Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
61
62 #include <asm/uaccess.h>
63
64 #include <trace/events/vmscan.h>
65
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
68
69 #define MEM_CGROUP_RECLAIM_RETRIES 5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
75
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
82
83 #else
84 #define do_swap_account 0
85 #endif
86
87
88 /*
89 * Statistics for memory cgroup.
90 */
91 enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
100 MEM_CGROUP_STAT_NSTATS,
101 };
102
103 static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
106 "rss_huge",
107 "mapped_file",
108 "swap",
109 };
110
111 enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
116 MEM_CGROUP_EVENTS_NSTATS,
117 };
118
119 static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
124 };
125
126 static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
132 };
133
134 /*
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
139 */
140 enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
143 MEM_CGROUP_TARGET_NUMAINFO,
144 MEM_CGROUP_NTARGETS,
145 };
146 #define THRESHOLDS_EVENTS_TARGET 128
147 #define SOFTLIMIT_EVENTS_TARGET 1024
148 #define NUMAINFO_EVENTS_TARGET 1024
149
150 struct mem_cgroup_stat_cpu {
151 long count[MEM_CGROUP_STAT_NSTATS];
152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153 unsigned long nr_page_events;
154 unsigned long targets[MEM_CGROUP_NTARGETS];
155 };
156
157 struct mem_cgroup_reclaim_iter {
158 /*
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
161 */
162 struct mem_cgroup *last_visited;
163 unsigned long last_dead_count;
164
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
167 };
168
169 /*
170 * per-zone information in memory controller.
171 */
172 struct mem_cgroup_per_zone {
173 struct lruvec lruvec;
174 unsigned long lru_size[NR_LRU_LISTS];
175
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
183 /* use container_of */
184 };
185
186 struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188 };
189
190 struct mem_cgroup_lru_info {
191 struct mem_cgroup_per_node *nodeinfo[0];
192 };
193
194 /*
195 * Cgroups above their limits are maintained in a RB-Tree, independent of
196 * their hierarchy representation
197 */
198
199 struct mem_cgroup_tree_per_zone {
200 struct rb_root rb_root;
201 spinlock_t lock;
202 };
203
204 struct mem_cgroup_tree_per_node {
205 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
206 };
207
208 struct mem_cgroup_tree {
209 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
210 };
211
212 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
213
214 struct mem_cgroup_threshold {
215 struct eventfd_ctx *eventfd;
216 u64 threshold;
217 };
218
219 /* For threshold */
220 struct mem_cgroup_threshold_ary {
221 /* An array index points to threshold just below or equal to usage. */
222 int current_threshold;
223 /* Size of entries[] */
224 unsigned int size;
225 /* Array of thresholds */
226 struct mem_cgroup_threshold entries[0];
227 };
228
229 struct mem_cgroup_thresholds {
230 /* Primary thresholds array */
231 struct mem_cgroup_threshold_ary *primary;
232 /*
233 * Spare threshold array.
234 * This is needed to make mem_cgroup_unregister_event() "never fail".
235 * It must be able to store at least primary->size - 1 entries.
236 */
237 struct mem_cgroup_threshold_ary *spare;
238 };
239
240 /* for OOM */
241 struct mem_cgroup_eventfd_list {
242 struct list_head list;
243 struct eventfd_ctx *eventfd;
244 };
245
246 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
247 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
248
249 /*
250 * The memory controller data structure. The memory controller controls both
251 * page cache and RSS per cgroup. We would eventually like to provide
252 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
253 * to help the administrator determine what knobs to tune.
254 *
255 * TODO: Add a water mark for the memory controller. Reclaim will begin when
256 * we hit the water mark. May be even add a low water mark, such that
257 * no reclaim occurs from a cgroup at it's low water mark, this is
258 * a feature that will be implemented much later in the future.
259 */
260 struct mem_cgroup {
261 struct cgroup_subsys_state css;
262 /*
263 * the counter to account for memory usage
264 */
265 struct res_counter res;
266
267 /* vmpressure notifications */
268 struct vmpressure vmpressure;
269
270 union {
271 /*
272 * the counter to account for mem+swap usage.
273 */
274 struct res_counter memsw;
275
276 /*
277 * rcu_freeing is used only when freeing struct mem_cgroup,
278 * so put it into a union to avoid wasting more memory.
279 * It must be disjoint from the css field. It could be
280 * in a union with the res field, but res plays a much
281 * larger part in mem_cgroup life than memsw, and might
282 * be of interest, even at time of free, when debugging.
283 * So share rcu_head with the less interesting memsw.
284 */
285 struct rcu_head rcu_freeing;
286 /*
287 * We also need some space for a worker in deferred freeing.
288 * By the time we call it, rcu_freeing is no longer in use.
289 */
290 struct work_struct work_freeing;
291 };
292
293 /*
294 * the counter to account for kernel memory usage.
295 */
296 struct res_counter kmem;
297 /*
298 * Should the accounting and control be hierarchical, per subtree?
299 */
300 bool use_hierarchy;
301 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
302
303 bool oom_lock;
304 atomic_t under_oom;
305 atomic_t oom_wakeups;
306
307 atomic_t refcnt;
308
309 int swappiness;
310 /* OOM-Killer disable */
311 int oom_kill_disable;
312
313 /* set when res.limit == memsw.limit */
314 bool memsw_is_minimum;
315
316 /* protect arrays of thresholds */
317 struct mutex thresholds_lock;
318
319 /* thresholds for memory usage. RCU-protected */
320 struct mem_cgroup_thresholds thresholds;
321
322 /* thresholds for mem+swap usage. RCU-protected */
323 struct mem_cgroup_thresholds memsw_thresholds;
324
325 /* For oom notifier event fd */
326 struct list_head oom_notify;
327
328 /*
329 * Should we move charges of a task when a task is moved into this
330 * mem_cgroup ? And what type of charges should we move ?
331 */
332 unsigned long move_charge_at_immigrate;
333 /*
334 * set > 0 if pages under this cgroup are moving to other cgroup.
335 */
336 atomic_t moving_account;
337 /* taken only while moving_account > 0 */
338 spinlock_t move_lock;
339 /*
340 * percpu counter.
341 */
342 struct mem_cgroup_stat_cpu __percpu *stat;
343 /*
344 * used when a cpu is offlined or other synchronizations
345 * See mem_cgroup_read_stat().
346 */
347 struct mem_cgroup_stat_cpu nocpu_base;
348 spinlock_t pcp_counter_lock;
349
350 atomic_t dead_count;
351 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
352 struct tcp_memcontrol tcp_mem;
353 #endif
354 #if defined(CONFIG_MEMCG_KMEM)
355 /* analogous to slab_common's slab_caches list. per-memcg */
356 struct list_head memcg_slab_caches;
357 /* Not a spinlock, we can take a lot of time walking the list */
358 struct mutex slab_caches_mutex;
359 /* Index in the kmem_cache->memcg_params->memcg_caches array */
360 int kmemcg_id;
361 #endif
362
363 int last_scanned_node;
364 #if MAX_NUMNODES > 1
365 nodemask_t scan_nodes;
366 atomic_t numainfo_events;
367 atomic_t numainfo_updating;
368 #endif
369
370 /*
371 * Per cgroup active and inactive list, similar to the
372 * per zone LRU lists.
373 *
374 * WARNING: This has to be the last element of the struct. Don't
375 * add new fields after this point.
376 */
377 struct mem_cgroup_lru_info info;
378 };
379
380 static size_t memcg_size(void)
381 {
382 return sizeof(struct mem_cgroup) +
383 nr_node_ids * sizeof(struct mem_cgroup_per_node *);
384 }
385
386 /* internal only representation about the status of kmem accounting. */
387 enum {
388 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
389 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
390 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
391 };
392
393 /* We account when limit is on, but only after call sites are patched */
394 #define KMEM_ACCOUNTED_MASK \
395 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
396
397 #ifdef CONFIG_MEMCG_KMEM
398 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
399 {
400 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
401 }
402
403 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
404 {
405 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
406 }
407
408 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
409 {
410 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
411 }
412
413 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
414 {
415 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
416 }
417
418 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
419 {
420 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
421 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
422 }
423
424 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
425 {
426 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
427 &memcg->kmem_account_flags);
428 }
429 #endif
430
431 /* Stuffs for move charges at task migration. */
432 /*
433 * Types of charges to be moved. "move_charge_at_immitgrate" and
434 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
435 */
436 enum move_type {
437 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
438 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
439 NR_MOVE_TYPE,
440 };
441
442 /* "mc" and its members are protected by cgroup_mutex */
443 static struct move_charge_struct {
444 spinlock_t lock; /* for from, to */
445 struct mem_cgroup *from;
446 struct mem_cgroup *to;
447 unsigned long immigrate_flags;
448 unsigned long precharge;
449 unsigned long moved_charge;
450 unsigned long moved_swap;
451 struct task_struct *moving_task; /* a task moving charges */
452 wait_queue_head_t waitq; /* a waitq for other context */
453 } mc = {
454 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
455 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
456 };
457
458 static bool move_anon(void)
459 {
460 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
461 }
462
463 static bool move_file(void)
464 {
465 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
466 }
467
468 /*
469 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
470 * limit reclaim to prevent infinite loops, if they ever occur.
471 */
472 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
473 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
474
475 enum charge_type {
476 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
477 MEM_CGROUP_CHARGE_TYPE_ANON,
478 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
479 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
480 NR_CHARGE_TYPE,
481 };
482
483 /* for encoding cft->private value on file */
484 enum res_type {
485 _MEM,
486 _MEMSWAP,
487 _OOM_TYPE,
488 _KMEM,
489 };
490
491 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
492 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
493 #define MEMFILE_ATTR(val) ((val) & 0xffff)
494 /* Used for OOM nofiier */
495 #define OOM_CONTROL (0)
496
497 /*
498 * Reclaim flags for mem_cgroup_hierarchical_reclaim
499 */
500 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
501 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
502 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
503 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
504
505 /*
506 * The memcg_create_mutex will be held whenever a new cgroup is created.
507 * As a consequence, any change that needs to protect against new child cgroups
508 * appearing has to hold it as well.
509 */
510 static DEFINE_MUTEX(memcg_create_mutex);
511
512 static void mem_cgroup_get(struct mem_cgroup *memcg);
513 static void mem_cgroup_put(struct mem_cgroup *memcg);
514
515 static inline
516 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
517 {
518 return container_of(s, struct mem_cgroup, css);
519 }
520
521 /* Some nice accessors for the vmpressure. */
522 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
523 {
524 if (!memcg)
525 memcg = root_mem_cgroup;
526 return &memcg->vmpressure;
527 }
528
529 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
530 {
531 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
532 }
533
534 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
535 {
536 return &mem_cgroup_from_css(css)->vmpressure;
537 }
538
539 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
540 {
541 return (memcg == root_mem_cgroup);
542 }
543
544 #ifdef CONFIG_SWAP
545 /* add_to_swap -> get_swap_page_by_memcg -> .. */
546 bool memcg_is_root(struct page *page)
547 {
548 struct page_cgroup *pc;
549
550 if (mem_cgroup_disabled())
551 return true;
552
553 pc = lookup_page_cgroup(page);
554
555 return mem_cgroup_is_root(pc->mem_cgroup);
556 }
557 #endif
558
559 /* Writing them here to avoid exposing memcg's inner layout */
560 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
561
562 void sock_update_memcg(struct sock *sk)
563 {
564 if (mem_cgroup_sockets_enabled) {
565 struct mem_cgroup *memcg;
566 struct cg_proto *cg_proto;
567
568 BUG_ON(!sk->sk_prot->proto_cgroup);
569
570 /* Socket cloning can throw us here with sk_cgrp already
571 * filled. It won't however, necessarily happen from
572 * process context. So the test for root memcg given
573 * the current task's memcg won't help us in this case.
574 *
575 * Respecting the original socket's memcg is a better
576 * decision in this case.
577 */
578 if (sk->sk_cgrp) {
579 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
580 mem_cgroup_get(sk->sk_cgrp->memcg);
581 return;
582 }
583
584 rcu_read_lock();
585 memcg = mem_cgroup_from_task(current);
586 cg_proto = sk->sk_prot->proto_cgroup(memcg);
587 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
588 mem_cgroup_get(memcg);
589 sk->sk_cgrp = cg_proto;
590 }
591 rcu_read_unlock();
592 }
593 }
594 EXPORT_SYMBOL(sock_update_memcg);
595
596 void sock_release_memcg(struct sock *sk)
597 {
598 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
599 struct mem_cgroup *memcg;
600 WARN_ON(!sk->sk_cgrp->memcg);
601 memcg = sk->sk_cgrp->memcg;
602 mem_cgroup_put(memcg);
603 }
604 }
605
606 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
607 {
608 if (!memcg || mem_cgroup_is_root(memcg))
609 return NULL;
610
611 return &memcg->tcp_mem.cg_proto;
612 }
613 EXPORT_SYMBOL(tcp_proto_cgroup);
614
615 static void disarm_sock_keys(struct mem_cgroup *memcg)
616 {
617 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
618 return;
619 static_key_slow_dec(&memcg_socket_limit_enabled);
620 }
621 #else
622 static void disarm_sock_keys(struct mem_cgroup *memcg)
623 {
624 }
625 #endif
626
627 #ifdef CONFIG_MEMCG_KMEM
628 /*
629 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
630 * There are two main reasons for not using the css_id for this:
631 * 1) this works better in sparse environments, where we have a lot of memcgs,
632 * but only a few kmem-limited. Or also, if we have, for instance, 200
633 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
634 * 200 entry array for that.
635 *
636 * 2) In order not to violate the cgroup API, we would like to do all memory
637 * allocation in ->create(). At that point, we haven't yet allocated the
638 * css_id. Having a separate index prevents us from messing with the cgroup
639 * core for this
640 *
641 * The current size of the caches array is stored in
642 * memcg_limited_groups_array_size. It will double each time we have to
643 * increase it.
644 */
645 static DEFINE_IDA(kmem_limited_groups);
646 int memcg_limited_groups_array_size;
647
648 /*
649 * MIN_SIZE is different than 1, because we would like to avoid going through
650 * the alloc/free process all the time. In a small machine, 4 kmem-limited
651 * cgroups is a reasonable guess. In the future, it could be a parameter or
652 * tunable, but that is strictly not necessary.
653 *
654 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
655 * this constant directly from cgroup, but it is understandable that this is
656 * better kept as an internal representation in cgroup.c. In any case, the
657 * css_id space is not getting any smaller, and we don't have to necessarily
658 * increase ours as well if it increases.
659 */
660 #define MEMCG_CACHES_MIN_SIZE 4
661 #define MEMCG_CACHES_MAX_SIZE 65535
662
663 /*
664 * A lot of the calls to the cache allocation functions are expected to be
665 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
666 * conditional to this static branch, we'll have to allow modules that does
667 * kmem_cache_alloc and the such to see this symbol as well
668 */
669 struct static_key memcg_kmem_enabled_key;
670 EXPORT_SYMBOL(memcg_kmem_enabled_key);
671
672 static void disarm_kmem_keys(struct mem_cgroup *memcg)
673 {
674 if (memcg_kmem_is_active(memcg)) {
675 static_key_slow_dec(&memcg_kmem_enabled_key);
676 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
677 }
678 /*
679 * This check can't live in kmem destruction function,
680 * since the charges will outlive the cgroup
681 */
682 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
683 }
684 #else
685 static void disarm_kmem_keys(struct mem_cgroup *memcg)
686 {
687 }
688 #endif /* CONFIG_MEMCG_KMEM */
689
690 static void disarm_static_keys(struct mem_cgroup *memcg)
691 {
692 disarm_sock_keys(memcg);
693 disarm_kmem_keys(memcg);
694 }
695
696 static void drain_all_stock_async(struct mem_cgroup *memcg);
697
698 static struct mem_cgroup_per_zone *
699 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
700 {
701 VM_BUG_ON((unsigned)nid >= nr_node_ids);
702 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
703 }
704
705 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
706 {
707 return &memcg->css;
708 }
709
710 static struct mem_cgroup_per_zone *
711 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
712 {
713 int nid = page_to_nid(page);
714 int zid = page_zonenum(page);
715
716 return mem_cgroup_zoneinfo(memcg, nid, zid);
717 }
718
719 static struct mem_cgroup_tree_per_zone *
720 soft_limit_tree_node_zone(int nid, int zid)
721 {
722 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
723 }
724
725 static struct mem_cgroup_tree_per_zone *
726 soft_limit_tree_from_page(struct page *page)
727 {
728 int nid = page_to_nid(page);
729 int zid = page_zonenum(page);
730
731 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
732 }
733
734 static void
735 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
736 struct mem_cgroup_per_zone *mz,
737 struct mem_cgroup_tree_per_zone *mctz,
738 unsigned long long new_usage_in_excess)
739 {
740 struct rb_node **p = &mctz->rb_root.rb_node;
741 struct rb_node *parent = NULL;
742 struct mem_cgroup_per_zone *mz_node;
743
744 if (mz->on_tree)
745 return;
746
747 mz->usage_in_excess = new_usage_in_excess;
748 if (!mz->usage_in_excess)
749 return;
750 while (*p) {
751 parent = *p;
752 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
753 tree_node);
754 if (mz->usage_in_excess < mz_node->usage_in_excess)
755 p = &(*p)->rb_left;
756 /*
757 * We can't avoid mem cgroups that are over their soft
758 * limit by the same amount
759 */
760 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
761 p = &(*p)->rb_right;
762 }
763 rb_link_node(&mz->tree_node, parent, p);
764 rb_insert_color(&mz->tree_node, &mctz->rb_root);
765 mz->on_tree = true;
766 }
767
768 static void
769 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
770 struct mem_cgroup_per_zone *mz,
771 struct mem_cgroup_tree_per_zone *mctz)
772 {
773 if (!mz->on_tree)
774 return;
775 rb_erase(&mz->tree_node, &mctz->rb_root);
776 mz->on_tree = false;
777 }
778
779 static void
780 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
781 struct mem_cgroup_per_zone *mz,
782 struct mem_cgroup_tree_per_zone *mctz)
783 {
784 spin_lock(&mctz->lock);
785 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
786 spin_unlock(&mctz->lock);
787 }
788
789
790 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
791 {
792 unsigned long long excess;
793 struct mem_cgroup_per_zone *mz;
794 struct mem_cgroup_tree_per_zone *mctz;
795 int nid = page_to_nid(page);
796 int zid = page_zonenum(page);
797 mctz = soft_limit_tree_from_page(page);
798
799 /*
800 * Necessary to update all ancestors when hierarchy is used.
801 * because their event counter is not touched.
802 */
803 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
804 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
805 excess = res_counter_soft_limit_excess(&memcg->res);
806 /*
807 * We have to update the tree if mz is on RB-tree or
808 * mem is over its softlimit.
809 */
810 if (excess || mz->on_tree) {
811 spin_lock(&mctz->lock);
812 /* if on-tree, remove it */
813 if (mz->on_tree)
814 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
815 /*
816 * Insert again. mz->usage_in_excess will be updated.
817 * If excess is 0, no tree ops.
818 */
819 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
820 spin_unlock(&mctz->lock);
821 }
822 }
823 }
824
825 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
826 {
827 int node, zone;
828 struct mem_cgroup_per_zone *mz;
829 struct mem_cgroup_tree_per_zone *mctz;
830
831 for_each_node(node) {
832 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
833 mz = mem_cgroup_zoneinfo(memcg, node, zone);
834 mctz = soft_limit_tree_node_zone(node, zone);
835 mem_cgroup_remove_exceeded(memcg, mz, mctz);
836 }
837 }
838 }
839
840 static struct mem_cgroup_per_zone *
841 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
842 {
843 struct rb_node *rightmost = NULL;
844 struct mem_cgroup_per_zone *mz;
845
846 retry:
847 mz = NULL;
848 rightmost = rb_last(&mctz->rb_root);
849 if (!rightmost)
850 goto done; /* Nothing to reclaim from */
851
852 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
853 /*
854 * Remove the node now but someone else can add it back,
855 * we will to add it back at the end of reclaim to its correct
856 * position in the tree.
857 */
858 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
859 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
860 !css_tryget(&mz->memcg->css))
861 goto retry;
862 done:
863 return mz;
864 }
865
866 static struct mem_cgroup_per_zone *
867 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
868 {
869 struct mem_cgroup_per_zone *mz;
870
871 spin_lock(&mctz->lock);
872 mz = __mem_cgroup_largest_soft_limit_node(mctz);
873 spin_unlock(&mctz->lock);
874 return mz;
875 }
876
877 /*
878 * Implementation Note: reading percpu statistics for memcg.
879 *
880 * Both of vmstat[] and percpu_counter has threshold and do periodic
881 * synchronization to implement "quick" read. There are trade-off between
882 * reading cost and precision of value. Then, we may have a chance to implement
883 * a periodic synchronizion of counter in memcg's counter.
884 *
885 * But this _read() function is used for user interface now. The user accounts
886 * memory usage by memory cgroup and he _always_ requires exact value because
887 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
888 * have to visit all online cpus and make sum. So, for now, unnecessary
889 * synchronization is not implemented. (just implemented for cpu hotplug)
890 *
891 * If there are kernel internal actions which can make use of some not-exact
892 * value, and reading all cpu value can be performance bottleneck in some
893 * common workload, threashold and synchonization as vmstat[] should be
894 * implemented.
895 */
896 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
897 enum mem_cgroup_stat_index idx)
898 {
899 long val = 0;
900 int cpu;
901
902 get_online_cpus();
903 for_each_online_cpu(cpu)
904 val += per_cpu(memcg->stat->count[idx], cpu);
905 #ifdef CONFIG_HOTPLUG_CPU
906 spin_lock(&memcg->pcp_counter_lock);
907 val += memcg->nocpu_base.count[idx];
908 spin_unlock(&memcg->pcp_counter_lock);
909 #endif
910 put_online_cpus();
911 return val;
912 }
913
914 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
915 bool charge)
916 {
917 int val = (charge) ? 1 : -1;
918 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
919 }
920
921 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
922 enum mem_cgroup_events_index idx)
923 {
924 unsigned long val = 0;
925 int cpu;
926
927 for_each_online_cpu(cpu)
928 val += per_cpu(memcg->stat->events[idx], cpu);
929 #ifdef CONFIG_HOTPLUG_CPU
930 spin_lock(&memcg->pcp_counter_lock);
931 val += memcg->nocpu_base.events[idx];
932 spin_unlock(&memcg->pcp_counter_lock);
933 #endif
934 return val;
935 }
936
937 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
938 struct page *page,
939 bool anon, int nr_pages)
940 {
941 preempt_disable();
942
943 /*
944 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
945 * counted as CACHE even if it's on ANON LRU.
946 */
947 if (anon)
948 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
949 nr_pages);
950 else
951 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
952 nr_pages);
953
954 if (PageTransHuge(page))
955 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
956 nr_pages);
957
958 /* pagein of a big page is an event. So, ignore page size */
959 if (nr_pages > 0)
960 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
961 else {
962 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
963 nr_pages = -nr_pages; /* for event */
964 }
965
966 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
967
968 preempt_enable();
969 }
970
971 unsigned long
972 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
973 {
974 struct mem_cgroup_per_zone *mz;
975
976 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
977 return mz->lru_size[lru];
978 }
979
980 static unsigned long
981 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
982 unsigned int lru_mask)
983 {
984 struct mem_cgroup_per_zone *mz;
985 enum lru_list lru;
986 unsigned long ret = 0;
987
988 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
989
990 for_each_lru(lru) {
991 if (BIT(lru) & lru_mask)
992 ret += mz->lru_size[lru];
993 }
994 return ret;
995 }
996
997 static unsigned long
998 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
999 int nid, unsigned int lru_mask)
1000 {
1001 u64 total = 0;
1002 int zid;
1003
1004 for (zid = 0; zid < MAX_NR_ZONES; zid++)
1005 total += mem_cgroup_zone_nr_lru_pages(memcg,
1006 nid, zid, lru_mask);
1007
1008 return total;
1009 }
1010
1011 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
1012 unsigned int lru_mask)
1013 {
1014 int nid;
1015 u64 total = 0;
1016
1017 for_each_node_state(nid, N_MEMORY)
1018 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1019 return total;
1020 }
1021
1022 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1023 enum mem_cgroup_events_target target)
1024 {
1025 unsigned long val, next;
1026
1027 val = __this_cpu_read(memcg->stat->nr_page_events);
1028 next = __this_cpu_read(memcg->stat->targets[target]);
1029 /* from time_after() in jiffies.h */
1030 if ((long)next - (long)val < 0) {
1031 switch (target) {
1032 case MEM_CGROUP_TARGET_THRESH:
1033 next = val + THRESHOLDS_EVENTS_TARGET;
1034 break;
1035 case MEM_CGROUP_TARGET_SOFTLIMIT:
1036 next = val + SOFTLIMIT_EVENTS_TARGET;
1037 break;
1038 case MEM_CGROUP_TARGET_NUMAINFO:
1039 next = val + NUMAINFO_EVENTS_TARGET;
1040 break;
1041 default:
1042 break;
1043 }
1044 __this_cpu_write(memcg->stat->targets[target], next);
1045 return true;
1046 }
1047 return false;
1048 }
1049
1050 /*
1051 * Check events in order.
1052 *
1053 */
1054 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1055 {
1056 preempt_disable();
1057 /* threshold event is triggered in finer grain than soft limit */
1058 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1059 MEM_CGROUP_TARGET_THRESH))) {
1060 bool do_softlimit;
1061 bool do_numainfo __maybe_unused;
1062
1063 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1064 MEM_CGROUP_TARGET_SOFTLIMIT);
1065 #if MAX_NUMNODES > 1
1066 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1067 MEM_CGROUP_TARGET_NUMAINFO);
1068 #endif
1069 preempt_enable();
1070
1071 mem_cgroup_threshold(memcg);
1072 if (unlikely(do_softlimit))
1073 mem_cgroup_update_tree(memcg, page);
1074 #if MAX_NUMNODES > 1
1075 if (unlikely(do_numainfo))
1076 atomic_inc(&memcg->numainfo_events);
1077 #endif
1078 } else
1079 preempt_enable();
1080 }
1081
1082 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1083 {
1084 return mem_cgroup_from_css(
1085 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1086 }
1087
1088 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1089 {
1090 /*
1091 * mm_update_next_owner() may clear mm->owner to NULL
1092 * if it races with swapoff, page migration, etc.
1093 * So this can be called with p == NULL.
1094 */
1095 if (unlikely(!p))
1096 return NULL;
1097
1098 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1099 }
1100
1101 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1102 {
1103 struct mem_cgroup *memcg = NULL;
1104
1105 if (!mm)
1106 return NULL;
1107 /*
1108 * Because we have no locks, mm->owner's may be being moved to other
1109 * cgroup. We use css_tryget() here even if this looks
1110 * pessimistic (rather than adding locks here).
1111 */
1112 rcu_read_lock();
1113 do {
1114 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1115 if (unlikely(!memcg))
1116 break;
1117 } while (!css_tryget(&memcg->css));
1118 rcu_read_unlock();
1119 return memcg;
1120 }
1121
1122 /*
1123 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1124 * ref. count) or NULL if the whole root's subtree has been visited.
1125 *
1126 * helper function to be used by mem_cgroup_iter
1127 */
1128 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1129 struct mem_cgroup *last_visited)
1130 {
1131 struct cgroup *prev_cgroup, *next_cgroup;
1132
1133 /*
1134 * Root is not visited by cgroup iterators so it needs an
1135 * explicit visit.
1136 */
1137 if (!last_visited)
1138 return root;
1139
1140 prev_cgroup = (last_visited == root) ? NULL
1141 : last_visited->css.cgroup;
1142 skip_node:
1143 next_cgroup = cgroup_next_descendant_pre(
1144 prev_cgroup, root->css.cgroup);
1145
1146 /*
1147 * Even if we found a group we have to make sure it is
1148 * alive. css && !memcg means that the groups should be
1149 * skipped and we should continue the tree walk.
1150 * last_visited css is safe to use because it is
1151 * protected by css_get and the tree walk is rcu safe.
1152 */
1153 if (next_cgroup) {
1154 struct mem_cgroup *mem = mem_cgroup_from_cont(
1155 next_cgroup);
1156 if (css_tryget(&mem->css))
1157 return mem;
1158 else {
1159 prev_cgroup = next_cgroup;
1160 goto skip_node;
1161 }
1162 }
1163
1164 return NULL;
1165 }
1166
1167 /**
1168 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1169 * @root: hierarchy root
1170 * @prev: previously returned memcg, NULL on first invocation
1171 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1172 *
1173 * Returns references to children of the hierarchy below @root, or
1174 * @root itself, or %NULL after a full round-trip.
1175 *
1176 * Caller must pass the return value in @prev on subsequent
1177 * invocations for reference counting, or use mem_cgroup_iter_break()
1178 * to cancel a hierarchy walk before the round-trip is complete.
1179 *
1180 * Reclaimers can specify a zone and a priority level in @reclaim to
1181 * divide up the memcgs in the hierarchy among all concurrent
1182 * reclaimers operating on the same zone and priority.
1183 */
1184 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1185 struct mem_cgroup *prev,
1186 struct mem_cgroup_reclaim_cookie *reclaim)
1187 {
1188 struct mem_cgroup *memcg = NULL;
1189 struct mem_cgroup *last_visited = NULL;
1190 unsigned long uninitialized_var(dead_count);
1191
1192 if (mem_cgroup_disabled())
1193 return NULL;
1194
1195 if (!root)
1196 root = root_mem_cgroup;
1197
1198 if (prev && !reclaim)
1199 last_visited = prev;
1200
1201 if (!root->use_hierarchy && root != root_mem_cgroup) {
1202 if (prev)
1203 goto out_css_put;
1204 return root;
1205 }
1206
1207 rcu_read_lock();
1208 while (!memcg) {
1209 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1210
1211 if (reclaim) {
1212 int nid = zone_to_nid(reclaim->zone);
1213 int zid = zone_idx(reclaim->zone);
1214 struct mem_cgroup_per_zone *mz;
1215
1216 mz = mem_cgroup_zoneinfo(root, nid, zid);
1217 iter = &mz->reclaim_iter[reclaim->priority];
1218 if (prev && reclaim->generation != iter->generation) {
1219 iter->last_visited = NULL;
1220 goto out_unlock;
1221 }
1222
1223 /*
1224 * If the dead_count mismatches, a destruction
1225 * has happened or is happening concurrently.
1226 * If the dead_count matches, a destruction
1227 * might still happen concurrently, but since
1228 * we checked under RCU, that destruction
1229 * won't free the object until we release the
1230 * RCU reader lock. Thus, the dead_count
1231 * check verifies the pointer is still valid,
1232 * css_tryget() verifies the cgroup pointed to
1233 * is alive.
1234 */
1235 dead_count = atomic_read(&root->dead_count);
1236 if (dead_count == iter->last_dead_count) {
1237 smp_rmb();
1238 last_visited = iter->last_visited;
1239 if (last_visited && last_visited != root &&
1240 !css_tryget(&last_visited->css))
1241 last_visited = NULL;
1242 }
1243 }
1244
1245 memcg = __mem_cgroup_iter_next(root, last_visited);
1246
1247 if (reclaim) {
1248 if (last_visited && last_visited != root)
1249 css_put(&last_visited->css);
1250
1251 iter->last_visited = memcg;
1252 smp_wmb();
1253 iter->last_dead_count = dead_count;
1254
1255 if (!memcg)
1256 iter->generation++;
1257 else if (!prev && memcg)
1258 reclaim->generation = iter->generation;
1259 }
1260
1261 if (prev && !memcg)
1262 goto out_unlock;
1263 }
1264 out_unlock:
1265 rcu_read_unlock();
1266 out_css_put:
1267 if (prev && prev != root)
1268 css_put(&prev->css);
1269
1270 return memcg;
1271 }
1272
1273 /**
1274 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1275 * @root: hierarchy root
1276 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1277 */
1278 void mem_cgroup_iter_break(struct mem_cgroup *root,
1279 struct mem_cgroup *prev)
1280 {
1281 if (!root)
1282 root = root_mem_cgroup;
1283 if (prev && prev != root)
1284 css_put(&prev->css);
1285 }
1286
1287 /*
1288 * Iteration constructs for visiting all cgroups (under a tree). If
1289 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1290 * be used for reference counting.
1291 */
1292 #define for_each_mem_cgroup_tree(iter, root) \
1293 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1294 iter != NULL; \
1295 iter = mem_cgroup_iter(root, iter, NULL))
1296
1297 #define for_each_mem_cgroup(iter) \
1298 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1299 iter != NULL; \
1300 iter = mem_cgroup_iter(NULL, iter, NULL))
1301
1302 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1303 {
1304 struct mem_cgroup *memcg;
1305
1306 rcu_read_lock();
1307 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1308 if (unlikely(!memcg))
1309 goto out;
1310
1311 switch (idx) {
1312 case PGFAULT:
1313 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1314 break;
1315 case PGMAJFAULT:
1316 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1317 break;
1318 default:
1319 BUG();
1320 }
1321 out:
1322 rcu_read_unlock();
1323 }
1324 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1325
1326 /**
1327 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1328 * @zone: zone of the wanted lruvec
1329 * @memcg: memcg of the wanted lruvec
1330 *
1331 * Returns the lru list vector holding pages for the given @zone and
1332 * @mem. This can be the global zone lruvec, if the memory controller
1333 * is disabled.
1334 */
1335 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1336 struct mem_cgroup *memcg)
1337 {
1338 struct mem_cgroup_per_zone *mz;
1339 struct lruvec *lruvec;
1340
1341 if (mem_cgroup_disabled()) {
1342 lruvec = &zone->lruvec;
1343 goto out;
1344 }
1345
1346 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1347 lruvec = &mz->lruvec;
1348 out:
1349 /*
1350 * Since a node can be onlined after the mem_cgroup was created,
1351 * we have to be prepared to initialize lruvec->zone here;
1352 * and if offlined then reonlined, we need to reinitialize it.
1353 */
1354 if (unlikely(lruvec->zone != zone))
1355 lruvec->zone = zone;
1356 return lruvec;
1357 }
1358
1359 /*
1360 * Following LRU functions are allowed to be used without PCG_LOCK.
1361 * Operations are called by routine of global LRU independently from memcg.
1362 * What we have to take care of here is validness of pc->mem_cgroup.
1363 *
1364 * Changes to pc->mem_cgroup happens when
1365 * 1. charge
1366 * 2. moving account
1367 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1368 * It is added to LRU before charge.
1369 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1370 * When moving account, the page is not on LRU. It's isolated.
1371 */
1372
1373 /**
1374 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1375 * @page: the page
1376 * @zone: zone of the page
1377 */
1378 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1379 {
1380 struct mem_cgroup_per_zone *mz;
1381 struct mem_cgroup *memcg;
1382 struct page_cgroup *pc;
1383 struct lruvec *lruvec;
1384
1385 if (mem_cgroup_disabled()) {
1386 lruvec = &zone->lruvec;
1387 goto out;
1388 }
1389
1390 pc = lookup_page_cgroup(page);
1391 memcg = pc->mem_cgroup;
1392
1393 /*
1394 * Surreptitiously switch any uncharged offlist page to root:
1395 * an uncharged page off lru does nothing to secure
1396 * its former mem_cgroup from sudden removal.
1397 *
1398 * Our caller holds lru_lock, and PageCgroupUsed is updated
1399 * under page_cgroup lock: between them, they make all uses
1400 * of pc->mem_cgroup safe.
1401 */
1402 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1403 pc->mem_cgroup = memcg = root_mem_cgroup;
1404
1405 mz = page_cgroup_zoneinfo(memcg, page);
1406 lruvec = &mz->lruvec;
1407 out:
1408 /*
1409 * Since a node can be onlined after the mem_cgroup was created,
1410 * we have to be prepared to initialize lruvec->zone here;
1411 * and if offlined then reonlined, we need to reinitialize it.
1412 */
1413 if (unlikely(lruvec->zone != zone))
1414 lruvec->zone = zone;
1415 return lruvec;
1416 }
1417
1418 /**
1419 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1420 * @lruvec: mem_cgroup per zone lru vector
1421 * @lru: index of lru list the page is sitting on
1422 * @nr_pages: positive when adding or negative when removing
1423 *
1424 * This function must be called when a page is added to or removed from an
1425 * lru list.
1426 */
1427 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1428 int nr_pages)
1429 {
1430 struct mem_cgroup_per_zone *mz;
1431 unsigned long *lru_size;
1432
1433 if (mem_cgroup_disabled())
1434 return;
1435
1436 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1437 lru_size = mz->lru_size + lru;
1438 *lru_size += nr_pages;
1439 VM_BUG_ON((long)(*lru_size) < 0);
1440 }
1441
1442 /*
1443 * Checks whether given mem is same or in the root_mem_cgroup's
1444 * hierarchy subtree
1445 */
1446 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1447 struct mem_cgroup *memcg)
1448 {
1449 if (root_memcg == memcg)
1450 return true;
1451 if (!root_memcg->use_hierarchy || !memcg)
1452 return false;
1453 return css_is_ancestor(&memcg->css, &root_memcg->css);
1454 }
1455
1456 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1457 struct mem_cgroup *memcg)
1458 {
1459 bool ret;
1460
1461 rcu_read_lock();
1462 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1463 rcu_read_unlock();
1464 return ret;
1465 }
1466
1467 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1468 {
1469 int ret;
1470 struct mem_cgroup *curr = NULL;
1471 struct task_struct *p;
1472
1473 p = find_lock_task_mm(task);
1474 if (p) {
1475 curr = try_get_mem_cgroup_from_mm(p->mm);
1476 task_unlock(p);
1477 } else {
1478 /*
1479 * All threads may have already detached their mm's, but the oom
1480 * killer still needs to detect if they have already been oom
1481 * killed to prevent needlessly killing additional tasks.
1482 */
1483 task_lock(task);
1484 curr = mem_cgroup_from_task(task);
1485 if (curr)
1486 css_get(&curr->css);
1487 task_unlock(task);
1488 }
1489 if (!curr)
1490 return 0;
1491 /*
1492 * We should check use_hierarchy of "memcg" not "curr". Because checking
1493 * use_hierarchy of "curr" here make this function true if hierarchy is
1494 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1495 * hierarchy(even if use_hierarchy is disabled in "memcg").
1496 */
1497 ret = mem_cgroup_same_or_subtree(memcg, curr);
1498 css_put(&curr->css);
1499 return ret;
1500 }
1501
1502 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1503 {
1504 unsigned long inactive_ratio;
1505 unsigned long inactive;
1506 unsigned long active;
1507 unsigned long gb;
1508
1509 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1510 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1511
1512 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1513 if (gb)
1514 inactive_ratio = int_sqrt(10 * gb);
1515 else
1516 inactive_ratio = 1;
1517
1518 return inactive * inactive_ratio < active;
1519 }
1520
1521 #define mem_cgroup_from_res_counter(counter, member) \
1522 container_of(counter, struct mem_cgroup, member)
1523
1524 /**
1525 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1526 * @memcg: the memory cgroup
1527 *
1528 * Returns the maximum amount of memory @mem can be charged with, in
1529 * pages.
1530 */
1531 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1532 {
1533 unsigned long long margin;
1534
1535 margin = res_counter_margin(&memcg->res);
1536 if (do_swap_account)
1537 margin = min(margin, res_counter_margin(&memcg->memsw));
1538 return margin >> PAGE_SHIFT;
1539 }
1540
1541 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1542 {
1543 struct cgroup *cgrp = memcg->css.cgroup;
1544
1545 /* root ? */
1546 if (cgrp->parent == NULL)
1547 return vm_swappiness;
1548
1549 return memcg->swappiness;
1550 }
1551
1552 /*
1553 * memcg->moving_account is used for checking possibility that some thread is
1554 * calling move_account(). When a thread on CPU-A starts moving pages under
1555 * a memcg, other threads should check memcg->moving_account under
1556 * rcu_read_lock(), like this:
1557 *
1558 * CPU-A CPU-B
1559 * rcu_read_lock()
1560 * memcg->moving_account+1 if (memcg->mocing_account)
1561 * take heavy locks.
1562 * synchronize_rcu() update something.
1563 * rcu_read_unlock()
1564 * start move here.
1565 */
1566
1567 /* for quick checking without looking up memcg */
1568 atomic_t memcg_moving __read_mostly;
1569
1570 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1571 {
1572 atomic_inc(&memcg_moving);
1573 atomic_inc(&memcg->moving_account);
1574 synchronize_rcu();
1575 }
1576
1577 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1578 {
1579 /*
1580 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1581 * We check NULL in callee rather than caller.
1582 */
1583 if (memcg) {
1584 atomic_dec(&memcg_moving);
1585 atomic_dec(&memcg->moving_account);
1586 }
1587 }
1588
1589 /*
1590 * 2 routines for checking "mem" is under move_account() or not.
1591 *
1592 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1593 * is used for avoiding races in accounting. If true,
1594 * pc->mem_cgroup may be overwritten.
1595 *
1596 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1597 * under hierarchy of moving cgroups. This is for
1598 * waiting at hith-memory prressure caused by "move".
1599 */
1600
1601 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1602 {
1603 VM_BUG_ON(!rcu_read_lock_held());
1604 return atomic_read(&memcg->moving_account) > 0;
1605 }
1606
1607 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1608 {
1609 struct mem_cgroup *from;
1610 struct mem_cgroup *to;
1611 bool ret = false;
1612 /*
1613 * Unlike task_move routines, we access mc.to, mc.from not under
1614 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1615 */
1616 spin_lock(&mc.lock);
1617 from = mc.from;
1618 to = mc.to;
1619 if (!from)
1620 goto unlock;
1621
1622 ret = mem_cgroup_same_or_subtree(memcg, from)
1623 || mem_cgroup_same_or_subtree(memcg, to);
1624 unlock:
1625 spin_unlock(&mc.lock);
1626 return ret;
1627 }
1628
1629 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1630 {
1631 if (mc.moving_task && current != mc.moving_task) {
1632 if (mem_cgroup_under_move(memcg)) {
1633 DEFINE_WAIT(wait);
1634 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1635 /* moving charge context might have finished. */
1636 if (mc.moving_task)
1637 schedule();
1638 finish_wait(&mc.waitq, &wait);
1639 return true;
1640 }
1641 }
1642 return false;
1643 }
1644
1645 /*
1646 * Take this lock when
1647 * - a code tries to modify page's memcg while it's USED.
1648 * - a code tries to modify page state accounting in a memcg.
1649 * see mem_cgroup_stolen(), too.
1650 */
1651 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1652 unsigned long *flags)
1653 {
1654 spin_lock_irqsave(&memcg->move_lock, *flags);
1655 }
1656
1657 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1658 unsigned long *flags)
1659 {
1660 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1661 }
1662
1663 #define K(x) ((x) << (PAGE_SHIFT-10))
1664 /**
1665 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1666 * @memcg: The memory cgroup that went over limit
1667 * @p: Task that is going to be killed
1668 *
1669 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1670 * enabled
1671 */
1672 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1673 {
1674 struct cgroup *task_cgrp;
1675 struct cgroup *mem_cgrp;
1676 /*
1677 * Need a buffer in BSS, can't rely on allocations. The code relies
1678 * on the assumption that OOM is serialized for memory controller.
1679 * If this assumption is broken, revisit this code.
1680 */
1681 static char memcg_name[PATH_MAX];
1682 int ret;
1683 struct mem_cgroup *iter;
1684 unsigned int i;
1685
1686 if (!p)
1687 return;
1688
1689 rcu_read_lock();
1690
1691 mem_cgrp = memcg->css.cgroup;
1692 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1693
1694 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1695 if (ret < 0) {
1696 /*
1697 * Unfortunately, we are unable to convert to a useful name
1698 * But we'll still print out the usage information
1699 */
1700 rcu_read_unlock();
1701 goto done;
1702 }
1703 rcu_read_unlock();
1704
1705 pr_info("Task in %s killed", memcg_name);
1706
1707 rcu_read_lock();
1708 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1709 if (ret < 0) {
1710 rcu_read_unlock();
1711 goto done;
1712 }
1713 rcu_read_unlock();
1714
1715 /*
1716 * Continues from above, so we don't need an KERN_ level
1717 */
1718 pr_cont(" as a result of limit of %s\n", memcg_name);
1719 done:
1720
1721 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1722 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1723 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1724 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1725 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1726 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1727 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1728 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1729 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1730 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1731 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1732 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1733
1734 for_each_mem_cgroup_tree(iter, memcg) {
1735 pr_info("Memory cgroup stats");
1736
1737 rcu_read_lock();
1738 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1739 if (!ret)
1740 pr_cont(" for %s", memcg_name);
1741 rcu_read_unlock();
1742 pr_cont(":");
1743
1744 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1745 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1746 continue;
1747 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1748 K(mem_cgroup_read_stat(iter, i)));
1749 }
1750
1751 for (i = 0; i < NR_LRU_LISTS; i++)
1752 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1753 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1754
1755 pr_cont("\n");
1756 }
1757 }
1758
1759 /*
1760 * This function returns the number of memcg under hierarchy tree. Returns
1761 * 1(self count) if no children.
1762 */
1763 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1764 {
1765 int num = 0;
1766 struct mem_cgroup *iter;
1767
1768 for_each_mem_cgroup_tree(iter, memcg)
1769 num++;
1770 return num;
1771 }
1772
1773 /*
1774 * Return the memory (and swap, if configured) limit for a memcg.
1775 */
1776 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1777 {
1778 u64 limit;
1779
1780 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1781
1782 /*
1783 * Do not consider swap space if we cannot swap due to swappiness
1784 */
1785 if (mem_cgroup_swappiness(memcg)) {
1786 u64 memsw;
1787
1788 limit += total_swap_pages << PAGE_SHIFT;
1789 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1790
1791 /*
1792 * If memsw is finite and limits the amount of swap space
1793 * available to this memcg, return that limit.
1794 */
1795 limit = min(limit, memsw);
1796 }
1797
1798 return limit;
1799 }
1800
1801 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1802 int order)
1803 {
1804 struct mem_cgroup *iter;
1805 unsigned long chosen_points = 0;
1806 unsigned long totalpages;
1807 unsigned int points = 0;
1808 struct task_struct *chosen = NULL;
1809
1810 /*
1811 * If current has a pending SIGKILL or is exiting, then automatically
1812 * select it. The goal is to allow it to allocate so that it may
1813 * quickly exit and free its memory.
1814 */
1815 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1816 set_thread_flag(TIF_MEMDIE);
1817 return;
1818 }
1819
1820 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1821 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1822 for_each_mem_cgroup_tree(iter, memcg) {
1823 struct cgroup *cgroup = iter->css.cgroup;
1824 struct cgroup_iter it;
1825 struct task_struct *task;
1826
1827 cgroup_iter_start(cgroup, &it);
1828 while ((task = cgroup_iter_next(cgroup, &it))) {
1829 switch (oom_scan_process_thread(task, totalpages, NULL,
1830 false)) {
1831 case OOM_SCAN_SELECT:
1832 if (chosen)
1833 put_task_struct(chosen);
1834 chosen = task;
1835 chosen_points = ULONG_MAX;
1836 get_task_struct(chosen);
1837 /* fall through */
1838 case OOM_SCAN_CONTINUE:
1839 continue;
1840 case OOM_SCAN_ABORT:
1841 cgroup_iter_end(cgroup, &it);
1842 mem_cgroup_iter_break(memcg, iter);
1843 if (chosen)
1844 put_task_struct(chosen);
1845 return;
1846 case OOM_SCAN_OK:
1847 break;
1848 };
1849 points = oom_badness(task, memcg, NULL, totalpages);
1850 if (points > chosen_points) {
1851 if (chosen)
1852 put_task_struct(chosen);
1853 chosen = task;
1854 chosen_points = points;
1855 get_task_struct(chosen);
1856 }
1857 }
1858 cgroup_iter_end(cgroup, &it);
1859 }
1860
1861 if (!chosen)
1862 return;
1863 points = chosen_points * 1000 / totalpages;
1864 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1865 NULL, "Memory cgroup out of memory");
1866 }
1867
1868 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1869 gfp_t gfp_mask,
1870 unsigned long flags)
1871 {
1872 unsigned long total = 0;
1873 bool noswap = false;
1874 int loop;
1875
1876 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1877 noswap = true;
1878 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1879 noswap = true;
1880
1881 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1882 if (loop)
1883 drain_all_stock_async(memcg);
1884 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1885 /*
1886 * Allow limit shrinkers, which are triggered directly
1887 * by userspace, to catch signals and stop reclaim
1888 * after minimal progress, regardless of the margin.
1889 */
1890 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1891 break;
1892 if (mem_cgroup_margin(memcg))
1893 break;
1894 /*
1895 * If nothing was reclaimed after two attempts, there
1896 * may be no reclaimable pages in this hierarchy.
1897 */
1898 if (loop && !total)
1899 break;
1900 }
1901 return total;
1902 }
1903
1904 /**
1905 * test_mem_cgroup_node_reclaimable
1906 * @memcg: the target memcg
1907 * @nid: the node ID to be checked.
1908 * @noswap : specify true here if the user wants flle only information.
1909 *
1910 * This function returns whether the specified memcg contains any
1911 * reclaimable pages on a node. Returns true if there are any reclaimable
1912 * pages in the node.
1913 */
1914 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1915 int nid, bool noswap)
1916 {
1917 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1918 return true;
1919 if (noswap || !total_swap_pages)
1920 return false;
1921 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1922 return true;
1923 return false;
1924
1925 }
1926 #if MAX_NUMNODES > 1
1927
1928 /*
1929 * Always updating the nodemask is not very good - even if we have an empty
1930 * list or the wrong list here, we can start from some node and traverse all
1931 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1932 *
1933 */
1934 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1935 {
1936 int nid;
1937 /*
1938 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1939 * pagein/pageout changes since the last update.
1940 */
1941 if (!atomic_read(&memcg->numainfo_events))
1942 return;
1943 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1944 return;
1945
1946 /* make a nodemask where this memcg uses memory from */
1947 memcg->scan_nodes = node_states[N_MEMORY];
1948
1949 for_each_node_mask(nid, node_states[N_MEMORY]) {
1950
1951 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1952 node_clear(nid, memcg->scan_nodes);
1953 }
1954
1955 atomic_set(&memcg->numainfo_events, 0);
1956 atomic_set(&memcg->numainfo_updating, 0);
1957 }
1958
1959 /*
1960 * Selecting a node where we start reclaim from. Because what we need is just
1961 * reducing usage counter, start from anywhere is O,K. Considering
1962 * memory reclaim from current node, there are pros. and cons.
1963 *
1964 * Freeing memory from current node means freeing memory from a node which
1965 * we'll use or we've used. So, it may make LRU bad. And if several threads
1966 * hit limits, it will see a contention on a node. But freeing from remote
1967 * node means more costs for memory reclaim because of memory latency.
1968 *
1969 * Now, we use round-robin. Better algorithm is welcomed.
1970 */
1971 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1972 {
1973 int node;
1974
1975 mem_cgroup_may_update_nodemask(memcg);
1976 node = memcg->last_scanned_node;
1977
1978 node = next_node(node, memcg->scan_nodes);
1979 if (node == MAX_NUMNODES)
1980 node = first_node(memcg->scan_nodes);
1981 /*
1982 * We call this when we hit limit, not when pages are added to LRU.
1983 * No LRU may hold pages because all pages are UNEVICTABLE or
1984 * memcg is too small and all pages are not on LRU. In that case,
1985 * we use curret node.
1986 */
1987 if (unlikely(node == MAX_NUMNODES))
1988 node = numa_node_id();
1989
1990 memcg->last_scanned_node = node;
1991 return node;
1992 }
1993
1994 /*
1995 * Check all nodes whether it contains reclaimable pages or not.
1996 * For quick scan, we make use of scan_nodes. This will allow us to skip
1997 * unused nodes. But scan_nodes is lazily updated and may not cotain
1998 * enough new information. We need to do double check.
1999 */
2000 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2001 {
2002 int nid;
2003
2004 /*
2005 * quick check...making use of scan_node.
2006 * We can skip unused nodes.
2007 */
2008 if (!nodes_empty(memcg->scan_nodes)) {
2009 for (nid = first_node(memcg->scan_nodes);
2010 nid < MAX_NUMNODES;
2011 nid = next_node(nid, memcg->scan_nodes)) {
2012
2013 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2014 return true;
2015 }
2016 }
2017 /*
2018 * Check rest of nodes.
2019 */
2020 for_each_node_state(nid, N_MEMORY) {
2021 if (node_isset(nid, memcg->scan_nodes))
2022 continue;
2023 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2024 return true;
2025 }
2026 return false;
2027 }
2028
2029 #else
2030 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2031 {
2032 return 0;
2033 }
2034
2035 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2036 {
2037 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2038 }
2039 #endif
2040
2041 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2042 struct zone *zone,
2043 gfp_t gfp_mask,
2044 unsigned long *total_scanned)
2045 {
2046 struct mem_cgroup *victim = NULL;
2047 int total = 0;
2048 int loop = 0;
2049 unsigned long excess;
2050 unsigned long nr_scanned;
2051 struct mem_cgroup_reclaim_cookie reclaim = {
2052 .zone = zone,
2053 .priority = 0,
2054 };
2055
2056 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2057
2058 while (1) {
2059 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2060 if (!victim) {
2061 loop++;
2062 if (loop >= 2) {
2063 /*
2064 * If we have not been able to reclaim
2065 * anything, it might because there are
2066 * no reclaimable pages under this hierarchy
2067 */
2068 if (!total)
2069 break;
2070 /*
2071 * We want to do more targeted reclaim.
2072 * excess >> 2 is not to excessive so as to
2073 * reclaim too much, nor too less that we keep
2074 * coming back to reclaim from this cgroup
2075 */
2076 if (total >= (excess >> 2) ||
2077 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2078 break;
2079 }
2080 continue;
2081 }
2082 if (!mem_cgroup_reclaimable(victim, false))
2083 continue;
2084 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2085 zone, &nr_scanned);
2086 *total_scanned += nr_scanned;
2087 if (!res_counter_soft_limit_excess(&root_memcg->res))
2088 break;
2089 }
2090 mem_cgroup_iter_break(root_memcg, victim);
2091 return total;
2092 }
2093
2094 static DEFINE_SPINLOCK(memcg_oom_lock);
2095
2096 /*
2097 * Check OOM-Killer is already running under our hierarchy.
2098 * If someone is running, return false.
2099 */
2100 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2101 {
2102 struct mem_cgroup *iter, *failed = NULL;
2103
2104 spin_lock(&memcg_oom_lock);
2105
2106 for_each_mem_cgroup_tree(iter, memcg) {
2107 if (iter->oom_lock) {
2108 /*
2109 * this subtree of our hierarchy is already locked
2110 * so we cannot give a lock.
2111 */
2112 failed = iter;
2113 mem_cgroup_iter_break(memcg, iter);
2114 break;
2115 } else
2116 iter->oom_lock = true;
2117 }
2118
2119 if (failed) {
2120 /*
2121 * OK, we failed to lock the whole subtree so we have
2122 * to clean up what we set up to the failing subtree
2123 */
2124 for_each_mem_cgroup_tree(iter, memcg) {
2125 if (iter == failed) {
2126 mem_cgroup_iter_break(memcg, iter);
2127 break;
2128 }
2129 iter->oom_lock = false;
2130 }
2131 }
2132
2133 spin_unlock(&memcg_oom_lock);
2134
2135 return !failed;
2136 }
2137
2138 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2139 {
2140 struct mem_cgroup *iter;
2141
2142 spin_lock(&memcg_oom_lock);
2143 for_each_mem_cgroup_tree(iter, memcg)
2144 iter->oom_lock = false;
2145 spin_unlock(&memcg_oom_lock);
2146 }
2147
2148 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2149 {
2150 struct mem_cgroup *iter;
2151
2152 for_each_mem_cgroup_tree(iter, memcg)
2153 atomic_inc(&iter->under_oom);
2154 }
2155
2156 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2157 {
2158 struct mem_cgroup *iter;
2159
2160 /*
2161 * When a new child is created while the hierarchy is under oom,
2162 * mem_cgroup_oom_lock() may not be called. We have to use
2163 * atomic_add_unless() here.
2164 */
2165 for_each_mem_cgroup_tree(iter, memcg)
2166 atomic_add_unless(&iter->under_oom, -1, 0);
2167 }
2168
2169 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2170
2171 struct oom_wait_info {
2172 struct mem_cgroup *memcg;
2173 wait_queue_t wait;
2174 };
2175
2176 static int memcg_oom_wake_function(wait_queue_t *wait,
2177 unsigned mode, int sync, void *arg)
2178 {
2179 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2180 struct mem_cgroup *oom_wait_memcg;
2181 struct oom_wait_info *oom_wait_info;
2182
2183 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2184 oom_wait_memcg = oom_wait_info->memcg;
2185
2186 /*
2187 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2188 * Then we can use css_is_ancestor without taking care of RCU.
2189 */
2190 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2191 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2192 return 0;
2193 return autoremove_wake_function(wait, mode, sync, arg);
2194 }
2195
2196 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2197 {
2198 atomic_inc(&memcg->oom_wakeups);
2199 /* for filtering, pass "memcg" as argument. */
2200 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2201 }
2202
2203 static void memcg_oom_recover(struct mem_cgroup *memcg)
2204 {
2205 if (memcg && atomic_read(&memcg->under_oom))
2206 memcg_wakeup_oom(memcg);
2207 }
2208
2209 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2210 {
2211 if (!current->memcg_oom.may_oom)
2212 return;
2213 /*
2214 * We are in the middle of the charge context here, so we
2215 * don't want to block when potentially sitting on a callstack
2216 * that holds all kinds of filesystem and mm locks.
2217 *
2218 * Also, the caller may handle a failed allocation gracefully
2219 * (like optional page cache readahead) and so an OOM killer
2220 * invocation might not even be necessary.
2221 *
2222 * That's why we don't do anything here except remember the
2223 * OOM context and then deal with it at the end of the page
2224 * fault when the stack is unwound, the locks are released,
2225 * and when we know whether the fault was overall successful.
2226 */
2227 css_get(&memcg->css);
2228 current->memcg_oom.memcg = memcg;
2229 current->memcg_oom.gfp_mask = mask;
2230 current->memcg_oom.order = order;
2231 }
2232
2233 /**
2234 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2235 * @handle: actually kill/wait or just clean up the OOM state
2236 *
2237 * This has to be called at the end of a page fault if the memcg OOM
2238 * handler was enabled.
2239 *
2240 * Memcg supports userspace OOM handling where failed allocations must
2241 * sleep on a waitqueue until the userspace task resolves the
2242 * situation. Sleeping directly in the charge context with all kinds
2243 * of locks held is not a good idea, instead we remember an OOM state
2244 * in the task and mem_cgroup_oom_synchronize() has to be called at
2245 * the end of the page fault to complete the OOM handling.
2246 *
2247 * Returns %true if an ongoing memcg OOM situation was detected and
2248 * completed, %false otherwise.
2249 */
2250 bool mem_cgroup_oom_synchronize(bool handle)
2251 {
2252 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2253 struct oom_wait_info owait;
2254 bool locked;
2255
2256 /* OOM is global, do not handle */
2257 if (!memcg)
2258 return false;
2259
2260 if (!handle)
2261 goto cleanup;
2262
2263 owait.memcg = memcg;
2264 owait.wait.flags = 0;
2265 owait.wait.func = memcg_oom_wake_function;
2266 owait.wait.private = current;
2267 INIT_LIST_HEAD(&owait.wait.task_list);
2268
2269 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2270 mem_cgroup_mark_under_oom(memcg);
2271
2272 locked = mem_cgroup_oom_trylock(memcg);
2273
2274 if (locked)
2275 mem_cgroup_oom_notify(memcg);
2276
2277 if (locked && !memcg->oom_kill_disable) {
2278 mem_cgroup_unmark_under_oom(memcg);
2279 finish_wait(&memcg_oom_waitq, &owait.wait);
2280 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2281 current->memcg_oom.order);
2282 } else {
2283 schedule();
2284 mem_cgroup_unmark_under_oom(memcg);
2285 finish_wait(&memcg_oom_waitq, &owait.wait);
2286 }
2287
2288 if (locked) {
2289 mem_cgroup_oom_unlock(memcg);
2290 /*
2291 * There is no guarantee that an OOM-lock contender
2292 * sees the wakeups triggered by the OOM kill
2293 * uncharges. Wake any sleepers explicitely.
2294 */
2295 memcg_oom_recover(memcg);
2296 }
2297 cleanup:
2298 current->memcg_oom.memcg = NULL;
2299 css_put(&memcg->css);
2300 return true;
2301 }
2302
2303 /*
2304 * Currently used to update mapped file statistics, but the routine can be
2305 * generalized to update other statistics as well.
2306 *
2307 * Notes: Race condition
2308 *
2309 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2310 * it tends to be costly. But considering some conditions, we doesn't need
2311 * to do so _always_.
2312 *
2313 * Considering "charge", lock_page_cgroup() is not required because all
2314 * file-stat operations happen after a page is attached to radix-tree. There
2315 * are no race with "charge".
2316 *
2317 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2318 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2319 * if there are race with "uncharge". Statistics itself is properly handled
2320 * by flags.
2321 *
2322 * Considering "move", this is an only case we see a race. To make the race
2323 * small, we check mm->moving_account and detect there are possibility of race
2324 * If there is, we take a lock.
2325 */
2326
2327 void __mem_cgroup_begin_update_page_stat(struct page *page,
2328 bool *locked, unsigned long *flags)
2329 {
2330 struct mem_cgroup *memcg;
2331 struct page_cgroup *pc;
2332
2333 pc = lookup_page_cgroup(page);
2334 again:
2335 memcg = pc->mem_cgroup;
2336 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2337 return;
2338 /*
2339 * If this memory cgroup is not under account moving, we don't
2340 * need to take move_lock_mem_cgroup(). Because we already hold
2341 * rcu_read_lock(), any calls to move_account will be delayed until
2342 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2343 */
2344 if (!mem_cgroup_stolen(memcg))
2345 return;
2346
2347 move_lock_mem_cgroup(memcg, flags);
2348 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2349 move_unlock_mem_cgroup(memcg, flags);
2350 goto again;
2351 }
2352 *locked = true;
2353 }
2354
2355 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2356 {
2357 struct page_cgroup *pc = lookup_page_cgroup(page);
2358
2359 /*
2360 * It's guaranteed that pc->mem_cgroup never changes while
2361 * lock is held because a routine modifies pc->mem_cgroup
2362 * should take move_lock_mem_cgroup().
2363 */
2364 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2365 }
2366
2367 void mem_cgroup_update_page_stat(struct page *page,
2368 enum mem_cgroup_page_stat_item idx, int val)
2369 {
2370 struct mem_cgroup *memcg;
2371 struct page_cgroup *pc = lookup_page_cgroup(page);
2372 unsigned long uninitialized_var(flags);
2373
2374 if (mem_cgroup_disabled())
2375 return;
2376
2377 memcg = pc->mem_cgroup;
2378 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2379 return;
2380
2381 switch (idx) {
2382 case MEMCG_NR_FILE_MAPPED:
2383 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2384 break;
2385 default:
2386 BUG();
2387 }
2388
2389 this_cpu_add(memcg->stat->count[idx], val);
2390 }
2391
2392 /*
2393 * size of first charge trial. "32" comes from vmscan.c's magic value.
2394 * TODO: maybe necessary to use big numbers in big irons.
2395 */
2396 #define CHARGE_BATCH 32U
2397 struct memcg_stock_pcp {
2398 struct mem_cgroup *cached; /* this never be root cgroup */
2399 unsigned int nr_pages;
2400 struct work_struct work;
2401 unsigned long flags;
2402 #define FLUSHING_CACHED_CHARGE 0
2403 };
2404 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2405 static DEFINE_MUTEX(percpu_charge_mutex);
2406
2407 /**
2408 * consume_stock: Try to consume stocked charge on this cpu.
2409 * @memcg: memcg to consume from.
2410 * @nr_pages: how many pages to charge.
2411 *
2412 * The charges will only happen if @memcg matches the current cpu's memcg
2413 * stock, and at least @nr_pages are available in that stock. Failure to
2414 * service an allocation will refill the stock.
2415 *
2416 * returns true if successful, false otherwise.
2417 */
2418 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2419 {
2420 struct memcg_stock_pcp *stock;
2421 bool ret = true;
2422
2423 if (nr_pages > CHARGE_BATCH)
2424 return false;
2425
2426 stock = &get_cpu_var(memcg_stock);
2427 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2428 stock->nr_pages -= nr_pages;
2429 else /* need to call res_counter_charge */
2430 ret = false;
2431 put_cpu_var(memcg_stock);
2432 return ret;
2433 }
2434
2435 /*
2436 * Returns stocks cached in percpu to res_counter and reset cached information.
2437 */
2438 static void drain_stock(struct memcg_stock_pcp *stock)
2439 {
2440 struct mem_cgroup *old = stock->cached;
2441
2442 if (stock->nr_pages) {
2443 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2444
2445 res_counter_uncharge(&old->res, bytes);
2446 if (do_swap_account)
2447 res_counter_uncharge(&old->memsw, bytes);
2448 stock->nr_pages = 0;
2449 }
2450 stock->cached = NULL;
2451 }
2452
2453 /*
2454 * This must be called under preempt disabled or must be called by
2455 * a thread which is pinned to local cpu.
2456 */
2457 static void drain_local_stock(struct work_struct *dummy)
2458 {
2459 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2460 drain_stock(stock);
2461 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2462 }
2463
2464 static void __init memcg_stock_init(void)
2465 {
2466 int cpu;
2467
2468 for_each_possible_cpu(cpu) {
2469 struct memcg_stock_pcp *stock =
2470 &per_cpu(memcg_stock, cpu);
2471 INIT_WORK(&stock->work, drain_local_stock);
2472 }
2473 }
2474
2475 /*
2476 * Cache charges(val) which is from res_counter, to local per_cpu area.
2477 * This will be consumed by consume_stock() function, later.
2478 */
2479 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2480 {
2481 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2482
2483 if (stock->cached != memcg) { /* reset if necessary */
2484 drain_stock(stock);
2485 stock->cached = memcg;
2486 }
2487 stock->nr_pages += nr_pages;
2488 put_cpu_var(memcg_stock);
2489 }
2490
2491 /*
2492 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2493 * of the hierarchy under it. sync flag says whether we should block
2494 * until the work is done.
2495 */
2496 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2497 {
2498 int cpu, curcpu;
2499
2500 /* Notify other cpus that system-wide "drain" is running */
2501 get_online_cpus();
2502 curcpu = get_cpu();
2503 for_each_online_cpu(cpu) {
2504 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2505 struct mem_cgroup *memcg;
2506
2507 memcg = stock->cached;
2508 if (!memcg || !stock->nr_pages)
2509 continue;
2510 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2511 continue;
2512 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2513 if (cpu == curcpu)
2514 drain_local_stock(&stock->work);
2515 else
2516 schedule_work_on(cpu, &stock->work);
2517 }
2518 }
2519 put_cpu();
2520
2521 if (!sync)
2522 goto out;
2523
2524 for_each_online_cpu(cpu) {
2525 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2526 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2527 flush_work(&stock->work);
2528 }
2529 out:
2530 put_online_cpus();
2531 }
2532
2533 /*
2534 * Tries to drain stocked charges in other cpus. This function is asynchronous
2535 * and just put a work per cpu for draining localy on each cpu. Caller can
2536 * expects some charges will be back to res_counter later but cannot wait for
2537 * it.
2538 */
2539 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2540 {
2541 /*
2542 * If someone calls draining, avoid adding more kworker runs.
2543 */
2544 if (!mutex_trylock(&percpu_charge_mutex))
2545 return;
2546 drain_all_stock(root_memcg, false);
2547 mutex_unlock(&percpu_charge_mutex);
2548 }
2549
2550 /* This is a synchronous drain interface. */
2551 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2552 {
2553 /* called when force_empty is called */
2554 mutex_lock(&percpu_charge_mutex);
2555 drain_all_stock(root_memcg, true);
2556 mutex_unlock(&percpu_charge_mutex);
2557 }
2558
2559 /*
2560 * This function drains percpu counter value from DEAD cpu and
2561 * move it to local cpu. Note that this function can be preempted.
2562 */
2563 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2564 {
2565 int i;
2566
2567 spin_lock(&memcg->pcp_counter_lock);
2568 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2569 long x = per_cpu(memcg->stat->count[i], cpu);
2570
2571 per_cpu(memcg->stat->count[i], cpu) = 0;
2572 memcg->nocpu_base.count[i] += x;
2573 }
2574 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2575 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2576
2577 per_cpu(memcg->stat->events[i], cpu) = 0;
2578 memcg->nocpu_base.events[i] += x;
2579 }
2580 spin_unlock(&memcg->pcp_counter_lock);
2581 }
2582
2583 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2584 unsigned long action,
2585 void *hcpu)
2586 {
2587 int cpu = (unsigned long)hcpu;
2588 struct memcg_stock_pcp *stock;
2589 struct mem_cgroup *iter;
2590
2591 if (action == CPU_ONLINE)
2592 return NOTIFY_OK;
2593
2594 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2595 return NOTIFY_OK;
2596
2597 for_each_mem_cgroup(iter)
2598 mem_cgroup_drain_pcp_counter(iter, cpu);
2599
2600 stock = &per_cpu(memcg_stock, cpu);
2601 drain_stock(stock);
2602 return NOTIFY_OK;
2603 }
2604
2605
2606 /* See __mem_cgroup_try_charge() for details */
2607 enum {
2608 CHARGE_OK, /* success */
2609 CHARGE_RETRY, /* need to retry but retry is not bad */
2610 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2611 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2612 };
2613
2614 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2615 unsigned int nr_pages, unsigned int min_pages,
2616 bool invoke_oom)
2617 {
2618 unsigned long csize = nr_pages * PAGE_SIZE;
2619 struct mem_cgroup *mem_over_limit;
2620 struct res_counter *fail_res;
2621 unsigned long flags = 0;
2622 int ret;
2623
2624 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2625
2626 if (likely(!ret)) {
2627 if (!do_swap_account)
2628 return CHARGE_OK;
2629 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2630 if (likely(!ret))
2631 return CHARGE_OK;
2632
2633 res_counter_uncharge(&memcg->res, csize);
2634 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2635 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2636 } else
2637 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2638 /*
2639 * Never reclaim on behalf of optional batching, retry with a
2640 * single page instead.
2641 */
2642 if (nr_pages > min_pages)
2643 return CHARGE_RETRY;
2644
2645 if (!(gfp_mask & __GFP_WAIT))
2646 return CHARGE_WOULDBLOCK;
2647
2648 if (gfp_mask & __GFP_NORETRY)
2649 return CHARGE_NOMEM;
2650
2651 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2652 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2653 return CHARGE_RETRY;
2654 /*
2655 * Even though the limit is exceeded at this point, reclaim
2656 * may have been able to free some pages. Retry the charge
2657 * before killing the task.
2658 *
2659 * Only for regular pages, though: huge pages are rather
2660 * unlikely to succeed so close to the limit, and we fall back
2661 * to regular pages anyway in case of failure.
2662 */
2663 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2664 return CHARGE_RETRY;
2665
2666 /*
2667 * At task move, charge accounts can be doubly counted. So, it's
2668 * better to wait until the end of task_move if something is going on.
2669 */
2670 if (mem_cgroup_wait_acct_move(mem_over_limit))
2671 return CHARGE_RETRY;
2672
2673 if (invoke_oom)
2674 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2675
2676 return CHARGE_NOMEM;
2677 }
2678
2679 /*
2680 * __mem_cgroup_try_charge() does
2681 * 1. detect memcg to be charged against from passed *mm and *ptr,
2682 * 2. update res_counter
2683 * 3. call memory reclaim if necessary.
2684 *
2685 * In some special case, if the task is fatal, fatal_signal_pending() or
2686 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2687 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2688 * as possible without any hazards. 2: all pages should have a valid
2689 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2690 * pointer, that is treated as a charge to root_mem_cgroup.
2691 *
2692 * So __mem_cgroup_try_charge() will return
2693 * 0 ... on success, filling *ptr with a valid memcg pointer.
2694 * -ENOMEM ... charge failure because of resource limits.
2695 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2696 *
2697 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2698 * the oom-killer can be invoked.
2699 */
2700 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2701 gfp_t gfp_mask,
2702 unsigned int nr_pages,
2703 struct mem_cgroup **ptr,
2704 bool oom)
2705 {
2706 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2707 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2708 struct mem_cgroup *memcg = NULL;
2709 int ret;
2710
2711 /*
2712 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2713 * in system level. So, allow to go ahead dying process in addition to
2714 * MEMDIE process.
2715 */
2716 if (unlikely(test_thread_flag(TIF_MEMDIE)
2717 || fatal_signal_pending(current)))
2718 goto bypass;
2719
2720 if (unlikely(task_in_memcg_oom(current)))
2721 goto bypass;
2722
2723 /*
2724 * We always charge the cgroup the mm_struct belongs to.
2725 * The mm_struct's mem_cgroup changes on task migration if the
2726 * thread group leader migrates. It's possible that mm is not
2727 * set, if so charge the root memcg (happens for pagecache usage).
2728 */
2729 if (!*ptr && !mm)
2730 *ptr = root_mem_cgroup;
2731 again:
2732 if (*ptr) { /* css should be a valid one */
2733 memcg = *ptr;
2734 if (mem_cgroup_is_root(memcg))
2735 goto done;
2736 if (consume_stock(memcg, nr_pages))
2737 goto done;
2738 css_get(&memcg->css);
2739 } else {
2740 struct task_struct *p;
2741
2742 rcu_read_lock();
2743 p = rcu_dereference(mm->owner);
2744 /*
2745 * Because we don't have task_lock(), "p" can exit.
2746 * In that case, "memcg" can point to root or p can be NULL with
2747 * race with swapoff. Then, we have small risk of mis-accouning.
2748 * But such kind of mis-account by race always happens because
2749 * we don't have cgroup_mutex(). It's overkill and we allo that
2750 * small race, here.
2751 * (*) swapoff at el will charge against mm-struct not against
2752 * task-struct. So, mm->owner can be NULL.
2753 */
2754 memcg = mem_cgroup_from_task(p);
2755 if (!memcg)
2756 memcg = root_mem_cgroup;
2757 if (mem_cgroup_is_root(memcg)) {
2758 rcu_read_unlock();
2759 goto done;
2760 }
2761 if (consume_stock(memcg, nr_pages)) {
2762 /*
2763 * It seems dagerous to access memcg without css_get().
2764 * But considering how consume_stok works, it's not
2765 * necessary. If consume_stock success, some charges
2766 * from this memcg are cached on this cpu. So, we
2767 * don't need to call css_get()/css_tryget() before
2768 * calling consume_stock().
2769 */
2770 rcu_read_unlock();
2771 goto done;
2772 }
2773 /* after here, we may be blocked. we need to get refcnt */
2774 if (!css_tryget(&memcg->css)) {
2775 rcu_read_unlock();
2776 goto again;
2777 }
2778 rcu_read_unlock();
2779 }
2780
2781 do {
2782 bool invoke_oom = oom && !nr_oom_retries;
2783
2784 /* If killed, bypass charge */
2785 if (fatal_signal_pending(current)) {
2786 css_put(&memcg->css);
2787 goto bypass;
2788 }
2789
2790 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2791 nr_pages, invoke_oom);
2792 switch (ret) {
2793 case CHARGE_OK:
2794 break;
2795 case CHARGE_RETRY: /* not in OOM situation but retry */
2796 batch = nr_pages;
2797 css_put(&memcg->css);
2798 memcg = NULL;
2799 goto again;
2800 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2801 css_put(&memcg->css);
2802 goto nomem;
2803 case CHARGE_NOMEM: /* OOM routine works */
2804 if (!oom || invoke_oom) {
2805 css_put(&memcg->css);
2806 goto nomem;
2807 }
2808 nr_oom_retries--;
2809 break;
2810 }
2811 } while (ret != CHARGE_OK);
2812
2813 if (batch > nr_pages)
2814 refill_stock(memcg, batch - nr_pages);
2815 css_put(&memcg->css);
2816 done:
2817 *ptr = memcg;
2818 return 0;
2819 nomem:
2820 *ptr = NULL;
2821 return -ENOMEM;
2822 bypass:
2823 *ptr = root_mem_cgroup;
2824 return -EINTR;
2825 }
2826
2827 /*
2828 * Somemtimes we have to undo a charge we got by try_charge().
2829 * This function is for that and do uncharge, put css's refcnt.
2830 * gotten by try_charge().
2831 */
2832 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2833 unsigned int nr_pages)
2834 {
2835 if (!mem_cgroup_is_root(memcg)) {
2836 unsigned long bytes = nr_pages * PAGE_SIZE;
2837
2838 res_counter_uncharge(&memcg->res, bytes);
2839 if (do_swap_account)
2840 res_counter_uncharge(&memcg->memsw, bytes);
2841 }
2842 }
2843
2844 /*
2845 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2846 * This is useful when moving usage to parent cgroup.
2847 */
2848 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2849 unsigned int nr_pages)
2850 {
2851 unsigned long bytes = nr_pages * PAGE_SIZE;
2852
2853 if (mem_cgroup_is_root(memcg))
2854 return;
2855
2856 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2857 if (do_swap_account)
2858 res_counter_uncharge_until(&memcg->memsw,
2859 memcg->memsw.parent, bytes);
2860 }
2861
2862 /*
2863 * A helper function to get mem_cgroup from ID. must be called under
2864 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2865 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2866 * called against removed memcg.)
2867 */
2868 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2869 {
2870 struct cgroup_subsys_state *css;
2871
2872 /* ID 0 is unused ID */
2873 if (!id)
2874 return NULL;
2875 css = css_lookup(&mem_cgroup_subsys, id);
2876 if (!css)
2877 return NULL;
2878 return mem_cgroup_from_css(css);
2879 }
2880
2881 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2882 {
2883 struct mem_cgroup *memcg = NULL;
2884 struct page_cgroup *pc;
2885 unsigned short id;
2886 swp_entry_t ent;
2887
2888 VM_BUG_ON(!PageLocked(page));
2889
2890 pc = lookup_page_cgroup(page);
2891 lock_page_cgroup(pc);
2892 if (PageCgroupUsed(pc)) {
2893 memcg = pc->mem_cgroup;
2894 if (memcg && !css_tryget(&memcg->css))
2895 memcg = NULL;
2896 } else if (PageSwapCache(page)) {
2897 ent.val = page_private(page);
2898 id = lookup_swap_cgroup_id(ent);
2899 rcu_read_lock();
2900 memcg = mem_cgroup_lookup(id);
2901 if (memcg && !css_tryget(&memcg->css))
2902 memcg = NULL;
2903 rcu_read_unlock();
2904 }
2905 unlock_page_cgroup(pc);
2906 return memcg;
2907 }
2908
2909 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2910 struct page *page,
2911 unsigned int nr_pages,
2912 enum charge_type ctype,
2913 bool lrucare)
2914 {
2915 struct page_cgroup *pc = lookup_page_cgroup(page);
2916 struct zone *uninitialized_var(zone);
2917 struct lruvec *lruvec;
2918 bool was_on_lru = false;
2919 bool anon;
2920
2921 lock_page_cgroup(pc);
2922 VM_BUG_ON(PageCgroupUsed(pc));
2923 /*
2924 * we don't need page_cgroup_lock about tail pages, becase they are not
2925 * accessed by any other context at this point.
2926 */
2927
2928 /*
2929 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2930 * may already be on some other mem_cgroup's LRU. Take care of it.
2931 */
2932 if (lrucare) {
2933 zone = page_zone(page);
2934 spin_lock_irq(&zone->lru_lock);
2935 if (PageLRU(page)) {
2936 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2937 ClearPageLRU(page);
2938 del_page_from_lru_list(page, lruvec, page_lru(page));
2939 was_on_lru = true;
2940 }
2941 }
2942
2943 pc->mem_cgroup = memcg;
2944 /*
2945 * We access a page_cgroup asynchronously without lock_page_cgroup().
2946 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2947 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2948 * before USED bit, we need memory barrier here.
2949 * See mem_cgroup_add_lru_list(), etc.
2950 */
2951 smp_wmb();
2952 SetPageCgroupUsed(pc);
2953
2954 if (lrucare) {
2955 if (was_on_lru) {
2956 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2957 VM_BUG_ON(PageLRU(page));
2958 SetPageLRU(page);
2959 add_page_to_lru_list(page, lruvec, page_lru(page));
2960 }
2961 spin_unlock_irq(&zone->lru_lock);
2962 }
2963
2964 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2965 anon = true;
2966 else
2967 anon = false;
2968
2969 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2970 unlock_page_cgroup(pc);
2971
2972 /*
2973 * "charge_statistics" updated event counter. Then, check it.
2974 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2975 * if they exceeds softlimit.
2976 */
2977 memcg_check_events(memcg, page);
2978 }
2979
2980 static DEFINE_MUTEX(set_limit_mutex);
2981
2982 #ifdef CONFIG_MEMCG_KMEM
2983 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2984 {
2985 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2986 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2987 }
2988
2989 /*
2990 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2991 * in the memcg_cache_params struct.
2992 */
2993 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2994 {
2995 struct kmem_cache *cachep;
2996
2997 VM_BUG_ON(p->is_root_cache);
2998 cachep = p->root_cache;
2999 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
3000 }
3001
3002 #ifdef CONFIG_SLABINFO
3003 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
3004 struct seq_file *m)
3005 {
3006 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3007 struct memcg_cache_params *params;
3008
3009 if (!memcg_can_account_kmem(memcg))
3010 return -EIO;
3011
3012 print_slabinfo_header(m);
3013
3014 mutex_lock(&memcg->slab_caches_mutex);
3015 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3016 cache_show(memcg_params_to_cache(params), m);
3017 mutex_unlock(&memcg->slab_caches_mutex);
3018
3019 return 0;
3020 }
3021 #endif
3022
3023 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3024 {
3025 struct res_counter *fail_res;
3026 struct mem_cgroup *_memcg;
3027 int ret = 0;
3028 bool may_oom;
3029
3030 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3031 if (ret)
3032 return ret;
3033
3034 /*
3035 * Conditions under which we can wait for the oom_killer. Those are
3036 * the same conditions tested by the core page allocator
3037 */
3038 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
3039
3040 _memcg = memcg;
3041 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3042 &_memcg, may_oom);
3043
3044 if (ret == -EINTR) {
3045 /*
3046 * __mem_cgroup_try_charge() chosed to bypass to root due to
3047 * OOM kill or fatal signal. Since our only options are to
3048 * either fail the allocation or charge it to this cgroup, do
3049 * it as a temporary condition. But we can't fail. From a
3050 * kmem/slab perspective, the cache has already been selected,
3051 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3052 * our minds.
3053 *
3054 * This condition will only trigger if the task entered
3055 * memcg_charge_kmem in a sane state, but was OOM-killed during
3056 * __mem_cgroup_try_charge() above. Tasks that were already
3057 * dying when the allocation triggers should have been already
3058 * directed to the root cgroup in memcontrol.h
3059 */
3060 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3061 if (do_swap_account)
3062 res_counter_charge_nofail(&memcg->memsw, size,
3063 &fail_res);
3064 ret = 0;
3065 } else if (ret)
3066 res_counter_uncharge(&memcg->kmem, size);
3067
3068 return ret;
3069 }
3070
3071 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3072 {
3073 res_counter_uncharge(&memcg->res, size);
3074 if (do_swap_account)
3075 res_counter_uncharge(&memcg->memsw, size);
3076
3077 /* Not down to 0 */
3078 if (res_counter_uncharge(&memcg->kmem, size))
3079 return;
3080
3081 if (memcg_kmem_test_and_clear_dead(memcg))
3082 mem_cgroup_put(memcg);
3083 }
3084
3085 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3086 {
3087 if (!memcg)
3088 return;
3089
3090 mutex_lock(&memcg->slab_caches_mutex);
3091 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3092 mutex_unlock(&memcg->slab_caches_mutex);
3093 }
3094
3095 /*
3096 * helper for acessing a memcg's index. It will be used as an index in the
3097 * child cache array in kmem_cache, and also to derive its name. This function
3098 * will return -1 when this is not a kmem-limited memcg.
3099 */
3100 int memcg_cache_id(struct mem_cgroup *memcg)
3101 {
3102 return memcg ? memcg->kmemcg_id : -1;
3103 }
3104
3105 /*
3106 * This ends up being protected by the set_limit mutex, during normal
3107 * operation, because that is its main call site.
3108 *
3109 * But when we create a new cache, we can call this as well if its parent
3110 * is kmem-limited. That will have to hold set_limit_mutex as well.
3111 */
3112 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3113 {
3114 int num, ret;
3115
3116 num = ida_simple_get(&kmem_limited_groups,
3117 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3118 if (num < 0)
3119 return num;
3120 /*
3121 * After this point, kmem_accounted (that we test atomically in
3122 * the beginning of this conditional), is no longer 0. This
3123 * guarantees only one process will set the following boolean
3124 * to true. We don't need test_and_set because we're protected
3125 * by the set_limit_mutex anyway.
3126 */
3127 memcg_kmem_set_activated(memcg);
3128
3129 ret = memcg_update_all_caches(num+1);
3130 if (ret) {
3131 ida_simple_remove(&kmem_limited_groups, num);
3132 memcg_kmem_clear_activated(memcg);
3133 return ret;
3134 }
3135
3136 memcg->kmemcg_id = num;
3137 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3138 mutex_init(&memcg->slab_caches_mutex);
3139 return 0;
3140 }
3141
3142 static size_t memcg_caches_array_size(int num_groups)
3143 {
3144 ssize_t size;
3145 if (num_groups <= 0)
3146 return 0;
3147
3148 size = 2 * num_groups;
3149 if (size < MEMCG_CACHES_MIN_SIZE)
3150 size = MEMCG_CACHES_MIN_SIZE;
3151 else if (size > MEMCG_CACHES_MAX_SIZE)
3152 size = MEMCG_CACHES_MAX_SIZE;
3153
3154 return size;
3155 }
3156
3157 /*
3158 * We should update the current array size iff all caches updates succeed. This
3159 * can only be done from the slab side. The slab mutex needs to be held when
3160 * calling this.
3161 */
3162 void memcg_update_array_size(int num)
3163 {
3164 if (num > memcg_limited_groups_array_size)
3165 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3166 }
3167
3168 static void kmem_cache_destroy_work_func(struct work_struct *w);
3169
3170 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3171 {
3172 struct memcg_cache_params *cur_params = s->memcg_params;
3173
3174 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3175
3176 if (num_groups > memcg_limited_groups_array_size) {
3177 int i;
3178 ssize_t size = memcg_caches_array_size(num_groups);
3179
3180 size *= sizeof(void *);
3181 size += sizeof(struct memcg_cache_params);
3182
3183 s->memcg_params = kzalloc(size, GFP_KERNEL);
3184 if (!s->memcg_params) {
3185 s->memcg_params = cur_params;
3186 return -ENOMEM;
3187 }
3188
3189 s->memcg_params->is_root_cache = true;
3190
3191 /*
3192 * There is the chance it will be bigger than
3193 * memcg_limited_groups_array_size, if we failed an allocation
3194 * in a cache, in which case all caches updated before it, will
3195 * have a bigger array.
3196 *
3197 * But if that is the case, the data after
3198 * memcg_limited_groups_array_size is certainly unused
3199 */
3200 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3201 if (!cur_params->memcg_caches[i])
3202 continue;
3203 s->memcg_params->memcg_caches[i] =
3204 cur_params->memcg_caches[i];
3205 }
3206
3207 /*
3208 * Ideally, we would wait until all caches succeed, and only
3209 * then free the old one. But this is not worth the extra
3210 * pointer per-cache we'd have to have for this.
3211 *
3212 * It is not a big deal if some caches are left with a size
3213 * bigger than the others. And all updates will reset this
3214 * anyway.
3215 */
3216 kfree(cur_params);
3217 }
3218 return 0;
3219 }
3220
3221 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3222 struct kmem_cache *root_cache)
3223 {
3224 size_t size = sizeof(struct memcg_cache_params);
3225
3226 if (!memcg_kmem_enabled())
3227 return 0;
3228
3229 if (!memcg)
3230 size += memcg_limited_groups_array_size * sizeof(void *);
3231
3232 s->memcg_params = kzalloc(size, GFP_KERNEL);
3233 if (!s->memcg_params)
3234 return -ENOMEM;
3235
3236 if (memcg) {
3237 s->memcg_params->memcg = memcg;
3238 s->memcg_params->root_cache = root_cache;
3239 INIT_WORK(&s->memcg_params->destroy,
3240 kmem_cache_destroy_work_func);
3241 } else
3242 s->memcg_params->is_root_cache = true;
3243
3244 return 0;
3245 }
3246
3247 void memcg_release_cache(struct kmem_cache *s)
3248 {
3249 struct kmem_cache *root;
3250 struct mem_cgroup *memcg;
3251 int id;
3252
3253 /*
3254 * This happens, for instance, when a root cache goes away before we
3255 * add any memcg.
3256 */
3257 if (!s->memcg_params)
3258 return;
3259
3260 if (s->memcg_params->is_root_cache)
3261 goto out;
3262
3263 memcg = s->memcg_params->memcg;
3264 id = memcg_cache_id(memcg);
3265
3266 root = s->memcg_params->root_cache;
3267 root->memcg_params->memcg_caches[id] = NULL;
3268
3269 mutex_lock(&memcg->slab_caches_mutex);
3270 list_del(&s->memcg_params->list);
3271 mutex_unlock(&memcg->slab_caches_mutex);
3272
3273 mem_cgroup_put(memcg);
3274 out:
3275 kfree(s->memcg_params);
3276 }
3277
3278 /*
3279 * During the creation a new cache, we need to disable our accounting mechanism
3280 * altogether. This is true even if we are not creating, but rather just
3281 * enqueing new caches to be created.
3282 *
3283 * This is because that process will trigger allocations; some visible, like
3284 * explicit kmallocs to auxiliary data structures, name strings and internal
3285 * cache structures; some well concealed, like INIT_WORK() that can allocate
3286 * objects during debug.
3287 *
3288 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3289 * to it. This may not be a bounded recursion: since the first cache creation
3290 * failed to complete (waiting on the allocation), we'll just try to create the
3291 * cache again, failing at the same point.
3292 *
3293 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3294 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3295 * inside the following two functions.
3296 */
3297 static inline void memcg_stop_kmem_account(void)
3298 {
3299 VM_BUG_ON(!current->mm);
3300 current->memcg_kmem_skip_account++;
3301 }
3302
3303 static inline void memcg_resume_kmem_account(void)
3304 {
3305 VM_BUG_ON(!current->mm);
3306 current->memcg_kmem_skip_account--;
3307 }
3308
3309 static void kmem_cache_destroy_work_func(struct work_struct *w)
3310 {
3311 struct kmem_cache *cachep;
3312 struct memcg_cache_params *p;
3313
3314 p = container_of(w, struct memcg_cache_params, destroy);
3315
3316 cachep = memcg_params_to_cache(p);
3317
3318 /*
3319 * If we get down to 0 after shrink, we could delete right away.
3320 * However, memcg_release_pages() already puts us back in the workqueue
3321 * in that case. If we proceed deleting, we'll get a dangling
3322 * reference, and removing the object from the workqueue in that case
3323 * is unnecessary complication. We are not a fast path.
3324 *
3325 * Note that this case is fundamentally different from racing with
3326 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3327 * kmem_cache_shrink, not only we would be reinserting a dead cache
3328 * into the queue, but doing so from inside the worker racing to
3329 * destroy it.
3330 *
3331 * So if we aren't down to zero, we'll just schedule a worker and try
3332 * again
3333 */
3334 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3335 kmem_cache_shrink(cachep);
3336 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3337 return;
3338 } else
3339 kmem_cache_destroy(cachep);
3340 }
3341
3342 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3343 {
3344 if (!cachep->memcg_params->dead)
3345 return;
3346
3347 /*
3348 * There are many ways in which we can get here.
3349 *
3350 * We can get to a memory-pressure situation while the delayed work is
3351 * still pending to run. The vmscan shrinkers can then release all
3352 * cache memory and get us to destruction. If this is the case, we'll
3353 * be executed twice, which is a bug (the second time will execute over
3354 * bogus data). In this case, cancelling the work should be fine.
3355 *
3356 * But we can also get here from the worker itself, if
3357 * kmem_cache_shrink is enough to shake all the remaining objects and
3358 * get the page count to 0. In this case, we'll deadlock if we try to
3359 * cancel the work (the worker runs with an internal lock held, which
3360 * is the same lock we would hold for cancel_work_sync().)
3361 *
3362 * Since we can't possibly know who got us here, just refrain from
3363 * running if there is already work pending
3364 */
3365 if (work_pending(&cachep->memcg_params->destroy))
3366 return;
3367 /*
3368 * We have to defer the actual destroying to a workqueue, because
3369 * we might currently be in a context that cannot sleep.
3370 */
3371 schedule_work(&cachep->memcg_params->destroy);
3372 }
3373
3374 /*
3375 * This lock protects updaters, not readers. We want readers to be as fast as
3376 * they can, and they will either see NULL or a valid cache value. Our model
3377 * allow them to see NULL, in which case the root memcg will be selected.
3378 *
3379 * We need this lock because multiple allocations to the same cache from a non
3380 * will span more than one worker. Only one of them can create the cache.
3381 */
3382 static DEFINE_MUTEX(memcg_cache_mutex);
3383
3384 /*
3385 * Called with memcg_cache_mutex held
3386 */
3387 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3388 struct kmem_cache *s)
3389 {
3390 struct kmem_cache *new;
3391 static char *tmp_name = NULL;
3392
3393 lockdep_assert_held(&memcg_cache_mutex);
3394
3395 /*
3396 * kmem_cache_create_memcg duplicates the given name and
3397 * cgroup_name for this name requires RCU context.
3398 * This static temporary buffer is used to prevent from
3399 * pointless shortliving allocation.
3400 */
3401 if (!tmp_name) {
3402 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3403 if (!tmp_name)
3404 return NULL;
3405 }
3406
3407 rcu_read_lock();
3408 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3409 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3410 rcu_read_unlock();
3411
3412 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3413 (s->flags & ~SLAB_PANIC), s->ctor, s);
3414
3415 if (new)
3416 new->allocflags |= __GFP_KMEMCG;
3417
3418 return new;
3419 }
3420
3421 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3422 struct kmem_cache *cachep)
3423 {
3424 struct kmem_cache *new_cachep;
3425 int idx;
3426
3427 BUG_ON(!memcg_can_account_kmem(memcg));
3428
3429 idx = memcg_cache_id(memcg);
3430
3431 mutex_lock(&memcg_cache_mutex);
3432 new_cachep = cachep->memcg_params->memcg_caches[idx];
3433 if (new_cachep)
3434 goto out;
3435
3436 new_cachep = kmem_cache_dup(memcg, cachep);
3437 if (new_cachep == NULL) {
3438 new_cachep = cachep;
3439 goto out;
3440 }
3441
3442 mem_cgroup_get(memcg);
3443 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3444
3445 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3446 /*
3447 * the readers won't lock, make sure everybody sees the updated value,
3448 * so they won't put stuff in the queue again for no reason
3449 */
3450 wmb();
3451 out:
3452 mutex_unlock(&memcg_cache_mutex);
3453 return new_cachep;
3454 }
3455
3456 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3457 {
3458 struct kmem_cache *c;
3459 int i;
3460
3461 if (!s->memcg_params)
3462 return;
3463 if (!s->memcg_params->is_root_cache)
3464 return;
3465
3466 /*
3467 * If the cache is being destroyed, we trust that there is no one else
3468 * requesting objects from it. Even if there are, the sanity checks in
3469 * kmem_cache_destroy should caught this ill-case.
3470 *
3471 * Still, we don't want anyone else freeing memcg_caches under our
3472 * noses, which can happen if a new memcg comes to life. As usual,
3473 * we'll take the set_limit_mutex to protect ourselves against this.
3474 */
3475 mutex_lock(&set_limit_mutex);
3476 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3477 c = s->memcg_params->memcg_caches[i];
3478 if (!c)
3479 continue;
3480
3481 /*
3482 * We will now manually delete the caches, so to avoid races
3483 * we need to cancel all pending destruction workers and
3484 * proceed with destruction ourselves.
3485 *
3486 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3487 * and that could spawn the workers again: it is likely that
3488 * the cache still have active pages until this very moment.
3489 * This would lead us back to mem_cgroup_destroy_cache.
3490 *
3491 * But that will not execute at all if the "dead" flag is not
3492 * set, so flip it down to guarantee we are in control.
3493 */
3494 c->memcg_params->dead = false;
3495 cancel_work_sync(&c->memcg_params->destroy);
3496 kmem_cache_destroy(c);
3497 }
3498 mutex_unlock(&set_limit_mutex);
3499 }
3500
3501 struct create_work {
3502 struct mem_cgroup *memcg;
3503 struct kmem_cache *cachep;
3504 struct work_struct work;
3505 };
3506
3507 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3508 {
3509 struct kmem_cache *cachep;
3510 struct memcg_cache_params *params;
3511
3512 if (!memcg_kmem_is_active(memcg))
3513 return;
3514
3515 mutex_lock(&memcg->slab_caches_mutex);
3516 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3517 cachep = memcg_params_to_cache(params);
3518 cachep->memcg_params->dead = true;
3519 schedule_work(&cachep->memcg_params->destroy);
3520 }
3521 mutex_unlock(&memcg->slab_caches_mutex);
3522 }
3523
3524 static void memcg_create_cache_work_func(struct work_struct *w)
3525 {
3526 struct create_work *cw;
3527
3528 cw = container_of(w, struct create_work, work);
3529 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3530 /* Drop the reference gotten when we enqueued. */
3531 css_put(&cw->memcg->css);
3532 kfree(cw);
3533 }
3534
3535 /*
3536 * Enqueue the creation of a per-memcg kmem_cache.
3537 */
3538 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3539 struct kmem_cache *cachep)
3540 {
3541 struct create_work *cw;
3542
3543 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3544 if (cw == NULL) {
3545 css_put(&memcg->css);
3546 return;
3547 }
3548
3549 cw->memcg = memcg;
3550 cw->cachep = cachep;
3551
3552 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3553 schedule_work(&cw->work);
3554 }
3555
3556 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3557 struct kmem_cache *cachep)
3558 {
3559 /*
3560 * We need to stop accounting when we kmalloc, because if the
3561 * corresponding kmalloc cache is not yet created, the first allocation
3562 * in __memcg_create_cache_enqueue will recurse.
3563 *
3564 * However, it is better to enclose the whole function. Depending on
3565 * the debugging options enabled, INIT_WORK(), for instance, can
3566 * trigger an allocation. This too, will make us recurse. Because at
3567 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3568 * the safest choice is to do it like this, wrapping the whole function.
3569 */
3570 memcg_stop_kmem_account();
3571 __memcg_create_cache_enqueue(memcg, cachep);
3572 memcg_resume_kmem_account();
3573 }
3574 /*
3575 * Return the kmem_cache we're supposed to use for a slab allocation.
3576 * We try to use the current memcg's version of the cache.
3577 *
3578 * If the cache does not exist yet, if we are the first user of it,
3579 * we either create it immediately, if possible, or create it asynchronously
3580 * in a workqueue.
3581 * In the latter case, we will let the current allocation go through with
3582 * the original cache.
3583 *
3584 * Can't be called in interrupt context or from kernel threads.
3585 * This function needs to be called with rcu_read_lock() held.
3586 */
3587 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3588 gfp_t gfp)
3589 {
3590 struct mem_cgroup *memcg;
3591 int idx;
3592
3593 VM_BUG_ON(!cachep->memcg_params);
3594 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3595
3596 if (!current->mm || current->memcg_kmem_skip_account)
3597 return cachep;
3598
3599 rcu_read_lock();
3600 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3601
3602 if (!memcg_can_account_kmem(memcg))
3603 goto out;
3604
3605 idx = memcg_cache_id(memcg);
3606
3607 /*
3608 * barrier to mare sure we're always seeing the up to date value. The
3609 * code updating memcg_caches will issue a write barrier to match this.
3610 */
3611 read_barrier_depends();
3612 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3613 cachep = cachep->memcg_params->memcg_caches[idx];
3614 goto out;
3615 }
3616
3617 /* The corresponding put will be done in the workqueue. */
3618 if (!css_tryget(&memcg->css))
3619 goto out;
3620 rcu_read_unlock();
3621
3622 /*
3623 * If we are in a safe context (can wait, and not in interrupt
3624 * context), we could be be predictable and return right away.
3625 * This would guarantee that the allocation being performed
3626 * already belongs in the new cache.
3627 *
3628 * However, there are some clashes that can arrive from locking.
3629 * For instance, because we acquire the slab_mutex while doing
3630 * kmem_cache_dup, this means no further allocation could happen
3631 * with the slab_mutex held.
3632 *
3633 * Also, because cache creation issue get_online_cpus(), this
3634 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3635 * that ends up reversed during cpu hotplug. (cpuset allocates
3636 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3637 * better to defer everything.
3638 */
3639 memcg_create_cache_enqueue(memcg, cachep);
3640 return cachep;
3641 out:
3642 rcu_read_unlock();
3643 return cachep;
3644 }
3645 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3646
3647 /*
3648 * We need to verify if the allocation against current->mm->owner's memcg is
3649 * possible for the given order. But the page is not allocated yet, so we'll
3650 * need a further commit step to do the final arrangements.
3651 *
3652 * It is possible for the task to switch cgroups in this mean time, so at
3653 * commit time, we can't rely on task conversion any longer. We'll then use
3654 * the handle argument to return to the caller which cgroup we should commit
3655 * against. We could also return the memcg directly and avoid the pointer
3656 * passing, but a boolean return value gives better semantics considering
3657 * the compiled-out case as well.
3658 *
3659 * Returning true means the allocation is possible.
3660 */
3661 bool
3662 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3663 {
3664 struct mem_cgroup *memcg;
3665 int ret;
3666
3667 *_memcg = NULL;
3668 memcg = try_get_mem_cgroup_from_mm(current->mm);
3669
3670 /*
3671 * very rare case described in mem_cgroup_from_task. Unfortunately there
3672 * isn't much we can do without complicating this too much, and it would
3673 * be gfp-dependent anyway. Just let it go
3674 */
3675 if (unlikely(!memcg))
3676 return true;
3677
3678 if (!memcg_can_account_kmem(memcg)) {
3679 css_put(&memcg->css);
3680 return true;
3681 }
3682
3683 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3684 if (!ret)
3685 *_memcg = memcg;
3686
3687 css_put(&memcg->css);
3688 return (ret == 0);
3689 }
3690
3691 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3692 int order)
3693 {
3694 struct page_cgroup *pc;
3695
3696 VM_BUG_ON(mem_cgroup_is_root(memcg));
3697
3698 /* The page allocation failed. Revert */
3699 if (!page) {
3700 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3701 return;
3702 }
3703
3704 pc = lookup_page_cgroup(page);
3705 lock_page_cgroup(pc);
3706 pc->mem_cgroup = memcg;
3707 SetPageCgroupUsed(pc);
3708 unlock_page_cgroup(pc);
3709 }
3710
3711 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3712 {
3713 struct mem_cgroup *memcg = NULL;
3714 struct page_cgroup *pc;
3715
3716
3717 pc = lookup_page_cgroup(page);
3718 /*
3719 * Fast unlocked return. Theoretically might have changed, have to
3720 * check again after locking.
3721 */
3722 if (!PageCgroupUsed(pc))
3723 return;
3724
3725 lock_page_cgroup(pc);
3726 if (PageCgroupUsed(pc)) {
3727 memcg = pc->mem_cgroup;
3728 ClearPageCgroupUsed(pc);
3729 }
3730 unlock_page_cgroup(pc);
3731
3732 /*
3733 * We trust that only if there is a memcg associated with the page, it
3734 * is a valid allocation
3735 */
3736 if (!memcg)
3737 return;
3738
3739 VM_BUG_ON(mem_cgroup_is_root(memcg));
3740 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3741 }
3742 #else
3743 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3744 {
3745 }
3746 #endif /* CONFIG_MEMCG_KMEM */
3747
3748 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3749
3750 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3751 /*
3752 * Because tail pages are not marked as "used", set it. We're under
3753 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3754 * charge/uncharge will be never happen and move_account() is done under
3755 * compound_lock(), so we don't have to take care of races.
3756 */
3757 void mem_cgroup_split_huge_fixup(struct page *head)
3758 {
3759 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3760 struct page_cgroup *pc;
3761 struct mem_cgroup *memcg;
3762 int i;
3763
3764 if (mem_cgroup_disabled())
3765 return;
3766
3767 memcg = head_pc->mem_cgroup;
3768 for (i = 1; i < HPAGE_PMD_NR; i++) {
3769 pc = head_pc + i;
3770 pc->mem_cgroup = memcg;
3771 smp_wmb();/* see __commit_charge() */
3772 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3773 }
3774 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3775 HPAGE_PMD_NR);
3776 }
3777 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3778
3779 /**
3780 * mem_cgroup_move_account - move account of the page
3781 * @page: the page
3782 * @nr_pages: number of regular pages (>1 for huge pages)
3783 * @pc: page_cgroup of the page.
3784 * @from: mem_cgroup which the page is moved from.
3785 * @to: mem_cgroup which the page is moved to. @from != @to.
3786 *
3787 * The caller must confirm following.
3788 * - page is not on LRU (isolate_page() is useful.)
3789 * - compound_lock is held when nr_pages > 1
3790 *
3791 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3792 * from old cgroup.
3793 */
3794 static int mem_cgroup_move_account(struct page *page,
3795 unsigned int nr_pages,
3796 struct page_cgroup *pc,
3797 struct mem_cgroup *from,
3798 struct mem_cgroup *to)
3799 {
3800 unsigned long flags;
3801 int ret;
3802 bool anon = PageAnon(page);
3803
3804 VM_BUG_ON(from == to);
3805 VM_BUG_ON(PageLRU(page));
3806 /*
3807 * The page is isolated from LRU. So, collapse function
3808 * will not handle this page. But page splitting can happen.
3809 * Do this check under compound_page_lock(). The caller should
3810 * hold it.
3811 */
3812 ret = -EBUSY;
3813 if (nr_pages > 1 && !PageTransHuge(page))
3814 goto out;
3815
3816 lock_page_cgroup(pc);
3817
3818 ret = -EINVAL;
3819 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3820 goto unlock;
3821
3822 move_lock_mem_cgroup(from, &flags);
3823
3824 if (!anon && page_mapped(page)) {
3825 /* Update mapped_file data for mem_cgroup */
3826 preempt_disable();
3827 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3828 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3829 preempt_enable();
3830 }
3831 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3832
3833 /* caller should have done css_get */
3834 pc->mem_cgroup = to;
3835 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3836 move_unlock_mem_cgroup(from, &flags);
3837 ret = 0;
3838 unlock:
3839 unlock_page_cgroup(pc);
3840 /*
3841 * check events
3842 */
3843 memcg_check_events(to, page);
3844 memcg_check_events(from, page);
3845 out:
3846 return ret;
3847 }
3848
3849 /**
3850 * mem_cgroup_move_parent - moves page to the parent group
3851 * @page: the page to move
3852 * @pc: page_cgroup of the page
3853 * @child: page's cgroup
3854 *
3855 * move charges to its parent or the root cgroup if the group has no
3856 * parent (aka use_hierarchy==0).
3857 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3858 * mem_cgroup_move_account fails) the failure is always temporary and
3859 * it signals a race with a page removal/uncharge or migration. In the
3860 * first case the page is on the way out and it will vanish from the LRU
3861 * on the next attempt and the call should be retried later.
3862 * Isolation from the LRU fails only if page has been isolated from
3863 * the LRU since we looked at it and that usually means either global
3864 * reclaim or migration going on. The page will either get back to the
3865 * LRU or vanish.
3866 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3867 * (!PageCgroupUsed) or moved to a different group. The page will
3868 * disappear in the next attempt.
3869 */
3870 static int mem_cgroup_move_parent(struct page *page,
3871 struct page_cgroup *pc,
3872 struct mem_cgroup *child)
3873 {
3874 struct mem_cgroup *parent;
3875 unsigned int nr_pages;
3876 unsigned long uninitialized_var(flags);
3877 int ret;
3878
3879 VM_BUG_ON(mem_cgroup_is_root(child));
3880
3881 ret = -EBUSY;
3882 if (!get_page_unless_zero(page))
3883 goto out;
3884 if (isolate_lru_page(page))
3885 goto put;
3886
3887 nr_pages = hpage_nr_pages(page);
3888
3889 parent = parent_mem_cgroup(child);
3890 /*
3891 * If no parent, move charges to root cgroup.
3892 */
3893 if (!parent)
3894 parent = root_mem_cgroup;
3895
3896 if (nr_pages > 1) {
3897 VM_BUG_ON(!PageTransHuge(page));
3898 flags = compound_lock_irqsave(page);
3899 }
3900
3901 ret = mem_cgroup_move_account(page, nr_pages,
3902 pc, child, parent);
3903 if (!ret)
3904 __mem_cgroup_cancel_local_charge(child, nr_pages);
3905
3906 if (nr_pages > 1)
3907 compound_unlock_irqrestore(page, flags);
3908 putback_lru_page(page);
3909 put:
3910 put_page(page);
3911 out:
3912 return ret;
3913 }
3914
3915 /*
3916 * Charge the memory controller for page usage.
3917 * Return
3918 * 0 if the charge was successful
3919 * < 0 if the cgroup is over its limit
3920 */
3921 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3922 gfp_t gfp_mask, enum charge_type ctype)
3923 {
3924 struct mem_cgroup *memcg = NULL;
3925 unsigned int nr_pages = 1;
3926 bool oom = true;
3927 int ret;
3928
3929 if (PageTransHuge(page)) {
3930 nr_pages <<= compound_order(page);
3931 VM_BUG_ON(!PageTransHuge(page));
3932 /*
3933 * Never OOM-kill a process for a huge page. The
3934 * fault handler will fall back to regular pages.
3935 */
3936 oom = false;
3937 }
3938
3939 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3940 if (ret == -ENOMEM)
3941 return ret;
3942 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3943 return 0;
3944 }
3945
3946 int mem_cgroup_newpage_charge(struct page *page,
3947 struct mm_struct *mm, gfp_t gfp_mask)
3948 {
3949 if (mem_cgroup_disabled())
3950 return 0;
3951 VM_BUG_ON(page_mapped(page));
3952 VM_BUG_ON(page->mapping && !PageAnon(page));
3953 VM_BUG_ON(!mm);
3954 return mem_cgroup_charge_common(page, mm, gfp_mask,
3955 MEM_CGROUP_CHARGE_TYPE_ANON);
3956 }
3957
3958 /*
3959 * While swap-in, try_charge -> commit or cancel, the page is locked.
3960 * And when try_charge() successfully returns, one refcnt to memcg without
3961 * struct page_cgroup is acquired. This refcnt will be consumed by
3962 * "commit()" or removed by "cancel()"
3963 */
3964 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3965 struct page *page,
3966 gfp_t mask,
3967 struct mem_cgroup **memcgp)
3968 {
3969 struct mem_cgroup *memcg;
3970 struct page_cgroup *pc;
3971 int ret;
3972
3973 pc = lookup_page_cgroup(page);
3974 /*
3975 * Every swap fault against a single page tries to charge the
3976 * page, bail as early as possible. shmem_unuse() encounters
3977 * already charged pages, too. The USED bit is protected by
3978 * the page lock, which serializes swap cache removal, which
3979 * in turn serializes uncharging.
3980 */
3981 if (PageCgroupUsed(pc))
3982 return 0;
3983 if (!do_swap_account)
3984 goto charge_cur_mm;
3985 memcg = try_get_mem_cgroup_from_page(page);
3986 if (!memcg)
3987 goto charge_cur_mm;
3988 *memcgp = memcg;
3989 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3990 css_put(&memcg->css);
3991 if (ret == -EINTR)
3992 ret = 0;
3993 return ret;
3994 charge_cur_mm:
3995 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3996 if (ret == -EINTR)
3997 ret = 0;
3998 return ret;
3999 }
4000
4001 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4002 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4003 {
4004 *memcgp = NULL;
4005 if (mem_cgroup_disabled())
4006 return 0;
4007 /*
4008 * A racing thread's fault, or swapoff, may have already
4009 * updated the pte, and even removed page from swap cache: in
4010 * those cases unuse_pte()'s pte_same() test will fail; but
4011 * there's also a KSM case which does need to charge the page.
4012 */
4013 if (!PageSwapCache(page)) {
4014 int ret;
4015
4016 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4017 if (ret == -EINTR)
4018 ret = 0;
4019 return ret;
4020 }
4021 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4022 }
4023
4024 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4025 {
4026 if (mem_cgroup_disabled())
4027 return;
4028 if (!memcg)
4029 return;
4030 __mem_cgroup_cancel_charge(memcg, 1);
4031 }
4032
4033 static void
4034 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4035 enum charge_type ctype)
4036 {
4037 if (mem_cgroup_disabled())
4038 return;
4039 if (!memcg)
4040 return;
4041
4042 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4043 /*
4044 * Now swap is on-memory. This means this page may be
4045 * counted both as mem and swap....double count.
4046 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4047 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4048 * may call delete_from_swap_cache() before reach here.
4049 */
4050 if (do_swap_account && PageSwapCache(page)) {
4051 swp_entry_t ent = {.val = page_private(page)};
4052 mem_cgroup_uncharge_swap(ent);
4053 }
4054 }
4055
4056 void mem_cgroup_commit_charge_swapin(struct page *page,
4057 struct mem_cgroup *memcg)
4058 {
4059 __mem_cgroup_commit_charge_swapin(page, memcg,
4060 MEM_CGROUP_CHARGE_TYPE_ANON);
4061 }
4062
4063 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4064 gfp_t gfp_mask)
4065 {
4066 struct mem_cgroup *memcg = NULL;
4067 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4068 int ret;
4069
4070 if (mem_cgroup_disabled())
4071 return 0;
4072 if (PageCompound(page))
4073 return 0;
4074
4075 if (!PageSwapCache(page))
4076 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4077 else { /* page is swapcache/shmem */
4078 ret = __mem_cgroup_try_charge_swapin(mm, page,
4079 gfp_mask, &memcg);
4080 if (!ret)
4081 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4082 }
4083 return ret;
4084 }
4085
4086 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4087 unsigned int nr_pages,
4088 const enum charge_type ctype)
4089 {
4090 struct memcg_batch_info *batch = NULL;
4091 bool uncharge_memsw = true;
4092
4093 /* If swapout, usage of swap doesn't decrease */
4094 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4095 uncharge_memsw = false;
4096
4097 batch = &current->memcg_batch;
4098 /*
4099 * In usual, we do css_get() when we remember memcg pointer.
4100 * But in this case, we keep res->usage until end of a series of
4101 * uncharges. Then, it's ok to ignore memcg's refcnt.
4102 */
4103 if (!batch->memcg)
4104 batch->memcg = memcg;
4105 /*
4106 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4107 * In those cases, all pages freed continuously can be expected to be in
4108 * the same cgroup and we have chance to coalesce uncharges.
4109 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4110 * because we want to do uncharge as soon as possible.
4111 */
4112
4113 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4114 goto direct_uncharge;
4115
4116 if (nr_pages > 1)
4117 goto direct_uncharge;
4118
4119 /*
4120 * In typical case, batch->memcg == mem. This means we can
4121 * merge a series of uncharges to an uncharge of res_counter.
4122 * If not, we uncharge res_counter ony by one.
4123 */
4124 if (batch->memcg != memcg)
4125 goto direct_uncharge;
4126 /* remember freed charge and uncharge it later */
4127 batch->nr_pages++;
4128 if (uncharge_memsw)
4129 batch->memsw_nr_pages++;
4130 return;
4131 direct_uncharge:
4132 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4133 if (uncharge_memsw)
4134 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4135 if (unlikely(batch->memcg != memcg))
4136 memcg_oom_recover(memcg);
4137 }
4138
4139 /*
4140 * uncharge if !page_mapped(page)
4141 */
4142 static struct mem_cgroup *
4143 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4144 bool end_migration)
4145 {
4146 struct mem_cgroup *memcg = NULL;
4147 unsigned int nr_pages = 1;
4148 struct page_cgroup *pc;
4149 bool anon;
4150
4151 if (mem_cgroup_disabled())
4152 return NULL;
4153
4154 if (PageTransHuge(page)) {
4155 nr_pages <<= compound_order(page);
4156 VM_BUG_ON(!PageTransHuge(page));
4157 }
4158 /*
4159 * Check if our page_cgroup is valid
4160 */
4161 pc = lookup_page_cgroup(page);
4162 if (unlikely(!PageCgroupUsed(pc)))
4163 return NULL;
4164
4165 lock_page_cgroup(pc);
4166
4167 memcg = pc->mem_cgroup;
4168
4169 if (!PageCgroupUsed(pc))
4170 goto unlock_out;
4171
4172 anon = PageAnon(page);
4173
4174 switch (ctype) {
4175 case MEM_CGROUP_CHARGE_TYPE_ANON:
4176 /*
4177 * Generally PageAnon tells if it's the anon statistics to be
4178 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4179 * used before page reached the stage of being marked PageAnon.
4180 */
4181 anon = true;
4182 /* fallthrough */
4183 case MEM_CGROUP_CHARGE_TYPE_DROP:
4184 /* See mem_cgroup_prepare_migration() */
4185 if (page_mapped(page))
4186 goto unlock_out;
4187 /*
4188 * Pages under migration may not be uncharged. But
4189 * end_migration() /must/ be the one uncharging the
4190 * unused post-migration page and so it has to call
4191 * here with the migration bit still set. See the
4192 * res_counter handling below.
4193 */
4194 if (!end_migration && PageCgroupMigration(pc))
4195 goto unlock_out;
4196 break;
4197 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4198 if (!PageAnon(page)) { /* Shared memory */
4199 if (page->mapping && !page_is_file_cache(page))
4200 goto unlock_out;
4201 } else if (page_mapped(page)) /* Anon */
4202 goto unlock_out;
4203 break;
4204 default:
4205 break;
4206 }
4207
4208 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4209
4210 ClearPageCgroupUsed(pc);
4211 /*
4212 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4213 * freed from LRU. This is safe because uncharged page is expected not
4214 * to be reused (freed soon). Exception is SwapCache, it's handled by
4215 * special functions.
4216 */
4217
4218 unlock_page_cgroup(pc);
4219 /*
4220 * even after unlock, we have memcg->res.usage here and this memcg
4221 * will never be freed.
4222 */
4223 memcg_check_events(memcg, page);
4224 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4225 mem_cgroup_swap_statistics(memcg, true);
4226 mem_cgroup_get(memcg);
4227 }
4228 /*
4229 * Migration does not charge the res_counter for the
4230 * replacement page, so leave it alone when phasing out the
4231 * page that is unused after the migration.
4232 */
4233 if (!end_migration && !mem_cgroup_is_root(memcg))
4234 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4235
4236 return memcg;
4237
4238 unlock_out:
4239 unlock_page_cgroup(pc);
4240 return NULL;
4241 }
4242
4243 void mem_cgroup_uncharge_page(struct page *page)
4244 {
4245 /* early check. */
4246 if (page_mapped(page))
4247 return;
4248 VM_BUG_ON(page->mapping && !PageAnon(page));
4249 /*
4250 * If the page is in swap cache, uncharge should be deferred
4251 * to the swap path, which also properly accounts swap usage
4252 * and handles memcg lifetime.
4253 *
4254 * Note that this check is not stable and reclaim may add the
4255 * page to swap cache at any time after this. However, if the
4256 * page is not in swap cache by the time page->mapcount hits
4257 * 0, there won't be any page table references to the swap
4258 * slot, and reclaim will free it and not actually write the
4259 * page to disk.
4260 */
4261 if (PageSwapCache(page))
4262 return;
4263 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4264 }
4265
4266 void mem_cgroup_uncharge_cache_page(struct page *page)
4267 {
4268 VM_BUG_ON(page_mapped(page));
4269 VM_BUG_ON(page->mapping);
4270 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4271 }
4272
4273 /*
4274 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4275 * In that cases, pages are freed continuously and we can expect pages
4276 * are in the same memcg. All these calls itself limits the number of
4277 * pages freed at once, then uncharge_start/end() is called properly.
4278 * This may be called prural(2) times in a context,
4279 */
4280
4281 void mem_cgroup_uncharge_start(void)
4282 {
4283 current->memcg_batch.do_batch++;
4284 /* We can do nest. */
4285 if (current->memcg_batch.do_batch == 1) {
4286 current->memcg_batch.memcg = NULL;
4287 current->memcg_batch.nr_pages = 0;
4288 current->memcg_batch.memsw_nr_pages = 0;
4289 }
4290 }
4291
4292 void mem_cgroup_uncharge_end(void)
4293 {
4294 struct memcg_batch_info *batch = &current->memcg_batch;
4295
4296 if (!batch->do_batch)
4297 return;
4298
4299 batch->do_batch--;
4300 if (batch->do_batch) /* If stacked, do nothing. */
4301 return;
4302
4303 if (!batch->memcg)
4304 return;
4305 /*
4306 * This "batch->memcg" is valid without any css_get/put etc...
4307 * bacause we hide charges behind us.
4308 */
4309 if (batch->nr_pages)
4310 res_counter_uncharge(&batch->memcg->res,
4311 batch->nr_pages * PAGE_SIZE);
4312 if (batch->memsw_nr_pages)
4313 res_counter_uncharge(&batch->memcg->memsw,
4314 batch->memsw_nr_pages * PAGE_SIZE);
4315 memcg_oom_recover(batch->memcg);
4316 /* forget this pointer (for sanity check) */
4317 batch->memcg = NULL;
4318 }
4319
4320 #ifdef CONFIG_SWAP
4321 /*
4322 * called after __delete_from_swap_cache() and drop "page" account.
4323 * memcg information is recorded to swap_cgroup of "ent"
4324 */
4325 void
4326 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4327 {
4328 struct mem_cgroup *memcg;
4329 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4330
4331 if (!swapout) /* this was a swap cache but the swap is unused ! */
4332 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4333
4334 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4335
4336 /*
4337 * record memcg information, if swapout && memcg != NULL,
4338 * mem_cgroup_get() was called in uncharge().
4339 */
4340 if (do_swap_account && swapout && memcg)
4341 swap_cgroup_record(ent, css_id(&memcg->css));
4342 }
4343 #endif
4344
4345 #ifdef CONFIG_MEMCG_SWAP
4346 /*
4347 * called from swap_entry_free(). remove record in swap_cgroup and
4348 * uncharge "memsw" account.
4349 */
4350 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4351 {
4352 struct mem_cgroup *memcg;
4353 unsigned short id;
4354
4355 if (!do_swap_account)
4356 return;
4357
4358 id = swap_cgroup_record(ent, 0);
4359 rcu_read_lock();
4360 memcg = mem_cgroup_lookup(id);
4361 if (memcg) {
4362 /*
4363 * We uncharge this because swap is freed.
4364 * This memcg can be obsolete one. We avoid calling css_tryget
4365 */
4366 if (!mem_cgroup_is_root(memcg))
4367 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4368 mem_cgroup_swap_statistics(memcg, false);
4369 mem_cgroup_put(memcg);
4370 }
4371 rcu_read_unlock();
4372 }
4373
4374 /**
4375 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4376 * @entry: swap entry to be moved
4377 * @from: mem_cgroup which the entry is moved from
4378 * @to: mem_cgroup which the entry is moved to
4379 *
4380 * It succeeds only when the swap_cgroup's record for this entry is the same
4381 * as the mem_cgroup's id of @from.
4382 *
4383 * Returns 0 on success, -EINVAL on failure.
4384 *
4385 * The caller must have charged to @to, IOW, called res_counter_charge() about
4386 * both res and memsw, and called css_get().
4387 */
4388 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4389 struct mem_cgroup *from, struct mem_cgroup *to)
4390 {
4391 unsigned short old_id, new_id;
4392
4393 old_id = css_id(&from->css);
4394 new_id = css_id(&to->css);
4395
4396 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4397 mem_cgroup_swap_statistics(from, false);
4398 mem_cgroup_swap_statistics(to, true);
4399 /*
4400 * This function is only called from task migration context now.
4401 * It postpones res_counter and refcount handling till the end
4402 * of task migration(mem_cgroup_clear_mc()) for performance
4403 * improvement. But we cannot postpone mem_cgroup_get(to)
4404 * because if the process that has been moved to @to does
4405 * swap-in, the refcount of @to might be decreased to 0.
4406 */
4407 mem_cgroup_get(to);
4408 return 0;
4409 }
4410 return -EINVAL;
4411 }
4412 #else
4413 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4414 struct mem_cgroup *from, struct mem_cgroup *to)
4415 {
4416 return -EINVAL;
4417 }
4418 #endif
4419
4420 /*
4421 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4422 * page belongs to.
4423 */
4424 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4425 struct mem_cgroup **memcgp)
4426 {
4427 struct mem_cgroup *memcg = NULL;
4428 unsigned int nr_pages = 1;
4429 struct page_cgroup *pc;
4430 enum charge_type ctype;
4431
4432 *memcgp = NULL;
4433
4434 if (mem_cgroup_disabled())
4435 return;
4436
4437 if (PageTransHuge(page))
4438 nr_pages <<= compound_order(page);
4439
4440 pc = lookup_page_cgroup(page);
4441 lock_page_cgroup(pc);
4442 if (PageCgroupUsed(pc)) {
4443 memcg = pc->mem_cgroup;
4444 css_get(&memcg->css);
4445 /*
4446 * At migrating an anonymous page, its mapcount goes down
4447 * to 0 and uncharge() will be called. But, even if it's fully
4448 * unmapped, migration may fail and this page has to be
4449 * charged again. We set MIGRATION flag here and delay uncharge
4450 * until end_migration() is called
4451 *
4452 * Corner Case Thinking
4453 * A)
4454 * When the old page was mapped as Anon and it's unmap-and-freed
4455 * while migration was ongoing.
4456 * If unmap finds the old page, uncharge() of it will be delayed
4457 * until end_migration(). If unmap finds a new page, it's
4458 * uncharged when it make mapcount to be 1->0. If unmap code
4459 * finds swap_migration_entry, the new page will not be mapped
4460 * and end_migration() will find it(mapcount==0).
4461 *
4462 * B)
4463 * When the old page was mapped but migraion fails, the kernel
4464 * remaps it. A charge for it is kept by MIGRATION flag even
4465 * if mapcount goes down to 0. We can do remap successfully
4466 * without charging it again.
4467 *
4468 * C)
4469 * The "old" page is under lock_page() until the end of
4470 * migration, so, the old page itself will not be swapped-out.
4471 * If the new page is swapped out before end_migraton, our
4472 * hook to usual swap-out path will catch the event.
4473 */
4474 if (PageAnon(page))
4475 SetPageCgroupMigration(pc);
4476 }
4477 unlock_page_cgroup(pc);
4478 /*
4479 * If the page is not charged at this point,
4480 * we return here.
4481 */
4482 if (!memcg)
4483 return;
4484
4485 *memcgp = memcg;
4486 /*
4487 * We charge new page before it's used/mapped. So, even if unlock_page()
4488 * is called before end_migration, we can catch all events on this new
4489 * page. In the case new page is migrated but not remapped, new page's
4490 * mapcount will be finally 0 and we call uncharge in end_migration().
4491 */
4492 if (PageAnon(page))
4493 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4494 else
4495 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4496 /*
4497 * The page is committed to the memcg, but it's not actually
4498 * charged to the res_counter since we plan on replacing the
4499 * old one and only one page is going to be left afterwards.
4500 */
4501 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4502 }
4503
4504 /* remove redundant charge if migration failed*/
4505 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4506 struct page *oldpage, struct page *newpage, bool migration_ok)
4507 {
4508 struct page *used, *unused;
4509 struct page_cgroup *pc;
4510 bool anon;
4511
4512 if (!memcg)
4513 return;
4514
4515 if (!migration_ok) {
4516 used = oldpage;
4517 unused = newpage;
4518 } else {
4519 used = newpage;
4520 unused = oldpage;
4521 }
4522 anon = PageAnon(used);
4523 __mem_cgroup_uncharge_common(unused,
4524 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4525 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4526 true);
4527 css_put(&memcg->css);
4528 /*
4529 * We disallowed uncharge of pages under migration because mapcount
4530 * of the page goes down to zero, temporarly.
4531 * Clear the flag and check the page should be charged.
4532 */
4533 pc = lookup_page_cgroup(oldpage);
4534 lock_page_cgroup(pc);
4535 ClearPageCgroupMigration(pc);
4536 unlock_page_cgroup(pc);
4537
4538 /*
4539 * If a page is a file cache, radix-tree replacement is very atomic
4540 * and we can skip this check. When it was an Anon page, its mapcount
4541 * goes down to 0. But because we added MIGRATION flage, it's not
4542 * uncharged yet. There are several case but page->mapcount check
4543 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4544 * check. (see prepare_charge() also)
4545 */
4546 if (anon)
4547 mem_cgroup_uncharge_page(used);
4548 }
4549
4550 /*
4551 * At replace page cache, newpage is not under any memcg but it's on
4552 * LRU. So, this function doesn't touch res_counter but handles LRU
4553 * in correct way. Both pages are locked so we cannot race with uncharge.
4554 */
4555 void mem_cgroup_replace_page_cache(struct page *oldpage,
4556 struct page *newpage)
4557 {
4558 struct mem_cgroup *memcg = NULL;
4559 struct page_cgroup *pc;
4560 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4561
4562 if (mem_cgroup_disabled())
4563 return;
4564
4565 pc = lookup_page_cgroup(oldpage);
4566 /* fix accounting on old pages */
4567 lock_page_cgroup(pc);
4568 if (PageCgroupUsed(pc)) {
4569 memcg = pc->mem_cgroup;
4570 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4571 ClearPageCgroupUsed(pc);
4572 }
4573 unlock_page_cgroup(pc);
4574
4575 /*
4576 * When called from shmem_replace_page(), in some cases the
4577 * oldpage has already been charged, and in some cases not.
4578 */
4579 if (!memcg)
4580 return;
4581 /*
4582 * Even if newpage->mapping was NULL before starting replacement,
4583 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4584 * LRU while we overwrite pc->mem_cgroup.
4585 */
4586 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4587 }
4588
4589 #ifdef CONFIG_DEBUG_VM
4590 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4591 {
4592 struct page_cgroup *pc;
4593
4594 pc = lookup_page_cgroup(page);
4595 /*
4596 * Can be NULL while feeding pages into the page allocator for
4597 * the first time, i.e. during boot or memory hotplug;
4598 * or when mem_cgroup_disabled().
4599 */
4600 if (likely(pc) && PageCgroupUsed(pc))
4601 return pc;
4602 return NULL;
4603 }
4604
4605 bool mem_cgroup_bad_page_check(struct page *page)
4606 {
4607 if (mem_cgroup_disabled())
4608 return false;
4609
4610 return lookup_page_cgroup_used(page) != NULL;
4611 }
4612
4613 void mem_cgroup_print_bad_page(struct page *page)
4614 {
4615 struct page_cgroup *pc;
4616
4617 pc = lookup_page_cgroup_used(page);
4618 if (pc) {
4619 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4620 pc, pc->flags, pc->mem_cgroup);
4621 }
4622 }
4623 #endif
4624
4625 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4626 unsigned long long val)
4627 {
4628 int retry_count;
4629 u64 memswlimit, memlimit;
4630 int ret = 0;
4631 int children = mem_cgroup_count_children(memcg);
4632 u64 curusage, oldusage;
4633 int enlarge;
4634
4635 /*
4636 * For keeping hierarchical_reclaim simple, how long we should retry
4637 * is depends on callers. We set our retry-count to be function
4638 * of # of children which we should visit in this loop.
4639 */
4640 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4641
4642 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4643
4644 enlarge = 0;
4645 while (retry_count) {
4646 if (signal_pending(current)) {
4647 ret = -EINTR;
4648 break;
4649 }
4650 /*
4651 * Rather than hide all in some function, I do this in
4652 * open coded manner. You see what this really does.
4653 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4654 */
4655 mutex_lock(&set_limit_mutex);
4656 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4657 if (memswlimit < val) {
4658 ret = -EINVAL;
4659 mutex_unlock(&set_limit_mutex);
4660 break;
4661 }
4662
4663 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4664 if (memlimit < val)
4665 enlarge = 1;
4666
4667 ret = res_counter_set_limit(&memcg->res, val);
4668 if (!ret) {
4669 if (memswlimit == val)
4670 memcg->memsw_is_minimum = true;
4671 else
4672 memcg->memsw_is_minimum = false;
4673 }
4674 mutex_unlock(&set_limit_mutex);
4675
4676 if (!ret)
4677 break;
4678
4679 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4680 MEM_CGROUP_RECLAIM_SHRINK);
4681 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4682 /* Usage is reduced ? */
4683 if (curusage >= oldusage)
4684 retry_count--;
4685 else
4686 oldusage = curusage;
4687 }
4688 if (!ret && enlarge)
4689 memcg_oom_recover(memcg);
4690
4691 return ret;
4692 }
4693
4694 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4695 unsigned long long val)
4696 {
4697 int retry_count;
4698 u64 memlimit, memswlimit, oldusage, curusage;
4699 int children = mem_cgroup_count_children(memcg);
4700 int ret = -EBUSY;
4701 int enlarge = 0;
4702
4703 /* see mem_cgroup_resize_res_limit */
4704 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4705 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4706 while (retry_count) {
4707 if (signal_pending(current)) {
4708 ret = -EINTR;
4709 break;
4710 }
4711 /*
4712 * Rather than hide all in some function, I do this in
4713 * open coded manner. You see what this really does.
4714 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4715 */
4716 mutex_lock(&set_limit_mutex);
4717 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4718 if (memlimit > val) {
4719 ret = -EINVAL;
4720 mutex_unlock(&set_limit_mutex);
4721 break;
4722 }
4723 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4724 if (memswlimit < val)
4725 enlarge = 1;
4726 ret = res_counter_set_limit(&memcg->memsw, val);
4727 if (!ret) {
4728 if (memlimit == val)
4729 memcg->memsw_is_minimum = true;
4730 else
4731 memcg->memsw_is_minimum = false;
4732 }
4733 mutex_unlock(&set_limit_mutex);
4734
4735 if (!ret)
4736 break;
4737
4738 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4739 MEM_CGROUP_RECLAIM_NOSWAP |
4740 MEM_CGROUP_RECLAIM_SHRINK);
4741 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4742 /* Usage is reduced ? */
4743 if (curusage >= oldusage)
4744 retry_count--;
4745 else
4746 oldusage = curusage;
4747 }
4748 if (!ret && enlarge)
4749 memcg_oom_recover(memcg);
4750 return ret;
4751 }
4752
4753 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4754 gfp_t gfp_mask,
4755 unsigned long *total_scanned)
4756 {
4757 unsigned long nr_reclaimed = 0;
4758 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4759 unsigned long reclaimed;
4760 int loop = 0;
4761 struct mem_cgroup_tree_per_zone *mctz;
4762 unsigned long long excess;
4763 unsigned long nr_scanned;
4764
4765 if (order > 0)
4766 return 0;
4767
4768 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4769 /*
4770 * This loop can run a while, specially if mem_cgroup's continuously
4771 * keep exceeding their soft limit and putting the system under
4772 * pressure
4773 */
4774 do {
4775 if (next_mz)
4776 mz = next_mz;
4777 else
4778 mz = mem_cgroup_largest_soft_limit_node(mctz);
4779 if (!mz)
4780 break;
4781
4782 nr_scanned = 0;
4783 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4784 gfp_mask, &nr_scanned);
4785 nr_reclaimed += reclaimed;
4786 *total_scanned += nr_scanned;
4787 spin_lock(&mctz->lock);
4788
4789 /*
4790 * If we failed to reclaim anything from this memory cgroup
4791 * it is time to move on to the next cgroup
4792 */
4793 next_mz = NULL;
4794 if (!reclaimed) {
4795 do {
4796 /*
4797 * Loop until we find yet another one.
4798 *
4799 * By the time we get the soft_limit lock
4800 * again, someone might have aded the
4801 * group back on the RB tree. Iterate to
4802 * make sure we get a different mem.
4803 * mem_cgroup_largest_soft_limit_node returns
4804 * NULL if no other cgroup is present on
4805 * the tree
4806 */
4807 next_mz =
4808 __mem_cgroup_largest_soft_limit_node(mctz);
4809 if (next_mz == mz)
4810 css_put(&next_mz->memcg->css);
4811 else /* next_mz == NULL or other memcg */
4812 break;
4813 } while (1);
4814 }
4815 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4816 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4817 /*
4818 * One school of thought says that we should not add
4819 * back the node to the tree if reclaim returns 0.
4820 * But our reclaim could return 0, simply because due
4821 * to priority we are exposing a smaller subset of
4822 * memory to reclaim from. Consider this as a longer
4823 * term TODO.
4824 */
4825 /* If excess == 0, no tree ops */
4826 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4827 spin_unlock(&mctz->lock);
4828 css_put(&mz->memcg->css);
4829 loop++;
4830 /*
4831 * Could not reclaim anything and there are no more
4832 * mem cgroups to try or we seem to be looping without
4833 * reclaiming anything.
4834 */
4835 if (!nr_reclaimed &&
4836 (next_mz == NULL ||
4837 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4838 break;
4839 } while (!nr_reclaimed);
4840 if (next_mz)
4841 css_put(&next_mz->memcg->css);
4842 return nr_reclaimed;
4843 }
4844
4845 /**
4846 * mem_cgroup_force_empty_list - clears LRU of a group
4847 * @memcg: group to clear
4848 * @node: NUMA node
4849 * @zid: zone id
4850 * @lru: lru to to clear
4851 *
4852 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4853 * reclaim the pages page themselves - pages are moved to the parent (or root)
4854 * group.
4855 */
4856 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4857 int node, int zid, enum lru_list lru)
4858 {
4859 struct lruvec *lruvec;
4860 unsigned long flags;
4861 struct list_head *list;
4862 struct page *busy;
4863 struct zone *zone;
4864
4865 zone = &NODE_DATA(node)->node_zones[zid];
4866 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4867 list = &lruvec->lists[lru];
4868
4869 busy = NULL;
4870 do {
4871 struct page_cgroup *pc;
4872 struct page *page;
4873
4874 spin_lock_irqsave(&zone->lru_lock, flags);
4875 if (list_empty(list)) {
4876 spin_unlock_irqrestore(&zone->lru_lock, flags);
4877 break;
4878 }
4879 page = list_entry(list->prev, struct page, lru);
4880 if (busy == page) {
4881 list_move(&page->lru, list);
4882 busy = NULL;
4883 spin_unlock_irqrestore(&zone->lru_lock, flags);
4884 continue;
4885 }
4886 spin_unlock_irqrestore(&zone->lru_lock, flags);
4887
4888 pc = lookup_page_cgroup(page);
4889
4890 if (mem_cgroup_move_parent(page, pc, memcg)) {
4891 /* found lock contention or "pc" is obsolete. */
4892 busy = page;
4893 cond_resched();
4894 } else
4895 busy = NULL;
4896 } while (!list_empty(list));
4897 }
4898
4899 /*
4900 * make mem_cgroup's charge to be 0 if there is no task by moving
4901 * all the charges and pages to the parent.
4902 * This enables deleting this mem_cgroup.
4903 *
4904 * Caller is responsible for holding css reference on the memcg.
4905 */
4906 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4907 {
4908 int node, zid;
4909 u64 usage;
4910
4911 do {
4912 /* This is for making all *used* pages to be on LRU. */
4913 lru_add_drain_all();
4914 drain_all_stock_sync(memcg);
4915 mem_cgroup_start_move(memcg);
4916 for_each_node_state(node, N_MEMORY) {
4917 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4918 enum lru_list lru;
4919 for_each_lru(lru) {
4920 mem_cgroup_force_empty_list(memcg,
4921 node, zid, lru);
4922 }
4923 }
4924 }
4925 mem_cgroup_end_move(memcg);
4926 memcg_oom_recover(memcg);
4927 cond_resched();
4928
4929 /*
4930 * Kernel memory may not necessarily be trackable to a specific
4931 * process. So they are not migrated, and therefore we can't
4932 * expect their value to drop to 0 here.
4933 * Having res filled up with kmem only is enough.
4934 *
4935 * This is a safety check because mem_cgroup_force_empty_list
4936 * could have raced with mem_cgroup_replace_page_cache callers
4937 * so the lru seemed empty but the page could have been added
4938 * right after the check. RES_USAGE should be safe as we always
4939 * charge before adding to the LRU.
4940 */
4941 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4942 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4943 } while (usage > 0);
4944 }
4945
4946 /*
4947 * This mainly exists for tests during the setting of set of use_hierarchy.
4948 * Since this is the very setting we are changing, the current hierarchy value
4949 * is meaningless
4950 */
4951 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4952 {
4953 struct cgroup *pos;
4954
4955 /* bounce at first found */
4956 cgroup_for_each_child(pos, memcg->css.cgroup)
4957 return true;
4958 return false;
4959 }
4960
4961 /*
4962 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4963 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4964 * from mem_cgroup_count_children(), in the sense that we don't really care how
4965 * many children we have; we only need to know if we have any. It also counts
4966 * any memcg without hierarchy as infertile.
4967 */
4968 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4969 {
4970 return memcg->use_hierarchy && __memcg_has_children(memcg);
4971 }
4972
4973 /*
4974 * Reclaims as many pages from the given memcg as possible and moves
4975 * the rest to the parent.
4976 *
4977 * Caller is responsible for holding css reference for memcg.
4978 */
4979 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4980 {
4981 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4982 struct cgroup *cgrp = memcg->css.cgroup;
4983
4984 /* returns EBUSY if there is a task or if we come here twice. */
4985 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4986 return -EBUSY;
4987
4988 /* we call try-to-free pages for make this cgroup empty */
4989 lru_add_drain_all();
4990 /* try to free all pages in this cgroup */
4991 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4992 int progress;
4993
4994 if (signal_pending(current))
4995 return -EINTR;
4996
4997 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4998 false);
4999 if (!progress) {
5000 nr_retries--;
5001 /* maybe some writeback is necessary */
5002 congestion_wait(BLK_RW_ASYNC, HZ/10);
5003 }
5004
5005 }
5006 lru_add_drain();
5007 mem_cgroup_reparent_charges(memcg);
5008
5009 return 0;
5010 }
5011
5012 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
5013 {
5014 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5015 int ret;
5016
5017 if (mem_cgroup_is_root(memcg))
5018 return -EINVAL;
5019 css_get(&memcg->css);
5020 ret = mem_cgroup_force_empty(memcg);
5021 css_put(&memcg->css);
5022
5023 return ret;
5024 }
5025
5026
5027 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
5028 {
5029 return mem_cgroup_from_cont(cont)->use_hierarchy;
5030 }
5031
5032 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
5033 u64 val)
5034 {
5035 int retval = 0;
5036 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5037 struct cgroup *parent = cont->parent;
5038 struct mem_cgroup *parent_memcg = NULL;
5039
5040 if (parent)
5041 parent_memcg = mem_cgroup_from_cont(parent);
5042
5043 mutex_lock(&memcg_create_mutex);
5044
5045 if (memcg->use_hierarchy == val)
5046 goto out;
5047
5048 /*
5049 * If parent's use_hierarchy is set, we can't make any modifications
5050 * in the child subtrees. If it is unset, then the change can
5051 * occur, provided the current cgroup has no children.
5052 *
5053 * For the root cgroup, parent_mem is NULL, we allow value to be
5054 * set if there are no children.
5055 */
5056 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5057 (val == 1 || val == 0)) {
5058 if (!__memcg_has_children(memcg))
5059 memcg->use_hierarchy = val;
5060 else
5061 retval = -EBUSY;
5062 } else
5063 retval = -EINVAL;
5064
5065 out:
5066 mutex_unlock(&memcg_create_mutex);
5067
5068 return retval;
5069 }
5070
5071
5072 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5073 enum mem_cgroup_stat_index idx)
5074 {
5075 struct mem_cgroup *iter;
5076 long val = 0;
5077
5078 /* Per-cpu values can be negative, use a signed accumulator */
5079 for_each_mem_cgroup_tree(iter, memcg)
5080 val += mem_cgroup_read_stat(iter, idx);
5081
5082 if (val < 0) /* race ? */
5083 val = 0;
5084 return val;
5085 }
5086
5087 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5088 {
5089 u64 val;
5090
5091 if (!mem_cgroup_is_root(memcg)) {
5092 if (!swap)
5093 return res_counter_read_u64(&memcg->res, RES_USAGE);
5094 else
5095 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5096 }
5097
5098 /*
5099 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5100 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5101 */
5102 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5103 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5104
5105 if (swap)
5106 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5107
5108 return val << PAGE_SHIFT;
5109 }
5110
5111 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5112 struct file *file, char __user *buf,
5113 size_t nbytes, loff_t *ppos)
5114 {
5115 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5116 char str[64];
5117 u64 val;
5118 int name, len;
5119 enum res_type type;
5120
5121 type = MEMFILE_TYPE(cft->private);
5122 name = MEMFILE_ATTR(cft->private);
5123
5124 switch (type) {
5125 case _MEM:
5126 if (name == RES_USAGE)
5127 val = mem_cgroup_usage(memcg, false);
5128 else
5129 val = res_counter_read_u64(&memcg->res, name);
5130 break;
5131 case _MEMSWAP:
5132 if (name == RES_USAGE)
5133 val = mem_cgroup_usage(memcg, true);
5134 else
5135 val = res_counter_read_u64(&memcg->memsw, name);
5136 break;
5137 case _KMEM:
5138 val = res_counter_read_u64(&memcg->kmem, name);
5139 break;
5140 default:
5141 BUG();
5142 }
5143
5144 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5145 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5146 }
5147
5148 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5149 {
5150 int ret = -EINVAL;
5151 #ifdef CONFIG_MEMCG_KMEM
5152 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5153 /*
5154 * For simplicity, we won't allow this to be disabled. It also can't
5155 * be changed if the cgroup has children already, or if tasks had
5156 * already joined.
5157 *
5158 * If tasks join before we set the limit, a person looking at
5159 * kmem.usage_in_bytes will have no way to determine when it took
5160 * place, which makes the value quite meaningless.
5161 *
5162 * After it first became limited, changes in the value of the limit are
5163 * of course permitted.
5164 */
5165 mutex_lock(&memcg_create_mutex);
5166 mutex_lock(&set_limit_mutex);
5167 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5168 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5169 ret = -EBUSY;
5170 goto out;
5171 }
5172 ret = res_counter_set_limit(&memcg->kmem, val);
5173 VM_BUG_ON(ret);
5174
5175 ret = memcg_update_cache_sizes(memcg);
5176 if (ret) {
5177 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5178 goto out;
5179 }
5180 static_key_slow_inc(&memcg_kmem_enabled_key);
5181 /*
5182 * setting the active bit after the inc will guarantee no one
5183 * starts accounting before all call sites are patched
5184 */
5185 memcg_kmem_set_active(memcg);
5186
5187 /*
5188 * kmem charges can outlive the cgroup. In the case of slab
5189 * pages, for instance, a page contain objects from various
5190 * processes, so it is unfeasible to migrate them away. We
5191 * need to reference count the memcg because of that.
5192 */
5193 mem_cgroup_get(memcg);
5194 } else
5195 ret = res_counter_set_limit(&memcg->kmem, val);
5196 out:
5197 mutex_unlock(&set_limit_mutex);
5198 mutex_unlock(&memcg_create_mutex);
5199 #endif
5200 return ret;
5201 }
5202
5203 #ifdef CONFIG_MEMCG_KMEM
5204 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5205 {
5206 int ret = 0;
5207 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5208 if (!parent)
5209 goto out;
5210
5211 memcg->kmem_account_flags = parent->kmem_account_flags;
5212 /*
5213 * When that happen, we need to disable the static branch only on those
5214 * memcgs that enabled it. To achieve this, we would be forced to
5215 * complicate the code by keeping track of which memcgs were the ones
5216 * that actually enabled limits, and which ones got it from its
5217 * parents.
5218 *
5219 * It is a lot simpler just to do static_key_slow_inc() on every child
5220 * that is accounted.
5221 */
5222 if (!memcg_kmem_is_active(memcg))
5223 goto out;
5224
5225 /*
5226 * destroy(), called if we fail, will issue static_key_slow_inc() and
5227 * mem_cgroup_put() if kmem is enabled. We have to either call them
5228 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5229 * this more consistent, since it always leads to the same destroy path
5230 */
5231 mem_cgroup_get(memcg);
5232 static_key_slow_inc(&memcg_kmem_enabled_key);
5233
5234 mutex_lock(&set_limit_mutex);
5235 ret = memcg_update_cache_sizes(memcg);
5236 mutex_unlock(&set_limit_mutex);
5237 out:
5238 return ret;
5239 }
5240 #endif /* CONFIG_MEMCG_KMEM */
5241
5242 /*
5243 * The user of this function is...
5244 * RES_LIMIT.
5245 */
5246 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5247 const char *buffer)
5248 {
5249 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5250 enum res_type type;
5251 int name;
5252 unsigned long long val;
5253 int ret;
5254
5255 type = MEMFILE_TYPE(cft->private);
5256 name = MEMFILE_ATTR(cft->private);
5257
5258 switch (name) {
5259 case RES_LIMIT:
5260 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5261 ret = -EINVAL;
5262 break;
5263 }
5264 /* This function does all necessary parse...reuse it */
5265 ret = res_counter_memparse_write_strategy(buffer, &val);
5266 if (ret)
5267 break;
5268 if (type == _MEM)
5269 ret = mem_cgroup_resize_limit(memcg, val);
5270 else if (type == _MEMSWAP)
5271 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5272 else if (type == _KMEM)
5273 ret = memcg_update_kmem_limit(cont, val);
5274 else
5275 return -EINVAL;
5276 break;
5277 case RES_SOFT_LIMIT:
5278 ret = res_counter_memparse_write_strategy(buffer, &val);
5279 if (ret)
5280 break;
5281 /*
5282 * For memsw, soft limits are hard to implement in terms
5283 * of semantics, for now, we support soft limits for
5284 * control without swap
5285 */
5286 if (type == _MEM)
5287 ret = res_counter_set_soft_limit(&memcg->res, val);
5288 else
5289 ret = -EINVAL;
5290 break;
5291 default:
5292 ret = -EINVAL; /* should be BUG() ? */
5293 break;
5294 }
5295 return ret;
5296 }
5297
5298 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5299 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5300 {
5301 struct cgroup *cgroup;
5302 unsigned long long min_limit, min_memsw_limit, tmp;
5303
5304 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5305 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5306 cgroup = memcg->css.cgroup;
5307 if (!memcg->use_hierarchy)
5308 goto out;
5309
5310 while (cgroup->parent) {
5311 cgroup = cgroup->parent;
5312 memcg = mem_cgroup_from_cont(cgroup);
5313 if (!memcg->use_hierarchy)
5314 break;
5315 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5316 min_limit = min(min_limit, tmp);
5317 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5318 min_memsw_limit = min(min_memsw_limit, tmp);
5319 }
5320 out:
5321 *mem_limit = min_limit;
5322 *memsw_limit = min_memsw_limit;
5323 }
5324
5325 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5326 {
5327 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5328 int name;
5329 enum res_type type;
5330
5331 type = MEMFILE_TYPE(event);
5332 name = MEMFILE_ATTR(event);
5333
5334 switch (name) {
5335 case RES_MAX_USAGE:
5336 if (type == _MEM)
5337 res_counter_reset_max(&memcg->res);
5338 else if (type == _MEMSWAP)
5339 res_counter_reset_max(&memcg->memsw);
5340 else if (type == _KMEM)
5341 res_counter_reset_max(&memcg->kmem);
5342 else
5343 return -EINVAL;
5344 break;
5345 case RES_FAILCNT:
5346 if (type == _MEM)
5347 res_counter_reset_failcnt(&memcg->res);
5348 else if (type == _MEMSWAP)
5349 res_counter_reset_failcnt(&memcg->memsw);
5350 else if (type == _KMEM)
5351 res_counter_reset_failcnt(&memcg->kmem);
5352 else
5353 return -EINVAL;
5354 break;
5355 }
5356
5357 return 0;
5358 }
5359
5360 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5361 struct cftype *cft)
5362 {
5363 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5364 }
5365
5366 #ifdef CONFIG_MMU
5367 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5368 struct cftype *cft, u64 val)
5369 {
5370 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5371
5372 if (val >= (1 << NR_MOVE_TYPE))
5373 return -EINVAL;
5374
5375 /*
5376 * No kind of locking is needed in here, because ->can_attach() will
5377 * check this value once in the beginning of the process, and then carry
5378 * on with stale data. This means that changes to this value will only
5379 * affect task migrations starting after the change.
5380 */
5381 memcg->move_charge_at_immigrate = val;
5382 return 0;
5383 }
5384 #else
5385 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5386 struct cftype *cft, u64 val)
5387 {
5388 return -ENOSYS;
5389 }
5390 #endif
5391
5392 #ifdef CONFIG_NUMA
5393 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5394 struct seq_file *m)
5395 {
5396 int nid;
5397 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5398 unsigned long node_nr;
5399 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5400
5401 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5402 seq_printf(m, "total=%lu", total_nr);
5403 for_each_node_state(nid, N_MEMORY) {
5404 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5405 seq_printf(m, " N%d=%lu", nid, node_nr);
5406 }
5407 seq_putc(m, '\n');
5408
5409 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5410 seq_printf(m, "file=%lu", file_nr);
5411 for_each_node_state(nid, N_MEMORY) {
5412 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5413 LRU_ALL_FILE);
5414 seq_printf(m, " N%d=%lu", nid, node_nr);
5415 }
5416 seq_putc(m, '\n');
5417
5418 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5419 seq_printf(m, "anon=%lu", anon_nr);
5420 for_each_node_state(nid, N_MEMORY) {
5421 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5422 LRU_ALL_ANON);
5423 seq_printf(m, " N%d=%lu", nid, node_nr);
5424 }
5425 seq_putc(m, '\n');
5426
5427 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5428 seq_printf(m, "unevictable=%lu", unevictable_nr);
5429 for_each_node_state(nid, N_MEMORY) {
5430 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5431 BIT(LRU_UNEVICTABLE));
5432 seq_printf(m, " N%d=%lu", nid, node_nr);
5433 }
5434 seq_putc(m, '\n');
5435 return 0;
5436 }
5437 #endif /* CONFIG_NUMA */
5438
5439 static inline void mem_cgroup_lru_names_not_uptodate(void)
5440 {
5441 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5442 }
5443
5444 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5445 struct seq_file *m)
5446 {
5447 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5448 struct mem_cgroup *mi;
5449 unsigned int i;
5450
5451 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5452 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5453 continue;
5454 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5455 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5456 }
5457
5458 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5459 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5460 mem_cgroup_read_events(memcg, i));
5461
5462 for (i = 0; i < NR_LRU_LISTS; i++)
5463 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5464 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5465
5466 /* Hierarchical information */
5467 {
5468 unsigned long long limit, memsw_limit;
5469 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5470 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5471 if (do_swap_account)
5472 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5473 memsw_limit);
5474 }
5475
5476 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5477 long long val = 0;
5478
5479 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5480 continue;
5481 for_each_mem_cgroup_tree(mi, memcg)
5482 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5483 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5484 }
5485
5486 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5487 unsigned long long val = 0;
5488
5489 for_each_mem_cgroup_tree(mi, memcg)
5490 val += mem_cgroup_read_events(mi, i);
5491 seq_printf(m, "total_%s %llu\n",
5492 mem_cgroup_events_names[i], val);
5493 }
5494
5495 for (i = 0; i < NR_LRU_LISTS; i++) {
5496 unsigned long long val = 0;
5497
5498 for_each_mem_cgroup_tree(mi, memcg)
5499 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5500 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5501 }
5502
5503 #ifdef CONFIG_DEBUG_VM
5504 {
5505 int nid, zid;
5506 struct mem_cgroup_per_zone *mz;
5507 struct zone_reclaim_stat *rstat;
5508 unsigned long recent_rotated[2] = {0, 0};
5509 unsigned long recent_scanned[2] = {0, 0};
5510
5511 for_each_online_node(nid)
5512 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5513 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5514 rstat = &mz->lruvec.reclaim_stat;
5515
5516 recent_rotated[0] += rstat->recent_rotated[0];
5517 recent_rotated[1] += rstat->recent_rotated[1];
5518 recent_scanned[0] += rstat->recent_scanned[0];
5519 recent_scanned[1] += rstat->recent_scanned[1];
5520 }
5521 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5522 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5523 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5524 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5525 }
5526 #endif
5527
5528 return 0;
5529 }
5530
5531 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5532 {
5533 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5534
5535 return mem_cgroup_swappiness(memcg);
5536 }
5537
5538 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5539 u64 val)
5540 {
5541 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5542 struct mem_cgroup *parent;
5543
5544 if (val > 100)
5545 return -EINVAL;
5546
5547 if (cgrp->parent == NULL)
5548 return -EINVAL;
5549
5550 parent = mem_cgroup_from_cont(cgrp->parent);
5551
5552 mutex_lock(&memcg_create_mutex);
5553
5554 /* If under hierarchy, only empty-root can set this value */
5555 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5556 mutex_unlock(&memcg_create_mutex);
5557 return -EINVAL;
5558 }
5559
5560 memcg->swappiness = val;
5561
5562 mutex_unlock(&memcg_create_mutex);
5563
5564 return 0;
5565 }
5566
5567 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5568 {
5569 struct mem_cgroup_threshold_ary *t;
5570 u64 usage;
5571 int i;
5572
5573 rcu_read_lock();
5574 if (!swap)
5575 t = rcu_dereference(memcg->thresholds.primary);
5576 else
5577 t = rcu_dereference(memcg->memsw_thresholds.primary);
5578
5579 if (!t)
5580 goto unlock;
5581
5582 usage = mem_cgroup_usage(memcg, swap);
5583
5584 /*
5585 * current_threshold points to threshold just below or equal to usage.
5586 * If it's not true, a threshold was crossed after last
5587 * call of __mem_cgroup_threshold().
5588 */
5589 i = t->current_threshold;
5590
5591 /*
5592 * Iterate backward over array of thresholds starting from
5593 * current_threshold and check if a threshold is crossed.
5594 * If none of thresholds below usage is crossed, we read
5595 * only one element of the array here.
5596 */
5597 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5598 eventfd_signal(t->entries[i].eventfd, 1);
5599
5600 /* i = current_threshold + 1 */
5601 i++;
5602
5603 /*
5604 * Iterate forward over array of thresholds starting from
5605 * current_threshold+1 and check if a threshold is crossed.
5606 * If none of thresholds above usage is crossed, we read
5607 * only one element of the array here.
5608 */
5609 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5610 eventfd_signal(t->entries[i].eventfd, 1);
5611
5612 /* Update current_threshold */
5613 t->current_threshold = i - 1;
5614 unlock:
5615 rcu_read_unlock();
5616 }
5617
5618 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5619 {
5620 while (memcg) {
5621 __mem_cgroup_threshold(memcg, false);
5622 if (do_swap_account)
5623 __mem_cgroup_threshold(memcg, true);
5624
5625 memcg = parent_mem_cgroup(memcg);
5626 }
5627 }
5628
5629 static int compare_thresholds(const void *a, const void *b)
5630 {
5631 const struct mem_cgroup_threshold *_a = a;
5632 const struct mem_cgroup_threshold *_b = b;
5633
5634 if (_a->threshold > _b->threshold)
5635 return 1;
5636
5637 if (_a->threshold < _b->threshold)
5638 return -1;
5639
5640 return 0;
5641 }
5642
5643 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5644 {
5645 struct mem_cgroup_eventfd_list *ev;
5646
5647 list_for_each_entry(ev, &memcg->oom_notify, list)
5648 eventfd_signal(ev->eventfd, 1);
5649 return 0;
5650 }
5651
5652 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5653 {
5654 struct mem_cgroup *iter;
5655
5656 for_each_mem_cgroup_tree(iter, memcg)
5657 mem_cgroup_oom_notify_cb(iter);
5658 }
5659
5660 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5661 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5662 {
5663 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5664 struct mem_cgroup_thresholds *thresholds;
5665 struct mem_cgroup_threshold_ary *new;
5666 enum res_type type = MEMFILE_TYPE(cft->private);
5667 u64 threshold, usage;
5668 int i, size, ret;
5669
5670 ret = res_counter_memparse_write_strategy(args, &threshold);
5671 if (ret)
5672 return ret;
5673
5674 mutex_lock(&memcg->thresholds_lock);
5675
5676 if (type == _MEM)
5677 thresholds = &memcg->thresholds;
5678 else if (type == _MEMSWAP)
5679 thresholds = &memcg->memsw_thresholds;
5680 else
5681 BUG();
5682
5683 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5684
5685 /* Check if a threshold crossed before adding a new one */
5686 if (thresholds->primary)
5687 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5688
5689 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5690
5691 /* Allocate memory for new array of thresholds */
5692 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5693 GFP_KERNEL);
5694 if (!new) {
5695 ret = -ENOMEM;
5696 goto unlock;
5697 }
5698 new->size = size;
5699
5700 /* Copy thresholds (if any) to new array */
5701 if (thresholds->primary) {
5702 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5703 sizeof(struct mem_cgroup_threshold));
5704 }
5705
5706 /* Add new threshold */
5707 new->entries[size - 1].eventfd = eventfd;
5708 new->entries[size - 1].threshold = threshold;
5709
5710 /* Sort thresholds. Registering of new threshold isn't time-critical */
5711 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5712 compare_thresholds, NULL);
5713
5714 /* Find current threshold */
5715 new->current_threshold = -1;
5716 for (i = 0; i < size; i++) {
5717 if (new->entries[i].threshold <= usage) {
5718 /*
5719 * new->current_threshold will not be used until
5720 * rcu_assign_pointer(), so it's safe to increment
5721 * it here.
5722 */
5723 ++new->current_threshold;
5724 } else
5725 break;
5726 }
5727
5728 /* Free old spare buffer and save old primary buffer as spare */
5729 kfree(thresholds->spare);
5730 thresholds->spare = thresholds->primary;
5731
5732 rcu_assign_pointer(thresholds->primary, new);
5733
5734 /* To be sure that nobody uses thresholds */
5735 synchronize_rcu();
5736
5737 unlock:
5738 mutex_unlock(&memcg->thresholds_lock);
5739
5740 return ret;
5741 }
5742
5743 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5744 struct cftype *cft, struct eventfd_ctx *eventfd)
5745 {
5746 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5747 struct mem_cgroup_thresholds *thresholds;
5748 struct mem_cgroup_threshold_ary *new;
5749 enum res_type type = MEMFILE_TYPE(cft->private);
5750 u64 usage;
5751 int i, j, size;
5752
5753 mutex_lock(&memcg->thresholds_lock);
5754 if (type == _MEM)
5755 thresholds = &memcg->thresholds;
5756 else if (type == _MEMSWAP)
5757 thresholds = &memcg->memsw_thresholds;
5758 else
5759 BUG();
5760
5761 if (!thresholds->primary)
5762 goto unlock;
5763
5764 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5765
5766 /* Check if a threshold crossed before removing */
5767 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5768
5769 /* Calculate new number of threshold */
5770 size = 0;
5771 for (i = 0; i < thresholds->primary->size; i++) {
5772 if (thresholds->primary->entries[i].eventfd != eventfd)
5773 size++;
5774 }
5775
5776 new = thresholds->spare;
5777
5778 /* Set thresholds array to NULL if we don't have thresholds */
5779 if (!size) {
5780 kfree(new);
5781 new = NULL;
5782 goto swap_buffers;
5783 }
5784
5785 new->size = size;
5786
5787 /* Copy thresholds and find current threshold */
5788 new->current_threshold = -1;
5789 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5790 if (thresholds->primary->entries[i].eventfd == eventfd)
5791 continue;
5792
5793 new->entries[j] = thresholds->primary->entries[i];
5794 if (new->entries[j].threshold <= usage) {
5795 /*
5796 * new->current_threshold will not be used
5797 * until rcu_assign_pointer(), so it's safe to increment
5798 * it here.
5799 */
5800 ++new->current_threshold;
5801 }
5802 j++;
5803 }
5804
5805 swap_buffers:
5806 /* Swap primary and spare array */
5807 thresholds->spare = thresholds->primary;
5808 /* If all events are unregistered, free the spare array */
5809 if (!new) {
5810 kfree(thresholds->spare);
5811 thresholds->spare = NULL;
5812 }
5813
5814 rcu_assign_pointer(thresholds->primary, new);
5815
5816 /* To be sure that nobody uses thresholds */
5817 synchronize_rcu();
5818 unlock:
5819 mutex_unlock(&memcg->thresholds_lock);
5820 }
5821
5822 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5823 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5824 {
5825 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5826 struct mem_cgroup_eventfd_list *event;
5827 enum res_type type = MEMFILE_TYPE(cft->private);
5828
5829 BUG_ON(type != _OOM_TYPE);
5830 event = kmalloc(sizeof(*event), GFP_KERNEL);
5831 if (!event)
5832 return -ENOMEM;
5833
5834 spin_lock(&memcg_oom_lock);
5835
5836 event->eventfd = eventfd;
5837 list_add(&event->list, &memcg->oom_notify);
5838
5839 /* already in OOM ? */
5840 if (atomic_read(&memcg->under_oom))
5841 eventfd_signal(eventfd, 1);
5842 spin_unlock(&memcg_oom_lock);
5843
5844 return 0;
5845 }
5846
5847 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5848 struct cftype *cft, struct eventfd_ctx *eventfd)
5849 {
5850 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5851 struct mem_cgroup_eventfd_list *ev, *tmp;
5852 enum res_type type = MEMFILE_TYPE(cft->private);
5853
5854 BUG_ON(type != _OOM_TYPE);
5855
5856 spin_lock(&memcg_oom_lock);
5857
5858 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5859 if (ev->eventfd == eventfd) {
5860 list_del(&ev->list);
5861 kfree(ev);
5862 }
5863 }
5864
5865 spin_unlock(&memcg_oom_lock);
5866 }
5867
5868 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5869 struct cftype *cft, struct cgroup_map_cb *cb)
5870 {
5871 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5872
5873 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5874
5875 if (atomic_read(&memcg->under_oom))
5876 cb->fill(cb, "under_oom", 1);
5877 else
5878 cb->fill(cb, "under_oom", 0);
5879 return 0;
5880 }
5881
5882 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5883 struct cftype *cft, u64 val)
5884 {
5885 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5886 struct mem_cgroup *parent;
5887
5888 /* cannot set to root cgroup and only 0 and 1 are allowed */
5889 if (!cgrp->parent || !((val == 0) || (val == 1)))
5890 return -EINVAL;
5891
5892 parent = mem_cgroup_from_cont(cgrp->parent);
5893
5894 mutex_lock(&memcg_create_mutex);
5895 /* oom-kill-disable is a flag for subhierarchy. */
5896 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5897 mutex_unlock(&memcg_create_mutex);
5898 return -EINVAL;
5899 }
5900 memcg->oom_kill_disable = val;
5901 if (!val)
5902 memcg_oom_recover(memcg);
5903 mutex_unlock(&memcg_create_mutex);
5904 return 0;
5905 }
5906
5907 #ifdef CONFIG_MEMCG_KMEM
5908 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5909 {
5910 int ret;
5911
5912 memcg->kmemcg_id = -1;
5913 ret = memcg_propagate_kmem(memcg);
5914 if (ret)
5915 return ret;
5916
5917 return mem_cgroup_sockets_init(memcg, ss);
5918 }
5919
5920 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5921 {
5922 mem_cgroup_sockets_destroy(memcg);
5923
5924 memcg_kmem_mark_dead(memcg);
5925
5926 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5927 return;
5928
5929 /*
5930 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5931 * path here, being careful not to race with memcg_uncharge_kmem: it is
5932 * possible that the charges went down to 0 between mark_dead and the
5933 * res_counter read, so in that case, we don't need the put
5934 */
5935 if (memcg_kmem_test_and_clear_dead(memcg))
5936 mem_cgroup_put(memcg);
5937 }
5938 #else
5939 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5940 {
5941 return 0;
5942 }
5943
5944 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5945 {
5946 }
5947 #endif
5948
5949 static struct cftype mem_cgroup_files[] = {
5950 {
5951 .name = "usage_in_bytes",
5952 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5953 .read = mem_cgroup_read,
5954 .register_event = mem_cgroup_usage_register_event,
5955 .unregister_event = mem_cgroup_usage_unregister_event,
5956 },
5957 {
5958 .name = "max_usage_in_bytes",
5959 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5960 .trigger = mem_cgroup_reset,
5961 .read = mem_cgroup_read,
5962 },
5963 {
5964 .name = "limit_in_bytes",
5965 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5966 .write_string = mem_cgroup_write,
5967 .read = mem_cgroup_read,
5968 },
5969 {
5970 .name = "soft_limit_in_bytes",
5971 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5972 .write_string = mem_cgroup_write,
5973 .read = mem_cgroup_read,
5974 },
5975 {
5976 .name = "failcnt",
5977 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5978 .trigger = mem_cgroup_reset,
5979 .read = mem_cgroup_read,
5980 },
5981 {
5982 .name = "stat",
5983 .read_seq_string = memcg_stat_show,
5984 },
5985 {
5986 .name = "force_empty",
5987 .trigger = mem_cgroup_force_empty_write,
5988 },
5989 {
5990 .name = "use_hierarchy",
5991 .flags = CFTYPE_INSANE,
5992 .write_u64 = mem_cgroup_hierarchy_write,
5993 .read_u64 = mem_cgroup_hierarchy_read,
5994 },
5995 {
5996 .name = "swappiness",
5997 .read_u64 = mem_cgroup_swappiness_read,
5998 .write_u64 = mem_cgroup_swappiness_write,
5999 },
6000 {
6001 .name = "move_charge_at_immigrate",
6002 .read_u64 = mem_cgroup_move_charge_read,
6003 .write_u64 = mem_cgroup_move_charge_write,
6004 },
6005 {
6006 .name = "oom_control",
6007 .read_map = mem_cgroup_oom_control_read,
6008 .write_u64 = mem_cgroup_oom_control_write,
6009 .register_event = mem_cgroup_oom_register_event,
6010 .unregister_event = mem_cgroup_oom_unregister_event,
6011 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6012 },
6013 {
6014 .name = "pressure_level",
6015 .register_event = vmpressure_register_event,
6016 .unregister_event = vmpressure_unregister_event,
6017 },
6018 #ifdef CONFIG_NUMA
6019 {
6020 .name = "numa_stat",
6021 .read_seq_string = memcg_numa_stat_show,
6022 },
6023 #endif
6024 #ifdef CONFIG_MEMCG_KMEM
6025 {
6026 .name = "kmem.limit_in_bytes",
6027 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6028 .write_string = mem_cgroup_write,
6029 .read = mem_cgroup_read,
6030 },
6031 {
6032 .name = "kmem.usage_in_bytes",
6033 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6034 .read = mem_cgroup_read,
6035 },
6036 {
6037 .name = "kmem.failcnt",
6038 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6039 .trigger = mem_cgroup_reset,
6040 .read = mem_cgroup_read,
6041 },
6042 {
6043 .name = "kmem.max_usage_in_bytes",
6044 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6045 .trigger = mem_cgroup_reset,
6046 .read = mem_cgroup_read,
6047 },
6048 #ifdef CONFIG_SLABINFO
6049 {
6050 .name = "kmem.slabinfo",
6051 .read_seq_string = mem_cgroup_slabinfo_read,
6052 },
6053 #endif
6054 #endif
6055 { }, /* terminate */
6056 };
6057
6058 #ifdef CONFIG_MEMCG_SWAP
6059 static struct cftype memsw_cgroup_files[] = {
6060 {
6061 .name = "memsw.usage_in_bytes",
6062 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6063 .read = mem_cgroup_read,
6064 .register_event = mem_cgroup_usage_register_event,
6065 .unregister_event = mem_cgroup_usage_unregister_event,
6066 },
6067 {
6068 .name = "memsw.max_usage_in_bytes",
6069 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6070 .trigger = mem_cgroup_reset,
6071 .read = mem_cgroup_read,
6072 },
6073 {
6074 .name = "memsw.limit_in_bytes",
6075 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6076 .write_string = mem_cgroup_write,
6077 .read = mem_cgroup_read,
6078 },
6079 {
6080 .name = "memsw.failcnt",
6081 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6082 .trigger = mem_cgroup_reset,
6083 .read = mem_cgroup_read,
6084 },
6085 { }, /* terminate */
6086 };
6087 #endif
6088 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6089 {
6090 struct mem_cgroup_per_node *pn;
6091 struct mem_cgroup_per_zone *mz;
6092 int zone, tmp = node;
6093 /*
6094 * This routine is called against possible nodes.
6095 * But it's BUG to call kmalloc() against offline node.
6096 *
6097 * TODO: this routine can waste much memory for nodes which will
6098 * never be onlined. It's better to use memory hotplug callback
6099 * function.
6100 */
6101 if (!node_state(node, N_NORMAL_MEMORY))
6102 tmp = -1;
6103 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6104 if (!pn)
6105 return 1;
6106
6107 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6108 mz = &pn->zoneinfo[zone];
6109 lruvec_init(&mz->lruvec);
6110 mz->usage_in_excess = 0;
6111 mz->on_tree = false;
6112 mz->memcg = memcg;
6113 }
6114 memcg->info.nodeinfo[node] = pn;
6115 return 0;
6116 }
6117
6118 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6119 {
6120 kfree(memcg->info.nodeinfo[node]);
6121 }
6122
6123 static struct mem_cgroup *mem_cgroup_alloc(void)
6124 {
6125 struct mem_cgroup *memcg;
6126 size_t size = memcg_size();
6127
6128 /* Can be very big if nr_node_ids is very big */
6129 if (size < PAGE_SIZE)
6130 memcg = kzalloc(size, GFP_KERNEL);
6131 else
6132 memcg = vzalloc(size);
6133
6134 if (!memcg)
6135 return NULL;
6136
6137 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6138 if (!memcg->stat)
6139 goto out_free;
6140 spin_lock_init(&memcg->pcp_counter_lock);
6141 return memcg;
6142
6143 out_free:
6144 if (size < PAGE_SIZE)
6145 kfree(memcg);
6146 else
6147 vfree(memcg);
6148 return NULL;
6149 }
6150
6151 /*
6152 * At destroying mem_cgroup, references from swap_cgroup can remain.
6153 * (scanning all at force_empty is too costly...)
6154 *
6155 * Instead of clearing all references at force_empty, we remember
6156 * the number of reference from swap_cgroup and free mem_cgroup when
6157 * it goes down to 0.
6158 *
6159 * Removal of cgroup itself succeeds regardless of refs from swap.
6160 */
6161
6162 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6163 {
6164 int node;
6165 size_t size = memcg_size();
6166
6167 mem_cgroup_remove_from_trees(memcg);
6168 free_css_id(&mem_cgroup_subsys, &memcg->css);
6169
6170 for_each_node(node)
6171 free_mem_cgroup_per_zone_info(memcg, node);
6172
6173 free_percpu(memcg->stat);
6174
6175 /*
6176 * We need to make sure that (at least for now), the jump label
6177 * destruction code runs outside of the cgroup lock. This is because
6178 * get_online_cpus(), which is called from the static_branch update,
6179 * can't be called inside the cgroup_lock. cpusets are the ones
6180 * enforcing this dependency, so if they ever change, we might as well.
6181 *
6182 * schedule_work() will guarantee this happens. Be careful if you need
6183 * to move this code around, and make sure it is outside
6184 * the cgroup_lock.
6185 */
6186 disarm_static_keys(memcg);
6187 if (size < PAGE_SIZE)
6188 kfree(memcg);
6189 else
6190 vfree(memcg);
6191 }
6192
6193
6194 /*
6195 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6196 * but in process context. The work_freeing structure is overlaid
6197 * on the rcu_freeing structure, which itself is overlaid on memsw.
6198 */
6199 static void free_work(struct work_struct *work)
6200 {
6201 struct mem_cgroup *memcg;
6202
6203 memcg = container_of(work, struct mem_cgroup, work_freeing);
6204 __mem_cgroup_free(memcg);
6205 }
6206
6207 static void free_rcu(struct rcu_head *rcu_head)
6208 {
6209 struct mem_cgroup *memcg;
6210
6211 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6212 INIT_WORK(&memcg->work_freeing, free_work);
6213 schedule_work(&memcg->work_freeing);
6214 }
6215
6216 static void mem_cgroup_get(struct mem_cgroup *memcg)
6217 {
6218 atomic_inc(&memcg->refcnt);
6219 }
6220
6221 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6222 {
6223 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6224 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6225 call_rcu(&memcg->rcu_freeing, free_rcu);
6226 if (parent)
6227 mem_cgroup_put(parent);
6228 }
6229 }
6230
6231 static void mem_cgroup_put(struct mem_cgroup *memcg)
6232 {
6233 __mem_cgroup_put(memcg, 1);
6234 }
6235
6236 /*
6237 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6238 */
6239 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6240 {
6241 if (!memcg->res.parent)
6242 return NULL;
6243 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6244 }
6245 EXPORT_SYMBOL(parent_mem_cgroup);
6246
6247 static void __init mem_cgroup_soft_limit_tree_init(void)
6248 {
6249 struct mem_cgroup_tree_per_node *rtpn;
6250 struct mem_cgroup_tree_per_zone *rtpz;
6251 int tmp, node, zone;
6252
6253 for_each_node(node) {
6254 tmp = node;
6255 if (!node_state(node, N_NORMAL_MEMORY))
6256 tmp = -1;
6257 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6258 BUG_ON(!rtpn);
6259
6260 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6261
6262 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6263 rtpz = &rtpn->rb_tree_per_zone[zone];
6264 rtpz->rb_root = RB_ROOT;
6265 spin_lock_init(&rtpz->lock);
6266 }
6267 }
6268 }
6269
6270 static struct cgroup_subsys_state * __ref
6271 mem_cgroup_css_alloc(struct cgroup *cont)
6272 {
6273 struct mem_cgroup *memcg;
6274 long error = -ENOMEM;
6275 int node;
6276
6277 memcg = mem_cgroup_alloc();
6278 if (!memcg)
6279 return ERR_PTR(error);
6280
6281 for_each_node(node)
6282 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6283 goto free_out;
6284
6285 /* root ? */
6286 if (cont->parent == NULL) {
6287 root_mem_cgroup = memcg;
6288 res_counter_init(&memcg->res, NULL);
6289 res_counter_init(&memcg->memsw, NULL);
6290 res_counter_init(&memcg->kmem, NULL);
6291 }
6292
6293 memcg->last_scanned_node = MAX_NUMNODES;
6294 INIT_LIST_HEAD(&memcg->oom_notify);
6295 atomic_set(&memcg->refcnt, 1);
6296 memcg->move_charge_at_immigrate = 0;
6297 mutex_init(&memcg->thresholds_lock);
6298 spin_lock_init(&memcg->move_lock);
6299 vmpressure_init(&memcg->vmpressure);
6300
6301 return &memcg->css;
6302
6303 free_out:
6304 __mem_cgroup_free(memcg);
6305 return ERR_PTR(error);
6306 }
6307
6308 static int
6309 mem_cgroup_css_online(struct cgroup *cont)
6310 {
6311 struct mem_cgroup *memcg, *parent;
6312 int error = 0;
6313
6314 if (!cont->parent)
6315 return 0;
6316
6317 mutex_lock(&memcg_create_mutex);
6318 memcg = mem_cgroup_from_cont(cont);
6319 parent = mem_cgroup_from_cont(cont->parent);
6320
6321 memcg->use_hierarchy = parent->use_hierarchy;
6322 memcg->oom_kill_disable = parent->oom_kill_disable;
6323 memcg->swappiness = mem_cgroup_swappiness(parent);
6324
6325 if (parent->use_hierarchy) {
6326 res_counter_init(&memcg->res, &parent->res);
6327 res_counter_init(&memcg->memsw, &parent->memsw);
6328 res_counter_init(&memcg->kmem, &parent->kmem);
6329
6330 /*
6331 * We increment refcnt of the parent to ensure that we can
6332 * safely access it on res_counter_charge/uncharge.
6333 * This refcnt will be decremented when freeing this
6334 * mem_cgroup(see mem_cgroup_put).
6335 */
6336 mem_cgroup_get(parent);
6337 } else {
6338 res_counter_init(&memcg->res, NULL);
6339 res_counter_init(&memcg->memsw, NULL);
6340 res_counter_init(&memcg->kmem, NULL);
6341 /*
6342 * Deeper hierachy with use_hierarchy == false doesn't make
6343 * much sense so let cgroup subsystem know about this
6344 * unfortunate state in our controller.
6345 */
6346 if (parent != root_mem_cgroup)
6347 mem_cgroup_subsys.broken_hierarchy = true;
6348 }
6349
6350 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6351 mutex_unlock(&memcg_create_mutex);
6352 return error;
6353 }
6354
6355 /*
6356 * Announce all parents that a group from their hierarchy is gone.
6357 */
6358 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6359 {
6360 struct mem_cgroup *parent = memcg;
6361
6362 while ((parent = parent_mem_cgroup(parent)))
6363 atomic_inc(&parent->dead_count);
6364
6365 /*
6366 * if the root memcg is not hierarchical we have to check it
6367 * explicitely.
6368 */
6369 if (!root_mem_cgroup->use_hierarchy)
6370 atomic_inc(&root_mem_cgroup->dead_count);
6371 }
6372
6373 static void mem_cgroup_css_offline(struct cgroup *cont)
6374 {
6375 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6376 struct cgroup *iter;
6377
6378 mem_cgroup_invalidate_reclaim_iterators(memcg);
6379
6380 /*
6381 * This requires that offlining is serialized. Right now that is
6382 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6383 */
6384 rcu_read_lock();
6385 cgroup_for_each_descendant_post(iter, cont) {
6386 rcu_read_unlock();
6387 mem_cgroup_reparent_charges(mem_cgroup_from_cont(iter));
6388 rcu_read_lock();
6389 }
6390 rcu_read_unlock();
6391 mem_cgroup_reparent_charges(memcg);
6392
6393 mem_cgroup_destroy_all_caches(memcg);
6394 }
6395
6396 static void mem_cgroup_css_free(struct cgroup *cont)
6397 {
6398 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6399
6400 kmem_cgroup_destroy(memcg);
6401
6402 mem_cgroup_put(memcg);
6403 }
6404
6405 #ifdef CONFIG_MMU
6406 /* Handlers for move charge at task migration. */
6407 #define PRECHARGE_COUNT_AT_ONCE 256
6408 static int mem_cgroup_do_precharge(unsigned long count)
6409 {
6410 int ret = 0;
6411 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6412 struct mem_cgroup *memcg = mc.to;
6413
6414 if (mem_cgroup_is_root(memcg)) {
6415 mc.precharge += count;
6416 /* we don't need css_get for root */
6417 return ret;
6418 }
6419 /* try to charge at once */
6420 if (count > 1) {
6421 struct res_counter *dummy;
6422 /*
6423 * "memcg" cannot be under rmdir() because we've already checked
6424 * by cgroup_lock_live_cgroup() that it is not removed and we
6425 * are still under the same cgroup_mutex. So we can postpone
6426 * css_get().
6427 */
6428 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6429 goto one_by_one;
6430 if (do_swap_account && res_counter_charge(&memcg->memsw,
6431 PAGE_SIZE * count, &dummy)) {
6432 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6433 goto one_by_one;
6434 }
6435 mc.precharge += count;
6436 return ret;
6437 }
6438 one_by_one:
6439 /* fall back to one by one charge */
6440 while (count--) {
6441 if (signal_pending(current)) {
6442 ret = -EINTR;
6443 break;
6444 }
6445 if (!batch_count--) {
6446 batch_count = PRECHARGE_COUNT_AT_ONCE;
6447 cond_resched();
6448 }
6449 ret = __mem_cgroup_try_charge(NULL,
6450 GFP_KERNEL, 1, &memcg, false);
6451 if (ret)
6452 /* mem_cgroup_clear_mc() will do uncharge later */
6453 return ret;
6454 mc.precharge++;
6455 }
6456 return ret;
6457 }
6458
6459 /**
6460 * get_mctgt_type - get target type of moving charge
6461 * @vma: the vma the pte to be checked belongs
6462 * @addr: the address corresponding to the pte to be checked
6463 * @ptent: the pte to be checked
6464 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6465 *
6466 * Returns
6467 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6468 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6469 * move charge. if @target is not NULL, the page is stored in target->page
6470 * with extra refcnt got(Callers should handle it).
6471 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6472 * target for charge migration. if @target is not NULL, the entry is stored
6473 * in target->ent.
6474 *
6475 * Called with pte lock held.
6476 */
6477 union mc_target {
6478 struct page *page;
6479 swp_entry_t ent;
6480 };
6481
6482 enum mc_target_type {
6483 MC_TARGET_NONE = 0,
6484 MC_TARGET_PAGE,
6485 MC_TARGET_SWAP,
6486 };
6487
6488 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6489 unsigned long addr, pte_t ptent)
6490 {
6491 struct page *page = vm_normal_page(vma, addr, ptent);
6492
6493 if (!page || !page_mapped(page))
6494 return NULL;
6495 if (PageAnon(page)) {
6496 /* we don't move shared anon */
6497 if (!move_anon())
6498 return NULL;
6499 } else if (!move_file())
6500 /* we ignore mapcount for file pages */
6501 return NULL;
6502 if (!get_page_unless_zero(page))
6503 return NULL;
6504
6505 return page;
6506 }
6507
6508 #ifdef CONFIG_SWAP
6509 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6510 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6511 {
6512 struct page *page = NULL;
6513 swp_entry_t ent = pte_to_swp_entry(ptent);
6514
6515 if (!move_anon() || non_swap_entry(ent))
6516 return NULL;
6517 /*
6518 * Because lookup_swap_cache() updates some statistics counter,
6519 * we call find_get_page() with swapper_space directly.
6520 */
6521 page = find_get_page(swap_address_space(ent), ent.val);
6522 if (do_swap_account)
6523 entry->val = ent.val;
6524
6525 return page;
6526 }
6527 #else
6528 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6529 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6530 {
6531 return NULL;
6532 }
6533 #endif
6534
6535 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6536 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6537 {
6538 struct page *page = NULL;
6539 struct address_space *mapping;
6540 pgoff_t pgoff;
6541
6542 if (!vma->vm_file) /* anonymous vma */
6543 return NULL;
6544 if (!move_file())
6545 return NULL;
6546
6547 mapping = vma->vm_file->f_mapping;
6548 if (pte_none(ptent))
6549 pgoff = linear_page_index(vma, addr);
6550 else /* pte_file(ptent) is true */
6551 pgoff = pte_to_pgoff(ptent);
6552
6553 /* page is moved even if it's not RSS of this task(page-faulted). */
6554 page = find_get_page(mapping, pgoff);
6555
6556 #ifdef CONFIG_SWAP
6557 /* shmem/tmpfs may report page out on swap: account for that too. */
6558 if (radix_tree_exceptional_entry(page)) {
6559 swp_entry_t swap = radix_to_swp_entry(page);
6560 if (do_swap_account)
6561 *entry = swap;
6562 page = find_get_page(swap_address_space(swap), swap.val);
6563 }
6564 #endif
6565 return page;
6566 }
6567
6568 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6569 unsigned long addr, pte_t ptent, union mc_target *target)
6570 {
6571 struct page *page = NULL;
6572 struct page_cgroup *pc;
6573 enum mc_target_type ret = MC_TARGET_NONE;
6574 swp_entry_t ent = { .val = 0 };
6575
6576 if (pte_present(ptent))
6577 page = mc_handle_present_pte(vma, addr, ptent);
6578 else if (is_swap_pte(ptent))
6579 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6580 else if (pte_none(ptent) || pte_file(ptent))
6581 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6582
6583 if (!page && !ent.val)
6584 return ret;
6585 if (page) {
6586 pc = lookup_page_cgroup(page);
6587 /*
6588 * Do only loose check w/o page_cgroup lock.
6589 * mem_cgroup_move_account() checks the pc is valid or not under
6590 * the lock.
6591 */
6592 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6593 ret = MC_TARGET_PAGE;
6594 if (target)
6595 target->page = page;
6596 }
6597 if (!ret || !target)
6598 put_page(page);
6599 }
6600 /* There is a swap entry and a page doesn't exist or isn't charged */
6601 if (ent.val && !ret &&
6602 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6603 ret = MC_TARGET_SWAP;
6604 if (target)
6605 target->ent = ent;
6606 }
6607 return ret;
6608 }
6609
6610 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6611 /*
6612 * We don't consider swapping or file mapped pages because THP does not
6613 * support them for now.
6614 * Caller should make sure that pmd_trans_huge(pmd) is true.
6615 */
6616 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6617 unsigned long addr, pmd_t pmd, union mc_target *target)
6618 {
6619 struct page *page = NULL;
6620 struct page_cgroup *pc;
6621 enum mc_target_type ret = MC_TARGET_NONE;
6622
6623 page = pmd_page(pmd);
6624 VM_BUG_ON(!page || !PageHead(page));
6625 if (!move_anon())
6626 return ret;
6627 pc = lookup_page_cgroup(page);
6628 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6629 ret = MC_TARGET_PAGE;
6630 if (target) {
6631 get_page(page);
6632 target->page = page;
6633 }
6634 }
6635 return ret;
6636 }
6637 #else
6638 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6639 unsigned long addr, pmd_t pmd, union mc_target *target)
6640 {
6641 return MC_TARGET_NONE;
6642 }
6643 #endif
6644
6645 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6646 unsigned long addr, unsigned long end,
6647 struct mm_walk *walk)
6648 {
6649 struct vm_area_struct *vma = walk->private;
6650 pte_t *pte;
6651 spinlock_t *ptl;
6652
6653 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6654 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6655 mc.precharge += HPAGE_PMD_NR;
6656 spin_unlock(&vma->vm_mm->page_table_lock);
6657 return 0;
6658 }
6659
6660 if (pmd_trans_unstable(pmd))
6661 return 0;
6662 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6663 for (; addr != end; pte++, addr += PAGE_SIZE)
6664 if (get_mctgt_type(vma, addr, *pte, NULL))
6665 mc.precharge++; /* increment precharge temporarily */
6666 pte_unmap_unlock(pte - 1, ptl);
6667 cond_resched();
6668
6669 return 0;
6670 }
6671
6672 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6673 {
6674 unsigned long precharge;
6675 struct vm_area_struct *vma;
6676
6677 down_read(&mm->mmap_sem);
6678 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6679 struct mm_walk mem_cgroup_count_precharge_walk = {
6680 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6681 .mm = mm,
6682 .private = vma,
6683 };
6684 if (is_vm_hugetlb_page(vma))
6685 continue;
6686 walk_page_range(vma->vm_start, vma->vm_end,
6687 &mem_cgroup_count_precharge_walk);
6688 }
6689 up_read(&mm->mmap_sem);
6690
6691 precharge = mc.precharge;
6692 mc.precharge = 0;
6693
6694 return precharge;
6695 }
6696
6697 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6698 {
6699 unsigned long precharge = mem_cgroup_count_precharge(mm);
6700
6701 VM_BUG_ON(mc.moving_task);
6702 mc.moving_task = current;
6703 return mem_cgroup_do_precharge(precharge);
6704 }
6705
6706 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6707 static void __mem_cgroup_clear_mc(void)
6708 {
6709 struct mem_cgroup *from = mc.from;
6710 struct mem_cgroup *to = mc.to;
6711
6712 /* we must uncharge all the leftover precharges from mc.to */
6713 if (mc.precharge) {
6714 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6715 mc.precharge = 0;
6716 }
6717 /*
6718 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6719 * we must uncharge here.
6720 */
6721 if (mc.moved_charge) {
6722 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6723 mc.moved_charge = 0;
6724 }
6725 /* we must fixup refcnts and charges */
6726 if (mc.moved_swap) {
6727 /* uncharge swap account from the old cgroup */
6728 if (!mem_cgroup_is_root(mc.from))
6729 res_counter_uncharge(&mc.from->memsw,
6730 PAGE_SIZE * mc.moved_swap);
6731 __mem_cgroup_put(mc.from, mc.moved_swap);
6732
6733 if (!mem_cgroup_is_root(mc.to)) {
6734 /*
6735 * we charged both to->res and to->memsw, so we should
6736 * uncharge to->res.
6737 */
6738 res_counter_uncharge(&mc.to->res,
6739 PAGE_SIZE * mc.moved_swap);
6740 }
6741 /* we've already done mem_cgroup_get(mc.to) */
6742 mc.moved_swap = 0;
6743 }
6744 memcg_oom_recover(from);
6745 memcg_oom_recover(to);
6746 wake_up_all(&mc.waitq);
6747 }
6748
6749 static void mem_cgroup_clear_mc(void)
6750 {
6751 struct mem_cgroup *from = mc.from;
6752
6753 /*
6754 * we must clear moving_task before waking up waiters at the end of
6755 * task migration.
6756 */
6757 mc.moving_task = NULL;
6758 __mem_cgroup_clear_mc();
6759 spin_lock(&mc.lock);
6760 mc.from = NULL;
6761 mc.to = NULL;
6762 spin_unlock(&mc.lock);
6763 mem_cgroup_end_move(from);
6764 }
6765
6766 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6767 struct cgroup_taskset *tset)
6768 {
6769 struct task_struct *p = cgroup_taskset_first(tset);
6770 int ret = 0;
6771 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6772 unsigned long move_charge_at_immigrate;
6773
6774 /*
6775 * We are now commited to this value whatever it is. Changes in this
6776 * tunable will only affect upcoming migrations, not the current one.
6777 * So we need to save it, and keep it going.
6778 */
6779 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6780 if (move_charge_at_immigrate) {
6781 struct mm_struct *mm;
6782 struct mem_cgroup *from = mem_cgroup_from_task(p);
6783
6784 VM_BUG_ON(from == memcg);
6785
6786 mm = get_task_mm(p);
6787 if (!mm)
6788 return 0;
6789 /* We move charges only when we move a owner of the mm */
6790 if (mm->owner == p) {
6791 VM_BUG_ON(mc.from);
6792 VM_BUG_ON(mc.to);
6793 VM_BUG_ON(mc.precharge);
6794 VM_BUG_ON(mc.moved_charge);
6795 VM_BUG_ON(mc.moved_swap);
6796 mem_cgroup_start_move(from);
6797 spin_lock(&mc.lock);
6798 mc.from = from;
6799 mc.to = memcg;
6800 mc.immigrate_flags = move_charge_at_immigrate;
6801 spin_unlock(&mc.lock);
6802 /* We set mc.moving_task later */
6803
6804 ret = mem_cgroup_precharge_mc(mm);
6805 if (ret)
6806 mem_cgroup_clear_mc();
6807 }
6808 mmput(mm);
6809 }
6810 return ret;
6811 }
6812
6813 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6814 struct cgroup_taskset *tset)
6815 {
6816 mem_cgroup_clear_mc();
6817 }
6818
6819 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6820 unsigned long addr, unsigned long end,
6821 struct mm_walk *walk)
6822 {
6823 int ret = 0;
6824 struct vm_area_struct *vma = walk->private;
6825 pte_t *pte;
6826 spinlock_t *ptl;
6827 enum mc_target_type target_type;
6828 union mc_target target;
6829 struct page *page;
6830 struct page_cgroup *pc;
6831
6832 /*
6833 * We don't take compound_lock() here but no race with splitting thp
6834 * happens because:
6835 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6836 * under splitting, which means there's no concurrent thp split,
6837 * - if another thread runs into split_huge_page() just after we
6838 * entered this if-block, the thread must wait for page table lock
6839 * to be unlocked in __split_huge_page_splitting(), where the main
6840 * part of thp split is not executed yet.
6841 */
6842 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6843 if (mc.precharge < HPAGE_PMD_NR) {
6844 spin_unlock(&vma->vm_mm->page_table_lock);
6845 return 0;
6846 }
6847 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6848 if (target_type == MC_TARGET_PAGE) {
6849 page = target.page;
6850 if (!isolate_lru_page(page)) {
6851 pc = lookup_page_cgroup(page);
6852 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6853 pc, mc.from, mc.to)) {
6854 mc.precharge -= HPAGE_PMD_NR;
6855 mc.moved_charge += HPAGE_PMD_NR;
6856 }
6857 putback_lru_page(page);
6858 }
6859 put_page(page);
6860 }
6861 spin_unlock(&vma->vm_mm->page_table_lock);
6862 return 0;
6863 }
6864
6865 if (pmd_trans_unstable(pmd))
6866 return 0;
6867 retry:
6868 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6869 for (; addr != end; addr += PAGE_SIZE) {
6870 pte_t ptent = *(pte++);
6871 swp_entry_t ent;
6872
6873 if (!mc.precharge)
6874 break;
6875
6876 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6877 case MC_TARGET_PAGE:
6878 page = target.page;
6879 if (isolate_lru_page(page))
6880 goto put;
6881 pc = lookup_page_cgroup(page);
6882 if (!mem_cgroup_move_account(page, 1, pc,
6883 mc.from, mc.to)) {
6884 mc.precharge--;
6885 /* we uncharge from mc.from later. */
6886 mc.moved_charge++;
6887 }
6888 putback_lru_page(page);
6889 put: /* get_mctgt_type() gets the page */
6890 put_page(page);
6891 break;
6892 case MC_TARGET_SWAP:
6893 ent = target.ent;
6894 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6895 mc.precharge--;
6896 /* we fixup refcnts and charges later. */
6897 mc.moved_swap++;
6898 }
6899 break;
6900 default:
6901 break;
6902 }
6903 }
6904 pte_unmap_unlock(pte - 1, ptl);
6905 cond_resched();
6906
6907 if (addr != end) {
6908 /*
6909 * We have consumed all precharges we got in can_attach().
6910 * We try charge one by one, but don't do any additional
6911 * charges to mc.to if we have failed in charge once in attach()
6912 * phase.
6913 */
6914 ret = mem_cgroup_do_precharge(1);
6915 if (!ret)
6916 goto retry;
6917 }
6918
6919 return ret;
6920 }
6921
6922 static void mem_cgroup_move_charge(struct mm_struct *mm)
6923 {
6924 struct vm_area_struct *vma;
6925
6926 lru_add_drain_all();
6927 retry:
6928 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6929 /*
6930 * Someone who are holding the mmap_sem might be waiting in
6931 * waitq. So we cancel all extra charges, wake up all waiters,
6932 * and retry. Because we cancel precharges, we might not be able
6933 * to move enough charges, but moving charge is a best-effort
6934 * feature anyway, so it wouldn't be a big problem.
6935 */
6936 __mem_cgroup_clear_mc();
6937 cond_resched();
6938 goto retry;
6939 }
6940 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6941 int ret;
6942 struct mm_walk mem_cgroup_move_charge_walk = {
6943 .pmd_entry = mem_cgroup_move_charge_pte_range,
6944 .mm = mm,
6945 .private = vma,
6946 };
6947 if (is_vm_hugetlb_page(vma))
6948 continue;
6949 ret = walk_page_range(vma->vm_start, vma->vm_end,
6950 &mem_cgroup_move_charge_walk);
6951 if (ret)
6952 /*
6953 * means we have consumed all precharges and failed in
6954 * doing additional charge. Just abandon here.
6955 */
6956 break;
6957 }
6958 up_read(&mm->mmap_sem);
6959 }
6960
6961 static void mem_cgroup_move_task(struct cgroup *cont,
6962 struct cgroup_taskset *tset)
6963 {
6964 struct task_struct *p = cgroup_taskset_first(tset);
6965 struct mm_struct *mm = get_task_mm(p);
6966
6967 if (mm) {
6968 if (mc.to)
6969 mem_cgroup_move_charge(mm);
6970 mmput(mm);
6971 }
6972 if (mc.to)
6973 mem_cgroup_clear_mc();
6974 }
6975 #else /* !CONFIG_MMU */
6976 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6977 struct cgroup_taskset *tset)
6978 {
6979 return 0;
6980 }
6981 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6982 struct cgroup_taskset *tset)
6983 {
6984 }
6985 static void mem_cgroup_move_task(struct cgroup *cont,
6986 struct cgroup_taskset *tset)
6987 {
6988 }
6989 #endif
6990
6991 /*
6992 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6993 * to verify sane_behavior flag on each mount attempt.
6994 */
6995 static void mem_cgroup_bind(struct cgroup *root)
6996 {
6997 /*
6998 * use_hierarchy is forced with sane_behavior. cgroup core
6999 * guarantees that @root doesn't have any children, so turning it
7000 * on for the root memcg is enough.
7001 */
7002 if (cgroup_sane_behavior(root))
7003 mem_cgroup_from_cont(root)->use_hierarchy = true;
7004 }
7005
7006 struct cgroup_subsys mem_cgroup_subsys = {
7007 .name = "memory",
7008 .subsys_id = mem_cgroup_subsys_id,
7009 .css_alloc = mem_cgroup_css_alloc,
7010 .css_online = mem_cgroup_css_online,
7011 .css_offline = mem_cgroup_css_offline,
7012 .css_free = mem_cgroup_css_free,
7013 .can_attach = mem_cgroup_can_attach,
7014 .cancel_attach = mem_cgroup_cancel_attach,
7015 .attach = mem_cgroup_move_task,
7016 .bind = mem_cgroup_bind,
7017 .base_cftypes = mem_cgroup_files,
7018 .early_init = 0,
7019 .use_id = 1,
7020 };
7021
7022 #ifdef CONFIG_MEMCG_SWAP
7023 static int __init enable_swap_account(char *s)
7024 {
7025 /* consider enabled if no parameter or 1 is given */
7026 if (!strcmp(s, "1"))
7027 really_do_swap_account = 1;
7028 else if (!strcmp(s, "0"))
7029 really_do_swap_account = 0;
7030 return 1;
7031 }
7032 __setup("swapaccount=", enable_swap_account);
7033
7034 static void __init memsw_file_init(void)
7035 {
7036 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7037 }
7038
7039 static void __init enable_swap_cgroup(void)
7040 {
7041 if (!mem_cgroup_disabled() && really_do_swap_account) {
7042 do_swap_account = 1;
7043 memsw_file_init();
7044 }
7045 }
7046
7047 #else
7048 static void __init enable_swap_cgroup(void)
7049 {
7050 }
7051 #endif
7052
7053 /*
7054 * subsys_initcall() for memory controller.
7055 *
7056 * Some parts like hotcpu_notifier() have to be initialized from this context
7057 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7058 * everything that doesn't depend on a specific mem_cgroup structure should
7059 * be initialized from here.
7060 */
7061 static int __init mem_cgroup_init(void)
7062 {
7063 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7064 enable_swap_cgroup();
7065 mem_cgroup_soft_limit_tree_init();
7066 memcg_stock_init();
7067 return 0;
7068 }
7069 subsys_initcall(mem_cgroup_init);