3775 pte, pmd, ptl, entry);
3776 entry = pte_mkdirty(entry);
3777 }
3778 entry = pte_mkyoung(entry);
3779 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3780 update_mmu_cache(vma, address, pte);
3781 } else {
3782 /*
3783 * This is needed only for protection faults but the arch code
3784 * is not yet telling us if this is a protection fault or not.
3785 * This still avoids useless tlb flushes for .text page faults
3786 * with threads.
3787 */
3788 if (flags & FAULT_FLAG_WRITE)
3789 flush_tlb_fix_spurious_fault(vma, address);
3790 }
3791 unlock:
3792 pte_unmap_unlock(pte, ptl);
3793 return 0;
3794 }
3795
3796 /*
3797 * By the time we get here, we already hold the mm semaphore
3798 */
3799 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3800 unsigned long address, unsigned int flags)
3801 {
3802 pgd_t *pgd;
3803 pud_t *pud;
3804 pmd_t *pmd;
3805 pte_t *pte;
3806
3807 if (unlikely(is_vm_hugetlb_page(vma)))
3808 return hugetlb_fault(mm, vma, address, flags);
3809
3810 retry:
3811 pgd = pgd_offset(mm, address);
3812 pud = pud_alloc(mm, pgd, address);
3813 if (!pud)
3814 return VM_FAULT_OOM;
3815 pmd = pmd_alloc(mm, pud, address);
3816 if (!pmd)
3817 return VM_FAULT_OOM;
3818 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3819 if (!vma->vm_ops)
3820 return do_huge_pmd_anonymous_page(mm, vma, address,
3821 pmd, flags);
3822 } else {
3823 pmd_t orig_pmd = *pmd;
3824 int ret;
3825
3826 barrier();
3827 if (pmd_trans_huge(orig_pmd)) {
3828 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3829
3830 /*
3831 * If the pmd is splitting, return and retry the
3832 * the fault. Alternative: wait until the split
3833 * is done, and goto retry.
3834 */
3835 if (pmd_trans_splitting(orig_pmd))
3836 return 0;
3837
3838 if (pmd_numa(orig_pmd))
3839 return do_huge_pmd_numa_page(mm, vma, address,
3840 orig_pmd, pmd);
3841
3842 if (dirty && !pmd_write(orig_pmd)) {
3843 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3844 orig_pmd);
3845 /*
3846 * If COW results in an oom, the huge pmd will
3847 * have been split, so retry the fault on the
3848 * pte for a smaller charge.
3849 */
3850 if (unlikely(ret & VM_FAULT_OOM))
3851 goto retry;
3852 return ret;
3853 } else {
3854 huge_pmd_set_accessed(mm, vma, address, pmd,
3855 orig_pmd, dirty);
3856 }
3857
3858 return 0;
3859 }
3860 }
3861
3862 if (pmd_numa(*pmd))
3863 return do_pmd_numa_page(mm, vma, address, pmd);
3864
3865 /*
3866 * Use __pte_alloc instead of pte_alloc_map, because we can't
3867 * run pte_offset_map on the pmd, if an huge pmd could
3868 * materialize from under us from a different thread.
3869 */
3870 if (unlikely(pmd_none(*pmd)) &&
3871 unlikely(__pte_alloc(mm, vma, pmd, address)))
3872 return VM_FAULT_OOM;
3873 /* if an huge pmd materialized from under us just retry later */
3874 if (unlikely(pmd_trans_huge(*pmd)))
3875 return 0;
3876 /*
3877 * A regular pmd is established and it can't morph into a huge pmd
3878 * from under us anymore at this point because we hold the mmap_sem
3879 * read mode and khugepaged takes it in write mode. So now it's
3880 * safe to run pte_offset_map().
3881 */
3882 pte = pte_offset_map(pmd, address);
3883
3884 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3885 }
3886
3887 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3888 unsigned long address, unsigned int flags)
3889 {
3890 int ret;
3891
3892 __set_current_state(TASK_RUNNING);
3893
3894 count_vm_event(PGFAULT);
3895 mem_cgroup_count_vm_event(mm, PGFAULT);
3896
3897 /* do counter updates before entering really critical section. */
3898 check_sync_rss_stat(current);
3899
3900 /*
3901 * Enable the memcg OOM handling for faults triggered in user
3902 * space. Kernel faults are handled more gracefully.
3903 */
3904 if (flags & FAULT_FLAG_USER)
3905 mem_cgroup_oom_enable();
3906
3907 ret = __handle_mm_fault(mm, vma, address, flags);
3908
3909 if (flags & FAULT_FLAG_USER) {
3910 mem_cgroup_oom_disable();
3911 /*
3912 * The task may have entered a memcg OOM situation but
3913 * if the allocation error was handled gracefully (no
3914 * VM_FAULT_OOM), there is no need to kill anything.
3915 * Just clean up the OOM state peacefully.
3916 */
3917 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3918 mem_cgroup_oom_synchronize(false);
3919 }
3920
3921 return ret;
3922 }
3923
3924 #ifndef __PAGETABLE_PUD_FOLDED
3925 /*
3926 * Allocate page upper directory.
3927 * We've already handled the fast-path in-line.
3928 */
3929 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3930 {
3931 pud_t *new = pud_alloc_one(mm, address);
3932 if (!new)
3933 return -ENOMEM;
3934
3935 smp_wmb(); /* See comment in __pte_alloc */
3936
3937 spin_lock(&mm->page_table_lock);
3938 if (pgd_present(*pgd)) /* Another has populated it */
3939 pud_free(mm, new);
3940 else
3941 pgd_populate(mm, pgd, new);
3942 spin_unlock(&mm->page_table_lock);
3943 return 0;
3944 }
3945 #endif /* __PAGETABLE_PUD_FOLDED */
3946
3947 #ifndef __PAGETABLE_PMD_FOLDED
3948 /*
3949 * Allocate page middle directory.
3950 * We've already handled the fast-path in-line.
3951 */
3952 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3953 {
3954 pmd_t *new = pmd_alloc_one(mm, address);
3955 if (!new)
3956 return -ENOMEM;
3957
3958 smp_wmb(); /* See comment in __pte_alloc */
3959
3960 spin_lock(&mm->page_table_lock);
3961 #ifndef __ARCH_HAS_4LEVEL_HACK
3962 if (pud_present(*pud)) /* Another has populated it */
3963 pmd_free(mm, new);
3964 else
3965 pud_populate(mm, pud, new);
3966 #else
3967 if (pgd_present(*pud)) /* Another has populated it */
3968 pmd_free(mm, new);
3969 else
3970 pgd_populate(mm, pud, new);
3971 #endif /* __ARCH_HAS_4LEVEL_HACK */
3972 spin_unlock(&mm->page_table_lock);
3973 return 0;
3974 }
3975 #endif /* __PAGETABLE_PMD_FOLDED */
3976
3977 #if !defined(__HAVE_ARCH_GATE_AREA)
3978
3979 #if defined(AT_SYSINFO_EHDR)
3980 static struct vm_area_struct gate_vma;
3981
3982 static int __init gate_vma_init(void)
3983 {
3984 gate_vma.vm_mm = NULL;
3985 gate_vma.vm_start = FIXADDR_USER_START;
3986 gate_vma.vm_end = FIXADDR_USER_END;
3987 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3988 gate_vma.vm_page_prot = __P101;
3989
3990 return 0;
3991 }
3992 __initcall(gate_vma_init);
3993 #endif
3994
3995 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3996 {
3997 #ifdef AT_SYSINFO_EHDR
3998 return &gate_vma;
3999 #else
4000 return NULL;
4001 #endif
4002 }
4003
4004 int in_gate_area_no_mm(unsigned long addr)
4005 {
4006 #ifdef AT_SYSINFO_EHDR
4007 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
4008 return 1;
4009 #endif
4010 return 0;
4011 }
4012
4013 #endif /* __HAVE_ARCH_GATE_AREA */
4014
4015 static int __follow_pte(struct mm_struct *mm, unsigned long address,
4016 pte_t **ptepp, spinlock_t **ptlp)
4017 {
4018 pgd_t *pgd;
4019 pud_t *pud;
4020 pmd_t *pmd;
4021 pte_t *ptep;
4022
4023 pgd = pgd_offset(mm, address);
4024 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4025 goto out;
4026
4027 pud = pud_offset(pgd, address);
4028 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4029 goto out;
4030
4031 pmd = pmd_offset(pud, address);
4032 VM_BUG_ON(pmd_trans_huge(*pmd));
4033 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4034 goto out;
4035
4036 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
4037 if (pmd_huge(*pmd))
4038 goto out;
4039
4040 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4041 if (!ptep)
4042 goto out;
4043 if (!pte_present(*ptep))
4044 goto unlock;
4045 *ptepp = ptep;
4046 return 0;
4047 unlock:
4048 pte_unmap_unlock(ptep, *ptlp);
4049 out:
4050 return -EINVAL;
4051 }
4052
4053 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4054 pte_t **ptepp, spinlock_t **ptlp)
4055 {
4056 int res;
4057
4058 /* (void) is needed to make gcc happy */
4059 (void) __cond_lock(*ptlp,
4060 !(res = __follow_pte(mm, address, ptepp, ptlp)));
4061 return res;
4062 }
4063
4064 /**
4065 * follow_pfn - look up PFN at a user virtual address
4066 * @vma: memory mapping
4067 * @address: user virtual address
4068 * @pfn: location to store found PFN
4069 *
4070 * Only IO mappings and raw PFN mappings are allowed.
4071 *
4072 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4073 */
4074 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4075 unsigned long *pfn)
4076 {
4077 int ret = -EINVAL;
4078 spinlock_t *ptl;
4079 pte_t *ptep;
4080
4081 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4082 return ret;
4083
4084 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4085 if (ret)
4086 return ret;
4087 *pfn = pte_pfn(*ptep);
4088 pte_unmap_unlock(ptep, ptl);
4089 return 0;
4090 }
4091 EXPORT_SYMBOL(follow_pfn);
4092
4093 #ifdef CONFIG_HAVE_IOREMAP_PROT
4094 int follow_phys(struct vm_area_struct *vma,
4095 unsigned long address, unsigned int flags,
4096 unsigned long *prot, resource_size_t *phys)
4097 {
4098 int ret = -EINVAL;
4099 pte_t *ptep, pte;
4100 spinlock_t *ptl;
4101
4102 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4103 goto out;
4104
4105 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4106 goto out;
4107 pte = *ptep;
4108
4109 if ((flags & FOLL_WRITE) && !pte_write(pte))
4110 goto unlock;
4111
4112 *prot = pgprot_val(pte_pgprot(pte));
4113 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4114
4115 ret = 0;
4116 unlock:
4117 pte_unmap_unlock(ptep, ptl);
4118 out:
4119 return ret;
4120 }
4121
4122 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4123 void *buf, int len, int write)
4124 {
4125 resource_size_t phys_addr;
4126 unsigned long prot = 0;
4127 void __iomem *maddr;
4128 int offset = addr & (PAGE_SIZE-1);
4129
4130 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4131 return -EINVAL;
4132
4133 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4134 if (write)
4135 memcpy_toio(maddr + offset, buf, len);
4136 else
4137 memcpy_fromio(buf, maddr + offset, len);
4138 iounmap(maddr);
4139
4140 return len;
4141 }
4142 EXPORT_SYMBOL_GPL(generic_access_phys);
4143 #endif
4144
4145 /*
4146 * Access another process' address space as given in mm. If non-NULL, use the
4147 * given task for page fault accounting.
4148 */
4149 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4150 unsigned long addr, void *buf, int len, int write)
4151 {
4152 struct vm_area_struct *vma;
4153 void *old_buf = buf;
4154
4155 down_read(&mm->mmap_sem);
4156 /* ignore errors, just check how much was successfully transferred */
4157 while (len) {
4158 int bytes, ret, offset;
4159 void *maddr;
4160 struct page *page = NULL;
4161
4162 ret = get_user_pages(tsk, mm, addr, 1,
4163 write, 1, &page, &vma);
4164 if (ret <= 0) {
4165 #ifdef CONFIG_MTK_EXTMEM
4166 if (!write) {
4167 vma = find_vma(mm, addr);
4168 if (!vma || vma->vm_start > addr)
4169 break;
4170 if (vma->vm_end < addr + len)
4171 len = vma->vm_end - addr;
4172 if (extmem_in_mspace(vma)) {
4173 void *extmem_va = (void *)get_virt_from_mspace(vma->vm_pgoff << PAGE_SHIFT) + (addr - vma->vm_start);
4174 memcpy(buf, extmem_va, len);
4175 buf += len;
4176 break;
4177 }
4178 }
4179 #endif
4180 /*
4181 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4182 * we can access using slightly different code.
4183 */
4184 #ifdef CONFIG_HAVE_IOREMAP_PROT
4185 vma = find_vma(mm, addr);
4186 if (!vma || vma->vm_start > addr)
4187 break;
4188 if (vma->vm_ops && vma->vm_ops->access)
4189 ret = vma->vm_ops->access(vma, addr, buf,
4190 len, write);
4191 if (ret <= 0)
4192 #endif
4193 break;
4194 bytes = ret;
4195 } else {
4196 bytes = len;
4197 offset = addr & (PAGE_SIZE-1);
4198 if (bytes > PAGE_SIZE-offset)
4199 bytes = PAGE_SIZE-offset;
4200
4201 maddr = kmap(page);
4202 if (write) {
4203 copy_to_user_page(vma, page, addr,
4204 maddr + offset, buf, bytes);
4205 set_page_dirty_lock(page);
4206 } else {
4207 copy_from_user_page(vma, page, addr,
4208 buf, maddr + offset, bytes);
4209 }
4210 kunmap(page);
4211 page_cache_release(page);
4212 }
4213 len -= bytes;
4214 buf += bytes;
4215 addr += bytes;
4216 }
4217 up_read(&mm->mmap_sem);
4218
4219 return buf - old_buf;
4220 }
4221
4222 /**
4223 * access_remote_vm - access another process' address space
4224 * @mm: the mm_struct of the target address space
4225 * @addr: start address to access
4226 * @buf: source or destination buffer
4227 * @len: number of bytes to transfer
4228 * @write: whether the access is a write
4229 *
4230 * The caller must hold a reference on @mm.
4231 */
4232 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4233 void *buf, int len, int write)
4234 {
4235 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4236 }
4237
4238 /*
4239 * Access another process' address space.
4240 * Source/target buffer must be kernel space,
4241 * Do not walk the page table directly, use get_user_pages
4242 */
4243 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4244 void *buf, int len, int write)
4245 {
4246 struct mm_struct *mm;
4247 int ret;
4248
4249 mm = get_task_mm(tsk);
4250 if (!mm)
4251 return 0;
4252
4253 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4254 mmput(mm);
4255
4256 return ret;
4257 }
4258
4259 /*
4260 * Print the name of a VMA.
4261 */
4262 void print_vma_addr(char *prefix, unsigned long ip)
4263 {
4264 struct mm_struct *mm = current->mm;
4265 struct vm_area_struct *vma;
4266
4267 /*
4268 * Do not print if we are in atomic
4269 * contexts (in exception stacks, etc.):
4270 */
4271 if (preempt_count())
4272 return;
4273
4274 down_read(&mm->mmap_sem);
4275 vma = find_vma(mm, ip);
4276 if (vma && vma->vm_file) {
4277 struct file *f = vma->vm_file;
4278 char *buf = (char *)__get_free_page(GFP_KERNEL);
4279 if (buf) {
4280 char *p;
4281
4282 p = d_path(&f->f_path, buf, PAGE_SIZE);
4283 if (IS_ERR(p))
4284 p = "?";
4285 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4286 vma->vm_start,
4287 vma->vm_end - vma->vm_start);
4288 free_page((unsigned long)buf);
4289 }
4290 }
4291 up_read(&mm->mmap_sem);
4292 }
4293
4294 #ifdef CONFIG_PROVE_LOCKING
4295 void might_fault(void)
4296 {
4297 /*
4298 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4299 * holding the mmap_sem, this is safe because kernel memory doesn't
4300 * get paged out, therefore we'll never actually fault, and the
4301 * below annotations will generate false positives.
4302 */
4303 if (segment_eq(get_fs(), KERNEL_DS))
4304 return;
4305
4306 might_sleep();
4307 /*
4308 * it would be nicer only to annotate paths which are not under
4309 * pagefault_disable, however that requires a larger audit and
4310 * providing helpers like get_user_atomic.
4311 */
4312 if (!in_atomic() && current->mm)
4313 might_lock_read(&current->mm->mmap_sem);
4314 }
4315 EXPORT_SYMBOL(might_fault);
4316 #endif
4317
4318 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4319 static void clear_gigantic_page(struct page *page,
4320 unsigned long addr,
4321 unsigned int pages_per_huge_page)
4322 {
4323 int i;
4324 struct page *p = page;
4325
4326 might_sleep();
4327 for (i = 0; i < pages_per_huge_page;
4328 i++, p = mem_map_next(p, page, i)) {
4329 cond_resched();
4330 clear_user_highpage(p, addr + i * PAGE_SIZE);
4331 }
4332 }
4333 void clear_huge_page(struct page *page,
4334 unsigned long addr, unsigned int pages_per_huge_page)
4335 {
4336 int i;
4337
4338 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4339 clear_gigantic_page(page, addr, pages_per_huge_page);
4340 return;
4341 }
4342
4343 might_sleep();
4344 for (i = 0; i < pages_per_huge_page; i++) {
4345 cond_resched();
4346 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4347 }
4348 }
4349
4350 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4351 unsigned long addr,
4352 struct vm_area_struct *vma,
4353 unsigned int pages_per_huge_page)
4354 {
4355 int i;
4356 struct page *dst_base = dst;
4357 struct page *src_base = src;
4358
4359 for (i = 0; i < pages_per_huge_page; ) {
4360 cond_resched();
4361 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4362
4363 i++;
4364 dst = mem_map_next(dst, dst_base, i);
4365 src = mem_map_next(src, src_base, i);
4366 }
4367 }
4368
4369 void copy_user_huge_page(struct page *dst, struct page *src,
4370 unsigned long addr, struct vm_area_struct *vma,
4371 unsigned int pages_per_huge_page)
4372 {
4373 int i;
4374
4375 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4376 copy_user_gigantic_page(dst, src, addr, vma,
4377 pages_per_huge_page);
4378 return;
4379 }
4380
4381 might_sleep();
4382 for (i = 0; i < pages_per_huge_page; i++) {
4383 cond_resched();
4384 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4385 }
4386 }
4387 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */