memcg: reparent charges of children before processing parent
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
61
62 #include <asm/uaccess.h>
63
64 #include <trace/events/vmscan.h>
65
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
68
69 #define MEM_CGROUP_RECLAIM_RETRIES 5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
75
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
82
83 #else
84 #define do_swap_account 0
85 #endif
86
87
88 /*
89 * Statistics for memory cgroup.
90 */
91 enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
100 MEM_CGROUP_STAT_NSTATS,
101 };
102
103 static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
106 "rss_huge",
107 "mapped_file",
108 "swap",
109 };
110
111 enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
116 MEM_CGROUP_EVENTS_NSTATS,
117 };
118
119 static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
124 };
125
126 static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
132 };
133
134 /*
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
139 */
140 enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
143 MEM_CGROUP_TARGET_NUMAINFO,
144 MEM_CGROUP_NTARGETS,
145 };
146 #define THRESHOLDS_EVENTS_TARGET 128
147 #define SOFTLIMIT_EVENTS_TARGET 1024
148 #define NUMAINFO_EVENTS_TARGET 1024
149
150 struct mem_cgroup_stat_cpu {
151 long count[MEM_CGROUP_STAT_NSTATS];
152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153 unsigned long nr_page_events;
154 unsigned long targets[MEM_CGROUP_NTARGETS];
155 };
156
157 struct mem_cgroup_reclaim_iter {
158 /*
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
161 */
162 struct mem_cgroup *last_visited;
163 unsigned long last_dead_count;
164
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
167 };
168
169 /*
170 * per-zone information in memory controller.
171 */
172 struct mem_cgroup_per_zone {
173 struct lruvec lruvec;
174 unsigned long lru_size[NR_LRU_LISTS];
175
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
183 /* use container_of */
184 };
185
186 struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188 };
189
190 struct mem_cgroup_lru_info {
191 struct mem_cgroup_per_node *nodeinfo[0];
192 };
193
194 /*
195 * Cgroups above their limits are maintained in a RB-Tree, independent of
196 * their hierarchy representation
197 */
198
199 struct mem_cgroup_tree_per_zone {
200 struct rb_root rb_root;
201 spinlock_t lock;
202 };
203
204 struct mem_cgroup_tree_per_node {
205 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
206 };
207
208 struct mem_cgroup_tree {
209 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
210 };
211
212 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
213
214 struct mem_cgroup_threshold {
215 struct eventfd_ctx *eventfd;
216 u64 threshold;
217 };
218
219 /* For threshold */
220 struct mem_cgroup_threshold_ary {
221 /* An array index points to threshold just below or equal to usage. */
222 int current_threshold;
223 /* Size of entries[] */
224 unsigned int size;
225 /* Array of thresholds */
226 struct mem_cgroup_threshold entries[0];
227 };
228
229 struct mem_cgroup_thresholds {
230 /* Primary thresholds array */
231 struct mem_cgroup_threshold_ary *primary;
232 /*
233 * Spare threshold array.
234 * This is needed to make mem_cgroup_unregister_event() "never fail".
235 * It must be able to store at least primary->size - 1 entries.
236 */
237 struct mem_cgroup_threshold_ary *spare;
238 };
239
240 /* for OOM */
241 struct mem_cgroup_eventfd_list {
242 struct list_head list;
243 struct eventfd_ctx *eventfd;
244 };
245
246 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
247 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
248
249 /*
250 * The memory controller data structure. The memory controller controls both
251 * page cache and RSS per cgroup. We would eventually like to provide
252 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
253 * to help the administrator determine what knobs to tune.
254 *
255 * TODO: Add a water mark for the memory controller. Reclaim will begin when
256 * we hit the water mark. May be even add a low water mark, such that
257 * no reclaim occurs from a cgroup at it's low water mark, this is
258 * a feature that will be implemented much later in the future.
259 */
260 struct mem_cgroup {
261 struct cgroup_subsys_state css;
262 /*
263 * the counter to account for memory usage
264 */
265 struct res_counter res;
266
267 /* vmpressure notifications */
268 struct vmpressure vmpressure;
269
270 union {
271 /*
272 * the counter to account for mem+swap usage.
273 */
274 struct res_counter memsw;
275
276 /*
277 * rcu_freeing is used only when freeing struct mem_cgroup,
278 * so put it into a union to avoid wasting more memory.
279 * It must be disjoint from the css field. It could be
280 * in a union with the res field, but res plays a much
281 * larger part in mem_cgroup life than memsw, and might
282 * be of interest, even at time of free, when debugging.
283 * So share rcu_head with the less interesting memsw.
284 */
285 struct rcu_head rcu_freeing;
286 /*
287 * We also need some space for a worker in deferred freeing.
288 * By the time we call it, rcu_freeing is no longer in use.
289 */
290 struct work_struct work_freeing;
291 };
292
293 /*
294 * the counter to account for kernel memory usage.
295 */
296 struct res_counter kmem;
297 /*
298 * Should the accounting and control be hierarchical, per subtree?
299 */
300 bool use_hierarchy;
301 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
302
303 bool oom_lock;
304 atomic_t under_oom;
305
306 atomic_t refcnt;
307
308 int swappiness;
309 /* OOM-Killer disable */
310 int oom_kill_disable;
311
312 /* set when res.limit == memsw.limit */
313 bool memsw_is_minimum;
314
315 /* protect arrays of thresholds */
316 struct mutex thresholds_lock;
317
318 /* thresholds for memory usage. RCU-protected */
319 struct mem_cgroup_thresholds thresholds;
320
321 /* thresholds for mem+swap usage. RCU-protected */
322 struct mem_cgroup_thresholds memsw_thresholds;
323
324 /* For oom notifier event fd */
325 struct list_head oom_notify;
326
327 /*
328 * Should we move charges of a task when a task is moved into this
329 * mem_cgroup ? And what type of charges should we move ?
330 */
331 unsigned long move_charge_at_immigrate;
332 /*
333 * set > 0 if pages under this cgroup are moving to other cgroup.
334 */
335 atomic_t moving_account;
336 /* taken only while moving_account > 0 */
337 spinlock_t move_lock;
338 /*
339 * percpu counter.
340 */
341 struct mem_cgroup_stat_cpu __percpu *stat;
342 /*
343 * used when a cpu is offlined or other synchronizations
344 * See mem_cgroup_read_stat().
345 */
346 struct mem_cgroup_stat_cpu nocpu_base;
347 spinlock_t pcp_counter_lock;
348
349 atomic_t dead_count;
350 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
351 struct tcp_memcontrol tcp_mem;
352 #endif
353 #if defined(CONFIG_MEMCG_KMEM)
354 /* analogous to slab_common's slab_caches list. per-memcg */
355 struct list_head memcg_slab_caches;
356 /* Not a spinlock, we can take a lot of time walking the list */
357 struct mutex slab_caches_mutex;
358 /* Index in the kmem_cache->memcg_params->memcg_caches array */
359 int kmemcg_id;
360 #endif
361
362 int last_scanned_node;
363 #if MAX_NUMNODES > 1
364 nodemask_t scan_nodes;
365 atomic_t numainfo_events;
366 atomic_t numainfo_updating;
367 #endif
368
369 /*
370 * Per cgroup active and inactive list, similar to the
371 * per zone LRU lists.
372 *
373 * WARNING: This has to be the last element of the struct. Don't
374 * add new fields after this point.
375 */
376 struct mem_cgroup_lru_info info;
377 };
378
379 static size_t memcg_size(void)
380 {
381 return sizeof(struct mem_cgroup) +
382 nr_node_ids * sizeof(struct mem_cgroup_per_node *);
383 }
384
385 /* internal only representation about the status of kmem accounting. */
386 enum {
387 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
388 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
389 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
390 };
391
392 /* We account when limit is on, but only after call sites are patched */
393 #define KMEM_ACCOUNTED_MASK \
394 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
395
396 #ifdef CONFIG_MEMCG_KMEM
397 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
398 {
399 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
400 }
401
402 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
403 {
404 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
405 }
406
407 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
408 {
409 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
410 }
411
412 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
413 {
414 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
415 }
416
417 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
418 {
419 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
420 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
421 }
422
423 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
424 {
425 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
426 &memcg->kmem_account_flags);
427 }
428 #endif
429
430 /* Stuffs for move charges at task migration. */
431 /*
432 * Types of charges to be moved. "move_charge_at_immitgrate" and
433 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
434 */
435 enum move_type {
436 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
437 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
438 NR_MOVE_TYPE,
439 };
440
441 /* "mc" and its members are protected by cgroup_mutex */
442 static struct move_charge_struct {
443 spinlock_t lock; /* for from, to */
444 struct mem_cgroup *from;
445 struct mem_cgroup *to;
446 unsigned long immigrate_flags;
447 unsigned long precharge;
448 unsigned long moved_charge;
449 unsigned long moved_swap;
450 struct task_struct *moving_task; /* a task moving charges */
451 wait_queue_head_t waitq; /* a waitq for other context */
452 } mc = {
453 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
454 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
455 };
456
457 static bool move_anon(void)
458 {
459 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
460 }
461
462 static bool move_file(void)
463 {
464 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
465 }
466
467 /*
468 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
469 * limit reclaim to prevent infinite loops, if they ever occur.
470 */
471 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
472 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
473
474 enum charge_type {
475 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
476 MEM_CGROUP_CHARGE_TYPE_ANON,
477 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
478 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
479 NR_CHARGE_TYPE,
480 };
481
482 /* for encoding cft->private value on file */
483 enum res_type {
484 _MEM,
485 _MEMSWAP,
486 _OOM_TYPE,
487 _KMEM,
488 };
489
490 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
491 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
492 #define MEMFILE_ATTR(val) ((val) & 0xffff)
493 /* Used for OOM nofiier */
494 #define OOM_CONTROL (0)
495
496 /*
497 * Reclaim flags for mem_cgroup_hierarchical_reclaim
498 */
499 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
500 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
501 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
502 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
503
504 /*
505 * The memcg_create_mutex will be held whenever a new cgroup is created.
506 * As a consequence, any change that needs to protect against new child cgroups
507 * appearing has to hold it as well.
508 */
509 static DEFINE_MUTEX(memcg_create_mutex);
510
511 static void mem_cgroup_get(struct mem_cgroup *memcg);
512 static void mem_cgroup_put(struct mem_cgroup *memcg);
513
514 static inline
515 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
516 {
517 return container_of(s, struct mem_cgroup, css);
518 }
519
520 /* Some nice accessors for the vmpressure. */
521 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
522 {
523 if (!memcg)
524 memcg = root_mem_cgroup;
525 return &memcg->vmpressure;
526 }
527
528 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
529 {
530 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
531 }
532
533 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
534 {
535 return &mem_cgroup_from_css(css)->vmpressure;
536 }
537
538 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
539 {
540 return (memcg == root_mem_cgroup);
541 }
542
543 /* Writing them here to avoid exposing memcg's inner layout */
544 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
545
546 void sock_update_memcg(struct sock *sk)
547 {
548 if (mem_cgroup_sockets_enabled) {
549 struct mem_cgroup *memcg;
550 struct cg_proto *cg_proto;
551
552 BUG_ON(!sk->sk_prot->proto_cgroup);
553
554 /* Socket cloning can throw us here with sk_cgrp already
555 * filled. It won't however, necessarily happen from
556 * process context. So the test for root memcg given
557 * the current task's memcg won't help us in this case.
558 *
559 * Respecting the original socket's memcg is a better
560 * decision in this case.
561 */
562 if (sk->sk_cgrp) {
563 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
564 mem_cgroup_get(sk->sk_cgrp->memcg);
565 return;
566 }
567
568 rcu_read_lock();
569 memcg = mem_cgroup_from_task(current);
570 cg_proto = sk->sk_prot->proto_cgroup(memcg);
571 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
572 mem_cgroup_get(memcg);
573 sk->sk_cgrp = cg_proto;
574 }
575 rcu_read_unlock();
576 }
577 }
578 EXPORT_SYMBOL(sock_update_memcg);
579
580 void sock_release_memcg(struct sock *sk)
581 {
582 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
583 struct mem_cgroup *memcg;
584 WARN_ON(!sk->sk_cgrp->memcg);
585 memcg = sk->sk_cgrp->memcg;
586 mem_cgroup_put(memcg);
587 }
588 }
589
590 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
591 {
592 if (!memcg || mem_cgroup_is_root(memcg))
593 return NULL;
594
595 return &memcg->tcp_mem.cg_proto;
596 }
597 EXPORT_SYMBOL(tcp_proto_cgroup);
598
599 static void disarm_sock_keys(struct mem_cgroup *memcg)
600 {
601 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
602 return;
603 static_key_slow_dec(&memcg_socket_limit_enabled);
604 }
605 #else
606 static void disarm_sock_keys(struct mem_cgroup *memcg)
607 {
608 }
609 #endif
610
611 #ifdef CONFIG_MEMCG_KMEM
612 /*
613 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
614 * There are two main reasons for not using the css_id for this:
615 * 1) this works better in sparse environments, where we have a lot of memcgs,
616 * but only a few kmem-limited. Or also, if we have, for instance, 200
617 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
618 * 200 entry array for that.
619 *
620 * 2) In order not to violate the cgroup API, we would like to do all memory
621 * allocation in ->create(). At that point, we haven't yet allocated the
622 * css_id. Having a separate index prevents us from messing with the cgroup
623 * core for this
624 *
625 * The current size of the caches array is stored in
626 * memcg_limited_groups_array_size. It will double each time we have to
627 * increase it.
628 */
629 static DEFINE_IDA(kmem_limited_groups);
630 int memcg_limited_groups_array_size;
631
632 /*
633 * MIN_SIZE is different than 1, because we would like to avoid going through
634 * the alloc/free process all the time. In a small machine, 4 kmem-limited
635 * cgroups is a reasonable guess. In the future, it could be a parameter or
636 * tunable, but that is strictly not necessary.
637 *
638 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
639 * this constant directly from cgroup, but it is understandable that this is
640 * better kept as an internal representation in cgroup.c. In any case, the
641 * css_id space is not getting any smaller, and we don't have to necessarily
642 * increase ours as well if it increases.
643 */
644 #define MEMCG_CACHES_MIN_SIZE 4
645 #define MEMCG_CACHES_MAX_SIZE 65535
646
647 /*
648 * A lot of the calls to the cache allocation functions are expected to be
649 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
650 * conditional to this static branch, we'll have to allow modules that does
651 * kmem_cache_alloc and the such to see this symbol as well
652 */
653 struct static_key memcg_kmem_enabled_key;
654 EXPORT_SYMBOL(memcg_kmem_enabled_key);
655
656 static void disarm_kmem_keys(struct mem_cgroup *memcg)
657 {
658 if (memcg_kmem_is_active(memcg)) {
659 static_key_slow_dec(&memcg_kmem_enabled_key);
660 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
661 }
662 /*
663 * This check can't live in kmem destruction function,
664 * since the charges will outlive the cgroup
665 */
666 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
667 }
668 #else
669 static void disarm_kmem_keys(struct mem_cgroup *memcg)
670 {
671 }
672 #endif /* CONFIG_MEMCG_KMEM */
673
674 static void disarm_static_keys(struct mem_cgroup *memcg)
675 {
676 disarm_sock_keys(memcg);
677 disarm_kmem_keys(memcg);
678 }
679
680 static void drain_all_stock_async(struct mem_cgroup *memcg);
681
682 static struct mem_cgroup_per_zone *
683 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
684 {
685 VM_BUG_ON((unsigned)nid >= nr_node_ids);
686 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
687 }
688
689 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
690 {
691 return &memcg->css;
692 }
693
694 static struct mem_cgroup_per_zone *
695 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
696 {
697 int nid = page_to_nid(page);
698 int zid = page_zonenum(page);
699
700 return mem_cgroup_zoneinfo(memcg, nid, zid);
701 }
702
703 static struct mem_cgroup_tree_per_zone *
704 soft_limit_tree_node_zone(int nid, int zid)
705 {
706 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
707 }
708
709 static struct mem_cgroup_tree_per_zone *
710 soft_limit_tree_from_page(struct page *page)
711 {
712 int nid = page_to_nid(page);
713 int zid = page_zonenum(page);
714
715 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
716 }
717
718 static void
719 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
720 struct mem_cgroup_per_zone *mz,
721 struct mem_cgroup_tree_per_zone *mctz,
722 unsigned long long new_usage_in_excess)
723 {
724 struct rb_node **p = &mctz->rb_root.rb_node;
725 struct rb_node *parent = NULL;
726 struct mem_cgroup_per_zone *mz_node;
727
728 if (mz->on_tree)
729 return;
730
731 mz->usage_in_excess = new_usage_in_excess;
732 if (!mz->usage_in_excess)
733 return;
734 while (*p) {
735 parent = *p;
736 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
737 tree_node);
738 if (mz->usage_in_excess < mz_node->usage_in_excess)
739 p = &(*p)->rb_left;
740 /*
741 * We can't avoid mem cgroups that are over their soft
742 * limit by the same amount
743 */
744 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
745 p = &(*p)->rb_right;
746 }
747 rb_link_node(&mz->tree_node, parent, p);
748 rb_insert_color(&mz->tree_node, &mctz->rb_root);
749 mz->on_tree = true;
750 }
751
752 static void
753 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
754 struct mem_cgroup_per_zone *mz,
755 struct mem_cgroup_tree_per_zone *mctz)
756 {
757 if (!mz->on_tree)
758 return;
759 rb_erase(&mz->tree_node, &mctz->rb_root);
760 mz->on_tree = false;
761 }
762
763 static void
764 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
765 struct mem_cgroup_per_zone *mz,
766 struct mem_cgroup_tree_per_zone *mctz)
767 {
768 spin_lock(&mctz->lock);
769 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
770 spin_unlock(&mctz->lock);
771 }
772
773
774 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
775 {
776 unsigned long long excess;
777 struct mem_cgroup_per_zone *mz;
778 struct mem_cgroup_tree_per_zone *mctz;
779 int nid = page_to_nid(page);
780 int zid = page_zonenum(page);
781 mctz = soft_limit_tree_from_page(page);
782
783 /*
784 * Necessary to update all ancestors when hierarchy is used.
785 * because their event counter is not touched.
786 */
787 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
788 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
789 excess = res_counter_soft_limit_excess(&memcg->res);
790 /*
791 * We have to update the tree if mz is on RB-tree or
792 * mem is over its softlimit.
793 */
794 if (excess || mz->on_tree) {
795 spin_lock(&mctz->lock);
796 /* if on-tree, remove it */
797 if (mz->on_tree)
798 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
799 /*
800 * Insert again. mz->usage_in_excess will be updated.
801 * If excess is 0, no tree ops.
802 */
803 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
804 spin_unlock(&mctz->lock);
805 }
806 }
807 }
808
809 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
810 {
811 int node, zone;
812 struct mem_cgroup_per_zone *mz;
813 struct mem_cgroup_tree_per_zone *mctz;
814
815 for_each_node(node) {
816 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
817 mz = mem_cgroup_zoneinfo(memcg, node, zone);
818 mctz = soft_limit_tree_node_zone(node, zone);
819 mem_cgroup_remove_exceeded(memcg, mz, mctz);
820 }
821 }
822 }
823
824 static struct mem_cgroup_per_zone *
825 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
826 {
827 struct rb_node *rightmost = NULL;
828 struct mem_cgroup_per_zone *mz;
829
830 retry:
831 mz = NULL;
832 rightmost = rb_last(&mctz->rb_root);
833 if (!rightmost)
834 goto done; /* Nothing to reclaim from */
835
836 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
837 /*
838 * Remove the node now but someone else can add it back,
839 * we will to add it back at the end of reclaim to its correct
840 * position in the tree.
841 */
842 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
843 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
844 !css_tryget(&mz->memcg->css))
845 goto retry;
846 done:
847 return mz;
848 }
849
850 static struct mem_cgroup_per_zone *
851 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
852 {
853 struct mem_cgroup_per_zone *mz;
854
855 spin_lock(&mctz->lock);
856 mz = __mem_cgroup_largest_soft_limit_node(mctz);
857 spin_unlock(&mctz->lock);
858 return mz;
859 }
860
861 /*
862 * Implementation Note: reading percpu statistics for memcg.
863 *
864 * Both of vmstat[] and percpu_counter has threshold and do periodic
865 * synchronization to implement "quick" read. There are trade-off between
866 * reading cost and precision of value. Then, we may have a chance to implement
867 * a periodic synchronizion of counter in memcg's counter.
868 *
869 * But this _read() function is used for user interface now. The user accounts
870 * memory usage by memory cgroup and he _always_ requires exact value because
871 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
872 * have to visit all online cpus and make sum. So, for now, unnecessary
873 * synchronization is not implemented. (just implemented for cpu hotplug)
874 *
875 * If there are kernel internal actions which can make use of some not-exact
876 * value, and reading all cpu value can be performance bottleneck in some
877 * common workload, threashold and synchonization as vmstat[] should be
878 * implemented.
879 */
880 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
881 enum mem_cgroup_stat_index idx)
882 {
883 long val = 0;
884 int cpu;
885
886 get_online_cpus();
887 for_each_online_cpu(cpu)
888 val += per_cpu(memcg->stat->count[idx], cpu);
889 #ifdef CONFIG_HOTPLUG_CPU
890 spin_lock(&memcg->pcp_counter_lock);
891 val += memcg->nocpu_base.count[idx];
892 spin_unlock(&memcg->pcp_counter_lock);
893 #endif
894 put_online_cpus();
895 return val;
896 }
897
898 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
899 bool charge)
900 {
901 int val = (charge) ? 1 : -1;
902 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
903 }
904
905 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
906 enum mem_cgroup_events_index idx)
907 {
908 unsigned long val = 0;
909 int cpu;
910
911 for_each_online_cpu(cpu)
912 val += per_cpu(memcg->stat->events[idx], cpu);
913 #ifdef CONFIG_HOTPLUG_CPU
914 spin_lock(&memcg->pcp_counter_lock);
915 val += memcg->nocpu_base.events[idx];
916 spin_unlock(&memcg->pcp_counter_lock);
917 #endif
918 return val;
919 }
920
921 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
922 struct page *page,
923 bool anon, int nr_pages)
924 {
925 preempt_disable();
926
927 /*
928 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
929 * counted as CACHE even if it's on ANON LRU.
930 */
931 if (anon)
932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
933 nr_pages);
934 else
935 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
936 nr_pages);
937
938 if (PageTransHuge(page))
939 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
940 nr_pages);
941
942 /* pagein of a big page is an event. So, ignore page size */
943 if (nr_pages > 0)
944 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
945 else {
946 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
947 nr_pages = -nr_pages; /* for event */
948 }
949
950 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
951
952 preempt_enable();
953 }
954
955 unsigned long
956 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
957 {
958 struct mem_cgroup_per_zone *mz;
959
960 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
961 return mz->lru_size[lru];
962 }
963
964 static unsigned long
965 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
966 unsigned int lru_mask)
967 {
968 struct mem_cgroup_per_zone *mz;
969 enum lru_list lru;
970 unsigned long ret = 0;
971
972 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
973
974 for_each_lru(lru) {
975 if (BIT(lru) & lru_mask)
976 ret += mz->lru_size[lru];
977 }
978 return ret;
979 }
980
981 static unsigned long
982 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
983 int nid, unsigned int lru_mask)
984 {
985 u64 total = 0;
986 int zid;
987
988 for (zid = 0; zid < MAX_NR_ZONES; zid++)
989 total += mem_cgroup_zone_nr_lru_pages(memcg,
990 nid, zid, lru_mask);
991
992 return total;
993 }
994
995 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
996 unsigned int lru_mask)
997 {
998 int nid;
999 u64 total = 0;
1000
1001 for_each_node_state(nid, N_MEMORY)
1002 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1003 return total;
1004 }
1005
1006 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1007 enum mem_cgroup_events_target target)
1008 {
1009 unsigned long val, next;
1010
1011 val = __this_cpu_read(memcg->stat->nr_page_events);
1012 next = __this_cpu_read(memcg->stat->targets[target]);
1013 /* from time_after() in jiffies.h */
1014 if ((long)next - (long)val < 0) {
1015 switch (target) {
1016 case MEM_CGROUP_TARGET_THRESH:
1017 next = val + THRESHOLDS_EVENTS_TARGET;
1018 break;
1019 case MEM_CGROUP_TARGET_SOFTLIMIT:
1020 next = val + SOFTLIMIT_EVENTS_TARGET;
1021 break;
1022 case MEM_CGROUP_TARGET_NUMAINFO:
1023 next = val + NUMAINFO_EVENTS_TARGET;
1024 break;
1025 default:
1026 break;
1027 }
1028 __this_cpu_write(memcg->stat->targets[target], next);
1029 return true;
1030 }
1031 return false;
1032 }
1033
1034 /*
1035 * Check events in order.
1036 *
1037 */
1038 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1039 {
1040 preempt_disable();
1041 /* threshold event is triggered in finer grain than soft limit */
1042 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1043 MEM_CGROUP_TARGET_THRESH))) {
1044 bool do_softlimit;
1045 bool do_numainfo __maybe_unused;
1046
1047 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1048 MEM_CGROUP_TARGET_SOFTLIMIT);
1049 #if MAX_NUMNODES > 1
1050 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1051 MEM_CGROUP_TARGET_NUMAINFO);
1052 #endif
1053 preempt_enable();
1054
1055 mem_cgroup_threshold(memcg);
1056 if (unlikely(do_softlimit))
1057 mem_cgroup_update_tree(memcg, page);
1058 #if MAX_NUMNODES > 1
1059 if (unlikely(do_numainfo))
1060 atomic_inc(&memcg->numainfo_events);
1061 #endif
1062 } else
1063 preempt_enable();
1064 }
1065
1066 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1067 {
1068 return mem_cgroup_from_css(
1069 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1070 }
1071
1072 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1073 {
1074 /*
1075 * mm_update_next_owner() may clear mm->owner to NULL
1076 * if it races with swapoff, page migration, etc.
1077 * So this can be called with p == NULL.
1078 */
1079 if (unlikely(!p))
1080 return NULL;
1081
1082 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1083 }
1084
1085 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1086 {
1087 struct mem_cgroup *memcg = NULL;
1088
1089 if (!mm)
1090 return NULL;
1091 /*
1092 * Because we have no locks, mm->owner's may be being moved to other
1093 * cgroup. We use css_tryget() here even if this looks
1094 * pessimistic (rather than adding locks here).
1095 */
1096 rcu_read_lock();
1097 do {
1098 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1099 if (unlikely(!memcg))
1100 break;
1101 } while (!css_tryget(&memcg->css));
1102 rcu_read_unlock();
1103 return memcg;
1104 }
1105
1106 /*
1107 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1108 * ref. count) or NULL if the whole root's subtree has been visited.
1109 *
1110 * helper function to be used by mem_cgroup_iter
1111 */
1112 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1113 struct mem_cgroup *last_visited)
1114 {
1115 struct cgroup *prev_cgroup, *next_cgroup;
1116
1117 /*
1118 * Root is not visited by cgroup iterators so it needs an
1119 * explicit visit.
1120 */
1121 if (!last_visited)
1122 return root;
1123
1124 prev_cgroup = (last_visited == root) ? NULL
1125 : last_visited->css.cgroup;
1126 skip_node:
1127 next_cgroup = cgroup_next_descendant_pre(
1128 prev_cgroup, root->css.cgroup);
1129
1130 /*
1131 * Even if we found a group we have to make sure it is
1132 * alive. css && !memcg means that the groups should be
1133 * skipped and we should continue the tree walk.
1134 * last_visited css is safe to use because it is
1135 * protected by css_get and the tree walk is rcu safe.
1136 */
1137 if (next_cgroup) {
1138 struct mem_cgroup *mem = mem_cgroup_from_cont(
1139 next_cgroup);
1140 if (css_tryget(&mem->css))
1141 return mem;
1142 else {
1143 prev_cgroup = next_cgroup;
1144 goto skip_node;
1145 }
1146 }
1147
1148 return NULL;
1149 }
1150
1151 /**
1152 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1153 * @root: hierarchy root
1154 * @prev: previously returned memcg, NULL on first invocation
1155 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1156 *
1157 * Returns references to children of the hierarchy below @root, or
1158 * @root itself, or %NULL after a full round-trip.
1159 *
1160 * Caller must pass the return value in @prev on subsequent
1161 * invocations for reference counting, or use mem_cgroup_iter_break()
1162 * to cancel a hierarchy walk before the round-trip is complete.
1163 *
1164 * Reclaimers can specify a zone and a priority level in @reclaim to
1165 * divide up the memcgs in the hierarchy among all concurrent
1166 * reclaimers operating on the same zone and priority.
1167 */
1168 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1169 struct mem_cgroup *prev,
1170 struct mem_cgroup_reclaim_cookie *reclaim)
1171 {
1172 struct mem_cgroup *memcg = NULL;
1173 struct mem_cgroup *last_visited = NULL;
1174 unsigned long uninitialized_var(dead_count);
1175
1176 if (mem_cgroup_disabled())
1177 return NULL;
1178
1179 if (!root)
1180 root = root_mem_cgroup;
1181
1182 if (prev && !reclaim)
1183 last_visited = prev;
1184
1185 if (!root->use_hierarchy && root != root_mem_cgroup) {
1186 if (prev)
1187 goto out_css_put;
1188 return root;
1189 }
1190
1191 rcu_read_lock();
1192 while (!memcg) {
1193 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1194
1195 if (reclaim) {
1196 int nid = zone_to_nid(reclaim->zone);
1197 int zid = zone_idx(reclaim->zone);
1198 struct mem_cgroup_per_zone *mz;
1199
1200 mz = mem_cgroup_zoneinfo(root, nid, zid);
1201 iter = &mz->reclaim_iter[reclaim->priority];
1202 if (prev && reclaim->generation != iter->generation) {
1203 iter->last_visited = NULL;
1204 goto out_unlock;
1205 }
1206
1207 /*
1208 * If the dead_count mismatches, a destruction
1209 * has happened or is happening concurrently.
1210 * If the dead_count matches, a destruction
1211 * might still happen concurrently, but since
1212 * we checked under RCU, that destruction
1213 * won't free the object until we release the
1214 * RCU reader lock. Thus, the dead_count
1215 * check verifies the pointer is still valid,
1216 * css_tryget() verifies the cgroup pointed to
1217 * is alive.
1218 */
1219 dead_count = atomic_read(&root->dead_count);
1220 if (dead_count == iter->last_dead_count) {
1221 smp_rmb();
1222 last_visited = iter->last_visited;
1223 if (last_visited && last_visited != root &&
1224 !css_tryget(&last_visited->css))
1225 last_visited = NULL;
1226 }
1227 }
1228
1229 memcg = __mem_cgroup_iter_next(root, last_visited);
1230
1231 if (reclaim) {
1232 if (last_visited && last_visited != root)
1233 css_put(&last_visited->css);
1234
1235 iter->last_visited = memcg;
1236 smp_wmb();
1237 iter->last_dead_count = dead_count;
1238
1239 if (!memcg)
1240 iter->generation++;
1241 else if (!prev && memcg)
1242 reclaim->generation = iter->generation;
1243 }
1244
1245 if (prev && !memcg)
1246 goto out_unlock;
1247 }
1248 out_unlock:
1249 rcu_read_unlock();
1250 out_css_put:
1251 if (prev && prev != root)
1252 css_put(&prev->css);
1253
1254 return memcg;
1255 }
1256
1257 /**
1258 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1259 * @root: hierarchy root
1260 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1261 */
1262 void mem_cgroup_iter_break(struct mem_cgroup *root,
1263 struct mem_cgroup *prev)
1264 {
1265 if (!root)
1266 root = root_mem_cgroup;
1267 if (prev && prev != root)
1268 css_put(&prev->css);
1269 }
1270
1271 /*
1272 * Iteration constructs for visiting all cgroups (under a tree). If
1273 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1274 * be used for reference counting.
1275 */
1276 #define for_each_mem_cgroup_tree(iter, root) \
1277 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1278 iter != NULL; \
1279 iter = mem_cgroup_iter(root, iter, NULL))
1280
1281 #define for_each_mem_cgroup(iter) \
1282 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1283 iter != NULL; \
1284 iter = mem_cgroup_iter(NULL, iter, NULL))
1285
1286 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1287 {
1288 struct mem_cgroup *memcg;
1289
1290 rcu_read_lock();
1291 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1292 if (unlikely(!memcg))
1293 goto out;
1294
1295 switch (idx) {
1296 case PGFAULT:
1297 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1298 break;
1299 case PGMAJFAULT:
1300 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1301 break;
1302 default:
1303 BUG();
1304 }
1305 out:
1306 rcu_read_unlock();
1307 }
1308 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1309
1310 /**
1311 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1312 * @zone: zone of the wanted lruvec
1313 * @memcg: memcg of the wanted lruvec
1314 *
1315 * Returns the lru list vector holding pages for the given @zone and
1316 * @mem. This can be the global zone lruvec, if the memory controller
1317 * is disabled.
1318 */
1319 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1320 struct mem_cgroup *memcg)
1321 {
1322 struct mem_cgroup_per_zone *mz;
1323 struct lruvec *lruvec;
1324
1325 if (mem_cgroup_disabled()) {
1326 lruvec = &zone->lruvec;
1327 goto out;
1328 }
1329
1330 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1331 lruvec = &mz->lruvec;
1332 out:
1333 /*
1334 * Since a node can be onlined after the mem_cgroup was created,
1335 * we have to be prepared to initialize lruvec->zone here;
1336 * and if offlined then reonlined, we need to reinitialize it.
1337 */
1338 if (unlikely(lruvec->zone != zone))
1339 lruvec->zone = zone;
1340 return lruvec;
1341 }
1342
1343 /*
1344 * Following LRU functions are allowed to be used without PCG_LOCK.
1345 * Operations are called by routine of global LRU independently from memcg.
1346 * What we have to take care of here is validness of pc->mem_cgroup.
1347 *
1348 * Changes to pc->mem_cgroup happens when
1349 * 1. charge
1350 * 2. moving account
1351 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1352 * It is added to LRU before charge.
1353 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1354 * When moving account, the page is not on LRU. It's isolated.
1355 */
1356
1357 /**
1358 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1359 * @page: the page
1360 * @zone: zone of the page
1361 */
1362 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1363 {
1364 struct mem_cgroup_per_zone *mz;
1365 struct mem_cgroup *memcg;
1366 struct page_cgroup *pc;
1367 struct lruvec *lruvec;
1368
1369 if (mem_cgroup_disabled()) {
1370 lruvec = &zone->lruvec;
1371 goto out;
1372 }
1373
1374 pc = lookup_page_cgroup(page);
1375 memcg = pc->mem_cgroup;
1376
1377 /*
1378 * Surreptitiously switch any uncharged offlist page to root:
1379 * an uncharged page off lru does nothing to secure
1380 * its former mem_cgroup from sudden removal.
1381 *
1382 * Our caller holds lru_lock, and PageCgroupUsed is updated
1383 * under page_cgroup lock: between them, they make all uses
1384 * of pc->mem_cgroup safe.
1385 */
1386 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1387 pc->mem_cgroup = memcg = root_mem_cgroup;
1388
1389 mz = page_cgroup_zoneinfo(memcg, page);
1390 lruvec = &mz->lruvec;
1391 out:
1392 /*
1393 * Since a node can be onlined after the mem_cgroup was created,
1394 * we have to be prepared to initialize lruvec->zone here;
1395 * and if offlined then reonlined, we need to reinitialize it.
1396 */
1397 if (unlikely(lruvec->zone != zone))
1398 lruvec->zone = zone;
1399 return lruvec;
1400 }
1401
1402 /**
1403 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1404 * @lruvec: mem_cgroup per zone lru vector
1405 * @lru: index of lru list the page is sitting on
1406 * @nr_pages: positive when adding or negative when removing
1407 *
1408 * This function must be called when a page is added to or removed from an
1409 * lru list.
1410 */
1411 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1412 int nr_pages)
1413 {
1414 struct mem_cgroup_per_zone *mz;
1415 unsigned long *lru_size;
1416
1417 if (mem_cgroup_disabled())
1418 return;
1419
1420 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1421 lru_size = mz->lru_size + lru;
1422 *lru_size += nr_pages;
1423 VM_BUG_ON((long)(*lru_size) < 0);
1424 }
1425
1426 /*
1427 * Checks whether given mem is same or in the root_mem_cgroup's
1428 * hierarchy subtree
1429 */
1430 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1431 struct mem_cgroup *memcg)
1432 {
1433 if (root_memcg == memcg)
1434 return true;
1435 if (!root_memcg->use_hierarchy || !memcg)
1436 return false;
1437 return css_is_ancestor(&memcg->css, &root_memcg->css);
1438 }
1439
1440 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1441 struct mem_cgroup *memcg)
1442 {
1443 bool ret;
1444
1445 rcu_read_lock();
1446 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1447 rcu_read_unlock();
1448 return ret;
1449 }
1450
1451 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1452 {
1453 int ret;
1454 struct mem_cgroup *curr = NULL;
1455 struct task_struct *p;
1456
1457 p = find_lock_task_mm(task);
1458 if (p) {
1459 curr = try_get_mem_cgroup_from_mm(p->mm);
1460 task_unlock(p);
1461 } else {
1462 /*
1463 * All threads may have already detached their mm's, but the oom
1464 * killer still needs to detect if they have already been oom
1465 * killed to prevent needlessly killing additional tasks.
1466 */
1467 task_lock(task);
1468 curr = mem_cgroup_from_task(task);
1469 if (curr)
1470 css_get(&curr->css);
1471 task_unlock(task);
1472 }
1473 if (!curr)
1474 return 0;
1475 /*
1476 * We should check use_hierarchy of "memcg" not "curr". Because checking
1477 * use_hierarchy of "curr" here make this function true if hierarchy is
1478 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1479 * hierarchy(even if use_hierarchy is disabled in "memcg").
1480 */
1481 ret = mem_cgroup_same_or_subtree(memcg, curr);
1482 css_put(&curr->css);
1483 return ret;
1484 }
1485
1486 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1487 {
1488 unsigned long inactive_ratio;
1489 unsigned long inactive;
1490 unsigned long active;
1491 unsigned long gb;
1492
1493 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1494 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1495
1496 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1497 if (gb)
1498 inactive_ratio = int_sqrt(10 * gb);
1499 else
1500 inactive_ratio = 1;
1501
1502 return inactive * inactive_ratio < active;
1503 }
1504
1505 #define mem_cgroup_from_res_counter(counter, member) \
1506 container_of(counter, struct mem_cgroup, member)
1507
1508 /**
1509 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1510 * @memcg: the memory cgroup
1511 *
1512 * Returns the maximum amount of memory @mem can be charged with, in
1513 * pages.
1514 */
1515 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1516 {
1517 unsigned long long margin;
1518
1519 margin = res_counter_margin(&memcg->res);
1520 if (do_swap_account)
1521 margin = min(margin, res_counter_margin(&memcg->memsw));
1522 return margin >> PAGE_SHIFT;
1523 }
1524
1525 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1526 {
1527 struct cgroup *cgrp = memcg->css.cgroup;
1528
1529 /* root ? */
1530 if (cgrp->parent == NULL)
1531 return vm_swappiness;
1532
1533 return memcg->swappiness;
1534 }
1535
1536 /*
1537 * memcg->moving_account is used for checking possibility that some thread is
1538 * calling move_account(). When a thread on CPU-A starts moving pages under
1539 * a memcg, other threads should check memcg->moving_account under
1540 * rcu_read_lock(), like this:
1541 *
1542 * CPU-A CPU-B
1543 * rcu_read_lock()
1544 * memcg->moving_account+1 if (memcg->mocing_account)
1545 * take heavy locks.
1546 * synchronize_rcu() update something.
1547 * rcu_read_unlock()
1548 * start move here.
1549 */
1550
1551 /* for quick checking without looking up memcg */
1552 atomic_t memcg_moving __read_mostly;
1553
1554 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1555 {
1556 atomic_inc(&memcg_moving);
1557 atomic_inc(&memcg->moving_account);
1558 synchronize_rcu();
1559 }
1560
1561 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1562 {
1563 /*
1564 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1565 * We check NULL in callee rather than caller.
1566 */
1567 if (memcg) {
1568 atomic_dec(&memcg_moving);
1569 atomic_dec(&memcg->moving_account);
1570 }
1571 }
1572
1573 /*
1574 * 2 routines for checking "mem" is under move_account() or not.
1575 *
1576 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1577 * is used for avoiding races in accounting. If true,
1578 * pc->mem_cgroup may be overwritten.
1579 *
1580 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1581 * under hierarchy of moving cgroups. This is for
1582 * waiting at hith-memory prressure caused by "move".
1583 */
1584
1585 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1586 {
1587 VM_BUG_ON(!rcu_read_lock_held());
1588 return atomic_read(&memcg->moving_account) > 0;
1589 }
1590
1591 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1592 {
1593 struct mem_cgroup *from;
1594 struct mem_cgroup *to;
1595 bool ret = false;
1596 /*
1597 * Unlike task_move routines, we access mc.to, mc.from not under
1598 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1599 */
1600 spin_lock(&mc.lock);
1601 from = mc.from;
1602 to = mc.to;
1603 if (!from)
1604 goto unlock;
1605
1606 ret = mem_cgroup_same_or_subtree(memcg, from)
1607 || mem_cgroup_same_or_subtree(memcg, to);
1608 unlock:
1609 spin_unlock(&mc.lock);
1610 return ret;
1611 }
1612
1613 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1614 {
1615 if (mc.moving_task && current != mc.moving_task) {
1616 if (mem_cgroup_under_move(memcg)) {
1617 DEFINE_WAIT(wait);
1618 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1619 /* moving charge context might have finished. */
1620 if (mc.moving_task)
1621 schedule();
1622 finish_wait(&mc.waitq, &wait);
1623 return true;
1624 }
1625 }
1626 return false;
1627 }
1628
1629 /*
1630 * Take this lock when
1631 * - a code tries to modify page's memcg while it's USED.
1632 * - a code tries to modify page state accounting in a memcg.
1633 * see mem_cgroup_stolen(), too.
1634 */
1635 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1636 unsigned long *flags)
1637 {
1638 spin_lock_irqsave(&memcg->move_lock, *flags);
1639 }
1640
1641 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1642 unsigned long *flags)
1643 {
1644 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1645 }
1646
1647 #define K(x) ((x) << (PAGE_SHIFT-10))
1648 /**
1649 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1650 * @memcg: The memory cgroup that went over limit
1651 * @p: Task that is going to be killed
1652 *
1653 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1654 * enabled
1655 */
1656 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1657 {
1658 struct cgroup *task_cgrp;
1659 struct cgroup *mem_cgrp;
1660 /*
1661 * Need a buffer in BSS, can't rely on allocations. The code relies
1662 * on the assumption that OOM is serialized for memory controller.
1663 * If this assumption is broken, revisit this code.
1664 */
1665 static char memcg_name[PATH_MAX];
1666 int ret;
1667 struct mem_cgroup *iter;
1668 unsigned int i;
1669
1670 if (!p)
1671 return;
1672
1673 rcu_read_lock();
1674
1675 mem_cgrp = memcg->css.cgroup;
1676 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1677
1678 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1679 if (ret < 0) {
1680 /*
1681 * Unfortunately, we are unable to convert to a useful name
1682 * But we'll still print out the usage information
1683 */
1684 rcu_read_unlock();
1685 goto done;
1686 }
1687 rcu_read_unlock();
1688
1689 pr_info("Task in %s killed", memcg_name);
1690
1691 rcu_read_lock();
1692 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1693 if (ret < 0) {
1694 rcu_read_unlock();
1695 goto done;
1696 }
1697 rcu_read_unlock();
1698
1699 /*
1700 * Continues from above, so we don't need an KERN_ level
1701 */
1702 pr_cont(" as a result of limit of %s\n", memcg_name);
1703 done:
1704
1705 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1706 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1707 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1708 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1709 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1710 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1711 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1712 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1713 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1714 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1715 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1716 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1717
1718 for_each_mem_cgroup_tree(iter, memcg) {
1719 pr_info("Memory cgroup stats");
1720
1721 rcu_read_lock();
1722 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1723 if (!ret)
1724 pr_cont(" for %s", memcg_name);
1725 rcu_read_unlock();
1726 pr_cont(":");
1727
1728 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1729 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1730 continue;
1731 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1732 K(mem_cgroup_read_stat(iter, i)));
1733 }
1734
1735 for (i = 0; i < NR_LRU_LISTS; i++)
1736 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1737 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1738
1739 pr_cont("\n");
1740 }
1741 }
1742
1743 /*
1744 * This function returns the number of memcg under hierarchy tree. Returns
1745 * 1(self count) if no children.
1746 */
1747 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1748 {
1749 int num = 0;
1750 struct mem_cgroup *iter;
1751
1752 for_each_mem_cgroup_tree(iter, memcg)
1753 num++;
1754 return num;
1755 }
1756
1757 /*
1758 * Return the memory (and swap, if configured) limit for a memcg.
1759 */
1760 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1761 {
1762 u64 limit;
1763
1764 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1765
1766 /*
1767 * Do not consider swap space if we cannot swap due to swappiness
1768 */
1769 if (mem_cgroup_swappiness(memcg)) {
1770 u64 memsw;
1771
1772 limit += total_swap_pages << PAGE_SHIFT;
1773 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1774
1775 /*
1776 * If memsw is finite and limits the amount of swap space
1777 * available to this memcg, return that limit.
1778 */
1779 limit = min(limit, memsw);
1780 }
1781
1782 return limit;
1783 }
1784
1785 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1786 int order)
1787 {
1788 struct mem_cgroup *iter;
1789 unsigned long chosen_points = 0;
1790 unsigned long totalpages;
1791 unsigned int points = 0;
1792 struct task_struct *chosen = NULL;
1793
1794 /*
1795 * If current has a pending SIGKILL or is exiting, then automatically
1796 * select it. The goal is to allow it to allocate so that it may
1797 * quickly exit and free its memory.
1798 */
1799 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1800 set_thread_flag(TIF_MEMDIE);
1801 return;
1802 }
1803
1804 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1805 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1806 for_each_mem_cgroup_tree(iter, memcg) {
1807 struct cgroup *cgroup = iter->css.cgroup;
1808 struct cgroup_iter it;
1809 struct task_struct *task;
1810
1811 cgroup_iter_start(cgroup, &it);
1812 while ((task = cgroup_iter_next(cgroup, &it))) {
1813 switch (oom_scan_process_thread(task, totalpages, NULL,
1814 false)) {
1815 case OOM_SCAN_SELECT:
1816 if (chosen)
1817 put_task_struct(chosen);
1818 chosen = task;
1819 chosen_points = ULONG_MAX;
1820 get_task_struct(chosen);
1821 /* fall through */
1822 case OOM_SCAN_CONTINUE:
1823 continue;
1824 case OOM_SCAN_ABORT:
1825 cgroup_iter_end(cgroup, &it);
1826 mem_cgroup_iter_break(memcg, iter);
1827 if (chosen)
1828 put_task_struct(chosen);
1829 return;
1830 case OOM_SCAN_OK:
1831 break;
1832 };
1833 points = oom_badness(task, memcg, NULL, totalpages);
1834 if (points > chosen_points) {
1835 if (chosen)
1836 put_task_struct(chosen);
1837 chosen = task;
1838 chosen_points = points;
1839 get_task_struct(chosen);
1840 }
1841 }
1842 cgroup_iter_end(cgroup, &it);
1843 }
1844
1845 if (!chosen)
1846 return;
1847 points = chosen_points * 1000 / totalpages;
1848 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1849 NULL, "Memory cgroup out of memory");
1850 }
1851
1852 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1853 gfp_t gfp_mask,
1854 unsigned long flags)
1855 {
1856 unsigned long total = 0;
1857 bool noswap = false;
1858 int loop;
1859
1860 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1861 noswap = true;
1862 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1863 noswap = true;
1864
1865 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1866 if (loop)
1867 drain_all_stock_async(memcg);
1868 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1869 /*
1870 * Allow limit shrinkers, which are triggered directly
1871 * by userspace, to catch signals and stop reclaim
1872 * after minimal progress, regardless of the margin.
1873 */
1874 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1875 break;
1876 if (mem_cgroup_margin(memcg))
1877 break;
1878 /*
1879 * If nothing was reclaimed after two attempts, there
1880 * may be no reclaimable pages in this hierarchy.
1881 */
1882 if (loop && !total)
1883 break;
1884 }
1885 return total;
1886 }
1887
1888 /**
1889 * test_mem_cgroup_node_reclaimable
1890 * @memcg: the target memcg
1891 * @nid: the node ID to be checked.
1892 * @noswap : specify true here if the user wants flle only information.
1893 *
1894 * This function returns whether the specified memcg contains any
1895 * reclaimable pages on a node. Returns true if there are any reclaimable
1896 * pages in the node.
1897 */
1898 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1899 int nid, bool noswap)
1900 {
1901 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1902 return true;
1903 if (noswap || !total_swap_pages)
1904 return false;
1905 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1906 return true;
1907 return false;
1908
1909 }
1910 #if MAX_NUMNODES > 1
1911
1912 /*
1913 * Always updating the nodemask is not very good - even if we have an empty
1914 * list or the wrong list here, we can start from some node and traverse all
1915 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1916 *
1917 */
1918 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1919 {
1920 int nid;
1921 /*
1922 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1923 * pagein/pageout changes since the last update.
1924 */
1925 if (!atomic_read(&memcg->numainfo_events))
1926 return;
1927 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1928 return;
1929
1930 /* make a nodemask where this memcg uses memory from */
1931 memcg->scan_nodes = node_states[N_MEMORY];
1932
1933 for_each_node_mask(nid, node_states[N_MEMORY]) {
1934
1935 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1936 node_clear(nid, memcg->scan_nodes);
1937 }
1938
1939 atomic_set(&memcg->numainfo_events, 0);
1940 atomic_set(&memcg->numainfo_updating, 0);
1941 }
1942
1943 /*
1944 * Selecting a node where we start reclaim from. Because what we need is just
1945 * reducing usage counter, start from anywhere is O,K. Considering
1946 * memory reclaim from current node, there are pros. and cons.
1947 *
1948 * Freeing memory from current node means freeing memory from a node which
1949 * we'll use or we've used. So, it may make LRU bad. And if several threads
1950 * hit limits, it will see a contention on a node. But freeing from remote
1951 * node means more costs for memory reclaim because of memory latency.
1952 *
1953 * Now, we use round-robin. Better algorithm is welcomed.
1954 */
1955 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1956 {
1957 int node;
1958
1959 mem_cgroup_may_update_nodemask(memcg);
1960 node = memcg->last_scanned_node;
1961
1962 node = next_node(node, memcg->scan_nodes);
1963 if (node == MAX_NUMNODES)
1964 node = first_node(memcg->scan_nodes);
1965 /*
1966 * We call this when we hit limit, not when pages are added to LRU.
1967 * No LRU may hold pages because all pages are UNEVICTABLE or
1968 * memcg is too small and all pages are not on LRU. In that case,
1969 * we use curret node.
1970 */
1971 if (unlikely(node == MAX_NUMNODES))
1972 node = numa_node_id();
1973
1974 memcg->last_scanned_node = node;
1975 return node;
1976 }
1977
1978 /*
1979 * Check all nodes whether it contains reclaimable pages or not.
1980 * For quick scan, we make use of scan_nodes. This will allow us to skip
1981 * unused nodes. But scan_nodes is lazily updated and may not cotain
1982 * enough new information. We need to do double check.
1983 */
1984 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1985 {
1986 int nid;
1987
1988 /*
1989 * quick check...making use of scan_node.
1990 * We can skip unused nodes.
1991 */
1992 if (!nodes_empty(memcg->scan_nodes)) {
1993 for (nid = first_node(memcg->scan_nodes);
1994 nid < MAX_NUMNODES;
1995 nid = next_node(nid, memcg->scan_nodes)) {
1996
1997 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1998 return true;
1999 }
2000 }
2001 /*
2002 * Check rest of nodes.
2003 */
2004 for_each_node_state(nid, N_MEMORY) {
2005 if (node_isset(nid, memcg->scan_nodes))
2006 continue;
2007 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2008 return true;
2009 }
2010 return false;
2011 }
2012
2013 #else
2014 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2015 {
2016 return 0;
2017 }
2018
2019 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2020 {
2021 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2022 }
2023 #endif
2024
2025 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2026 struct zone *zone,
2027 gfp_t gfp_mask,
2028 unsigned long *total_scanned)
2029 {
2030 struct mem_cgroup *victim = NULL;
2031 int total = 0;
2032 int loop = 0;
2033 unsigned long excess;
2034 unsigned long nr_scanned;
2035 struct mem_cgroup_reclaim_cookie reclaim = {
2036 .zone = zone,
2037 .priority = 0,
2038 };
2039
2040 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2041
2042 while (1) {
2043 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2044 if (!victim) {
2045 loop++;
2046 if (loop >= 2) {
2047 /*
2048 * If we have not been able to reclaim
2049 * anything, it might because there are
2050 * no reclaimable pages under this hierarchy
2051 */
2052 if (!total)
2053 break;
2054 /*
2055 * We want to do more targeted reclaim.
2056 * excess >> 2 is not to excessive so as to
2057 * reclaim too much, nor too less that we keep
2058 * coming back to reclaim from this cgroup
2059 */
2060 if (total >= (excess >> 2) ||
2061 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2062 break;
2063 }
2064 continue;
2065 }
2066 if (!mem_cgroup_reclaimable(victim, false))
2067 continue;
2068 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2069 zone, &nr_scanned);
2070 *total_scanned += nr_scanned;
2071 if (!res_counter_soft_limit_excess(&root_memcg->res))
2072 break;
2073 }
2074 mem_cgroup_iter_break(root_memcg, victim);
2075 return total;
2076 }
2077
2078 /*
2079 * Check OOM-Killer is already running under our hierarchy.
2080 * If someone is running, return false.
2081 * Has to be called with memcg_oom_lock
2082 */
2083 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
2084 {
2085 struct mem_cgroup *iter, *failed = NULL;
2086
2087 for_each_mem_cgroup_tree(iter, memcg) {
2088 if (iter->oom_lock) {
2089 /*
2090 * this subtree of our hierarchy is already locked
2091 * so we cannot give a lock.
2092 */
2093 failed = iter;
2094 mem_cgroup_iter_break(memcg, iter);
2095 break;
2096 } else
2097 iter->oom_lock = true;
2098 }
2099
2100 if (!failed)
2101 return true;
2102
2103 /*
2104 * OK, we failed to lock the whole subtree so we have to clean up
2105 * what we set up to the failing subtree
2106 */
2107 for_each_mem_cgroup_tree(iter, memcg) {
2108 if (iter == failed) {
2109 mem_cgroup_iter_break(memcg, iter);
2110 break;
2111 }
2112 iter->oom_lock = false;
2113 }
2114 return false;
2115 }
2116
2117 /*
2118 * Has to be called with memcg_oom_lock
2119 */
2120 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2121 {
2122 struct mem_cgroup *iter;
2123
2124 for_each_mem_cgroup_tree(iter, memcg)
2125 iter->oom_lock = false;
2126 return 0;
2127 }
2128
2129 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2130 {
2131 struct mem_cgroup *iter;
2132
2133 for_each_mem_cgroup_tree(iter, memcg)
2134 atomic_inc(&iter->under_oom);
2135 }
2136
2137 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2138 {
2139 struct mem_cgroup *iter;
2140
2141 /*
2142 * When a new child is created while the hierarchy is under oom,
2143 * mem_cgroup_oom_lock() may not be called. We have to use
2144 * atomic_add_unless() here.
2145 */
2146 for_each_mem_cgroup_tree(iter, memcg)
2147 atomic_add_unless(&iter->under_oom, -1, 0);
2148 }
2149
2150 static DEFINE_SPINLOCK(memcg_oom_lock);
2151 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2152
2153 struct oom_wait_info {
2154 struct mem_cgroup *memcg;
2155 wait_queue_t wait;
2156 };
2157
2158 static int memcg_oom_wake_function(wait_queue_t *wait,
2159 unsigned mode, int sync, void *arg)
2160 {
2161 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2162 struct mem_cgroup *oom_wait_memcg;
2163 struct oom_wait_info *oom_wait_info;
2164
2165 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2166 oom_wait_memcg = oom_wait_info->memcg;
2167
2168 /*
2169 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2170 * Then we can use css_is_ancestor without taking care of RCU.
2171 */
2172 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2173 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2174 return 0;
2175 return autoremove_wake_function(wait, mode, sync, arg);
2176 }
2177
2178 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2179 {
2180 /* for filtering, pass "memcg" as argument. */
2181 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2182 }
2183
2184 static void memcg_oom_recover(struct mem_cgroup *memcg)
2185 {
2186 if (memcg && atomic_read(&memcg->under_oom))
2187 memcg_wakeup_oom(memcg);
2188 }
2189
2190 /*
2191 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2192 */
2193 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2194 int order)
2195 {
2196 struct oom_wait_info owait;
2197 bool locked, need_to_kill;
2198
2199 owait.memcg = memcg;
2200 owait.wait.flags = 0;
2201 owait.wait.func = memcg_oom_wake_function;
2202 owait.wait.private = current;
2203 INIT_LIST_HEAD(&owait.wait.task_list);
2204 need_to_kill = true;
2205 mem_cgroup_mark_under_oom(memcg);
2206
2207 /* At first, try to OOM lock hierarchy under memcg.*/
2208 spin_lock(&memcg_oom_lock);
2209 locked = mem_cgroup_oom_lock(memcg);
2210 /*
2211 * Even if signal_pending(), we can't quit charge() loop without
2212 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2213 * under OOM is always welcomed, use TASK_KILLABLE here.
2214 */
2215 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2216 if (!locked || memcg->oom_kill_disable)
2217 need_to_kill = false;
2218 if (locked)
2219 mem_cgroup_oom_notify(memcg);
2220 spin_unlock(&memcg_oom_lock);
2221
2222 if (need_to_kill) {
2223 finish_wait(&memcg_oom_waitq, &owait.wait);
2224 mem_cgroup_out_of_memory(memcg, mask, order);
2225 } else {
2226 schedule();
2227 finish_wait(&memcg_oom_waitq, &owait.wait);
2228 }
2229 spin_lock(&memcg_oom_lock);
2230 if (locked)
2231 mem_cgroup_oom_unlock(memcg);
2232 memcg_wakeup_oom(memcg);
2233 spin_unlock(&memcg_oom_lock);
2234
2235 mem_cgroup_unmark_under_oom(memcg);
2236
2237 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2238 return false;
2239 /* Give chance to dying process */
2240 schedule_timeout_uninterruptible(1);
2241 return true;
2242 }
2243
2244 /*
2245 * Currently used to update mapped file statistics, but the routine can be
2246 * generalized to update other statistics as well.
2247 *
2248 * Notes: Race condition
2249 *
2250 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2251 * it tends to be costly. But considering some conditions, we doesn't need
2252 * to do so _always_.
2253 *
2254 * Considering "charge", lock_page_cgroup() is not required because all
2255 * file-stat operations happen after a page is attached to radix-tree. There
2256 * are no race with "charge".
2257 *
2258 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2259 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2260 * if there are race with "uncharge". Statistics itself is properly handled
2261 * by flags.
2262 *
2263 * Considering "move", this is an only case we see a race. To make the race
2264 * small, we check mm->moving_account and detect there are possibility of race
2265 * If there is, we take a lock.
2266 */
2267
2268 void __mem_cgroup_begin_update_page_stat(struct page *page,
2269 bool *locked, unsigned long *flags)
2270 {
2271 struct mem_cgroup *memcg;
2272 struct page_cgroup *pc;
2273
2274 pc = lookup_page_cgroup(page);
2275 again:
2276 memcg = pc->mem_cgroup;
2277 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2278 return;
2279 /*
2280 * If this memory cgroup is not under account moving, we don't
2281 * need to take move_lock_mem_cgroup(). Because we already hold
2282 * rcu_read_lock(), any calls to move_account will be delayed until
2283 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2284 */
2285 if (!mem_cgroup_stolen(memcg))
2286 return;
2287
2288 move_lock_mem_cgroup(memcg, flags);
2289 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2290 move_unlock_mem_cgroup(memcg, flags);
2291 goto again;
2292 }
2293 *locked = true;
2294 }
2295
2296 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2297 {
2298 struct page_cgroup *pc = lookup_page_cgroup(page);
2299
2300 /*
2301 * It's guaranteed that pc->mem_cgroup never changes while
2302 * lock is held because a routine modifies pc->mem_cgroup
2303 * should take move_lock_mem_cgroup().
2304 */
2305 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2306 }
2307
2308 void mem_cgroup_update_page_stat(struct page *page,
2309 enum mem_cgroup_page_stat_item idx, int val)
2310 {
2311 struct mem_cgroup *memcg;
2312 struct page_cgroup *pc = lookup_page_cgroup(page);
2313 unsigned long uninitialized_var(flags);
2314
2315 if (mem_cgroup_disabled())
2316 return;
2317
2318 memcg = pc->mem_cgroup;
2319 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2320 return;
2321
2322 switch (idx) {
2323 case MEMCG_NR_FILE_MAPPED:
2324 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2325 break;
2326 default:
2327 BUG();
2328 }
2329
2330 this_cpu_add(memcg->stat->count[idx], val);
2331 }
2332
2333 /*
2334 * size of first charge trial. "32" comes from vmscan.c's magic value.
2335 * TODO: maybe necessary to use big numbers in big irons.
2336 */
2337 #define CHARGE_BATCH 32U
2338 struct memcg_stock_pcp {
2339 struct mem_cgroup *cached; /* this never be root cgroup */
2340 unsigned int nr_pages;
2341 struct work_struct work;
2342 unsigned long flags;
2343 #define FLUSHING_CACHED_CHARGE 0
2344 };
2345 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2346 static DEFINE_MUTEX(percpu_charge_mutex);
2347
2348 /**
2349 * consume_stock: Try to consume stocked charge on this cpu.
2350 * @memcg: memcg to consume from.
2351 * @nr_pages: how many pages to charge.
2352 *
2353 * The charges will only happen if @memcg matches the current cpu's memcg
2354 * stock, and at least @nr_pages are available in that stock. Failure to
2355 * service an allocation will refill the stock.
2356 *
2357 * returns true if successful, false otherwise.
2358 */
2359 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2360 {
2361 struct memcg_stock_pcp *stock;
2362 bool ret = true;
2363
2364 if (nr_pages > CHARGE_BATCH)
2365 return false;
2366
2367 stock = &get_cpu_var(memcg_stock);
2368 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2369 stock->nr_pages -= nr_pages;
2370 else /* need to call res_counter_charge */
2371 ret = false;
2372 put_cpu_var(memcg_stock);
2373 return ret;
2374 }
2375
2376 /*
2377 * Returns stocks cached in percpu to res_counter and reset cached information.
2378 */
2379 static void drain_stock(struct memcg_stock_pcp *stock)
2380 {
2381 struct mem_cgroup *old = stock->cached;
2382
2383 if (stock->nr_pages) {
2384 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2385
2386 res_counter_uncharge(&old->res, bytes);
2387 if (do_swap_account)
2388 res_counter_uncharge(&old->memsw, bytes);
2389 stock->nr_pages = 0;
2390 }
2391 stock->cached = NULL;
2392 }
2393
2394 /*
2395 * This must be called under preempt disabled or must be called by
2396 * a thread which is pinned to local cpu.
2397 */
2398 static void drain_local_stock(struct work_struct *dummy)
2399 {
2400 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2401 drain_stock(stock);
2402 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2403 }
2404
2405 static void __init memcg_stock_init(void)
2406 {
2407 int cpu;
2408
2409 for_each_possible_cpu(cpu) {
2410 struct memcg_stock_pcp *stock =
2411 &per_cpu(memcg_stock, cpu);
2412 INIT_WORK(&stock->work, drain_local_stock);
2413 }
2414 }
2415
2416 /*
2417 * Cache charges(val) which is from res_counter, to local per_cpu area.
2418 * This will be consumed by consume_stock() function, later.
2419 */
2420 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2421 {
2422 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2423
2424 if (stock->cached != memcg) { /* reset if necessary */
2425 drain_stock(stock);
2426 stock->cached = memcg;
2427 }
2428 stock->nr_pages += nr_pages;
2429 put_cpu_var(memcg_stock);
2430 }
2431
2432 /*
2433 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2434 * of the hierarchy under it. sync flag says whether we should block
2435 * until the work is done.
2436 */
2437 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2438 {
2439 int cpu, curcpu;
2440
2441 /* Notify other cpus that system-wide "drain" is running */
2442 get_online_cpus();
2443 curcpu = get_cpu();
2444 for_each_online_cpu(cpu) {
2445 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2446 struct mem_cgroup *memcg;
2447
2448 memcg = stock->cached;
2449 if (!memcg || !stock->nr_pages)
2450 continue;
2451 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2452 continue;
2453 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2454 if (cpu == curcpu)
2455 drain_local_stock(&stock->work);
2456 else
2457 schedule_work_on(cpu, &stock->work);
2458 }
2459 }
2460 put_cpu();
2461
2462 if (!sync)
2463 goto out;
2464
2465 for_each_online_cpu(cpu) {
2466 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2467 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2468 flush_work(&stock->work);
2469 }
2470 out:
2471 put_online_cpus();
2472 }
2473
2474 /*
2475 * Tries to drain stocked charges in other cpus. This function is asynchronous
2476 * and just put a work per cpu for draining localy on each cpu. Caller can
2477 * expects some charges will be back to res_counter later but cannot wait for
2478 * it.
2479 */
2480 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2481 {
2482 /*
2483 * If someone calls draining, avoid adding more kworker runs.
2484 */
2485 if (!mutex_trylock(&percpu_charge_mutex))
2486 return;
2487 drain_all_stock(root_memcg, false);
2488 mutex_unlock(&percpu_charge_mutex);
2489 }
2490
2491 /* This is a synchronous drain interface. */
2492 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2493 {
2494 /* called when force_empty is called */
2495 mutex_lock(&percpu_charge_mutex);
2496 drain_all_stock(root_memcg, true);
2497 mutex_unlock(&percpu_charge_mutex);
2498 }
2499
2500 /*
2501 * This function drains percpu counter value from DEAD cpu and
2502 * move it to local cpu. Note that this function can be preempted.
2503 */
2504 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2505 {
2506 int i;
2507
2508 spin_lock(&memcg->pcp_counter_lock);
2509 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2510 long x = per_cpu(memcg->stat->count[i], cpu);
2511
2512 per_cpu(memcg->stat->count[i], cpu) = 0;
2513 memcg->nocpu_base.count[i] += x;
2514 }
2515 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2516 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2517
2518 per_cpu(memcg->stat->events[i], cpu) = 0;
2519 memcg->nocpu_base.events[i] += x;
2520 }
2521 spin_unlock(&memcg->pcp_counter_lock);
2522 }
2523
2524 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2525 unsigned long action,
2526 void *hcpu)
2527 {
2528 int cpu = (unsigned long)hcpu;
2529 struct memcg_stock_pcp *stock;
2530 struct mem_cgroup *iter;
2531
2532 if (action == CPU_ONLINE)
2533 return NOTIFY_OK;
2534
2535 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2536 return NOTIFY_OK;
2537
2538 for_each_mem_cgroup(iter)
2539 mem_cgroup_drain_pcp_counter(iter, cpu);
2540
2541 stock = &per_cpu(memcg_stock, cpu);
2542 drain_stock(stock);
2543 return NOTIFY_OK;
2544 }
2545
2546
2547 /* See __mem_cgroup_try_charge() for details */
2548 enum {
2549 CHARGE_OK, /* success */
2550 CHARGE_RETRY, /* need to retry but retry is not bad */
2551 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2552 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2553 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2554 };
2555
2556 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2557 unsigned int nr_pages, unsigned int min_pages,
2558 bool oom_check)
2559 {
2560 unsigned long csize = nr_pages * PAGE_SIZE;
2561 struct mem_cgroup *mem_over_limit;
2562 struct res_counter *fail_res;
2563 unsigned long flags = 0;
2564 int ret;
2565
2566 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2567
2568 if (likely(!ret)) {
2569 if (!do_swap_account)
2570 return CHARGE_OK;
2571 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2572 if (likely(!ret))
2573 return CHARGE_OK;
2574
2575 res_counter_uncharge(&memcg->res, csize);
2576 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2577 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2578 } else
2579 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2580 /*
2581 * Never reclaim on behalf of optional batching, retry with a
2582 * single page instead.
2583 */
2584 if (nr_pages > min_pages)
2585 return CHARGE_RETRY;
2586
2587 if (!(gfp_mask & __GFP_WAIT))
2588 return CHARGE_WOULDBLOCK;
2589
2590 if (gfp_mask & __GFP_NORETRY)
2591 return CHARGE_NOMEM;
2592
2593 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2594 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2595 return CHARGE_RETRY;
2596 /*
2597 * Even though the limit is exceeded at this point, reclaim
2598 * may have been able to free some pages. Retry the charge
2599 * before killing the task.
2600 *
2601 * Only for regular pages, though: huge pages are rather
2602 * unlikely to succeed so close to the limit, and we fall back
2603 * to regular pages anyway in case of failure.
2604 */
2605 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2606 return CHARGE_RETRY;
2607
2608 /*
2609 * At task move, charge accounts can be doubly counted. So, it's
2610 * better to wait until the end of task_move if something is going on.
2611 */
2612 if (mem_cgroup_wait_acct_move(mem_over_limit))
2613 return CHARGE_RETRY;
2614
2615 /* If we don't need to call oom-killer at el, return immediately */
2616 if (!oom_check)
2617 return CHARGE_NOMEM;
2618 /* check OOM */
2619 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2620 return CHARGE_OOM_DIE;
2621
2622 return CHARGE_RETRY;
2623 }
2624
2625 /*
2626 * __mem_cgroup_try_charge() does
2627 * 1. detect memcg to be charged against from passed *mm and *ptr,
2628 * 2. update res_counter
2629 * 3. call memory reclaim if necessary.
2630 *
2631 * In some special case, if the task is fatal, fatal_signal_pending() or
2632 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2633 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2634 * as possible without any hazards. 2: all pages should have a valid
2635 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2636 * pointer, that is treated as a charge to root_mem_cgroup.
2637 *
2638 * So __mem_cgroup_try_charge() will return
2639 * 0 ... on success, filling *ptr with a valid memcg pointer.
2640 * -ENOMEM ... charge failure because of resource limits.
2641 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2642 *
2643 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2644 * the oom-killer can be invoked.
2645 */
2646 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2647 gfp_t gfp_mask,
2648 unsigned int nr_pages,
2649 struct mem_cgroup **ptr,
2650 bool oom)
2651 {
2652 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2653 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2654 struct mem_cgroup *memcg = NULL;
2655 int ret;
2656
2657 /*
2658 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2659 * in system level. So, allow to go ahead dying process in addition to
2660 * MEMDIE process.
2661 */
2662 if (unlikely(test_thread_flag(TIF_MEMDIE)
2663 || fatal_signal_pending(current)))
2664 goto bypass;
2665
2666 /*
2667 * We always charge the cgroup the mm_struct belongs to.
2668 * The mm_struct's mem_cgroup changes on task migration if the
2669 * thread group leader migrates. It's possible that mm is not
2670 * set, if so charge the root memcg (happens for pagecache usage).
2671 */
2672 if (!*ptr && !mm)
2673 *ptr = root_mem_cgroup;
2674 again:
2675 if (*ptr) { /* css should be a valid one */
2676 memcg = *ptr;
2677 if (mem_cgroup_is_root(memcg))
2678 goto done;
2679 if (consume_stock(memcg, nr_pages))
2680 goto done;
2681 css_get(&memcg->css);
2682 } else {
2683 struct task_struct *p;
2684
2685 rcu_read_lock();
2686 p = rcu_dereference(mm->owner);
2687 /*
2688 * Because we don't have task_lock(), "p" can exit.
2689 * In that case, "memcg" can point to root or p can be NULL with
2690 * race with swapoff. Then, we have small risk of mis-accouning.
2691 * But such kind of mis-account by race always happens because
2692 * we don't have cgroup_mutex(). It's overkill and we allo that
2693 * small race, here.
2694 * (*) swapoff at el will charge against mm-struct not against
2695 * task-struct. So, mm->owner can be NULL.
2696 */
2697 memcg = mem_cgroup_from_task(p);
2698 if (!memcg)
2699 memcg = root_mem_cgroup;
2700 if (mem_cgroup_is_root(memcg)) {
2701 rcu_read_unlock();
2702 goto done;
2703 }
2704 if (consume_stock(memcg, nr_pages)) {
2705 /*
2706 * It seems dagerous to access memcg without css_get().
2707 * But considering how consume_stok works, it's not
2708 * necessary. If consume_stock success, some charges
2709 * from this memcg are cached on this cpu. So, we
2710 * don't need to call css_get()/css_tryget() before
2711 * calling consume_stock().
2712 */
2713 rcu_read_unlock();
2714 goto done;
2715 }
2716 /* after here, we may be blocked. we need to get refcnt */
2717 if (!css_tryget(&memcg->css)) {
2718 rcu_read_unlock();
2719 goto again;
2720 }
2721 rcu_read_unlock();
2722 }
2723
2724 do {
2725 bool oom_check;
2726
2727 /* If killed, bypass charge */
2728 if (fatal_signal_pending(current)) {
2729 css_put(&memcg->css);
2730 goto bypass;
2731 }
2732
2733 oom_check = false;
2734 if (oom && !nr_oom_retries) {
2735 oom_check = true;
2736 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2737 }
2738
2739 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2740 oom_check);
2741 switch (ret) {
2742 case CHARGE_OK:
2743 break;
2744 case CHARGE_RETRY: /* not in OOM situation but retry */
2745 batch = nr_pages;
2746 css_put(&memcg->css);
2747 memcg = NULL;
2748 goto again;
2749 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2750 css_put(&memcg->css);
2751 goto nomem;
2752 case CHARGE_NOMEM: /* OOM routine works */
2753 if (!oom) {
2754 css_put(&memcg->css);
2755 goto nomem;
2756 }
2757 /* If oom, we never return -ENOMEM */
2758 nr_oom_retries--;
2759 break;
2760 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2761 css_put(&memcg->css);
2762 goto bypass;
2763 }
2764 } while (ret != CHARGE_OK);
2765
2766 if (batch > nr_pages)
2767 refill_stock(memcg, batch - nr_pages);
2768 css_put(&memcg->css);
2769 done:
2770 *ptr = memcg;
2771 return 0;
2772 nomem:
2773 *ptr = NULL;
2774 return -ENOMEM;
2775 bypass:
2776 *ptr = root_mem_cgroup;
2777 return -EINTR;
2778 }
2779
2780 /*
2781 * Somemtimes we have to undo a charge we got by try_charge().
2782 * This function is for that and do uncharge, put css's refcnt.
2783 * gotten by try_charge().
2784 */
2785 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2786 unsigned int nr_pages)
2787 {
2788 if (!mem_cgroup_is_root(memcg)) {
2789 unsigned long bytes = nr_pages * PAGE_SIZE;
2790
2791 res_counter_uncharge(&memcg->res, bytes);
2792 if (do_swap_account)
2793 res_counter_uncharge(&memcg->memsw, bytes);
2794 }
2795 }
2796
2797 /*
2798 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2799 * This is useful when moving usage to parent cgroup.
2800 */
2801 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2802 unsigned int nr_pages)
2803 {
2804 unsigned long bytes = nr_pages * PAGE_SIZE;
2805
2806 if (mem_cgroup_is_root(memcg))
2807 return;
2808
2809 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2810 if (do_swap_account)
2811 res_counter_uncharge_until(&memcg->memsw,
2812 memcg->memsw.parent, bytes);
2813 }
2814
2815 /*
2816 * A helper function to get mem_cgroup from ID. must be called under
2817 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2818 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2819 * called against removed memcg.)
2820 */
2821 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2822 {
2823 struct cgroup_subsys_state *css;
2824
2825 /* ID 0 is unused ID */
2826 if (!id)
2827 return NULL;
2828 css = css_lookup(&mem_cgroup_subsys, id);
2829 if (!css)
2830 return NULL;
2831 return mem_cgroup_from_css(css);
2832 }
2833
2834 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2835 {
2836 struct mem_cgroup *memcg = NULL;
2837 struct page_cgroup *pc;
2838 unsigned short id;
2839 swp_entry_t ent;
2840
2841 VM_BUG_ON(!PageLocked(page));
2842
2843 pc = lookup_page_cgroup(page);
2844 lock_page_cgroup(pc);
2845 if (PageCgroupUsed(pc)) {
2846 memcg = pc->mem_cgroup;
2847 if (memcg && !css_tryget(&memcg->css))
2848 memcg = NULL;
2849 } else if (PageSwapCache(page)) {
2850 ent.val = page_private(page);
2851 id = lookup_swap_cgroup_id(ent);
2852 rcu_read_lock();
2853 memcg = mem_cgroup_lookup(id);
2854 if (memcg && !css_tryget(&memcg->css))
2855 memcg = NULL;
2856 rcu_read_unlock();
2857 }
2858 unlock_page_cgroup(pc);
2859 return memcg;
2860 }
2861
2862 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2863 struct page *page,
2864 unsigned int nr_pages,
2865 enum charge_type ctype,
2866 bool lrucare)
2867 {
2868 struct page_cgroup *pc = lookup_page_cgroup(page);
2869 struct zone *uninitialized_var(zone);
2870 struct lruvec *lruvec;
2871 bool was_on_lru = false;
2872 bool anon;
2873
2874 lock_page_cgroup(pc);
2875 VM_BUG_ON(PageCgroupUsed(pc));
2876 /*
2877 * we don't need page_cgroup_lock about tail pages, becase they are not
2878 * accessed by any other context at this point.
2879 */
2880
2881 /*
2882 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2883 * may already be on some other mem_cgroup's LRU. Take care of it.
2884 */
2885 if (lrucare) {
2886 zone = page_zone(page);
2887 spin_lock_irq(&zone->lru_lock);
2888 if (PageLRU(page)) {
2889 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2890 ClearPageLRU(page);
2891 del_page_from_lru_list(page, lruvec, page_lru(page));
2892 was_on_lru = true;
2893 }
2894 }
2895
2896 pc->mem_cgroup = memcg;
2897 /*
2898 * We access a page_cgroup asynchronously without lock_page_cgroup().
2899 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2900 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2901 * before USED bit, we need memory barrier here.
2902 * See mem_cgroup_add_lru_list(), etc.
2903 */
2904 smp_wmb();
2905 SetPageCgroupUsed(pc);
2906
2907 if (lrucare) {
2908 if (was_on_lru) {
2909 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2910 VM_BUG_ON(PageLRU(page));
2911 SetPageLRU(page);
2912 add_page_to_lru_list(page, lruvec, page_lru(page));
2913 }
2914 spin_unlock_irq(&zone->lru_lock);
2915 }
2916
2917 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2918 anon = true;
2919 else
2920 anon = false;
2921
2922 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2923 unlock_page_cgroup(pc);
2924
2925 /*
2926 * "charge_statistics" updated event counter. Then, check it.
2927 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2928 * if they exceeds softlimit.
2929 */
2930 memcg_check_events(memcg, page);
2931 }
2932
2933 static DEFINE_MUTEX(set_limit_mutex);
2934
2935 #ifdef CONFIG_MEMCG_KMEM
2936 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2937 {
2938 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2939 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2940 }
2941
2942 /*
2943 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2944 * in the memcg_cache_params struct.
2945 */
2946 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2947 {
2948 struct kmem_cache *cachep;
2949
2950 VM_BUG_ON(p->is_root_cache);
2951 cachep = p->root_cache;
2952 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2953 }
2954
2955 #ifdef CONFIG_SLABINFO
2956 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2957 struct seq_file *m)
2958 {
2959 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2960 struct memcg_cache_params *params;
2961
2962 if (!memcg_can_account_kmem(memcg))
2963 return -EIO;
2964
2965 print_slabinfo_header(m);
2966
2967 mutex_lock(&memcg->slab_caches_mutex);
2968 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2969 cache_show(memcg_params_to_cache(params), m);
2970 mutex_unlock(&memcg->slab_caches_mutex);
2971
2972 return 0;
2973 }
2974 #endif
2975
2976 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2977 {
2978 struct res_counter *fail_res;
2979 struct mem_cgroup *_memcg;
2980 int ret = 0;
2981 bool may_oom;
2982
2983 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2984 if (ret)
2985 return ret;
2986
2987 /*
2988 * Conditions under which we can wait for the oom_killer. Those are
2989 * the same conditions tested by the core page allocator
2990 */
2991 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2992
2993 _memcg = memcg;
2994 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2995 &_memcg, may_oom);
2996
2997 if (ret == -EINTR) {
2998 /*
2999 * __mem_cgroup_try_charge() chosed to bypass to root due to
3000 * OOM kill or fatal signal. Since our only options are to
3001 * either fail the allocation or charge it to this cgroup, do
3002 * it as a temporary condition. But we can't fail. From a
3003 * kmem/slab perspective, the cache has already been selected,
3004 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3005 * our minds.
3006 *
3007 * This condition will only trigger if the task entered
3008 * memcg_charge_kmem in a sane state, but was OOM-killed during
3009 * __mem_cgroup_try_charge() above. Tasks that were already
3010 * dying when the allocation triggers should have been already
3011 * directed to the root cgroup in memcontrol.h
3012 */
3013 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3014 if (do_swap_account)
3015 res_counter_charge_nofail(&memcg->memsw, size,
3016 &fail_res);
3017 ret = 0;
3018 } else if (ret)
3019 res_counter_uncharge(&memcg->kmem, size);
3020
3021 return ret;
3022 }
3023
3024 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3025 {
3026 res_counter_uncharge(&memcg->res, size);
3027 if (do_swap_account)
3028 res_counter_uncharge(&memcg->memsw, size);
3029
3030 /* Not down to 0 */
3031 if (res_counter_uncharge(&memcg->kmem, size))
3032 return;
3033
3034 if (memcg_kmem_test_and_clear_dead(memcg))
3035 mem_cgroup_put(memcg);
3036 }
3037
3038 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3039 {
3040 if (!memcg)
3041 return;
3042
3043 mutex_lock(&memcg->slab_caches_mutex);
3044 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3045 mutex_unlock(&memcg->slab_caches_mutex);
3046 }
3047
3048 /*
3049 * helper for acessing a memcg's index. It will be used as an index in the
3050 * child cache array in kmem_cache, and also to derive its name. This function
3051 * will return -1 when this is not a kmem-limited memcg.
3052 */
3053 int memcg_cache_id(struct mem_cgroup *memcg)
3054 {
3055 return memcg ? memcg->kmemcg_id : -1;
3056 }
3057
3058 /*
3059 * This ends up being protected by the set_limit mutex, during normal
3060 * operation, because that is its main call site.
3061 *
3062 * But when we create a new cache, we can call this as well if its parent
3063 * is kmem-limited. That will have to hold set_limit_mutex as well.
3064 */
3065 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3066 {
3067 int num, ret;
3068
3069 num = ida_simple_get(&kmem_limited_groups,
3070 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3071 if (num < 0)
3072 return num;
3073 /*
3074 * After this point, kmem_accounted (that we test atomically in
3075 * the beginning of this conditional), is no longer 0. This
3076 * guarantees only one process will set the following boolean
3077 * to true. We don't need test_and_set because we're protected
3078 * by the set_limit_mutex anyway.
3079 */
3080 memcg_kmem_set_activated(memcg);
3081
3082 ret = memcg_update_all_caches(num+1);
3083 if (ret) {
3084 ida_simple_remove(&kmem_limited_groups, num);
3085 memcg_kmem_clear_activated(memcg);
3086 return ret;
3087 }
3088
3089 memcg->kmemcg_id = num;
3090 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3091 mutex_init(&memcg->slab_caches_mutex);
3092 return 0;
3093 }
3094
3095 static size_t memcg_caches_array_size(int num_groups)
3096 {
3097 ssize_t size;
3098 if (num_groups <= 0)
3099 return 0;
3100
3101 size = 2 * num_groups;
3102 if (size < MEMCG_CACHES_MIN_SIZE)
3103 size = MEMCG_CACHES_MIN_SIZE;
3104 else if (size > MEMCG_CACHES_MAX_SIZE)
3105 size = MEMCG_CACHES_MAX_SIZE;
3106
3107 return size;
3108 }
3109
3110 /*
3111 * We should update the current array size iff all caches updates succeed. This
3112 * can only be done from the slab side. The slab mutex needs to be held when
3113 * calling this.
3114 */
3115 void memcg_update_array_size(int num)
3116 {
3117 if (num > memcg_limited_groups_array_size)
3118 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3119 }
3120
3121 static void kmem_cache_destroy_work_func(struct work_struct *w);
3122
3123 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3124 {
3125 struct memcg_cache_params *cur_params = s->memcg_params;
3126
3127 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3128
3129 if (num_groups > memcg_limited_groups_array_size) {
3130 int i;
3131 ssize_t size = memcg_caches_array_size(num_groups);
3132
3133 size *= sizeof(void *);
3134 size += sizeof(struct memcg_cache_params);
3135
3136 s->memcg_params = kzalloc(size, GFP_KERNEL);
3137 if (!s->memcg_params) {
3138 s->memcg_params = cur_params;
3139 return -ENOMEM;
3140 }
3141
3142 s->memcg_params->is_root_cache = true;
3143
3144 /*
3145 * There is the chance it will be bigger than
3146 * memcg_limited_groups_array_size, if we failed an allocation
3147 * in a cache, in which case all caches updated before it, will
3148 * have a bigger array.
3149 *
3150 * But if that is the case, the data after
3151 * memcg_limited_groups_array_size is certainly unused
3152 */
3153 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3154 if (!cur_params->memcg_caches[i])
3155 continue;
3156 s->memcg_params->memcg_caches[i] =
3157 cur_params->memcg_caches[i];
3158 }
3159
3160 /*
3161 * Ideally, we would wait until all caches succeed, and only
3162 * then free the old one. But this is not worth the extra
3163 * pointer per-cache we'd have to have for this.
3164 *
3165 * It is not a big deal if some caches are left with a size
3166 * bigger than the others. And all updates will reset this
3167 * anyway.
3168 */
3169 kfree(cur_params);
3170 }
3171 return 0;
3172 }
3173
3174 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3175 struct kmem_cache *root_cache)
3176 {
3177 size_t size = sizeof(struct memcg_cache_params);
3178
3179 if (!memcg_kmem_enabled())
3180 return 0;
3181
3182 if (!memcg)
3183 size += memcg_limited_groups_array_size * sizeof(void *);
3184
3185 s->memcg_params = kzalloc(size, GFP_KERNEL);
3186 if (!s->memcg_params)
3187 return -ENOMEM;
3188
3189 if (memcg) {
3190 s->memcg_params->memcg = memcg;
3191 s->memcg_params->root_cache = root_cache;
3192 INIT_WORK(&s->memcg_params->destroy,
3193 kmem_cache_destroy_work_func);
3194 } else
3195 s->memcg_params->is_root_cache = true;
3196
3197 return 0;
3198 }
3199
3200 void memcg_release_cache(struct kmem_cache *s)
3201 {
3202 struct kmem_cache *root;
3203 struct mem_cgroup *memcg;
3204 int id;
3205
3206 /*
3207 * This happens, for instance, when a root cache goes away before we
3208 * add any memcg.
3209 */
3210 if (!s->memcg_params)
3211 return;
3212
3213 if (s->memcg_params->is_root_cache)
3214 goto out;
3215
3216 memcg = s->memcg_params->memcg;
3217 id = memcg_cache_id(memcg);
3218
3219 root = s->memcg_params->root_cache;
3220 root->memcg_params->memcg_caches[id] = NULL;
3221
3222 mutex_lock(&memcg->slab_caches_mutex);
3223 list_del(&s->memcg_params->list);
3224 mutex_unlock(&memcg->slab_caches_mutex);
3225
3226 mem_cgroup_put(memcg);
3227 out:
3228 kfree(s->memcg_params);
3229 }
3230
3231 /*
3232 * During the creation a new cache, we need to disable our accounting mechanism
3233 * altogether. This is true even if we are not creating, but rather just
3234 * enqueing new caches to be created.
3235 *
3236 * This is because that process will trigger allocations; some visible, like
3237 * explicit kmallocs to auxiliary data structures, name strings and internal
3238 * cache structures; some well concealed, like INIT_WORK() that can allocate
3239 * objects during debug.
3240 *
3241 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3242 * to it. This may not be a bounded recursion: since the first cache creation
3243 * failed to complete (waiting on the allocation), we'll just try to create the
3244 * cache again, failing at the same point.
3245 *
3246 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3247 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3248 * inside the following two functions.
3249 */
3250 static inline void memcg_stop_kmem_account(void)
3251 {
3252 VM_BUG_ON(!current->mm);
3253 current->memcg_kmem_skip_account++;
3254 }
3255
3256 static inline void memcg_resume_kmem_account(void)
3257 {
3258 VM_BUG_ON(!current->mm);
3259 current->memcg_kmem_skip_account--;
3260 }
3261
3262 static void kmem_cache_destroy_work_func(struct work_struct *w)
3263 {
3264 struct kmem_cache *cachep;
3265 struct memcg_cache_params *p;
3266
3267 p = container_of(w, struct memcg_cache_params, destroy);
3268
3269 cachep = memcg_params_to_cache(p);
3270
3271 /*
3272 * If we get down to 0 after shrink, we could delete right away.
3273 * However, memcg_release_pages() already puts us back in the workqueue
3274 * in that case. If we proceed deleting, we'll get a dangling
3275 * reference, and removing the object from the workqueue in that case
3276 * is unnecessary complication. We are not a fast path.
3277 *
3278 * Note that this case is fundamentally different from racing with
3279 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3280 * kmem_cache_shrink, not only we would be reinserting a dead cache
3281 * into the queue, but doing so from inside the worker racing to
3282 * destroy it.
3283 *
3284 * So if we aren't down to zero, we'll just schedule a worker and try
3285 * again
3286 */
3287 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3288 kmem_cache_shrink(cachep);
3289 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3290 return;
3291 } else
3292 kmem_cache_destroy(cachep);
3293 }
3294
3295 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3296 {
3297 if (!cachep->memcg_params->dead)
3298 return;
3299
3300 /*
3301 * There are many ways in which we can get here.
3302 *
3303 * We can get to a memory-pressure situation while the delayed work is
3304 * still pending to run. The vmscan shrinkers can then release all
3305 * cache memory and get us to destruction. If this is the case, we'll
3306 * be executed twice, which is a bug (the second time will execute over
3307 * bogus data). In this case, cancelling the work should be fine.
3308 *
3309 * But we can also get here from the worker itself, if
3310 * kmem_cache_shrink is enough to shake all the remaining objects and
3311 * get the page count to 0. In this case, we'll deadlock if we try to
3312 * cancel the work (the worker runs with an internal lock held, which
3313 * is the same lock we would hold for cancel_work_sync().)
3314 *
3315 * Since we can't possibly know who got us here, just refrain from
3316 * running if there is already work pending
3317 */
3318 if (work_pending(&cachep->memcg_params->destroy))
3319 return;
3320 /*
3321 * We have to defer the actual destroying to a workqueue, because
3322 * we might currently be in a context that cannot sleep.
3323 */
3324 schedule_work(&cachep->memcg_params->destroy);
3325 }
3326
3327 /*
3328 * This lock protects updaters, not readers. We want readers to be as fast as
3329 * they can, and they will either see NULL or a valid cache value. Our model
3330 * allow them to see NULL, in which case the root memcg will be selected.
3331 *
3332 * We need this lock because multiple allocations to the same cache from a non
3333 * will span more than one worker. Only one of them can create the cache.
3334 */
3335 static DEFINE_MUTEX(memcg_cache_mutex);
3336
3337 /*
3338 * Called with memcg_cache_mutex held
3339 */
3340 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3341 struct kmem_cache *s)
3342 {
3343 struct kmem_cache *new;
3344 static char *tmp_name = NULL;
3345
3346 lockdep_assert_held(&memcg_cache_mutex);
3347
3348 /*
3349 * kmem_cache_create_memcg duplicates the given name and
3350 * cgroup_name for this name requires RCU context.
3351 * This static temporary buffer is used to prevent from
3352 * pointless shortliving allocation.
3353 */
3354 if (!tmp_name) {
3355 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3356 if (!tmp_name)
3357 return NULL;
3358 }
3359
3360 rcu_read_lock();
3361 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3362 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3363 rcu_read_unlock();
3364
3365 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3366 (s->flags & ~SLAB_PANIC), s->ctor, s);
3367
3368 if (new)
3369 new->allocflags |= __GFP_KMEMCG;
3370
3371 return new;
3372 }
3373
3374 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3375 struct kmem_cache *cachep)
3376 {
3377 struct kmem_cache *new_cachep;
3378 int idx;
3379
3380 BUG_ON(!memcg_can_account_kmem(memcg));
3381
3382 idx = memcg_cache_id(memcg);
3383
3384 mutex_lock(&memcg_cache_mutex);
3385 new_cachep = cachep->memcg_params->memcg_caches[idx];
3386 if (new_cachep)
3387 goto out;
3388
3389 new_cachep = kmem_cache_dup(memcg, cachep);
3390 if (new_cachep == NULL) {
3391 new_cachep = cachep;
3392 goto out;
3393 }
3394
3395 mem_cgroup_get(memcg);
3396 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3397
3398 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3399 /*
3400 * the readers won't lock, make sure everybody sees the updated value,
3401 * so they won't put stuff in the queue again for no reason
3402 */
3403 wmb();
3404 out:
3405 mutex_unlock(&memcg_cache_mutex);
3406 return new_cachep;
3407 }
3408
3409 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3410 {
3411 struct kmem_cache *c;
3412 int i;
3413
3414 if (!s->memcg_params)
3415 return;
3416 if (!s->memcg_params->is_root_cache)
3417 return;
3418
3419 /*
3420 * If the cache is being destroyed, we trust that there is no one else
3421 * requesting objects from it. Even if there are, the sanity checks in
3422 * kmem_cache_destroy should caught this ill-case.
3423 *
3424 * Still, we don't want anyone else freeing memcg_caches under our
3425 * noses, which can happen if a new memcg comes to life. As usual,
3426 * we'll take the set_limit_mutex to protect ourselves against this.
3427 */
3428 mutex_lock(&set_limit_mutex);
3429 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3430 c = s->memcg_params->memcg_caches[i];
3431 if (!c)
3432 continue;
3433
3434 /*
3435 * We will now manually delete the caches, so to avoid races
3436 * we need to cancel all pending destruction workers and
3437 * proceed with destruction ourselves.
3438 *
3439 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3440 * and that could spawn the workers again: it is likely that
3441 * the cache still have active pages until this very moment.
3442 * This would lead us back to mem_cgroup_destroy_cache.
3443 *
3444 * But that will not execute at all if the "dead" flag is not
3445 * set, so flip it down to guarantee we are in control.
3446 */
3447 c->memcg_params->dead = false;
3448 cancel_work_sync(&c->memcg_params->destroy);
3449 kmem_cache_destroy(c);
3450 }
3451 mutex_unlock(&set_limit_mutex);
3452 }
3453
3454 struct create_work {
3455 struct mem_cgroup *memcg;
3456 struct kmem_cache *cachep;
3457 struct work_struct work;
3458 };
3459
3460 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3461 {
3462 struct kmem_cache *cachep;
3463 struct memcg_cache_params *params;
3464
3465 if (!memcg_kmem_is_active(memcg))
3466 return;
3467
3468 mutex_lock(&memcg->slab_caches_mutex);
3469 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3470 cachep = memcg_params_to_cache(params);
3471 cachep->memcg_params->dead = true;
3472 schedule_work(&cachep->memcg_params->destroy);
3473 }
3474 mutex_unlock(&memcg->slab_caches_mutex);
3475 }
3476
3477 static void memcg_create_cache_work_func(struct work_struct *w)
3478 {
3479 struct create_work *cw;
3480
3481 cw = container_of(w, struct create_work, work);
3482 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3483 /* Drop the reference gotten when we enqueued. */
3484 css_put(&cw->memcg->css);
3485 kfree(cw);
3486 }
3487
3488 /*
3489 * Enqueue the creation of a per-memcg kmem_cache.
3490 */
3491 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3492 struct kmem_cache *cachep)
3493 {
3494 struct create_work *cw;
3495
3496 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3497 if (cw == NULL) {
3498 css_put(&memcg->css);
3499 return;
3500 }
3501
3502 cw->memcg = memcg;
3503 cw->cachep = cachep;
3504
3505 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3506 schedule_work(&cw->work);
3507 }
3508
3509 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3510 struct kmem_cache *cachep)
3511 {
3512 /*
3513 * We need to stop accounting when we kmalloc, because if the
3514 * corresponding kmalloc cache is not yet created, the first allocation
3515 * in __memcg_create_cache_enqueue will recurse.
3516 *
3517 * However, it is better to enclose the whole function. Depending on
3518 * the debugging options enabled, INIT_WORK(), for instance, can
3519 * trigger an allocation. This too, will make us recurse. Because at
3520 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3521 * the safest choice is to do it like this, wrapping the whole function.
3522 */
3523 memcg_stop_kmem_account();
3524 __memcg_create_cache_enqueue(memcg, cachep);
3525 memcg_resume_kmem_account();
3526 }
3527 /*
3528 * Return the kmem_cache we're supposed to use for a slab allocation.
3529 * We try to use the current memcg's version of the cache.
3530 *
3531 * If the cache does not exist yet, if we are the first user of it,
3532 * we either create it immediately, if possible, or create it asynchronously
3533 * in a workqueue.
3534 * In the latter case, we will let the current allocation go through with
3535 * the original cache.
3536 *
3537 * Can't be called in interrupt context or from kernel threads.
3538 * This function needs to be called with rcu_read_lock() held.
3539 */
3540 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3541 gfp_t gfp)
3542 {
3543 struct mem_cgroup *memcg;
3544 int idx;
3545
3546 VM_BUG_ON(!cachep->memcg_params);
3547 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3548
3549 if (!current->mm || current->memcg_kmem_skip_account)
3550 return cachep;
3551
3552 rcu_read_lock();
3553 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3554
3555 if (!memcg_can_account_kmem(memcg))
3556 goto out;
3557
3558 idx = memcg_cache_id(memcg);
3559
3560 /*
3561 * barrier to mare sure we're always seeing the up to date value. The
3562 * code updating memcg_caches will issue a write barrier to match this.
3563 */
3564 read_barrier_depends();
3565 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3566 cachep = cachep->memcg_params->memcg_caches[idx];
3567 goto out;
3568 }
3569
3570 /* The corresponding put will be done in the workqueue. */
3571 if (!css_tryget(&memcg->css))
3572 goto out;
3573 rcu_read_unlock();
3574
3575 /*
3576 * If we are in a safe context (can wait, and not in interrupt
3577 * context), we could be be predictable and return right away.
3578 * This would guarantee that the allocation being performed
3579 * already belongs in the new cache.
3580 *
3581 * However, there are some clashes that can arrive from locking.
3582 * For instance, because we acquire the slab_mutex while doing
3583 * kmem_cache_dup, this means no further allocation could happen
3584 * with the slab_mutex held.
3585 *
3586 * Also, because cache creation issue get_online_cpus(), this
3587 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3588 * that ends up reversed during cpu hotplug. (cpuset allocates
3589 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3590 * better to defer everything.
3591 */
3592 memcg_create_cache_enqueue(memcg, cachep);
3593 return cachep;
3594 out:
3595 rcu_read_unlock();
3596 return cachep;
3597 }
3598 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3599
3600 /*
3601 * We need to verify if the allocation against current->mm->owner's memcg is
3602 * possible for the given order. But the page is not allocated yet, so we'll
3603 * need a further commit step to do the final arrangements.
3604 *
3605 * It is possible for the task to switch cgroups in this mean time, so at
3606 * commit time, we can't rely on task conversion any longer. We'll then use
3607 * the handle argument to return to the caller which cgroup we should commit
3608 * against. We could also return the memcg directly and avoid the pointer
3609 * passing, but a boolean return value gives better semantics considering
3610 * the compiled-out case as well.
3611 *
3612 * Returning true means the allocation is possible.
3613 */
3614 bool
3615 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3616 {
3617 struct mem_cgroup *memcg;
3618 int ret;
3619
3620 *_memcg = NULL;
3621 memcg = try_get_mem_cgroup_from_mm(current->mm);
3622
3623 /*
3624 * very rare case described in mem_cgroup_from_task. Unfortunately there
3625 * isn't much we can do without complicating this too much, and it would
3626 * be gfp-dependent anyway. Just let it go
3627 */
3628 if (unlikely(!memcg))
3629 return true;
3630
3631 if (!memcg_can_account_kmem(memcg)) {
3632 css_put(&memcg->css);
3633 return true;
3634 }
3635
3636 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3637 if (!ret)
3638 *_memcg = memcg;
3639
3640 css_put(&memcg->css);
3641 return (ret == 0);
3642 }
3643
3644 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3645 int order)
3646 {
3647 struct page_cgroup *pc;
3648
3649 VM_BUG_ON(mem_cgroup_is_root(memcg));
3650
3651 /* The page allocation failed. Revert */
3652 if (!page) {
3653 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3654 return;
3655 }
3656
3657 pc = lookup_page_cgroup(page);
3658 lock_page_cgroup(pc);
3659 pc->mem_cgroup = memcg;
3660 SetPageCgroupUsed(pc);
3661 unlock_page_cgroup(pc);
3662 }
3663
3664 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3665 {
3666 struct mem_cgroup *memcg = NULL;
3667 struct page_cgroup *pc;
3668
3669
3670 pc = lookup_page_cgroup(page);
3671 /*
3672 * Fast unlocked return. Theoretically might have changed, have to
3673 * check again after locking.
3674 */
3675 if (!PageCgroupUsed(pc))
3676 return;
3677
3678 lock_page_cgroup(pc);
3679 if (PageCgroupUsed(pc)) {
3680 memcg = pc->mem_cgroup;
3681 ClearPageCgroupUsed(pc);
3682 }
3683 unlock_page_cgroup(pc);
3684
3685 /*
3686 * We trust that only if there is a memcg associated with the page, it
3687 * is a valid allocation
3688 */
3689 if (!memcg)
3690 return;
3691
3692 VM_BUG_ON(mem_cgroup_is_root(memcg));
3693 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3694 }
3695 #else
3696 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3697 {
3698 }
3699 #endif /* CONFIG_MEMCG_KMEM */
3700
3701 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3702
3703 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3704 /*
3705 * Because tail pages are not marked as "used", set it. We're under
3706 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3707 * charge/uncharge will be never happen and move_account() is done under
3708 * compound_lock(), so we don't have to take care of races.
3709 */
3710 void mem_cgroup_split_huge_fixup(struct page *head)
3711 {
3712 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3713 struct page_cgroup *pc;
3714 struct mem_cgroup *memcg;
3715 int i;
3716
3717 if (mem_cgroup_disabled())
3718 return;
3719
3720 memcg = head_pc->mem_cgroup;
3721 for (i = 1; i < HPAGE_PMD_NR; i++) {
3722 pc = head_pc + i;
3723 pc->mem_cgroup = memcg;
3724 smp_wmb();/* see __commit_charge() */
3725 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3726 }
3727 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3728 HPAGE_PMD_NR);
3729 }
3730 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3731
3732 /**
3733 * mem_cgroup_move_account - move account of the page
3734 * @page: the page
3735 * @nr_pages: number of regular pages (>1 for huge pages)
3736 * @pc: page_cgroup of the page.
3737 * @from: mem_cgroup which the page is moved from.
3738 * @to: mem_cgroup which the page is moved to. @from != @to.
3739 *
3740 * The caller must confirm following.
3741 * - page is not on LRU (isolate_page() is useful.)
3742 * - compound_lock is held when nr_pages > 1
3743 *
3744 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3745 * from old cgroup.
3746 */
3747 static int mem_cgroup_move_account(struct page *page,
3748 unsigned int nr_pages,
3749 struct page_cgroup *pc,
3750 struct mem_cgroup *from,
3751 struct mem_cgroup *to)
3752 {
3753 unsigned long flags;
3754 int ret;
3755 bool anon = PageAnon(page);
3756
3757 VM_BUG_ON(from == to);
3758 VM_BUG_ON(PageLRU(page));
3759 /*
3760 * The page is isolated from LRU. So, collapse function
3761 * will not handle this page. But page splitting can happen.
3762 * Do this check under compound_page_lock(). The caller should
3763 * hold it.
3764 */
3765 ret = -EBUSY;
3766 if (nr_pages > 1 && !PageTransHuge(page))
3767 goto out;
3768
3769 lock_page_cgroup(pc);
3770
3771 ret = -EINVAL;
3772 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3773 goto unlock;
3774
3775 move_lock_mem_cgroup(from, &flags);
3776
3777 if (!anon && page_mapped(page)) {
3778 /* Update mapped_file data for mem_cgroup */
3779 preempt_disable();
3780 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3781 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3782 preempt_enable();
3783 }
3784 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3785
3786 /* caller should have done css_get */
3787 pc->mem_cgroup = to;
3788 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3789 move_unlock_mem_cgroup(from, &flags);
3790 ret = 0;
3791 unlock:
3792 unlock_page_cgroup(pc);
3793 /*
3794 * check events
3795 */
3796 memcg_check_events(to, page);
3797 memcg_check_events(from, page);
3798 out:
3799 return ret;
3800 }
3801
3802 /**
3803 * mem_cgroup_move_parent - moves page to the parent group
3804 * @page: the page to move
3805 * @pc: page_cgroup of the page
3806 * @child: page's cgroup
3807 *
3808 * move charges to its parent or the root cgroup if the group has no
3809 * parent (aka use_hierarchy==0).
3810 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3811 * mem_cgroup_move_account fails) the failure is always temporary and
3812 * it signals a race with a page removal/uncharge or migration. In the
3813 * first case the page is on the way out and it will vanish from the LRU
3814 * on the next attempt and the call should be retried later.
3815 * Isolation from the LRU fails only if page has been isolated from
3816 * the LRU since we looked at it and that usually means either global
3817 * reclaim or migration going on. The page will either get back to the
3818 * LRU or vanish.
3819 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3820 * (!PageCgroupUsed) or moved to a different group. The page will
3821 * disappear in the next attempt.
3822 */
3823 static int mem_cgroup_move_parent(struct page *page,
3824 struct page_cgroup *pc,
3825 struct mem_cgroup *child)
3826 {
3827 struct mem_cgroup *parent;
3828 unsigned int nr_pages;
3829 unsigned long uninitialized_var(flags);
3830 int ret;
3831
3832 VM_BUG_ON(mem_cgroup_is_root(child));
3833
3834 ret = -EBUSY;
3835 if (!get_page_unless_zero(page))
3836 goto out;
3837 if (isolate_lru_page(page))
3838 goto put;
3839
3840 nr_pages = hpage_nr_pages(page);
3841
3842 parent = parent_mem_cgroup(child);
3843 /*
3844 * If no parent, move charges to root cgroup.
3845 */
3846 if (!parent)
3847 parent = root_mem_cgroup;
3848
3849 if (nr_pages > 1) {
3850 VM_BUG_ON(!PageTransHuge(page));
3851 flags = compound_lock_irqsave(page);
3852 }
3853
3854 ret = mem_cgroup_move_account(page, nr_pages,
3855 pc, child, parent);
3856 if (!ret)
3857 __mem_cgroup_cancel_local_charge(child, nr_pages);
3858
3859 if (nr_pages > 1)
3860 compound_unlock_irqrestore(page, flags);
3861 putback_lru_page(page);
3862 put:
3863 put_page(page);
3864 out:
3865 return ret;
3866 }
3867
3868 /*
3869 * Charge the memory controller for page usage.
3870 * Return
3871 * 0 if the charge was successful
3872 * < 0 if the cgroup is over its limit
3873 */
3874 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3875 gfp_t gfp_mask, enum charge_type ctype)
3876 {
3877 struct mem_cgroup *memcg = NULL;
3878 unsigned int nr_pages = 1;
3879 bool oom = true;
3880 int ret;
3881
3882 if (PageTransHuge(page)) {
3883 nr_pages <<= compound_order(page);
3884 VM_BUG_ON(!PageTransHuge(page));
3885 /*
3886 * Never OOM-kill a process for a huge page. The
3887 * fault handler will fall back to regular pages.
3888 */
3889 oom = false;
3890 }
3891
3892 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3893 if (ret == -ENOMEM)
3894 return ret;
3895 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3896 return 0;
3897 }
3898
3899 int mem_cgroup_newpage_charge(struct page *page,
3900 struct mm_struct *mm, gfp_t gfp_mask)
3901 {
3902 if (mem_cgroup_disabled())
3903 return 0;
3904 VM_BUG_ON(page_mapped(page));
3905 VM_BUG_ON(page->mapping && !PageAnon(page));
3906 VM_BUG_ON(!mm);
3907 return mem_cgroup_charge_common(page, mm, gfp_mask,
3908 MEM_CGROUP_CHARGE_TYPE_ANON);
3909 }
3910
3911 /*
3912 * While swap-in, try_charge -> commit or cancel, the page is locked.
3913 * And when try_charge() successfully returns, one refcnt to memcg without
3914 * struct page_cgroup is acquired. This refcnt will be consumed by
3915 * "commit()" or removed by "cancel()"
3916 */
3917 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3918 struct page *page,
3919 gfp_t mask,
3920 struct mem_cgroup **memcgp)
3921 {
3922 struct mem_cgroup *memcg;
3923 struct page_cgroup *pc;
3924 int ret;
3925
3926 pc = lookup_page_cgroup(page);
3927 /*
3928 * Every swap fault against a single page tries to charge the
3929 * page, bail as early as possible. shmem_unuse() encounters
3930 * already charged pages, too. The USED bit is protected by
3931 * the page lock, which serializes swap cache removal, which
3932 * in turn serializes uncharging.
3933 */
3934 if (PageCgroupUsed(pc))
3935 return 0;
3936 if (!do_swap_account)
3937 goto charge_cur_mm;
3938 memcg = try_get_mem_cgroup_from_page(page);
3939 if (!memcg)
3940 goto charge_cur_mm;
3941 *memcgp = memcg;
3942 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3943 css_put(&memcg->css);
3944 if (ret == -EINTR)
3945 ret = 0;
3946 return ret;
3947 charge_cur_mm:
3948 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3949 if (ret == -EINTR)
3950 ret = 0;
3951 return ret;
3952 }
3953
3954 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3955 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3956 {
3957 *memcgp = NULL;
3958 if (mem_cgroup_disabled())
3959 return 0;
3960 /*
3961 * A racing thread's fault, or swapoff, may have already
3962 * updated the pte, and even removed page from swap cache: in
3963 * those cases unuse_pte()'s pte_same() test will fail; but
3964 * there's also a KSM case which does need to charge the page.
3965 */
3966 if (!PageSwapCache(page)) {
3967 int ret;
3968
3969 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3970 if (ret == -EINTR)
3971 ret = 0;
3972 return ret;
3973 }
3974 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3975 }
3976
3977 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3978 {
3979 if (mem_cgroup_disabled())
3980 return;
3981 if (!memcg)
3982 return;
3983 __mem_cgroup_cancel_charge(memcg, 1);
3984 }
3985
3986 static void
3987 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3988 enum charge_type ctype)
3989 {
3990 if (mem_cgroup_disabled())
3991 return;
3992 if (!memcg)
3993 return;
3994
3995 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3996 /*
3997 * Now swap is on-memory. This means this page may be
3998 * counted both as mem and swap....double count.
3999 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4000 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4001 * may call delete_from_swap_cache() before reach here.
4002 */
4003 if (do_swap_account && PageSwapCache(page)) {
4004 swp_entry_t ent = {.val = page_private(page)};
4005 mem_cgroup_uncharge_swap(ent);
4006 }
4007 }
4008
4009 void mem_cgroup_commit_charge_swapin(struct page *page,
4010 struct mem_cgroup *memcg)
4011 {
4012 __mem_cgroup_commit_charge_swapin(page, memcg,
4013 MEM_CGROUP_CHARGE_TYPE_ANON);
4014 }
4015
4016 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4017 gfp_t gfp_mask)
4018 {
4019 struct mem_cgroup *memcg = NULL;
4020 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4021 int ret;
4022
4023 if (mem_cgroup_disabled())
4024 return 0;
4025 if (PageCompound(page))
4026 return 0;
4027
4028 if (!PageSwapCache(page))
4029 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4030 else { /* page is swapcache/shmem */
4031 ret = __mem_cgroup_try_charge_swapin(mm, page,
4032 gfp_mask, &memcg);
4033 if (!ret)
4034 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4035 }
4036 return ret;
4037 }
4038
4039 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4040 unsigned int nr_pages,
4041 const enum charge_type ctype)
4042 {
4043 struct memcg_batch_info *batch = NULL;
4044 bool uncharge_memsw = true;
4045
4046 /* If swapout, usage of swap doesn't decrease */
4047 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4048 uncharge_memsw = false;
4049
4050 batch = &current->memcg_batch;
4051 /*
4052 * In usual, we do css_get() when we remember memcg pointer.
4053 * But in this case, we keep res->usage until end of a series of
4054 * uncharges. Then, it's ok to ignore memcg's refcnt.
4055 */
4056 if (!batch->memcg)
4057 batch->memcg = memcg;
4058 /*
4059 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4060 * In those cases, all pages freed continuously can be expected to be in
4061 * the same cgroup and we have chance to coalesce uncharges.
4062 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4063 * because we want to do uncharge as soon as possible.
4064 */
4065
4066 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4067 goto direct_uncharge;
4068
4069 if (nr_pages > 1)
4070 goto direct_uncharge;
4071
4072 /*
4073 * In typical case, batch->memcg == mem. This means we can
4074 * merge a series of uncharges to an uncharge of res_counter.
4075 * If not, we uncharge res_counter ony by one.
4076 */
4077 if (batch->memcg != memcg)
4078 goto direct_uncharge;
4079 /* remember freed charge and uncharge it later */
4080 batch->nr_pages++;
4081 if (uncharge_memsw)
4082 batch->memsw_nr_pages++;
4083 return;
4084 direct_uncharge:
4085 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4086 if (uncharge_memsw)
4087 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4088 if (unlikely(batch->memcg != memcg))
4089 memcg_oom_recover(memcg);
4090 }
4091
4092 /*
4093 * uncharge if !page_mapped(page)
4094 */
4095 static struct mem_cgroup *
4096 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4097 bool end_migration)
4098 {
4099 struct mem_cgroup *memcg = NULL;
4100 unsigned int nr_pages = 1;
4101 struct page_cgroup *pc;
4102 bool anon;
4103
4104 if (mem_cgroup_disabled())
4105 return NULL;
4106
4107 if (PageTransHuge(page)) {
4108 nr_pages <<= compound_order(page);
4109 VM_BUG_ON(!PageTransHuge(page));
4110 }
4111 /*
4112 * Check if our page_cgroup is valid
4113 */
4114 pc = lookup_page_cgroup(page);
4115 if (unlikely(!PageCgroupUsed(pc)))
4116 return NULL;
4117
4118 lock_page_cgroup(pc);
4119
4120 memcg = pc->mem_cgroup;
4121
4122 if (!PageCgroupUsed(pc))
4123 goto unlock_out;
4124
4125 anon = PageAnon(page);
4126
4127 switch (ctype) {
4128 case MEM_CGROUP_CHARGE_TYPE_ANON:
4129 /*
4130 * Generally PageAnon tells if it's the anon statistics to be
4131 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4132 * used before page reached the stage of being marked PageAnon.
4133 */
4134 anon = true;
4135 /* fallthrough */
4136 case MEM_CGROUP_CHARGE_TYPE_DROP:
4137 /* See mem_cgroup_prepare_migration() */
4138 if (page_mapped(page))
4139 goto unlock_out;
4140 /*
4141 * Pages under migration may not be uncharged. But
4142 * end_migration() /must/ be the one uncharging the
4143 * unused post-migration page and so it has to call
4144 * here with the migration bit still set. See the
4145 * res_counter handling below.
4146 */
4147 if (!end_migration && PageCgroupMigration(pc))
4148 goto unlock_out;
4149 break;
4150 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4151 if (!PageAnon(page)) { /* Shared memory */
4152 if (page->mapping && !page_is_file_cache(page))
4153 goto unlock_out;
4154 } else if (page_mapped(page)) /* Anon */
4155 goto unlock_out;
4156 break;
4157 default:
4158 break;
4159 }
4160
4161 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4162
4163 ClearPageCgroupUsed(pc);
4164 /*
4165 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4166 * freed from LRU. This is safe because uncharged page is expected not
4167 * to be reused (freed soon). Exception is SwapCache, it's handled by
4168 * special functions.
4169 */
4170
4171 unlock_page_cgroup(pc);
4172 /*
4173 * even after unlock, we have memcg->res.usage here and this memcg
4174 * will never be freed.
4175 */
4176 memcg_check_events(memcg, page);
4177 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4178 mem_cgroup_swap_statistics(memcg, true);
4179 mem_cgroup_get(memcg);
4180 }
4181 /*
4182 * Migration does not charge the res_counter for the
4183 * replacement page, so leave it alone when phasing out the
4184 * page that is unused after the migration.
4185 */
4186 if (!end_migration && !mem_cgroup_is_root(memcg))
4187 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4188
4189 return memcg;
4190
4191 unlock_out:
4192 unlock_page_cgroup(pc);
4193 return NULL;
4194 }
4195
4196 void mem_cgroup_uncharge_page(struct page *page)
4197 {
4198 /* early check. */
4199 if (page_mapped(page))
4200 return;
4201 VM_BUG_ON(page->mapping && !PageAnon(page));
4202 /*
4203 * If the page is in swap cache, uncharge should be deferred
4204 * to the swap path, which also properly accounts swap usage
4205 * and handles memcg lifetime.
4206 *
4207 * Note that this check is not stable and reclaim may add the
4208 * page to swap cache at any time after this. However, if the
4209 * page is not in swap cache by the time page->mapcount hits
4210 * 0, there won't be any page table references to the swap
4211 * slot, and reclaim will free it and not actually write the
4212 * page to disk.
4213 */
4214 if (PageSwapCache(page))
4215 return;
4216 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4217 }
4218
4219 void mem_cgroup_uncharge_cache_page(struct page *page)
4220 {
4221 VM_BUG_ON(page_mapped(page));
4222 VM_BUG_ON(page->mapping);
4223 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4224 }
4225
4226 /*
4227 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4228 * In that cases, pages are freed continuously and we can expect pages
4229 * are in the same memcg. All these calls itself limits the number of
4230 * pages freed at once, then uncharge_start/end() is called properly.
4231 * This may be called prural(2) times in a context,
4232 */
4233
4234 void mem_cgroup_uncharge_start(void)
4235 {
4236 current->memcg_batch.do_batch++;
4237 /* We can do nest. */
4238 if (current->memcg_batch.do_batch == 1) {
4239 current->memcg_batch.memcg = NULL;
4240 current->memcg_batch.nr_pages = 0;
4241 current->memcg_batch.memsw_nr_pages = 0;
4242 }
4243 }
4244
4245 void mem_cgroup_uncharge_end(void)
4246 {
4247 struct memcg_batch_info *batch = &current->memcg_batch;
4248
4249 if (!batch->do_batch)
4250 return;
4251
4252 batch->do_batch--;
4253 if (batch->do_batch) /* If stacked, do nothing. */
4254 return;
4255
4256 if (!batch->memcg)
4257 return;
4258 /*
4259 * This "batch->memcg" is valid without any css_get/put etc...
4260 * bacause we hide charges behind us.
4261 */
4262 if (batch->nr_pages)
4263 res_counter_uncharge(&batch->memcg->res,
4264 batch->nr_pages * PAGE_SIZE);
4265 if (batch->memsw_nr_pages)
4266 res_counter_uncharge(&batch->memcg->memsw,
4267 batch->memsw_nr_pages * PAGE_SIZE);
4268 memcg_oom_recover(batch->memcg);
4269 /* forget this pointer (for sanity check) */
4270 batch->memcg = NULL;
4271 }
4272
4273 #ifdef CONFIG_SWAP
4274 /*
4275 * called after __delete_from_swap_cache() and drop "page" account.
4276 * memcg information is recorded to swap_cgroup of "ent"
4277 */
4278 void
4279 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4280 {
4281 struct mem_cgroup *memcg;
4282 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4283
4284 if (!swapout) /* this was a swap cache but the swap is unused ! */
4285 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4286
4287 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4288
4289 /*
4290 * record memcg information, if swapout && memcg != NULL,
4291 * mem_cgroup_get() was called in uncharge().
4292 */
4293 if (do_swap_account && swapout && memcg)
4294 swap_cgroup_record(ent, css_id(&memcg->css));
4295 }
4296 #endif
4297
4298 #ifdef CONFIG_MEMCG_SWAP
4299 /*
4300 * called from swap_entry_free(). remove record in swap_cgroup and
4301 * uncharge "memsw" account.
4302 */
4303 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4304 {
4305 struct mem_cgroup *memcg;
4306 unsigned short id;
4307
4308 if (!do_swap_account)
4309 return;
4310
4311 id = swap_cgroup_record(ent, 0);
4312 rcu_read_lock();
4313 memcg = mem_cgroup_lookup(id);
4314 if (memcg) {
4315 /*
4316 * We uncharge this because swap is freed.
4317 * This memcg can be obsolete one. We avoid calling css_tryget
4318 */
4319 if (!mem_cgroup_is_root(memcg))
4320 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4321 mem_cgroup_swap_statistics(memcg, false);
4322 mem_cgroup_put(memcg);
4323 }
4324 rcu_read_unlock();
4325 }
4326
4327 /**
4328 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4329 * @entry: swap entry to be moved
4330 * @from: mem_cgroup which the entry is moved from
4331 * @to: mem_cgroup which the entry is moved to
4332 *
4333 * It succeeds only when the swap_cgroup's record for this entry is the same
4334 * as the mem_cgroup's id of @from.
4335 *
4336 * Returns 0 on success, -EINVAL on failure.
4337 *
4338 * The caller must have charged to @to, IOW, called res_counter_charge() about
4339 * both res and memsw, and called css_get().
4340 */
4341 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4342 struct mem_cgroup *from, struct mem_cgroup *to)
4343 {
4344 unsigned short old_id, new_id;
4345
4346 old_id = css_id(&from->css);
4347 new_id = css_id(&to->css);
4348
4349 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4350 mem_cgroup_swap_statistics(from, false);
4351 mem_cgroup_swap_statistics(to, true);
4352 /*
4353 * This function is only called from task migration context now.
4354 * It postpones res_counter and refcount handling till the end
4355 * of task migration(mem_cgroup_clear_mc()) for performance
4356 * improvement. But we cannot postpone mem_cgroup_get(to)
4357 * because if the process that has been moved to @to does
4358 * swap-in, the refcount of @to might be decreased to 0.
4359 */
4360 mem_cgroup_get(to);
4361 return 0;
4362 }
4363 return -EINVAL;
4364 }
4365 #else
4366 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4367 struct mem_cgroup *from, struct mem_cgroup *to)
4368 {
4369 return -EINVAL;
4370 }
4371 #endif
4372
4373 /*
4374 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4375 * page belongs to.
4376 */
4377 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4378 struct mem_cgroup **memcgp)
4379 {
4380 struct mem_cgroup *memcg = NULL;
4381 unsigned int nr_pages = 1;
4382 struct page_cgroup *pc;
4383 enum charge_type ctype;
4384
4385 *memcgp = NULL;
4386
4387 if (mem_cgroup_disabled())
4388 return;
4389
4390 if (PageTransHuge(page))
4391 nr_pages <<= compound_order(page);
4392
4393 pc = lookup_page_cgroup(page);
4394 lock_page_cgroup(pc);
4395 if (PageCgroupUsed(pc)) {
4396 memcg = pc->mem_cgroup;
4397 css_get(&memcg->css);
4398 /*
4399 * At migrating an anonymous page, its mapcount goes down
4400 * to 0 and uncharge() will be called. But, even if it's fully
4401 * unmapped, migration may fail and this page has to be
4402 * charged again. We set MIGRATION flag here and delay uncharge
4403 * until end_migration() is called
4404 *
4405 * Corner Case Thinking
4406 * A)
4407 * When the old page was mapped as Anon and it's unmap-and-freed
4408 * while migration was ongoing.
4409 * If unmap finds the old page, uncharge() of it will be delayed
4410 * until end_migration(). If unmap finds a new page, it's
4411 * uncharged when it make mapcount to be 1->0. If unmap code
4412 * finds swap_migration_entry, the new page will not be mapped
4413 * and end_migration() will find it(mapcount==0).
4414 *
4415 * B)
4416 * When the old page was mapped but migraion fails, the kernel
4417 * remaps it. A charge for it is kept by MIGRATION flag even
4418 * if mapcount goes down to 0. We can do remap successfully
4419 * without charging it again.
4420 *
4421 * C)
4422 * The "old" page is under lock_page() until the end of
4423 * migration, so, the old page itself will not be swapped-out.
4424 * If the new page is swapped out before end_migraton, our
4425 * hook to usual swap-out path will catch the event.
4426 */
4427 if (PageAnon(page))
4428 SetPageCgroupMigration(pc);
4429 }
4430 unlock_page_cgroup(pc);
4431 /*
4432 * If the page is not charged at this point,
4433 * we return here.
4434 */
4435 if (!memcg)
4436 return;
4437
4438 *memcgp = memcg;
4439 /*
4440 * We charge new page before it's used/mapped. So, even if unlock_page()
4441 * is called before end_migration, we can catch all events on this new
4442 * page. In the case new page is migrated but not remapped, new page's
4443 * mapcount will be finally 0 and we call uncharge in end_migration().
4444 */
4445 if (PageAnon(page))
4446 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4447 else
4448 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4449 /*
4450 * The page is committed to the memcg, but it's not actually
4451 * charged to the res_counter since we plan on replacing the
4452 * old one and only one page is going to be left afterwards.
4453 */
4454 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4455 }
4456
4457 /* remove redundant charge if migration failed*/
4458 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4459 struct page *oldpage, struct page *newpage, bool migration_ok)
4460 {
4461 struct page *used, *unused;
4462 struct page_cgroup *pc;
4463 bool anon;
4464
4465 if (!memcg)
4466 return;
4467
4468 if (!migration_ok) {
4469 used = oldpage;
4470 unused = newpage;
4471 } else {
4472 used = newpage;
4473 unused = oldpage;
4474 }
4475 anon = PageAnon(used);
4476 __mem_cgroup_uncharge_common(unused,
4477 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4478 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4479 true);
4480 css_put(&memcg->css);
4481 /*
4482 * We disallowed uncharge of pages under migration because mapcount
4483 * of the page goes down to zero, temporarly.
4484 * Clear the flag and check the page should be charged.
4485 */
4486 pc = lookup_page_cgroup(oldpage);
4487 lock_page_cgroup(pc);
4488 ClearPageCgroupMigration(pc);
4489 unlock_page_cgroup(pc);
4490
4491 /*
4492 * If a page is a file cache, radix-tree replacement is very atomic
4493 * and we can skip this check. When it was an Anon page, its mapcount
4494 * goes down to 0. But because we added MIGRATION flage, it's not
4495 * uncharged yet. There are several case but page->mapcount check
4496 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4497 * check. (see prepare_charge() also)
4498 */
4499 if (anon)
4500 mem_cgroup_uncharge_page(used);
4501 }
4502
4503 /*
4504 * At replace page cache, newpage is not under any memcg but it's on
4505 * LRU. So, this function doesn't touch res_counter but handles LRU
4506 * in correct way. Both pages are locked so we cannot race with uncharge.
4507 */
4508 void mem_cgroup_replace_page_cache(struct page *oldpage,
4509 struct page *newpage)
4510 {
4511 struct mem_cgroup *memcg = NULL;
4512 struct page_cgroup *pc;
4513 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4514
4515 if (mem_cgroup_disabled())
4516 return;
4517
4518 pc = lookup_page_cgroup(oldpage);
4519 /* fix accounting on old pages */
4520 lock_page_cgroup(pc);
4521 if (PageCgroupUsed(pc)) {
4522 memcg = pc->mem_cgroup;
4523 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4524 ClearPageCgroupUsed(pc);
4525 }
4526 unlock_page_cgroup(pc);
4527
4528 /*
4529 * When called from shmem_replace_page(), in some cases the
4530 * oldpage has already been charged, and in some cases not.
4531 */
4532 if (!memcg)
4533 return;
4534 /*
4535 * Even if newpage->mapping was NULL before starting replacement,
4536 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4537 * LRU while we overwrite pc->mem_cgroup.
4538 */
4539 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4540 }
4541
4542 #ifdef CONFIG_DEBUG_VM
4543 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4544 {
4545 struct page_cgroup *pc;
4546
4547 pc = lookup_page_cgroup(page);
4548 /*
4549 * Can be NULL while feeding pages into the page allocator for
4550 * the first time, i.e. during boot or memory hotplug;
4551 * or when mem_cgroup_disabled().
4552 */
4553 if (likely(pc) && PageCgroupUsed(pc))
4554 return pc;
4555 return NULL;
4556 }
4557
4558 bool mem_cgroup_bad_page_check(struct page *page)
4559 {
4560 if (mem_cgroup_disabled())
4561 return false;
4562
4563 return lookup_page_cgroup_used(page) != NULL;
4564 }
4565
4566 void mem_cgroup_print_bad_page(struct page *page)
4567 {
4568 struct page_cgroup *pc;
4569
4570 pc = lookup_page_cgroup_used(page);
4571 if (pc) {
4572 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4573 pc, pc->flags, pc->mem_cgroup);
4574 }
4575 }
4576 #endif
4577
4578 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4579 unsigned long long val)
4580 {
4581 int retry_count;
4582 u64 memswlimit, memlimit;
4583 int ret = 0;
4584 int children = mem_cgroup_count_children(memcg);
4585 u64 curusage, oldusage;
4586 int enlarge;
4587
4588 /*
4589 * For keeping hierarchical_reclaim simple, how long we should retry
4590 * is depends on callers. We set our retry-count to be function
4591 * of # of children which we should visit in this loop.
4592 */
4593 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4594
4595 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4596
4597 enlarge = 0;
4598 while (retry_count) {
4599 if (signal_pending(current)) {
4600 ret = -EINTR;
4601 break;
4602 }
4603 /*
4604 * Rather than hide all in some function, I do this in
4605 * open coded manner. You see what this really does.
4606 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4607 */
4608 mutex_lock(&set_limit_mutex);
4609 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4610 if (memswlimit < val) {
4611 ret = -EINVAL;
4612 mutex_unlock(&set_limit_mutex);
4613 break;
4614 }
4615
4616 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4617 if (memlimit < val)
4618 enlarge = 1;
4619
4620 ret = res_counter_set_limit(&memcg->res, val);
4621 if (!ret) {
4622 if (memswlimit == val)
4623 memcg->memsw_is_minimum = true;
4624 else
4625 memcg->memsw_is_minimum = false;
4626 }
4627 mutex_unlock(&set_limit_mutex);
4628
4629 if (!ret)
4630 break;
4631
4632 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4633 MEM_CGROUP_RECLAIM_SHRINK);
4634 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4635 /* Usage is reduced ? */
4636 if (curusage >= oldusage)
4637 retry_count--;
4638 else
4639 oldusage = curusage;
4640 }
4641 if (!ret && enlarge)
4642 memcg_oom_recover(memcg);
4643
4644 return ret;
4645 }
4646
4647 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4648 unsigned long long val)
4649 {
4650 int retry_count;
4651 u64 memlimit, memswlimit, oldusage, curusage;
4652 int children = mem_cgroup_count_children(memcg);
4653 int ret = -EBUSY;
4654 int enlarge = 0;
4655
4656 /* see mem_cgroup_resize_res_limit */
4657 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4658 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4659 while (retry_count) {
4660 if (signal_pending(current)) {
4661 ret = -EINTR;
4662 break;
4663 }
4664 /*
4665 * Rather than hide all in some function, I do this in
4666 * open coded manner. You see what this really does.
4667 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4668 */
4669 mutex_lock(&set_limit_mutex);
4670 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4671 if (memlimit > val) {
4672 ret = -EINVAL;
4673 mutex_unlock(&set_limit_mutex);
4674 break;
4675 }
4676 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4677 if (memswlimit < val)
4678 enlarge = 1;
4679 ret = res_counter_set_limit(&memcg->memsw, val);
4680 if (!ret) {
4681 if (memlimit == val)
4682 memcg->memsw_is_minimum = true;
4683 else
4684 memcg->memsw_is_minimum = false;
4685 }
4686 mutex_unlock(&set_limit_mutex);
4687
4688 if (!ret)
4689 break;
4690
4691 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4692 MEM_CGROUP_RECLAIM_NOSWAP |
4693 MEM_CGROUP_RECLAIM_SHRINK);
4694 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4695 /* Usage is reduced ? */
4696 if (curusage >= oldusage)
4697 retry_count--;
4698 else
4699 oldusage = curusage;
4700 }
4701 if (!ret && enlarge)
4702 memcg_oom_recover(memcg);
4703 return ret;
4704 }
4705
4706 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4707 gfp_t gfp_mask,
4708 unsigned long *total_scanned)
4709 {
4710 unsigned long nr_reclaimed = 0;
4711 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4712 unsigned long reclaimed;
4713 int loop = 0;
4714 struct mem_cgroup_tree_per_zone *mctz;
4715 unsigned long long excess;
4716 unsigned long nr_scanned;
4717
4718 if (order > 0)
4719 return 0;
4720
4721 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4722 /*
4723 * This loop can run a while, specially if mem_cgroup's continuously
4724 * keep exceeding their soft limit and putting the system under
4725 * pressure
4726 */
4727 do {
4728 if (next_mz)
4729 mz = next_mz;
4730 else
4731 mz = mem_cgroup_largest_soft_limit_node(mctz);
4732 if (!mz)
4733 break;
4734
4735 nr_scanned = 0;
4736 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4737 gfp_mask, &nr_scanned);
4738 nr_reclaimed += reclaimed;
4739 *total_scanned += nr_scanned;
4740 spin_lock(&mctz->lock);
4741
4742 /*
4743 * If we failed to reclaim anything from this memory cgroup
4744 * it is time to move on to the next cgroup
4745 */
4746 next_mz = NULL;
4747 if (!reclaimed) {
4748 do {
4749 /*
4750 * Loop until we find yet another one.
4751 *
4752 * By the time we get the soft_limit lock
4753 * again, someone might have aded the
4754 * group back on the RB tree. Iterate to
4755 * make sure we get a different mem.
4756 * mem_cgroup_largest_soft_limit_node returns
4757 * NULL if no other cgroup is present on
4758 * the tree
4759 */
4760 next_mz =
4761 __mem_cgroup_largest_soft_limit_node(mctz);
4762 if (next_mz == mz)
4763 css_put(&next_mz->memcg->css);
4764 else /* next_mz == NULL or other memcg */
4765 break;
4766 } while (1);
4767 }
4768 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4769 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4770 /*
4771 * One school of thought says that we should not add
4772 * back the node to the tree if reclaim returns 0.
4773 * But our reclaim could return 0, simply because due
4774 * to priority we are exposing a smaller subset of
4775 * memory to reclaim from. Consider this as a longer
4776 * term TODO.
4777 */
4778 /* If excess == 0, no tree ops */
4779 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4780 spin_unlock(&mctz->lock);
4781 css_put(&mz->memcg->css);
4782 loop++;
4783 /*
4784 * Could not reclaim anything and there are no more
4785 * mem cgroups to try or we seem to be looping without
4786 * reclaiming anything.
4787 */
4788 if (!nr_reclaimed &&
4789 (next_mz == NULL ||
4790 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4791 break;
4792 } while (!nr_reclaimed);
4793 if (next_mz)
4794 css_put(&next_mz->memcg->css);
4795 return nr_reclaimed;
4796 }
4797
4798 /**
4799 * mem_cgroup_force_empty_list - clears LRU of a group
4800 * @memcg: group to clear
4801 * @node: NUMA node
4802 * @zid: zone id
4803 * @lru: lru to to clear
4804 *
4805 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4806 * reclaim the pages page themselves - pages are moved to the parent (or root)
4807 * group.
4808 */
4809 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4810 int node, int zid, enum lru_list lru)
4811 {
4812 struct lruvec *lruvec;
4813 unsigned long flags;
4814 struct list_head *list;
4815 struct page *busy;
4816 struct zone *zone;
4817
4818 zone = &NODE_DATA(node)->node_zones[zid];
4819 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4820 list = &lruvec->lists[lru];
4821
4822 busy = NULL;
4823 do {
4824 struct page_cgroup *pc;
4825 struct page *page;
4826
4827 spin_lock_irqsave(&zone->lru_lock, flags);
4828 if (list_empty(list)) {
4829 spin_unlock_irqrestore(&zone->lru_lock, flags);
4830 break;
4831 }
4832 page = list_entry(list->prev, struct page, lru);
4833 if (busy == page) {
4834 list_move(&page->lru, list);
4835 busy = NULL;
4836 spin_unlock_irqrestore(&zone->lru_lock, flags);
4837 continue;
4838 }
4839 spin_unlock_irqrestore(&zone->lru_lock, flags);
4840
4841 pc = lookup_page_cgroup(page);
4842
4843 if (mem_cgroup_move_parent(page, pc, memcg)) {
4844 /* found lock contention or "pc" is obsolete. */
4845 busy = page;
4846 cond_resched();
4847 } else
4848 busy = NULL;
4849 } while (!list_empty(list));
4850 }
4851
4852 /*
4853 * make mem_cgroup's charge to be 0 if there is no task by moving
4854 * all the charges and pages to the parent.
4855 * This enables deleting this mem_cgroup.
4856 *
4857 * Caller is responsible for holding css reference on the memcg.
4858 */
4859 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4860 {
4861 int node, zid;
4862 u64 usage;
4863
4864 do {
4865 /* This is for making all *used* pages to be on LRU. */
4866 lru_add_drain_all();
4867 drain_all_stock_sync(memcg);
4868 mem_cgroup_start_move(memcg);
4869 for_each_node_state(node, N_MEMORY) {
4870 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4871 enum lru_list lru;
4872 for_each_lru(lru) {
4873 mem_cgroup_force_empty_list(memcg,
4874 node, zid, lru);
4875 }
4876 }
4877 }
4878 mem_cgroup_end_move(memcg);
4879 memcg_oom_recover(memcg);
4880 cond_resched();
4881
4882 /*
4883 * Kernel memory may not necessarily be trackable to a specific
4884 * process. So they are not migrated, and therefore we can't
4885 * expect their value to drop to 0 here.
4886 * Having res filled up with kmem only is enough.
4887 *
4888 * This is a safety check because mem_cgroup_force_empty_list
4889 * could have raced with mem_cgroup_replace_page_cache callers
4890 * so the lru seemed empty but the page could have been added
4891 * right after the check. RES_USAGE should be safe as we always
4892 * charge before adding to the LRU.
4893 */
4894 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4895 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4896 } while (usage > 0);
4897 }
4898
4899 /*
4900 * This mainly exists for tests during the setting of set of use_hierarchy.
4901 * Since this is the very setting we are changing, the current hierarchy value
4902 * is meaningless
4903 */
4904 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4905 {
4906 struct cgroup *pos;
4907
4908 /* bounce at first found */
4909 cgroup_for_each_child(pos, memcg->css.cgroup)
4910 return true;
4911 return false;
4912 }
4913
4914 /*
4915 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4916 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4917 * from mem_cgroup_count_children(), in the sense that we don't really care how
4918 * many children we have; we only need to know if we have any. It also counts
4919 * any memcg without hierarchy as infertile.
4920 */
4921 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4922 {
4923 return memcg->use_hierarchy && __memcg_has_children(memcg);
4924 }
4925
4926 /*
4927 * Reclaims as many pages from the given memcg as possible and moves
4928 * the rest to the parent.
4929 *
4930 * Caller is responsible for holding css reference for memcg.
4931 */
4932 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4933 {
4934 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4935 struct cgroup *cgrp = memcg->css.cgroup;
4936
4937 /* returns EBUSY if there is a task or if we come here twice. */
4938 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4939 return -EBUSY;
4940
4941 /* we call try-to-free pages for make this cgroup empty */
4942 lru_add_drain_all();
4943 /* try to free all pages in this cgroup */
4944 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4945 int progress;
4946
4947 if (signal_pending(current))
4948 return -EINTR;
4949
4950 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4951 false);
4952 if (!progress) {
4953 nr_retries--;
4954 /* maybe some writeback is necessary */
4955 congestion_wait(BLK_RW_ASYNC, HZ/10);
4956 }
4957
4958 }
4959 lru_add_drain();
4960 mem_cgroup_reparent_charges(memcg);
4961
4962 return 0;
4963 }
4964
4965 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4966 {
4967 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4968 int ret;
4969
4970 if (mem_cgroup_is_root(memcg))
4971 return -EINVAL;
4972 css_get(&memcg->css);
4973 ret = mem_cgroup_force_empty(memcg);
4974 css_put(&memcg->css);
4975
4976 return ret;
4977 }
4978
4979
4980 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4981 {
4982 return mem_cgroup_from_cont(cont)->use_hierarchy;
4983 }
4984
4985 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4986 u64 val)
4987 {
4988 int retval = 0;
4989 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4990 struct cgroup *parent = cont->parent;
4991 struct mem_cgroup *parent_memcg = NULL;
4992
4993 if (parent)
4994 parent_memcg = mem_cgroup_from_cont(parent);
4995
4996 mutex_lock(&memcg_create_mutex);
4997
4998 if (memcg->use_hierarchy == val)
4999 goto out;
5000
5001 /*
5002 * If parent's use_hierarchy is set, we can't make any modifications
5003 * in the child subtrees. If it is unset, then the change can
5004 * occur, provided the current cgroup has no children.
5005 *
5006 * For the root cgroup, parent_mem is NULL, we allow value to be
5007 * set if there are no children.
5008 */
5009 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5010 (val == 1 || val == 0)) {
5011 if (!__memcg_has_children(memcg))
5012 memcg->use_hierarchy = val;
5013 else
5014 retval = -EBUSY;
5015 } else
5016 retval = -EINVAL;
5017
5018 out:
5019 mutex_unlock(&memcg_create_mutex);
5020
5021 return retval;
5022 }
5023
5024
5025 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5026 enum mem_cgroup_stat_index idx)
5027 {
5028 struct mem_cgroup *iter;
5029 long val = 0;
5030
5031 /* Per-cpu values can be negative, use a signed accumulator */
5032 for_each_mem_cgroup_tree(iter, memcg)
5033 val += mem_cgroup_read_stat(iter, idx);
5034
5035 if (val < 0) /* race ? */
5036 val = 0;
5037 return val;
5038 }
5039
5040 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5041 {
5042 u64 val;
5043
5044 if (!mem_cgroup_is_root(memcg)) {
5045 if (!swap)
5046 return res_counter_read_u64(&memcg->res, RES_USAGE);
5047 else
5048 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5049 }
5050
5051 /*
5052 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5053 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5054 */
5055 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5056 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5057
5058 if (swap)
5059 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5060
5061 return val << PAGE_SHIFT;
5062 }
5063
5064 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5065 struct file *file, char __user *buf,
5066 size_t nbytes, loff_t *ppos)
5067 {
5068 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5069 char str[64];
5070 u64 val;
5071 int name, len;
5072 enum res_type type;
5073
5074 type = MEMFILE_TYPE(cft->private);
5075 name = MEMFILE_ATTR(cft->private);
5076
5077 switch (type) {
5078 case _MEM:
5079 if (name == RES_USAGE)
5080 val = mem_cgroup_usage(memcg, false);
5081 else
5082 val = res_counter_read_u64(&memcg->res, name);
5083 break;
5084 case _MEMSWAP:
5085 if (name == RES_USAGE)
5086 val = mem_cgroup_usage(memcg, true);
5087 else
5088 val = res_counter_read_u64(&memcg->memsw, name);
5089 break;
5090 case _KMEM:
5091 val = res_counter_read_u64(&memcg->kmem, name);
5092 break;
5093 default:
5094 BUG();
5095 }
5096
5097 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5098 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5099 }
5100
5101 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5102 {
5103 int ret = -EINVAL;
5104 #ifdef CONFIG_MEMCG_KMEM
5105 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5106 /*
5107 * For simplicity, we won't allow this to be disabled. It also can't
5108 * be changed if the cgroup has children already, or if tasks had
5109 * already joined.
5110 *
5111 * If tasks join before we set the limit, a person looking at
5112 * kmem.usage_in_bytes will have no way to determine when it took
5113 * place, which makes the value quite meaningless.
5114 *
5115 * After it first became limited, changes in the value of the limit are
5116 * of course permitted.
5117 */
5118 mutex_lock(&memcg_create_mutex);
5119 mutex_lock(&set_limit_mutex);
5120 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5121 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5122 ret = -EBUSY;
5123 goto out;
5124 }
5125 ret = res_counter_set_limit(&memcg->kmem, val);
5126 VM_BUG_ON(ret);
5127
5128 ret = memcg_update_cache_sizes(memcg);
5129 if (ret) {
5130 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5131 goto out;
5132 }
5133 static_key_slow_inc(&memcg_kmem_enabled_key);
5134 /*
5135 * setting the active bit after the inc will guarantee no one
5136 * starts accounting before all call sites are patched
5137 */
5138 memcg_kmem_set_active(memcg);
5139
5140 /*
5141 * kmem charges can outlive the cgroup. In the case of slab
5142 * pages, for instance, a page contain objects from various
5143 * processes, so it is unfeasible to migrate them away. We
5144 * need to reference count the memcg because of that.
5145 */
5146 mem_cgroup_get(memcg);
5147 } else
5148 ret = res_counter_set_limit(&memcg->kmem, val);
5149 out:
5150 mutex_unlock(&set_limit_mutex);
5151 mutex_unlock(&memcg_create_mutex);
5152 #endif
5153 return ret;
5154 }
5155
5156 #ifdef CONFIG_MEMCG_KMEM
5157 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5158 {
5159 int ret = 0;
5160 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5161 if (!parent)
5162 goto out;
5163
5164 memcg->kmem_account_flags = parent->kmem_account_flags;
5165 /*
5166 * When that happen, we need to disable the static branch only on those
5167 * memcgs that enabled it. To achieve this, we would be forced to
5168 * complicate the code by keeping track of which memcgs were the ones
5169 * that actually enabled limits, and which ones got it from its
5170 * parents.
5171 *
5172 * It is a lot simpler just to do static_key_slow_inc() on every child
5173 * that is accounted.
5174 */
5175 if (!memcg_kmem_is_active(memcg))
5176 goto out;
5177
5178 /*
5179 * destroy(), called if we fail, will issue static_key_slow_inc() and
5180 * mem_cgroup_put() if kmem is enabled. We have to either call them
5181 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5182 * this more consistent, since it always leads to the same destroy path
5183 */
5184 mem_cgroup_get(memcg);
5185 static_key_slow_inc(&memcg_kmem_enabled_key);
5186
5187 mutex_lock(&set_limit_mutex);
5188 ret = memcg_update_cache_sizes(memcg);
5189 mutex_unlock(&set_limit_mutex);
5190 out:
5191 return ret;
5192 }
5193 #endif /* CONFIG_MEMCG_KMEM */
5194
5195 /*
5196 * The user of this function is...
5197 * RES_LIMIT.
5198 */
5199 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5200 const char *buffer)
5201 {
5202 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5203 enum res_type type;
5204 int name;
5205 unsigned long long val;
5206 int ret;
5207
5208 type = MEMFILE_TYPE(cft->private);
5209 name = MEMFILE_ATTR(cft->private);
5210
5211 switch (name) {
5212 case RES_LIMIT:
5213 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5214 ret = -EINVAL;
5215 break;
5216 }
5217 /* This function does all necessary parse...reuse it */
5218 ret = res_counter_memparse_write_strategy(buffer, &val);
5219 if (ret)
5220 break;
5221 if (type == _MEM)
5222 ret = mem_cgroup_resize_limit(memcg, val);
5223 else if (type == _MEMSWAP)
5224 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5225 else if (type == _KMEM)
5226 ret = memcg_update_kmem_limit(cont, val);
5227 else
5228 return -EINVAL;
5229 break;
5230 case RES_SOFT_LIMIT:
5231 ret = res_counter_memparse_write_strategy(buffer, &val);
5232 if (ret)
5233 break;
5234 /*
5235 * For memsw, soft limits are hard to implement in terms
5236 * of semantics, for now, we support soft limits for
5237 * control without swap
5238 */
5239 if (type == _MEM)
5240 ret = res_counter_set_soft_limit(&memcg->res, val);
5241 else
5242 ret = -EINVAL;
5243 break;
5244 default:
5245 ret = -EINVAL; /* should be BUG() ? */
5246 break;
5247 }
5248 return ret;
5249 }
5250
5251 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5252 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5253 {
5254 struct cgroup *cgroup;
5255 unsigned long long min_limit, min_memsw_limit, tmp;
5256
5257 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5258 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5259 cgroup = memcg->css.cgroup;
5260 if (!memcg->use_hierarchy)
5261 goto out;
5262
5263 while (cgroup->parent) {
5264 cgroup = cgroup->parent;
5265 memcg = mem_cgroup_from_cont(cgroup);
5266 if (!memcg->use_hierarchy)
5267 break;
5268 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5269 min_limit = min(min_limit, tmp);
5270 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5271 min_memsw_limit = min(min_memsw_limit, tmp);
5272 }
5273 out:
5274 *mem_limit = min_limit;
5275 *memsw_limit = min_memsw_limit;
5276 }
5277
5278 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5279 {
5280 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5281 int name;
5282 enum res_type type;
5283
5284 type = MEMFILE_TYPE(event);
5285 name = MEMFILE_ATTR(event);
5286
5287 switch (name) {
5288 case RES_MAX_USAGE:
5289 if (type == _MEM)
5290 res_counter_reset_max(&memcg->res);
5291 else if (type == _MEMSWAP)
5292 res_counter_reset_max(&memcg->memsw);
5293 else if (type == _KMEM)
5294 res_counter_reset_max(&memcg->kmem);
5295 else
5296 return -EINVAL;
5297 break;
5298 case RES_FAILCNT:
5299 if (type == _MEM)
5300 res_counter_reset_failcnt(&memcg->res);
5301 else if (type == _MEMSWAP)
5302 res_counter_reset_failcnt(&memcg->memsw);
5303 else if (type == _KMEM)
5304 res_counter_reset_failcnt(&memcg->kmem);
5305 else
5306 return -EINVAL;
5307 break;
5308 }
5309
5310 return 0;
5311 }
5312
5313 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5314 struct cftype *cft)
5315 {
5316 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5317 }
5318
5319 #ifdef CONFIG_MMU
5320 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5321 struct cftype *cft, u64 val)
5322 {
5323 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5324
5325 if (val >= (1 << NR_MOVE_TYPE))
5326 return -EINVAL;
5327
5328 /*
5329 * No kind of locking is needed in here, because ->can_attach() will
5330 * check this value once in the beginning of the process, and then carry
5331 * on with stale data. This means that changes to this value will only
5332 * affect task migrations starting after the change.
5333 */
5334 memcg->move_charge_at_immigrate = val;
5335 return 0;
5336 }
5337 #else
5338 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5339 struct cftype *cft, u64 val)
5340 {
5341 return -ENOSYS;
5342 }
5343 #endif
5344
5345 #ifdef CONFIG_NUMA
5346 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5347 struct seq_file *m)
5348 {
5349 int nid;
5350 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5351 unsigned long node_nr;
5352 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5353
5354 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5355 seq_printf(m, "total=%lu", total_nr);
5356 for_each_node_state(nid, N_MEMORY) {
5357 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5358 seq_printf(m, " N%d=%lu", nid, node_nr);
5359 }
5360 seq_putc(m, '\n');
5361
5362 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5363 seq_printf(m, "file=%lu", file_nr);
5364 for_each_node_state(nid, N_MEMORY) {
5365 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5366 LRU_ALL_FILE);
5367 seq_printf(m, " N%d=%lu", nid, node_nr);
5368 }
5369 seq_putc(m, '\n');
5370
5371 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5372 seq_printf(m, "anon=%lu", anon_nr);
5373 for_each_node_state(nid, N_MEMORY) {
5374 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5375 LRU_ALL_ANON);
5376 seq_printf(m, " N%d=%lu", nid, node_nr);
5377 }
5378 seq_putc(m, '\n');
5379
5380 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5381 seq_printf(m, "unevictable=%lu", unevictable_nr);
5382 for_each_node_state(nid, N_MEMORY) {
5383 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5384 BIT(LRU_UNEVICTABLE));
5385 seq_printf(m, " N%d=%lu", nid, node_nr);
5386 }
5387 seq_putc(m, '\n');
5388 return 0;
5389 }
5390 #endif /* CONFIG_NUMA */
5391
5392 static inline void mem_cgroup_lru_names_not_uptodate(void)
5393 {
5394 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5395 }
5396
5397 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5398 struct seq_file *m)
5399 {
5400 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5401 struct mem_cgroup *mi;
5402 unsigned int i;
5403
5404 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5405 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5406 continue;
5407 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5408 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5409 }
5410
5411 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5412 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5413 mem_cgroup_read_events(memcg, i));
5414
5415 for (i = 0; i < NR_LRU_LISTS; i++)
5416 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5417 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5418
5419 /* Hierarchical information */
5420 {
5421 unsigned long long limit, memsw_limit;
5422 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5423 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5424 if (do_swap_account)
5425 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5426 memsw_limit);
5427 }
5428
5429 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5430 long long val = 0;
5431
5432 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5433 continue;
5434 for_each_mem_cgroup_tree(mi, memcg)
5435 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5436 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5437 }
5438
5439 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5440 unsigned long long val = 0;
5441
5442 for_each_mem_cgroup_tree(mi, memcg)
5443 val += mem_cgroup_read_events(mi, i);
5444 seq_printf(m, "total_%s %llu\n",
5445 mem_cgroup_events_names[i], val);
5446 }
5447
5448 for (i = 0; i < NR_LRU_LISTS; i++) {
5449 unsigned long long val = 0;
5450
5451 for_each_mem_cgroup_tree(mi, memcg)
5452 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5453 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5454 }
5455
5456 #ifdef CONFIG_DEBUG_VM
5457 {
5458 int nid, zid;
5459 struct mem_cgroup_per_zone *mz;
5460 struct zone_reclaim_stat *rstat;
5461 unsigned long recent_rotated[2] = {0, 0};
5462 unsigned long recent_scanned[2] = {0, 0};
5463
5464 for_each_online_node(nid)
5465 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5466 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5467 rstat = &mz->lruvec.reclaim_stat;
5468
5469 recent_rotated[0] += rstat->recent_rotated[0];
5470 recent_rotated[1] += rstat->recent_rotated[1];
5471 recent_scanned[0] += rstat->recent_scanned[0];
5472 recent_scanned[1] += rstat->recent_scanned[1];
5473 }
5474 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5475 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5476 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5477 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5478 }
5479 #endif
5480
5481 return 0;
5482 }
5483
5484 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5485 {
5486 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5487
5488 return mem_cgroup_swappiness(memcg);
5489 }
5490
5491 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5492 u64 val)
5493 {
5494 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5495 struct mem_cgroup *parent;
5496
5497 if (val > 100)
5498 return -EINVAL;
5499
5500 if (cgrp->parent == NULL)
5501 return -EINVAL;
5502
5503 parent = mem_cgroup_from_cont(cgrp->parent);
5504
5505 mutex_lock(&memcg_create_mutex);
5506
5507 /* If under hierarchy, only empty-root can set this value */
5508 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5509 mutex_unlock(&memcg_create_mutex);
5510 return -EINVAL;
5511 }
5512
5513 memcg->swappiness = val;
5514
5515 mutex_unlock(&memcg_create_mutex);
5516
5517 return 0;
5518 }
5519
5520 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5521 {
5522 struct mem_cgroup_threshold_ary *t;
5523 u64 usage;
5524 int i;
5525
5526 rcu_read_lock();
5527 if (!swap)
5528 t = rcu_dereference(memcg->thresholds.primary);
5529 else
5530 t = rcu_dereference(memcg->memsw_thresholds.primary);
5531
5532 if (!t)
5533 goto unlock;
5534
5535 usage = mem_cgroup_usage(memcg, swap);
5536
5537 /*
5538 * current_threshold points to threshold just below or equal to usage.
5539 * If it's not true, a threshold was crossed after last
5540 * call of __mem_cgroup_threshold().
5541 */
5542 i = t->current_threshold;
5543
5544 /*
5545 * Iterate backward over array of thresholds starting from
5546 * current_threshold and check if a threshold is crossed.
5547 * If none of thresholds below usage is crossed, we read
5548 * only one element of the array here.
5549 */
5550 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5551 eventfd_signal(t->entries[i].eventfd, 1);
5552
5553 /* i = current_threshold + 1 */
5554 i++;
5555
5556 /*
5557 * Iterate forward over array of thresholds starting from
5558 * current_threshold+1 and check if a threshold is crossed.
5559 * If none of thresholds above usage is crossed, we read
5560 * only one element of the array here.
5561 */
5562 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5563 eventfd_signal(t->entries[i].eventfd, 1);
5564
5565 /* Update current_threshold */
5566 t->current_threshold = i - 1;
5567 unlock:
5568 rcu_read_unlock();
5569 }
5570
5571 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5572 {
5573 while (memcg) {
5574 __mem_cgroup_threshold(memcg, false);
5575 if (do_swap_account)
5576 __mem_cgroup_threshold(memcg, true);
5577
5578 memcg = parent_mem_cgroup(memcg);
5579 }
5580 }
5581
5582 static int compare_thresholds(const void *a, const void *b)
5583 {
5584 const struct mem_cgroup_threshold *_a = a;
5585 const struct mem_cgroup_threshold *_b = b;
5586
5587 if (_a->threshold > _b->threshold)
5588 return 1;
5589
5590 if (_a->threshold < _b->threshold)
5591 return -1;
5592
5593 return 0;
5594 }
5595
5596 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5597 {
5598 struct mem_cgroup_eventfd_list *ev;
5599
5600 list_for_each_entry(ev, &memcg->oom_notify, list)
5601 eventfd_signal(ev->eventfd, 1);
5602 return 0;
5603 }
5604
5605 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5606 {
5607 struct mem_cgroup *iter;
5608
5609 for_each_mem_cgroup_tree(iter, memcg)
5610 mem_cgroup_oom_notify_cb(iter);
5611 }
5612
5613 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5614 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5615 {
5616 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5617 struct mem_cgroup_thresholds *thresholds;
5618 struct mem_cgroup_threshold_ary *new;
5619 enum res_type type = MEMFILE_TYPE(cft->private);
5620 u64 threshold, usage;
5621 int i, size, ret;
5622
5623 ret = res_counter_memparse_write_strategy(args, &threshold);
5624 if (ret)
5625 return ret;
5626
5627 mutex_lock(&memcg->thresholds_lock);
5628
5629 if (type == _MEM)
5630 thresholds = &memcg->thresholds;
5631 else if (type == _MEMSWAP)
5632 thresholds = &memcg->memsw_thresholds;
5633 else
5634 BUG();
5635
5636 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5637
5638 /* Check if a threshold crossed before adding a new one */
5639 if (thresholds->primary)
5640 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5641
5642 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5643
5644 /* Allocate memory for new array of thresholds */
5645 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5646 GFP_KERNEL);
5647 if (!new) {
5648 ret = -ENOMEM;
5649 goto unlock;
5650 }
5651 new->size = size;
5652
5653 /* Copy thresholds (if any) to new array */
5654 if (thresholds->primary) {
5655 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5656 sizeof(struct mem_cgroup_threshold));
5657 }
5658
5659 /* Add new threshold */
5660 new->entries[size - 1].eventfd = eventfd;
5661 new->entries[size - 1].threshold = threshold;
5662
5663 /* Sort thresholds. Registering of new threshold isn't time-critical */
5664 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5665 compare_thresholds, NULL);
5666
5667 /* Find current threshold */
5668 new->current_threshold = -1;
5669 for (i = 0; i < size; i++) {
5670 if (new->entries[i].threshold <= usage) {
5671 /*
5672 * new->current_threshold will not be used until
5673 * rcu_assign_pointer(), so it's safe to increment
5674 * it here.
5675 */
5676 ++new->current_threshold;
5677 } else
5678 break;
5679 }
5680
5681 /* Free old spare buffer and save old primary buffer as spare */
5682 kfree(thresholds->spare);
5683 thresholds->spare = thresholds->primary;
5684
5685 rcu_assign_pointer(thresholds->primary, new);
5686
5687 /* To be sure that nobody uses thresholds */
5688 synchronize_rcu();
5689
5690 unlock:
5691 mutex_unlock(&memcg->thresholds_lock);
5692
5693 return ret;
5694 }
5695
5696 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5697 struct cftype *cft, struct eventfd_ctx *eventfd)
5698 {
5699 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5700 struct mem_cgroup_thresholds *thresholds;
5701 struct mem_cgroup_threshold_ary *new;
5702 enum res_type type = MEMFILE_TYPE(cft->private);
5703 u64 usage;
5704 int i, j, size;
5705
5706 mutex_lock(&memcg->thresholds_lock);
5707 if (type == _MEM)
5708 thresholds = &memcg->thresholds;
5709 else if (type == _MEMSWAP)
5710 thresholds = &memcg->memsw_thresholds;
5711 else
5712 BUG();
5713
5714 if (!thresholds->primary)
5715 goto unlock;
5716
5717 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5718
5719 /* Check if a threshold crossed before removing */
5720 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5721
5722 /* Calculate new number of threshold */
5723 size = 0;
5724 for (i = 0; i < thresholds->primary->size; i++) {
5725 if (thresholds->primary->entries[i].eventfd != eventfd)
5726 size++;
5727 }
5728
5729 new = thresholds->spare;
5730
5731 /* Set thresholds array to NULL if we don't have thresholds */
5732 if (!size) {
5733 kfree(new);
5734 new = NULL;
5735 goto swap_buffers;
5736 }
5737
5738 new->size = size;
5739
5740 /* Copy thresholds and find current threshold */
5741 new->current_threshold = -1;
5742 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5743 if (thresholds->primary->entries[i].eventfd == eventfd)
5744 continue;
5745
5746 new->entries[j] = thresholds->primary->entries[i];
5747 if (new->entries[j].threshold <= usage) {
5748 /*
5749 * new->current_threshold will not be used
5750 * until rcu_assign_pointer(), so it's safe to increment
5751 * it here.
5752 */
5753 ++new->current_threshold;
5754 }
5755 j++;
5756 }
5757
5758 swap_buffers:
5759 /* Swap primary and spare array */
5760 thresholds->spare = thresholds->primary;
5761 /* If all events are unregistered, free the spare array */
5762 if (!new) {
5763 kfree(thresholds->spare);
5764 thresholds->spare = NULL;
5765 }
5766
5767 rcu_assign_pointer(thresholds->primary, new);
5768
5769 /* To be sure that nobody uses thresholds */
5770 synchronize_rcu();
5771 unlock:
5772 mutex_unlock(&memcg->thresholds_lock);
5773 }
5774
5775 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5776 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5777 {
5778 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5779 struct mem_cgroup_eventfd_list *event;
5780 enum res_type type = MEMFILE_TYPE(cft->private);
5781
5782 BUG_ON(type != _OOM_TYPE);
5783 event = kmalloc(sizeof(*event), GFP_KERNEL);
5784 if (!event)
5785 return -ENOMEM;
5786
5787 spin_lock(&memcg_oom_lock);
5788
5789 event->eventfd = eventfd;
5790 list_add(&event->list, &memcg->oom_notify);
5791
5792 /* already in OOM ? */
5793 if (atomic_read(&memcg->under_oom))
5794 eventfd_signal(eventfd, 1);
5795 spin_unlock(&memcg_oom_lock);
5796
5797 return 0;
5798 }
5799
5800 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5801 struct cftype *cft, struct eventfd_ctx *eventfd)
5802 {
5803 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5804 struct mem_cgroup_eventfd_list *ev, *tmp;
5805 enum res_type type = MEMFILE_TYPE(cft->private);
5806
5807 BUG_ON(type != _OOM_TYPE);
5808
5809 spin_lock(&memcg_oom_lock);
5810
5811 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5812 if (ev->eventfd == eventfd) {
5813 list_del(&ev->list);
5814 kfree(ev);
5815 }
5816 }
5817
5818 spin_unlock(&memcg_oom_lock);
5819 }
5820
5821 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5822 struct cftype *cft, struct cgroup_map_cb *cb)
5823 {
5824 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5825
5826 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5827
5828 if (atomic_read(&memcg->under_oom))
5829 cb->fill(cb, "under_oom", 1);
5830 else
5831 cb->fill(cb, "under_oom", 0);
5832 return 0;
5833 }
5834
5835 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5836 struct cftype *cft, u64 val)
5837 {
5838 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5839 struct mem_cgroup *parent;
5840
5841 /* cannot set to root cgroup and only 0 and 1 are allowed */
5842 if (!cgrp->parent || !((val == 0) || (val == 1)))
5843 return -EINVAL;
5844
5845 parent = mem_cgroup_from_cont(cgrp->parent);
5846
5847 mutex_lock(&memcg_create_mutex);
5848 /* oom-kill-disable is a flag for subhierarchy. */
5849 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5850 mutex_unlock(&memcg_create_mutex);
5851 return -EINVAL;
5852 }
5853 memcg->oom_kill_disable = val;
5854 if (!val)
5855 memcg_oom_recover(memcg);
5856 mutex_unlock(&memcg_create_mutex);
5857 return 0;
5858 }
5859
5860 #ifdef CONFIG_MEMCG_KMEM
5861 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5862 {
5863 int ret;
5864
5865 memcg->kmemcg_id = -1;
5866 ret = memcg_propagate_kmem(memcg);
5867 if (ret)
5868 return ret;
5869
5870 return mem_cgroup_sockets_init(memcg, ss);
5871 }
5872
5873 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5874 {
5875 mem_cgroup_sockets_destroy(memcg);
5876
5877 memcg_kmem_mark_dead(memcg);
5878
5879 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5880 return;
5881
5882 /*
5883 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5884 * path here, being careful not to race with memcg_uncharge_kmem: it is
5885 * possible that the charges went down to 0 between mark_dead and the
5886 * res_counter read, so in that case, we don't need the put
5887 */
5888 if (memcg_kmem_test_and_clear_dead(memcg))
5889 mem_cgroup_put(memcg);
5890 }
5891 #else
5892 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5893 {
5894 return 0;
5895 }
5896
5897 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5898 {
5899 }
5900 #endif
5901
5902 static struct cftype mem_cgroup_files[] = {
5903 {
5904 .name = "usage_in_bytes",
5905 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5906 .read = mem_cgroup_read,
5907 .register_event = mem_cgroup_usage_register_event,
5908 .unregister_event = mem_cgroup_usage_unregister_event,
5909 },
5910 {
5911 .name = "max_usage_in_bytes",
5912 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5913 .trigger = mem_cgroup_reset,
5914 .read = mem_cgroup_read,
5915 },
5916 {
5917 .name = "limit_in_bytes",
5918 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5919 .write_string = mem_cgroup_write,
5920 .read = mem_cgroup_read,
5921 },
5922 {
5923 .name = "soft_limit_in_bytes",
5924 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5925 .write_string = mem_cgroup_write,
5926 .read = mem_cgroup_read,
5927 },
5928 {
5929 .name = "failcnt",
5930 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5931 .trigger = mem_cgroup_reset,
5932 .read = mem_cgroup_read,
5933 },
5934 {
5935 .name = "stat",
5936 .read_seq_string = memcg_stat_show,
5937 },
5938 {
5939 .name = "force_empty",
5940 .trigger = mem_cgroup_force_empty_write,
5941 },
5942 {
5943 .name = "use_hierarchy",
5944 .flags = CFTYPE_INSANE,
5945 .write_u64 = mem_cgroup_hierarchy_write,
5946 .read_u64 = mem_cgroup_hierarchy_read,
5947 },
5948 {
5949 .name = "swappiness",
5950 .read_u64 = mem_cgroup_swappiness_read,
5951 .write_u64 = mem_cgroup_swappiness_write,
5952 },
5953 {
5954 .name = "move_charge_at_immigrate",
5955 .read_u64 = mem_cgroup_move_charge_read,
5956 .write_u64 = mem_cgroup_move_charge_write,
5957 },
5958 {
5959 .name = "oom_control",
5960 .read_map = mem_cgroup_oom_control_read,
5961 .write_u64 = mem_cgroup_oom_control_write,
5962 .register_event = mem_cgroup_oom_register_event,
5963 .unregister_event = mem_cgroup_oom_unregister_event,
5964 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5965 },
5966 {
5967 .name = "pressure_level",
5968 .register_event = vmpressure_register_event,
5969 .unregister_event = vmpressure_unregister_event,
5970 },
5971 #ifdef CONFIG_NUMA
5972 {
5973 .name = "numa_stat",
5974 .read_seq_string = memcg_numa_stat_show,
5975 },
5976 #endif
5977 #ifdef CONFIG_MEMCG_KMEM
5978 {
5979 .name = "kmem.limit_in_bytes",
5980 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5981 .write_string = mem_cgroup_write,
5982 .read = mem_cgroup_read,
5983 },
5984 {
5985 .name = "kmem.usage_in_bytes",
5986 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5987 .read = mem_cgroup_read,
5988 },
5989 {
5990 .name = "kmem.failcnt",
5991 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5992 .trigger = mem_cgroup_reset,
5993 .read = mem_cgroup_read,
5994 },
5995 {
5996 .name = "kmem.max_usage_in_bytes",
5997 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5998 .trigger = mem_cgroup_reset,
5999 .read = mem_cgroup_read,
6000 },
6001 #ifdef CONFIG_SLABINFO
6002 {
6003 .name = "kmem.slabinfo",
6004 .read_seq_string = mem_cgroup_slabinfo_read,
6005 },
6006 #endif
6007 #endif
6008 { }, /* terminate */
6009 };
6010
6011 #ifdef CONFIG_MEMCG_SWAP
6012 static struct cftype memsw_cgroup_files[] = {
6013 {
6014 .name = "memsw.usage_in_bytes",
6015 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6016 .read = mem_cgroup_read,
6017 .register_event = mem_cgroup_usage_register_event,
6018 .unregister_event = mem_cgroup_usage_unregister_event,
6019 },
6020 {
6021 .name = "memsw.max_usage_in_bytes",
6022 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6023 .trigger = mem_cgroup_reset,
6024 .read = mem_cgroup_read,
6025 },
6026 {
6027 .name = "memsw.limit_in_bytes",
6028 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6029 .write_string = mem_cgroup_write,
6030 .read = mem_cgroup_read,
6031 },
6032 {
6033 .name = "memsw.failcnt",
6034 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6035 .trigger = mem_cgroup_reset,
6036 .read = mem_cgroup_read,
6037 },
6038 { }, /* terminate */
6039 };
6040 #endif
6041 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6042 {
6043 struct mem_cgroup_per_node *pn;
6044 struct mem_cgroup_per_zone *mz;
6045 int zone, tmp = node;
6046 /*
6047 * This routine is called against possible nodes.
6048 * But it's BUG to call kmalloc() against offline node.
6049 *
6050 * TODO: this routine can waste much memory for nodes which will
6051 * never be onlined. It's better to use memory hotplug callback
6052 * function.
6053 */
6054 if (!node_state(node, N_NORMAL_MEMORY))
6055 tmp = -1;
6056 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6057 if (!pn)
6058 return 1;
6059
6060 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6061 mz = &pn->zoneinfo[zone];
6062 lruvec_init(&mz->lruvec);
6063 mz->usage_in_excess = 0;
6064 mz->on_tree = false;
6065 mz->memcg = memcg;
6066 }
6067 memcg->info.nodeinfo[node] = pn;
6068 return 0;
6069 }
6070
6071 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6072 {
6073 kfree(memcg->info.nodeinfo[node]);
6074 }
6075
6076 static struct mem_cgroup *mem_cgroup_alloc(void)
6077 {
6078 struct mem_cgroup *memcg;
6079 size_t size = memcg_size();
6080
6081 /* Can be very big if nr_node_ids is very big */
6082 if (size < PAGE_SIZE)
6083 memcg = kzalloc(size, GFP_KERNEL);
6084 else
6085 memcg = vzalloc(size);
6086
6087 if (!memcg)
6088 return NULL;
6089
6090 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6091 if (!memcg->stat)
6092 goto out_free;
6093 spin_lock_init(&memcg->pcp_counter_lock);
6094 return memcg;
6095
6096 out_free:
6097 if (size < PAGE_SIZE)
6098 kfree(memcg);
6099 else
6100 vfree(memcg);
6101 return NULL;
6102 }
6103
6104 /*
6105 * At destroying mem_cgroup, references from swap_cgroup can remain.
6106 * (scanning all at force_empty is too costly...)
6107 *
6108 * Instead of clearing all references at force_empty, we remember
6109 * the number of reference from swap_cgroup and free mem_cgroup when
6110 * it goes down to 0.
6111 *
6112 * Removal of cgroup itself succeeds regardless of refs from swap.
6113 */
6114
6115 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6116 {
6117 int node;
6118 size_t size = memcg_size();
6119
6120 mem_cgroup_remove_from_trees(memcg);
6121 free_css_id(&mem_cgroup_subsys, &memcg->css);
6122
6123 for_each_node(node)
6124 free_mem_cgroup_per_zone_info(memcg, node);
6125
6126 free_percpu(memcg->stat);
6127
6128 /*
6129 * We need to make sure that (at least for now), the jump label
6130 * destruction code runs outside of the cgroup lock. This is because
6131 * get_online_cpus(), which is called from the static_branch update,
6132 * can't be called inside the cgroup_lock. cpusets are the ones
6133 * enforcing this dependency, so if they ever change, we might as well.
6134 *
6135 * schedule_work() will guarantee this happens. Be careful if you need
6136 * to move this code around, and make sure it is outside
6137 * the cgroup_lock.
6138 */
6139 disarm_static_keys(memcg);
6140 if (size < PAGE_SIZE)
6141 kfree(memcg);
6142 else
6143 vfree(memcg);
6144 }
6145
6146
6147 /*
6148 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6149 * but in process context. The work_freeing structure is overlaid
6150 * on the rcu_freeing structure, which itself is overlaid on memsw.
6151 */
6152 static void free_work(struct work_struct *work)
6153 {
6154 struct mem_cgroup *memcg;
6155
6156 memcg = container_of(work, struct mem_cgroup, work_freeing);
6157 __mem_cgroup_free(memcg);
6158 }
6159
6160 static void free_rcu(struct rcu_head *rcu_head)
6161 {
6162 struct mem_cgroup *memcg;
6163
6164 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6165 INIT_WORK(&memcg->work_freeing, free_work);
6166 schedule_work(&memcg->work_freeing);
6167 }
6168
6169 static void mem_cgroup_get(struct mem_cgroup *memcg)
6170 {
6171 atomic_inc(&memcg->refcnt);
6172 }
6173
6174 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6175 {
6176 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6177 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6178 call_rcu(&memcg->rcu_freeing, free_rcu);
6179 if (parent)
6180 mem_cgroup_put(parent);
6181 }
6182 }
6183
6184 static void mem_cgroup_put(struct mem_cgroup *memcg)
6185 {
6186 __mem_cgroup_put(memcg, 1);
6187 }
6188
6189 /*
6190 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6191 */
6192 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6193 {
6194 if (!memcg->res.parent)
6195 return NULL;
6196 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6197 }
6198 EXPORT_SYMBOL(parent_mem_cgroup);
6199
6200 static void __init mem_cgroup_soft_limit_tree_init(void)
6201 {
6202 struct mem_cgroup_tree_per_node *rtpn;
6203 struct mem_cgroup_tree_per_zone *rtpz;
6204 int tmp, node, zone;
6205
6206 for_each_node(node) {
6207 tmp = node;
6208 if (!node_state(node, N_NORMAL_MEMORY))
6209 tmp = -1;
6210 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6211 BUG_ON(!rtpn);
6212
6213 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6214
6215 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6216 rtpz = &rtpn->rb_tree_per_zone[zone];
6217 rtpz->rb_root = RB_ROOT;
6218 spin_lock_init(&rtpz->lock);
6219 }
6220 }
6221 }
6222
6223 static struct cgroup_subsys_state * __ref
6224 mem_cgroup_css_alloc(struct cgroup *cont)
6225 {
6226 struct mem_cgroup *memcg;
6227 long error = -ENOMEM;
6228 int node;
6229
6230 memcg = mem_cgroup_alloc();
6231 if (!memcg)
6232 return ERR_PTR(error);
6233
6234 for_each_node(node)
6235 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6236 goto free_out;
6237
6238 /* root ? */
6239 if (cont->parent == NULL) {
6240 root_mem_cgroup = memcg;
6241 res_counter_init(&memcg->res, NULL);
6242 res_counter_init(&memcg->memsw, NULL);
6243 res_counter_init(&memcg->kmem, NULL);
6244 }
6245
6246 memcg->last_scanned_node = MAX_NUMNODES;
6247 INIT_LIST_HEAD(&memcg->oom_notify);
6248 atomic_set(&memcg->refcnt, 1);
6249 memcg->move_charge_at_immigrate = 0;
6250 mutex_init(&memcg->thresholds_lock);
6251 spin_lock_init(&memcg->move_lock);
6252 vmpressure_init(&memcg->vmpressure);
6253
6254 return &memcg->css;
6255
6256 free_out:
6257 __mem_cgroup_free(memcg);
6258 return ERR_PTR(error);
6259 }
6260
6261 static int
6262 mem_cgroup_css_online(struct cgroup *cont)
6263 {
6264 struct mem_cgroup *memcg, *parent;
6265 int error = 0;
6266
6267 if (!cont->parent)
6268 return 0;
6269
6270 mutex_lock(&memcg_create_mutex);
6271 memcg = mem_cgroup_from_cont(cont);
6272 parent = mem_cgroup_from_cont(cont->parent);
6273
6274 memcg->use_hierarchy = parent->use_hierarchy;
6275 memcg->oom_kill_disable = parent->oom_kill_disable;
6276 memcg->swappiness = mem_cgroup_swappiness(parent);
6277
6278 if (parent->use_hierarchy) {
6279 res_counter_init(&memcg->res, &parent->res);
6280 res_counter_init(&memcg->memsw, &parent->memsw);
6281 res_counter_init(&memcg->kmem, &parent->kmem);
6282
6283 /*
6284 * We increment refcnt of the parent to ensure that we can
6285 * safely access it on res_counter_charge/uncharge.
6286 * This refcnt will be decremented when freeing this
6287 * mem_cgroup(see mem_cgroup_put).
6288 */
6289 mem_cgroup_get(parent);
6290 } else {
6291 res_counter_init(&memcg->res, NULL);
6292 res_counter_init(&memcg->memsw, NULL);
6293 res_counter_init(&memcg->kmem, NULL);
6294 /*
6295 * Deeper hierachy with use_hierarchy == false doesn't make
6296 * much sense so let cgroup subsystem know about this
6297 * unfortunate state in our controller.
6298 */
6299 if (parent != root_mem_cgroup)
6300 mem_cgroup_subsys.broken_hierarchy = true;
6301 }
6302
6303 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6304 mutex_unlock(&memcg_create_mutex);
6305 return error;
6306 }
6307
6308 /*
6309 * Announce all parents that a group from their hierarchy is gone.
6310 */
6311 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6312 {
6313 struct mem_cgroup *parent = memcg;
6314
6315 while ((parent = parent_mem_cgroup(parent)))
6316 atomic_inc(&parent->dead_count);
6317
6318 /*
6319 * if the root memcg is not hierarchical we have to check it
6320 * explicitely.
6321 */
6322 if (!root_mem_cgroup->use_hierarchy)
6323 atomic_inc(&root_mem_cgroup->dead_count);
6324 }
6325
6326 static void mem_cgroup_css_offline(struct cgroup *cont)
6327 {
6328 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6329 struct cgroup *iter;
6330
6331 mem_cgroup_invalidate_reclaim_iterators(memcg);
6332
6333 /*
6334 * This requires that offlining is serialized. Right now that is
6335 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6336 */
6337 rcu_read_lock();
6338 cgroup_for_each_descendant_post(iter, cont) {
6339 rcu_read_unlock();
6340 mem_cgroup_reparent_charges(mem_cgroup_from_cont(iter));
6341 rcu_read_lock();
6342 }
6343 rcu_read_unlock();
6344 mem_cgroup_reparent_charges(memcg);
6345
6346 mem_cgroup_destroy_all_caches(memcg);
6347 }
6348
6349 static void mem_cgroup_css_free(struct cgroup *cont)
6350 {
6351 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6352
6353 kmem_cgroup_destroy(memcg);
6354
6355 mem_cgroup_put(memcg);
6356 }
6357
6358 #ifdef CONFIG_MMU
6359 /* Handlers for move charge at task migration. */
6360 #define PRECHARGE_COUNT_AT_ONCE 256
6361 static int mem_cgroup_do_precharge(unsigned long count)
6362 {
6363 int ret = 0;
6364 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6365 struct mem_cgroup *memcg = mc.to;
6366
6367 if (mem_cgroup_is_root(memcg)) {
6368 mc.precharge += count;
6369 /* we don't need css_get for root */
6370 return ret;
6371 }
6372 /* try to charge at once */
6373 if (count > 1) {
6374 struct res_counter *dummy;
6375 /*
6376 * "memcg" cannot be under rmdir() because we've already checked
6377 * by cgroup_lock_live_cgroup() that it is not removed and we
6378 * are still under the same cgroup_mutex. So we can postpone
6379 * css_get().
6380 */
6381 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6382 goto one_by_one;
6383 if (do_swap_account && res_counter_charge(&memcg->memsw,
6384 PAGE_SIZE * count, &dummy)) {
6385 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6386 goto one_by_one;
6387 }
6388 mc.precharge += count;
6389 return ret;
6390 }
6391 one_by_one:
6392 /* fall back to one by one charge */
6393 while (count--) {
6394 if (signal_pending(current)) {
6395 ret = -EINTR;
6396 break;
6397 }
6398 if (!batch_count--) {
6399 batch_count = PRECHARGE_COUNT_AT_ONCE;
6400 cond_resched();
6401 }
6402 ret = __mem_cgroup_try_charge(NULL,
6403 GFP_KERNEL, 1, &memcg, false);
6404 if (ret)
6405 /* mem_cgroup_clear_mc() will do uncharge later */
6406 return ret;
6407 mc.precharge++;
6408 }
6409 return ret;
6410 }
6411
6412 /**
6413 * get_mctgt_type - get target type of moving charge
6414 * @vma: the vma the pte to be checked belongs
6415 * @addr: the address corresponding to the pte to be checked
6416 * @ptent: the pte to be checked
6417 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6418 *
6419 * Returns
6420 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6421 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6422 * move charge. if @target is not NULL, the page is stored in target->page
6423 * with extra refcnt got(Callers should handle it).
6424 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6425 * target for charge migration. if @target is not NULL, the entry is stored
6426 * in target->ent.
6427 *
6428 * Called with pte lock held.
6429 */
6430 union mc_target {
6431 struct page *page;
6432 swp_entry_t ent;
6433 };
6434
6435 enum mc_target_type {
6436 MC_TARGET_NONE = 0,
6437 MC_TARGET_PAGE,
6438 MC_TARGET_SWAP,
6439 };
6440
6441 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6442 unsigned long addr, pte_t ptent)
6443 {
6444 struct page *page = vm_normal_page(vma, addr, ptent);
6445
6446 if (!page || !page_mapped(page))
6447 return NULL;
6448 if (PageAnon(page)) {
6449 /* we don't move shared anon */
6450 if (!move_anon())
6451 return NULL;
6452 } else if (!move_file())
6453 /* we ignore mapcount for file pages */
6454 return NULL;
6455 if (!get_page_unless_zero(page))
6456 return NULL;
6457
6458 return page;
6459 }
6460
6461 #ifdef CONFIG_SWAP
6462 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6463 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6464 {
6465 struct page *page = NULL;
6466 swp_entry_t ent = pte_to_swp_entry(ptent);
6467
6468 if (!move_anon() || non_swap_entry(ent))
6469 return NULL;
6470 /*
6471 * Because lookup_swap_cache() updates some statistics counter,
6472 * we call find_get_page() with swapper_space directly.
6473 */
6474 page = find_get_page(swap_address_space(ent), ent.val);
6475 if (do_swap_account)
6476 entry->val = ent.val;
6477
6478 return page;
6479 }
6480 #else
6481 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6482 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6483 {
6484 return NULL;
6485 }
6486 #endif
6487
6488 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6489 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6490 {
6491 struct page *page = NULL;
6492 struct address_space *mapping;
6493 pgoff_t pgoff;
6494
6495 if (!vma->vm_file) /* anonymous vma */
6496 return NULL;
6497 if (!move_file())
6498 return NULL;
6499
6500 mapping = vma->vm_file->f_mapping;
6501 if (pte_none(ptent))
6502 pgoff = linear_page_index(vma, addr);
6503 else /* pte_file(ptent) is true */
6504 pgoff = pte_to_pgoff(ptent);
6505
6506 /* page is moved even if it's not RSS of this task(page-faulted). */
6507 page = find_get_page(mapping, pgoff);
6508
6509 #ifdef CONFIG_SWAP
6510 /* shmem/tmpfs may report page out on swap: account for that too. */
6511 if (radix_tree_exceptional_entry(page)) {
6512 swp_entry_t swap = radix_to_swp_entry(page);
6513 if (do_swap_account)
6514 *entry = swap;
6515 page = find_get_page(swap_address_space(swap), swap.val);
6516 }
6517 #endif
6518 return page;
6519 }
6520
6521 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6522 unsigned long addr, pte_t ptent, union mc_target *target)
6523 {
6524 struct page *page = NULL;
6525 struct page_cgroup *pc;
6526 enum mc_target_type ret = MC_TARGET_NONE;
6527 swp_entry_t ent = { .val = 0 };
6528
6529 if (pte_present(ptent))
6530 page = mc_handle_present_pte(vma, addr, ptent);
6531 else if (is_swap_pte(ptent))
6532 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6533 else if (pte_none(ptent) || pte_file(ptent))
6534 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6535
6536 if (!page && !ent.val)
6537 return ret;
6538 if (page) {
6539 pc = lookup_page_cgroup(page);
6540 /*
6541 * Do only loose check w/o page_cgroup lock.
6542 * mem_cgroup_move_account() checks the pc is valid or not under
6543 * the lock.
6544 */
6545 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6546 ret = MC_TARGET_PAGE;
6547 if (target)
6548 target->page = page;
6549 }
6550 if (!ret || !target)
6551 put_page(page);
6552 }
6553 /* There is a swap entry and a page doesn't exist or isn't charged */
6554 if (ent.val && !ret &&
6555 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6556 ret = MC_TARGET_SWAP;
6557 if (target)
6558 target->ent = ent;
6559 }
6560 return ret;
6561 }
6562
6563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6564 /*
6565 * We don't consider swapping or file mapped pages because THP does not
6566 * support them for now.
6567 * Caller should make sure that pmd_trans_huge(pmd) is true.
6568 */
6569 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6570 unsigned long addr, pmd_t pmd, union mc_target *target)
6571 {
6572 struct page *page = NULL;
6573 struct page_cgroup *pc;
6574 enum mc_target_type ret = MC_TARGET_NONE;
6575
6576 page = pmd_page(pmd);
6577 VM_BUG_ON(!page || !PageHead(page));
6578 if (!move_anon())
6579 return ret;
6580 pc = lookup_page_cgroup(page);
6581 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6582 ret = MC_TARGET_PAGE;
6583 if (target) {
6584 get_page(page);
6585 target->page = page;
6586 }
6587 }
6588 return ret;
6589 }
6590 #else
6591 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6592 unsigned long addr, pmd_t pmd, union mc_target *target)
6593 {
6594 return MC_TARGET_NONE;
6595 }
6596 #endif
6597
6598 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6599 unsigned long addr, unsigned long end,
6600 struct mm_walk *walk)
6601 {
6602 struct vm_area_struct *vma = walk->private;
6603 pte_t *pte;
6604 spinlock_t *ptl;
6605
6606 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6607 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6608 mc.precharge += HPAGE_PMD_NR;
6609 spin_unlock(&vma->vm_mm->page_table_lock);
6610 return 0;
6611 }
6612
6613 if (pmd_trans_unstable(pmd))
6614 return 0;
6615 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6616 for (; addr != end; pte++, addr += PAGE_SIZE)
6617 if (get_mctgt_type(vma, addr, *pte, NULL))
6618 mc.precharge++; /* increment precharge temporarily */
6619 pte_unmap_unlock(pte - 1, ptl);
6620 cond_resched();
6621
6622 return 0;
6623 }
6624
6625 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6626 {
6627 unsigned long precharge;
6628 struct vm_area_struct *vma;
6629
6630 down_read(&mm->mmap_sem);
6631 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6632 struct mm_walk mem_cgroup_count_precharge_walk = {
6633 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6634 .mm = mm,
6635 .private = vma,
6636 };
6637 if (is_vm_hugetlb_page(vma))
6638 continue;
6639 walk_page_range(vma->vm_start, vma->vm_end,
6640 &mem_cgroup_count_precharge_walk);
6641 }
6642 up_read(&mm->mmap_sem);
6643
6644 precharge = mc.precharge;
6645 mc.precharge = 0;
6646
6647 return precharge;
6648 }
6649
6650 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6651 {
6652 unsigned long precharge = mem_cgroup_count_precharge(mm);
6653
6654 VM_BUG_ON(mc.moving_task);
6655 mc.moving_task = current;
6656 return mem_cgroup_do_precharge(precharge);
6657 }
6658
6659 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6660 static void __mem_cgroup_clear_mc(void)
6661 {
6662 struct mem_cgroup *from = mc.from;
6663 struct mem_cgroup *to = mc.to;
6664
6665 /* we must uncharge all the leftover precharges from mc.to */
6666 if (mc.precharge) {
6667 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6668 mc.precharge = 0;
6669 }
6670 /*
6671 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6672 * we must uncharge here.
6673 */
6674 if (mc.moved_charge) {
6675 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6676 mc.moved_charge = 0;
6677 }
6678 /* we must fixup refcnts and charges */
6679 if (mc.moved_swap) {
6680 /* uncharge swap account from the old cgroup */
6681 if (!mem_cgroup_is_root(mc.from))
6682 res_counter_uncharge(&mc.from->memsw,
6683 PAGE_SIZE * mc.moved_swap);
6684 __mem_cgroup_put(mc.from, mc.moved_swap);
6685
6686 if (!mem_cgroup_is_root(mc.to)) {
6687 /*
6688 * we charged both to->res and to->memsw, so we should
6689 * uncharge to->res.
6690 */
6691 res_counter_uncharge(&mc.to->res,
6692 PAGE_SIZE * mc.moved_swap);
6693 }
6694 /* we've already done mem_cgroup_get(mc.to) */
6695 mc.moved_swap = 0;
6696 }
6697 memcg_oom_recover(from);
6698 memcg_oom_recover(to);
6699 wake_up_all(&mc.waitq);
6700 }
6701
6702 static void mem_cgroup_clear_mc(void)
6703 {
6704 struct mem_cgroup *from = mc.from;
6705
6706 /*
6707 * we must clear moving_task before waking up waiters at the end of
6708 * task migration.
6709 */
6710 mc.moving_task = NULL;
6711 __mem_cgroup_clear_mc();
6712 spin_lock(&mc.lock);
6713 mc.from = NULL;
6714 mc.to = NULL;
6715 spin_unlock(&mc.lock);
6716 mem_cgroup_end_move(from);
6717 }
6718
6719 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6720 struct cgroup_taskset *tset)
6721 {
6722 struct task_struct *p = cgroup_taskset_first(tset);
6723 int ret = 0;
6724 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6725 unsigned long move_charge_at_immigrate;
6726
6727 /*
6728 * We are now commited to this value whatever it is. Changes in this
6729 * tunable will only affect upcoming migrations, not the current one.
6730 * So we need to save it, and keep it going.
6731 */
6732 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6733 if (move_charge_at_immigrate) {
6734 struct mm_struct *mm;
6735 struct mem_cgroup *from = mem_cgroup_from_task(p);
6736
6737 VM_BUG_ON(from == memcg);
6738
6739 mm = get_task_mm(p);
6740 if (!mm)
6741 return 0;
6742 /* We move charges only when we move a owner of the mm */
6743 if (mm->owner == p) {
6744 VM_BUG_ON(mc.from);
6745 VM_BUG_ON(mc.to);
6746 VM_BUG_ON(mc.precharge);
6747 VM_BUG_ON(mc.moved_charge);
6748 VM_BUG_ON(mc.moved_swap);
6749 mem_cgroup_start_move(from);
6750 spin_lock(&mc.lock);
6751 mc.from = from;
6752 mc.to = memcg;
6753 mc.immigrate_flags = move_charge_at_immigrate;
6754 spin_unlock(&mc.lock);
6755 /* We set mc.moving_task later */
6756
6757 ret = mem_cgroup_precharge_mc(mm);
6758 if (ret)
6759 mem_cgroup_clear_mc();
6760 }
6761 mmput(mm);
6762 }
6763 return ret;
6764 }
6765
6766 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6767 struct cgroup_taskset *tset)
6768 {
6769 mem_cgroup_clear_mc();
6770 }
6771
6772 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6773 unsigned long addr, unsigned long end,
6774 struct mm_walk *walk)
6775 {
6776 int ret = 0;
6777 struct vm_area_struct *vma = walk->private;
6778 pte_t *pte;
6779 spinlock_t *ptl;
6780 enum mc_target_type target_type;
6781 union mc_target target;
6782 struct page *page;
6783 struct page_cgroup *pc;
6784
6785 /*
6786 * We don't take compound_lock() here but no race with splitting thp
6787 * happens because:
6788 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6789 * under splitting, which means there's no concurrent thp split,
6790 * - if another thread runs into split_huge_page() just after we
6791 * entered this if-block, the thread must wait for page table lock
6792 * to be unlocked in __split_huge_page_splitting(), where the main
6793 * part of thp split is not executed yet.
6794 */
6795 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6796 if (mc.precharge < HPAGE_PMD_NR) {
6797 spin_unlock(&vma->vm_mm->page_table_lock);
6798 return 0;
6799 }
6800 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6801 if (target_type == MC_TARGET_PAGE) {
6802 page = target.page;
6803 if (!isolate_lru_page(page)) {
6804 pc = lookup_page_cgroup(page);
6805 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6806 pc, mc.from, mc.to)) {
6807 mc.precharge -= HPAGE_PMD_NR;
6808 mc.moved_charge += HPAGE_PMD_NR;
6809 }
6810 putback_lru_page(page);
6811 }
6812 put_page(page);
6813 }
6814 spin_unlock(&vma->vm_mm->page_table_lock);
6815 return 0;
6816 }
6817
6818 if (pmd_trans_unstable(pmd))
6819 return 0;
6820 retry:
6821 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6822 for (; addr != end; addr += PAGE_SIZE) {
6823 pte_t ptent = *(pte++);
6824 swp_entry_t ent;
6825
6826 if (!mc.precharge)
6827 break;
6828
6829 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6830 case MC_TARGET_PAGE:
6831 page = target.page;
6832 if (isolate_lru_page(page))
6833 goto put;
6834 pc = lookup_page_cgroup(page);
6835 if (!mem_cgroup_move_account(page, 1, pc,
6836 mc.from, mc.to)) {
6837 mc.precharge--;
6838 /* we uncharge from mc.from later. */
6839 mc.moved_charge++;
6840 }
6841 putback_lru_page(page);
6842 put: /* get_mctgt_type() gets the page */
6843 put_page(page);
6844 break;
6845 case MC_TARGET_SWAP:
6846 ent = target.ent;
6847 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6848 mc.precharge--;
6849 /* we fixup refcnts and charges later. */
6850 mc.moved_swap++;
6851 }
6852 break;
6853 default:
6854 break;
6855 }
6856 }
6857 pte_unmap_unlock(pte - 1, ptl);
6858 cond_resched();
6859
6860 if (addr != end) {
6861 /*
6862 * We have consumed all precharges we got in can_attach().
6863 * We try charge one by one, but don't do any additional
6864 * charges to mc.to if we have failed in charge once in attach()
6865 * phase.
6866 */
6867 ret = mem_cgroup_do_precharge(1);
6868 if (!ret)
6869 goto retry;
6870 }
6871
6872 return ret;
6873 }
6874
6875 static void mem_cgroup_move_charge(struct mm_struct *mm)
6876 {
6877 struct vm_area_struct *vma;
6878
6879 lru_add_drain_all();
6880 retry:
6881 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6882 /*
6883 * Someone who are holding the mmap_sem might be waiting in
6884 * waitq. So we cancel all extra charges, wake up all waiters,
6885 * and retry. Because we cancel precharges, we might not be able
6886 * to move enough charges, but moving charge is a best-effort
6887 * feature anyway, so it wouldn't be a big problem.
6888 */
6889 __mem_cgroup_clear_mc();
6890 cond_resched();
6891 goto retry;
6892 }
6893 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6894 int ret;
6895 struct mm_walk mem_cgroup_move_charge_walk = {
6896 .pmd_entry = mem_cgroup_move_charge_pte_range,
6897 .mm = mm,
6898 .private = vma,
6899 };
6900 if (is_vm_hugetlb_page(vma))
6901 continue;
6902 ret = walk_page_range(vma->vm_start, vma->vm_end,
6903 &mem_cgroup_move_charge_walk);
6904 if (ret)
6905 /*
6906 * means we have consumed all precharges and failed in
6907 * doing additional charge. Just abandon here.
6908 */
6909 break;
6910 }
6911 up_read(&mm->mmap_sem);
6912 }
6913
6914 static void mem_cgroup_move_task(struct cgroup *cont,
6915 struct cgroup_taskset *tset)
6916 {
6917 struct task_struct *p = cgroup_taskset_first(tset);
6918 struct mm_struct *mm = get_task_mm(p);
6919
6920 if (mm) {
6921 if (mc.to)
6922 mem_cgroup_move_charge(mm);
6923 mmput(mm);
6924 }
6925 if (mc.to)
6926 mem_cgroup_clear_mc();
6927 }
6928 #else /* !CONFIG_MMU */
6929 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6930 struct cgroup_taskset *tset)
6931 {
6932 return 0;
6933 }
6934 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6935 struct cgroup_taskset *tset)
6936 {
6937 }
6938 static void mem_cgroup_move_task(struct cgroup *cont,
6939 struct cgroup_taskset *tset)
6940 {
6941 }
6942 #endif
6943
6944 /*
6945 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6946 * to verify sane_behavior flag on each mount attempt.
6947 */
6948 static void mem_cgroup_bind(struct cgroup *root)
6949 {
6950 /*
6951 * use_hierarchy is forced with sane_behavior. cgroup core
6952 * guarantees that @root doesn't have any children, so turning it
6953 * on for the root memcg is enough.
6954 */
6955 if (cgroup_sane_behavior(root))
6956 mem_cgroup_from_cont(root)->use_hierarchy = true;
6957 }
6958
6959 struct cgroup_subsys mem_cgroup_subsys = {
6960 .name = "memory",
6961 .subsys_id = mem_cgroup_subsys_id,
6962 .css_alloc = mem_cgroup_css_alloc,
6963 .css_online = mem_cgroup_css_online,
6964 .css_offline = mem_cgroup_css_offline,
6965 .css_free = mem_cgroup_css_free,
6966 .can_attach = mem_cgroup_can_attach,
6967 .cancel_attach = mem_cgroup_cancel_attach,
6968 .attach = mem_cgroup_move_task,
6969 .bind = mem_cgroup_bind,
6970 .base_cftypes = mem_cgroup_files,
6971 .early_init = 0,
6972 .use_id = 1,
6973 };
6974
6975 #ifdef CONFIG_MEMCG_SWAP
6976 static int __init enable_swap_account(char *s)
6977 {
6978 /* consider enabled if no parameter or 1 is given */
6979 if (!strcmp(s, "1"))
6980 really_do_swap_account = 1;
6981 else if (!strcmp(s, "0"))
6982 really_do_swap_account = 0;
6983 return 1;
6984 }
6985 __setup("swapaccount=", enable_swap_account);
6986
6987 static void __init memsw_file_init(void)
6988 {
6989 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6990 }
6991
6992 static void __init enable_swap_cgroup(void)
6993 {
6994 if (!mem_cgroup_disabled() && really_do_swap_account) {
6995 do_swap_account = 1;
6996 memsw_file_init();
6997 }
6998 }
6999
7000 #else
7001 static void __init enable_swap_cgroup(void)
7002 {
7003 }
7004 #endif
7005
7006 /*
7007 * subsys_initcall() for memory controller.
7008 *
7009 * Some parts like hotcpu_notifier() have to be initialized from this context
7010 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7011 * everything that doesn't depend on a specific mem_cgroup structure should
7012 * be initialized from here.
7013 */
7014 static int __init mem_cgroup_init(void)
7015 {
7016 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7017 enable_swap_cgroup();
7018 mem_cgroup_soft_limit_tree_init();
7019 memcg_stock_init();
7020 return 0;
7021 }
7022 subsys_initcall(mem_cgroup_init);