f97d709594e61152dd8fa4c30ebe9646d94dc9f9
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32 /*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
59
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
61
62 int sysctl_memory_failure_recovery __read_mostly = 1;
63
64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
65
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78
79 static int hwpoison_filter_dev(struct page *p)
80 {
81 struct address_space *mapping;
82 dev_t dev;
83
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
86 return 0;
87
88 /*
89 * page_mapping() does not accept slab pages.
90 */
91 if (PageSlab(p))
92 return -EINVAL;
93
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
96 return -EINVAL;
97
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
101 return -EINVAL;
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
104 return -EINVAL;
105
106 return 0;
107 }
108
109 static int hwpoison_filter_flags(struct page *p)
110 {
111 if (!hwpoison_filter_flags_mask)
112 return 0;
113
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
116 return 0;
117 else
118 return -EINVAL;
119 }
120
121 /*
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
130 */
131 #ifdef CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
135 {
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
138 unsigned long ino;
139
140 if (!hwpoison_filter_memcg)
141 return 0;
142
143 mem = try_get_mem_cgroup_from_page(p);
144 if (!mem)
145 return -EINVAL;
146
147 css = mem_cgroup_css(mem);
148 /* root_mem_cgroup has NULL dentries */
149 if (!css->cgroup->dentry)
150 return -EINVAL;
151
152 ino = css->cgroup->dentry->d_inode->i_ino;
153 css_put(css);
154
155 if (ino != hwpoison_filter_memcg)
156 return -EINVAL;
157
158 return 0;
159 }
160 #else
161 static int hwpoison_filter_task(struct page *p) { return 0; }
162 #endif
163
164 int hwpoison_filter(struct page *p)
165 {
166 if (!hwpoison_filter_enable)
167 return 0;
168
169 if (hwpoison_filter_dev(p))
170 return -EINVAL;
171
172 if (hwpoison_filter_flags(p))
173 return -EINVAL;
174
175 if (hwpoison_filter_task(p))
176 return -EINVAL;
177
178 return 0;
179 }
180 #else
181 int hwpoison_filter(struct page *p)
182 {
183 return 0;
184 }
185 #endif
186
187 EXPORT_SYMBOL_GPL(hwpoison_filter);
188
189 /*
190 * Send all the processes who have the page mapped a signal.
191 * ``action optional'' if they are not immediately affected by the error
192 * ``action required'' if error happened in current execution context
193 */
194 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
195 unsigned long pfn, struct page *page, int flags)
196 {
197 struct siginfo si;
198 int ret;
199
200 printk(KERN_ERR
201 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
202 pfn, t->comm, t->pid);
203 si.si_signo = SIGBUS;
204 si.si_errno = 0;
205 si.si_addr = (void *)addr;
206 #ifdef __ARCH_SI_TRAPNO
207 si.si_trapno = trapno;
208 #endif
209 si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
210
211 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
212 si.si_code = BUS_MCEERR_AR;
213 ret = force_sig_info(SIGBUS, &si, current);
214 } else {
215 /*
216 * Don't use force here, it's convenient if the signal
217 * can be temporarily blocked.
218 * This could cause a loop when the user sets SIGBUS
219 * to SIG_IGN, but hopefully no one will do that?
220 */
221 si.si_code = BUS_MCEERR_AO;
222 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
223 }
224 if (ret < 0)
225 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
226 t->comm, t->pid, ret);
227 return ret;
228 }
229
230 /*
231 * When a unknown page type is encountered drain as many buffers as possible
232 * in the hope to turn the page into a LRU or free page, which we can handle.
233 */
234 void shake_page(struct page *p, int access)
235 {
236 if (!PageSlab(p)) {
237 lru_add_drain_all();
238 if (PageLRU(p))
239 return;
240 drain_all_pages();
241 if (PageLRU(p) || is_free_buddy_page(p))
242 return;
243 }
244
245 /*
246 * Only call shrink_slab here (which would also shrink other caches) if
247 * access is not potentially fatal.
248 */
249 if (access) {
250 int nr;
251 do {
252 struct shrink_control shrink = {
253 .gfp_mask = GFP_KERNEL,
254 };
255
256 nr = shrink_slab(&shrink, 1000, 1000);
257 if (page_count(p) == 1)
258 break;
259 } while (nr > 10);
260 }
261 }
262 EXPORT_SYMBOL_GPL(shake_page);
263
264 /*
265 * Kill all processes that have a poisoned page mapped and then isolate
266 * the page.
267 *
268 * General strategy:
269 * Find all processes having the page mapped and kill them.
270 * But we keep a page reference around so that the page is not
271 * actually freed yet.
272 * Then stash the page away
273 *
274 * There's no convenient way to get back to mapped processes
275 * from the VMAs. So do a brute-force search over all
276 * running processes.
277 *
278 * Remember that machine checks are not common (or rather
279 * if they are common you have other problems), so this shouldn't
280 * be a performance issue.
281 *
282 * Also there are some races possible while we get from the
283 * error detection to actually handle it.
284 */
285
286 struct to_kill {
287 struct list_head nd;
288 struct task_struct *tsk;
289 unsigned long addr;
290 char addr_valid;
291 };
292
293 /*
294 * Failure handling: if we can't find or can't kill a process there's
295 * not much we can do. We just print a message and ignore otherwise.
296 */
297
298 /*
299 * Schedule a process for later kill.
300 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
301 * TBD would GFP_NOIO be enough?
302 */
303 static void add_to_kill(struct task_struct *tsk, struct page *p,
304 struct vm_area_struct *vma,
305 struct list_head *to_kill,
306 struct to_kill **tkc)
307 {
308 struct to_kill *tk;
309
310 if (*tkc) {
311 tk = *tkc;
312 *tkc = NULL;
313 } else {
314 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
315 if (!tk) {
316 printk(KERN_ERR
317 "MCE: Out of memory while machine check handling\n");
318 return;
319 }
320 }
321 tk->addr = page_address_in_vma(p, vma);
322 tk->addr_valid = 1;
323
324 /*
325 * In theory we don't have to kill when the page was
326 * munmaped. But it could be also a mremap. Since that's
327 * likely very rare kill anyways just out of paranoia, but use
328 * a SIGKILL because the error is not contained anymore.
329 */
330 if (tk->addr == -EFAULT) {
331 pr_info("MCE: Unable to find user space address %lx in %s\n",
332 page_to_pfn(p), tsk->comm);
333 tk->addr_valid = 0;
334 }
335 get_task_struct(tsk);
336 tk->tsk = tsk;
337 list_add_tail(&tk->nd, to_kill);
338 }
339
340 /*
341 * Kill the processes that have been collected earlier.
342 *
343 * Only do anything when DOIT is set, otherwise just free the list
344 * (this is used for clean pages which do not need killing)
345 * Also when FAIL is set do a force kill because something went
346 * wrong earlier.
347 */
348 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
349 int fail, struct page *page, unsigned long pfn,
350 int flags)
351 {
352 struct to_kill *tk, *next;
353
354 list_for_each_entry_safe (tk, next, to_kill, nd) {
355 if (forcekill) {
356 /*
357 * In case something went wrong with munmapping
358 * make sure the process doesn't catch the
359 * signal and then access the memory. Just kill it.
360 */
361 if (fail || tk->addr_valid == 0) {
362 printk(KERN_ERR
363 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
364 pfn, tk->tsk->comm, tk->tsk->pid);
365 force_sig(SIGKILL, tk->tsk);
366 }
367
368 /*
369 * In theory the process could have mapped
370 * something else on the address in-between. We could
371 * check for that, but we need to tell the
372 * process anyways.
373 */
374 else if (kill_proc(tk->tsk, tk->addr, trapno,
375 pfn, page, flags) < 0)
376 printk(KERN_ERR
377 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
378 pfn, tk->tsk->comm, tk->tsk->pid);
379 }
380 put_task_struct(tk->tsk);
381 kfree(tk);
382 }
383 }
384
385 static int task_early_kill(struct task_struct *tsk, int force_early)
386 {
387 if (!tsk->mm)
388 return 0;
389 if (force_early)
390 return 1;
391 if (tsk->flags & PF_MCE_PROCESS)
392 return !!(tsk->flags & PF_MCE_EARLY);
393 return sysctl_memory_failure_early_kill;
394 }
395
396 /*
397 * Collect processes when the error hit an anonymous page.
398 */
399 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
400 struct to_kill **tkc, int force_early)
401 {
402 struct vm_area_struct *vma;
403 struct task_struct *tsk;
404 struct anon_vma *av;
405 pgoff_t pgoff;
406
407 av = page_lock_anon_vma_read(page);
408 if (av == NULL) /* Not actually mapped anymore */
409 return;
410
411 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
412 read_lock(&tasklist_lock);
413 for_each_process (tsk) {
414 struct anon_vma_chain *vmac;
415
416 if (!task_early_kill(tsk, force_early))
417 continue;
418 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
419 pgoff, pgoff) {
420 vma = vmac->vma;
421 if (!page_mapped_in_vma(page, vma))
422 continue;
423 if (vma->vm_mm == tsk->mm)
424 add_to_kill(tsk, page, vma, to_kill, tkc);
425 }
426 }
427 read_unlock(&tasklist_lock);
428 page_unlock_anon_vma_read(av);
429 }
430
431 /*
432 * Collect processes when the error hit a file mapped page.
433 */
434 static void collect_procs_file(struct page *page, struct list_head *to_kill,
435 struct to_kill **tkc, int force_early)
436 {
437 struct vm_area_struct *vma;
438 struct task_struct *tsk;
439 struct address_space *mapping = page->mapping;
440
441 mutex_lock(&mapping->i_mmap_mutex);
442 read_lock(&tasklist_lock);
443 for_each_process(tsk) {
444 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
445
446 if (!task_early_kill(tsk, force_early))
447 continue;
448
449 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
450 pgoff) {
451 /*
452 * Send early kill signal to tasks where a vma covers
453 * the page but the corrupted page is not necessarily
454 * mapped it in its pte.
455 * Assume applications who requested early kill want
456 * to be informed of all such data corruptions.
457 */
458 if (vma->vm_mm == tsk->mm)
459 add_to_kill(tsk, page, vma, to_kill, tkc);
460 }
461 }
462 read_unlock(&tasklist_lock);
463 mutex_unlock(&mapping->i_mmap_mutex);
464 }
465
466 /*
467 * Collect the processes who have the corrupted page mapped to kill.
468 * This is done in two steps for locking reasons.
469 * First preallocate one tokill structure outside the spin locks,
470 * so that we can kill at least one process reasonably reliable.
471 */
472 static void collect_procs(struct page *page, struct list_head *tokill,
473 int force_early)
474 {
475 struct to_kill *tk;
476
477 if (!page->mapping)
478 return;
479
480 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
481 if (!tk)
482 return;
483 if (PageAnon(page))
484 collect_procs_anon(page, tokill, &tk, force_early);
485 else
486 collect_procs_file(page, tokill, &tk, force_early);
487 kfree(tk);
488 }
489
490 /*
491 * Error handlers for various types of pages.
492 */
493
494 enum outcome {
495 IGNORED, /* Error: cannot be handled */
496 FAILED, /* Error: handling failed */
497 DELAYED, /* Will be handled later */
498 RECOVERED, /* Successfully recovered */
499 };
500
501 static const char *action_name[] = {
502 [IGNORED] = "Ignored",
503 [FAILED] = "Failed",
504 [DELAYED] = "Delayed",
505 [RECOVERED] = "Recovered",
506 };
507
508 /*
509 * XXX: It is possible that a page is isolated from LRU cache,
510 * and then kept in swap cache or failed to remove from page cache.
511 * The page count will stop it from being freed by unpoison.
512 * Stress tests should be aware of this memory leak problem.
513 */
514 static int delete_from_lru_cache(struct page *p)
515 {
516 if (!isolate_lru_page(p)) {
517 /*
518 * Clear sensible page flags, so that the buddy system won't
519 * complain when the page is unpoison-and-freed.
520 */
521 ClearPageActive(p);
522 ClearPageUnevictable(p);
523 /*
524 * drop the page count elevated by isolate_lru_page()
525 */
526 page_cache_release(p);
527 return 0;
528 }
529 return -EIO;
530 }
531
532 /*
533 * Error hit kernel page.
534 * Do nothing, try to be lucky and not touch this instead. For a few cases we
535 * could be more sophisticated.
536 */
537 static int me_kernel(struct page *p, unsigned long pfn)
538 {
539 return IGNORED;
540 }
541
542 /*
543 * Page in unknown state. Do nothing.
544 */
545 static int me_unknown(struct page *p, unsigned long pfn)
546 {
547 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
548 return FAILED;
549 }
550
551 /*
552 * Clean (or cleaned) page cache page.
553 */
554 static int me_pagecache_clean(struct page *p, unsigned long pfn)
555 {
556 int err;
557 int ret = FAILED;
558 struct address_space *mapping;
559
560 delete_from_lru_cache(p);
561
562 /*
563 * For anonymous pages we're done the only reference left
564 * should be the one m_f() holds.
565 */
566 if (PageAnon(p))
567 return RECOVERED;
568
569 /*
570 * Now truncate the page in the page cache. This is really
571 * more like a "temporary hole punch"
572 * Don't do this for block devices when someone else
573 * has a reference, because it could be file system metadata
574 * and that's not safe to truncate.
575 */
576 mapping = page_mapping(p);
577 if (!mapping) {
578 /*
579 * Page has been teared down in the meanwhile
580 */
581 return FAILED;
582 }
583
584 /*
585 * Truncation is a bit tricky. Enable it per file system for now.
586 *
587 * Open: to take i_mutex or not for this? Right now we don't.
588 */
589 if (mapping->a_ops->error_remove_page) {
590 err = mapping->a_ops->error_remove_page(mapping, p);
591 if (err != 0) {
592 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
593 pfn, err);
594 } else if (page_has_private(p) &&
595 !try_to_release_page(p, GFP_NOIO)) {
596 pr_info("MCE %#lx: failed to release buffers\n", pfn);
597 } else {
598 ret = RECOVERED;
599 }
600 } else {
601 /*
602 * If the file system doesn't support it just invalidate
603 * This fails on dirty or anything with private pages
604 */
605 if (invalidate_inode_page(p))
606 ret = RECOVERED;
607 else
608 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
609 pfn);
610 }
611 return ret;
612 }
613
614 /*
615 * Dirty cache page page
616 * Issues: when the error hit a hole page the error is not properly
617 * propagated.
618 */
619 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
620 {
621 struct address_space *mapping = page_mapping(p);
622
623 SetPageError(p);
624 /* TBD: print more information about the file. */
625 if (mapping) {
626 /*
627 * IO error will be reported by write(), fsync(), etc.
628 * who check the mapping.
629 * This way the application knows that something went
630 * wrong with its dirty file data.
631 *
632 * There's one open issue:
633 *
634 * The EIO will be only reported on the next IO
635 * operation and then cleared through the IO map.
636 * Normally Linux has two mechanisms to pass IO error
637 * first through the AS_EIO flag in the address space
638 * and then through the PageError flag in the page.
639 * Since we drop pages on memory failure handling the
640 * only mechanism open to use is through AS_AIO.
641 *
642 * This has the disadvantage that it gets cleared on
643 * the first operation that returns an error, while
644 * the PageError bit is more sticky and only cleared
645 * when the page is reread or dropped. If an
646 * application assumes it will always get error on
647 * fsync, but does other operations on the fd before
648 * and the page is dropped between then the error
649 * will not be properly reported.
650 *
651 * This can already happen even without hwpoisoned
652 * pages: first on metadata IO errors (which only
653 * report through AS_EIO) or when the page is dropped
654 * at the wrong time.
655 *
656 * So right now we assume that the application DTRT on
657 * the first EIO, but we're not worse than other parts
658 * of the kernel.
659 */
660 mapping_set_error(mapping, EIO);
661 }
662
663 return me_pagecache_clean(p, pfn);
664 }
665
666 /*
667 * Clean and dirty swap cache.
668 *
669 * Dirty swap cache page is tricky to handle. The page could live both in page
670 * cache and swap cache(ie. page is freshly swapped in). So it could be
671 * referenced concurrently by 2 types of PTEs:
672 * normal PTEs and swap PTEs. We try to handle them consistently by calling
673 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
674 * and then
675 * - clear dirty bit to prevent IO
676 * - remove from LRU
677 * - but keep in the swap cache, so that when we return to it on
678 * a later page fault, we know the application is accessing
679 * corrupted data and shall be killed (we installed simple
680 * interception code in do_swap_page to catch it).
681 *
682 * Clean swap cache pages can be directly isolated. A later page fault will
683 * bring in the known good data from disk.
684 */
685 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
686 {
687 ClearPageDirty(p);
688 /* Trigger EIO in shmem: */
689 ClearPageUptodate(p);
690
691 if (!delete_from_lru_cache(p))
692 return DELAYED;
693 else
694 return FAILED;
695 }
696
697 static int me_swapcache_clean(struct page *p, unsigned long pfn)
698 {
699 delete_from_swap_cache(p);
700
701 if (!delete_from_lru_cache(p))
702 return RECOVERED;
703 else
704 return FAILED;
705 }
706
707 /*
708 * Huge pages. Needs work.
709 * Issues:
710 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
711 * To narrow down kill region to one page, we need to break up pmd.
712 */
713 static int me_huge_page(struct page *p, unsigned long pfn)
714 {
715 int res = 0;
716 struct page *hpage = compound_head(p);
717 /*
718 * We can safely recover from error on free or reserved (i.e.
719 * not in-use) hugepage by dequeuing it from freelist.
720 * To check whether a hugepage is in-use or not, we can't use
721 * page->lru because it can be used in other hugepage operations,
722 * such as __unmap_hugepage_range() and gather_surplus_pages().
723 * So instead we use page_mapping() and PageAnon().
724 * We assume that this function is called with page lock held,
725 * so there is no race between isolation and mapping/unmapping.
726 */
727 if (!(page_mapping(hpage) || PageAnon(hpage))) {
728 res = dequeue_hwpoisoned_huge_page(hpage);
729 if (!res)
730 return RECOVERED;
731 }
732 return DELAYED;
733 }
734
735 /*
736 * Various page states we can handle.
737 *
738 * A page state is defined by its current page->flags bits.
739 * The table matches them in order and calls the right handler.
740 *
741 * This is quite tricky because we can access page at any time
742 * in its live cycle, so all accesses have to be extremely careful.
743 *
744 * This is not complete. More states could be added.
745 * For any missing state don't attempt recovery.
746 */
747
748 #define dirty (1UL << PG_dirty)
749 #define sc (1UL << PG_swapcache)
750 #define unevict (1UL << PG_unevictable)
751 #define mlock (1UL << PG_mlocked)
752 #define writeback (1UL << PG_writeback)
753 #define lru (1UL << PG_lru)
754 #define swapbacked (1UL << PG_swapbacked)
755 #define head (1UL << PG_head)
756 #define tail (1UL << PG_tail)
757 #define compound (1UL << PG_compound)
758 #define slab (1UL << PG_slab)
759 #define reserved (1UL << PG_reserved)
760
761 static struct page_state {
762 unsigned long mask;
763 unsigned long res;
764 char *msg;
765 int (*action)(struct page *p, unsigned long pfn);
766 } error_states[] = {
767 { reserved, reserved, "reserved kernel", me_kernel },
768 /*
769 * free pages are specially detected outside this table:
770 * PG_buddy pages only make a small fraction of all free pages.
771 */
772
773 /*
774 * Could in theory check if slab page is free or if we can drop
775 * currently unused objects without touching them. But just
776 * treat it as standard kernel for now.
777 */
778 { slab, slab, "kernel slab", me_kernel },
779
780 #ifdef CONFIG_PAGEFLAGS_EXTENDED
781 { head, head, "huge", me_huge_page },
782 { tail, tail, "huge", me_huge_page },
783 #else
784 { compound, compound, "huge", me_huge_page },
785 #endif
786
787 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty },
788 { sc|dirty, sc, "clean swapcache", me_swapcache_clean },
789
790 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty },
791 { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean },
792
793 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
794 { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean },
795
796 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty },
797 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
798
799 /*
800 * Catchall entry: must be at end.
801 */
802 { 0, 0, "unknown page state", me_unknown },
803 };
804
805 #undef dirty
806 #undef sc
807 #undef unevict
808 #undef mlock
809 #undef writeback
810 #undef lru
811 #undef swapbacked
812 #undef head
813 #undef tail
814 #undef compound
815 #undef slab
816 #undef reserved
817
818 /*
819 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
820 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
821 */
822 static void action_result(unsigned long pfn, char *msg, int result)
823 {
824 pr_err("MCE %#lx: %s page recovery: %s\n",
825 pfn, msg, action_name[result]);
826 }
827
828 static int page_action(struct page_state *ps, struct page *p,
829 unsigned long pfn)
830 {
831 int result;
832 int count;
833
834 result = ps->action(p, pfn);
835 action_result(pfn, ps->msg, result);
836
837 count = page_count(p) - 1;
838 if (ps->action == me_swapcache_dirty && result == DELAYED)
839 count--;
840 if (count != 0) {
841 printk(KERN_ERR
842 "MCE %#lx: %s page still referenced by %d users\n",
843 pfn, ps->msg, count);
844 result = FAILED;
845 }
846
847 /* Could do more checks here if page looks ok */
848 /*
849 * Could adjust zone counters here to correct for the missing page.
850 */
851
852 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
853 }
854
855 /*
856 * Do all that is necessary to remove user space mappings. Unmap
857 * the pages and send SIGBUS to the processes if the data was dirty.
858 */
859 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
860 int trapno, int flags, struct page **hpagep)
861 {
862 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
863 struct address_space *mapping;
864 LIST_HEAD(tokill);
865 int ret;
866 int kill = 1, forcekill;
867 struct page *hpage = *hpagep;
868 struct page *ppage;
869
870 if (PageReserved(p) || PageSlab(p))
871 return SWAP_SUCCESS;
872
873 /*
874 * This check implies we don't kill processes if their pages
875 * are in the swap cache early. Those are always late kills.
876 */
877 if (!page_mapped(hpage))
878 return SWAP_SUCCESS;
879
880 if (PageKsm(p))
881 return SWAP_FAIL;
882
883 if (PageSwapCache(p)) {
884 printk(KERN_ERR
885 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
886 ttu |= TTU_IGNORE_HWPOISON;
887 }
888
889 /*
890 * Propagate the dirty bit from PTEs to struct page first, because we
891 * need this to decide if we should kill or just drop the page.
892 * XXX: the dirty test could be racy: set_page_dirty() may not always
893 * be called inside page lock (it's recommended but not enforced).
894 */
895 mapping = page_mapping(hpage);
896 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
897 mapping_cap_writeback_dirty(mapping)) {
898 if (page_mkclean(hpage)) {
899 SetPageDirty(hpage);
900 } else {
901 kill = 0;
902 ttu |= TTU_IGNORE_HWPOISON;
903 printk(KERN_INFO
904 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
905 pfn);
906 }
907 }
908
909 /*
910 * ppage: poisoned page
911 * if p is regular page(4k page)
912 * ppage == real poisoned page;
913 * else p is hugetlb or THP, ppage == head page.
914 */
915 ppage = hpage;
916
917 if (PageTransHuge(hpage)) {
918 /*
919 * Verify that this isn't a hugetlbfs head page, the check for
920 * PageAnon is just for avoid tripping a split_huge_page
921 * internal debug check, as split_huge_page refuses to deal with
922 * anything that isn't an anon page. PageAnon can't go away fro
923 * under us because we hold a refcount on the hpage, without a
924 * refcount on the hpage. split_huge_page can't be safely called
925 * in the first place, having a refcount on the tail isn't
926 * enough * to be safe.
927 */
928 if (!PageHuge(hpage) && PageAnon(hpage)) {
929 if (unlikely(split_huge_page(hpage))) {
930 /*
931 * FIXME: if splitting THP is failed, it is
932 * better to stop the following operation rather
933 * than causing panic by unmapping. System might
934 * survive if the page is freed later.
935 */
936 printk(KERN_INFO
937 "MCE %#lx: failed to split THP\n", pfn);
938
939 BUG_ON(!PageHWPoison(p));
940 return SWAP_FAIL;
941 }
942 /*
943 * We pinned the head page for hwpoison handling,
944 * now we split the thp and we are interested in
945 * the hwpoisoned raw page, so move the refcount
946 * to it. Similarly, page lock is shifted.
947 */
948 if (hpage != p) {
949 if (!(flags & MF_COUNT_INCREASED)) {
950 put_page(hpage);
951 get_page(p);
952 }
953 lock_page(p);
954 unlock_page(hpage);
955 *hpagep = p;
956 }
957 /* THP is split, so ppage should be the real poisoned page. */
958 ppage = p;
959 }
960 }
961
962 /*
963 * First collect all the processes that have the page
964 * mapped in dirty form. This has to be done before try_to_unmap,
965 * because ttu takes the rmap data structures down.
966 *
967 * Error handling: We ignore errors here because
968 * there's nothing that can be done.
969 */
970 if (kill)
971 collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
972
973 ret = try_to_unmap(ppage, ttu);
974 if (ret != SWAP_SUCCESS)
975 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
976 pfn, page_mapcount(ppage));
977
978 /*
979 * Now that the dirty bit has been propagated to the
980 * struct page and all unmaps done we can decide if
981 * killing is needed or not. Only kill when the page
982 * was dirty or the process is not restartable,
983 * otherwise the tokill list is merely
984 * freed. When there was a problem unmapping earlier
985 * use a more force-full uncatchable kill to prevent
986 * any accesses to the poisoned memory.
987 */
988 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
989 kill_procs(&tokill, forcekill, trapno,
990 ret != SWAP_SUCCESS, p, pfn, flags);
991
992 return ret;
993 }
994
995 static void set_page_hwpoison_huge_page(struct page *hpage)
996 {
997 int i;
998 int nr_pages = 1 << compound_trans_order(hpage);
999 for (i = 0; i < nr_pages; i++)
1000 SetPageHWPoison(hpage + i);
1001 }
1002
1003 static void clear_page_hwpoison_huge_page(struct page *hpage)
1004 {
1005 int i;
1006 int nr_pages = 1 << compound_trans_order(hpage);
1007 for (i = 0; i < nr_pages; i++)
1008 ClearPageHWPoison(hpage + i);
1009 }
1010
1011 /**
1012 * memory_failure - Handle memory failure of a page.
1013 * @pfn: Page Number of the corrupted page
1014 * @trapno: Trap number reported in the signal to user space.
1015 * @flags: fine tune action taken
1016 *
1017 * This function is called by the low level machine check code
1018 * of an architecture when it detects hardware memory corruption
1019 * of a page. It tries its best to recover, which includes
1020 * dropping pages, killing processes etc.
1021 *
1022 * The function is primarily of use for corruptions that
1023 * happen outside the current execution context (e.g. when
1024 * detected by a background scrubber)
1025 *
1026 * Must run in process context (e.g. a work queue) with interrupts
1027 * enabled and no spinlocks hold.
1028 */
1029 int memory_failure(unsigned long pfn, int trapno, int flags)
1030 {
1031 struct page_state *ps;
1032 struct page *p;
1033 struct page *hpage;
1034 int res;
1035 unsigned int nr_pages;
1036 unsigned long page_flags;
1037
1038 if (!sysctl_memory_failure_recovery)
1039 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1040
1041 if (!pfn_valid(pfn)) {
1042 printk(KERN_ERR
1043 "MCE %#lx: memory outside kernel control\n",
1044 pfn);
1045 return -ENXIO;
1046 }
1047
1048 p = pfn_to_page(pfn);
1049 hpage = compound_head(p);
1050 if (TestSetPageHWPoison(p)) {
1051 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1052 return 0;
1053 }
1054
1055 /*
1056 * Currently errors on hugetlbfs pages are measured in hugepage units,
1057 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1058 * transparent hugepages, they are supposed to be split and error
1059 * measurement is done in normal page units. So nr_pages should be one
1060 * in this case.
1061 */
1062 if (PageHuge(p))
1063 nr_pages = 1 << compound_order(hpage);
1064 else /* normal page or thp */
1065 nr_pages = 1;
1066 atomic_long_add(nr_pages, &num_poisoned_pages);
1067
1068 /*
1069 * We need/can do nothing about count=0 pages.
1070 * 1) it's a free page, and therefore in safe hand:
1071 * prep_new_page() will be the gate keeper.
1072 * 2) it's a free hugepage, which is also safe:
1073 * an affected hugepage will be dequeued from hugepage freelist,
1074 * so there's no concern about reusing it ever after.
1075 * 3) it's part of a non-compound high order page.
1076 * Implies some kernel user: cannot stop them from
1077 * R/W the page; let's pray that the page has been
1078 * used and will be freed some time later.
1079 * In fact it's dangerous to directly bump up page count from 0,
1080 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1081 */
1082 if (!(flags & MF_COUNT_INCREASED) &&
1083 !get_page_unless_zero(hpage)) {
1084 if (is_free_buddy_page(p)) {
1085 action_result(pfn, "free buddy", DELAYED);
1086 return 0;
1087 } else if (PageHuge(hpage)) {
1088 /*
1089 * Check "filter hit" and "race with other subpage."
1090 */
1091 lock_page(hpage);
1092 if (PageHWPoison(hpage)) {
1093 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1094 || (p != hpage && TestSetPageHWPoison(hpage))) {
1095 atomic_long_sub(nr_pages, &num_poisoned_pages);
1096 unlock_page(hpage);
1097 return 0;
1098 }
1099 }
1100 set_page_hwpoison_huge_page(hpage);
1101 res = dequeue_hwpoisoned_huge_page(hpage);
1102 action_result(pfn, "free huge",
1103 res ? IGNORED : DELAYED);
1104 unlock_page(hpage);
1105 return res;
1106 } else {
1107 action_result(pfn, "high order kernel", IGNORED);
1108 return -EBUSY;
1109 }
1110 }
1111
1112 /*
1113 * We ignore non-LRU pages for good reasons.
1114 * - PG_locked is only well defined for LRU pages and a few others
1115 * - to avoid races with __set_page_locked()
1116 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1117 * The check (unnecessarily) ignores LRU pages being isolated and
1118 * walked by the page reclaim code, however that's not a big loss.
1119 */
1120 if (!PageHuge(p)) {
1121 if (!PageLRU(hpage))
1122 shake_page(hpage, 0);
1123 if (!PageLRU(hpage)) {
1124 /*
1125 * shake_page could have turned it free.
1126 */
1127 if (is_free_buddy_page(p)) {
1128 action_result(pfn, "free buddy, 2nd try",
1129 DELAYED);
1130 return 0;
1131 }
1132 action_result(pfn, "non LRU", IGNORED);
1133 put_page(p);
1134 return -EBUSY;
1135 }
1136 }
1137
1138 /*
1139 * Lock the page and wait for writeback to finish.
1140 * It's very difficult to mess with pages currently under IO
1141 * and in many cases impossible, so we just avoid it here.
1142 */
1143 lock_page(hpage);
1144
1145 /*
1146 * We use page flags to determine what action should be taken, but
1147 * the flags can be modified by the error containment action. One
1148 * example is an mlocked page, where PG_mlocked is cleared by
1149 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1150 * correctly, we save a copy of the page flags at this time.
1151 */
1152 page_flags = p->flags;
1153
1154 /*
1155 * unpoison always clear PG_hwpoison inside page lock
1156 */
1157 if (!PageHWPoison(p)) {
1158 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1159 atomic_long_sub(nr_pages, &num_poisoned_pages);
1160 put_page(hpage);
1161 res = 0;
1162 goto out;
1163 }
1164 if (hwpoison_filter(p)) {
1165 if (TestClearPageHWPoison(p))
1166 atomic_long_sub(nr_pages, &num_poisoned_pages);
1167 unlock_page(hpage);
1168 put_page(hpage);
1169 return 0;
1170 }
1171
1172 /*
1173 * For error on the tail page, we should set PG_hwpoison
1174 * on the head page to show that the hugepage is hwpoisoned
1175 */
1176 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1177 action_result(pfn, "hugepage already hardware poisoned",
1178 IGNORED);
1179 unlock_page(hpage);
1180 put_page(hpage);
1181 return 0;
1182 }
1183 /*
1184 * Set PG_hwpoison on all pages in an error hugepage,
1185 * because containment is done in hugepage unit for now.
1186 * Since we have done TestSetPageHWPoison() for the head page with
1187 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1188 */
1189 if (PageHuge(p))
1190 set_page_hwpoison_huge_page(hpage);
1191
1192 wait_on_page_writeback(p);
1193
1194 /*
1195 * Now take care of user space mappings.
1196 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1197 *
1198 * When the raw error page is thp tail page, hpage points to the raw
1199 * page after thp split.
1200 */
1201 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1202 != SWAP_SUCCESS) {
1203 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1204 res = -EBUSY;
1205 goto out;
1206 }
1207
1208 /*
1209 * Torn down by someone else?
1210 */
1211 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1212 action_result(pfn, "already truncated LRU", IGNORED);
1213 res = -EBUSY;
1214 goto out;
1215 }
1216
1217 res = -EBUSY;
1218 /*
1219 * The first check uses the current page flags which may not have any
1220 * relevant information. The second check with the saved page flagss is
1221 * carried out only if the first check can't determine the page status.
1222 */
1223 for (ps = error_states;; ps++)
1224 if ((p->flags & ps->mask) == ps->res)
1225 break;
1226 if (!ps->mask)
1227 for (ps = error_states;; ps++)
1228 if ((page_flags & ps->mask) == ps->res)
1229 break;
1230 res = page_action(ps, p, pfn);
1231 out:
1232 unlock_page(hpage);
1233 return res;
1234 }
1235 EXPORT_SYMBOL_GPL(memory_failure);
1236
1237 #define MEMORY_FAILURE_FIFO_ORDER 4
1238 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1239
1240 struct memory_failure_entry {
1241 unsigned long pfn;
1242 int trapno;
1243 int flags;
1244 };
1245
1246 struct memory_failure_cpu {
1247 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1248 MEMORY_FAILURE_FIFO_SIZE);
1249 spinlock_t lock;
1250 struct work_struct work;
1251 };
1252
1253 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1254
1255 /**
1256 * memory_failure_queue - Schedule handling memory failure of a page.
1257 * @pfn: Page Number of the corrupted page
1258 * @trapno: Trap number reported in the signal to user space.
1259 * @flags: Flags for memory failure handling
1260 *
1261 * This function is called by the low level hardware error handler
1262 * when it detects hardware memory corruption of a page. It schedules
1263 * the recovering of error page, including dropping pages, killing
1264 * processes etc.
1265 *
1266 * The function is primarily of use for corruptions that
1267 * happen outside the current execution context (e.g. when
1268 * detected by a background scrubber)
1269 *
1270 * Can run in IRQ context.
1271 */
1272 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1273 {
1274 struct memory_failure_cpu *mf_cpu;
1275 unsigned long proc_flags;
1276 struct memory_failure_entry entry = {
1277 .pfn = pfn,
1278 .trapno = trapno,
1279 .flags = flags,
1280 };
1281
1282 mf_cpu = &get_cpu_var(memory_failure_cpu);
1283 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1284 if (kfifo_put(&mf_cpu->fifo, &entry))
1285 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1286 else
1287 pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1288 pfn);
1289 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1290 put_cpu_var(memory_failure_cpu);
1291 }
1292 EXPORT_SYMBOL_GPL(memory_failure_queue);
1293
1294 static void memory_failure_work_func(struct work_struct *work)
1295 {
1296 struct memory_failure_cpu *mf_cpu;
1297 struct memory_failure_entry entry = { 0, };
1298 unsigned long proc_flags;
1299 int gotten;
1300
1301 mf_cpu = &__get_cpu_var(memory_failure_cpu);
1302 for (;;) {
1303 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1304 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1305 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1306 if (!gotten)
1307 break;
1308 memory_failure(entry.pfn, entry.trapno, entry.flags);
1309 }
1310 }
1311
1312 static int __init memory_failure_init(void)
1313 {
1314 struct memory_failure_cpu *mf_cpu;
1315 int cpu;
1316
1317 for_each_possible_cpu(cpu) {
1318 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1319 spin_lock_init(&mf_cpu->lock);
1320 INIT_KFIFO(mf_cpu->fifo);
1321 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1322 }
1323
1324 return 0;
1325 }
1326 core_initcall(memory_failure_init);
1327
1328 /**
1329 * unpoison_memory - Unpoison a previously poisoned page
1330 * @pfn: Page number of the to be unpoisoned page
1331 *
1332 * Software-unpoison a page that has been poisoned by
1333 * memory_failure() earlier.
1334 *
1335 * This is only done on the software-level, so it only works
1336 * for linux injected failures, not real hardware failures
1337 *
1338 * Returns 0 for success, otherwise -errno.
1339 */
1340 int unpoison_memory(unsigned long pfn)
1341 {
1342 struct page *page;
1343 struct page *p;
1344 int freeit = 0;
1345 unsigned int nr_pages;
1346
1347 if (!pfn_valid(pfn))
1348 return -ENXIO;
1349
1350 p = pfn_to_page(pfn);
1351 page = compound_head(p);
1352
1353 if (!PageHWPoison(p)) {
1354 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1355 return 0;
1356 }
1357
1358 nr_pages = 1 << compound_trans_order(page);
1359
1360 if (!get_page_unless_zero(page)) {
1361 /*
1362 * Since HWPoisoned hugepage should have non-zero refcount,
1363 * race between memory failure and unpoison seems to happen.
1364 * In such case unpoison fails and memory failure runs
1365 * to the end.
1366 */
1367 if (PageHuge(page)) {
1368 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1369 return 0;
1370 }
1371 if (TestClearPageHWPoison(p))
1372 atomic_long_sub(nr_pages, &num_poisoned_pages);
1373 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1374 return 0;
1375 }
1376
1377 lock_page(page);
1378 /*
1379 * This test is racy because PG_hwpoison is set outside of page lock.
1380 * That's acceptable because that won't trigger kernel panic. Instead,
1381 * the PG_hwpoison page will be caught and isolated on the entrance to
1382 * the free buddy page pool.
1383 */
1384 if (TestClearPageHWPoison(page)) {
1385 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1386 atomic_long_sub(nr_pages, &num_poisoned_pages);
1387 freeit = 1;
1388 if (PageHuge(page))
1389 clear_page_hwpoison_huge_page(page);
1390 }
1391 unlock_page(page);
1392
1393 put_page(page);
1394 if (freeit)
1395 put_page(page);
1396
1397 return 0;
1398 }
1399 EXPORT_SYMBOL(unpoison_memory);
1400
1401 static struct page *new_page(struct page *p, unsigned long private, int **x)
1402 {
1403 int nid = page_to_nid(p);
1404 if (PageHuge(p))
1405 return alloc_huge_page_node(page_hstate(compound_head(p)),
1406 nid);
1407 else
1408 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1409 }
1410
1411 /*
1412 * Safely get reference count of an arbitrary page.
1413 * Returns 0 for a free page, -EIO for a zero refcount page
1414 * that is not free, and 1 for any other page type.
1415 * For 1 the page is returned with increased page count, otherwise not.
1416 */
1417 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1418 {
1419 int ret;
1420
1421 if (flags & MF_COUNT_INCREASED)
1422 return 1;
1423
1424 /*
1425 * The lock_memory_hotplug prevents a race with memory hotplug.
1426 * This is a big hammer, a better would be nicer.
1427 */
1428 lock_memory_hotplug();
1429
1430 /*
1431 * Isolate the page, so that it doesn't get reallocated if it
1432 * was free. This flag should be kept set until the source page
1433 * is freed and PG_hwpoison on it is set.
1434 */
1435 set_migratetype_isolate(p, true);
1436 /*
1437 * When the target page is a free hugepage, just remove it
1438 * from free hugepage list.
1439 */
1440 if (!get_page_unless_zero(compound_head(p))) {
1441 if (PageHuge(p)) {
1442 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1443 ret = 0;
1444 } else if (is_free_buddy_page(p)) {
1445 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1446 ret = 0;
1447 } else {
1448 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1449 __func__, pfn, p->flags);
1450 ret = -EIO;
1451 }
1452 } else {
1453 /* Not a free page */
1454 ret = 1;
1455 }
1456 unlock_memory_hotplug();
1457 return ret;
1458 }
1459
1460 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1461 {
1462 int ret = __get_any_page(page, pfn, flags);
1463
1464 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1465 /*
1466 * Try to free it.
1467 */
1468 put_page(page);
1469 shake_page(page, 1);
1470
1471 /*
1472 * Did it turn free?
1473 */
1474 ret = __get_any_page(page, pfn, 0);
1475 if (!PageLRU(page)) {
1476 /* Drop page reference which is from __get_any_page() */
1477 put_page(page);
1478 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1479 pfn, page->flags);
1480 return -EIO;
1481 }
1482 }
1483 return ret;
1484 }
1485
1486 static int soft_offline_huge_page(struct page *page, int flags)
1487 {
1488 int ret;
1489 unsigned long pfn = page_to_pfn(page);
1490 struct page *hpage = compound_head(page);
1491
1492 /*
1493 * This double-check of PageHWPoison is to avoid the race with
1494 * memory_failure(). See also comment in __soft_offline_page().
1495 */
1496 lock_page(hpage);
1497 if (PageHWPoison(hpage)) {
1498 unlock_page(hpage);
1499 put_page(hpage);
1500 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1501 return -EBUSY;
1502 }
1503 unlock_page(hpage);
1504
1505 /* Keep page count to indicate a given hugepage is isolated. */
1506 ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL,
1507 MIGRATE_SYNC);
1508 put_page(hpage);
1509 if (ret) {
1510 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1511 pfn, ret, page->flags);
1512 } else {
1513 /* overcommit hugetlb page will be freed to buddy */
1514 if (PageHuge(page)) {
1515 set_page_hwpoison_huge_page(hpage);
1516 dequeue_hwpoisoned_huge_page(hpage);
1517 atomic_long_add(1 << compound_order(hpage),
1518 &num_poisoned_pages);
1519 } else {
1520 SetPageHWPoison(page);
1521 atomic_long_inc(&num_poisoned_pages);
1522 }
1523 }
1524 return ret;
1525 }
1526
1527 static int __soft_offline_page(struct page *page, int flags);
1528
1529 /**
1530 * soft_offline_page - Soft offline a page.
1531 * @page: page to offline
1532 * @flags: flags. Same as memory_failure().
1533 *
1534 * Returns 0 on success, otherwise negated errno.
1535 *
1536 * Soft offline a page, by migration or invalidation,
1537 * without killing anything. This is for the case when
1538 * a page is not corrupted yet (so it's still valid to access),
1539 * but has had a number of corrected errors and is better taken
1540 * out.
1541 *
1542 * The actual policy on when to do that is maintained by
1543 * user space.
1544 *
1545 * This should never impact any application or cause data loss,
1546 * however it might take some time.
1547 *
1548 * This is not a 100% solution for all memory, but tries to be
1549 * ``good enough'' for the majority of memory.
1550 */
1551 int soft_offline_page(struct page *page, int flags)
1552 {
1553 int ret;
1554 unsigned long pfn = page_to_pfn(page);
1555 struct page *hpage = compound_head(page);
1556
1557 if (PageHWPoison(page)) {
1558 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1559 return -EBUSY;
1560 }
1561 if (!PageHuge(page) && PageTransHuge(hpage)) {
1562 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1563 pr_info("soft offline: %#lx: failed to split THP\n",
1564 pfn);
1565 return -EBUSY;
1566 }
1567 }
1568
1569 ret = get_any_page(page, pfn, flags);
1570 if (ret < 0)
1571 return ret;
1572 if (ret) { /* for in-use pages */
1573 if (PageHuge(page))
1574 ret = soft_offline_huge_page(page, flags);
1575 else
1576 ret = __soft_offline_page(page, flags);
1577 } else { /* for free pages */
1578 if (PageHuge(page)) {
1579 set_page_hwpoison_huge_page(hpage);
1580 dequeue_hwpoisoned_huge_page(hpage);
1581 atomic_long_add(1 << compound_trans_order(hpage),
1582 &num_poisoned_pages);
1583 } else {
1584 SetPageHWPoison(page);
1585 atomic_long_inc(&num_poisoned_pages);
1586 }
1587 }
1588 unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1589 return ret;
1590 }
1591
1592 static int __soft_offline_page(struct page *page, int flags)
1593 {
1594 int ret;
1595 unsigned long pfn = page_to_pfn(page);
1596
1597 /*
1598 * Check PageHWPoison again inside page lock because PageHWPoison
1599 * is set by memory_failure() outside page lock. Note that
1600 * memory_failure() also double-checks PageHWPoison inside page lock,
1601 * so there's no race between soft_offline_page() and memory_failure().
1602 */
1603 lock_page(page);
1604 wait_on_page_writeback(page);
1605 if (PageHWPoison(page)) {
1606 unlock_page(page);
1607 put_page(page);
1608 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1609 return -EBUSY;
1610 }
1611 /*
1612 * Try to invalidate first. This should work for
1613 * non dirty unmapped page cache pages.
1614 */
1615 ret = invalidate_inode_page(page);
1616 unlock_page(page);
1617 /*
1618 * RED-PEN would be better to keep it isolated here, but we
1619 * would need to fix isolation locking first.
1620 */
1621 if (ret == 1) {
1622 put_page(page);
1623 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1624 SetPageHWPoison(page);
1625 atomic_long_inc(&num_poisoned_pages);
1626 return 0;
1627 }
1628
1629 /*
1630 * Simple invalidation didn't work.
1631 * Try to migrate to a new page instead. migrate.c
1632 * handles a large number of cases for us.
1633 */
1634 ret = isolate_lru_page(page);
1635 /*
1636 * Drop page reference which is came from get_any_page()
1637 * successful isolate_lru_page() already took another one.
1638 */
1639 put_page(page);
1640 if (!ret) {
1641 LIST_HEAD(pagelist);
1642 inc_zone_page_state(page, NR_ISOLATED_ANON +
1643 page_is_file_cache(page));
1644 list_add(&page->lru, &pagelist);
1645 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1646 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1647 if (ret) {
1648 putback_lru_pages(&pagelist);
1649 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1650 pfn, ret, page->flags);
1651 if (ret > 0)
1652 ret = -EIO;
1653 } else {
1654 /*
1655 * After page migration succeeds, the source page can
1656 * be trapped in pagevec and actual freeing is delayed.
1657 * Freeing code works differently based on PG_hwpoison,
1658 * so there's a race. We need to make sure that the
1659 * source page should be freed back to buddy before
1660 * setting PG_hwpoison.
1661 */
1662 if (!is_free_buddy_page(page))
1663 lru_add_drain_all();
1664 if (!is_free_buddy_page(page))
1665 drain_all_pages();
1666 SetPageHWPoison(page);
1667 if (!is_free_buddy_page(page))
1668 pr_info("soft offline: %#lx: page leaked\n",
1669 pfn);
1670 atomic_long_inc(&num_poisoned_pages);
1671 }
1672 } else {
1673 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1674 pfn, ret, page_count(page), page->flags);
1675 }
1676 return ret;
1677 }