mm/memory_hotplug.c: check start_pfn in test_pages_in_a_zone()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69
70 #include "internal.h"
71
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif
75
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
80
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
84
85 unsigned long num_physpages;
86 /*
87 * A number of key systems in x86 including ioremap() rely on the assumption
88 * that high_memory defines the upper bound on direct map memory, then end
89 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
90 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91 * and ZONE_HIGHMEM.
92 */
93 void * high_memory;
94
95 EXPORT_SYMBOL(num_physpages);
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99 * Randomize the address space (stacks, mmaps, brk, etc.).
100 *
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
103 */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 1;
107 #else
108 2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113 randomize_va_space = 0;
114 return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 /*
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123 */
124 static int __init init_zero_pfn(void)
125 {
126 zero_pfn = page_to_pfn(ZERO_PAGE(0));
127 return 0;
128 }
129 core_initcall(init_zero_pfn);
130
131
132 #if defined(SPLIT_RSS_COUNTING)
133
134 void sync_mm_rss(struct mm_struct *mm)
135 {
136 int i;
137
138 for (i = 0; i < NR_MM_COUNTERS; i++) {
139 if (current->rss_stat.count[i]) {
140 add_mm_counter(mm, i, current->rss_stat.count[i]);
141 current->rss_stat.count[i] = 0;
142 }
143 }
144 current->rss_stat.events = 0;
145 }
146
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148 {
149 struct task_struct *task = current;
150
151 if (likely(task->mm == mm))
152 task->rss_stat.count[member] += val;
153 else
154 add_mm_counter(mm, member, val);
155 }
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH (64)
161 static void check_sync_rss_stat(struct task_struct *task)
162 {
163 if (unlikely(task != current))
164 return;
165 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166 sync_mm_rss(task->mm);
167 }
168 #else /* SPLIT_RSS_COUNTING */
169
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 }
176
177 #endif /* SPLIT_RSS_COUNTING */
178
179 #ifdef HAVE_GENERIC_MMU_GATHER
180
181 static int tlb_next_batch(struct mmu_gather *tlb)
182 {
183 struct mmu_gather_batch *batch;
184
185 batch = tlb->active;
186 if (batch->next) {
187 tlb->active = batch->next;
188 return 1;
189 }
190
191 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192 return 0;
193
194 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195 if (!batch)
196 return 0;
197
198 tlb->batch_count++;
199 batch->next = NULL;
200 batch->nr = 0;
201 batch->max = MAX_GATHER_BATCH;
202
203 tlb->active->next = batch;
204 tlb->active = batch;
205
206 return 1;
207 }
208
209 /* tlb_gather_mmu
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
213 */
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
215 {
216 tlb->mm = mm;
217
218 /* Is it from 0 to ~0? */
219 tlb->fullmm = !(start | (end+1));
220 tlb->need_flush_all = 0;
221 tlb->start = start;
222 tlb->end = end;
223 tlb->need_flush = 0;
224 tlb->local.next = NULL;
225 tlb->local.nr = 0;
226 tlb->local.max = ARRAY_SIZE(tlb->__pages);
227 tlb->active = &tlb->local;
228 tlb->batch_count = 0;
229
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 tlb->batch = NULL;
232 #endif
233 }
234
235 void tlb_flush_mmu(struct mmu_gather *tlb)
236 {
237 struct mmu_gather_batch *batch;
238
239 if (!tlb->need_flush)
240 return;
241 tlb->need_flush = 0;
242 tlb_flush(tlb);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244 tlb_table_flush(tlb);
245 #endif
246
247 for (batch = &tlb->local; batch; batch = batch->next) {
248 free_pages_and_swap_cache(batch->pages, batch->nr);
249 batch->nr = 0;
250 }
251 tlb->active = &tlb->local;
252 }
253
254 /* tlb_finish_mmu
255 * Called at the end of the shootdown operation to free up any resources
256 * that were required.
257 */
258 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
259 {
260 struct mmu_gather_batch *batch, *next;
261
262 tlb_flush_mmu(tlb);
263
264 /* keep the page table cache within bounds */
265 check_pgt_cache();
266
267 for (batch = tlb->local.next; batch; batch = next) {
268 next = batch->next;
269 free_pages((unsigned long)batch, 0);
270 }
271 tlb->local.next = NULL;
272 }
273
274 /* __tlb_remove_page
275 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
276 * handling the additional races in SMP caused by other CPUs caching valid
277 * mappings in their TLBs. Returns the number of free page slots left.
278 * When out of page slots we must call tlb_flush_mmu().
279 */
280 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
281 {
282 struct mmu_gather_batch *batch;
283
284 VM_BUG_ON(!tlb->need_flush);
285
286 batch = tlb->active;
287 batch->pages[batch->nr++] = page;
288 if (batch->nr == batch->max) {
289 if (!tlb_next_batch(tlb))
290 return 0;
291 batch = tlb->active;
292 }
293 VM_BUG_ON(batch->nr > batch->max);
294
295 return batch->max - batch->nr;
296 }
297
298 #endif /* HAVE_GENERIC_MMU_GATHER */
299
300 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
301
302 /*
303 * See the comment near struct mmu_table_batch.
304 */
305
306 static void tlb_remove_table_smp_sync(void *arg)
307 {
308 /* Simply deliver the interrupt */
309 }
310
311 static void tlb_remove_table_one(void *table)
312 {
313 /*
314 * This isn't an RCU grace period and hence the page-tables cannot be
315 * assumed to be actually RCU-freed.
316 *
317 * It is however sufficient for software page-table walkers that rely on
318 * IRQ disabling. See the comment near struct mmu_table_batch.
319 */
320 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
321 __tlb_remove_table(table);
322 }
323
324 static void tlb_remove_table_rcu(struct rcu_head *head)
325 {
326 struct mmu_table_batch *batch;
327 int i;
328
329 batch = container_of(head, struct mmu_table_batch, rcu);
330
331 for (i = 0; i < batch->nr; i++)
332 __tlb_remove_table(batch->tables[i]);
333
334 free_page((unsigned long)batch);
335 }
336
337 void tlb_table_flush(struct mmu_gather *tlb)
338 {
339 struct mmu_table_batch **batch = &tlb->batch;
340
341 if (*batch) {
342 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
343 *batch = NULL;
344 }
345 }
346
347 void tlb_remove_table(struct mmu_gather *tlb, void *table)
348 {
349 struct mmu_table_batch **batch = &tlb->batch;
350
351 tlb->need_flush = 1;
352
353 /*
354 * When there's less then two users of this mm there cannot be a
355 * concurrent page-table walk.
356 */
357 if (atomic_read(&tlb->mm->mm_users) < 2) {
358 __tlb_remove_table(table);
359 return;
360 }
361
362 if (*batch == NULL) {
363 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
364 if (*batch == NULL) {
365 tlb_remove_table_one(table);
366 return;
367 }
368 (*batch)->nr = 0;
369 }
370 (*batch)->tables[(*batch)->nr++] = table;
371 if ((*batch)->nr == MAX_TABLE_BATCH)
372 tlb_table_flush(tlb);
373 }
374
375 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
376
377 /*
378 * If a p?d_bad entry is found while walking page tables, report
379 * the error, before resetting entry to p?d_none. Usually (but
380 * very seldom) called out from the p?d_none_or_clear_bad macros.
381 */
382
383 void pgd_clear_bad(pgd_t *pgd)
384 {
385 pgd_ERROR(*pgd);
386 pgd_clear(pgd);
387 }
388
389 void pud_clear_bad(pud_t *pud)
390 {
391 pud_ERROR(*pud);
392 pud_clear(pud);
393 }
394
395 void pmd_clear_bad(pmd_t *pmd)
396 {
397 pmd_ERROR(*pmd);
398 pmd_clear(pmd);
399 }
400
401 /*
402 * Note: this doesn't free the actual pages themselves. That
403 * has been handled earlier when unmapping all the memory regions.
404 */
405 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
406 unsigned long addr)
407 {
408 pgtable_t token = pmd_pgtable(*pmd);
409 pmd_clear(pmd);
410 pte_free_tlb(tlb, token, addr);
411 tlb->mm->nr_ptes--;
412 }
413
414 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
415 unsigned long addr, unsigned long end,
416 unsigned long floor, unsigned long ceiling)
417 {
418 pmd_t *pmd;
419 unsigned long next;
420 unsigned long start;
421
422 start = addr;
423 pmd = pmd_offset(pud, addr);
424 do {
425 next = pmd_addr_end(addr, end);
426 if (pmd_none_or_clear_bad(pmd))
427 continue;
428 free_pte_range(tlb, pmd, addr);
429 } while (pmd++, addr = next, addr != end);
430
431 start &= PUD_MASK;
432 if (start < floor)
433 return;
434 if (ceiling) {
435 ceiling &= PUD_MASK;
436 if (!ceiling)
437 return;
438 }
439 if (end - 1 > ceiling - 1)
440 return;
441
442 pmd = pmd_offset(pud, start);
443 pud_clear(pud);
444 pmd_free_tlb(tlb, pmd, start);
445 }
446
447 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
448 unsigned long addr, unsigned long end,
449 unsigned long floor, unsigned long ceiling)
450 {
451 pud_t *pud;
452 unsigned long next;
453 unsigned long start;
454
455 start = addr;
456 pud = pud_offset(pgd, addr);
457 do {
458 next = pud_addr_end(addr, end);
459 if (pud_none_or_clear_bad(pud))
460 continue;
461 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
462 } while (pud++, addr = next, addr != end);
463
464 start &= PGDIR_MASK;
465 if (start < floor)
466 return;
467 if (ceiling) {
468 ceiling &= PGDIR_MASK;
469 if (!ceiling)
470 return;
471 }
472 if (end - 1 > ceiling - 1)
473 return;
474
475 pud = pud_offset(pgd, start);
476 pgd_clear(pgd);
477 pud_free_tlb(tlb, pud, start);
478 }
479
480 /*
481 * This function frees user-level page tables of a process.
482 *
483 * Must be called with pagetable lock held.
484 */
485 void free_pgd_range(struct mmu_gather *tlb,
486 unsigned long addr, unsigned long end,
487 unsigned long floor, unsigned long ceiling)
488 {
489 pgd_t *pgd;
490 unsigned long next;
491
492 /*
493 * The next few lines have given us lots of grief...
494 *
495 * Why are we testing PMD* at this top level? Because often
496 * there will be no work to do at all, and we'd prefer not to
497 * go all the way down to the bottom just to discover that.
498 *
499 * Why all these "- 1"s? Because 0 represents both the bottom
500 * of the address space and the top of it (using -1 for the
501 * top wouldn't help much: the masks would do the wrong thing).
502 * The rule is that addr 0 and floor 0 refer to the bottom of
503 * the address space, but end 0 and ceiling 0 refer to the top
504 * Comparisons need to use "end - 1" and "ceiling - 1" (though
505 * that end 0 case should be mythical).
506 *
507 * Wherever addr is brought up or ceiling brought down, we must
508 * be careful to reject "the opposite 0" before it confuses the
509 * subsequent tests. But what about where end is brought down
510 * by PMD_SIZE below? no, end can't go down to 0 there.
511 *
512 * Whereas we round start (addr) and ceiling down, by different
513 * masks at different levels, in order to test whether a table
514 * now has no other vmas using it, so can be freed, we don't
515 * bother to round floor or end up - the tests don't need that.
516 */
517
518 addr &= PMD_MASK;
519 if (addr < floor) {
520 addr += PMD_SIZE;
521 if (!addr)
522 return;
523 }
524 if (ceiling) {
525 ceiling &= PMD_MASK;
526 if (!ceiling)
527 return;
528 }
529 if (end - 1 > ceiling - 1)
530 end -= PMD_SIZE;
531 if (addr > end - 1)
532 return;
533
534 pgd = pgd_offset(tlb->mm, addr);
535 do {
536 next = pgd_addr_end(addr, end);
537 if (pgd_none_or_clear_bad(pgd))
538 continue;
539 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
540 } while (pgd++, addr = next, addr != end);
541 }
542
543 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
544 unsigned long floor, unsigned long ceiling)
545 {
546 while (vma) {
547 struct vm_area_struct *next = vma->vm_next;
548 unsigned long addr = vma->vm_start;
549
550 /*
551 * Hide vma from rmap and truncate_pagecache before freeing
552 * pgtables
553 */
554 unlink_anon_vmas(vma);
555 unlink_file_vma(vma);
556
557 if (is_vm_hugetlb_page(vma)) {
558 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
559 floor, next? next->vm_start: ceiling);
560 } else {
561 /*
562 * Optimization: gather nearby vmas into one call down
563 */
564 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
565 && !is_vm_hugetlb_page(next)) {
566 vma = next;
567 next = vma->vm_next;
568 unlink_anon_vmas(vma);
569 unlink_file_vma(vma);
570 }
571 free_pgd_range(tlb, addr, vma->vm_end,
572 floor, next? next->vm_start: ceiling);
573 }
574 vma = next;
575 }
576 }
577
578 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
579 pmd_t *pmd, unsigned long address)
580 {
581 pgtable_t new = pte_alloc_one(mm, address);
582 int wait_split_huge_page;
583 if (!new)
584 return -ENOMEM;
585
586 /*
587 * Ensure all pte setup (eg. pte page lock and page clearing) are
588 * visible before the pte is made visible to other CPUs by being
589 * put into page tables.
590 *
591 * The other side of the story is the pointer chasing in the page
592 * table walking code (when walking the page table without locking;
593 * ie. most of the time). Fortunately, these data accesses consist
594 * of a chain of data-dependent loads, meaning most CPUs (alpha
595 * being the notable exception) will already guarantee loads are
596 * seen in-order. See the alpha page table accessors for the
597 * smp_read_barrier_depends() barriers in page table walking code.
598 */
599 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
600
601 spin_lock(&mm->page_table_lock);
602 wait_split_huge_page = 0;
603 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
604 mm->nr_ptes++;
605 pmd_populate(mm, pmd, new);
606 new = NULL;
607 } else if (unlikely(pmd_trans_splitting(*pmd)))
608 wait_split_huge_page = 1;
609 spin_unlock(&mm->page_table_lock);
610 if (new)
611 pte_free(mm, new);
612 if (wait_split_huge_page)
613 wait_split_huge_page(vma->anon_vma, pmd);
614 return 0;
615 }
616
617 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
618 {
619 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
620 if (!new)
621 return -ENOMEM;
622
623 smp_wmb(); /* See comment in __pte_alloc */
624
625 spin_lock(&init_mm.page_table_lock);
626 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
627 pmd_populate_kernel(&init_mm, pmd, new);
628 new = NULL;
629 } else
630 VM_BUG_ON(pmd_trans_splitting(*pmd));
631 spin_unlock(&init_mm.page_table_lock);
632 if (new)
633 pte_free_kernel(&init_mm, new);
634 return 0;
635 }
636
637 static inline void init_rss_vec(int *rss)
638 {
639 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
640 }
641
642 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
643 {
644 int i;
645
646 if (current->mm == mm)
647 sync_mm_rss(mm);
648 for (i = 0; i < NR_MM_COUNTERS; i++)
649 if (rss[i])
650 add_mm_counter(mm, i, rss[i]);
651 }
652
653 /*
654 * This function is called to print an error when a bad pte
655 * is found. For example, we might have a PFN-mapped pte in
656 * a region that doesn't allow it.
657 *
658 * The calling function must still handle the error.
659 */
660 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
661 pte_t pte, struct page *page)
662 {
663 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
664 pud_t *pud = pud_offset(pgd, addr);
665 pmd_t *pmd = pmd_offset(pud, addr);
666 struct address_space *mapping;
667 pgoff_t index;
668 static unsigned long resume;
669 static unsigned long nr_shown;
670 static unsigned long nr_unshown;
671
672 /*
673 * Allow a burst of 60 reports, then keep quiet for that minute;
674 * or allow a steady drip of one report per second.
675 */
676 if (nr_shown == 60) {
677 if (time_before(jiffies, resume)) {
678 nr_unshown++;
679 return;
680 }
681 if (nr_unshown) {
682 printk(KERN_ALERT
683 "BUG: Bad page map: %lu messages suppressed\n",
684 nr_unshown);
685 nr_unshown = 0;
686 }
687 nr_shown = 0;
688 }
689 if (nr_shown++ == 0)
690 resume = jiffies + 60 * HZ;
691
692 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
693 index = linear_page_index(vma, addr);
694
695 printk(KERN_ALERT
696 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
697 current->comm,
698 (long long)pte_val(pte), (long long)pmd_val(*pmd));
699 if (page)
700 dump_page(page);
701 printk(KERN_ALERT
702 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
703 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
704 /*
705 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
706 */
707 if (vma->vm_ops)
708 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
709 vma->vm_ops->fault);
710 if (vma->vm_file && vma->vm_file->f_op)
711 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
712 vma->vm_file->f_op->mmap);
713 dump_stack();
714 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
715 }
716
717 static inline bool is_cow_mapping(vm_flags_t flags)
718 {
719 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
720 }
721
722 /*
723 * vm_normal_page -- This function gets the "struct page" associated with a pte.
724 *
725 * "Special" mappings do not wish to be associated with a "struct page" (either
726 * it doesn't exist, or it exists but they don't want to touch it). In this
727 * case, NULL is returned here. "Normal" mappings do have a struct page.
728 *
729 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
730 * pte bit, in which case this function is trivial. Secondly, an architecture
731 * may not have a spare pte bit, which requires a more complicated scheme,
732 * described below.
733 *
734 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
735 * special mapping (even if there are underlying and valid "struct pages").
736 * COWed pages of a VM_PFNMAP are always normal.
737 *
738 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
739 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
740 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
741 * mapping will always honor the rule
742 *
743 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
744 *
745 * And for normal mappings this is false.
746 *
747 * This restricts such mappings to be a linear translation from virtual address
748 * to pfn. To get around this restriction, we allow arbitrary mappings so long
749 * as the vma is not a COW mapping; in that case, we know that all ptes are
750 * special (because none can have been COWed).
751 *
752 *
753 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
754 *
755 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
756 * page" backing, however the difference is that _all_ pages with a struct
757 * page (that is, those where pfn_valid is true) are refcounted and considered
758 * normal pages by the VM. The disadvantage is that pages are refcounted
759 * (which can be slower and simply not an option for some PFNMAP users). The
760 * advantage is that we don't have to follow the strict linearity rule of
761 * PFNMAP mappings in order to support COWable mappings.
762 *
763 */
764 #ifdef __HAVE_ARCH_PTE_SPECIAL
765 # define HAVE_PTE_SPECIAL 1
766 #else
767 # define HAVE_PTE_SPECIAL 0
768 #endif
769 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
770 pte_t pte)
771 {
772 unsigned long pfn = pte_pfn(pte);
773
774 if (HAVE_PTE_SPECIAL) {
775 if (likely(!pte_special(pte)))
776 goto check_pfn;
777 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
778 return NULL;
779 if (!is_zero_pfn(pfn))
780 print_bad_pte(vma, addr, pte, NULL);
781 return NULL;
782 }
783
784 /* !HAVE_PTE_SPECIAL case follows: */
785
786 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
787 if (vma->vm_flags & VM_MIXEDMAP) {
788 if (!pfn_valid(pfn))
789 return NULL;
790 goto out;
791 } else {
792 unsigned long off;
793 off = (addr - vma->vm_start) >> PAGE_SHIFT;
794 if (pfn == vma->vm_pgoff + off)
795 return NULL;
796 if (!is_cow_mapping(vma->vm_flags))
797 return NULL;
798 }
799 }
800
801 if (is_zero_pfn(pfn))
802 return NULL;
803 check_pfn:
804 if (unlikely(pfn > highest_memmap_pfn)) {
805 print_bad_pte(vma, addr, pte, NULL);
806 return NULL;
807 }
808
809 /*
810 * NOTE! We still have PageReserved() pages in the page tables.
811 * eg. VDSO mappings can cause them to exist.
812 */
813 out:
814 return pfn_to_page(pfn);
815 }
816
817 /*
818 * copy one vm_area from one task to the other. Assumes the page tables
819 * already present in the new task to be cleared in the whole range
820 * covered by this vma.
821 */
822
823 static inline unsigned long
824 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
825 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
826 unsigned long addr, int *rss)
827 {
828 unsigned long vm_flags = vma->vm_flags;
829 pte_t pte = *src_pte;
830 struct page *page;
831
832 /* pte contains position in swap or file, so copy. */
833 if (unlikely(!pte_present(pte))) {
834 if (!pte_file(pte)) {
835 swp_entry_t entry = pte_to_swp_entry(pte);
836
837 if (likely(!non_swap_entry(entry))) {
838 if (swap_duplicate(entry) < 0)
839 return entry.val;
840
841 /* make sure dst_mm is on swapoff's mmlist. */
842 if (unlikely(list_empty(&dst_mm->mmlist))) {
843 spin_lock(&mmlist_lock);
844 if (list_empty(&dst_mm->mmlist))
845 list_add(&dst_mm->mmlist,
846 &src_mm->mmlist);
847 spin_unlock(&mmlist_lock);
848 }
849 rss[MM_SWAPENTS]++;
850 } else if (is_migration_entry(entry)) {
851 page = migration_entry_to_page(entry);
852
853 if (PageAnon(page))
854 rss[MM_ANONPAGES]++;
855 else
856 rss[MM_FILEPAGES]++;
857
858 if (is_write_migration_entry(entry) &&
859 is_cow_mapping(vm_flags)) {
860 /*
861 * COW mappings require pages in both
862 * parent and child to be set to read.
863 */
864 make_migration_entry_read(&entry);
865 pte = swp_entry_to_pte(entry);
866 set_pte_at(src_mm, addr, src_pte, pte);
867 }
868 }
869 }
870 goto out_set_pte;
871 }
872
873 /*
874 * If it's a COW mapping, write protect it both
875 * in the parent and the child
876 */
877 if (is_cow_mapping(vm_flags)) {
878 ptep_set_wrprotect(src_mm, addr, src_pte);
879 pte = pte_wrprotect(pte);
880 }
881
882 /*
883 * If it's a shared mapping, mark it clean in
884 * the child
885 */
886 if (vm_flags & VM_SHARED)
887 pte = pte_mkclean(pte);
888 pte = pte_mkold(pte);
889
890 page = vm_normal_page(vma, addr, pte);
891 if (page) {
892 get_page(page);
893 page_dup_rmap(page);
894 if (PageAnon(page))
895 rss[MM_ANONPAGES]++;
896 else
897 rss[MM_FILEPAGES]++;
898 }
899
900 out_set_pte:
901 set_pte_at(dst_mm, addr, dst_pte, pte);
902 return 0;
903 }
904
905 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
906 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
907 unsigned long addr, unsigned long end)
908 {
909 pte_t *orig_src_pte, *orig_dst_pte;
910 pte_t *src_pte, *dst_pte;
911 spinlock_t *src_ptl, *dst_ptl;
912 int progress = 0;
913 int rss[NR_MM_COUNTERS];
914 swp_entry_t entry = (swp_entry_t){0};
915
916 again:
917 init_rss_vec(rss);
918
919 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
920 if (!dst_pte)
921 return -ENOMEM;
922 src_pte = pte_offset_map(src_pmd, addr);
923 src_ptl = pte_lockptr(src_mm, src_pmd);
924 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
925 orig_src_pte = src_pte;
926 orig_dst_pte = dst_pte;
927 arch_enter_lazy_mmu_mode();
928
929 do {
930 /*
931 * We are holding two locks at this point - either of them
932 * could generate latencies in another task on another CPU.
933 */
934 if (progress >= 32) {
935 progress = 0;
936 if (need_resched() ||
937 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
938 break;
939 }
940 if (pte_none(*src_pte)) {
941 progress++;
942 continue;
943 }
944 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
945 vma, addr, rss);
946 if (entry.val)
947 break;
948 progress += 8;
949 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
950
951 arch_leave_lazy_mmu_mode();
952 spin_unlock(src_ptl);
953 pte_unmap(orig_src_pte);
954 add_mm_rss_vec(dst_mm, rss);
955 pte_unmap_unlock(orig_dst_pte, dst_ptl);
956 cond_resched();
957
958 if (entry.val) {
959 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
960 return -ENOMEM;
961 progress = 0;
962 }
963 if (addr != end)
964 goto again;
965 return 0;
966 }
967
968 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
969 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
970 unsigned long addr, unsigned long end)
971 {
972 pmd_t *src_pmd, *dst_pmd;
973 unsigned long next;
974
975 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
976 if (!dst_pmd)
977 return -ENOMEM;
978 src_pmd = pmd_offset(src_pud, addr);
979 do {
980 next = pmd_addr_end(addr, end);
981 if (pmd_trans_huge(*src_pmd)) {
982 int err;
983 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
984 err = copy_huge_pmd(dst_mm, src_mm,
985 dst_pmd, src_pmd, addr, vma);
986 if (err == -ENOMEM)
987 return -ENOMEM;
988 if (!err)
989 continue;
990 /* fall through */
991 }
992 if (pmd_none_or_clear_bad(src_pmd))
993 continue;
994 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
995 vma, addr, next))
996 return -ENOMEM;
997 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
998 return 0;
999 }
1000
1001 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1002 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1003 unsigned long addr, unsigned long end)
1004 {
1005 pud_t *src_pud, *dst_pud;
1006 unsigned long next;
1007
1008 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1009 if (!dst_pud)
1010 return -ENOMEM;
1011 src_pud = pud_offset(src_pgd, addr);
1012 do {
1013 next = pud_addr_end(addr, end);
1014 if (pud_none_or_clear_bad(src_pud))
1015 continue;
1016 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1017 vma, addr, next))
1018 return -ENOMEM;
1019 } while (dst_pud++, src_pud++, addr = next, addr != end);
1020 return 0;
1021 }
1022
1023 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1024 struct vm_area_struct *vma)
1025 {
1026 pgd_t *src_pgd, *dst_pgd;
1027 unsigned long next;
1028 unsigned long addr = vma->vm_start;
1029 unsigned long end = vma->vm_end;
1030 unsigned long mmun_start; /* For mmu_notifiers */
1031 unsigned long mmun_end; /* For mmu_notifiers */
1032 bool is_cow;
1033 int ret;
1034
1035 /*
1036 * Don't copy ptes where a page fault will fill them correctly.
1037 * Fork becomes much lighter when there are big shared or private
1038 * readonly mappings. The tradeoff is that copy_page_range is more
1039 * efficient than faulting.
1040 */
1041 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1042 VM_PFNMAP | VM_MIXEDMAP))) {
1043 if (!vma->anon_vma)
1044 return 0;
1045 }
1046
1047 if (is_vm_hugetlb_page(vma))
1048 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1049
1050 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1051 /*
1052 * We do not free on error cases below as remove_vma
1053 * gets called on error from higher level routine
1054 */
1055 ret = track_pfn_copy(vma);
1056 if (ret)
1057 return ret;
1058 }
1059
1060 /*
1061 * We need to invalidate the secondary MMU mappings only when
1062 * there could be a permission downgrade on the ptes of the
1063 * parent mm. And a permission downgrade will only happen if
1064 * is_cow_mapping() returns true.
1065 */
1066 is_cow = is_cow_mapping(vma->vm_flags);
1067 mmun_start = addr;
1068 mmun_end = end;
1069 if (is_cow)
1070 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1071 mmun_end);
1072
1073 ret = 0;
1074 dst_pgd = pgd_offset(dst_mm, addr);
1075 src_pgd = pgd_offset(src_mm, addr);
1076 do {
1077 next = pgd_addr_end(addr, end);
1078 if (pgd_none_or_clear_bad(src_pgd))
1079 continue;
1080 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1081 vma, addr, next))) {
1082 ret = -ENOMEM;
1083 break;
1084 }
1085 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1086
1087 if (is_cow)
1088 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1089 return ret;
1090 }
1091
1092 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1093 struct vm_area_struct *vma, pmd_t *pmd,
1094 unsigned long addr, unsigned long end,
1095 struct zap_details *details)
1096 {
1097 struct mm_struct *mm = tlb->mm;
1098 int force_flush = 0;
1099 int rss[NR_MM_COUNTERS];
1100 spinlock_t *ptl;
1101 pte_t *start_pte;
1102 pte_t *pte;
1103
1104 again:
1105 init_rss_vec(rss);
1106 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1107 pte = start_pte;
1108 arch_enter_lazy_mmu_mode();
1109 do {
1110 pte_t ptent = *pte;
1111 if (pte_none(ptent)) {
1112 continue;
1113 }
1114
1115 if (pte_present(ptent)) {
1116 struct page *page;
1117
1118 page = vm_normal_page(vma, addr, ptent);
1119 if (unlikely(details) && page) {
1120 /*
1121 * unmap_shared_mapping_pages() wants to
1122 * invalidate cache without truncating:
1123 * unmap shared but keep private pages.
1124 */
1125 if (details->check_mapping &&
1126 details->check_mapping != page->mapping)
1127 continue;
1128 /*
1129 * Each page->index must be checked when
1130 * invalidating or truncating nonlinear.
1131 */
1132 if (details->nonlinear_vma &&
1133 (page->index < details->first_index ||
1134 page->index > details->last_index))
1135 continue;
1136 }
1137 ptent = ptep_get_and_clear_full(mm, addr, pte,
1138 tlb->fullmm);
1139 tlb_remove_tlb_entry(tlb, pte, addr);
1140 if (unlikely(!page))
1141 continue;
1142 if (unlikely(details) && details->nonlinear_vma
1143 && linear_page_index(details->nonlinear_vma,
1144 addr) != page->index)
1145 set_pte_at(mm, addr, pte,
1146 pgoff_to_pte(page->index));
1147 if (PageAnon(page))
1148 rss[MM_ANONPAGES]--;
1149 else {
1150 if (pte_dirty(ptent))
1151 set_page_dirty(page);
1152 if (pte_young(ptent) &&
1153 likely(!VM_SequentialReadHint(vma)))
1154 mark_page_accessed(page);
1155 rss[MM_FILEPAGES]--;
1156 }
1157 page_remove_rmap(page);
1158 if (unlikely(page_mapcount(page) < 0))
1159 print_bad_pte(vma, addr, ptent, page);
1160 force_flush = !__tlb_remove_page(tlb, page);
1161 if (force_flush)
1162 break;
1163 continue;
1164 }
1165 /*
1166 * If details->check_mapping, we leave swap entries;
1167 * if details->nonlinear_vma, we leave file entries.
1168 */
1169 if (unlikely(details))
1170 continue;
1171 if (pte_file(ptent)) {
1172 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1173 print_bad_pte(vma, addr, ptent, NULL);
1174 } else {
1175 swp_entry_t entry = pte_to_swp_entry(ptent);
1176
1177 if (!non_swap_entry(entry))
1178 rss[MM_SWAPENTS]--;
1179 else if (is_migration_entry(entry)) {
1180 struct page *page;
1181
1182 page = migration_entry_to_page(entry);
1183
1184 if (PageAnon(page))
1185 rss[MM_ANONPAGES]--;
1186 else
1187 rss[MM_FILEPAGES]--;
1188 }
1189 if (unlikely(!free_swap_and_cache(entry)))
1190 print_bad_pte(vma, addr, ptent, NULL);
1191 }
1192 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1193 } while (pte++, addr += PAGE_SIZE, addr != end);
1194
1195 add_mm_rss_vec(mm, rss);
1196 arch_leave_lazy_mmu_mode();
1197 pte_unmap_unlock(start_pte, ptl);
1198
1199 /*
1200 * mmu_gather ran out of room to batch pages, we break out of
1201 * the PTE lock to avoid doing the potential expensive TLB invalidate
1202 * and page-free while holding it.
1203 */
1204 if (force_flush) {
1205 unsigned long old_end;
1206
1207 force_flush = 0;
1208
1209 /*
1210 * Flush the TLB just for the previous segment,
1211 * then update the range to be the remaining
1212 * TLB range.
1213 */
1214 old_end = tlb->end;
1215 tlb->end = addr;
1216
1217 tlb_flush_mmu(tlb);
1218
1219 tlb->start = addr;
1220 tlb->end = old_end;
1221
1222 if (addr != end)
1223 goto again;
1224 }
1225
1226 return addr;
1227 }
1228
1229 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1230 struct vm_area_struct *vma, pud_t *pud,
1231 unsigned long addr, unsigned long end,
1232 struct zap_details *details)
1233 {
1234 pmd_t *pmd;
1235 unsigned long next;
1236
1237 pmd = pmd_offset(pud, addr);
1238 do {
1239 next = pmd_addr_end(addr, end);
1240 if (pmd_trans_huge(*pmd)) {
1241 if (next - addr != HPAGE_PMD_SIZE) {
1242 #ifdef CONFIG_DEBUG_VM
1243 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1244 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1245 __func__, addr, end,
1246 vma->vm_start,
1247 vma->vm_end);
1248 BUG();
1249 }
1250 #endif
1251 split_huge_page_pmd(vma, addr, pmd);
1252 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1253 goto next;
1254 /* fall through */
1255 }
1256 /*
1257 * Here there can be other concurrent MADV_DONTNEED or
1258 * trans huge page faults running, and if the pmd is
1259 * none or trans huge it can change under us. This is
1260 * because MADV_DONTNEED holds the mmap_sem in read
1261 * mode.
1262 */
1263 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1264 goto next;
1265 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1266 next:
1267 cond_resched();
1268 } while (pmd++, addr = next, addr != end);
1269
1270 return addr;
1271 }
1272
1273 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1274 struct vm_area_struct *vma, pgd_t *pgd,
1275 unsigned long addr, unsigned long end,
1276 struct zap_details *details)
1277 {
1278 pud_t *pud;
1279 unsigned long next;
1280
1281 pud = pud_offset(pgd, addr);
1282 do {
1283 next = pud_addr_end(addr, end);
1284 if (pud_none_or_clear_bad(pud))
1285 continue;
1286 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1287 } while (pud++, addr = next, addr != end);
1288
1289 return addr;
1290 }
1291
1292 static void unmap_page_range(struct mmu_gather *tlb,
1293 struct vm_area_struct *vma,
1294 unsigned long addr, unsigned long end,
1295 struct zap_details *details)
1296 {
1297 pgd_t *pgd;
1298 unsigned long next;
1299
1300 if (details && !details->check_mapping && !details->nonlinear_vma)
1301 details = NULL;
1302
1303 BUG_ON(addr >= end);
1304 mem_cgroup_uncharge_start();
1305 tlb_start_vma(tlb, vma);
1306 pgd = pgd_offset(vma->vm_mm, addr);
1307 do {
1308 next = pgd_addr_end(addr, end);
1309 if (pgd_none_or_clear_bad(pgd))
1310 continue;
1311 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1312 } while (pgd++, addr = next, addr != end);
1313 tlb_end_vma(tlb, vma);
1314 mem_cgroup_uncharge_end();
1315 }
1316
1317
1318 static void unmap_single_vma(struct mmu_gather *tlb,
1319 struct vm_area_struct *vma, unsigned long start_addr,
1320 unsigned long end_addr,
1321 struct zap_details *details)
1322 {
1323 unsigned long start = max(vma->vm_start, start_addr);
1324 unsigned long end;
1325
1326 if (start >= vma->vm_end)
1327 return;
1328 end = min(vma->vm_end, end_addr);
1329 if (end <= vma->vm_start)
1330 return;
1331
1332 if (vma->vm_file)
1333 uprobe_munmap(vma, start, end);
1334
1335 if (unlikely(vma->vm_flags & VM_PFNMAP))
1336 untrack_pfn(vma, 0, 0);
1337
1338 if (start != end) {
1339 if (unlikely(is_vm_hugetlb_page(vma))) {
1340 /*
1341 * It is undesirable to test vma->vm_file as it
1342 * should be non-null for valid hugetlb area.
1343 * However, vm_file will be NULL in the error
1344 * cleanup path of do_mmap_pgoff. When
1345 * hugetlbfs ->mmap method fails,
1346 * do_mmap_pgoff() nullifies vma->vm_file
1347 * before calling this function to clean up.
1348 * Since no pte has actually been setup, it is
1349 * safe to do nothing in this case.
1350 */
1351 if (vma->vm_file) {
1352 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1353 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1354 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1355 }
1356 } else
1357 unmap_page_range(tlb, vma, start, end, details);
1358 }
1359 }
1360
1361 /**
1362 * unmap_vmas - unmap a range of memory covered by a list of vma's
1363 * @tlb: address of the caller's struct mmu_gather
1364 * @vma: the starting vma
1365 * @start_addr: virtual address at which to start unmapping
1366 * @end_addr: virtual address at which to end unmapping
1367 *
1368 * Unmap all pages in the vma list.
1369 *
1370 * Only addresses between `start' and `end' will be unmapped.
1371 *
1372 * The VMA list must be sorted in ascending virtual address order.
1373 *
1374 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1375 * range after unmap_vmas() returns. So the only responsibility here is to
1376 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1377 * drops the lock and schedules.
1378 */
1379 void unmap_vmas(struct mmu_gather *tlb,
1380 struct vm_area_struct *vma, unsigned long start_addr,
1381 unsigned long end_addr)
1382 {
1383 struct mm_struct *mm = vma->vm_mm;
1384
1385 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1386 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1387 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1388 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1389 }
1390
1391 /**
1392 * zap_page_range - remove user pages in a given range
1393 * @vma: vm_area_struct holding the applicable pages
1394 * @start: starting address of pages to zap
1395 * @size: number of bytes to zap
1396 * @details: details of nonlinear truncation or shared cache invalidation
1397 *
1398 * Caller must protect the VMA list
1399 */
1400 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1401 unsigned long size, struct zap_details *details)
1402 {
1403 struct mm_struct *mm = vma->vm_mm;
1404 struct mmu_gather tlb;
1405 unsigned long end = start + size;
1406
1407 lru_add_drain();
1408 tlb_gather_mmu(&tlb, mm, start, end);
1409 update_hiwater_rss(mm);
1410 mmu_notifier_invalidate_range_start(mm, start, end);
1411 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1412 unmap_single_vma(&tlb, vma, start, end, details);
1413 mmu_notifier_invalidate_range_end(mm, start, end);
1414 tlb_finish_mmu(&tlb, start, end);
1415 }
1416
1417 /**
1418 * zap_page_range_single - remove user pages in a given range
1419 * @vma: vm_area_struct holding the applicable pages
1420 * @address: starting address of pages to zap
1421 * @size: number of bytes to zap
1422 * @details: details of nonlinear truncation or shared cache invalidation
1423 *
1424 * The range must fit into one VMA.
1425 */
1426 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1427 unsigned long size, struct zap_details *details)
1428 {
1429 struct mm_struct *mm = vma->vm_mm;
1430 struct mmu_gather tlb;
1431 unsigned long end = address + size;
1432
1433 lru_add_drain();
1434 tlb_gather_mmu(&tlb, mm, address, end);
1435 update_hiwater_rss(mm);
1436 mmu_notifier_invalidate_range_start(mm, address, end);
1437 unmap_single_vma(&tlb, vma, address, end, details);
1438 mmu_notifier_invalidate_range_end(mm, address, end);
1439 tlb_finish_mmu(&tlb, address, end);
1440 }
1441
1442 /**
1443 * zap_vma_ptes - remove ptes mapping the vma
1444 * @vma: vm_area_struct holding ptes to be zapped
1445 * @address: starting address of pages to zap
1446 * @size: number of bytes to zap
1447 *
1448 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1449 *
1450 * The entire address range must be fully contained within the vma.
1451 *
1452 * Returns 0 if successful.
1453 */
1454 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1455 unsigned long size)
1456 {
1457 if (address < vma->vm_start || address + size > vma->vm_end ||
1458 !(vma->vm_flags & VM_PFNMAP))
1459 return -1;
1460 zap_page_range_single(vma, address, size, NULL);
1461 return 0;
1462 }
1463 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1464
1465 /*
1466 * FOLL_FORCE can write to even unwritable pte's, but only
1467 * after we've gone through a COW cycle and they are dirty.
1468 */
1469 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
1470 {
1471 return pte_write(pte) ||
1472 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
1473 }
1474
1475 /**
1476 * follow_page_mask - look up a page descriptor from a user-virtual address
1477 * @vma: vm_area_struct mapping @address
1478 * @address: virtual address to look up
1479 * @flags: flags modifying lookup behaviour
1480 * @page_mask: on output, *page_mask is set according to the size of the page
1481 *
1482 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1483 *
1484 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1485 * an error pointer if there is a mapping to something not represented
1486 * by a page descriptor (see also vm_normal_page()).
1487 */
1488 struct page *follow_page_mask(struct vm_area_struct *vma,
1489 unsigned long address, unsigned int flags,
1490 unsigned int *page_mask)
1491 {
1492 pgd_t *pgd;
1493 pud_t *pud;
1494 pmd_t *pmd;
1495 pte_t *ptep, pte;
1496 spinlock_t *ptl;
1497 struct page *page;
1498 struct mm_struct *mm = vma->vm_mm;
1499
1500 *page_mask = 0;
1501
1502 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1503 if (!IS_ERR(page)) {
1504 BUG_ON(flags & FOLL_GET);
1505 goto out;
1506 }
1507
1508 page = NULL;
1509 pgd = pgd_offset(mm, address);
1510 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1511 goto no_page_table;
1512
1513 pud = pud_offset(pgd, address);
1514 if (pud_none(*pud))
1515 goto no_page_table;
1516 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1517 BUG_ON(flags & FOLL_GET);
1518 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1519 goto out;
1520 }
1521 if (unlikely(pud_bad(*pud)))
1522 goto no_page_table;
1523
1524 pmd = pmd_offset(pud, address);
1525 if (pmd_none(*pmd))
1526 goto no_page_table;
1527 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1528 BUG_ON(flags & FOLL_GET);
1529 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1530 goto out;
1531 }
1532 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1533 goto no_page_table;
1534 if (pmd_trans_huge(*pmd)) {
1535 if (flags & FOLL_SPLIT) {
1536 split_huge_page_pmd(vma, address, pmd);
1537 goto split_fallthrough;
1538 }
1539 spin_lock(&mm->page_table_lock);
1540 if (likely(pmd_trans_huge(*pmd))) {
1541 if (unlikely(pmd_trans_splitting(*pmd))) {
1542 spin_unlock(&mm->page_table_lock);
1543 wait_split_huge_page(vma->anon_vma, pmd);
1544 } else {
1545 page = follow_trans_huge_pmd(vma, address,
1546 pmd, flags);
1547 spin_unlock(&mm->page_table_lock);
1548 *page_mask = HPAGE_PMD_NR - 1;
1549 goto out;
1550 }
1551 } else
1552 spin_unlock(&mm->page_table_lock);
1553 /* fall through */
1554 }
1555 split_fallthrough:
1556 if (unlikely(pmd_bad(*pmd)))
1557 goto no_page_table;
1558
1559 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1560
1561 pte = *ptep;
1562 if (!pte_present(pte)) {
1563 swp_entry_t entry;
1564 /*
1565 * KSM's break_ksm() relies upon recognizing a ksm page
1566 * even while it is being migrated, so for that case we
1567 * need migration_entry_wait().
1568 */
1569 if (likely(!(flags & FOLL_MIGRATION)))
1570 goto no_page;
1571 if (pte_none(pte) || pte_file(pte))
1572 goto no_page;
1573 entry = pte_to_swp_entry(pte);
1574 if (!is_migration_entry(entry))
1575 goto no_page;
1576 pte_unmap_unlock(ptep, ptl);
1577 migration_entry_wait(mm, pmd, address);
1578 goto split_fallthrough;
1579 }
1580 if ((flags & FOLL_NUMA) && pte_numa(pte))
1581 goto no_page;
1582 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags))
1583 goto unlock;
1584
1585 page = vm_normal_page(vma, address, pte);
1586 if (unlikely(!page)) {
1587 if ((flags & FOLL_DUMP) ||
1588 !is_zero_pfn(pte_pfn(pte)))
1589 goto bad_page;
1590 page = pte_page(pte);
1591 }
1592
1593 if (flags & FOLL_GET)
1594 get_page_foll(page);
1595 if (flags & FOLL_TOUCH) {
1596 if ((flags & FOLL_WRITE) &&
1597 !pte_dirty(pte) && !PageDirty(page))
1598 set_page_dirty(page);
1599 /*
1600 * pte_mkyoung() would be more correct here, but atomic care
1601 * is needed to avoid losing the dirty bit: it is easier to use
1602 * mark_page_accessed().
1603 */
1604 mark_page_accessed(page);
1605 }
1606 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1607 /*
1608 * The preliminary mapping check is mainly to avoid the
1609 * pointless overhead of lock_page on the ZERO_PAGE
1610 * which might bounce very badly if there is contention.
1611 *
1612 * If the page is already locked, we don't need to
1613 * handle it now - vmscan will handle it later if and
1614 * when it attempts to reclaim the page.
1615 */
1616 if (page->mapping && trylock_page(page)) {
1617 lru_add_drain(); /* push cached pages to LRU */
1618 /*
1619 * Because we lock page here, and migration is
1620 * blocked by the pte's page reference, and we
1621 * know the page is still mapped, we don't even
1622 * need to check for file-cache page truncation.
1623 */
1624 mlock_vma_page(page);
1625 unlock_page(page);
1626 }
1627 }
1628 unlock:
1629 pte_unmap_unlock(ptep, ptl);
1630 out:
1631 return page;
1632
1633 bad_page:
1634 pte_unmap_unlock(ptep, ptl);
1635 return ERR_PTR(-EFAULT);
1636
1637 no_page:
1638 pte_unmap_unlock(ptep, ptl);
1639 if (!pte_none(pte))
1640 return page;
1641
1642 no_page_table:
1643 /*
1644 * When core dumping an enormous anonymous area that nobody
1645 * has touched so far, we don't want to allocate unnecessary pages or
1646 * page tables. Return error instead of NULL to skip handle_mm_fault,
1647 * then get_dump_page() will return NULL to leave a hole in the dump.
1648 * But we can only make this optimization where a hole would surely
1649 * be zero-filled if handle_mm_fault() actually did handle it.
1650 */
1651 if ((flags & FOLL_DUMP) &&
1652 (!vma->vm_ops || !vma->vm_ops->fault))
1653 return ERR_PTR(-EFAULT);
1654 return page;
1655 }
1656
1657 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1658 {
1659 return stack_guard_page_start(vma, addr) ||
1660 stack_guard_page_end(vma, addr+PAGE_SIZE);
1661 }
1662
1663 /**
1664 * __get_user_pages() - pin user pages in memory
1665 * @tsk: task_struct of target task
1666 * @mm: mm_struct of target mm
1667 * @start: starting user address
1668 * @nr_pages: number of pages from start to pin
1669 * @gup_flags: flags modifying pin behaviour
1670 * @pages: array that receives pointers to the pages pinned.
1671 * Should be at least nr_pages long. Or NULL, if caller
1672 * only intends to ensure the pages are faulted in.
1673 * @vmas: array of pointers to vmas corresponding to each page.
1674 * Or NULL if the caller does not require them.
1675 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1676 *
1677 * Returns number of pages pinned. This may be fewer than the number
1678 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1679 * were pinned, returns -errno. Each page returned must be released
1680 * with a put_page() call when it is finished with. vmas will only
1681 * remain valid while mmap_sem is held.
1682 *
1683 * Must be called with mmap_sem held for read or write.
1684 *
1685 * __get_user_pages walks a process's page tables and takes a reference to
1686 * each struct page that each user address corresponds to at a given
1687 * instant. That is, it takes the page that would be accessed if a user
1688 * thread accesses the given user virtual address at that instant.
1689 *
1690 * This does not guarantee that the page exists in the user mappings when
1691 * __get_user_pages returns, and there may even be a completely different
1692 * page there in some cases (eg. if mmapped pagecache has been invalidated
1693 * and subsequently re faulted). However it does guarantee that the page
1694 * won't be freed completely. And mostly callers simply care that the page
1695 * contains data that was valid *at some point in time*. Typically, an IO
1696 * or similar operation cannot guarantee anything stronger anyway because
1697 * locks can't be held over the syscall boundary.
1698 *
1699 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1700 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1701 * appropriate) must be called after the page is finished with, and
1702 * before put_page is called.
1703 *
1704 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1705 * or mmap_sem contention, and if waiting is needed to pin all pages,
1706 * *@nonblocking will be set to 0.
1707 *
1708 * In most cases, get_user_pages or get_user_pages_fast should be used
1709 * instead of __get_user_pages. __get_user_pages should be used only if
1710 * you need some special @gup_flags.
1711 */
1712 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1713 unsigned long start, unsigned long nr_pages,
1714 unsigned int gup_flags, struct page **pages,
1715 struct vm_area_struct **vmas, int *nonblocking)
1716 {
1717 long i;
1718 unsigned long vm_flags;
1719 unsigned int page_mask;
1720
1721 if (!nr_pages)
1722 return 0;
1723
1724 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1725
1726 /*
1727 * Require read or write permissions.
1728 * If FOLL_FORCE is set, we only require the "MAY" flags.
1729 */
1730 vm_flags = (gup_flags & FOLL_WRITE) ?
1731 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1732 vm_flags &= (gup_flags & FOLL_FORCE) ?
1733 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1734
1735 /*
1736 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1737 * would be called on PROT_NONE ranges. We must never invoke
1738 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1739 * page faults would unprotect the PROT_NONE ranges if
1740 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1741 * bitflag. So to avoid that, don't set FOLL_NUMA if
1742 * FOLL_FORCE is set.
1743 */
1744 if (!(gup_flags & FOLL_FORCE))
1745 gup_flags |= FOLL_NUMA;
1746
1747 i = 0;
1748
1749 do {
1750 struct vm_area_struct *vma;
1751
1752 vma = find_extend_vma(mm, start);
1753 if (!vma && in_gate_area(mm, start)) {
1754 unsigned long pg = start & PAGE_MASK;
1755 pgd_t *pgd;
1756 pud_t *pud;
1757 pmd_t *pmd;
1758 pte_t *pte;
1759
1760 /* user gate pages are read-only */
1761 if (gup_flags & FOLL_WRITE)
1762 return i ? : -EFAULT;
1763 if (pg > TASK_SIZE)
1764 pgd = pgd_offset_k(pg);
1765 else
1766 pgd = pgd_offset_gate(mm, pg);
1767 BUG_ON(pgd_none(*pgd));
1768 pud = pud_offset(pgd, pg);
1769 BUG_ON(pud_none(*pud));
1770 pmd = pmd_offset(pud, pg);
1771 if (pmd_none(*pmd))
1772 return i ? : -EFAULT;
1773 VM_BUG_ON(pmd_trans_huge(*pmd));
1774 pte = pte_offset_map(pmd, pg);
1775 if (pte_none(*pte)) {
1776 pte_unmap(pte);
1777 return i ? : -EFAULT;
1778 }
1779 vma = get_gate_vma(mm);
1780 if (pages) {
1781 struct page *page;
1782
1783 page = vm_normal_page(vma, start, *pte);
1784 if (!page) {
1785 if (!(gup_flags & FOLL_DUMP) &&
1786 is_zero_pfn(pte_pfn(*pte)))
1787 page = pte_page(*pte);
1788 else {
1789 pte_unmap(pte);
1790 return i ? : -EFAULT;
1791 }
1792 }
1793 pages[i] = page;
1794 get_page(page);
1795 }
1796 pte_unmap(pte);
1797 page_mask = 0;
1798 goto next_page;
1799 }
1800
1801 if (!vma ||
1802 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1803 !(vm_flags & vma->vm_flags))
1804 return i ? : -EFAULT;
1805
1806 if (is_vm_hugetlb_page(vma)) {
1807 i = follow_hugetlb_page(mm, vma, pages, vmas,
1808 &start, &nr_pages, i, gup_flags);
1809 continue;
1810 }
1811
1812 do {
1813 struct page *page;
1814 unsigned int foll_flags = gup_flags;
1815 unsigned int page_increm;
1816
1817 /*
1818 * If we have a pending SIGKILL, don't keep faulting
1819 * pages and potentially allocating memory.
1820 */
1821 if (unlikely(fatal_signal_pending(current)))
1822 return i ? i : -ERESTARTSYS;
1823
1824 cond_resched();
1825 while (!(page = follow_page_mask(vma, start,
1826 foll_flags, &page_mask))) {
1827 int ret;
1828 unsigned int fault_flags = 0;
1829
1830 /* For mlock, just skip the stack guard page. */
1831 if (foll_flags & FOLL_MLOCK) {
1832 if (stack_guard_page(vma, start))
1833 goto next_page;
1834 }
1835 if (foll_flags & FOLL_WRITE)
1836 fault_flags |= FAULT_FLAG_WRITE;
1837 if (nonblocking)
1838 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1839 if (foll_flags & FOLL_NOWAIT)
1840 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1841
1842 ret = handle_mm_fault(mm, vma, start,
1843 fault_flags);
1844
1845 if (ret & VM_FAULT_ERROR) {
1846 if (ret & VM_FAULT_OOM)
1847 return i ? i : -ENOMEM;
1848 if (ret & (VM_FAULT_HWPOISON |
1849 VM_FAULT_HWPOISON_LARGE)) {
1850 if (i)
1851 return i;
1852 else if (gup_flags & FOLL_HWPOISON)
1853 return -EHWPOISON;
1854 else
1855 return -EFAULT;
1856 }
1857 if (ret & (VM_FAULT_SIGBUS |
1858 VM_FAULT_SIGSEGV))
1859 return i ? i : -EFAULT;
1860 BUG();
1861 }
1862
1863 if (tsk) {
1864 if (ret & VM_FAULT_MAJOR)
1865 tsk->maj_flt++;
1866 else
1867 tsk->min_flt++;
1868 }
1869
1870 if (ret & VM_FAULT_RETRY) {
1871 if (nonblocking)
1872 *nonblocking = 0;
1873 return i;
1874 }
1875
1876 /*
1877 * The VM_FAULT_WRITE bit tells us that
1878 * do_wp_page has broken COW when necessary,
1879 * even if maybe_mkwrite decided not to set
1880 * pte_write. We can thus safely do subsequent
1881 * page lookups as if they were reads. But only
1882 * do so when looping for pte_write is futile:
1883 * in some cases userspace may also be wanting
1884 * to write to the gotten user page, which a
1885 * read fault here might prevent (a readonly
1886 * page might get reCOWed by userspace write).
1887 */
1888 if ((ret & VM_FAULT_WRITE) &&
1889 !(vma->vm_flags & VM_WRITE))
1890 foll_flags |= FOLL_COW;
1891
1892 cond_resched();
1893 }
1894 if (IS_ERR(page))
1895 return i ? i : PTR_ERR(page);
1896 if (pages) {
1897 pages[i] = page;
1898
1899 flush_anon_page(vma, page, start);
1900 flush_dcache_page(page);
1901 page_mask = 0;
1902 }
1903 next_page:
1904 if (vmas) {
1905 vmas[i] = vma;
1906 page_mask = 0;
1907 }
1908 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1909 if (page_increm > nr_pages)
1910 page_increm = nr_pages;
1911 i += page_increm;
1912 start += page_increm * PAGE_SIZE;
1913 nr_pages -= page_increm;
1914 } while (nr_pages && start < vma->vm_end);
1915 } while (nr_pages);
1916 return i;
1917 }
1918 EXPORT_SYMBOL(__get_user_pages);
1919
1920 /*
1921 * fixup_user_fault() - manually resolve a user page fault
1922 * @tsk: the task_struct to use for page fault accounting, or
1923 * NULL if faults are not to be recorded.
1924 * @mm: mm_struct of target mm
1925 * @address: user address
1926 * @fault_flags:flags to pass down to handle_mm_fault()
1927 *
1928 * This is meant to be called in the specific scenario where for locking reasons
1929 * we try to access user memory in atomic context (within a pagefault_disable()
1930 * section), this returns -EFAULT, and we want to resolve the user fault before
1931 * trying again.
1932 *
1933 * Typically this is meant to be used by the futex code.
1934 *
1935 * The main difference with get_user_pages() is that this function will
1936 * unconditionally call handle_mm_fault() which will in turn perform all the
1937 * necessary SW fixup of the dirty and young bits in the PTE, while
1938 * handle_mm_fault() only guarantees to update these in the struct page.
1939 *
1940 * This is important for some architectures where those bits also gate the
1941 * access permission to the page because they are maintained in software. On
1942 * such architectures, gup() will not be enough to make a subsequent access
1943 * succeed.
1944 *
1945 * This should be called with the mm_sem held for read.
1946 */
1947 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1948 unsigned long address, unsigned int fault_flags)
1949 {
1950 struct vm_area_struct *vma;
1951 vm_flags_t vm_flags;
1952 int ret;
1953
1954 vma = find_extend_vma(mm, address);
1955 if (!vma || address < vma->vm_start)
1956 return -EFAULT;
1957
1958 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1959 if (!(vm_flags & vma->vm_flags))
1960 return -EFAULT;
1961
1962 ret = handle_mm_fault(mm, vma, address, fault_flags);
1963 if (ret & VM_FAULT_ERROR) {
1964 if (ret & VM_FAULT_OOM)
1965 return -ENOMEM;
1966 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1967 return -EHWPOISON;
1968 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
1969 return -EFAULT;
1970 BUG();
1971 }
1972 if (tsk) {
1973 if (ret & VM_FAULT_MAJOR)
1974 tsk->maj_flt++;
1975 else
1976 tsk->min_flt++;
1977 }
1978 return 0;
1979 }
1980
1981 /*
1982 * get_user_pages() - pin user pages in memory
1983 * @tsk: the task_struct to use for page fault accounting, or
1984 * NULL if faults are not to be recorded.
1985 * @mm: mm_struct of target mm
1986 * @start: starting user address
1987 * @nr_pages: number of pages from start to pin
1988 * @write: whether pages will be written to by the caller
1989 * @force: whether to force write access even if user mapping is
1990 * readonly. This will result in the page being COWed even
1991 * in MAP_SHARED mappings. You do not want this.
1992 * @pages: array that receives pointers to the pages pinned.
1993 * Should be at least nr_pages long. Or NULL, if caller
1994 * only intends to ensure the pages are faulted in.
1995 * @vmas: array of pointers to vmas corresponding to each page.
1996 * Or NULL if the caller does not require them.
1997 *
1998 * Returns number of pages pinned. This may be fewer than the number
1999 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2000 * were pinned, returns -errno. Each page returned must be released
2001 * with a put_page() call when it is finished with. vmas will only
2002 * remain valid while mmap_sem is held.
2003 *
2004 * Must be called with mmap_sem held for read or write.
2005 *
2006 * get_user_pages walks a process's page tables and takes a reference to
2007 * each struct page that each user address corresponds to at a given
2008 * instant. That is, it takes the page that would be accessed if a user
2009 * thread accesses the given user virtual address at that instant.
2010 *
2011 * This does not guarantee that the page exists in the user mappings when
2012 * get_user_pages returns, and there may even be a completely different
2013 * page there in some cases (eg. if mmapped pagecache has been invalidated
2014 * and subsequently re faulted). However it does guarantee that the page
2015 * won't be freed completely. And mostly callers simply care that the page
2016 * contains data that was valid *at some point in time*. Typically, an IO
2017 * or similar operation cannot guarantee anything stronger anyway because
2018 * locks can't be held over the syscall boundary.
2019 *
2020 * If write=0, the page must not be written to. If the page is written to,
2021 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2022 * after the page is finished with, and before put_page is called.
2023 *
2024 * get_user_pages is typically used for fewer-copy IO operations, to get a
2025 * handle on the memory by some means other than accesses via the user virtual
2026 * addresses. The pages may be submitted for DMA to devices or accessed via
2027 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2028 * use the correct cache flushing APIs.
2029 *
2030 * See also get_user_pages_fast, for performance critical applications.
2031 */
2032 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2033 unsigned long start, unsigned long nr_pages, int write,
2034 int force, struct page **pages, struct vm_area_struct **vmas)
2035 {
2036 int flags = FOLL_TOUCH;
2037
2038 if (pages)
2039 flags |= FOLL_GET;
2040 if (write)
2041 flags |= FOLL_WRITE;
2042 if (force)
2043 flags |= FOLL_FORCE;
2044
2045 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2046 NULL);
2047 }
2048 EXPORT_SYMBOL(get_user_pages);
2049
2050 /**
2051 * get_dump_page() - pin user page in memory while writing it to core dump
2052 * @addr: user address
2053 *
2054 * Returns struct page pointer of user page pinned for dump,
2055 * to be freed afterwards by page_cache_release() or put_page().
2056 *
2057 * Returns NULL on any kind of failure - a hole must then be inserted into
2058 * the corefile, to preserve alignment with its headers; and also returns
2059 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2060 * allowing a hole to be left in the corefile to save diskspace.
2061 *
2062 * Called without mmap_sem, but after all other threads have been killed.
2063 */
2064 #ifdef CONFIG_ELF_CORE
2065 struct page *get_dump_page(unsigned long addr)
2066 {
2067 struct vm_area_struct *vma;
2068 struct page *page;
2069
2070 if (__get_user_pages(current, current->mm, addr, 1,
2071 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2072 NULL) < 1)
2073 return NULL;
2074 flush_cache_page(vma, addr, page_to_pfn(page));
2075 return page;
2076 }
2077 #endif /* CONFIG_ELF_CORE */
2078
2079 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2080 spinlock_t **ptl)
2081 {
2082 pgd_t * pgd = pgd_offset(mm, addr);
2083 pud_t * pud = pud_alloc(mm, pgd, addr);
2084 if (pud) {
2085 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2086 if (pmd) {
2087 VM_BUG_ON(pmd_trans_huge(*pmd));
2088 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2089 }
2090 }
2091 return NULL;
2092 }
2093
2094 /*
2095 * This is the old fallback for page remapping.
2096 *
2097 * For historical reasons, it only allows reserved pages. Only
2098 * old drivers should use this, and they needed to mark their
2099 * pages reserved for the old functions anyway.
2100 */
2101 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2102 struct page *page, pgprot_t prot)
2103 {
2104 struct mm_struct *mm = vma->vm_mm;
2105 int retval;
2106 pte_t *pte;
2107 spinlock_t *ptl;
2108
2109 retval = -EINVAL;
2110 if (PageAnon(page))
2111 goto out;
2112 retval = -ENOMEM;
2113 flush_dcache_page(page);
2114 pte = get_locked_pte(mm, addr, &ptl);
2115 if (!pte)
2116 goto out;
2117 retval = -EBUSY;
2118 if (!pte_none(*pte))
2119 goto out_unlock;
2120
2121 /* Ok, finally just insert the thing.. */
2122 get_page(page);
2123 inc_mm_counter_fast(mm, MM_FILEPAGES);
2124 page_add_file_rmap(page);
2125 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2126
2127 retval = 0;
2128 pte_unmap_unlock(pte, ptl);
2129 return retval;
2130 out_unlock:
2131 pte_unmap_unlock(pte, ptl);
2132 out:
2133 return retval;
2134 }
2135
2136 /**
2137 * vm_insert_page - insert single page into user vma
2138 * @vma: user vma to map to
2139 * @addr: target user address of this page
2140 * @page: source kernel page
2141 *
2142 * This allows drivers to insert individual pages they've allocated
2143 * into a user vma.
2144 *
2145 * The page has to be a nice clean _individual_ kernel allocation.
2146 * If you allocate a compound page, you need to have marked it as
2147 * such (__GFP_COMP), or manually just split the page up yourself
2148 * (see split_page()).
2149 *
2150 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2151 * took an arbitrary page protection parameter. This doesn't allow
2152 * that. Your vma protection will have to be set up correctly, which
2153 * means that if you want a shared writable mapping, you'd better
2154 * ask for a shared writable mapping!
2155 *
2156 * The page does not need to be reserved.
2157 *
2158 * Usually this function is called from f_op->mmap() handler
2159 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2160 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2161 * function from other places, for example from page-fault handler.
2162 */
2163 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2164 struct page *page)
2165 {
2166 if (addr < vma->vm_start || addr >= vma->vm_end)
2167 return -EFAULT;
2168 if (!page_count(page))
2169 return -EINVAL;
2170 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2171 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2172 BUG_ON(vma->vm_flags & VM_PFNMAP);
2173 vma->vm_flags |= VM_MIXEDMAP;
2174 }
2175 return insert_page(vma, addr, page, vma->vm_page_prot);
2176 }
2177 EXPORT_SYMBOL(vm_insert_page);
2178
2179 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2180 unsigned long pfn, pgprot_t prot)
2181 {
2182 struct mm_struct *mm = vma->vm_mm;
2183 int retval;
2184 pte_t *pte, entry;
2185 spinlock_t *ptl;
2186
2187 retval = -ENOMEM;
2188 pte = get_locked_pte(mm, addr, &ptl);
2189 if (!pte)
2190 goto out;
2191 retval = -EBUSY;
2192 if (!pte_none(*pte))
2193 goto out_unlock;
2194
2195 /* Ok, finally just insert the thing.. */
2196 entry = pte_mkspecial(pfn_pte(pfn, prot));
2197 set_pte_at(mm, addr, pte, entry);
2198 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2199
2200 retval = 0;
2201 out_unlock:
2202 pte_unmap_unlock(pte, ptl);
2203 out:
2204 return retval;
2205 }
2206
2207 /**
2208 * vm_insert_pfn - insert single pfn into user vma
2209 * @vma: user vma to map to
2210 * @addr: target user address of this page
2211 * @pfn: source kernel pfn
2212 *
2213 * Similar to vm_insert_page, this allows drivers to insert individual pages
2214 * they've allocated into a user vma. Same comments apply.
2215 *
2216 * This function should only be called from a vm_ops->fault handler, and
2217 * in that case the handler should return NULL.
2218 *
2219 * vma cannot be a COW mapping.
2220 *
2221 * As this is called only for pages that do not currently exist, we
2222 * do not need to flush old virtual caches or the TLB.
2223 */
2224 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2225 unsigned long pfn)
2226 {
2227 int ret;
2228 pgprot_t pgprot = vma->vm_page_prot;
2229 /*
2230 * Technically, architectures with pte_special can avoid all these
2231 * restrictions (same for remap_pfn_range). However we would like
2232 * consistency in testing and feature parity among all, so we should
2233 * try to keep these invariants in place for everybody.
2234 */
2235 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2236 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2237 (VM_PFNMAP|VM_MIXEDMAP));
2238 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2239 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2240
2241 if (addr < vma->vm_start || addr >= vma->vm_end)
2242 return -EFAULT;
2243 if (track_pfn_insert(vma, &pgprot, pfn))
2244 return -EINVAL;
2245
2246 ret = insert_pfn(vma, addr, pfn, pgprot);
2247
2248 return ret;
2249 }
2250 EXPORT_SYMBOL(vm_insert_pfn);
2251
2252 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2253 unsigned long pfn)
2254 {
2255 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2256
2257 if (addr < vma->vm_start || addr >= vma->vm_end)
2258 return -EFAULT;
2259
2260 /*
2261 * If we don't have pte special, then we have to use the pfn_valid()
2262 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2263 * refcount the page if pfn_valid is true (hence insert_page rather
2264 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2265 * without pte special, it would there be refcounted as a normal page.
2266 */
2267 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2268 struct page *page;
2269
2270 page = pfn_to_page(pfn);
2271 return insert_page(vma, addr, page, vma->vm_page_prot);
2272 }
2273 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2274 }
2275 EXPORT_SYMBOL(vm_insert_mixed);
2276
2277 /*
2278 * maps a range of physical memory into the requested pages. the old
2279 * mappings are removed. any references to nonexistent pages results
2280 * in null mappings (currently treated as "copy-on-access")
2281 */
2282 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2283 unsigned long addr, unsigned long end,
2284 unsigned long pfn, pgprot_t prot)
2285 {
2286 pte_t *pte;
2287 spinlock_t *ptl;
2288
2289 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2290 if (!pte)
2291 return -ENOMEM;
2292 arch_enter_lazy_mmu_mode();
2293 do {
2294 BUG_ON(!pte_none(*pte));
2295 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2296 pfn++;
2297 } while (pte++, addr += PAGE_SIZE, addr != end);
2298 arch_leave_lazy_mmu_mode();
2299 pte_unmap_unlock(pte - 1, ptl);
2300 return 0;
2301 }
2302
2303 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2304 unsigned long addr, unsigned long end,
2305 unsigned long pfn, pgprot_t prot)
2306 {
2307 pmd_t *pmd;
2308 unsigned long next;
2309
2310 pfn -= addr >> PAGE_SHIFT;
2311 pmd = pmd_alloc(mm, pud, addr);
2312 if (!pmd)
2313 return -ENOMEM;
2314 VM_BUG_ON(pmd_trans_huge(*pmd));
2315 do {
2316 next = pmd_addr_end(addr, end);
2317 if (remap_pte_range(mm, pmd, addr, next,
2318 pfn + (addr >> PAGE_SHIFT), prot))
2319 return -ENOMEM;
2320 } while (pmd++, addr = next, addr != end);
2321 return 0;
2322 }
2323
2324 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2325 unsigned long addr, unsigned long end,
2326 unsigned long pfn, pgprot_t prot)
2327 {
2328 pud_t *pud;
2329 unsigned long next;
2330
2331 pfn -= addr >> PAGE_SHIFT;
2332 pud = pud_alloc(mm, pgd, addr);
2333 if (!pud)
2334 return -ENOMEM;
2335 do {
2336 next = pud_addr_end(addr, end);
2337 if (remap_pmd_range(mm, pud, addr, next,
2338 pfn + (addr >> PAGE_SHIFT), prot))
2339 return -ENOMEM;
2340 } while (pud++, addr = next, addr != end);
2341 return 0;
2342 }
2343
2344 /**
2345 * remap_pfn_range - remap kernel memory to userspace
2346 * @vma: user vma to map to
2347 * @addr: target user address to start at
2348 * @pfn: physical address of kernel memory
2349 * @size: size of map area
2350 * @prot: page protection flags for this mapping
2351 *
2352 * Note: this is only safe if the mm semaphore is held when called.
2353 */
2354 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2355 unsigned long pfn, unsigned long size, pgprot_t prot)
2356 {
2357 pgd_t *pgd;
2358 unsigned long next;
2359 unsigned long end = addr + PAGE_ALIGN(size);
2360 struct mm_struct *mm = vma->vm_mm;
2361 int err;
2362
2363 /*
2364 * Physically remapped pages are special. Tell the
2365 * rest of the world about it:
2366 * VM_IO tells people not to look at these pages
2367 * (accesses can have side effects).
2368 * VM_PFNMAP tells the core MM that the base pages are just
2369 * raw PFN mappings, and do not have a "struct page" associated
2370 * with them.
2371 * VM_DONTEXPAND
2372 * Disable vma merging and expanding with mremap().
2373 * VM_DONTDUMP
2374 * Omit vma from core dump, even when VM_IO turned off.
2375 *
2376 * There's a horrible special case to handle copy-on-write
2377 * behaviour that some programs depend on. We mark the "original"
2378 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2379 * See vm_normal_page() for details.
2380 */
2381 if (is_cow_mapping(vma->vm_flags)) {
2382 if (addr != vma->vm_start || end != vma->vm_end)
2383 return -EINVAL;
2384 vma->vm_pgoff = pfn;
2385 }
2386
2387 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2388 if (err)
2389 return -EINVAL;
2390
2391 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2392
2393 BUG_ON(addr >= end);
2394 pfn -= addr >> PAGE_SHIFT;
2395 pgd = pgd_offset(mm, addr);
2396 flush_cache_range(vma, addr, end);
2397 do {
2398 next = pgd_addr_end(addr, end);
2399 err = remap_pud_range(mm, pgd, addr, next,
2400 pfn + (addr >> PAGE_SHIFT), prot);
2401 if (err)
2402 break;
2403 } while (pgd++, addr = next, addr != end);
2404
2405 if (err)
2406 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2407
2408 return err;
2409 }
2410 EXPORT_SYMBOL(remap_pfn_range);
2411
2412 /**
2413 * vm_iomap_memory - remap memory to userspace
2414 * @vma: user vma to map to
2415 * @start: start of area
2416 * @len: size of area
2417 *
2418 * This is a simplified io_remap_pfn_range() for common driver use. The
2419 * driver just needs to give us the physical memory range to be mapped,
2420 * we'll figure out the rest from the vma information.
2421 *
2422 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2423 * whatever write-combining details or similar.
2424 */
2425 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2426 {
2427 unsigned long vm_len, pfn, pages;
2428
2429 /* Check that the physical memory area passed in looks valid */
2430 if (start + len < start)
2431 return -EINVAL;
2432 /*
2433 * You *really* shouldn't map things that aren't page-aligned,
2434 * but we've historically allowed it because IO memory might
2435 * just have smaller alignment.
2436 */
2437 len += start & ~PAGE_MASK;
2438 pfn = start >> PAGE_SHIFT;
2439 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2440 if (pfn + pages < pfn)
2441 return -EINVAL;
2442
2443 /* We start the mapping 'vm_pgoff' pages into the area */
2444 if (vma->vm_pgoff > pages)
2445 return -EINVAL;
2446 pfn += vma->vm_pgoff;
2447 pages -= vma->vm_pgoff;
2448
2449 /* Can we fit all of the mapping? */
2450 vm_len = vma->vm_end - vma->vm_start;
2451 if (vm_len >> PAGE_SHIFT > pages)
2452 return -EINVAL;
2453
2454 /* Ok, let it rip */
2455 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2456 }
2457 EXPORT_SYMBOL(vm_iomap_memory);
2458
2459 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2460 unsigned long addr, unsigned long end,
2461 pte_fn_t fn, void *data)
2462 {
2463 pte_t *pte;
2464 int err;
2465 pgtable_t token;
2466 spinlock_t *uninitialized_var(ptl);
2467
2468 pte = (mm == &init_mm) ?
2469 pte_alloc_kernel(pmd, addr) :
2470 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2471 if (!pte)
2472 return -ENOMEM;
2473
2474 BUG_ON(pmd_huge(*pmd));
2475
2476 arch_enter_lazy_mmu_mode();
2477
2478 token = pmd_pgtable(*pmd);
2479
2480 do {
2481 err = fn(pte++, token, addr, data);
2482 if (err)
2483 break;
2484 } while (addr += PAGE_SIZE, addr != end);
2485
2486 arch_leave_lazy_mmu_mode();
2487
2488 if (mm != &init_mm)
2489 pte_unmap_unlock(pte-1, ptl);
2490 return err;
2491 }
2492
2493 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2494 unsigned long addr, unsigned long end,
2495 pte_fn_t fn, void *data)
2496 {
2497 pmd_t *pmd;
2498 unsigned long next;
2499 int err;
2500
2501 BUG_ON(pud_huge(*pud));
2502
2503 pmd = pmd_alloc(mm, pud, addr);
2504 if (!pmd)
2505 return -ENOMEM;
2506 do {
2507 next = pmd_addr_end(addr, end);
2508 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2509 if (err)
2510 break;
2511 } while (pmd++, addr = next, addr != end);
2512 return err;
2513 }
2514
2515 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2516 unsigned long addr, unsigned long end,
2517 pte_fn_t fn, void *data)
2518 {
2519 pud_t *pud;
2520 unsigned long next;
2521 int err;
2522
2523 pud = pud_alloc(mm, pgd, addr);
2524 if (!pud)
2525 return -ENOMEM;
2526 do {
2527 next = pud_addr_end(addr, end);
2528 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2529 if (err)
2530 break;
2531 } while (pud++, addr = next, addr != end);
2532 return err;
2533 }
2534
2535 /*
2536 * Scan a region of virtual memory, filling in page tables as necessary
2537 * and calling a provided function on each leaf page table.
2538 */
2539 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2540 unsigned long size, pte_fn_t fn, void *data)
2541 {
2542 pgd_t *pgd;
2543 unsigned long next;
2544 unsigned long end = addr + size;
2545 int err;
2546
2547 BUG_ON(addr >= end);
2548 pgd = pgd_offset(mm, addr);
2549 do {
2550 next = pgd_addr_end(addr, end);
2551 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2552 if (err)
2553 break;
2554 } while (pgd++, addr = next, addr != end);
2555
2556 return err;
2557 }
2558 EXPORT_SYMBOL_GPL(apply_to_page_range);
2559
2560 /*
2561 * handle_pte_fault chooses page fault handler according to an entry
2562 * which was read non-atomically. Before making any commitment, on
2563 * those architectures or configurations (e.g. i386 with PAE) which
2564 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2565 * must check under lock before unmapping the pte and proceeding
2566 * (but do_wp_page is only called after already making such a check;
2567 * and do_anonymous_page can safely check later on).
2568 */
2569 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2570 pte_t *page_table, pte_t orig_pte)
2571 {
2572 int same = 1;
2573 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2574 if (sizeof(pte_t) > sizeof(unsigned long)) {
2575 spinlock_t *ptl = pte_lockptr(mm, pmd);
2576 spin_lock(ptl);
2577 same = pte_same(*page_table, orig_pte);
2578 spin_unlock(ptl);
2579 }
2580 #endif
2581 pte_unmap(page_table);
2582 return same;
2583 }
2584
2585 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2586 {
2587 /*
2588 * If the source page was a PFN mapping, we don't have
2589 * a "struct page" for it. We do a best-effort copy by
2590 * just copying from the original user address. If that
2591 * fails, we just zero-fill it. Live with it.
2592 */
2593 if (unlikely(!src)) {
2594 void *kaddr = kmap_atomic(dst);
2595 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2596
2597 /*
2598 * This really shouldn't fail, because the page is there
2599 * in the page tables. But it might just be unreadable,
2600 * in which case we just give up and fill the result with
2601 * zeroes.
2602 */
2603 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2604 clear_page(kaddr);
2605 kunmap_atomic(kaddr);
2606 flush_dcache_page(dst);
2607 } else
2608 copy_user_highpage(dst, src, va, vma);
2609 }
2610
2611 /*
2612 * This routine handles present pages, when users try to write
2613 * to a shared page. It is done by copying the page to a new address
2614 * and decrementing the shared-page counter for the old page.
2615 *
2616 * Note that this routine assumes that the protection checks have been
2617 * done by the caller (the low-level page fault routine in most cases).
2618 * Thus we can safely just mark it writable once we've done any necessary
2619 * COW.
2620 *
2621 * We also mark the page dirty at this point even though the page will
2622 * change only once the write actually happens. This avoids a few races,
2623 * and potentially makes it more efficient.
2624 *
2625 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2626 * but allow concurrent faults), with pte both mapped and locked.
2627 * We return with mmap_sem still held, but pte unmapped and unlocked.
2628 */
2629 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2630 unsigned long address, pte_t *page_table, pmd_t *pmd,
2631 spinlock_t *ptl, pte_t orig_pte)
2632 __releases(ptl)
2633 {
2634 struct page *old_page, *new_page = NULL;
2635 pte_t entry;
2636 int ret = 0;
2637 int page_mkwrite = 0;
2638 struct page *dirty_page = NULL;
2639 unsigned long mmun_start = 0; /* For mmu_notifiers */
2640 unsigned long mmun_end = 0; /* For mmu_notifiers */
2641
2642 old_page = vm_normal_page(vma, address, orig_pte);
2643 if (!old_page) {
2644 /*
2645 * VM_MIXEDMAP !pfn_valid() case
2646 *
2647 * We should not cow pages in a shared writeable mapping.
2648 * Just mark the pages writable as we can't do any dirty
2649 * accounting on raw pfn maps.
2650 */
2651 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2652 (VM_WRITE|VM_SHARED))
2653 goto reuse;
2654 goto gotten;
2655 }
2656
2657 /*
2658 * Take out anonymous pages first, anonymous shared vmas are
2659 * not dirty accountable.
2660 */
2661 if (PageAnon(old_page) && !PageKsm(old_page)) {
2662 if (!trylock_page(old_page)) {
2663 page_cache_get(old_page);
2664 pte_unmap_unlock(page_table, ptl);
2665 lock_page(old_page);
2666 page_table = pte_offset_map_lock(mm, pmd, address,
2667 &ptl);
2668 if (!pte_same(*page_table, orig_pte)) {
2669 unlock_page(old_page);
2670 goto unlock;
2671 }
2672 page_cache_release(old_page);
2673 }
2674 if (reuse_swap_page(old_page)) {
2675 /*
2676 * The page is all ours. Move it to our anon_vma so
2677 * the rmap code will not search our parent or siblings.
2678 * Protected against the rmap code by the page lock.
2679 */
2680 page_move_anon_rmap(old_page, vma, address);
2681 unlock_page(old_page);
2682 goto reuse;
2683 }
2684 unlock_page(old_page);
2685 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2686 (VM_WRITE|VM_SHARED))) {
2687 /*
2688 * Only catch write-faults on shared writable pages,
2689 * read-only shared pages can get COWed by
2690 * get_user_pages(.write=1, .force=1).
2691 */
2692 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2693 struct vm_fault vmf;
2694 int tmp;
2695
2696 vmf.virtual_address = (void __user *)(address &
2697 PAGE_MASK);
2698 vmf.pgoff = old_page->index;
2699 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2700 vmf.page = old_page;
2701
2702 /*
2703 * Notify the address space that the page is about to
2704 * become writable so that it can prohibit this or wait
2705 * for the page to get into an appropriate state.
2706 *
2707 * We do this without the lock held, so that it can
2708 * sleep if it needs to.
2709 */
2710 page_cache_get(old_page);
2711 pte_unmap_unlock(page_table, ptl);
2712
2713 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2714 if (unlikely(tmp &
2715 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2716 ret = tmp;
2717 goto unwritable_page;
2718 }
2719 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2720 lock_page(old_page);
2721 if (!old_page->mapping) {
2722 ret = 0; /* retry the fault */
2723 unlock_page(old_page);
2724 goto unwritable_page;
2725 }
2726 } else
2727 VM_BUG_ON(!PageLocked(old_page));
2728
2729 /*
2730 * Since we dropped the lock we need to revalidate
2731 * the PTE as someone else may have changed it. If
2732 * they did, we just return, as we can count on the
2733 * MMU to tell us if they didn't also make it writable.
2734 */
2735 page_table = pte_offset_map_lock(mm, pmd, address,
2736 &ptl);
2737 if (!pte_same(*page_table, orig_pte)) {
2738 unlock_page(old_page);
2739 goto unlock;
2740 }
2741
2742 page_mkwrite = 1;
2743 }
2744 dirty_page = old_page;
2745 get_page(dirty_page);
2746
2747 reuse:
2748 flush_cache_page(vma, address, pte_pfn(orig_pte));
2749 entry = pte_mkyoung(orig_pte);
2750 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2751 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2752 update_mmu_cache(vma, address, page_table);
2753 pte_unmap_unlock(page_table, ptl);
2754 ret |= VM_FAULT_WRITE;
2755
2756 if (!dirty_page)
2757 return ret;
2758
2759 /*
2760 * Yes, Virginia, this is actually required to prevent a race
2761 * with clear_page_dirty_for_io() from clearing the page dirty
2762 * bit after it clear all dirty ptes, but before a racing
2763 * do_wp_page installs a dirty pte.
2764 *
2765 * __do_fault is protected similarly.
2766 */
2767 if (!page_mkwrite) {
2768 wait_on_page_locked(dirty_page);
2769 set_page_dirty_balance(dirty_page, page_mkwrite);
2770 /* file_update_time outside page_lock */
2771 if (vma->vm_file)
2772 file_update_time(vma->vm_file);
2773 }
2774 put_page(dirty_page);
2775 if (page_mkwrite) {
2776 struct address_space *mapping = dirty_page->mapping;
2777
2778 set_page_dirty(dirty_page);
2779 unlock_page(dirty_page);
2780 page_cache_release(dirty_page);
2781 if (mapping) {
2782 /*
2783 * Some device drivers do not set page.mapping
2784 * but still dirty their pages
2785 */
2786 balance_dirty_pages_ratelimited(mapping);
2787 }
2788 }
2789
2790 return ret;
2791 }
2792
2793 /*
2794 * Ok, we need to copy. Oh, well..
2795 */
2796 page_cache_get(old_page);
2797 gotten:
2798 pte_unmap_unlock(page_table, ptl);
2799
2800 if (unlikely(anon_vma_prepare(vma)))
2801 goto oom;
2802
2803 if (is_zero_pfn(pte_pfn(orig_pte))) {
2804 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2805 if (!new_page)
2806 goto oom;
2807 } else {
2808 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2809 if (!new_page)
2810 goto oom;
2811 cow_user_page(new_page, old_page, address, vma);
2812 }
2813 __SetPageUptodate(new_page);
2814
2815 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2816 goto oom_free_new;
2817
2818 mmun_start = address & PAGE_MASK;
2819 mmun_end = mmun_start + PAGE_SIZE;
2820 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2821
2822 /*
2823 * Re-check the pte - we dropped the lock
2824 */
2825 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2826 if (likely(pte_same(*page_table, orig_pte))) {
2827 if (old_page) {
2828 if (!PageAnon(old_page)) {
2829 dec_mm_counter_fast(mm, MM_FILEPAGES);
2830 inc_mm_counter_fast(mm, MM_ANONPAGES);
2831 }
2832 } else
2833 inc_mm_counter_fast(mm, MM_ANONPAGES);
2834 flush_cache_page(vma, address, pte_pfn(orig_pte));
2835 entry = mk_pte(new_page, vma->vm_page_prot);
2836 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2837 /*
2838 * Clear the pte entry and flush it first, before updating the
2839 * pte with the new entry. This will avoid a race condition
2840 * seen in the presence of one thread doing SMC and another
2841 * thread doing COW.
2842 */
2843 ptep_clear_flush(vma, address, page_table);
2844 page_add_new_anon_rmap(new_page, vma, address);
2845 /*
2846 * We call the notify macro here because, when using secondary
2847 * mmu page tables (such as kvm shadow page tables), we want the
2848 * new page to be mapped directly into the secondary page table.
2849 */
2850 set_pte_at_notify(mm, address, page_table, entry);
2851 update_mmu_cache(vma, address, page_table);
2852 if (old_page) {
2853 /*
2854 * Only after switching the pte to the new page may
2855 * we remove the mapcount here. Otherwise another
2856 * process may come and find the rmap count decremented
2857 * before the pte is switched to the new page, and
2858 * "reuse" the old page writing into it while our pte
2859 * here still points into it and can be read by other
2860 * threads.
2861 *
2862 * The critical issue is to order this
2863 * page_remove_rmap with the ptp_clear_flush above.
2864 * Those stores are ordered by (if nothing else,)
2865 * the barrier present in the atomic_add_negative
2866 * in page_remove_rmap.
2867 *
2868 * Then the TLB flush in ptep_clear_flush ensures that
2869 * no process can access the old page before the
2870 * decremented mapcount is visible. And the old page
2871 * cannot be reused until after the decremented
2872 * mapcount is visible. So transitively, TLBs to
2873 * old page will be flushed before it can be reused.
2874 */
2875 page_remove_rmap(old_page);
2876 }
2877
2878 /* Free the old page.. */
2879 new_page = old_page;
2880 ret |= VM_FAULT_WRITE;
2881 } else
2882 mem_cgroup_uncharge_page(new_page);
2883
2884 if (new_page)
2885 page_cache_release(new_page);
2886 unlock:
2887 pte_unmap_unlock(page_table, ptl);
2888 if (mmun_end > mmun_start)
2889 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2890 if (old_page) {
2891 /*
2892 * Don't let another task, with possibly unlocked vma,
2893 * keep the mlocked page.
2894 */
2895 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2896 lock_page(old_page); /* LRU manipulation */
2897 munlock_vma_page(old_page);
2898 unlock_page(old_page);
2899 }
2900 page_cache_release(old_page);
2901 }
2902 return ret;
2903 oom_free_new:
2904 page_cache_release(new_page);
2905 oom:
2906 if (old_page)
2907 page_cache_release(old_page);
2908 return VM_FAULT_OOM;
2909
2910 unwritable_page:
2911 page_cache_release(old_page);
2912 return ret;
2913 }
2914
2915 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2916 unsigned long start_addr, unsigned long end_addr,
2917 struct zap_details *details)
2918 {
2919 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2920 }
2921
2922 static inline void unmap_mapping_range_tree(struct rb_root *root,
2923 struct zap_details *details)
2924 {
2925 struct vm_area_struct *vma;
2926 pgoff_t vba, vea, zba, zea;
2927
2928 vma_interval_tree_foreach(vma, root,
2929 details->first_index, details->last_index) {
2930
2931 vba = vma->vm_pgoff;
2932 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2933 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2934 zba = details->first_index;
2935 if (zba < vba)
2936 zba = vba;
2937 zea = details->last_index;
2938 if (zea > vea)
2939 zea = vea;
2940
2941 unmap_mapping_range_vma(vma,
2942 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2943 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2944 details);
2945 }
2946 }
2947
2948 static inline void unmap_mapping_range_list(struct list_head *head,
2949 struct zap_details *details)
2950 {
2951 struct vm_area_struct *vma;
2952
2953 /*
2954 * In nonlinear VMAs there is no correspondence between virtual address
2955 * offset and file offset. So we must perform an exhaustive search
2956 * across *all* the pages in each nonlinear VMA, not just the pages
2957 * whose virtual address lies outside the file truncation point.
2958 */
2959 list_for_each_entry(vma, head, shared.nonlinear) {
2960 details->nonlinear_vma = vma;
2961 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2962 }
2963 }
2964
2965 /**
2966 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2967 * @mapping: the address space containing mmaps to be unmapped.
2968 * @holebegin: byte in first page to unmap, relative to the start of
2969 * the underlying file. This will be rounded down to a PAGE_SIZE
2970 * boundary. Note that this is different from truncate_pagecache(), which
2971 * must keep the partial page. In contrast, we must get rid of
2972 * partial pages.
2973 * @holelen: size of prospective hole in bytes. This will be rounded
2974 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2975 * end of the file.
2976 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2977 * but 0 when invalidating pagecache, don't throw away private data.
2978 */
2979 void unmap_mapping_range(struct address_space *mapping,
2980 loff_t const holebegin, loff_t const holelen, int even_cows)
2981 {
2982 struct zap_details details;
2983 pgoff_t hba = holebegin >> PAGE_SHIFT;
2984 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2985
2986 /* Check for overflow. */
2987 if (sizeof(holelen) > sizeof(hlen)) {
2988 long long holeend =
2989 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2990 if (holeend & ~(long long)ULONG_MAX)
2991 hlen = ULONG_MAX - hba + 1;
2992 }
2993
2994 details.check_mapping = even_cows? NULL: mapping;
2995 details.nonlinear_vma = NULL;
2996 details.first_index = hba;
2997 details.last_index = hba + hlen - 1;
2998 if (details.last_index < details.first_index)
2999 details.last_index = ULONG_MAX;
3000
3001
3002 mutex_lock(&mapping->i_mmap_mutex);
3003 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
3004 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3005 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
3006 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3007 mutex_unlock(&mapping->i_mmap_mutex);
3008 }
3009 EXPORT_SYMBOL(unmap_mapping_range);
3010
3011 /*
3012 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3013 * but allow concurrent faults), and pte mapped but not yet locked.
3014 * We return with mmap_sem still held, but pte unmapped and unlocked.
3015 */
3016 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3017 unsigned long address, pte_t *page_table, pmd_t *pmd,
3018 unsigned int flags, pte_t orig_pte)
3019 {
3020 spinlock_t *ptl;
3021 struct page *page, *swapcache;
3022 swp_entry_t entry;
3023 pte_t pte;
3024 int locked;
3025 struct mem_cgroup *ptr;
3026 int exclusive = 0;
3027 int ret = 0;
3028
3029 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3030 goto out;
3031
3032 entry = pte_to_swp_entry(orig_pte);
3033 if (unlikely(non_swap_entry(entry))) {
3034 if (is_migration_entry(entry)) {
3035 migration_entry_wait(mm, pmd, address);
3036 } else if (is_hwpoison_entry(entry)) {
3037 ret = VM_FAULT_HWPOISON;
3038 } else {
3039 print_bad_pte(vma, address, orig_pte, NULL);
3040 ret = VM_FAULT_SIGBUS;
3041 }
3042 goto out;
3043 }
3044 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3045 page = lookup_swap_cache(entry);
3046 if (!page) {
3047 page = swapin_readahead(entry,
3048 GFP_HIGHUSER_MOVABLE, vma, address);
3049 if (!page) {
3050 /*
3051 * Back out if somebody else faulted in this pte
3052 * while we released the pte lock.
3053 */
3054 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3055 if (likely(pte_same(*page_table, orig_pte)))
3056 ret = VM_FAULT_OOM;
3057 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3058 goto unlock;
3059 }
3060
3061 /* Had to read the page from swap area: Major fault */
3062 ret = VM_FAULT_MAJOR;
3063 count_vm_event(PGMAJFAULT);
3064 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3065 } else if (PageHWPoison(page)) {
3066 /*
3067 * hwpoisoned dirty swapcache pages are kept for killing
3068 * owner processes (which may be unknown at hwpoison time)
3069 */
3070 ret = VM_FAULT_HWPOISON;
3071 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3072 swapcache = page;
3073 goto out_release;
3074 }
3075
3076 swapcache = page;
3077 locked = lock_page_or_retry(page, mm, flags);
3078
3079 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3080 if (!locked) {
3081 ret |= VM_FAULT_RETRY;
3082 goto out_release;
3083 }
3084
3085 /*
3086 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3087 * release the swapcache from under us. The page pin, and pte_same
3088 * test below, are not enough to exclude that. Even if it is still
3089 * swapcache, we need to check that the page's swap has not changed.
3090 */
3091 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3092 goto out_page;
3093
3094 page = ksm_might_need_to_copy(page, vma, address);
3095 if (unlikely(!page)) {
3096 ret = VM_FAULT_OOM;
3097 page = swapcache;
3098 goto out_page;
3099 }
3100
3101 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3102 ret = VM_FAULT_OOM;
3103 goto out_page;
3104 }
3105
3106 /*
3107 * Back out if somebody else already faulted in this pte.
3108 */
3109 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3110 if (unlikely(!pte_same(*page_table, orig_pte)))
3111 goto out_nomap;
3112
3113 if (unlikely(!PageUptodate(page))) {
3114 ret = VM_FAULT_SIGBUS;
3115 goto out_nomap;
3116 }
3117
3118 /*
3119 * The page isn't present yet, go ahead with the fault.
3120 *
3121 * Be careful about the sequence of operations here.
3122 * To get its accounting right, reuse_swap_page() must be called
3123 * while the page is counted on swap but not yet in mapcount i.e.
3124 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3125 * must be called after the swap_free(), or it will never succeed.
3126 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3127 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3128 * in page->private. In this case, a record in swap_cgroup is silently
3129 * discarded at swap_free().
3130 */
3131
3132 inc_mm_counter_fast(mm, MM_ANONPAGES);
3133 dec_mm_counter_fast(mm, MM_SWAPENTS);
3134 pte = mk_pte(page, vma->vm_page_prot);
3135 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3136 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3137 flags &= ~FAULT_FLAG_WRITE;
3138 ret |= VM_FAULT_WRITE;
3139 exclusive = 1;
3140 }
3141 flush_icache_page(vma, page);
3142 set_pte_at(mm, address, page_table, pte);
3143 if (page == swapcache)
3144 do_page_add_anon_rmap(page, vma, address, exclusive);
3145 else /* ksm created a completely new copy */
3146 page_add_new_anon_rmap(page, vma, address);
3147 /* It's better to call commit-charge after rmap is established */
3148 mem_cgroup_commit_charge_swapin(page, ptr);
3149
3150 swap_free(entry);
3151 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3152 try_to_free_swap(page);
3153 unlock_page(page);
3154 if (page != swapcache) {
3155 /*
3156 * Hold the lock to avoid the swap entry to be reused
3157 * until we take the PT lock for the pte_same() check
3158 * (to avoid false positives from pte_same). For
3159 * further safety release the lock after the swap_free
3160 * so that the swap count won't change under a
3161 * parallel locked swapcache.
3162 */
3163 unlock_page(swapcache);
3164 page_cache_release(swapcache);
3165 }
3166
3167 if (flags & FAULT_FLAG_WRITE) {
3168 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3169 if (ret & VM_FAULT_ERROR)
3170 ret &= VM_FAULT_ERROR;
3171 goto out;
3172 }
3173
3174 /* No need to invalidate - it was non-present before */
3175 update_mmu_cache(vma, address, page_table);
3176 unlock:
3177 pte_unmap_unlock(page_table, ptl);
3178 out:
3179 return ret;
3180 out_nomap:
3181 mem_cgroup_cancel_charge_swapin(ptr);
3182 pte_unmap_unlock(page_table, ptl);
3183 out_page:
3184 unlock_page(page);
3185 out_release:
3186 page_cache_release(page);
3187 if (page != swapcache) {
3188 unlock_page(swapcache);
3189 page_cache_release(swapcache);
3190 }
3191 return ret;
3192 }
3193
3194 /*
3195 * This is like a special single-page "expand_{down|up}wards()",
3196 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3197 * doesn't hit another vma.
3198 */
3199 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3200 {
3201 address &= PAGE_MASK;
3202 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3203 struct vm_area_struct *prev = vma->vm_prev;
3204
3205 /*
3206 * Is there a mapping abutting this one below?
3207 *
3208 * That's only ok if it's the same stack mapping
3209 * that has gotten split..
3210 */
3211 if (prev && prev->vm_end == address)
3212 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3213
3214 return expand_downwards(vma, address - PAGE_SIZE);
3215 }
3216 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3217 struct vm_area_struct *next = vma->vm_next;
3218
3219 /* As VM_GROWSDOWN but s/below/above/ */
3220 if (next && next->vm_start == address + PAGE_SIZE)
3221 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3222
3223 return expand_upwards(vma, address + PAGE_SIZE);
3224 }
3225 return 0;
3226 }
3227
3228 /*
3229 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3230 * but allow concurrent faults), and pte mapped but not yet locked.
3231 * We return with mmap_sem still held, but pte unmapped and unlocked.
3232 */
3233 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3234 unsigned long address, pte_t *page_table, pmd_t *pmd,
3235 unsigned int flags)
3236 {
3237 struct page *page;
3238 spinlock_t *ptl;
3239 pte_t entry;
3240
3241 pte_unmap(page_table);
3242
3243 /* File mapping without ->vm_ops ? */
3244 if (vma->vm_flags & VM_SHARED)
3245 return VM_FAULT_SIGBUS;
3246
3247 /* Check if we need to add a guard page to the stack */
3248 if (check_stack_guard_page(vma, address) < 0)
3249 return VM_FAULT_SIGSEGV;
3250
3251 /* Use the zero-page for reads */
3252 if (!(flags & FAULT_FLAG_WRITE)) {
3253 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3254 vma->vm_page_prot));
3255 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3256 if (!pte_none(*page_table))
3257 goto unlock;
3258 goto setpte;
3259 }
3260
3261 /* Allocate our own private page. */
3262 if (unlikely(anon_vma_prepare(vma)))
3263 goto oom;
3264 page = alloc_zeroed_user_highpage_movable(vma, address);
3265 if (!page)
3266 goto oom;
3267 /*
3268 * The memory barrier inside __SetPageUptodate makes sure that
3269 * preceeding stores to the page contents become visible before
3270 * the set_pte_at() write.
3271 */
3272 __SetPageUptodate(page);
3273
3274 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3275 goto oom_free_page;
3276
3277 entry = mk_pte(page, vma->vm_page_prot);
3278 if (vma->vm_flags & VM_WRITE)
3279 entry = pte_mkwrite(pte_mkdirty(entry));
3280
3281 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3282 if (!pte_none(*page_table))
3283 goto release;
3284
3285 inc_mm_counter_fast(mm, MM_ANONPAGES);
3286 page_add_new_anon_rmap(page, vma, address);
3287 setpte:
3288 set_pte_at(mm, address, page_table, entry);
3289
3290 /* No need to invalidate - it was non-present before */
3291 update_mmu_cache(vma, address, page_table);
3292 unlock:
3293 pte_unmap_unlock(page_table, ptl);
3294 return 0;
3295 release:
3296 mem_cgroup_uncharge_page(page);
3297 page_cache_release(page);
3298 goto unlock;
3299 oom_free_page:
3300 page_cache_release(page);
3301 oom:
3302 return VM_FAULT_OOM;
3303 }
3304
3305 /*
3306 * __do_fault() tries to create a new page mapping. It aggressively
3307 * tries to share with existing pages, but makes a separate copy if
3308 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3309 * the next page fault.
3310 *
3311 * As this is called only for pages that do not currently exist, we
3312 * do not need to flush old virtual caches or the TLB.
3313 *
3314 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3315 * but allow concurrent faults), and pte neither mapped nor locked.
3316 * We return with mmap_sem still held, but pte unmapped and unlocked.
3317 */
3318 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3319 unsigned long address, pmd_t *pmd,
3320 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3321 {
3322 pte_t *page_table;
3323 spinlock_t *ptl;
3324 struct page *page;
3325 struct page *cow_page;
3326 pte_t entry;
3327 int anon = 0;
3328 struct page *dirty_page = NULL;
3329 struct vm_fault vmf;
3330 int ret;
3331 int page_mkwrite = 0;
3332
3333 /*
3334 * If we do COW later, allocate page befor taking lock_page()
3335 * on the file cache page. This will reduce lock holding time.
3336 */
3337 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3338
3339 if (unlikely(anon_vma_prepare(vma)))
3340 return VM_FAULT_OOM;
3341
3342 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3343 if (!cow_page)
3344 return VM_FAULT_OOM;
3345
3346 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3347 page_cache_release(cow_page);
3348 return VM_FAULT_OOM;
3349 }
3350 } else
3351 cow_page = NULL;
3352
3353 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3354 vmf.pgoff = pgoff;
3355 vmf.flags = flags;
3356 vmf.page = NULL;
3357
3358 ret = vma->vm_ops->fault(vma, &vmf);
3359 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3360 VM_FAULT_RETRY)))
3361 goto uncharge_out;
3362
3363 if (unlikely(PageHWPoison(vmf.page))) {
3364 if (ret & VM_FAULT_LOCKED)
3365 unlock_page(vmf.page);
3366 ret = VM_FAULT_HWPOISON;
3367 goto uncharge_out;
3368 }
3369
3370 /*
3371 * For consistency in subsequent calls, make the faulted page always
3372 * locked.
3373 */
3374 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3375 lock_page(vmf.page);
3376 else
3377 VM_BUG_ON(!PageLocked(vmf.page));
3378
3379 /*
3380 * Should we do an early C-O-W break?
3381 */
3382 page = vmf.page;
3383 if (flags & FAULT_FLAG_WRITE) {
3384 if (!(vma->vm_flags & VM_SHARED)) {
3385 page = cow_page;
3386 anon = 1;
3387 copy_user_highpage(page, vmf.page, address, vma);
3388 __SetPageUptodate(page);
3389 } else {
3390 /*
3391 * If the page will be shareable, see if the backing
3392 * address space wants to know that the page is about
3393 * to become writable
3394 */
3395 if (vma->vm_ops->page_mkwrite) {
3396 int tmp;
3397
3398 unlock_page(page);
3399 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3400 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3401 if (unlikely(tmp &
3402 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3403 ret = tmp;
3404 goto unwritable_page;
3405 }
3406 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3407 lock_page(page);
3408 if (!page->mapping) {
3409 ret = 0; /* retry the fault */
3410 unlock_page(page);
3411 goto unwritable_page;
3412 }
3413 } else
3414 VM_BUG_ON(!PageLocked(page));
3415 page_mkwrite = 1;
3416 }
3417 }
3418
3419 }
3420
3421 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3422
3423 /*
3424 * This silly early PAGE_DIRTY setting removes a race
3425 * due to the bad i386 page protection. But it's valid
3426 * for other architectures too.
3427 *
3428 * Note that if FAULT_FLAG_WRITE is set, we either now have
3429 * an exclusive copy of the page, or this is a shared mapping,
3430 * so we can make it writable and dirty to avoid having to
3431 * handle that later.
3432 */
3433 /* Only go through if we didn't race with anybody else... */
3434 if (likely(pte_same(*page_table, orig_pte))) {
3435 flush_icache_page(vma, page);
3436 entry = mk_pte(page, vma->vm_page_prot);
3437 if (flags & FAULT_FLAG_WRITE)
3438 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3439 if (anon) {
3440 inc_mm_counter_fast(mm, MM_ANONPAGES);
3441 page_add_new_anon_rmap(page, vma, address);
3442 } else {
3443 inc_mm_counter_fast(mm, MM_FILEPAGES);
3444 page_add_file_rmap(page);
3445 if (flags & FAULT_FLAG_WRITE) {
3446 dirty_page = page;
3447 get_page(dirty_page);
3448 }
3449 }
3450 set_pte_at(mm, address, page_table, entry);
3451
3452 /* no need to invalidate: a not-present page won't be cached */
3453 update_mmu_cache(vma, address, page_table);
3454 } else {
3455 if (cow_page)
3456 mem_cgroup_uncharge_page(cow_page);
3457 if (anon)
3458 page_cache_release(page);
3459 else
3460 anon = 1; /* no anon but release faulted_page */
3461 }
3462
3463 pte_unmap_unlock(page_table, ptl);
3464
3465 if (dirty_page) {
3466 struct address_space *mapping = page->mapping;
3467 int dirtied = 0;
3468
3469 if (set_page_dirty(dirty_page))
3470 dirtied = 1;
3471 unlock_page(dirty_page);
3472 put_page(dirty_page);
3473 if ((dirtied || page_mkwrite) && mapping) {
3474 /*
3475 * Some device drivers do not set page.mapping but still
3476 * dirty their pages
3477 */
3478 balance_dirty_pages_ratelimited(mapping);
3479 }
3480
3481 /* file_update_time outside page_lock */
3482 if (vma->vm_file && !page_mkwrite)
3483 file_update_time(vma->vm_file);
3484 } else {
3485 unlock_page(vmf.page);
3486 if (anon)
3487 page_cache_release(vmf.page);
3488 }
3489
3490 return ret;
3491
3492 unwritable_page:
3493 page_cache_release(page);
3494 return ret;
3495 uncharge_out:
3496 /* fs's fault handler get error */
3497 if (cow_page) {
3498 mem_cgroup_uncharge_page(cow_page);
3499 page_cache_release(cow_page);
3500 }
3501 return ret;
3502 }
3503
3504 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3505 unsigned long address, pte_t *page_table, pmd_t *pmd,
3506 unsigned int flags, pte_t orig_pte)
3507 {
3508 pgoff_t pgoff = (((address & PAGE_MASK)
3509 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3510
3511 pte_unmap(page_table);
3512 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3513 if (!vma->vm_ops->fault)
3514 return VM_FAULT_SIGBUS;
3515 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3516 }
3517
3518 /*
3519 * Fault of a previously existing named mapping. Repopulate the pte
3520 * from the encoded file_pte if possible. This enables swappable
3521 * nonlinear vmas.
3522 *
3523 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3524 * but allow concurrent faults), and pte mapped but not yet locked.
3525 * We return with mmap_sem still held, but pte unmapped and unlocked.
3526 */
3527 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3528 unsigned long address, pte_t *page_table, pmd_t *pmd,
3529 unsigned int flags, pte_t orig_pte)
3530 {
3531 pgoff_t pgoff;
3532
3533 flags |= FAULT_FLAG_NONLINEAR;
3534
3535 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3536 return 0;
3537
3538 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3539 /*
3540 * Page table corrupted: show pte and kill process.
3541 */
3542 print_bad_pte(vma, address, orig_pte, NULL);
3543 return VM_FAULT_SIGBUS;
3544 }
3545
3546 pgoff = pte_to_pgoff(orig_pte);
3547 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3548 }
3549
3550 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3551 unsigned long addr, int page_nid)
3552 {
3553 get_page(page);
3554
3555 count_vm_numa_event(NUMA_HINT_FAULTS);
3556 if (page_nid == numa_node_id())
3557 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3558
3559 return mpol_misplaced(page, vma, addr);
3560 }
3561
3562 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3563 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3564 {
3565 struct page *page = NULL;
3566 spinlock_t *ptl;
3567 int page_nid = -1;
3568 int target_nid;
3569 bool migrated = false;
3570
3571 /*
3572 * The "pte" at this point cannot be used safely without
3573 * validation through pte_unmap_same(). It's of NUMA type but
3574 * the pfn may be screwed if the read is non atomic.
3575 *
3576 * ptep_modify_prot_start is not called as this is clearing
3577 * the _PAGE_NUMA bit and it is not really expected that there
3578 * would be concurrent hardware modifications to the PTE.
3579 */
3580 ptl = pte_lockptr(mm, pmd);
3581 spin_lock(ptl);
3582 if (unlikely(!pte_same(*ptep, pte))) {
3583 pte_unmap_unlock(ptep, ptl);
3584 goto out;
3585 }
3586
3587 pte = pte_mknonnuma(pte);
3588 set_pte_at(mm, addr, ptep, pte);
3589 update_mmu_cache(vma, addr, ptep);
3590
3591 page = vm_normal_page(vma, addr, pte);
3592 if (!page) {
3593 pte_unmap_unlock(ptep, ptl);
3594 return 0;
3595 }
3596
3597 page_nid = page_to_nid(page);
3598 target_nid = numa_migrate_prep(page, vma, addr, page_nid);
3599 pte_unmap_unlock(ptep, ptl);
3600 if (target_nid == -1) {
3601 put_page(page);
3602 goto out;
3603 }
3604
3605 /* Migrate to the requested node */
3606 migrated = migrate_misplaced_page(page, target_nid);
3607 if (migrated)
3608 page_nid = target_nid;
3609
3610 out:
3611 if (page_nid != -1)
3612 task_numa_fault(page_nid, 1, migrated);
3613 return 0;
3614 }
3615
3616 /* NUMA hinting page fault entry point for regular pmds */
3617 #ifdef CONFIG_NUMA_BALANCING
3618 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3619 unsigned long addr, pmd_t *pmdp)
3620 {
3621 pmd_t pmd;
3622 pte_t *pte, *orig_pte;
3623 unsigned long _addr = addr & PMD_MASK;
3624 unsigned long offset;
3625 spinlock_t *ptl;
3626 bool numa = false;
3627
3628 spin_lock(&mm->page_table_lock);
3629 pmd = *pmdp;
3630 if (pmd_numa(pmd)) {
3631 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3632 numa = true;
3633 }
3634 spin_unlock(&mm->page_table_lock);
3635
3636 if (!numa)
3637 return 0;
3638
3639 /* we're in a page fault so some vma must be in the range */
3640 BUG_ON(!vma);
3641 BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3642 offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3643 VM_BUG_ON(offset >= PMD_SIZE);
3644 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3645 pte += offset >> PAGE_SHIFT;
3646 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3647 pte_t pteval = *pte;
3648 struct page *page;
3649 int page_nid = -1;
3650 int target_nid;
3651 bool migrated = false;
3652
3653 if (!pte_present(pteval))
3654 continue;
3655 if (!pte_numa(pteval))
3656 continue;
3657 if (addr >= vma->vm_end) {
3658 vma = find_vma(mm, addr);
3659 /* there's a pte present so there must be a vma */
3660 BUG_ON(!vma);
3661 BUG_ON(addr < vma->vm_start);
3662 }
3663 if (pte_numa(pteval)) {
3664 pteval = pte_mknonnuma(pteval);
3665 set_pte_at(mm, addr, pte, pteval);
3666 }
3667 page = vm_normal_page(vma, addr, pteval);
3668 if (unlikely(!page))
3669 continue;
3670 /* only check non-shared pages */
3671 if (unlikely(page_mapcount(page) != 1))
3672 continue;
3673
3674 page_nid = page_to_nid(page);
3675 target_nid = numa_migrate_prep(page, vma, addr, page_nid);
3676 pte_unmap_unlock(pte, ptl);
3677 if (target_nid != -1) {
3678 migrated = migrate_misplaced_page(page, target_nid);
3679 if (migrated)
3680 page_nid = target_nid;
3681 } else {
3682 put_page(page);
3683 }
3684
3685 if (page_nid != -1)
3686 task_numa_fault(page_nid, 1, migrated);
3687
3688 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3689 }
3690 pte_unmap_unlock(orig_pte, ptl);
3691
3692 return 0;
3693 }
3694 #else
3695 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3696 unsigned long addr, pmd_t *pmdp)
3697 {
3698 BUG();
3699 return 0;
3700 }
3701 #endif /* CONFIG_NUMA_BALANCING */
3702
3703 /*
3704 * These routines also need to handle stuff like marking pages dirty
3705 * and/or accessed for architectures that don't do it in hardware (most
3706 * RISC architectures). The early dirtying is also good on the i386.
3707 *
3708 * There is also a hook called "update_mmu_cache()" that architectures
3709 * with external mmu caches can use to update those (ie the Sparc or
3710 * PowerPC hashed page tables that act as extended TLBs).
3711 *
3712 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3713 * but allow concurrent faults), and pte mapped but not yet locked.
3714 * We return with mmap_sem still held, but pte unmapped and unlocked.
3715 */
3716 int handle_pte_fault(struct mm_struct *mm,
3717 struct vm_area_struct *vma, unsigned long address,
3718 pte_t *pte, pmd_t *pmd, unsigned int flags)
3719 {
3720 pte_t entry;
3721 spinlock_t *ptl;
3722
3723 entry = *pte;
3724 if (!pte_present(entry)) {
3725 if (pte_none(entry)) {
3726 if (vma->vm_ops)
3727 return do_linear_fault(mm, vma, address,
3728 pte, pmd, flags, entry);
3729 return do_anonymous_page(mm, vma, address,
3730 pte, pmd, flags);
3731 }
3732 if (pte_file(entry))
3733 return do_nonlinear_fault(mm, vma, address,
3734 pte, pmd, flags, entry);
3735 return do_swap_page(mm, vma, address,
3736 pte, pmd, flags, entry);
3737 }
3738
3739 if (pte_numa(entry))
3740 return do_numa_page(mm, vma, address, entry, pte, pmd);
3741
3742 ptl = pte_lockptr(mm, pmd);
3743 spin_lock(ptl);
3744 if (unlikely(!pte_same(*pte, entry)))
3745 goto unlock;
3746 if (flags & FAULT_FLAG_WRITE) {
3747 if (!pte_write(entry))
3748 return do_wp_page(mm, vma, address,
3749 pte, pmd, ptl, entry);
3750 entry = pte_mkdirty(entry);
3751 }
3752 entry = pte_mkyoung(entry);
3753 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3754 update_mmu_cache(vma, address, pte);
3755 } else {
3756 /*
3757 * This is needed only for protection faults but the arch code
3758 * is not yet telling us if this is a protection fault or not.
3759 * This still avoids useless tlb flushes for .text page faults
3760 * with threads.
3761 */
3762 if (flags & FAULT_FLAG_WRITE)
3763 flush_tlb_fix_spurious_fault(vma, address);
3764 }
3765 unlock:
3766 pte_unmap_unlock(pte, ptl);
3767 return 0;
3768 }
3769
3770 /*
3771 * By the time we get here, we already hold the mm semaphore
3772 */
3773 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3774 unsigned long address, unsigned int flags)
3775 {
3776 pgd_t *pgd;
3777 pud_t *pud;
3778 pmd_t *pmd;
3779 pte_t *pte;
3780
3781 if (unlikely(is_vm_hugetlb_page(vma)))
3782 return hugetlb_fault(mm, vma, address, flags);
3783
3784 retry:
3785 pgd = pgd_offset(mm, address);
3786 pud = pud_alloc(mm, pgd, address);
3787 if (!pud)
3788 return VM_FAULT_OOM;
3789 pmd = pmd_alloc(mm, pud, address);
3790 if (!pmd)
3791 return VM_FAULT_OOM;
3792 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3793 if (!vma->vm_ops)
3794 return do_huge_pmd_anonymous_page(mm, vma, address,
3795 pmd, flags);
3796 } else {
3797 pmd_t orig_pmd = *pmd;
3798 int ret;
3799
3800 barrier();
3801 if (pmd_trans_huge(orig_pmd)) {
3802 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3803
3804 /*
3805 * If the pmd is splitting, return and retry the
3806 * the fault. Alternative: wait until the split
3807 * is done, and goto retry.
3808 */
3809 if (pmd_trans_splitting(orig_pmd))
3810 return 0;
3811
3812 if (pmd_numa(orig_pmd))
3813 return do_huge_pmd_numa_page(mm, vma, address,
3814 orig_pmd, pmd);
3815
3816 if (dirty && !pmd_write(orig_pmd)) {
3817 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3818 orig_pmd);
3819 /*
3820 * If COW results in an oom, the huge pmd will
3821 * have been split, so retry the fault on the
3822 * pte for a smaller charge.
3823 */
3824 if (unlikely(ret & VM_FAULT_OOM))
3825 goto retry;
3826 return ret;
3827 } else {
3828 huge_pmd_set_accessed(mm, vma, address, pmd,
3829 orig_pmd, dirty);
3830 }
3831
3832 return 0;
3833 }
3834 }
3835
3836 if (pmd_numa(*pmd))
3837 return do_pmd_numa_page(mm, vma, address, pmd);
3838
3839 /*
3840 * Use __pte_alloc instead of pte_alloc_map, because we can't
3841 * run pte_offset_map on the pmd, if an huge pmd could
3842 * materialize from under us from a different thread.
3843 */
3844 if (unlikely(pmd_none(*pmd)) &&
3845 unlikely(__pte_alloc(mm, vma, pmd, address)))
3846 return VM_FAULT_OOM;
3847 /*
3848 * If a huge pmd materialized under us just retry later. Use
3849 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3850 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3851 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3852 * in a different thread of this mm, in turn leading to a misleading
3853 * pmd_trans_huge() retval. All we have to ensure is that it is a
3854 * regular pmd that we can walk with pte_offset_map() and we can do that
3855 * through an atomic read in C, which is what pmd_trans_unstable()
3856 * provides.
3857 */
3858 if (unlikely(pmd_trans_unstable(pmd)))
3859 return 0;
3860 /*
3861 * A regular pmd is established and it can't morph into a huge pmd
3862 * from under us anymore at this point because we hold the mmap_sem
3863 * read mode and khugepaged takes it in write mode. So now it's
3864 * safe to run pte_offset_map().
3865 */
3866 pte = pte_offset_map(pmd, address);
3867
3868 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3869 }
3870
3871 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3872 unsigned long address, unsigned int flags)
3873 {
3874 int ret;
3875
3876 __set_current_state(TASK_RUNNING);
3877
3878 count_vm_event(PGFAULT);
3879 mem_cgroup_count_vm_event(mm, PGFAULT);
3880
3881 /* do counter updates before entering really critical section. */
3882 check_sync_rss_stat(current);
3883
3884 /*
3885 * Enable the memcg OOM handling for faults triggered in user
3886 * space. Kernel faults are handled more gracefully.
3887 */
3888 if (flags & FAULT_FLAG_USER)
3889 mem_cgroup_oom_enable();
3890
3891 ret = __handle_mm_fault(mm, vma, address, flags);
3892
3893 if (flags & FAULT_FLAG_USER) {
3894 mem_cgroup_oom_disable();
3895 /*
3896 * The task may have entered a memcg OOM situation but
3897 * if the allocation error was handled gracefully (no
3898 * VM_FAULT_OOM), there is no need to kill anything.
3899 * Just clean up the OOM state peacefully.
3900 */
3901 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3902 mem_cgroup_oom_synchronize(false);
3903 }
3904
3905 return ret;
3906 }
3907
3908 #ifndef __PAGETABLE_PUD_FOLDED
3909 /*
3910 * Allocate page upper directory.
3911 * We've already handled the fast-path in-line.
3912 */
3913 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3914 {
3915 pud_t *new = pud_alloc_one(mm, address);
3916 if (!new)
3917 return -ENOMEM;
3918
3919 smp_wmb(); /* See comment in __pte_alloc */
3920
3921 spin_lock(&mm->page_table_lock);
3922 if (pgd_present(*pgd)) /* Another has populated it */
3923 pud_free(mm, new);
3924 else
3925 pgd_populate(mm, pgd, new);
3926 spin_unlock(&mm->page_table_lock);
3927 return 0;
3928 }
3929 #endif /* __PAGETABLE_PUD_FOLDED */
3930
3931 #ifndef __PAGETABLE_PMD_FOLDED
3932 /*
3933 * Allocate page middle directory.
3934 * We've already handled the fast-path in-line.
3935 */
3936 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3937 {
3938 pmd_t *new = pmd_alloc_one(mm, address);
3939 if (!new)
3940 return -ENOMEM;
3941
3942 smp_wmb(); /* See comment in __pte_alloc */
3943
3944 spin_lock(&mm->page_table_lock);
3945 #ifndef __ARCH_HAS_4LEVEL_HACK
3946 if (pud_present(*pud)) /* Another has populated it */
3947 pmd_free(mm, new);
3948 else
3949 pud_populate(mm, pud, new);
3950 #else
3951 if (pgd_present(*pud)) /* Another has populated it */
3952 pmd_free(mm, new);
3953 else
3954 pgd_populate(mm, pud, new);
3955 #endif /* __ARCH_HAS_4LEVEL_HACK */
3956 spin_unlock(&mm->page_table_lock);
3957 return 0;
3958 }
3959 #endif /* __PAGETABLE_PMD_FOLDED */
3960
3961 #if !defined(__HAVE_ARCH_GATE_AREA)
3962
3963 #if defined(AT_SYSINFO_EHDR)
3964 static struct vm_area_struct gate_vma;
3965
3966 static int __init gate_vma_init(void)
3967 {
3968 gate_vma.vm_mm = NULL;
3969 gate_vma.vm_start = FIXADDR_USER_START;
3970 gate_vma.vm_end = FIXADDR_USER_END;
3971 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3972 gate_vma.vm_page_prot = __P101;
3973
3974 return 0;
3975 }
3976 __initcall(gate_vma_init);
3977 #endif
3978
3979 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3980 {
3981 #ifdef AT_SYSINFO_EHDR
3982 return &gate_vma;
3983 #else
3984 return NULL;
3985 #endif
3986 }
3987
3988 int in_gate_area_no_mm(unsigned long addr)
3989 {
3990 #ifdef AT_SYSINFO_EHDR
3991 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3992 return 1;
3993 #endif
3994 return 0;
3995 }
3996
3997 #endif /* __HAVE_ARCH_GATE_AREA */
3998
3999 static int __follow_pte(struct mm_struct *mm, unsigned long address,
4000 pte_t **ptepp, spinlock_t **ptlp)
4001 {
4002 pgd_t *pgd;
4003 pud_t *pud;
4004 pmd_t *pmd;
4005 pte_t *ptep;
4006
4007 pgd = pgd_offset(mm, address);
4008 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4009 goto out;
4010
4011 pud = pud_offset(pgd, address);
4012 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4013 goto out;
4014
4015 pmd = pmd_offset(pud, address);
4016 VM_BUG_ON(pmd_trans_huge(*pmd));
4017 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4018 goto out;
4019
4020 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
4021 if (pmd_huge(*pmd))
4022 goto out;
4023
4024 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4025 if (!ptep)
4026 goto out;
4027 if (!pte_present(*ptep))
4028 goto unlock;
4029 *ptepp = ptep;
4030 return 0;
4031 unlock:
4032 pte_unmap_unlock(ptep, *ptlp);
4033 out:
4034 return -EINVAL;
4035 }
4036
4037 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4038 pte_t **ptepp, spinlock_t **ptlp)
4039 {
4040 int res;
4041
4042 /* (void) is needed to make gcc happy */
4043 (void) __cond_lock(*ptlp,
4044 !(res = __follow_pte(mm, address, ptepp, ptlp)));
4045 return res;
4046 }
4047
4048 /**
4049 * follow_pfn - look up PFN at a user virtual address
4050 * @vma: memory mapping
4051 * @address: user virtual address
4052 * @pfn: location to store found PFN
4053 *
4054 * Only IO mappings and raw PFN mappings are allowed.
4055 *
4056 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4057 */
4058 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4059 unsigned long *pfn)
4060 {
4061 int ret = -EINVAL;
4062 spinlock_t *ptl;
4063 pte_t *ptep;
4064
4065 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4066 return ret;
4067
4068 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4069 if (ret)
4070 return ret;
4071 *pfn = pte_pfn(*ptep);
4072 pte_unmap_unlock(ptep, ptl);
4073 return 0;
4074 }
4075 EXPORT_SYMBOL(follow_pfn);
4076
4077 #ifdef CONFIG_HAVE_IOREMAP_PROT
4078 int follow_phys(struct vm_area_struct *vma,
4079 unsigned long address, unsigned int flags,
4080 unsigned long *prot, resource_size_t *phys)
4081 {
4082 int ret = -EINVAL;
4083 pte_t *ptep, pte;
4084 spinlock_t *ptl;
4085
4086 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4087 goto out;
4088
4089 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4090 goto out;
4091 pte = *ptep;
4092
4093 if ((flags & FOLL_WRITE) && !pte_write(pte))
4094 goto unlock;
4095
4096 *prot = pgprot_val(pte_pgprot(pte));
4097 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4098
4099 ret = 0;
4100 unlock:
4101 pte_unmap_unlock(ptep, ptl);
4102 out:
4103 return ret;
4104 }
4105
4106 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4107 void *buf, int len, int write)
4108 {
4109 resource_size_t phys_addr;
4110 unsigned long prot = 0;
4111 void __iomem *maddr;
4112 int offset = addr & (PAGE_SIZE-1);
4113
4114 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4115 return -EINVAL;
4116
4117 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4118 if (write)
4119 memcpy_toio(maddr + offset, buf, len);
4120 else
4121 memcpy_fromio(buf, maddr + offset, len);
4122 iounmap(maddr);
4123
4124 return len;
4125 }
4126 EXPORT_SYMBOL_GPL(generic_access_phys);
4127 #endif
4128
4129 /*
4130 * Access another process' address space as given in mm. If non-NULL, use the
4131 * given task for page fault accounting.
4132 */
4133 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4134 unsigned long addr, void *buf, int len, int write)
4135 {
4136 struct vm_area_struct *vma;
4137 void *old_buf = buf;
4138
4139 down_read(&mm->mmap_sem);
4140 /* ignore errors, just check how much was successfully transferred */
4141 while (len) {
4142 int bytes, ret, offset;
4143 void *maddr;
4144 struct page *page = NULL;
4145
4146 ret = get_user_pages(tsk, mm, addr, 1,
4147 write, 1, &page, &vma);
4148 if (ret <= 0) {
4149 /*
4150 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4151 * we can access using slightly different code.
4152 */
4153 #ifdef CONFIG_HAVE_IOREMAP_PROT
4154 vma = find_vma(mm, addr);
4155 if (!vma || vma->vm_start > addr)
4156 break;
4157 if (vma->vm_ops && vma->vm_ops->access)
4158 ret = vma->vm_ops->access(vma, addr, buf,
4159 len, write);
4160 if (ret <= 0)
4161 #endif
4162 break;
4163 bytes = ret;
4164 } else {
4165 bytes = len;
4166 offset = addr & (PAGE_SIZE-1);
4167 if (bytes > PAGE_SIZE-offset)
4168 bytes = PAGE_SIZE-offset;
4169
4170 maddr = kmap(page);
4171 if (write) {
4172 copy_to_user_page(vma, page, addr,
4173 maddr + offset, buf, bytes);
4174 set_page_dirty_lock(page);
4175 } else {
4176 copy_from_user_page(vma, page, addr,
4177 buf, maddr + offset, bytes);
4178 }
4179 kunmap(page);
4180 page_cache_release(page);
4181 }
4182 len -= bytes;
4183 buf += bytes;
4184 addr += bytes;
4185 }
4186 up_read(&mm->mmap_sem);
4187
4188 return buf - old_buf;
4189 }
4190
4191 /**
4192 * access_remote_vm - access another process' address space
4193 * @mm: the mm_struct of the target address space
4194 * @addr: start address to access
4195 * @buf: source or destination buffer
4196 * @len: number of bytes to transfer
4197 * @write: whether the access is a write
4198 *
4199 * The caller must hold a reference on @mm.
4200 */
4201 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4202 void *buf, int len, int write)
4203 {
4204 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4205 }
4206
4207 /*
4208 * Access another process' address space.
4209 * Source/target buffer must be kernel space,
4210 * Do not walk the page table directly, use get_user_pages
4211 */
4212 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4213 void *buf, int len, int write)
4214 {
4215 struct mm_struct *mm;
4216 int ret;
4217
4218 mm = get_task_mm(tsk);
4219 if (!mm)
4220 return 0;
4221
4222 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4223 mmput(mm);
4224
4225 return ret;
4226 }
4227
4228 /*
4229 * Print the name of a VMA.
4230 */
4231 void print_vma_addr(char *prefix, unsigned long ip)
4232 {
4233 struct mm_struct *mm = current->mm;
4234 struct vm_area_struct *vma;
4235
4236 /*
4237 * Do not print if we are in atomic
4238 * contexts (in exception stacks, etc.):
4239 */
4240 if (preempt_count())
4241 return;
4242
4243 down_read(&mm->mmap_sem);
4244 vma = find_vma(mm, ip);
4245 if (vma && vma->vm_file) {
4246 struct file *f = vma->vm_file;
4247 char *buf = (char *)__get_free_page(GFP_KERNEL);
4248 if (buf) {
4249 char *p;
4250
4251 p = d_path(&f->f_path, buf, PAGE_SIZE);
4252 if (IS_ERR(p))
4253 p = "?";
4254 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4255 vma->vm_start,
4256 vma->vm_end - vma->vm_start);
4257 free_page((unsigned long)buf);
4258 }
4259 }
4260 up_read(&mm->mmap_sem);
4261 }
4262
4263 #ifdef CONFIG_PROVE_LOCKING
4264 void might_fault(void)
4265 {
4266 /*
4267 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4268 * holding the mmap_sem, this is safe because kernel memory doesn't
4269 * get paged out, therefore we'll never actually fault, and the
4270 * below annotations will generate false positives.
4271 */
4272 if (segment_eq(get_fs(), KERNEL_DS))
4273 return;
4274
4275 might_sleep();
4276 /*
4277 * it would be nicer only to annotate paths which are not under
4278 * pagefault_disable, however that requires a larger audit and
4279 * providing helpers like get_user_atomic.
4280 */
4281 if (!in_atomic() && current->mm)
4282 might_lock_read(&current->mm->mmap_sem);
4283 }
4284 EXPORT_SYMBOL(might_fault);
4285 #endif
4286
4287 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4288 static void clear_gigantic_page(struct page *page,
4289 unsigned long addr,
4290 unsigned int pages_per_huge_page)
4291 {
4292 int i;
4293 struct page *p = page;
4294
4295 might_sleep();
4296 for (i = 0; i < pages_per_huge_page;
4297 i++, p = mem_map_next(p, page, i)) {
4298 cond_resched();
4299 clear_user_highpage(p, addr + i * PAGE_SIZE);
4300 }
4301 }
4302 void clear_huge_page(struct page *page,
4303 unsigned long addr, unsigned int pages_per_huge_page)
4304 {
4305 int i;
4306
4307 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4308 clear_gigantic_page(page, addr, pages_per_huge_page);
4309 return;
4310 }
4311
4312 might_sleep();
4313 for (i = 0; i < pages_per_huge_page; i++) {
4314 cond_resched();
4315 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4316 }
4317 }
4318
4319 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4320 unsigned long addr,
4321 struct vm_area_struct *vma,
4322 unsigned int pages_per_huge_page)
4323 {
4324 int i;
4325 struct page *dst_base = dst;
4326 struct page *src_base = src;
4327
4328 for (i = 0; i < pages_per_huge_page; ) {
4329 cond_resched();
4330 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4331
4332 i++;
4333 dst = mem_map_next(dst, dst_base, i);
4334 src = mem_map_next(src, src_base, i);
4335 }
4336 }
4337
4338 void copy_user_huge_page(struct page *dst, struct page *src,
4339 unsigned long addr, struct vm_area_struct *vma,
4340 unsigned int pages_per_huge_page)
4341 {
4342 int i;
4343
4344 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4345 copy_user_gigantic_page(dst, src, addr, vma,
4346 pages_per_huge_page);
4347 return;
4348 }
4349
4350 might_sleep();
4351 for (i = 0; i < pages_per_huge_page; i++) {
4352 cond_resched();
4353 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4354 }
4355 }
4356 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */