tmpfs: don't undo fallocate past its last page
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
61
62 #include <asm/uaccess.h>
63
64 #include <trace/events/vmscan.h>
65
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
68
69 #define MEM_CGROUP_RECLAIM_RETRIES 5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
75
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
82
83 #else
84 #define do_swap_account 0
85 #endif
86
87
88 /*
89 * Statistics for memory cgroup.
90 */
91 enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
100 MEM_CGROUP_STAT_NSTATS,
101 };
102
103 static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
106 "rss_huge",
107 "mapped_file",
108 "swap",
109 };
110
111 enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
116 MEM_CGROUP_EVENTS_NSTATS,
117 };
118
119 static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
124 };
125
126 static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
132 };
133
134 /*
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
139 */
140 enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
143 MEM_CGROUP_TARGET_NUMAINFO,
144 MEM_CGROUP_NTARGETS,
145 };
146 #define THRESHOLDS_EVENTS_TARGET 128
147 #define SOFTLIMIT_EVENTS_TARGET 1024
148 #define NUMAINFO_EVENTS_TARGET 1024
149
150 struct mem_cgroup_stat_cpu {
151 long count[MEM_CGROUP_STAT_NSTATS];
152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153 unsigned long nr_page_events;
154 unsigned long targets[MEM_CGROUP_NTARGETS];
155 };
156
157 struct mem_cgroup_reclaim_iter {
158 /*
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
161 */
162 struct mem_cgroup *last_visited;
163 unsigned long last_dead_count;
164
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
167 };
168
169 /*
170 * per-zone information in memory controller.
171 */
172 struct mem_cgroup_per_zone {
173 struct lruvec lruvec;
174 unsigned long lru_size[NR_LRU_LISTS];
175
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
183 /* use container_of */
184 };
185
186 struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188 };
189
190 struct mem_cgroup_lru_info {
191 struct mem_cgroup_per_node *nodeinfo[0];
192 };
193
194 /*
195 * Cgroups above their limits are maintained in a RB-Tree, independent of
196 * their hierarchy representation
197 */
198
199 struct mem_cgroup_tree_per_zone {
200 struct rb_root rb_root;
201 spinlock_t lock;
202 };
203
204 struct mem_cgroup_tree_per_node {
205 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
206 };
207
208 struct mem_cgroup_tree {
209 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
210 };
211
212 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
213
214 struct mem_cgroup_threshold {
215 struct eventfd_ctx *eventfd;
216 u64 threshold;
217 };
218
219 /* For threshold */
220 struct mem_cgroup_threshold_ary {
221 /* An array index points to threshold just below or equal to usage. */
222 int current_threshold;
223 /* Size of entries[] */
224 unsigned int size;
225 /* Array of thresholds */
226 struct mem_cgroup_threshold entries[0];
227 };
228
229 struct mem_cgroup_thresholds {
230 /* Primary thresholds array */
231 struct mem_cgroup_threshold_ary *primary;
232 /*
233 * Spare threshold array.
234 * This is needed to make mem_cgroup_unregister_event() "never fail".
235 * It must be able to store at least primary->size - 1 entries.
236 */
237 struct mem_cgroup_threshold_ary *spare;
238 };
239
240 /* for OOM */
241 struct mem_cgroup_eventfd_list {
242 struct list_head list;
243 struct eventfd_ctx *eventfd;
244 };
245
246 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
247 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
248
249 /*
250 * The memory controller data structure. The memory controller controls both
251 * page cache and RSS per cgroup. We would eventually like to provide
252 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
253 * to help the administrator determine what knobs to tune.
254 *
255 * TODO: Add a water mark for the memory controller. Reclaim will begin when
256 * we hit the water mark. May be even add a low water mark, such that
257 * no reclaim occurs from a cgroup at it's low water mark, this is
258 * a feature that will be implemented much later in the future.
259 */
260 struct mem_cgroup {
261 struct cgroup_subsys_state css;
262 /*
263 * the counter to account for memory usage
264 */
265 struct res_counter res;
266
267 /* vmpressure notifications */
268 struct vmpressure vmpressure;
269
270 union {
271 /*
272 * the counter to account for mem+swap usage.
273 */
274 struct res_counter memsw;
275
276 /*
277 * rcu_freeing is used only when freeing struct mem_cgroup,
278 * so put it into a union to avoid wasting more memory.
279 * It must be disjoint from the css field. It could be
280 * in a union with the res field, but res plays a much
281 * larger part in mem_cgroup life than memsw, and might
282 * be of interest, even at time of free, when debugging.
283 * So share rcu_head with the less interesting memsw.
284 */
285 struct rcu_head rcu_freeing;
286 /*
287 * We also need some space for a worker in deferred freeing.
288 * By the time we call it, rcu_freeing is no longer in use.
289 */
290 struct work_struct work_freeing;
291 };
292
293 /*
294 * the counter to account for kernel memory usage.
295 */
296 struct res_counter kmem;
297 /*
298 * Should the accounting and control be hierarchical, per subtree?
299 */
300 bool use_hierarchy;
301 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
302
303 bool oom_lock;
304 atomic_t under_oom;
305 atomic_t oom_wakeups;
306
307 atomic_t refcnt;
308
309 int swappiness;
310 /* OOM-Killer disable */
311 int oom_kill_disable;
312
313 /* set when res.limit == memsw.limit */
314 bool memsw_is_minimum;
315
316 /* protect arrays of thresholds */
317 struct mutex thresholds_lock;
318
319 /* thresholds for memory usage. RCU-protected */
320 struct mem_cgroup_thresholds thresholds;
321
322 /* thresholds for mem+swap usage. RCU-protected */
323 struct mem_cgroup_thresholds memsw_thresholds;
324
325 /* For oom notifier event fd */
326 struct list_head oom_notify;
327
328 /*
329 * Should we move charges of a task when a task is moved into this
330 * mem_cgroup ? And what type of charges should we move ?
331 */
332 unsigned long move_charge_at_immigrate;
333 /*
334 * set > 0 if pages under this cgroup are moving to other cgroup.
335 */
336 atomic_t moving_account;
337 /* taken only while moving_account > 0 */
338 spinlock_t move_lock;
339 /*
340 * percpu counter.
341 */
342 struct mem_cgroup_stat_cpu __percpu *stat;
343 /*
344 * used when a cpu is offlined or other synchronizations
345 * See mem_cgroup_read_stat().
346 */
347 struct mem_cgroup_stat_cpu nocpu_base;
348 spinlock_t pcp_counter_lock;
349
350 atomic_t dead_count;
351 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
352 struct tcp_memcontrol tcp_mem;
353 #endif
354 #if defined(CONFIG_MEMCG_KMEM)
355 /* analogous to slab_common's slab_caches list. per-memcg */
356 struct list_head memcg_slab_caches;
357 /* Not a spinlock, we can take a lot of time walking the list */
358 struct mutex slab_caches_mutex;
359 /* Index in the kmem_cache->memcg_params->memcg_caches array */
360 int kmemcg_id;
361 #endif
362
363 int last_scanned_node;
364 #if MAX_NUMNODES > 1
365 nodemask_t scan_nodes;
366 atomic_t numainfo_events;
367 atomic_t numainfo_updating;
368 #endif
369
370 /*
371 * Per cgroup active and inactive list, similar to the
372 * per zone LRU lists.
373 *
374 * WARNING: This has to be the last element of the struct. Don't
375 * add new fields after this point.
376 */
377 struct mem_cgroup_lru_info info;
378 };
379
380 static size_t memcg_size(void)
381 {
382 return sizeof(struct mem_cgroup) +
383 nr_node_ids * sizeof(struct mem_cgroup_per_node *);
384 }
385
386 /* internal only representation about the status of kmem accounting. */
387 enum {
388 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
389 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
390 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
391 };
392
393 /* We account when limit is on, but only after call sites are patched */
394 #define KMEM_ACCOUNTED_MASK \
395 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
396
397 #ifdef CONFIG_MEMCG_KMEM
398 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
399 {
400 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
401 }
402
403 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
404 {
405 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
406 }
407
408 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
409 {
410 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
411 }
412
413 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
414 {
415 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
416 }
417
418 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
419 {
420 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
421 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
422 }
423
424 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
425 {
426 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
427 &memcg->kmem_account_flags);
428 }
429 #endif
430
431 /* Stuffs for move charges at task migration. */
432 /*
433 * Types of charges to be moved. "move_charge_at_immitgrate" and
434 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
435 */
436 enum move_type {
437 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
438 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
439 NR_MOVE_TYPE,
440 };
441
442 /* "mc" and its members are protected by cgroup_mutex */
443 static struct move_charge_struct {
444 spinlock_t lock; /* for from, to */
445 struct mem_cgroup *from;
446 struct mem_cgroup *to;
447 unsigned long immigrate_flags;
448 unsigned long precharge;
449 unsigned long moved_charge;
450 unsigned long moved_swap;
451 struct task_struct *moving_task; /* a task moving charges */
452 wait_queue_head_t waitq; /* a waitq for other context */
453 } mc = {
454 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
455 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
456 };
457
458 static bool move_anon(void)
459 {
460 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
461 }
462
463 static bool move_file(void)
464 {
465 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
466 }
467
468 /*
469 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
470 * limit reclaim to prevent infinite loops, if they ever occur.
471 */
472 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
473 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
474
475 enum charge_type {
476 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
477 MEM_CGROUP_CHARGE_TYPE_ANON,
478 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
479 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
480 NR_CHARGE_TYPE,
481 };
482
483 /* for encoding cft->private value on file */
484 enum res_type {
485 _MEM,
486 _MEMSWAP,
487 _OOM_TYPE,
488 _KMEM,
489 };
490
491 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
492 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
493 #define MEMFILE_ATTR(val) ((val) & 0xffff)
494 /* Used for OOM nofiier */
495 #define OOM_CONTROL (0)
496
497 /*
498 * Reclaim flags for mem_cgroup_hierarchical_reclaim
499 */
500 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
501 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
502 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
503 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
504
505 /*
506 * The memcg_create_mutex will be held whenever a new cgroup is created.
507 * As a consequence, any change that needs to protect against new child cgroups
508 * appearing has to hold it as well.
509 */
510 static DEFINE_MUTEX(memcg_create_mutex);
511
512 static void mem_cgroup_get(struct mem_cgroup *memcg);
513 static void mem_cgroup_put(struct mem_cgroup *memcg);
514
515 static inline
516 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
517 {
518 return container_of(s, struct mem_cgroup, css);
519 }
520
521 /* Some nice accessors for the vmpressure. */
522 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
523 {
524 if (!memcg)
525 memcg = root_mem_cgroup;
526 return &memcg->vmpressure;
527 }
528
529 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
530 {
531 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
532 }
533
534 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
535 {
536 return &mem_cgroup_from_css(css)->vmpressure;
537 }
538
539 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
540 {
541 return (memcg == root_mem_cgroup);
542 }
543
544 /* Writing them here to avoid exposing memcg's inner layout */
545 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
546
547 void sock_update_memcg(struct sock *sk)
548 {
549 if (mem_cgroup_sockets_enabled) {
550 struct mem_cgroup *memcg;
551 struct cg_proto *cg_proto;
552
553 BUG_ON(!sk->sk_prot->proto_cgroup);
554
555 /* Socket cloning can throw us here with sk_cgrp already
556 * filled. It won't however, necessarily happen from
557 * process context. So the test for root memcg given
558 * the current task's memcg won't help us in this case.
559 *
560 * Respecting the original socket's memcg is a better
561 * decision in this case.
562 */
563 if (sk->sk_cgrp) {
564 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
565 mem_cgroup_get(sk->sk_cgrp->memcg);
566 return;
567 }
568
569 rcu_read_lock();
570 memcg = mem_cgroup_from_task(current);
571 cg_proto = sk->sk_prot->proto_cgroup(memcg);
572 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
573 mem_cgroup_get(memcg);
574 sk->sk_cgrp = cg_proto;
575 }
576 rcu_read_unlock();
577 }
578 }
579 EXPORT_SYMBOL(sock_update_memcg);
580
581 void sock_release_memcg(struct sock *sk)
582 {
583 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
584 struct mem_cgroup *memcg;
585 WARN_ON(!sk->sk_cgrp->memcg);
586 memcg = sk->sk_cgrp->memcg;
587 mem_cgroup_put(memcg);
588 }
589 }
590
591 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
592 {
593 if (!memcg || mem_cgroup_is_root(memcg))
594 return NULL;
595
596 return &memcg->tcp_mem.cg_proto;
597 }
598 EXPORT_SYMBOL(tcp_proto_cgroup);
599
600 static void disarm_sock_keys(struct mem_cgroup *memcg)
601 {
602 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
603 return;
604 static_key_slow_dec(&memcg_socket_limit_enabled);
605 }
606 #else
607 static void disarm_sock_keys(struct mem_cgroup *memcg)
608 {
609 }
610 #endif
611
612 #ifdef CONFIG_MEMCG_KMEM
613 /*
614 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
615 * There are two main reasons for not using the css_id for this:
616 * 1) this works better in sparse environments, where we have a lot of memcgs,
617 * but only a few kmem-limited. Or also, if we have, for instance, 200
618 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
619 * 200 entry array for that.
620 *
621 * 2) In order not to violate the cgroup API, we would like to do all memory
622 * allocation in ->create(). At that point, we haven't yet allocated the
623 * css_id. Having a separate index prevents us from messing with the cgroup
624 * core for this
625 *
626 * The current size of the caches array is stored in
627 * memcg_limited_groups_array_size. It will double each time we have to
628 * increase it.
629 */
630 static DEFINE_IDA(kmem_limited_groups);
631 int memcg_limited_groups_array_size;
632
633 /*
634 * MIN_SIZE is different than 1, because we would like to avoid going through
635 * the alloc/free process all the time. In a small machine, 4 kmem-limited
636 * cgroups is a reasonable guess. In the future, it could be a parameter or
637 * tunable, but that is strictly not necessary.
638 *
639 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
640 * this constant directly from cgroup, but it is understandable that this is
641 * better kept as an internal representation in cgroup.c. In any case, the
642 * css_id space is not getting any smaller, and we don't have to necessarily
643 * increase ours as well if it increases.
644 */
645 #define MEMCG_CACHES_MIN_SIZE 4
646 #define MEMCG_CACHES_MAX_SIZE 65535
647
648 /*
649 * A lot of the calls to the cache allocation functions are expected to be
650 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
651 * conditional to this static branch, we'll have to allow modules that does
652 * kmem_cache_alloc and the such to see this symbol as well
653 */
654 struct static_key memcg_kmem_enabled_key;
655 EXPORT_SYMBOL(memcg_kmem_enabled_key);
656
657 static void disarm_kmem_keys(struct mem_cgroup *memcg)
658 {
659 if (memcg_kmem_is_active(memcg)) {
660 static_key_slow_dec(&memcg_kmem_enabled_key);
661 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
662 }
663 /*
664 * This check can't live in kmem destruction function,
665 * since the charges will outlive the cgroup
666 */
667 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
668 }
669 #else
670 static void disarm_kmem_keys(struct mem_cgroup *memcg)
671 {
672 }
673 #endif /* CONFIG_MEMCG_KMEM */
674
675 static void disarm_static_keys(struct mem_cgroup *memcg)
676 {
677 disarm_sock_keys(memcg);
678 disarm_kmem_keys(memcg);
679 }
680
681 static void drain_all_stock_async(struct mem_cgroup *memcg);
682
683 static struct mem_cgroup_per_zone *
684 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
685 {
686 VM_BUG_ON((unsigned)nid >= nr_node_ids);
687 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
688 }
689
690 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
691 {
692 return &memcg->css;
693 }
694
695 static struct mem_cgroup_per_zone *
696 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
697 {
698 int nid = page_to_nid(page);
699 int zid = page_zonenum(page);
700
701 return mem_cgroup_zoneinfo(memcg, nid, zid);
702 }
703
704 static struct mem_cgroup_tree_per_zone *
705 soft_limit_tree_node_zone(int nid, int zid)
706 {
707 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
708 }
709
710 static struct mem_cgroup_tree_per_zone *
711 soft_limit_tree_from_page(struct page *page)
712 {
713 int nid = page_to_nid(page);
714 int zid = page_zonenum(page);
715
716 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
717 }
718
719 static void
720 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
721 struct mem_cgroup_per_zone *mz,
722 struct mem_cgroup_tree_per_zone *mctz,
723 unsigned long long new_usage_in_excess)
724 {
725 struct rb_node **p = &mctz->rb_root.rb_node;
726 struct rb_node *parent = NULL;
727 struct mem_cgroup_per_zone *mz_node;
728
729 if (mz->on_tree)
730 return;
731
732 mz->usage_in_excess = new_usage_in_excess;
733 if (!mz->usage_in_excess)
734 return;
735 while (*p) {
736 parent = *p;
737 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
738 tree_node);
739 if (mz->usage_in_excess < mz_node->usage_in_excess)
740 p = &(*p)->rb_left;
741 /*
742 * We can't avoid mem cgroups that are over their soft
743 * limit by the same amount
744 */
745 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
746 p = &(*p)->rb_right;
747 }
748 rb_link_node(&mz->tree_node, parent, p);
749 rb_insert_color(&mz->tree_node, &mctz->rb_root);
750 mz->on_tree = true;
751 }
752
753 static void
754 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
755 struct mem_cgroup_per_zone *mz,
756 struct mem_cgroup_tree_per_zone *mctz)
757 {
758 if (!mz->on_tree)
759 return;
760 rb_erase(&mz->tree_node, &mctz->rb_root);
761 mz->on_tree = false;
762 }
763
764 static void
765 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
766 struct mem_cgroup_per_zone *mz,
767 struct mem_cgroup_tree_per_zone *mctz)
768 {
769 spin_lock(&mctz->lock);
770 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
771 spin_unlock(&mctz->lock);
772 }
773
774
775 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
776 {
777 unsigned long long excess;
778 struct mem_cgroup_per_zone *mz;
779 struct mem_cgroup_tree_per_zone *mctz;
780 int nid = page_to_nid(page);
781 int zid = page_zonenum(page);
782 mctz = soft_limit_tree_from_page(page);
783
784 /*
785 * Necessary to update all ancestors when hierarchy is used.
786 * because their event counter is not touched.
787 */
788 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
789 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
790 excess = res_counter_soft_limit_excess(&memcg->res);
791 /*
792 * We have to update the tree if mz is on RB-tree or
793 * mem is over its softlimit.
794 */
795 if (excess || mz->on_tree) {
796 spin_lock(&mctz->lock);
797 /* if on-tree, remove it */
798 if (mz->on_tree)
799 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
800 /*
801 * Insert again. mz->usage_in_excess will be updated.
802 * If excess is 0, no tree ops.
803 */
804 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
805 spin_unlock(&mctz->lock);
806 }
807 }
808 }
809
810 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
811 {
812 int node, zone;
813 struct mem_cgroup_per_zone *mz;
814 struct mem_cgroup_tree_per_zone *mctz;
815
816 for_each_node(node) {
817 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
818 mz = mem_cgroup_zoneinfo(memcg, node, zone);
819 mctz = soft_limit_tree_node_zone(node, zone);
820 mem_cgroup_remove_exceeded(memcg, mz, mctz);
821 }
822 }
823 }
824
825 static struct mem_cgroup_per_zone *
826 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
827 {
828 struct rb_node *rightmost = NULL;
829 struct mem_cgroup_per_zone *mz;
830
831 retry:
832 mz = NULL;
833 rightmost = rb_last(&mctz->rb_root);
834 if (!rightmost)
835 goto done; /* Nothing to reclaim from */
836
837 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
838 /*
839 * Remove the node now but someone else can add it back,
840 * we will to add it back at the end of reclaim to its correct
841 * position in the tree.
842 */
843 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
844 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
845 !css_tryget(&mz->memcg->css))
846 goto retry;
847 done:
848 return mz;
849 }
850
851 static struct mem_cgroup_per_zone *
852 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
853 {
854 struct mem_cgroup_per_zone *mz;
855
856 spin_lock(&mctz->lock);
857 mz = __mem_cgroup_largest_soft_limit_node(mctz);
858 spin_unlock(&mctz->lock);
859 return mz;
860 }
861
862 /*
863 * Implementation Note: reading percpu statistics for memcg.
864 *
865 * Both of vmstat[] and percpu_counter has threshold and do periodic
866 * synchronization to implement "quick" read. There are trade-off between
867 * reading cost and precision of value. Then, we may have a chance to implement
868 * a periodic synchronizion of counter in memcg's counter.
869 *
870 * But this _read() function is used for user interface now. The user accounts
871 * memory usage by memory cgroup and he _always_ requires exact value because
872 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
873 * have to visit all online cpus and make sum. So, for now, unnecessary
874 * synchronization is not implemented. (just implemented for cpu hotplug)
875 *
876 * If there are kernel internal actions which can make use of some not-exact
877 * value, and reading all cpu value can be performance bottleneck in some
878 * common workload, threashold and synchonization as vmstat[] should be
879 * implemented.
880 */
881 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
882 enum mem_cgroup_stat_index idx)
883 {
884 long val = 0;
885 int cpu;
886
887 get_online_cpus();
888 for_each_online_cpu(cpu)
889 val += per_cpu(memcg->stat->count[idx], cpu);
890 #ifdef CONFIG_HOTPLUG_CPU
891 spin_lock(&memcg->pcp_counter_lock);
892 val += memcg->nocpu_base.count[idx];
893 spin_unlock(&memcg->pcp_counter_lock);
894 #endif
895 put_online_cpus();
896 return val;
897 }
898
899 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
900 bool charge)
901 {
902 int val = (charge) ? 1 : -1;
903 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
904 }
905
906 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
907 enum mem_cgroup_events_index idx)
908 {
909 unsigned long val = 0;
910 int cpu;
911
912 for_each_online_cpu(cpu)
913 val += per_cpu(memcg->stat->events[idx], cpu);
914 #ifdef CONFIG_HOTPLUG_CPU
915 spin_lock(&memcg->pcp_counter_lock);
916 val += memcg->nocpu_base.events[idx];
917 spin_unlock(&memcg->pcp_counter_lock);
918 #endif
919 return val;
920 }
921
922 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
923 struct page *page,
924 bool anon, int nr_pages)
925 {
926 preempt_disable();
927
928 /*
929 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
930 * counted as CACHE even if it's on ANON LRU.
931 */
932 if (anon)
933 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
934 nr_pages);
935 else
936 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
937 nr_pages);
938
939 if (PageTransHuge(page))
940 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
941 nr_pages);
942
943 /* pagein of a big page is an event. So, ignore page size */
944 if (nr_pages > 0)
945 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
946 else {
947 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
948 nr_pages = -nr_pages; /* for event */
949 }
950
951 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
952
953 preempt_enable();
954 }
955
956 unsigned long
957 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
958 {
959 struct mem_cgroup_per_zone *mz;
960
961 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
962 return mz->lru_size[lru];
963 }
964
965 static unsigned long
966 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
967 unsigned int lru_mask)
968 {
969 struct mem_cgroup_per_zone *mz;
970 enum lru_list lru;
971 unsigned long ret = 0;
972
973 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
974
975 for_each_lru(lru) {
976 if (BIT(lru) & lru_mask)
977 ret += mz->lru_size[lru];
978 }
979 return ret;
980 }
981
982 static unsigned long
983 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
984 int nid, unsigned int lru_mask)
985 {
986 u64 total = 0;
987 int zid;
988
989 for (zid = 0; zid < MAX_NR_ZONES; zid++)
990 total += mem_cgroup_zone_nr_lru_pages(memcg,
991 nid, zid, lru_mask);
992
993 return total;
994 }
995
996 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
997 unsigned int lru_mask)
998 {
999 int nid;
1000 u64 total = 0;
1001
1002 for_each_node_state(nid, N_MEMORY)
1003 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1004 return total;
1005 }
1006
1007 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1008 enum mem_cgroup_events_target target)
1009 {
1010 unsigned long val, next;
1011
1012 val = __this_cpu_read(memcg->stat->nr_page_events);
1013 next = __this_cpu_read(memcg->stat->targets[target]);
1014 /* from time_after() in jiffies.h */
1015 if ((long)next - (long)val < 0) {
1016 switch (target) {
1017 case MEM_CGROUP_TARGET_THRESH:
1018 next = val + THRESHOLDS_EVENTS_TARGET;
1019 break;
1020 case MEM_CGROUP_TARGET_SOFTLIMIT:
1021 next = val + SOFTLIMIT_EVENTS_TARGET;
1022 break;
1023 case MEM_CGROUP_TARGET_NUMAINFO:
1024 next = val + NUMAINFO_EVENTS_TARGET;
1025 break;
1026 default:
1027 break;
1028 }
1029 __this_cpu_write(memcg->stat->targets[target], next);
1030 return true;
1031 }
1032 return false;
1033 }
1034
1035 /*
1036 * Check events in order.
1037 *
1038 */
1039 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1040 {
1041 preempt_disable();
1042 /* threshold event is triggered in finer grain than soft limit */
1043 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1044 MEM_CGROUP_TARGET_THRESH))) {
1045 bool do_softlimit;
1046 bool do_numainfo __maybe_unused;
1047
1048 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1049 MEM_CGROUP_TARGET_SOFTLIMIT);
1050 #if MAX_NUMNODES > 1
1051 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1052 MEM_CGROUP_TARGET_NUMAINFO);
1053 #endif
1054 preempt_enable();
1055
1056 mem_cgroup_threshold(memcg);
1057 if (unlikely(do_softlimit))
1058 mem_cgroup_update_tree(memcg, page);
1059 #if MAX_NUMNODES > 1
1060 if (unlikely(do_numainfo))
1061 atomic_inc(&memcg->numainfo_events);
1062 #endif
1063 } else
1064 preempt_enable();
1065 }
1066
1067 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1068 {
1069 return mem_cgroup_from_css(
1070 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1071 }
1072
1073 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1074 {
1075 /*
1076 * mm_update_next_owner() may clear mm->owner to NULL
1077 * if it races with swapoff, page migration, etc.
1078 * So this can be called with p == NULL.
1079 */
1080 if (unlikely(!p))
1081 return NULL;
1082
1083 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1084 }
1085
1086 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1087 {
1088 struct mem_cgroup *memcg = NULL;
1089
1090 if (!mm)
1091 return NULL;
1092 /*
1093 * Because we have no locks, mm->owner's may be being moved to other
1094 * cgroup. We use css_tryget() here even if this looks
1095 * pessimistic (rather than adding locks here).
1096 */
1097 rcu_read_lock();
1098 do {
1099 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1100 if (unlikely(!memcg))
1101 break;
1102 } while (!css_tryget(&memcg->css));
1103 rcu_read_unlock();
1104 return memcg;
1105 }
1106
1107 /*
1108 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1109 * ref. count) or NULL if the whole root's subtree has been visited.
1110 *
1111 * helper function to be used by mem_cgroup_iter
1112 */
1113 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1114 struct mem_cgroup *last_visited)
1115 {
1116 struct cgroup *prev_cgroup, *next_cgroup;
1117
1118 /*
1119 * Root is not visited by cgroup iterators so it needs an
1120 * explicit visit.
1121 */
1122 if (!last_visited)
1123 return root;
1124
1125 prev_cgroup = (last_visited == root) ? NULL
1126 : last_visited->css.cgroup;
1127 skip_node:
1128 next_cgroup = cgroup_next_descendant_pre(
1129 prev_cgroup, root->css.cgroup);
1130
1131 /*
1132 * Even if we found a group we have to make sure it is
1133 * alive. css && !memcg means that the groups should be
1134 * skipped and we should continue the tree walk.
1135 * last_visited css is safe to use because it is
1136 * protected by css_get and the tree walk is rcu safe.
1137 */
1138 if (next_cgroup) {
1139 struct mem_cgroup *mem = mem_cgroup_from_cont(
1140 next_cgroup);
1141 if (css_tryget(&mem->css))
1142 return mem;
1143 else {
1144 prev_cgroup = next_cgroup;
1145 goto skip_node;
1146 }
1147 }
1148
1149 return NULL;
1150 }
1151
1152 /**
1153 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1154 * @root: hierarchy root
1155 * @prev: previously returned memcg, NULL on first invocation
1156 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1157 *
1158 * Returns references to children of the hierarchy below @root, or
1159 * @root itself, or %NULL after a full round-trip.
1160 *
1161 * Caller must pass the return value in @prev on subsequent
1162 * invocations for reference counting, or use mem_cgroup_iter_break()
1163 * to cancel a hierarchy walk before the round-trip is complete.
1164 *
1165 * Reclaimers can specify a zone and a priority level in @reclaim to
1166 * divide up the memcgs in the hierarchy among all concurrent
1167 * reclaimers operating on the same zone and priority.
1168 */
1169 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1170 struct mem_cgroup *prev,
1171 struct mem_cgroup_reclaim_cookie *reclaim)
1172 {
1173 struct mem_cgroup *memcg = NULL;
1174 struct mem_cgroup *last_visited = NULL;
1175 unsigned long uninitialized_var(dead_count);
1176
1177 if (mem_cgroup_disabled())
1178 return NULL;
1179
1180 if (!root)
1181 root = root_mem_cgroup;
1182
1183 if (prev && !reclaim)
1184 last_visited = prev;
1185
1186 if (!root->use_hierarchy && root != root_mem_cgroup) {
1187 if (prev)
1188 goto out_css_put;
1189 return root;
1190 }
1191
1192 rcu_read_lock();
1193 while (!memcg) {
1194 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1195
1196 if (reclaim) {
1197 int nid = zone_to_nid(reclaim->zone);
1198 int zid = zone_idx(reclaim->zone);
1199 struct mem_cgroup_per_zone *mz;
1200
1201 mz = mem_cgroup_zoneinfo(root, nid, zid);
1202 iter = &mz->reclaim_iter[reclaim->priority];
1203 if (prev && reclaim->generation != iter->generation) {
1204 iter->last_visited = NULL;
1205 goto out_unlock;
1206 }
1207
1208 /*
1209 * If the dead_count mismatches, a destruction
1210 * has happened or is happening concurrently.
1211 * If the dead_count matches, a destruction
1212 * might still happen concurrently, but since
1213 * we checked under RCU, that destruction
1214 * won't free the object until we release the
1215 * RCU reader lock. Thus, the dead_count
1216 * check verifies the pointer is still valid,
1217 * css_tryget() verifies the cgroup pointed to
1218 * is alive.
1219 */
1220 dead_count = atomic_read(&root->dead_count);
1221 if (dead_count == iter->last_dead_count) {
1222 smp_rmb();
1223 last_visited = iter->last_visited;
1224 if (last_visited && last_visited != root &&
1225 !css_tryget(&last_visited->css))
1226 last_visited = NULL;
1227 }
1228 }
1229
1230 memcg = __mem_cgroup_iter_next(root, last_visited);
1231
1232 if (reclaim) {
1233 if (last_visited && last_visited != root)
1234 css_put(&last_visited->css);
1235
1236 iter->last_visited = memcg;
1237 smp_wmb();
1238 iter->last_dead_count = dead_count;
1239
1240 if (!memcg)
1241 iter->generation++;
1242 else if (!prev && memcg)
1243 reclaim->generation = iter->generation;
1244 }
1245
1246 if (prev && !memcg)
1247 goto out_unlock;
1248 }
1249 out_unlock:
1250 rcu_read_unlock();
1251 out_css_put:
1252 if (prev && prev != root)
1253 css_put(&prev->css);
1254
1255 return memcg;
1256 }
1257
1258 /**
1259 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1260 * @root: hierarchy root
1261 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1262 */
1263 void mem_cgroup_iter_break(struct mem_cgroup *root,
1264 struct mem_cgroup *prev)
1265 {
1266 if (!root)
1267 root = root_mem_cgroup;
1268 if (prev && prev != root)
1269 css_put(&prev->css);
1270 }
1271
1272 /*
1273 * Iteration constructs for visiting all cgroups (under a tree). If
1274 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1275 * be used for reference counting.
1276 */
1277 #define for_each_mem_cgroup_tree(iter, root) \
1278 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1279 iter != NULL; \
1280 iter = mem_cgroup_iter(root, iter, NULL))
1281
1282 #define for_each_mem_cgroup(iter) \
1283 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1284 iter != NULL; \
1285 iter = mem_cgroup_iter(NULL, iter, NULL))
1286
1287 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1288 {
1289 struct mem_cgroup *memcg;
1290
1291 rcu_read_lock();
1292 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1293 if (unlikely(!memcg))
1294 goto out;
1295
1296 switch (idx) {
1297 case PGFAULT:
1298 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1299 break;
1300 case PGMAJFAULT:
1301 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1302 break;
1303 default:
1304 BUG();
1305 }
1306 out:
1307 rcu_read_unlock();
1308 }
1309 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1310
1311 /**
1312 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1313 * @zone: zone of the wanted lruvec
1314 * @memcg: memcg of the wanted lruvec
1315 *
1316 * Returns the lru list vector holding pages for the given @zone and
1317 * @mem. This can be the global zone lruvec, if the memory controller
1318 * is disabled.
1319 */
1320 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1321 struct mem_cgroup *memcg)
1322 {
1323 struct mem_cgroup_per_zone *mz;
1324 struct lruvec *lruvec;
1325
1326 if (mem_cgroup_disabled()) {
1327 lruvec = &zone->lruvec;
1328 goto out;
1329 }
1330
1331 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1332 lruvec = &mz->lruvec;
1333 out:
1334 /*
1335 * Since a node can be onlined after the mem_cgroup was created,
1336 * we have to be prepared to initialize lruvec->zone here;
1337 * and if offlined then reonlined, we need to reinitialize it.
1338 */
1339 if (unlikely(lruvec->zone != zone))
1340 lruvec->zone = zone;
1341 return lruvec;
1342 }
1343
1344 /*
1345 * Following LRU functions are allowed to be used without PCG_LOCK.
1346 * Operations are called by routine of global LRU independently from memcg.
1347 * What we have to take care of here is validness of pc->mem_cgroup.
1348 *
1349 * Changes to pc->mem_cgroup happens when
1350 * 1. charge
1351 * 2. moving account
1352 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1353 * It is added to LRU before charge.
1354 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1355 * When moving account, the page is not on LRU. It's isolated.
1356 */
1357
1358 /**
1359 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1360 * @page: the page
1361 * @zone: zone of the page
1362 */
1363 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1364 {
1365 struct mem_cgroup_per_zone *mz;
1366 struct mem_cgroup *memcg;
1367 struct page_cgroup *pc;
1368 struct lruvec *lruvec;
1369
1370 if (mem_cgroup_disabled()) {
1371 lruvec = &zone->lruvec;
1372 goto out;
1373 }
1374
1375 pc = lookup_page_cgroup(page);
1376 memcg = pc->mem_cgroup;
1377
1378 /*
1379 * Surreptitiously switch any uncharged offlist page to root:
1380 * an uncharged page off lru does nothing to secure
1381 * its former mem_cgroup from sudden removal.
1382 *
1383 * Our caller holds lru_lock, and PageCgroupUsed is updated
1384 * under page_cgroup lock: between them, they make all uses
1385 * of pc->mem_cgroup safe.
1386 */
1387 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1388 pc->mem_cgroup = memcg = root_mem_cgroup;
1389
1390 mz = page_cgroup_zoneinfo(memcg, page);
1391 lruvec = &mz->lruvec;
1392 out:
1393 /*
1394 * Since a node can be onlined after the mem_cgroup was created,
1395 * we have to be prepared to initialize lruvec->zone here;
1396 * and if offlined then reonlined, we need to reinitialize it.
1397 */
1398 if (unlikely(lruvec->zone != zone))
1399 lruvec->zone = zone;
1400 return lruvec;
1401 }
1402
1403 /**
1404 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1405 * @lruvec: mem_cgroup per zone lru vector
1406 * @lru: index of lru list the page is sitting on
1407 * @nr_pages: positive when adding or negative when removing
1408 *
1409 * This function must be called when a page is added to or removed from an
1410 * lru list.
1411 */
1412 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1413 int nr_pages)
1414 {
1415 struct mem_cgroup_per_zone *mz;
1416 unsigned long *lru_size;
1417
1418 if (mem_cgroup_disabled())
1419 return;
1420
1421 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1422 lru_size = mz->lru_size + lru;
1423 *lru_size += nr_pages;
1424 VM_BUG_ON((long)(*lru_size) < 0);
1425 }
1426
1427 /*
1428 * Checks whether given mem is same or in the root_mem_cgroup's
1429 * hierarchy subtree
1430 */
1431 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1432 struct mem_cgroup *memcg)
1433 {
1434 if (root_memcg == memcg)
1435 return true;
1436 if (!root_memcg->use_hierarchy || !memcg)
1437 return false;
1438 return css_is_ancestor(&memcg->css, &root_memcg->css);
1439 }
1440
1441 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1442 struct mem_cgroup *memcg)
1443 {
1444 bool ret;
1445
1446 rcu_read_lock();
1447 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1448 rcu_read_unlock();
1449 return ret;
1450 }
1451
1452 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1453 {
1454 int ret;
1455 struct mem_cgroup *curr = NULL;
1456 struct task_struct *p;
1457
1458 p = find_lock_task_mm(task);
1459 if (p) {
1460 curr = try_get_mem_cgroup_from_mm(p->mm);
1461 task_unlock(p);
1462 } else {
1463 /*
1464 * All threads may have already detached their mm's, but the oom
1465 * killer still needs to detect if they have already been oom
1466 * killed to prevent needlessly killing additional tasks.
1467 */
1468 task_lock(task);
1469 curr = mem_cgroup_from_task(task);
1470 if (curr)
1471 css_get(&curr->css);
1472 task_unlock(task);
1473 }
1474 if (!curr)
1475 return 0;
1476 /*
1477 * We should check use_hierarchy of "memcg" not "curr". Because checking
1478 * use_hierarchy of "curr" here make this function true if hierarchy is
1479 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1480 * hierarchy(even if use_hierarchy is disabled in "memcg").
1481 */
1482 ret = mem_cgroup_same_or_subtree(memcg, curr);
1483 css_put(&curr->css);
1484 return ret;
1485 }
1486
1487 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1488 {
1489 unsigned long inactive_ratio;
1490 unsigned long inactive;
1491 unsigned long active;
1492 unsigned long gb;
1493
1494 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1495 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1496
1497 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1498 if (gb)
1499 inactive_ratio = int_sqrt(10 * gb);
1500 else
1501 inactive_ratio = 1;
1502
1503 return inactive * inactive_ratio < active;
1504 }
1505
1506 #define mem_cgroup_from_res_counter(counter, member) \
1507 container_of(counter, struct mem_cgroup, member)
1508
1509 /**
1510 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1511 * @memcg: the memory cgroup
1512 *
1513 * Returns the maximum amount of memory @mem can be charged with, in
1514 * pages.
1515 */
1516 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1517 {
1518 unsigned long long margin;
1519
1520 margin = res_counter_margin(&memcg->res);
1521 if (do_swap_account)
1522 margin = min(margin, res_counter_margin(&memcg->memsw));
1523 return margin >> PAGE_SHIFT;
1524 }
1525
1526 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1527 {
1528 struct cgroup *cgrp = memcg->css.cgroup;
1529
1530 /* root ? */
1531 if (cgrp->parent == NULL)
1532 return vm_swappiness;
1533
1534 return memcg->swappiness;
1535 }
1536
1537 /*
1538 * memcg->moving_account is used for checking possibility that some thread is
1539 * calling move_account(). When a thread on CPU-A starts moving pages under
1540 * a memcg, other threads should check memcg->moving_account under
1541 * rcu_read_lock(), like this:
1542 *
1543 * CPU-A CPU-B
1544 * rcu_read_lock()
1545 * memcg->moving_account+1 if (memcg->mocing_account)
1546 * take heavy locks.
1547 * synchronize_rcu() update something.
1548 * rcu_read_unlock()
1549 * start move here.
1550 */
1551
1552 /* for quick checking without looking up memcg */
1553 atomic_t memcg_moving __read_mostly;
1554
1555 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1556 {
1557 atomic_inc(&memcg_moving);
1558 atomic_inc(&memcg->moving_account);
1559 synchronize_rcu();
1560 }
1561
1562 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1563 {
1564 /*
1565 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1566 * We check NULL in callee rather than caller.
1567 */
1568 if (memcg) {
1569 atomic_dec(&memcg_moving);
1570 atomic_dec(&memcg->moving_account);
1571 }
1572 }
1573
1574 /*
1575 * 2 routines for checking "mem" is under move_account() or not.
1576 *
1577 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1578 * is used for avoiding races in accounting. If true,
1579 * pc->mem_cgroup may be overwritten.
1580 *
1581 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1582 * under hierarchy of moving cgroups. This is for
1583 * waiting at hith-memory prressure caused by "move".
1584 */
1585
1586 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1587 {
1588 VM_BUG_ON(!rcu_read_lock_held());
1589 return atomic_read(&memcg->moving_account) > 0;
1590 }
1591
1592 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1593 {
1594 struct mem_cgroup *from;
1595 struct mem_cgroup *to;
1596 bool ret = false;
1597 /*
1598 * Unlike task_move routines, we access mc.to, mc.from not under
1599 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1600 */
1601 spin_lock(&mc.lock);
1602 from = mc.from;
1603 to = mc.to;
1604 if (!from)
1605 goto unlock;
1606
1607 ret = mem_cgroup_same_or_subtree(memcg, from)
1608 || mem_cgroup_same_or_subtree(memcg, to);
1609 unlock:
1610 spin_unlock(&mc.lock);
1611 return ret;
1612 }
1613
1614 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1615 {
1616 if (mc.moving_task && current != mc.moving_task) {
1617 if (mem_cgroup_under_move(memcg)) {
1618 DEFINE_WAIT(wait);
1619 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1620 /* moving charge context might have finished. */
1621 if (mc.moving_task)
1622 schedule();
1623 finish_wait(&mc.waitq, &wait);
1624 return true;
1625 }
1626 }
1627 return false;
1628 }
1629
1630 /*
1631 * Take this lock when
1632 * - a code tries to modify page's memcg while it's USED.
1633 * - a code tries to modify page state accounting in a memcg.
1634 * see mem_cgroup_stolen(), too.
1635 */
1636 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1637 unsigned long *flags)
1638 {
1639 spin_lock_irqsave(&memcg->move_lock, *flags);
1640 }
1641
1642 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1643 unsigned long *flags)
1644 {
1645 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1646 }
1647
1648 #define K(x) ((x) << (PAGE_SHIFT-10))
1649 /**
1650 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1651 * @memcg: The memory cgroup that went over limit
1652 * @p: Task that is going to be killed
1653 *
1654 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1655 * enabled
1656 */
1657 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1658 {
1659 struct cgroup *task_cgrp;
1660 struct cgroup *mem_cgrp;
1661 /*
1662 * Need a buffer in BSS, can't rely on allocations. The code relies
1663 * on the assumption that OOM is serialized for memory controller.
1664 * If this assumption is broken, revisit this code.
1665 */
1666 static char memcg_name[PATH_MAX];
1667 int ret;
1668 struct mem_cgroup *iter;
1669 unsigned int i;
1670
1671 if (!p)
1672 return;
1673
1674 rcu_read_lock();
1675
1676 mem_cgrp = memcg->css.cgroup;
1677 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1678
1679 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1680 if (ret < 0) {
1681 /*
1682 * Unfortunately, we are unable to convert to a useful name
1683 * But we'll still print out the usage information
1684 */
1685 rcu_read_unlock();
1686 goto done;
1687 }
1688 rcu_read_unlock();
1689
1690 pr_info("Task in %s killed", memcg_name);
1691
1692 rcu_read_lock();
1693 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1694 if (ret < 0) {
1695 rcu_read_unlock();
1696 goto done;
1697 }
1698 rcu_read_unlock();
1699
1700 /*
1701 * Continues from above, so we don't need an KERN_ level
1702 */
1703 pr_cont(" as a result of limit of %s\n", memcg_name);
1704 done:
1705
1706 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1707 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1708 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1709 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1710 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1711 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1712 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1713 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1714 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1715 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1716 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1717 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1718
1719 for_each_mem_cgroup_tree(iter, memcg) {
1720 pr_info("Memory cgroup stats");
1721
1722 rcu_read_lock();
1723 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1724 if (!ret)
1725 pr_cont(" for %s", memcg_name);
1726 rcu_read_unlock();
1727 pr_cont(":");
1728
1729 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1730 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1731 continue;
1732 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1733 K(mem_cgroup_read_stat(iter, i)));
1734 }
1735
1736 for (i = 0; i < NR_LRU_LISTS; i++)
1737 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1738 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1739
1740 pr_cont("\n");
1741 }
1742 }
1743
1744 /*
1745 * This function returns the number of memcg under hierarchy tree. Returns
1746 * 1(self count) if no children.
1747 */
1748 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1749 {
1750 int num = 0;
1751 struct mem_cgroup *iter;
1752
1753 for_each_mem_cgroup_tree(iter, memcg)
1754 num++;
1755 return num;
1756 }
1757
1758 /*
1759 * Return the memory (and swap, if configured) limit for a memcg.
1760 */
1761 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1762 {
1763 u64 limit;
1764
1765 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1766
1767 /*
1768 * Do not consider swap space if we cannot swap due to swappiness
1769 */
1770 if (mem_cgroup_swappiness(memcg)) {
1771 u64 memsw;
1772
1773 limit += total_swap_pages << PAGE_SHIFT;
1774 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1775
1776 /*
1777 * If memsw is finite and limits the amount of swap space
1778 * available to this memcg, return that limit.
1779 */
1780 limit = min(limit, memsw);
1781 }
1782
1783 return limit;
1784 }
1785
1786 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1787 int order)
1788 {
1789 struct mem_cgroup *iter;
1790 unsigned long chosen_points = 0;
1791 unsigned long totalpages;
1792 unsigned int points = 0;
1793 struct task_struct *chosen = NULL;
1794
1795 /*
1796 * If current has a pending SIGKILL or is exiting, then automatically
1797 * select it. The goal is to allow it to allocate so that it may
1798 * quickly exit and free its memory.
1799 */
1800 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1801 set_thread_flag(TIF_MEMDIE);
1802 return;
1803 }
1804
1805 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1806 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1807 for_each_mem_cgroup_tree(iter, memcg) {
1808 struct cgroup *cgroup = iter->css.cgroup;
1809 struct cgroup_iter it;
1810 struct task_struct *task;
1811
1812 cgroup_iter_start(cgroup, &it);
1813 while ((task = cgroup_iter_next(cgroup, &it))) {
1814 switch (oom_scan_process_thread(task, totalpages, NULL,
1815 false)) {
1816 case OOM_SCAN_SELECT:
1817 if (chosen)
1818 put_task_struct(chosen);
1819 chosen = task;
1820 chosen_points = ULONG_MAX;
1821 get_task_struct(chosen);
1822 /* fall through */
1823 case OOM_SCAN_CONTINUE:
1824 continue;
1825 case OOM_SCAN_ABORT:
1826 cgroup_iter_end(cgroup, &it);
1827 mem_cgroup_iter_break(memcg, iter);
1828 if (chosen)
1829 put_task_struct(chosen);
1830 return;
1831 case OOM_SCAN_OK:
1832 break;
1833 };
1834 points = oom_badness(task, memcg, NULL, totalpages);
1835 if (points > chosen_points) {
1836 if (chosen)
1837 put_task_struct(chosen);
1838 chosen = task;
1839 chosen_points = points;
1840 get_task_struct(chosen);
1841 }
1842 }
1843 cgroup_iter_end(cgroup, &it);
1844 }
1845
1846 if (!chosen)
1847 return;
1848 points = chosen_points * 1000 / totalpages;
1849 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1850 NULL, "Memory cgroup out of memory");
1851 }
1852
1853 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1854 gfp_t gfp_mask,
1855 unsigned long flags)
1856 {
1857 unsigned long total = 0;
1858 bool noswap = false;
1859 int loop;
1860
1861 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1862 noswap = true;
1863 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1864 noswap = true;
1865
1866 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1867 if (loop)
1868 drain_all_stock_async(memcg);
1869 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1870 /*
1871 * Allow limit shrinkers, which are triggered directly
1872 * by userspace, to catch signals and stop reclaim
1873 * after minimal progress, regardless of the margin.
1874 */
1875 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1876 break;
1877 if (mem_cgroup_margin(memcg))
1878 break;
1879 /*
1880 * If nothing was reclaimed after two attempts, there
1881 * may be no reclaimable pages in this hierarchy.
1882 */
1883 if (loop && !total)
1884 break;
1885 }
1886 return total;
1887 }
1888
1889 /**
1890 * test_mem_cgroup_node_reclaimable
1891 * @memcg: the target memcg
1892 * @nid: the node ID to be checked.
1893 * @noswap : specify true here if the user wants flle only information.
1894 *
1895 * This function returns whether the specified memcg contains any
1896 * reclaimable pages on a node. Returns true if there are any reclaimable
1897 * pages in the node.
1898 */
1899 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1900 int nid, bool noswap)
1901 {
1902 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1903 return true;
1904 if (noswap || !total_swap_pages)
1905 return false;
1906 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1907 return true;
1908 return false;
1909
1910 }
1911 #if MAX_NUMNODES > 1
1912
1913 /*
1914 * Always updating the nodemask is not very good - even if we have an empty
1915 * list or the wrong list here, we can start from some node and traverse all
1916 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1917 *
1918 */
1919 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1920 {
1921 int nid;
1922 /*
1923 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1924 * pagein/pageout changes since the last update.
1925 */
1926 if (!atomic_read(&memcg->numainfo_events))
1927 return;
1928 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1929 return;
1930
1931 /* make a nodemask where this memcg uses memory from */
1932 memcg->scan_nodes = node_states[N_MEMORY];
1933
1934 for_each_node_mask(nid, node_states[N_MEMORY]) {
1935
1936 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1937 node_clear(nid, memcg->scan_nodes);
1938 }
1939
1940 atomic_set(&memcg->numainfo_events, 0);
1941 atomic_set(&memcg->numainfo_updating, 0);
1942 }
1943
1944 /*
1945 * Selecting a node where we start reclaim from. Because what we need is just
1946 * reducing usage counter, start from anywhere is O,K. Considering
1947 * memory reclaim from current node, there are pros. and cons.
1948 *
1949 * Freeing memory from current node means freeing memory from a node which
1950 * we'll use or we've used. So, it may make LRU bad. And if several threads
1951 * hit limits, it will see a contention on a node. But freeing from remote
1952 * node means more costs for memory reclaim because of memory latency.
1953 *
1954 * Now, we use round-robin. Better algorithm is welcomed.
1955 */
1956 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1957 {
1958 int node;
1959
1960 mem_cgroup_may_update_nodemask(memcg);
1961 node = memcg->last_scanned_node;
1962
1963 node = next_node(node, memcg->scan_nodes);
1964 if (node == MAX_NUMNODES)
1965 node = first_node(memcg->scan_nodes);
1966 /*
1967 * We call this when we hit limit, not when pages are added to LRU.
1968 * No LRU may hold pages because all pages are UNEVICTABLE or
1969 * memcg is too small and all pages are not on LRU. In that case,
1970 * we use curret node.
1971 */
1972 if (unlikely(node == MAX_NUMNODES))
1973 node = numa_node_id();
1974
1975 memcg->last_scanned_node = node;
1976 return node;
1977 }
1978
1979 /*
1980 * Check all nodes whether it contains reclaimable pages or not.
1981 * For quick scan, we make use of scan_nodes. This will allow us to skip
1982 * unused nodes. But scan_nodes is lazily updated and may not cotain
1983 * enough new information. We need to do double check.
1984 */
1985 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1986 {
1987 int nid;
1988
1989 /*
1990 * quick check...making use of scan_node.
1991 * We can skip unused nodes.
1992 */
1993 if (!nodes_empty(memcg->scan_nodes)) {
1994 for (nid = first_node(memcg->scan_nodes);
1995 nid < MAX_NUMNODES;
1996 nid = next_node(nid, memcg->scan_nodes)) {
1997
1998 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1999 return true;
2000 }
2001 }
2002 /*
2003 * Check rest of nodes.
2004 */
2005 for_each_node_state(nid, N_MEMORY) {
2006 if (node_isset(nid, memcg->scan_nodes))
2007 continue;
2008 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2009 return true;
2010 }
2011 return false;
2012 }
2013
2014 #else
2015 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2016 {
2017 return 0;
2018 }
2019
2020 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2021 {
2022 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2023 }
2024 #endif
2025
2026 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2027 struct zone *zone,
2028 gfp_t gfp_mask,
2029 unsigned long *total_scanned)
2030 {
2031 struct mem_cgroup *victim = NULL;
2032 int total = 0;
2033 int loop = 0;
2034 unsigned long excess;
2035 unsigned long nr_scanned;
2036 struct mem_cgroup_reclaim_cookie reclaim = {
2037 .zone = zone,
2038 .priority = 0,
2039 };
2040
2041 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2042
2043 while (1) {
2044 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2045 if (!victim) {
2046 loop++;
2047 if (loop >= 2) {
2048 /*
2049 * If we have not been able to reclaim
2050 * anything, it might because there are
2051 * no reclaimable pages under this hierarchy
2052 */
2053 if (!total)
2054 break;
2055 /*
2056 * We want to do more targeted reclaim.
2057 * excess >> 2 is not to excessive so as to
2058 * reclaim too much, nor too less that we keep
2059 * coming back to reclaim from this cgroup
2060 */
2061 if (total >= (excess >> 2) ||
2062 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2063 break;
2064 }
2065 continue;
2066 }
2067 if (!mem_cgroup_reclaimable(victim, false))
2068 continue;
2069 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2070 zone, &nr_scanned);
2071 *total_scanned += nr_scanned;
2072 if (!res_counter_soft_limit_excess(&root_memcg->res))
2073 break;
2074 }
2075 mem_cgroup_iter_break(root_memcg, victim);
2076 return total;
2077 }
2078
2079 static DEFINE_SPINLOCK(memcg_oom_lock);
2080
2081 /*
2082 * Check OOM-Killer is already running under our hierarchy.
2083 * If someone is running, return false.
2084 */
2085 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2086 {
2087 struct mem_cgroup *iter, *failed = NULL;
2088
2089 spin_lock(&memcg_oom_lock);
2090
2091 for_each_mem_cgroup_tree(iter, memcg) {
2092 if (iter->oom_lock) {
2093 /*
2094 * this subtree of our hierarchy is already locked
2095 * so we cannot give a lock.
2096 */
2097 failed = iter;
2098 mem_cgroup_iter_break(memcg, iter);
2099 break;
2100 } else
2101 iter->oom_lock = true;
2102 }
2103
2104 if (failed) {
2105 /*
2106 * OK, we failed to lock the whole subtree so we have
2107 * to clean up what we set up to the failing subtree
2108 */
2109 for_each_mem_cgroup_tree(iter, memcg) {
2110 if (iter == failed) {
2111 mem_cgroup_iter_break(memcg, iter);
2112 break;
2113 }
2114 iter->oom_lock = false;
2115 }
2116 }
2117
2118 spin_unlock(&memcg_oom_lock);
2119
2120 return !failed;
2121 }
2122
2123 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2124 {
2125 struct mem_cgroup *iter;
2126
2127 spin_lock(&memcg_oom_lock);
2128 for_each_mem_cgroup_tree(iter, memcg)
2129 iter->oom_lock = false;
2130 spin_unlock(&memcg_oom_lock);
2131 }
2132
2133 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2134 {
2135 struct mem_cgroup *iter;
2136
2137 for_each_mem_cgroup_tree(iter, memcg)
2138 atomic_inc(&iter->under_oom);
2139 }
2140
2141 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2142 {
2143 struct mem_cgroup *iter;
2144
2145 /*
2146 * When a new child is created while the hierarchy is under oom,
2147 * mem_cgroup_oom_lock() may not be called. We have to use
2148 * atomic_add_unless() here.
2149 */
2150 for_each_mem_cgroup_tree(iter, memcg)
2151 atomic_add_unless(&iter->under_oom, -1, 0);
2152 }
2153
2154 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2155
2156 struct oom_wait_info {
2157 struct mem_cgroup *memcg;
2158 wait_queue_t wait;
2159 };
2160
2161 static int memcg_oom_wake_function(wait_queue_t *wait,
2162 unsigned mode, int sync, void *arg)
2163 {
2164 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2165 struct mem_cgroup *oom_wait_memcg;
2166 struct oom_wait_info *oom_wait_info;
2167
2168 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2169 oom_wait_memcg = oom_wait_info->memcg;
2170
2171 /*
2172 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2173 * Then we can use css_is_ancestor without taking care of RCU.
2174 */
2175 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2176 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2177 return 0;
2178 return autoremove_wake_function(wait, mode, sync, arg);
2179 }
2180
2181 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2182 {
2183 atomic_inc(&memcg->oom_wakeups);
2184 /* for filtering, pass "memcg" as argument. */
2185 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2186 }
2187
2188 static void memcg_oom_recover(struct mem_cgroup *memcg)
2189 {
2190 if (memcg && atomic_read(&memcg->under_oom))
2191 memcg_wakeup_oom(memcg);
2192 }
2193
2194 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2195 {
2196 if (!current->memcg_oom.may_oom)
2197 return;
2198 /*
2199 * We are in the middle of the charge context here, so we
2200 * don't want to block when potentially sitting on a callstack
2201 * that holds all kinds of filesystem and mm locks.
2202 *
2203 * Also, the caller may handle a failed allocation gracefully
2204 * (like optional page cache readahead) and so an OOM killer
2205 * invocation might not even be necessary.
2206 *
2207 * That's why we don't do anything here except remember the
2208 * OOM context and then deal with it at the end of the page
2209 * fault when the stack is unwound, the locks are released,
2210 * and when we know whether the fault was overall successful.
2211 */
2212 css_get(&memcg->css);
2213 current->memcg_oom.memcg = memcg;
2214 current->memcg_oom.gfp_mask = mask;
2215 current->memcg_oom.order = order;
2216 }
2217
2218 /**
2219 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2220 * @handle: actually kill/wait or just clean up the OOM state
2221 *
2222 * This has to be called at the end of a page fault if the memcg OOM
2223 * handler was enabled.
2224 *
2225 * Memcg supports userspace OOM handling where failed allocations must
2226 * sleep on a waitqueue until the userspace task resolves the
2227 * situation. Sleeping directly in the charge context with all kinds
2228 * of locks held is not a good idea, instead we remember an OOM state
2229 * in the task and mem_cgroup_oom_synchronize() has to be called at
2230 * the end of the page fault to complete the OOM handling.
2231 *
2232 * Returns %true if an ongoing memcg OOM situation was detected and
2233 * completed, %false otherwise.
2234 */
2235 bool mem_cgroup_oom_synchronize(bool handle)
2236 {
2237 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2238 struct oom_wait_info owait;
2239 bool locked;
2240
2241 /* OOM is global, do not handle */
2242 if (!memcg)
2243 return false;
2244
2245 if (!handle)
2246 goto cleanup;
2247
2248 owait.memcg = memcg;
2249 owait.wait.flags = 0;
2250 owait.wait.func = memcg_oom_wake_function;
2251 owait.wait.private = current;
2252 INIT_LIST_HEAD(&owait.wait.task_list);
2253
2254 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2255 mem_cgroup_mark_under_oom(memcg);
2256
2257 locked = mem_cgroup_oom_trylock(memcg);
2258
2259 if (locked)
2260 mem_cgroup_oom_notify(memcg);
2261
2262 if (locked && !memcg->oom_kill_disable) {
2263 mem_cgroup_unmark_under_oom(memcg);
2264 finish_wait(&memcg_oom_waitq, &owait.wait);
2265 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2266 current->memcg_oom.order);
2267 } else {
2268 schedule();
2269 mem_cgroup_unmark_under_oom(memcg);
2270 finish_wait(&memcg_oom_waitq, &owait.wait);
2271 }
2272
2273 if (locked) {
2274 mem_cgroup_oom_unlock(memcg);
2275 /*
2276 * There is no guarantee that an OOM-lock contender
2277 * sees the wakeups triggered by the OOM kill
2278 * uncharges. Wake any sleepers explicitely.
2279 */
2280 memcg_oom_recover(memcg);
2281 }
2282 cleanup:
2283 current->memcg_oom.memcg = NULL;
2284 css_put(&memcg->css);
2285 return true;
2286 }
2287
2288 /*
2289 * Currently used to update mapped file statistics, but the routine can be
2290 * generalized to update other statistics as well.
2291 *
2292 * Notes: Race condition
2293 *
2294 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2295 * it tends to be costly. But considering some conditions, we doesn't need
2296 * to do so _always_.
2297 *
2298 * Considering "charge", lock_page_cgroup() is not required because all
2299 * file-stat operations happen after a page is attached to radix-tree. There
2300 * are no race with "charge".
2301 *
2302 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2303 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2304 * if there are race with "uncharge". Statistics itself is properly handled
2305 * by flags.
2306 *
2307 * Considering "move", this is an only case we see a race. To make the race
2308 * small, we check mm->moving_account and detect there are possibility of race
2309 * If there is, we take a lock.
2310 */
2311
2312 void __mem_cgroup_begin_update_page_stat(struct page *page,
2313 bool *locked, unsigned long *flags)
2314 {
2315 struct mem_cgroup *memcg;
2316 struct page_cgroup *pc;
2317
2318 pc = lookup_page_cgroup(page);
2319 again:
2320 memcg = pc->mem_cgroup;
2321 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2322 return;
2323 /*
2324 * If this memory cgroup is not under account moving, we don't
2325 * need to take move_lock_mem_cgroup(). Because we already hold
2326 * rcu_read_lock(), any calls to move_account will be delayed until
2327 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2328 */
2329 if (!mem_cgroup_stolen(memcg))
2330 return;
2331
2332 move_lock_mem_cgroup(memcg, flags);
2333 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2334 move_unlock_mem_cgroup(memcg, flags);
2335 goto again;
2336 }
2337 *locked = true;
2338 }
2339
2340 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2341 {
2342 struct page_cgroup *pc = lookup_page_cgroup(page);
2343
2344 /*
2345 * It's guaranteed that pc->mem_cgroup never changes while
2346 * lock is held because a routine modifies pc->mem_cgroup
2347 * should take move_lock_mem_cgroup().
2348 */
2349 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2350 }
2351
2352 void mem_cgroup_update_page_stat(struct page *page,
2353 enum mem_cgroup_page_stat_item idx, int val)
2354 {
2355 struct mem_cgroup *memcg;
2356 struct page_cgroup *pc = lookup_page_cgroup(page);
2357 unsigned long uninitialized_var(flags);
2358
2359 if (mem_cgroup_disabled())
2360 return;
2361
2362 memcg = pc->mem_cgroup;
2363 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2364 return;
2365
2366 switch (idx) {
2367 case MEMCG_NR_FILE_MAPPED:
2368 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2369 break;
2370 default:
2371 BUG();
2372 }
2373
2374 this_cpu_add(memcg->stat->count[idx], val);
2375 }
2376
2377 /*
2378 * size of first charge trial. "32" comes from vmscan.c's magic value.
2379 * TODO: maybe necessary to use big numbers in big irons.
2380 */
2381 #define CHARGE_BATCH 32U
2382 struct memcg_stock_pcp {
2383 struct mem_cgroup *cached; /* this never be root cgroup */
2384 unsigned int nr_pages;
2385 struct work_struct work;
2386 unsigned long flags;
2387 #define FLUSHING_CACHED_CHARGE 0
2388 };
2389 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2390 static DEFINE_MUTEX(percpu_charge_mutex);
2391
2392 /**
2393 * consume_stock: Try to consume stocked charge on this cpu.
2394 * @memcg: memcg to consume from.
2395 * @nr_pages: how many pages to charge.
2396 *
2397 * The charges will only happen if @memcg matches the current cpu's memcg
2398 * stock, and at least @nr_pages are available in that stock. Failure to
2399 * service an allocation will refill the stock.
2400 *
2401 * returns true if successful, false otherwise.
2402 */
2403 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2404 {
2405 struct memcg_stock_pcp *stock;
2406 bool ret = true;
2407
2408 if (nr_pages > CHARGE_BATCH)
2409 return false;
2410
2411 stock = &get_cpu_var(memcg_stock);
2412 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2413 stock->nr_pages -= nr_pages;
2414 else /* need to call res_counter_charge */
2415 ret = false;
2416 put_cpu_var(memcg_stock);
2417 return ret;
2418 }
2419
2420 /*
2421 * Returns stocks cached in percpu to res_counter and reset cached information.
2422 */
2423 static void drain_stock(struct memcg_stock_pcp *stock)
2424 {
2425 struct mem_cgroup *old = stock->cached;
2426
2427 if (stock->nr_pages) {
2428 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2429
2430 res_counter_uncharge(&old->res, bytes);
2431 if (do_swap_account)
2432 res_counter_uncharge(&old->memsw, bytes);
2433 stock->nr_pages = 0;
2434 }
2435 stock->cached = NULL;
2436 }
2437
2438 /*
2439 * This must be called under preempt disabled or must be called by
2440 * a thread which is pinned to local cpu.
2441 */
2442 static void drain_local_stock(struct work_struct *dummy)
2443 {
2444 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2445 drain_stock(stock);
2446 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2447 }
2448
2449 static void __init memcg_stock_init(void)
2450 {
2451 int cpu;
2452
2453 for_each_possible_cpu(cpu) {
2454 struct memcg_stock_pcp *stock =
2455 &per_cpu(memcg_stock, cpu);
2456 INIT_WORK(&stock->work, drain_local_stock);
2457 }
2458 }
2459
2460 /*
2461 * Cache charges(val) which is from res_counter, to local per_cpu area.
2462 * This will be consumed by consume_stock() function, later.
2463 */
2464 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2465 {
2466 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2467
2468 if (stock->cached != memcg) { /* reset if necessary */
2469 drain_stock(stock);
2470 stock->cached = memcg;
2471 }
2472 stock->nr_pages += nr_pages;
2473 put_cpu_var(memcg_stock);
2474 }
2475
2476 /*
2477 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2478 * of the hierarchy under it. sync flag says whether we should block
2479 * until the work is done.
2480 */
2481 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2482 {
2483 int cpu, curcpu;
2484
2485 /* Notify other cpus that system-wide "drain" is running */
2486 get_online_cpus();
2487 curcpu = get_cpu();
2488 for_each_online_cpu(cpu) {
2489 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2490 struct mem_cgroup *memcg;
2491
2492 memcg = stock->cached;
2493 if (!memcg || !stock->nr_pages)
2494 continue;
2495 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2496 continue;
2497 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2498 if (cpu == curcpu)
2499 drain_local_stock(&stock->work);
2500 else
2501 schedule_work_on(cpu, &stock->work);
2502 }
2503 }
2504 put_cpu();
2505
2506 if (!sync)
2507 goto out;
2508
2509 for_each_online_cpu(cpu) {
2510 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2511 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2512 flush_work(&stock->work);
2513 }
2514 out:
2515 put_online_cpus();
2516 }
2517
2518 /*
2519 * Tries to drain stocked charges in other cpus. This function is asynchronous
2520 * and just put a work per cpu for draining localy on each cpu. Caller can
2521 * expects some charges will be back to res_counter later but cannot wait for
2522 * it.
2523 */
2524 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2525 {
2526 /*
2527 * If someone calls draining, avoid adding more kworker runs.
2528 */
2529 if (!mutex_trylock(&percpu_charge_mutex))
2530 return;
2531 drain_all_stock(root_memcg, false);
2532 mutex_unlock(&percpu_charge_mutex);
2533 }
2534
2535 /* This is a synchronous drain interface. */
2536 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2537 {
2538 /* called when force_empty is called */
2539 mutex_lock(&percpu_charge_mutex);
2540 drain_all_stock(root_memcg, true);
2541 mutex_unlock(&percpu_charge_mutex);
2542 }
2543
2544 /*
2545 * This function drains percpu counter value from DEAD cpu and
2546 * move it to local cpu. Note that this function can be preempted.
2547 */
2548 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2549 {
2550 int i;
2551
2552 spin_lock(&memcg->pcp_counter_lock);
2553 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2554 long x = per_cpu(memcg->stat->count[i], cpu);
2555
2556 per_cpu(memcg->stat->count[i], cpu) = 0;
2557 memcg->nocpu_base.count[i] += x;
2558 }
2559 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2560 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2561
2562 per_cpu(memcg->stat->events[i], cpu) = 0;
2563 memcg->nocpu_base.events[i] += x;
2564 }
2565 spin_unlock(&memcg->pcp_counter_lock);
2566 }
2567
2568 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2569 unsigned long action,
2570 void *hcpu)
2571 {
2572 int cpu = (unsigned long)hcpu;
2573 struct memcg_stock_pcp *stock;
2574 struct mem_cgroup *iter;
2575
2576 if (action == CPU_ONLINE)
2577 return NOTIFY_OK;
2578
2579 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2580 return NOTIFY_OK;
2581
2582 for_each_mem_cgroup(iter)
2583 mem_cgroup_drain_pcp_counter(iter, cpu);
2584
2585 stock = &per_cpu(memcg_stock, cpu);
2586 drain_stock(stock);
2587 return NOTIFY_OK;
2588 }
2589
2590
2591 /* See __mem_cgroup_try_charge() for details */
2592 enum {
2593 CHARGE_OK, /* success */
2594 CHARGE_RETRY, /* need to retry but retry is not bad */
2595 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2596 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2597 };
2598
2599 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2600 unsigned int nr_pages, unsigned int min_pages,
2601 bool invoke_oom)
2602 {
2603 unsigned long csize = nr_pages * PAGE_SIZE;
2604 struct mem_cgroup *mem_over_limit;
2605 struct res_counter *fail_res;
2606 unsigned long flags = 0;
2607 int ret;
2608
2609 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2610
2611 if (likely(!ret)) {
2612 if (!do_swap_account)
2613 return CHARGE_OK;
2614 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2615 if (likely(!ret))
2616 return CHARGE_OK;
2617
2618 res_counter_uncharge(&memcg->res, csize);
2619 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2620 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2621 } else
2622 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2623 /*
2624 * Never reclaim on behalf of optional batching, retry with a
2625 * single page instead.
2626 */
2627 if (nr_pages > min_pages)
2628 return CHARGE_RETRY;
2629
2630 if (!(gfp_mask & __GFP_WAIT))
2631 return CHARGE_WOULDBLOCK;
2632
2633 if (gfp_mask & __GFP_NORETRY)
2634 return CHARGE_NOMEM;
2635
2636 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2637 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2638 return CHARGE_RETRY;
2639 /*
2640 * Even though the limit is exceeded at this point, reclaim
2641 * may have been able to free some pages. Retry the charge
2642 * before killing the task.
2643 *
2644 * Only for regular pages, though: huge pages are rather
2645 * unlikely to succeed so close to the limit, and we fall back
2646 * to regular pages anyway in case of failure.
2647 */
2648 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2649 return CHARGE_RETRY;
2650
2651 /*
2652 * At task move, charge accounts can be doubly counted. So, it's
2653 * better to wait until the end of task_move if something is going on.
2654 */
2655 if (mem_cgroup_wait_acct_move(mem_over_limit))
2656 return CHARGE_RETRY;
2657
2658 if (invoke_oom)
2659 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2660
2661 return CHARGE_NOMEM;
2662 }
2663
2664 /*
2665 * __mem_cgroup_try_charge() does
2666 * 1. detect memcg to be charged against from passed *mm and *ptr,
2667 * 2. update res_counter
2668 * 3. call memory reclaim if necessary.
2669 *
2670 * In some special case, if the task is fatal, fatal_signal_pending() or
2671 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2672 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2673 * as possible without any hazards. 2: all pages should have a valid
2674 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2675 * pointer, that is treated as a charge to root_mem_cgroup.
2676 *
2677 * So __mem_cgroup_try_charge() will return
2678 * 0 ... on success, filling *ptr with a valid memcg pointer.
2679 * -ENOMEM ... charge failure because of resource limits.
2680 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2681 *
2682 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2683 * the oom-killer can be invoked.
2684 */
2685 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2686 gfp_t gfp_mask,
2687 unsigned int nr_pages,
2688 struct mem_cgroup **ptr,
2689 bool oom)
2690 {
2691 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2692 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2693 struct mem_cgroup *memcg = NULL;
2694 int ret;
2695
2696 /*
2697 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2698 * in system level. So, allow to go ahead dying process in addition to
2699 * MEMDIE process.
2700 */
2701 if (unlikely(test_thread_flag(TIF_MEMDIE)
2702 || fatal_signal_pending(current)))
2703 goto bypass;
2704
2705 if (unlikely(task_in_memcg_oom(current)))
2706 goto bypass;
2707
2708 /*
2709 * We always charge the cgroup the mm_struct belongs to.
2710 * The mm_struct's mem_cgroup changes on task migration if the
2711 * thread group leader migrates. It's possible that mm is not
2712 * set, if so charge the root memcg (happens for pagecache usage).
2713 */
2714 if (!*ptr && !mm)
2715 *ptr = root_mem_cgroup;
2716 again:
2717 if (*ptr) { /* css should be a valid one */
2718 memcg = *ptr;
2719 if (mem_cgroup_is_root(memcg))
2720 goto done;
2721 if (consume_stock(memcg, nr_pages))
2722 goto done;
2723 css_get(&memcg->css);
2724 } else {
2725 struct task_struct *p;
2726
2727 rcu_read_lock();
2728 p = rcu_dereference(mm->owner);
2729 /*
2730 * Because we don't have task_lock(), "p" can exit.
2731 * In that case, "memcg" can point to root or p can be NULL with
2732 * race with swapoff. Then, we have small risk of mis-accouning.
2733 * But such kind of mis-account by race always happens because
2734 * we don't have cgroup_mutex(). It's overkill and we allo that
2735 * small race, here.
2736 * (*) swapoff at el will charge against mm-struct not against
2737 * task-struct. So, mm->owner can be NULL.
2738 */
2739 memcg = mem_cgroup_from_task(p);
2740 if (!memcg)
2741 memcg = root_mem_cgroup;
2742 if (mem_cgroup_is_root(memcg)) {
2743 rcu_read_unlock();
2744 goto done;
2745 }
2746 if (consume_stock(memcg, nr_pages)) {
2747 /*
2748 * It seems dagerous to access memcg without css_get().
2749 * But considering how consume_stok works, it's not
2750 * necessary. If consume_stock success, some charges
2751 * from this memcg are cached on this cpu. So, we
2752 * don't need to call css_get()/css_tryget() before
2753 * calling consume_stock().
2754 */
2755 rcu_read_unlock();
2756 goto done;
2757 }
2758 /* after here, we may be blocked. we need to get refcnt */
2759 if (!css_tryget(&memcg->css)) {
2760 rcu_read_unlock();
2761 goto again;
2762 }
2763 rcu_read_unlock();
2764 }
2765
2766 do {
2767 bool invoke_oom = oom && !nr_oom_retries;
2768
2769 /* If killed, bypass charge */
2770 if (fatal_signal_pending(current)) {
2771 css_put(&memcg->css);
2772 goto bypass;
2773 }
2774
2775 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2776 nr_pages, invoke_oom);
2777 switch (ret) {
2778 case CHARGE_OK:
2779 break;
2780 case CHARGE_RETRY: /* not in OOM situation but retry */
2781 batch = nr_pages;
2782 css_put(&memcg->css);
2783 memcg = NULL;
2784 goto again;
2785 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2786 css_put(&memcg->css);
2787 goto nomem;
2788 case CHARGE_NOMEM: /* OOM routine works */
2789 if (!oom || invoke_oom) {
2790 css_put(&memcg->css);
2791 goto nomem;
2792 }
2793 nr_oom_retries--;
2794 break;
2795 }
2796 } while (ret != CHARGE_OK);
2797
2798 if (batch > nr_pages)
2799 refill_stock(memcg, batch - nr_pages);
2800 css_put(&memcg->css);
2801 done:
2802 *ptr = memcg;
2803 return 0;
2804 nomem:
2805 *ptr = NULL;
2806 return -ENOMEM;
2807 bypass:
2808 *ptr = root_mem_cgroup;
2809 return -EINTR;
2810 }
2811
2812 /*
2813 * Somemtimes we have to undo a charge we got by try_charge().
2814 * This function is for that and do uncharge, put css's refcnt.
2815 * gotten by try_charge().
2816 */
2817 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2818 unsigned int nr_pages)
2819 {
2820 if (!mem_cgroup_is_root(memcg)) {
2821 unsigned long bytes = nr_pages * PAGE_SIZE;
2822
2823 res_counter_uncharge(&memcg->res, bytes);
2824 if (do_swap_account)
2825 res_counter_uncharge(&memcg->memsw, bytes);
2826 }
2827 }
2828
2829 /*
2830 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2831 * This is useful when moving usage to parent cgroup.
2832 */
2833 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2834 unsigned int nr_pages)
2835 {
2836 unsigned long bytes = nr_pages * PAGE_SIZE;
2837
2838 if (mem_cgroup_is_root(memcg))
2839 return;
2840
2841 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2842 if (do_swap_account)
2843 res_counter_uncharge_until(&memcg->memsw,
2844 memcg->memsw.parent, bytes);
2845 }
2846
2847 /*
2848 * A helper function to get mem_cgroup from ID. must be called under
2849 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2850 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2851 * called against removed memcg.)
2852 */
2853 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2854 {
2855 struct cgroup_subsys_state *css;
2856
2857 /* ID 0 is unused ID */
2858 if (!id)
2859 return NULL;
2860 css = css_lookup(&mem_cgroup_subsys, id);
2861 if (!css)
2862 return NULL;
2863 return mem_cgroup_from_css(css);
2864 }
2865
2866 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2867 {
2868 struct mem_cgroup *memcg = NULL;
2869 struct page_cgroup *pc;
2870 unsigned short id;
2871 swp_entry_t ent;
2872
2873 VM_BUG_ON(!PageLocked(page));
2874
2875 pc = lookup_page_cgroup(page);
2876 lock_page_cgroup(pc);
2877 if (PageCgroupUsed(pc)) {
2878 memcg = pc->mem_cgroup;
2879 if (memcg && !css_tryget(&memcg->css))
2880 memcg = NULL;
2881 } else if (PageSwapCache(page)) {
2882 ent.val = page_private(page);
2883 id = lookup_swap_cgroup_id(ent);
2884 rcu_read_lock();
2885 memcg = mem_cgroup_lookup(id);
2886 if (memcg && !css_tryget(&memcg->css))
2887 memcg = NULL;
2888 rcu_read_unlock();
2889 }
2890 unlock_page_cgroup(pc);
2891 return memcg;
2892 }
2893
2894 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2895 struct page *page,
2896 unsigned int nr_pages,
2897 enum charge_type ctype,
2898 bool lrucare)
2899 {
2900 struct page_cgroup *pc = lookup_page_cgroup(page);
2901 struct zone *uninitialized_var(zone);
2902 struct lruvec *lruvec;
2903 bool was_on_lru = false;
2904 bool anon;
2905
2906 lock_page_cgroup(pc);
2907 VM_BUG_ON(PageCgroupUsed(pc));
2908 /*
2909 * we don't need page_cgroup_lock about tail pages, becase they are not
2910 * accessed by any other context at this point.
2911 */
2912
2913 /*
2914 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2915 * may already be on some other mem_cgroup's LRU. Take care of it.
2916 */
2917 if (lrucare) {
2918 zone = page_zone(page);
2919 spin_lock_irq(&zone->lru_lock);
2920 if (PageLRU(page)) {
2921 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2922 ClearPageLRU(page);
2923 del_page_from_lru_list(page, lruvec, page_lru(page));
2924 was_on_lru = true;
2925 }
2926 }
2927
2928 pc->mem_cgroup = memcg;
2929 /*
2930 * We access a page_cgroup asynchronously without lock_page_cgroup().
2931 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2932 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2933 * before USED bit, we need memory barrier here.
2934 * See mem_cgroup_add_lru_list(), etc.
2935 */
2936 smp_wmb();
2937 SetPageCgroupUsed(pc);
2938
2939 if (lrucare) {
2940 if (was_on_lru) {
2941 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2942 VM_BUG_ON(PageLRU(page));
2943 SetPageLRU(page);
2944 add_page_to_lru_list(page, lruvec, page_lru(page));
2945 }
2946 spin_unlock_irq(&zone->lru_lock);
2947 }
2948
2949 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2950 anon = true;
2951 else
2952 anon = false;
2953
2954 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2955 unlock_page_cgroup(pc);
2956
2957 /*
2958 * "charge_statistics" updated event counter. Then, check it.
2959 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2960 * if they exceeds softlimit.
2961 */
2962 memcg_check_events(memcg, page);
2963 }
2964
2965 static DEFINE_MUTEX(set_limit_mutex);
2966
2967 #ifdef CONFIG_MEMCG_KMEM
2968 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2969 {
2970 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2971 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2972 }
2973
2974 /*
2975 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2976 * in the memcg_cache_params struct.
2977 */
2978 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2979 {
2980 struct kmem_cache *cachep;
2981
2982 VM_BUG_ON(p->is_root_cache);
2983 cachep = p->root_cache;
2984 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2985 }
2986
2987 #ifdef CONFIG_SLABINFO
2988 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2989 struct seq_file *m)
2990 {
2991 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2992 struct memcg_cache_params *params;
2993
2994 if (!memcg_can_account_kmem(memcg))
2995 return -EIO;
2996
2997 print_slabinfo_header(m);
2998
2999 mutex_lock(&memcg->slab_caches_mutex);
3000 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3001 cache_show(memcg_params_to_cache(params), m);
3002 mutex_unlock(&memcg->slab_caches_mutex);
3003
3004 return 0;
3005 }
3006 #endif
3007
3008 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3009 {
3010 struct res_counter *fail_res;
3011 struct mem_cgroup *_memcg;
3012 int ret = 0;
3013 bool may_oom;
3014
3015 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3016 if (ret)
3017 return ret;
3018
3019 /*
3020 * Conditions under which we can wait for the oom_killer. Those are
3021 * the same conditions tested by the core page allocator
3022 */
3023 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
3024
3025 _memcg = memcg;
3026 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3027 &_memcg, may_oom);
3028
3029 if (ret == -EINTR) {
3030 /*
3031 * __mem_cgroup_try_charge() chosed to bypass to root due to
3032 * OOM kill or fatal signal. Since our only options are to
3033 * either fail the allocation or charge it to this cgroup, do
3034 * it as a temporary condition. But we can't fail. From a
3035 * kmem/slab perspective, the cache has already been selected,
3036 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3037 * our minds.
3038 *
3039 * This condition will only trigger if the task entered
3040 * memcg_charge_kmem in a sane state, but was OOM-killed during
3041 * __mem_cgroup_try_charge() above. Tasks that were already
3042 * dying when the allocation triggers should have been already
3043 * directed to the root cgroup in memcontrol.h
3044 */
3045 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3046 if (do_swap_account)
3047 res_counter_charge_nofail(&memcg->memsw, size,
3048 &fail_res);
3049 ret = 0;
3050 } else if (ret)
3051 res_counter_uncharge(&memcg->kmem, size);
3052
3053 return ret;
3054 }
3055
3056 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3057 {
3058 res_counter_uncharge(&memcg->res, size);
3059 if (do_swap_account)
3060 res_counter_uncharge(&memcg->memsw, size);
3061
3062 /* Not down to 0 */
3063 if (res_counter_uncharge(&memcg->kmem, size))
3064 return;
3065
3066 if (memcg_kmem_test_and_clear_dead(memcg))
3067 mem_cgroup_put(memcg);
3068 }
3069
3070 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3071 {
3072 if (!memcg)
3073 return;
3074
3075 mutex_lock(&memcg->slab_caches_mutex);
3076 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3077 mutex_unlock(&memcg->slab_caches_mutex);
3078 }
3079
3080 /*
3081 * helper for acessing a memcg's index. It will be used as an index in the
3082 * child cache array in kmem_cache, and also to derive its name. This function
3083 * will return -1 when this is not a kmem-limited memcg.
3084 */
3085 int memcg_cache_id(struct mem_cgroup *memcg)
3086 {
3087 return memcg ? memcg->kmemcg_id : -1;
3088 }
3089
3090 /*
3091 * This ends up being protected by the set_limit mutex, during normal
3092 * operation, because that is its main call site.
3093 *
3094 * But when we create a new cache, we can call this as well if its parent
3095 * is kmem-limited. That will have to hold set_limit_mutex as well.
3096 */
3097 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3098 {
3099 int num, ret;
3100
3101 num = ida_simple_get(&kmem_limited_groups,
3102 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3103 if (num < 0)
3104 return num;
3105 /*
3106 * After this point, kmem_accounted (that we test atomically in
3107 * the beginning of this conditional), is no longer 0. This
3108 * guarantees only one process will set the following boolean
3109 * to true. We don't need test_and_set because we're protected
3110 * by the set_limit_mutex anyway.
3111 */
3112 memcg_kmem_set_activated(memcg);
3113
3114 ret = memcg_update_all_caches(num+1);
3115 if (ret) {
3116 ida_simple_remove(&kmem_limited_groups, num);
3117 memcg_kmem_clear_activated(memcg);
3118 return ret;
3119 }
3120
3121 memcg->kmemcg_id = num;
3122 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3123 mutex_init(&memcg->slab_caches_mutex);
3124 return 0;
3125 }
3126
3127 static size_t memcg_caches_array_size(int num_groups)
3128 {
3129 ssize_t size;
3130 if (num_groups <= 0)
3131 return 0;
3132
3133 size = 2 * num_groups;
3134 if (size < MEMCG_CACHES_MIN_SIZE)
3135 size = MEMCG_CACHES_MIN_SIZE;
3136 else if (size > MEMCG_CACHES_MAX_SIZE)
3137 size = MEMCG_CACHES_MAX_SIZE;
3138
3139 return size;
3140 }
3141
3142 /*
3143 * We should update the current array size iff all caches updates succeed. This
3144 * can only be done from the slab side. The slab mutex needs to be held when
3145 * calling this.
3146 */
3147 void memcg_update_array_size(int num)
3148 {
3149 if (num > memcg_limited_groups_array_size)
3150 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3151 }
3152
3153 static void kmem_cache_destroy_work_func(struct work_struct *w);
3154
3155 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3156 {
3157 struct memcg_cache_params *cur_params = s->memcg_params;
3158
3159 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3160
3161 if (num_groups > memcg_limited_groups_array_size) {
3162 int i;
3163 ssize_t size = memcg_caches_array_size(num_groups);
3164
3165 size *= sizeof(void *);
3166 size += sizeof(struct memcg_cache_params);
3167
3168 s->memcg_params = kzalloc(size, GFP_KERNEL);
3169 if (!s->memcg_params) {
3170 s->memcg_params = cur_params;
3171 return -ENOMEM;
3172 }
3173
3174 s->memcg_params->is_root_cache = true;
3175
3176 /*
3177 * There is the chance it will be bigger than
3178 * memcg_limited_groups_array_size, if we failed an allocation
3179 * in a cache, in which case all caches updated before it, will
3180 * have a bigger array.
3181 *
3182 * But if that is the case, the data after
3183 * memcg_limited_groups_array_size is certainly unused
3184 */
3185 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3186 if (!cur_params->memcg_caches[i])
3187 continue;
3188 s->memcg_params->memcg_caches[i] =
3189 cur_params->memcg_caches[i];
3190 }
3191
3192 /*
3193 * Ideally, we would wait until all caches succeed, and only
3194 * then free the old one. But this is not worth the extra
3195 * pointer per-cache we'd have to have for this.
3196 *
3197 * It is not a big deal if some caches are left with a size
3198 * bigger than the others. And all updates will reset this
3199 * anyway.
3200 */
3201 kfree(cur_params);
3202 }
3203 return 0;
3204 }
3205
3206 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3207 struct kmem_cache *root_cache)
3208 {
3209 size_t size = sizeof(struct memcg_cache_params);
3210
3211 if (!memcg_kmem_enabled())
3212 return 0;
3213
3214 if (!memcg)
3215 size += memcg_limited_groups_array_size * sizeof(void *);
3216
3217 s->memcg_params = kzalloc(size, GFP_KERNEL);
3218 if (!s->memcg_params)
3219 return -ENOMEM;
3220
3221 if (memcg) {
3222 s->memcg_params->memcg = memcg;
3223 s->memcg_params->root_cache = root_cache;
3224 INIT_WORK(&s->memcg_params->destroy,
3225 kmem_cache_destroy_work_func);
3226 } else
3227 s->memcg_params->is_root_cache = true;
3228
3229 return 0;
3230 }
3231
3232 void memcg_release_cache(struct kmem_cache *s)
3233 {
3234 struct kmem_cache *root;
3235 struct mem_cgroup *memcg;
3236 int id;
3237
3238 /*
3239 * This happens, for instance, when a root cache goes away before we
3240 * add any memcg.
3241 */
3242 if (!s->memcg_params)
3243 return;
3244
3245 if (s->memcg_params->is_root_cache)
3246 goto out;
3247
3248 memcg = s->memcg_params->memcg;
3249 id = memcg_cache_id(memcg);
3250
3251 root = s->memcg_params->root_cache;
3252 root->memcg_params->memcg_caches[id] = NULL;
3253
3254 mutex_lock(&memcg->slab_caches_mutex);
3255 list_del(&s->memcg_params->list);
3256 mutex_unlock(&memcg->slab_caches_mutex);
3257
3258 mem_cgroup_put(memcg);
3259 out:
3260 kfree(s->memcg_params);
3261 }
3262
3263 /*
3264 * During the creation a new cache, we need to disable our accounting mechanism
3265 * altogether. This is true even if we are not creating, but rather just
3266 * enqueing new caches to be created.
3267 *
3268 * This is because that process will trigger allocations; some visible, like
3269 * explicit kmallocs to auxiliary data structures, name strings and internal
3270 * cache structures; some well concealed, like INIT_WORK() that can allocate
3271 * objects during debug.
3272 *
3273 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3274 * to it. This may not be a bounded recursion: since the first cache creation
3275 * failed to complete (waiting on the allocation), we'll just try to create the
3276 * cache again, failing at the same point.
3277 *
3278 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3279 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3280 * inside the following two functions.
3281 */
3282 static inline void memcg_stop_kmem_account(void)
3283 {
3284 VM_BUG_ON(!current->mm);
3285 current->memcg_kmem_skip_account++;
3286 }
3287
3288 static inline void memcg_resume_kmem_account(void)
3289 {
3290 VM_BUG_ON(!current->mm);
3291 current->memcg_kmem_skip_account--;
3292 }
3293
3294 static void kmem_cache_destroy_work_func(struct work_struct *w)
3295 {
3296 struct kmem_cache *cachep;
3297 struct memcg_cache_params *p;
3298
3299 p = container_of(w, struct memcg_cache_params, destroy);
3300
3301 cachep = memcg_params_to_cache(p);
3302
3303 /*
3304 * If we get down to 0 after shrink, we could delete right away.
3305 * However, memcg_release_pages() already puts us back in the workqueue
3306 * in that case. If we proceed deleting, we'll get a dangling
3307 * reference, and removing the object from the workqueue in that case
3308 * is unnecessary complication. We are not a fast path.
3309 *
3310 * Note that this case is fundamentally different from racing with
3311 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3312 * kmem_cache_shrink, not only we would be reinserting a dead cache
3313 * into the queue, but doing so from inside the worker racing to
3314 * destroy it.
3315 *
3316 * So if we aren't down to zero, we'll just schedule a worker and try
3317 * again
3318 */
3319 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3320 kmem_cache_shrink(cachep);
3321 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3322 return;
3323 } else
3324 kmem_cache_destroy(cachep);
3325 }
3326
3327 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3328 {
3329 if (!cachep->memcg_params->dead)
3330 return;
3331
3332 /*
3333 * There are many ways in which we can get here.
3334 *
3335 * We can get to a memory-pressure situation while the delayed work is
3336 * still pending to run. The vmscan shrinkers can then release all
3337 * cache memory and get us to destruction. If this is the case, we'll
3338 * be executed twice, which is a bug (the second time will execute over
3339 * bogus data). In this case, cancelling the work should be fine.
3340 *
3341 * But we can also get here from the worker itself, if
3342 * kmem_cache_shrink is enough to shake all the remaining objects and
3343 * get the page count to 0. In this case, we'll deadlock if we try to
3344 * cancel the work (the worker runs with an internal lock held, which
3345 * is the same lock we would hold for cancel_work_sync().)
3346 *
3347 * Since we can't possibly know who got us here, just refrain from
3348 * running if there is already work pending
3349 */
3350 if (work_pending(&cachep->memcg_params->destroy))
3351 return;
3352 /*
3353 * We have to defer the actual destroying to a workqueue, because
3354 * we might currently be in a context that cannot sleep.
3355 */
3356 schedule_work(&cachep->memcg_params->destroy);
3357 }
3358
3359 /*
3360 * This lock protects updaters, not readers. We want readers to be as fast as
3361 * they can, and they will either see NULL or a valid cache value. Our model
3362 * allow them to see NULL, in which case the root memcg will be selected.
3363 *
3364 * We need this lock because multiple allocations to the same cache from a non
3365 * will span more than one worker. Only one of them can create the cache.
3366 */
3367 static DEFINE_MUTEX(memcg_cache_mutex);
3368
3369 /*
3370 * Called with memcg_cache_mutex held
3371 */
3372 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3373 struct kmem_cache *s)
3374 {
3375 struct kmem_cache *new;
3376 static char *tmp_name = NULL;
3377
3378 lockdep_assert_held(&memcg_cache_mutex);
3379
3380 /*
3381 * kmem_cache_create_memcg duplicates the given name and
3382 * cgroup_name for this name requires RCU context.
3383 * This static temporary buffer is used to prevent from
3384 * pointless shortliving allocation.
3385 */
3386 if (!tmp_name) {
3387 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3388 if (!tmp_name)
3389 return NULL;
3390 }
3391
3392 rcu_read_lock();
3393 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3394 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3395 rcu_read_unlock();
3396
3397 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3398 (s->flags & ~SLAB_PANIC), s->ctor, s);
3399
3400 if (new)
3401 new->allocflags |= __GFP_KMEMCG;
3402
3403 return new;
3404 }
3405
3406 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3407 struct kmem_cache *cachep)
3408 {
3409 struct kmem_cache *new_cachep;
3410 int idx;
3411
3412 BUG_ON(!memcg_can_account_kmem(memcg));
3413
3414 idx = memcg_cache_id(memcg);
3415
3416 mutex_lock(&memcg_cache_mutex);
3417 new_cachep = cachep->memcg_params->memcg_caches[idx];
3418 if (new_cachep)
3419 goto out;
3420
3421 new_cachep = kmem_cache_dup(memcg, cachep);
3422 if (new_cachep == NULL) {
3423 new_cachep = cachep;
3424 goto out;
3425 }
3426
3427 mem_cgroup_get(memcg);
3428 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3429
3430 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3431 /*
3432 * the readers won't lock, make sure everybody sees the updated value,
3433 * so they won't put stuff in the queue again for no reason
3434 */
3435 wmb();
3436 out:
3437 mutex_unlock(&memcg_cache_mutex);
3438 return new_cachep;
3439 }
3440
3441 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3442 {
3443 struct kmem_cache *c;
3444 int i;
3445
3446 if (!s->memcg_params)
3447 return;
3448 if (!s->memcg_params->is_root_cache)
3449 return;
3450
3451 /*
3452 * If the cache is being destroyed, we trust that there is no one else
3453 * requesting objects from it. Even if there are, the sanity checks in
3454 * kmem_cache_destroy should caught this ill-case.
3455 *
3456 * Still, we don't want anyone else freeing memcg_caches under our
3457 * noses, which can happen if a new memcg comes to life. As usual,
3458 * we'll take the set_limit_mutex to protect ourselves against this.
3459 */
3460 mutex_lock(&set_limit_mutex);
3461 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3462 c = s->memcg_params->memcg_caches[i];
3463 if (!c)
3464 continue;
3465
3466 /*
3467 * We will now manually delete the caches, so to avoid races
3468 * we need to cancel all pending destruction workers and
3469 * proceed with destruction ourselves.
3470 *
3471 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3472 * and that could spawn the workers again: it is likely that
3473 * the cache still have active pages until this very moment.
3474 * This would lead us back to mem_cgroup_destroy_cache.
3475 *
3476 * But that will not execute at all if the "dead" flag is not
3477 * set, so flip it down to guarantee we are in control.
3478 */
3479 c->memcg_params->dead = false;
3480 cancel_work_sync(&c->memcg_params->destroy);
3481 kmem_cache_destroy(c);
3482 }
3483 mutex_unlock(&set_limit_mutex);
3484 }
3485
3486 struct create_work {
3487 struct mem_cgroup *memcg;
3488 struct kmem_cache *cachep;
3489 struct work_struct work;
3490 };
3491
3492 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3493 {
3494 struct kmem_cache *cachep;
3495 struct memcg_cache_params *params;
3496
3497 if (!memcg_kmem_is_active(memcg))
3498 return;
3499
3500 mutex_lock(&memcg->slab_caches_mutex);
3501 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3502 cachep = memcg_params_to_cache(params);
3503 cachep->memcg_params->dead = true;
3504 schedule_work(&cachep->memcg_params->destroy);
3505 }
3506 mutex_unlock(&memcg->slab_caches_mutex);
3507 }
3508
3509 static void memcg_create_cache_work_func(struct work_struct *w)
3510 {
3511 struct create_work *cw;
3512
3513 cw = container_of(w, struct create_work, work);
3514 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3515 /* Drop the reference gotten when we enqueued. */
3516 css_put(&cw->memcg->css);
3517 kfree(cw);
3518 }
3519
3520 /*
3521 * Enqueue the creation of a per-memcg kmem_cache.
3522 */
3523 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3524 struct kmem_cache *cachep)
3525 {
3526 struct create_work *cw;
3527
3528 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3529 if (cw == NULL) {
3530 css_put(&memcg->css);
3531 return;
3532 }
3533
3534 cw->memcg = memcg;
3535 cw->cachep = cachep;
3536
3537 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3538 schedule_work(&cw->work);
3539 }
3540
3541 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3542 struct kmem_cache *cachep)
3543 {
3544 /*
3545 * We need to stop accounting when we kmalloc, because if the
3546 * corresponding kmalloc cache is not yet created, the first allocation
3547 * in __memcg_create_cache_enqueue will recurse.
3548 *
3549 * However, it is better to enclose the whole function. Depending on
3550 * the debugging options enabled, INIT_WORK(), for instance, can
3551 * trigger an allocation. This too, will make us recurse. Because at
3552 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3553 * the safest choice is to do it like this, wrapping the whole function.
3554 */
3555 memcg_stop_kmem_account();
3556 __memcg_create_cache_enqueue(memcg, cachep);
3557 memcg_resume_kmem_account();
3558 }
3559 /*
3560 * Return the kmem_cache we're supposed to use for a slab allocation.
3561 * We try to use the current memcg's version of the cache.
3562 *
3563 * If the cache does not exist yet, if we are the first user of it,
3564 * we either create it immediately, if possible, or create it asynchronously
3565 * in a workqueue.
3566 * In the latter case, we will let the current allocation go through with
3567 * the original cache.
3568 *
3569 * Can't be called in interrupt context or from kernel threads.
3570 * This function needs to be called with rcu_read_lock() held.
3571 */
3572 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3573 gfp_t gfp)
3574 {
3575 struct mem_cgroup *memcg;
3576 int idx;
3577
3578 VM_BUG_ON(!cachep->memcg_params);
3579 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3580
3581 if (!current->mm || current->memcg_kmem_skip_account)
3582 return cachep;
3583
3584 rcu_read_lock();
3585 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3586
3587 if (!memcg_can_account_kmem(memcg))
3588 goto out;
3589
3590 idx = memcg_cache_id(memcg);
3591
3592 /*
3593 * barrier to mare sure we're always seeing the up to date value. The
3594 * code updating memcg_caches will issue a write barrier to match this.
3595 */
3596 read_barrier_depends();
3597 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3598 cachep = cachep->memcg_params->memcg_caches[idx];
3599 goto out;
3600 }
3601
3602 /* The corresponding put will be done in the workqueue. */
3603 if (!css_tryget(&memcg->css))
3604 goto out;
3605 rcu_read_unlock();
3606
3607 /*
3608 * If we are in a safe context (can wait, and not in interrupt
3609 * context), we could be be predictable and return right away.
3610 * This would guarantee that the allocation being performed
3611 * already belongs in the new cache.
3612 *
3613 * However, there are some clashes that can arrive from locking.
3614 * For instance, because we acquire the slab_mutex while doing
3615 * kmem_cache_dup, this means no further allocation could happen
3616 * with the slab_mutex held.
3617 *
3618 * Also, because cache creation issue get_online_cpus(), this
3619 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3620 * that ends up reversed during cpu hotplug. (cpuset allocates
3621 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3622 * better to defer everything.
3623 */
3624 memcg_create_cache_enqueue(memcg, cachep);
3625 return cachep;
3626 out:
3627 rcu_read_unlock();
3628 return cachep;
3629 }
3630 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3631
3632 /*
3633 * We need to verify if the allocation against current->mm->owner's memcg is
3634 * possible for the given order. But the page is not allocated yet, so we'll
3635 * need a further commit step to do the final arrangements.
3636 *
3637 * It is possible for the task to switch cgroups in this mean time, so at
3638 * commit time, we can't rely on task conversion any longer. We'll then use
3639 * the handle argument to return to the caller which cgroup we should commit
3640 * against. We could also return the memcg directly and avoid the pointer
3641 * passing, but a boolean return value gives better semantics considering
3642 * the compiled-out case as well.
3643 *
3644 * Returning true means the allocation is possible.
3645 */
3646 bool
3647 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3648 {
3649 struct mem_cgroup *memcg;
3650 int ret;
3651
3652 *_memcg = NULL;
3653 memcg = try_get_mem_cgroup_from_mm(current->mm);
3654
3655 /*
3656 * very rare case described in mem_cgroup_from_task. Unfortunately there
3657 * isn't much we can do without complicating this too much, and it would
3658 * be gfp-dependent anyway. Just let it go
3659 */
3660 if (unlikely(!memcg))
3661 return true;
3662
3663 if (!memcg_can_account_kmem(memcg)) {
3664 css_put(&memcg->css);
3665 return true;
3666 }
3667
3668 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3669 if (!ret)
3670 *_memcg = memcg;
3671
3672 css_put(&memcg->css);
3673 return (ret == 0);
3674 }
3675
3676 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3677 int order)
3678 {
3679 struct page_cgroup *pc;
3680
3681 VM_BUG_ON(mem_cgroup_is_root(memcg));
3682
3683 /* The page allocation failed. Revert */
3684 if (!page) {
3685 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3686 return;
3687 }
3688
3689 pc = lookup_page_cgroup(page);
3690 lock_page_cgroup(pc);
3691 pc->mem_cgroup = memcg;
3692 SetPageCgroupUsed(pc);
3693 unlock_page_cgroup(pc);
3694 }
3695
3696 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3697 {
3698 struct mem_cgroup *memcg = NULL;
3699 struct page_cgroup *pc;
3700
3701
3702 pc = lookup_page_cgroup(page);
3703 /*
3704 * Fast unlocked return. Theoretically might have changed, have to
3705 * check again after locking.
3706 */
3707 if (!PageCgroupUsed(pc))
3708 return;
3709
3710 lock_page_cgroup(pc);
3711 if (PageCgroupUsed(pc)) {
3712 memcg = pc->mem_cgroup;
3713 ClearPageCgroupUsed(pc);
3714 }
3715 unlock_page_cgroup(pc);
3716
3717 /*
3718 * We trust that only if there is a memcg associated with the page, it
3719 * is a valid allocation
3720 */
3721 if (!memcg)
3722 return;
3723
3724 VM_BUG_ON(mem_cgroup_is_root(memcg));
3725 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3726 }
3727 #else
3728 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3729 {
3730 }
3731 #endif /* CONFIG_MEMCG_KMEM */
3732
3733 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3734
3735 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3736 /*
3737 * Because tail pages are not marked as "used", set it. We're under
3738 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3739 * charge/uncharge will be never happen and move_account() is done under
3740 * compound_lock(), so we don't have to take care of races.
3741 */
3742 void mem_cgroup_split_huge_fixup(struct page *head)
3743 {
3744 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3745 struct page_cgroup *pc;
3746 struct mem_cgroup *memcg;
3747 int i;
3748
3749 if (mem_cgroup_disabled())
3750 return;
3751
3752 memcg = head_pc->mem_cgroup;
3753 for (i = 1; i < HPAGE_PMD_NR; i++) {
3754 pc = head_pc + i;
3755 pc->mem_cgroup = memcg;
3756 smp_wmb();/* see __commit_charge() */
3757 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3758 }
3759 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3760 HPAGE_PMD_NR);
3761 }
3762 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3763
3764 /**
3765 * mem_cgroup_move_account - move account of the page
3766 * @page: the page
3767 * @nr_pages: number of regular pages (>1 for huge pages)
3768 * @pc: page_cgroup of the page.
3769 * @from: mem_cgroup which the page is moved from.
3770 * @to: mem_cgroup which the page is moved to. @from != @to.
3771 *
3772 * The caller must confirm following.
3773 * - page is not on LRU (isolate_page() is useful.)
3774 * - compound_lock is held when nr_pages > 1
3775 *
3776 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3777 * from old cgroup.
3778 */
3779 static int mem_cgroup_move_account(struct page *page,
3780 unsigned int nr_pages,
3781 struct page_cgroup *pc,
3782 struct mem_cgroup *from,
3783 struct mem_cgroup *to)
3784 {
3785 unsigned long flags;
3786 int ret;
3787 bool anon = PageAnon(page);
3788
3789 VM_BUG_ON(from == to);
3790 VM_BUG_ON(PageLRU(page));
3791 /*
3792 * The page is isolated from LRU. So, collapse function
3793 * will not handle this page. But page splitting can happen.
3794 * Do this check under compound_page_lock(). The caller should
3795 * hold it.
3796 */
3797 ret = -EBUSY;
3798 if (nr_pages > 1 && !PageTransHuge(page))
3799 goto out;
3800
3801 lock_page_cgroup(pc);
3802
3803 ret = -EINVAL;
3804 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3805 goto unlock;
3806
3807 move_lock_mem_cgroup(from, &flags);
3808
3809 if (!anon && page_mapped(page)) {
3810 /* Update mapped_file data for mem_cgroup */
3811 preempt_disable();
3812 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3813 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3814 preempt_enable();
3815 }
3816 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3817
3818 /* caller should have done css_get */
3819 pc->mem_cgroup = to;
3820 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3821 move_unlock_mem_cgroup(from, &flags);
3822 ret = 0;
3823 unlock:
3824 unlock_page_cgroup(pc);
3825 /*
3826 * check events
3827 */
3828 memcg_check_events(to, page);
3829 memcg_check_events(from, page);
3830 out:
3831 return ret;
3832 }
3833
3834 /**
3835 * mem_cgroup_move_parent - moves page to the parent group
3836 * @page: the page to move
3837 * @pc: page_cgroup of the page
3838 * @child: page's cgroup
3839 *
3840 * move charges to its parent or the root cgroup if the group has no
3841 * parent (aka use_hierarchy==0).
3842 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3843 * mem_cgroup_move_account fails) the failure is always temporary and
3844 * it signals a race with a page removal/uncharge or migration. In the
3845 * first case the page is on the way out and it will vanish from the LRU
3846 * on the next attempt and the call should be retried later.
3847 * Isolation from the LRU fails only if page has been isolated from
3848 * the LRU since we looked at it and that usually means either global
3849 * reclaim or migration going on. The page will either get back to the
3850 * LRU or vanish.
3851 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3852 * (!PageCgroupUsed) or moved to a different group. The page will
3853 * disappear in the next attempt.
3854 */
3855 static int mem_cgroup_move_parent(struct page *page,
3856 struct page_cgroup *pc,
3857 struct mem_cgroup *child)
3858 {
3859 struct mem_cgroup *parent;
3860 unsigned int nr_pages;
3861 unsigned long uninitialized_var(flags);
3862 int ret;
3863
3864 VM_BUG_ON(mem_cgroup_is_root(child));
3865
3866 ret = -EBUSY;
3867 if (!get_page_unless_zero(page))
3868 goto out;
3869 if (isolate_lru_page(page))
3870 goto put;
3871
3872 nr_pages = hpage_nr_pages(page);
3873
3874 parent = parent_mem_cgroup(child);
3875 /*
3876 * If no parent, move charges to root cgroup.
3877 */
3878 if (!parent)
3879 parent = root_mem_cgroup;
3880
3881 if (nr_pages > 1) {
3882 VM_BUG_ON(!PageTransHuge(page));
3883 flags = compound_lock_irqsave(page);
3884 }
3885
3886 ret = mem_cgroup_move_account(page, nr_pages,
3887 pc, child, parent);
3888 if (!ret)
3889 __mem_cgroup_cancel_local_charge(child, nr_pages);
3890
3891 if (nr_pages > 1)
3892 compound_unlock_irqrestore(page, flags);
3893 putback_lru_page(page);
3894 put:
3895 put_page(page);
3896 out:
3897 return ret;
3898 }
3899
3900 /*
3901 * Charge the memory controller for page usage.
3902 * Return
3903 * 0 if the charge was successful
3904 * < 0 if the cgroup is over its limit
3905 */
3906 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3907 gfp_t gfp_mask, enum charge_type ctype)
3908 {
3909 struct mem_cgroup *memcg = NULL;
3910 unsigned int nr_pages = 1;
3911 bool oom = true;
3912 int ret;
3913
3914 if (PageTransHuge(page)) {
3915 nr_pages <<= compound_order(page);
3916 VM_BUG_ON(!PageTransHuge(page));
3917 /*
3918 * Never OOM-kill a process for a huge page. The
3919 * fault handler will fall back to regular pages.
3920 */
3921 oom = false;
3922 }
3923
3924 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3925 if (ret == -ENOMEM)
3926 return ret;
3927 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3928 return 0;
3929 }
3930
3931 int mem_cgroup_newpage_charge(struct page *page,
3932 struct mm_struct *mm, gfp_t gfp_mask)
3933 {
3934 if (mem_cgroup_disabled())
3935 return 0;
3936 VM_BUG_ON(page_mapped(page));
3937 VM_BUG_ON(page->mapping && !PageAnon(page));
3938 VM_BUG_ON(!mm);
3939 return mem_cgroup_charge_common(page, mm, gfp_mask,
3940 MEM_CGROUP_CHARGE_TYPE_ANON);
3941 }
3942
3943 /*
3944 * While swap-in, try_charge -> commit or cancel, the page is locked.
3945 * And when try_charge() successfully returns, one refcnt to memcg without
3946 * struct page_cgroup is acquired. This refcnt will be consumed by
3947 * "commit()" or removed by "cancel()"
3948 */
3949 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3950 struct page *page,
3951 gfp_t mask,
3952 struct mem_cgroup **memcgp)
3953 {
3954 struct mem_cgroup *memcg;
3955 struct page_cgroup *pc;
3956 int ret;
3957
3958 pc = lookup_page_cgroup(page);
3959 /*
3960 * Every swap fault against a single page tries to charge the
3961 * page, bail as early as possible. shmem_unuse() encounters
3962 * already charged pages, too. The USED bit is protected by
3963 * the page lock, which serializes swap cache removal, which
3964 * in turn serializes uncharging.
3965 */
3966 if (PageCgroupUsed(pc))
3967 return 0;
3968 if (!do_swap_account)
3969 goto charge_cur_mm;
3970 memcg = try_get_mem_cgroup_from_page(page);
3971 if (!memcg)
3972 goto charge_cur_mm;
3973 *memcgp = memcg;
3974 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3975 css_put(&memcg->css);
3976 if (ret == -EINTR)
3977 ret = 0;
3978 return ret;
3979 charge_cur_mm:
3980 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3981 if (ret == -EINTR)
3982 ret = 0;
3983 return ret;
3984 }
3985
3986 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3987 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3988 {
3989 *memcgp = NULL;
3990 if (mem_cgroup_disabled())
3991 return 0;
3992 /*
3993 * A racing thread's fault, or swapoff, may have already
3994 * updated the pte, and even removed page from swap cache: in
3995 * those cases unuse_pte()'s pte_same() test will fail; but
3996 * there's also a KSM case which does need to charge the page.
3997 */
3998 if (!PageSwapCache(page)) {
3999 int ret;
4000
4001 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4002 if (ret == -EINTR)
4003 ret = 0;
4004 return ret;
4005 }
4006 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4007 }
4008
4009 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4010 {
4011 if (mem_cgroup_disabled())
4012 return;
4013 if (!memcg)
4014 return;
4015 __mem_cgroup_cancel_charge(memcg, 1);
4016 }
4017
4018 static void
4019 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4020 enum charge_type ctype)
4021 {
4022 if (mem_cgroup_disabled())
4023 return;
4024 if (!memcg)
4025 return;
4026
4027 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4028 /*
4029 * Now swap is on-memory. This means this page may be
4030 * counted both as mem and swap....double count.
4031 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4032 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4033 * may call delete_from_swap_cache() before reach here.
4034 */
4035 if (do_swap_account && PageSwapCache(page)) {
4036 swp_entry_t ent = {.val = page_private(page)};
4037 mem_cgroup_uncharge_swap(ent);
4038 }
4039 }
4040
4041 void mem_cgroup_commit_charge_swapin(struct page *page,
4042 struct mem_cgroup *memcg)
4043 {
4044 __mem_cgroup_commit_charge_swapin(page, memcg,
4045 MEM_CGROUP_CHARGE_TYPE_ANON);
4046 }
4047
4048 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4049 gfp_t gfp_mask)
4050 {
4051 struct mem_cgroup *memcg = NULL;
4052 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4053 int ret;
4054
4055 if (mem_cgroup_disabled())
4056 return 0;
4057 if (PageCompound(page))
4058 return 0;
4059
4060 if (!PageSwapCache(page))
4061 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4062 else { /* page is swapcache/shmem */
4063 ret = __mem_cgroup_try_charge_swapin(mm, page,
4064 gfp_mask, &memcg);
4065 if (!ret)
4066 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4067 }
4068 return ret;
4069 }
4070
4071 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4072 unsigned int nr_pages,
4073 const enum charge_type ctype)
4074 {
4075 struct memcg_batch_info *batch = NULL;
4076 bool uncharge_memsw = true;
4077
4078 /* If swapout, usage of swap doesn't decrease */
4079 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4080 uncharge_memsw = false;
4081
4082 batch = &current->memcg_batch;
4083 /*
4084 * In usual, we do css_get() when we remember memcg pointer.
4085 * But in this case, we keep res->usage until end of a series of
4086 * uncharges. Then, it's ok to ignore memcg's refcnt.
4087 */
4088 if (!batch->memcg)
4089 batch->memcg = memcg;
4090 /*
4091 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4092 * In those cases, all pages freed continuously can be expected to be in
4093 * the same cgroup and we have chance to coalesce uncharges.
4094 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4095 * because we want to do uncharge as soon as possible.
4096 */
4097
4098 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4099 goto direct_uncharge;
4100
4101 if (nr_pages > 1)
4102 goto direct_uncharge;
4103
4104 /*
4105 * In typical case, batch->memcg == mem. This means we can
4106 * merge a series of uncharges to an uncharge of res_counter.
4107 * If not, we uncharge res_counter ony by one.
4108 */
4109 if (batch->memcg != memcg)
4110 goto direct_uncharge;
4111 /* remember freed charge and uncharge it later */
4112 batch->nr_pages++;
4113 if (uncharge_memsw)
4114 batch->memsw_nr_pages++;
4115 return;
4116 direct_uncharge:
4117 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4118 if (uncharge_memsw)
4119 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4120 if (unlikely(batch->memcg != memcg))
4121 memcg_oom_recover(memcg);
4122 }
4123
4124 /*
4125 * uncharge if !page_mapped(page)
4126 */
4127 static struct mem_cgroup *
4128 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4129 bool end_migration)
4130 {
4131 struct mem_cgroup *memcg = NULL;
4132 unsigned int nr_pages = 1;
4133 struct page_cgroup *pc;
4134 bool anon;
4135
4136 if (mem_cgroup_disabled())
4137 return NULL;
4138
4139 if (PageTransHuge(page)) {
4140 nr_pages <<= compound_order(page);
4141 VM_BUG_ON(!PageTransHuge(page));
4142 }
4143 /*
4144 * Check if our page_cgroup is valid
4145 */
4146 pc = lookup_page_cgroup(page);
4147 if (unlikely(!PageCgroupUsed(pc)))
4148 return NULL;
4149
4150 lock_page_cgroup(pc);
4151
4152 memcg = pc->mem_cgroup;
4153
4154 if (!PageCgroupUsed(pc))
4155 goto unlock_out;
4156
4157 anon = PageAnon(page);
4158
4159 switch (ctype) {
4160 case MEM_CGROUP_CHARGE_TYPE_ANON:
4161 /*
4162 * Generally PageAnon tells if it's the anon statistics to be
4163 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4164 * used before page reached the stage of being marked PageAnon.
4165 */
4166 anon = true;
4167 /* fallthrough */
4168 case MEM_CGROUP_CHARGE_TYPE_DROP:
4169 /* See mem_cgroup_prepare_migration() */
4170 if (page_mapped(page))
4171 goto unlock_out;
4172 /*
4173 * Pages under migration may not be uncharged. But
4174 * end_migration() /must/ be the one uncharging the
4175 * unused post-migration page and so it has to call
4176 * here with the migration bit still set. See the
4177 * res_counter handling below.
4178 */
4179 if (!end_migration && PageCgroupMigration(pc))
4180 goto unlock_out;
4181 break;
4182 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4183 if (!PageAnon(page)) { /* Shared memory */
4184 if (page->mapping && !page_is_file_cache(page))
4185 goto unlock_out;
4186 } else if (page_mapped(page)) /* Anon */
4187 goto unlock_out;
4188 break;
4189 default:
4190 break;
4191 }
4192
4193 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4194
4195 ClearPageCgroupUsed(pc);
4196 /*
4197 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4198 * freed from LRU. This is safe because uncharged page is expected not
4199 * to be reused (freed soon). Exception is SwapCache, it's handled by
4200 * special functions.
4201 */
4202
4203 unlock_page_cgroup(pc);
4204 /*
4205 * even after unlock, we have memcg->res.usage here and this memcg
4206 * will never be freed.
4207 */
4208 memcg_check_events(memcg, page);
4209 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4210 mem_cgroup_swap_statistics(memcg, true);
4211 mem_cgroup_get(memcg);
4212 }
4213 /*
4214 * Migration does not charge the res_counter for the
4215 * replacement page, so leave it alone when phasing out the
4216 * page that is unused after the migration.
4217 */
4218 if (!end_migration && !mem_cgroup_is_root(memcg))
4219 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4220
4221 return memcg;
4222
4223 unlock_out:
4224 unlock_page_cgroup(pc);
4225 return NULL;
4226 }
4227
4228 void mem_cgroup_uncharge_page(struct page *page)
4229 {
4230 /* early check. */
4231 if (page_mapped(page))
4232 return;
4233 VM_BUG_ON(page->mapping && !PageAnon(page));
4234 /*
4235 * If the page is in swap cache, uncharge should be deferred
4236 * to the swap path, which also properly accounts swap usage
4237 * and handles memcg lifetime.
4238 *
4239 * Note that this check is not stable and reclaim may add the
4240 * page to swap cache at any time after this. However, if the
4241 * page is not in swap cache by the time page->mapcount hits
4242 * 0, there won't be any page table references to the swap
4243 * slot, and reclaim will free it and not actually write the
4244 * page to disk.
4245 */
4246 if (PageSwapCache(page))
4247 return;
4248 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4249 }
4250
4251 void mem_cgroup_uncharge_cache_page(struct page *page)
4252 {
4253 VM_BUG_ON(page_mapped(page));
4254 VM_BUG_ON(page->mapping);
4255 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4256 }
4257
4258 /*
4259 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4260 * In that cases, pages are freed continuously and we can expect pages
4261 * are in the same memcg. All these calls itself limits the number of
4262 * pages freed at once, then uncharge_start/end() is called properly.
4263 * This may be called prural(2) times in a context,
4264 */
4265
4266 void mem_cgroup_uncharge_start(void)
4267 {
4268 current->memcg_batch.do_batch++;
4269 /* We can do nest. */
4270 if (current->memcg_batch.do_batch == 1) {
4271 current->memcg_batch.memcg = NULL;
4272 current->memcg_batch.nr_pages = 0;
4273 current->memcg_batch.memsw_nr_pages = 0;
4274 }
4275 }
4276
4277 void mem_cgroup_uncharge_end(void)
4278 {
4279 struct memcg_batch_info *batch = &current->memcg_batch;
4280
4281 if (!batch->do_batch)
4282 return;
4283
4284 batch->do_batch--;
4285 if (batch->do_batch) /* If stacked, do nothing. */
4286 return;
4287
4288 if (!batch->memcg)
4289 return;
4290 /*
4291 * This "batch->memcg" is valid without any css_get/put etc...
4292 * bacause we hide charges behind us.
4293 */
4294 if (batch->nr_pages)
4295 res_counter_uncharge(&batch->memcg->res,
4296 batch->nr_pages * PAGE_SIZE);
4297 if (batch->memsw_nr_pages)
4298 res_counter_uncharge(&batch->memcg->memsw,
4299 batch->memsw_nr_pages * PAGE_SIZE);
4300 memcg_oom_recover(batch->memcg);
4301 /* forget this pointer (for sanity check) */
4302 batch->memcg = NULL;
4303 }
4304
4305 #ifdef CONFIG_SWAP
4306 /*
4307 * called after __delete_from_swap_cache() and drop "page" account.
4308 * memcg information is recorded to swap_cgroup of "ent"
4309 */
4310 void
4311 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4312 {
4313 struct mem_cgroup *memcg;
4314 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4315
4316 if (!swapout) /* this was a swap cache but the swap is unused ! */
4317 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4318
4319 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4320
4321 /*
4322 * record memcg information, if swapout && memcg != NULL,
4323 * mem_cgroup_get() was called in uncharge().
4324 */
4325 if (do_swap_account && swapout && memcg)
4326 swap_cgroup_record(ent, css_id(&memcg->css));
4327 }
4328 #endif
4329
4330 #ifdef CONFIG_MEMCG_SWAP
4331 /*
4332 * called from swap_entry_free(). remove record in swap_cgroup and
4333 * uncharge "memsw" account.
4334 */
4335 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4336 {
4337 struct mem_cgroup *memcg;
4338 unsigned short id;
4339
4340 if (!do_swap_account)
4341 return;
4342
4343 id = swap_cgroup_record(ent, 0);
4344 rcu_read_lock();
4345 memcg = mem_cgroup_lookup(id);
4346 if (memcg) {
4347 /*
4348 * We uncharge this because swap is freed.
4349 * This memcg can be obsolete one. We avoid calling css_tryget
4350 */
4351 if (!mem_cgroup_is_root(memcg))
4352 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4353 mem_cgroup_swap_statistics(memcg, false);
4354 mem_cgroup_put(memcg);
4355 }
4356 rcu_read_unlock();
4357 }
4358
4359 /**
4360 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4361 * @entry: swap entry to be moved
4362 * @from: mem_cgroup which the entry is moved from
4363 * @to: mem_cgroup which the entry is moved to
4364 *
4365 * It succeeds only when the swap_cgroup's record for this entry is the same
4366 * as the mem_cgroup's id of @from.
4367 *
4368 * Returns 0 on success, -EINVAL on failure.
4369 *
4370 * The caller must have charged to @to, IOW, called res_counter_charge() about
4371 * both res and memsw, and called css_get().
4372 */
4373 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4374 struct mem_cgroup *from, struct mem_cgroup *to)
4375 {
4376 unsigned short old_id, new_id;
4377
4378 old_id = css_id(&from->css);
4379 new_id = css_id(&to->css);
4380
4381 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4382 mem_cgroup_swap_statistics(from, false);
4383 mem_cgroup_swap_statistics(to, true);
4384 /*
4385 * This function is only called from task migration context now.
4386 * It postpones res_counter and refcount handling till the end
4387 * of task migration(mem_cgroup_clear_mc()) for performance
4388 * improvement. But we cannot postpone mem_cgroup_get(to)
4389 * because if the process that has been moved to @to does
4390 * swap-in, the refcount of @to might be decreased to 0.
4391 */
4392 mem_cgroup_get(to);
4393 return 0;
4394 }
4395 return -EINVAL;
4396 }
4397 #else
4398 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4399 struct mem_cgroup *from, struct mem_cgroup *to)
4400 {
4401 return -EINVAL;
4402 }
4403 #endif
4404
4405 /*
4406 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4407 * page belongs to.
4408 */
4409 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4410 struct mem_cgroup **memcgp)
4411 {
4412 struct mem_cgroup *memcg = NULL;
4413 unsigned int nr_pages = 1;
4414 struct page_cgroup *pc;
4415 enum charge_type ctype;
4416
4417 *memcgp = NULL;
4418
4419 if (mem_cgroup_disabled())
4420 return;
4421
4422 if (PageTransHuge(page))
4423 nr_pages <<= compound_order(page);
4424
4425 pc = lookup_page_cgroup(page);
4426 lock_page_cgroup(pc);
4427 if (PageCgroupUsed(pc)) {
4428 memcg = pc->mem_cgroup;
4429 css_get(&memcg->css);
4430 /*
4431 * At migrating an anonymous page, its mapcount goes down
4432 * to 0 and uncharge() will be called. But, even if it's fully
4433 * unmapped, migration may fail and this page has to be
4434 * charged again. We set MIGRATION flag here and delay uncharge
4435 * until end_migration() is called
4436 *
4437 * Corner Case Thinking
4438 * A)
4439 * When the old page was mapped as Anon and it's unmap-and-freed
4440 * while migration was ongoing.
4441 * If unmap finds the old page, uncharge() of it will be delayed
4442 * until end_migration(). If unmap finds a new page, it's
4443 * uncharged when it make mapcount to be 1->0. If unmap code
4444 * finds swap_migration_entry, the new page will not be mapped
4445 * and end_migration() will find it(mapcount==0).
4446 *
4447 * B)
4448 * When the old page was mapped but migraion fails, the kernel
4449 * remaps it. A charge for it is kept by MIGRATION flag even
4450 * if mapcount goes down to 0. We can do remap successfully
4451 * without charging it again.
4452 *
4453 * C)
4454 * The "old" page is under lock_page() until the end of
4455 * migration, so, the old page itself will not be swapped-out.
4456 * If the new page is swapped out before end_migraton, our
4457 * hook to usual swap-out path will catch the event.
4458 */
4459 if (PageAnon(page))
4460 SetPageCgroupMigration(pc);
4461 }
4462 unlock_page_cgroup(pc);
4463 /*
4464 * If the page is not charged at this point,
4465 * we return here.
4466 */
4467 if (!memcg)
4468 return;
4469
4470 *memcgp = memcg;
4471 /*
4472 * We charge new page before it's used/mapped. So, even if unlock_page()
4473 * is called before end_migration, we can catch all events on this new
4474 * page. In the case new page is migrated but not remapped, new page's
4475 * mapcount will be finally 0 and we call uncharge in end_migration().
4476 */
4477 if (PageAnon(page))
4478 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4479 else
4480 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4481 /*
4482 * The page is committed to the memcg, but it's not actually
4483 * charged to the res_counter since we plan on replacing the
4484 * old one and only one page is going to be left afterwards.
4485 */
4486 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4487 }
4488
4489 /* remove redundant charge if migration failed*/
4490 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4491 struct page *oldpage, struct page *newpage, bool migration_ok)
4492 {
4493 struct page *used, *unused;
4494 struct page_cgroup *pc;
4495 bool anon;
4496
4497 if (!memcg)
4498 return;
4499
4500 if (!migration_ok) {
4501 used = oldpage;
4502 unused = newpage;
4503 } else {
4504 used = newpage;
4505 unused = oldpage;
4506 }
4507 anon = PageAnon(used);
4508 __mem_cgroup_uncharge_common(unused,
4509 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4510 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4511 true);
4512 css_put(&memcg->css);
4513 /*
4514 * We disallowed uncharge of pages under migration because mapcount
4515 * of the page goes down to zero, temporarly.
4516 * Clear the flag and check the page should be charged.
4517 */
4518 pc = lookup_page_cgroup(oldpage);
4519 lock_page_cgroup(pc);
4520 ClearPageCgroupMigration(pc);
4521 unlock_page_cgroup(pc);
4522
4523 /*
4524 * If a page is a file cache, radix-tree replacement is very atomic
4525 * and we can skip this check. When it was an Anon page, its mapcount
4526 * goes down to 0. But because we added MIGRATION flage, it's not
4527 * uncharged yet. There are several case but page->mapcount check
4528 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4529 * check. (see prepare_charge() also)
4530 */
4531 if (anon)
4532 mem_cgroup_uncharge_page(used);
4533 }
4534
4535 /*
4536 * At replace page cache, newpage is not under any memcg but it's on
4537 * LRU. So, this function doesn't touch res_counter but handles LRU
4538 * in correct way. Both pages are locked so we cannot race with uncharge.
4539 */
4540 void mem_cgroup_replace_page_cache(struct page *oldpage,
4541 struct page *newpage)
4542 {
4543 struct mem_cgroup *memcg = NULL;
4544 struct page_cgroup *pc;
4545 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4546
4547 if (mem_cgroup_disabled())
4548 return;
4549
4550 pc = lookup_page_cgroup(oldpage);
4551 /* fix accounting on old pages */
4552 lock_page_cgroup(pc);
4553 if (PageCgroupUsed(pc)) {
4554 memcg = pc->mem_cgroup;
4555 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4556 ClearPageCgroupUsed(pc);
4557 }
4558 unlock_page_cgroup(pc);
4559
4560 /*
4561 * When called from shmem_replace_page(), in some cases the
4562 * oldpage has already been charged, and in some cases not.
4563 */
4564 if (!memcg)
4565 return;
4566 /*
4567 * Even if newpage->mapping was NULL before starting replacement,
4568 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4569 * LRU while we overwrite pc->mem_cgroup.
4570 */
4571 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4572 }
4573
4574 #ifdef CONFIG_DEBUG_VM
4575 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4576 {
4577 struct page_cgroup *pc;
4578
4579 pc = lookup_page_cgroup(page);
4580 /*
4581 * Can be NULL while feeding pages into the page allocator for
4582 * the first time, i.e. during boot or memory hotplug;
4583 * or when mem_cgroup_disabled().
4584 */
4585 if (likely(pc) && PageCgroupUsed(pc))
4586 return pc;
4587 return NULL;
4588 }
4589
4590 bool mem_cgroup_bad_page_check(struct page *page)
4591 {
4592 if (mem_cgroup_disabled())
4593 return false;
4594
4595 return lookup_page_cgroup_used(page) != NULL;
4596 }
4597
4598 void mem_cgroup_print_bad_page(struct page *page)
4599 {
4600 struct page_cgroup *pc;
4601
4602 pc = lookup_page_cgroup_used(page);
4603 if (pc) {
4604 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4605 pc, pc->flags, pc->mem_cgroup);
4606 }
4607 }
4608 #endif
4609
4610 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4611 unsigned long long val)
4612 {
4613 int retry_count;
4614 u64 memswlimit, memlimit;
4615 int ret = 0;
4616 int children = mem_cgroup_count_children(memcg);
4617 u64 curusage, oldusage;
4618 int enlarge;
4619
4620 /*
4621 * For keeping hierarchical_reclaim simple, how long we should retry
4622 * is depends on callers. We set our retry-count to be function
4623 * of # of children which we should visit in this loop.
4624 */
4625 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4626
4627 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4628
4629 enlarge = 0;
4630 while (retry_count) {
4631 if (signal_pending(current)) {
4632 ret = -EINTR;
4633 break;
4634 }
4635 /*
4636 * Rather than hide all in some function, I do this in
4637 * open coded manner. You see what this really does.
4638 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4639 */
4640 mutex_lock(&set_limit_mutex);
4641 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4642 if (memswlimit < val) {
4643 ret = -EINVAL;
4644 mutex_unlock(&set_limit_mutex);
4645 break;
4646 }
4647
4648 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4649 if (memlimit < val)
4650 enlarge = 1;
4651
4652 ret = res_counter_set_limit(&memcg->res, val);
4653 if (!ret) {
4654 if (memswlimit == val)
4655 memcg->memsw_is_minimum = true;
4656 else
4657 memcg->memsw_is_minimum = false;
4658 }
4659 mutex_unlock(&set_limit_mutex);
4660
4661 if (!ret)
4662 break;
4663
4664 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4665 MEM_CGROUP_RECLAIM_SHRINK);
4666 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4667 /* Usage is reduced ? */
4668 if (curusage >= oldusage)
4669 retry_count--;
4670 else
4671 oldusage = curusage;
4672 }
4673 if (!ret && enlarge)
4674 memcg_oom_recover(memcg);
4675
4676 return ret;
4677 }
4678
4679 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4680 unsigned long long val)
4681 {
4682 int retry_count;
4683 u64 memlimit, memswlimit, oldusage, curusage;
4684 int children = mem_cgroup_count_children(memcg);
4685 int ret = -EBUSY;
4686 int enlarge = 0;
4687
4688 /* see mem_cgroup_resize_res_limit */
4689 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4690 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4691 while (retry_count) {
4692 if (signal_pending(current)) {
4693 ret = -EINTR;
4694 break;
4695 }
4696 /*
4697 * Rather than hide all in some function, I do this in
4698 * open coded manner. You see what this really does.
4699 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4700 */
4701 mutex_lock(&set_limit_mutex);
4702 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4703 if (memlimit > val) {
4704 ret = -EINVAL;
4705 mutex_unlock(&set_limit_mutex);
4706 break;
4707 }
4708 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4709 if (memswlimit < val)
4710 enlarge = 1;
4711 ret = res_counter_set_limit(&memcg->memsw, val);
4712 if (!ret) {
4713 if (memlimit == val)
4714 memcg->memsw_is_minimum = true;
4715 else
4716 memcg->memsw_is_minimum = false;
4717 }
4718 mutex_unlock(&set_limit_mutex);
4719
4720 if (!ret)
4721 break;
4722
4723 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4724 MEM_CGROUP_RECLAIM_NOSWAP |
4725 MEM_CGROUP_RECLAIM_SHRINK);
4726 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4727 /* Usage is reduced ? */
4728 if (curusage >= oldusage)
4729 retry_count--;
4730 else
4731 oldusage = curusage;
4732 }
4733 if (!ret && enlarge)
4734 memcg_oom_recover(memcg);
4735 return ret;
4736 }
4737
4738 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4739 gfp_t gfp_mask,
4740 unsigned long *total_scanned)
4741 {
4742 unsigned long nr_reclaimed = 0;
4743 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4744 unsigned long reclaimed;
4745 int loop = 0;
4746 struct mem_cgroup_tree_per_zone *mctz;
4747 unsigned long long excess;
4748 unsigned long nr_scanned;
4749
4750 if (order > 0)
4751 return 0;
4752
4753 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4754 /*
4755 * This loop can run a while, specially if mem_cgroup's continuously
4756 * keep exceeding their soft limit and putting the system under
4757 * pressure
4758 */
4759 do {
4760 if (next_mz)
4761 mz = next_mz;
4762 else
4763 mz = mem_cgroup_largest_soft_limit_node(mctz);
4764 if (!mz)
4765 break;
4766
4767 nr_scanned = 0;
4768 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4769 gfp_mask, &nr_scanned);
4770 nr_reclaimed += reclaimed;
4771 *total_scanned += nr_scanned;
4772 spin_lock(&mctz->lock);
4773
4774 /*
4775 * If we failed to reclaim anything from this memory cgroup
4776 * it is time to move on to the next cgroup
4777 */
4778 next_mz = NULL;
4779 if (!reclaimed) {
4780 do {
4781 /*
4782 * Loop until we find yet another one.
4783 *
4784 * By the time we get the soft_limit lock
4785 * again, someone might have aded the
4786 * group back on the RB tree. Iterate to
4787 * make sure we get a different mem.
4788 * mem_cgroup_largest_soft_limit_node returns
4789 * NULL if no other cgroup is present on
4790 * the tree
4791 */
4792 next_mz =
4793 __mem_cgroup_largest_soft_limit_node(mctz);
4794 if (next_mz == mz)
4795 css_put(&next_mz->memcg->css);
4796 else /* next_mz == NULL or other memcg */
4797 break;
4798 } while (1);
4799 }
4800 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4801 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4802 /*
4803 * One school of thought says that we should not add
4804 * back the node to the tree if reclaim returns 0.
4805 * But our reclaim could return 0, simply because due
4806 * to priority we are exposing a smaller subset of
4807 * memory to reclaim from. Consider this as a longer
4808 * term TODO.
4809 */
4810 /* If excess == 0, no tree ops */
4811 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4812 spin_unlock(&mctz->lock);
4813 css_put(&mz->memcg->css);
4814 loop++;
4815 /*
4816 * Could not reclaim anything and there are no more
4817 * mem cgroups to try or we seem to be looping without
4818 * reclaiming anything.
4819 */
4820 if (!nr_reclaimed &&
4821 (next_mz == NULL ||
4822 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4823 break;
4824 } while (!nr_reclaimed);
4825 if (next_mz)
4826 css_put(&next_mz->memcg->css);
4827 return nr_reclaimed;
4828 }
4829
4830 /**
4831 * mem_cgroup_force_empty_list - clears LRU of a group
4832 * @memcg: group to clear
4833 * @node: NUMA node
4834 * @zid: zone id
4835 * @lru: lru to to clear
4836 *
4837 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4838 * reclaim the pages page themselves - pages are moved to the parent (or root)
4839 * group.
4840 */
4841 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4842 int node, int zid, enum lru_list lru)
4843 {
4844 struct lruvec *lruvec;
4845 unsigned long flags;
4846 struct list_head *list;
4847 struct page *busy;
4848 struct zone *zone;
4849
4850 zone = &NODE_DATA(node)->node_zones[zid];
4851 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4852 list = &lruvec->lists[lru];
4853
4854 busy = NULL;
4855 do {
4856 struct page_cgroup *pc;
4857 struct page *page;
4858
4859 spin_lock_irqsave(&zone->lru_lock, flags);
4860 if (list_empty(list)) {
4861 spin_unlock_irqrestore(&zone->lru_lock, flags);
4862 break;
4863 }
4864 page = list_entry(list->prev, struct page, lru);
4865 if (busy == page) {
4866 list_move(&page->lru, list);
4867 busy = NULL;
4868 spin_unlock_irqrestore(&zone->lru_lock, flags);
4869 continue;
4870 }
4871 spin_unlock_irqrestore(&zone->lru_lock, flags);
4872
4873 pc = lookup_page_cgroup(page);
4874
4875 if (mem_cgroup_move_parent(page, pc, memcg)) {
4876 /* found lock contention or "pc" is obsolete. */
4877 busy = page;
4878 cond_resched();
4879 } else
4880 busy = NULL;
4881 } while (!list_empty(list));
4882 }
4883
4884 /*
4885 * make mem_cgroup's charge to be 0 if there is no task by moving
4886 * all the charges and pages to the parent.
4887 * This enables deleting this mem_cgroup.
4888 *
4889 * Caller is responsible for holding css reference on the memcg.
4890 */
4891 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4892 {
4893 int node, zid;
4894 u64 usage;
4895
4896 do {
4897 /* This is for making all *used* pages to be on LRU. */
4898 lru_add_drain_all();
4899 drain_all_stock_sync(memcg);
4900 mem_cgroup_start_move(memcg);
4901 for_each_node_state(node, N_MEMORY) {
4902 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4903 enum lru_list lru;
4904 for_each_lru(lru) {
4905 mem_cgroup_force_empty_list(memcg,
4906 node, zid, lru);
4907 }
4908 }
4909 }
4910 mem_cgroup_end_move(memcg);
4911 memcg_oom_recover(memcg);
4912 cond_resched();
4913
4914 /*
4915 * Kernel memory may not necessarily be trackable to a specific
4916 * process. So they are not migrated, and therefore we can't
4917 * expect their value to drop to 0 here.
4918 * Having res filled up with kmem only is enough.
4919 *
4920 * This is a safety check because mem_cgroup_force_empty_list
4921 * could have raced with mem_cgroup_replace_page_cache callers
4922 * so the lru seemed empty but the page could have been added
4923 * right after the check. RES_USAGE should be safe as we always
4924 * charge before adding to the LRU.
4925 */
4926 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4927 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4928 } while (usage > 0);
4929 }
4930
4931 /*
4932 * This mainly exists for tests during the setting of set of use_hierarchy.
4933 * Since this is the very setting we are changing, the current hierarchy value
4934 * is meaningless
4935 */
4936 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4937 {
4938 struct cgroup *pos;
4939
4940 /* bounce at first found */
4941 cgroup_for_each_child(pos, memcg->css.cgroup)
4942 return true;
4943 return false;
4944 }
4945
4946 /*
4947 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4948 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4949 * from mem_cgroup_count_children(), in the sense that we don't really care how
4950 * many children we have; we only need to know if we have any. It also counts
4951 * any memcg without hierarchy as infertile.
4952 */
4953 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4954 {
4955 return memcg->use_hierarchy && __memcg_has_children(memcg);
4956 }
4957
4958 /*
4959 * Reclaims as many pages from the given memcg as possible and moves
4960 * the rest to the parent.
4961 *
4962 * Caller is responsible for holding css reference for memcg.
4963 */
4964 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4965 {
4966 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4967 struct cgroup *cgrp = memcg->css.cgroup;
4968
4969 /* returns EBUSY if there is a task or if we come here twice. */
4970 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4971 return -EBUSY;
4972
4973 /* we call try-to-free pages for make this cgroup empty */
4974 lru_add_drain_all();
4975 /* try to free all pages in this cgroup */
4976 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4977 int progress;
4978
4979 if (signal_pending(current))
4980 return -EINTR;
4981
4982 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4983 false);
4984 if (!progress) {
4985 nr_retries--;
4986 /* maybe some writeback is necessary */
4987 congestion_wait(BLK_RW_ASYNC, HZ/10);
4988 }
4989
4990 }
4991 lru_add_drain();
4992 mem_cgroup_reparent_charges(memcg);
4993
4994 return 0;
4995 }
4996
4997 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4998 {
4999 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5000 int ret;
5001
5002 if (mem_cgroup_is_root(memcg))
5003 return -EINVAL;
5004 css_get(&memcg->css);
5005 ret = mem_cgroup_force_empty(memcg);
5006 css_put(&memcg->css);
5007
5008 return ret;
5009 }
5010
5011
5012 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
5013 {
5014 return mem_cgroup_from_cont(cont)->use_hierarchy;
5015 }
5016
5017 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
5018 u64 val)
5019 {
5020 int retval = 0;
5021 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5022 struct cgroup *parent = cont->parent;
5023 struct mem_cgroup *parent_memcg = NULL;
5024
5025 if (parent)
5026 parent_memcg = mem_cgroup_from_cont(parent);
5027
5028 mutex_lock(&memcg_create_mutex);
5029
5030 if (memcg->use_hierarchy == val)
5031 goto out;
5032
5033 /*
5034 * If parent's use_hierarchy is set, we can't make any modifications
5035 * in the child subtrees. If it is unset, then the change can
5036 * occur, provided the current cgroup has no children.
5037 *
5038 * For the root cgroup, parent_mem is NULL, we allow value to be
5039 * set if there are no children.
5040 */
5041 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5042 (val == 1 || val == 0)) {
5043 if (!__memcg_has_children(memcg))
5044 memcg->use_hierarchy = val;
5045 else
5046 retval = -EBUSY;
5047 } else
5048 retval = -EINVAL;
5049
5050 out:
5051 mutex_unlock(&memcg_create_mutex);
5052
5053 return retval;
5054 }
5055
5056
5057 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5058 enum mem_cgroup_stat_index idx)
5059 {
5060 struct mem_cgroup *iter;
5061 long val = 0;
5062
5063 /* Per-cpu values can be negative, use a signed accumulator */
5064 for_each_mem_cgroup_tree(iter, memcg)
5065 val += mem_cgroup_read_stat(iter, idx);
5066
5067 if (val < 0) /* race ? */
5068 val = 0;
5069 return val;
5070 }
5071
5072 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5073 {
5074 u64 val;
5075
5076 if (!mem_cgroup_is_root(memcg)) {
5077 if (!swap)
5078 return res_counter_read_u64(&memcg->res, RES_USAGE);
5079 else
5080 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5081 }
5082
5083 /*
5084 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5085 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5086 */
5087 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5088 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5089
5090 if (swap)
5091 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5092
5093 return val << PAGE_SHIFT;
5094 }
5095
5096 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5097 struct file *file, char __user *buf,
5098 size_t nbytes, loff_t *ppos)
5099 {
5100 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5101 char str[64];
5102 u64 val;
5103 int name, len;
5104 enum res_type type;
5105
5106 type = MEMFILE_TYPE(cft->private);
5107 name = MEMFILE_ATTR(cft->private);
5108
5109 switch (type) {
5110 case _MEM:
5111 if (name == RES_USAGE)
5112 val = mem_cgroup_usage(memcg, false);
5113 else
5114 val = res_counter_read_u64(&memcg->res, name);
5115 break;
5116 case _MEMSWAP:
5117 if (name == RES_USAGE)
5118 val = mem_cgroup_usage(memcg, true);
5119 else
5120 val = res_counter_read_u64(&memcg->memsw, name);
5121 break;
5122 case _KMEM:
5123 val = res_counter_read_u64(&memcg->kmem, name);
5124 break;
5125 default:
5126 BUG();
5127 }
5128
5129 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5130 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5131 }
5132
5133 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5134 {
5135 int ret = -EINVAL;
5136 #ifdef CONFIG_MEMCG_KMEM
5137 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5138 /*
5139 * For simplicity, we won't allow this to be disabled. It also can't
5140 * be changed if the cgroup has children already, or if tasks had
5141 * already joined.
5142 *
5143 * If tasks join before we set the limit, a person looking at
5144 * kmem.usage_in_bytes will have no way to determine when it took
5145 * place, which makes the value quite meaningless.
5146 *
5147 * After it first became limited, changes in the value of the limit are
5148 * of course permitted.
5149 */
5150 mutex_lock(&memcg_create_mutex);
5151 mutex_lock(&set_limit_mutex);
5152 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5153 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5154 ret = -EBUSY;
5155 goto out;
5156 }
5157 ret = res_counter_set_limit(&memcg->kmem, val);
5158 VM_BUG_ON(ret);
5159
5160 ret = memcg_update_cache_sizes(memcg);
5161 if (ret) {
5162 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5163 goto out;
5164 }
5165 static_key_slow_inc(&memcg_kmem_enabled_key);
5166 /*
5167 * setting the active bit after the inc will guarantee no one
5168 * starts accounting before all call sites are patched
5169 */
5170 memcg_kmem_set_active(memcg);
5171
5172 /*
5173 * kmem charges can outlive the cgroup. In the case of slab
5174 * pages, for instance, a page contain objects from various
5175 * processes, so it is unfeasible to migrate them away. We
5176 * need to reference count the memcg because of that.
5177 */
5178 mem_cgroup_get(memcg);
5179 } else
5180 ret = res_counter_set_limit(&memcg->kmem, val);
5181 out:
5182 mutex_unlock(&set_limit_mutex);
5183 mutex_unlock(&memcg_create_mutex);
5184 #endif
5185 return ret;
5186 }
5187
5188 #ifdef CONFIG_MEMCG_KMEM
5189 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5190 {
5191 int ret = 0;
5192 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5193 if (!parent)
5194 goto out;
5195
5196 memcg->kmem_account_flags = parent->kmem_account_flags;
5197 /*
5198 * When that happen, we need to disable the static branch only on those
5199 * memcgs that enabled it. To achieve this, we would be forced to
5200 * complicate the code by keeping track of which memcgs were the ones
5201 * that actually enabled limits, and which ones got it from its
5202 * parents.
5203 *
5204 * It is a lot simpler just to do static_key_slow_inc() on every child
5205 * that is accounted.
5206 */
5207 if (!memcg_kmem_is_active(memcg))
5208 goto out;
5209
5210 /*
5211 * destroy(), called if we fail, will issue static_key_slow_inc() and
5212 * mem_cgroup_put() if kmem is enabled. We have to either call them
5213 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5214 * this more consistent, since it always leads to the same destroy path
5215 */
5216 mem_cgroup_get(memcg);
5217 static_key_slow_inc(&memcg_kmem_enabled_key);
5218
5219 mutex_lock(&set_limit_mutex);
5220 ret = memcg_update_cache_sizes(memcg);
5221 mutex_unlock(&set_limit_mutex);
5222 out:
5223 return ret;
5224 }
5225 #endif /* CONFIG_MEMCG_KMEM */
5226
5227 /*
5228 * The user of this function is...
5229 * RES_LIMIT.
5230 */
5231 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5232 const char *buffer)
5233 {
5234 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5235 enum res_type type;
5236 int name;
5237 unsigned long long val;
5238 int ret;
5239
5240 type = MEMFILE_TYPE(cft->private);
5241 name = MEMFILE_ATTR(cft->private);
5242
5243 switch (name) {
5244 case RES_LIMIT:
5245 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5246 ret = -EINVAL;
5247 break;
5248 }
5249 /* This function does all necessary parse...reuse it */
5250 ret = res_counter_memparse_write_strategy(buffer, &val);
5251 if (ret)
5252 break;
5253 if (type == _MEM)
5254 ret = mem_cgroup_resize_limit(memcg, val);
5255 else if (type == _MEMSWAP)
5256 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5257 else if (type == _KMEM)
5258 ret = memcg_update_kmem_limit(cont, val);
5259 else
5260 return -EINVAL;
5261 break;
5262 case RES_SOFT_LIMIT:
5263 ret = res_counter_memparse_write_strategy(buffer, &val);
5264 if (ret)
5265 break;
5266 /*
5267 * For memsw, soft limits are hard to implement in terms
5268 * of semantics, for now, we support soft limits for
5269 * control without swap
5270 */
5271 if (type == _MEM)
5272 ret = res_counter_set_soft_limit(&memcg->res, val);
5273 else
5274 ret = -EINVAL;
5275 break;
5276 default:
5277 ret = -EINVAL; /* should be BUG() ? */
5278 break;
5279 }
5280 return ret;
5281 }
5282
5283 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5284 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5285 {
5286 struct cgroup *cgroup;
5287 unsigned long long min_limit, min_memsw_limit, tmp;
5288
5289 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5290 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5291 cgroup = memcg->css.cgroup;
5292 if (!memcg->use_hierarchy)
5293 goto out;
5294
5295 while (cgroup->parent) {
5296 cgroup = cgroup->parent;
5297 memcg = mem_cgroup_from_cont(cgroup);
5298 if (!memcg->use_hierarchy)
5299 break;
5300 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5301 min_limit = min(min_limit, tmp);
5302 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5303 min_memsw_limit = min(min_memsw_limit, tmp);
5304 }
5305 out:
5306 *mem_limit = min_limit;
5307 *memsw_limit = min_memsw_limit;
5308 }
5309
5310 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5311 {
5312 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5313 int name;
5314 enum res_type type;
5315
5316 type = MEMFILE_TYPE(event);
5317 name = MEMFILE_ATTR(event);
5318
5319 switch (name) {
5320 case RES_MAX_USAGE:
5321 if (type == _MEM)
5322 res_counter_reset_max(&memcg->res);
5323 else if (type == _MEMSWAP)
5324 res_counter_reset_max(&memcg->memsw);
5325 else if (type == _KMEM)
5326 res_counter_reset_max(&memcg->kmem);
5327 else
5328 return -EINVAL;
5329 break;
5330 case RES_FAILCNT:
5331 if (type == _MEM)
5332 res_counter_reset_failcnt(&memcg->res);
5333 else if (type == _MEMSWAP)
5334 res_counter_reset_failcnt(&memcg->memsw);
5335 else if (type == _KMEM)
5336 res_counter_reset_failcnt(&memcg->kmem);
5337 else
5338 return -EINVAL;
5339 break;
5340 }
5341
5342 return 0;
5343 }
5344
5345 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5346 struct cftype *cft)
5347 {
5348 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5349 }
5350
5351 #ifdef CONFIG_MMU
5352 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5353 struct cftype *cft, u64 val)
5354 {
5355 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5356
5357 if (val >= (1 << NR_MOVE_TYPE))
5358 return -EINVAL;
5359
5360 /*
5361 * No kind of locking is needed in here, because ->can_attach() will
5362 * check this value once in the beginning of the process, and then carry
5363 * on with stale data. This means that changes to this value will only
5364 * affect task migrations starting after the change.
5365 */
5366 memcg->move_charge_at_immigrate = val;
5367 return 0;
5368 }
5369 #else
5370 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5371 struct cftype *cft, u64 val)
5372 {
5373 return -ENOSYS;
5374 }
5375 #endif
5376
5377 #ifdef CONFIG_NUMA
5378 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5379 struct seq_file *m)
5380 {
5381 int nid;
5382 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5383 unsigned long node_nr;
5384 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5385
5386 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5387 seq_printf(m, "total=%lu", total_nr);
5388 for_each_node_state(nid, N_MEMORY) {
5389 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5390 seq_printf(m, " N%d=%lu", nid, node_nr);
5391 }
5392 seq_putc(m, '\n');
5393
5394 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5395 seq_printf(m, "file=%lu", file_nr);
5396 for_each_node_state(nid, N_MEMORY) {
5397 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5398 LRU_ALL_FILE);
5399 seq_printf(m, " N%d=%lu", nid, node_nr);
5400 }
5401 seq_putc(m, '\n');
5402
5403 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5404 seq_printf(m, "anon=%lu", anon_nr);
5405 for_each_node_state(nid, N_MEMORY) {
5406 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5407 LRU_ALL_ANON);
5408 seq_printf(m, " N%d=%lu", nid, node_nr);
5409 }
5410 seq_putc(m, '\n');
5411
5412 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5413 seq_printf(m, "unevictable=%lu", unevictable_nr);
5414 for_each_node_state(nid, N_MEMORY) {
5415 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5416 BIT(LRU_UNEVICTABLE));
5417 seq_printf(m, " N%d=%lu", nid, node_nr);
5418 }
5419 seq_putc(m, '\n');
5420 return 0;
5421 }
5422 #endif /* CONFIG_NUMA */
5423
5424 static inline void mem_cgroup_lru_names_not_uptodate(void)
5425 {
5426 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5427 }
5428
5429 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5430 struct seq_file *m)
5431 {
5432 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5433 struct mem_cgroup *mi;
5434 unsigned int i;
5435
5436 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5437 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5438 continue;
5439 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5440 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5441 }
5442
5443 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5444 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5445 mem_cgroup_read_events(memcg, i));
5446
5447 for (i = 0; i < NR_LRU_LISTS; i++)
5448 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5449 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5450
5451 /* Hierarchical information */
5452 {
5453 unsigned long long limit, memsw_limit;
5454 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5455 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5456 if (do_swap_account)
5457 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5458 memsw_limit);
5459 }
5460
5461 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5462 long long val = 0;
5463
5464 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5465 continue;
5466 for_each_mem_cgroup_tree(mi, memcg)
5467 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5468 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5469 }
5470
5471 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5472 unsigned long long val = 0;
5473
5474 for_each_mem_cgroup_tree(mi, memcg)
5475 val += mem_cgroup_read_events(mi, i);
5476 seq_printf(m, "total_%s %llu\n",
5477 mem_cgroup_events_names[i], val);
5478 }
5479
5480 for (i = 0; i < NR_LRU_LISTS; i++) {
5481 unsigned long long val = 0;
5482
5483 for_each_mem_cgroup_tree(mi, memcg)
5484 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5485 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5486 }
5487
5488 #ifdef CONFIG_DEBUG_VM
5489 {
5490 int nid, zid;
5491 struct mem_cgroup_per_zone *mz;
5492 struct zone_reclaim_stat *rstat;
5493 unsigned long recent_rotated[2] = {0, 0};
5494 unsigned long recent_scanned[2] = {0, 0};
5495
5496 for_each_online_node(nid)
5497 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5498 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5499 rstat = &mz->lruvec.reclaim_stat;
5500
5501 recent_rotated[0] += rstat->recent_rotated[0];
5502 recent_rotated[1] += rstat->recent_rotated[1];
5503 recent_scanned[0] += rstat->recent_scanned[0];
5504 recent_scanned[1] += rstat->recent_scanned[1];
5505 }
5506 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5507 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5508 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5509 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5510 }
5511 #endif
5512
5513 return 0;
5514 }
5515
5516 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5517 {
5518 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5519
5520 return mem_cgroup_swappiness(memcg);
5521 }
5522
5523 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5524 u64 val)
5525 {
5526 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5527 struct mem_cgroup *parent;
5528
5529 if (val > 100)
5530 return -EINVAL;
5531
5532 if (cgrp->parent == NULL)
5533 return -EINVAL;
5534
5535 parent = mem_cgroup_from_cont(cgrp->parent);
5536
5537 mutex_lock(&memcg_create_mutex);
5538
5539 /* If under hierarchy, only empty-root can set this value */
5540 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5541 mutex_unlock(&memcg_create_mutex);
5542 return -EINVAL;
5543 }
5544
5545 memcg->swappiness = val;
5546
5547 mutex_unlock(&memcg_create_mutex);
5548
5549 return 0;
5550 }
5551
5552 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5553 {
5554 struct mem_cgroup_threshold_ary *t;
5555 u64 usage;
5556 int i;
5557
5558 rcu_read_lock();
5559 if (!swap)
5560 t = rcu_dereference(memcg->thresholds.primary);
5561 else
5562 t = rcu_dereference(memcg->memsw_thresholds.primary);
5563
5564 if (!t)
5565 goto unlock;
5566
5567 usage = mem_cgroup_usage(memcg, swap);
5568
5569 /*
5570 * current_threshold points to threshold just below or equal to usage.
5571 * If it's not true, a threshold was crossed after last
5572 * call of __mem_cgroup_threshold().
5573 */
5574 i = t->current_threshold;
5575
5576 /*
5577 * Iterate backward over array of thresholds starting from
5578 * current_threshold and check if a threshold is crossed.
5579 * If none of thresholds below usage is crossed, we read
5580 * only one element of the array here.
5581 */
5582 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5583 eventfd_signal(t->entries[i].eventfd, 1);
5584
5585 /* i = current_threshold + 1 */
5586 i++;
5587
5588 /*
5589 * Iterate forward over array of thresholds starting from
5590 * current_threshold+1 and check if a threshold is crossed.
5591 * If none of thresholds above usage is crossed, we read
5592 * only one element of the array here.
5593 */
5594 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5595 eventfd_signal(t->entries[i].eventfd, 1);
5596
5597 /* Update current_threshold */
5598 t->current_threshold = i - 1;
5599 unlock:
5600 rcu_read_unlock();
5601 }
5602
5603 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5604 {
5605 while (memcg) {
5606 __mem_cgroup_threshold(memcg, false);
5607 if (do_swap_account)
5608 __mem_cgroup_threshold(memcg, true);
5609
5610 memcg = parent_mem_cgroup(memcg);
5611 }
5612 }
5613
5614 static int compare_thresholds(const void *a, const void *b)
5615 {
5616 const struct mem_cgroup_threshold *_a = a;
5617 const struct mem_cgroup_threshold *_b = b;
5618
5619 if (_a->threshold > _b->threshold)
5620 return 1;
5621
5622 if (_a->threshold < _b->threshold)
5623 return -1;
5624
5625 return 0;
5626 }
5627
5628 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5629 {
5630 struct mem_cgroup_eventfd_list *ev;
5631
5632 list_for_each_entry(ev, &memcg->oom_notify, list)
5633 eventfd_signal(ev->eventfd, 1);
5634 return 0;
5635 }
5636
5637 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5638 {
5639 struct mem_cgroup *iter;
5640
5641 for_each_mem_cgroup_tree(iter, memcg)
5642 mem_cgroup_oom_notify_cb(iter);
5643 }
5644
5645 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5646 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5647 {
5648 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5649 struct mem_cgroup_thresholds *thresholds;
5650 struct mem_cgroup_threshold_ary *new;
5651 enum res_type type = MEMFILE_TYPE(cft->private);
5652 u64 threshold, usage;
5653 int i, size, ret;
5654
5655 ret = res_counter_memparse_write_strategy(args, &threshold);
5656 if (ret)
5657 return ret;
5658
5659 mutex_lock(&memcg->thresholds_lock);
5660
5661 if (type == _MEM)
5662 thresholds = &memcg->thresholds;
5663 else if (type == _MEMSWAP)
5664 thresholds = &memcg->memsw_thresholds;
5665 else
5666 BUG();
5667
5668 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5669
5670 /* Check if a threshold crossed before adding a new one */
5671 if (thresholds->primary)
5672 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5673
5674 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5675
5676 /* Allocate memory for new array of thresholds */
5677 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5678 GFP_KERNEL);
5679 if (!new) {
5680 ret = -ENOMEM;
5681 goto unlock;
5682 }
5683 new->size = size;
5684
5685 /* Copy thresholds (if any) to new array */
5686 if (thresholds->primary) {
5687 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5688 sizeof(struct mem_cgroup_threshold));
5689 }
5690
5691 /* Add new threshold */
5692 new->entries[size - 1].eventfd = eventfd;
5693 new->entries[size - 1].threshold = threshold;
5694
5695 /* Sort thresholds. Registering of new threshold isn't time-critical */
5696 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5697 compare_thresholds, NULL);
5698
5699 /* Find current threshold */
5700 new->current_threshold = -1;
5701 for (i = 0; i < size; i++) {
5702 if (new->entries[i].threshold <= usage) {
5703 /*
5704 * new->current_threshold will not be used until
5705 * rcu_assign_pointer(), so it's safe to increment
5706 * it here.
5707 */
5708 ++new->current_threshold;
5709 } else
5710 break;
5711 }
5712
5713 /* Free old spare buffer and save old primary buffer as spare */
5714 kfree(thresholds->spare);
5715 thresholds->spare = thresholds->primary;
5716
5717 rcu_assign_pointer(thresholds->primary, new);
5718
5719 /* To be sure that nobody uses thresholds */
5720 synchronize_rcu();
5721
5722 unlock:
5723 mutex_unlock(&memcg->thresholds_lock);
5724
5725 return ret;
5726 }
5727
5728 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5729 struct cftype *cft, struct eventfd_ctx *eventfd)
5730 {
5731 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5732 struct mem_cgroup_thresholds *thresholds;
5733 struct mem_cgroup_threshold_ary *new;
5734 enum res_type type = MEMFILE_TYPE(cft->private);
5735 u64 usage;
5736 int i, j, size;
5737
5738 mutex_lock(&memcg->thresholds_lock);
5739 if (type == _MEM)
5740 thresholds = &memcg->thresholds;
5741 else if (type == _MEMSWAP)
5742 thresholds = &memcg->memsw_thresholds;
5743 else
5744 BUG();
5745
5746 if (!thresholds->primary)
5747 goto unlock;
5748
5749 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5750
5751 /* Check if a threshold crossed before removing */
5752 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5753
5754 /* Calculate new number of threshold */
5755 size = 0;
5756 for (i = 0; i < thresholds->primary->size; i++) {
5757 if (thresholds->primary->entries[i].eventfd != eventfd)
5758 size++;
5759 }
5760
5761 new = thresholds->spare;
5762
5763 /* Set thresholds array to NULL if we don't have thresholds */
5764 if (!size) {
5765 kfree(new);
5766 new = NULL;
5767 goto swap_buffers;
5768 }
5769
5770 new->size = size;
5771
5772 /* Copy thresholds and find current threshold */
5773 new->current_threshold = -1;
5774 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5775 if (thresholds->primary->entries[i].eventfd == eventfd)
5776 continue;
5777
5778 new->entries[j] = thresholds->primary->entries[i];
5779 if (new->entries[j].threshold <= usage) {
5780 /*
5781 * new->current_threshold will not be used
5782 * until rcu_assign_pointer(), so it's safe to increment
5783 * it here.
5784 */
5785 ++new->current_threshold;
5786 }
5787 j++;
5788 }
5789
5790 swap_buffers:
5791 /* Swap primary and spare array */
5792 thresholds->spare = thresholds->primary;
5793
5794 rcu_assign_pointer(thresholds->primary, new);
5795
5796 /* To be sure that nobody uses thresholds */
5797 synchronize_rcu();
5798
5799 /* If all events are unregistered, free the spare array */
5800 if (!new) {
5801 kfree(thresholds->spare);
5802 thresholds->spare = NULL;
5803 }
5804 unlock:
5805 mutex_unlock(&memcg->thresholds_lock);
5806 }
5807
5808 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5809 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5810 {
5811 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5812 struct mem_cgroup_eventfd_list *event;
5813 enum res_type type = MEMFILE_TYPE(cft->private);
5814
5815 BUG_ON(type != _OOM_TYPE);
5816 event = kmalloc(sizeof(*event), GFP_KERNEL);
5817 if (!event)
5818 return -ENOMEM;
5819
5820 spin_lock(&memcg_oom_lock);
5821
5822 event->eventfd = eventfd;
5823 list_add(&event->list, &memcg->oom_notify);
5824
5825 /* already in OOM ? */
5826 if (atomic_read(&memcg->under_oom))
5827 eventfd_signal(eventfd, 1);
5828 spin_unlock(&memcg_oom_lock);
5829
5830 return 0;
5831 }
5832
5833 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5834 struct cftype *cft, struct eventfd_ctx *eventfd)
5835 {
5836 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5837 struct mem_cgroup_eventfd_list *ev, *tmp;
5838 enum res_type type = MEMFILE_TYPE(cft->private);
5839
5840 BUG_ON(type != _OOM_TYPE);
5841
5842 spin_lock(&memcg_oom_lock);
5843
5844 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5845 if (ev->eventfd == eventfd) {
5846 list_del(&ev->list);
5847 kfree(ev);
5848 }
5849 }
5850
5851 spin_unlock(&memcg_oom_lock);
5852 }
5853
5854 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5855 struct cftype *cft, struct cgroup_map_cb *cb)
5856 {
5857 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5858
5859 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5860
5861 if (atomic_read(&memcg->under_oom))
5862 cb->fill(cb, "under_oom", 1);
5863 else
5864 cb->fill(cb, "under_oom", 0);
5865 return 0;
5866 }
5867
5868 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5869 struct cftype *cft, u64 val)
5870 {
5871 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5872 struct mem_cgroup *parent;
5873
5874 /* cannot set to root cgroup and only 0 and 1 are allowed */
5875 if (!cgrp->parent || !((val == 0) || (val == 1)))
5876 return -EINVAL;
5877
5878 parent = mem_cgroup_from_cont(cgrp->parent);
5879
5880 mutex_lock(&memcg_create_mutex);
5881 /* oom-kill-disable is a flag for subhierarchy. */
5882 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5883 mutex_unlock(&memcg_create_mutex);
5884 return -EINVAL;
5885 }
5886 memcg->oom_kill_disable = val;
5887 if (!val)
5888 memcg_oom_recover(memcg);
5889 mutex_unlock(&memcg_create_mutex);
5890 return 0;
5891 }
5892
5893 #ifdef CONFIG_MEMCG_KMEM
5894 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5895 {
5896 int ret;
5897
5898 memcg->kmemcg_id = -1;
5899 ret = memcg_propagate_kmem(memcg);
5900 if (ret)
5901 return ret;
5902
5903 return mem_cgroup_sockets_init(memcg, ss);
5904 }
5905
5906 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5907 {
5908 mem_cgroup_sockets_destroy(memcg);
5909
5910 memcg_kmem_mark_dead(memcg);
5911
5912 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5913 return;
5914
5915 /*
5916 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5917 * path here, being careful not to race with memcg_uncharge_kmem: it is
5918 * possible that the charges went down to 0 between mark_dead and the
5919 * res_counter read, so in that case, we don't need the put
5920 */
5921 if (memcg_kmem_test_and_clear_dead(memcg))
5922 mem_cgroup_put(memcg);
5923 }
5924 #else
5925 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5926 {
5927 return 0;
5928 }
5929
5930 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5931 {
5932 }
5933 #endif
5934
5935 static struct cftype mem_cgroup_files[] = {
5936 {
5937 .name = "usage_in_bytes",
5938 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5939 .read = mem_cgroup_read,
5940 .register_event = mem_cgroup_usage_register_event,
5941 .unregister_event = mem_cgroup_usage_unregister_event,
5942 },
5943 {
5944 .name = "max_usage_in_bytes",
5945 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5946 .trigger = mem_cgroup_reset,
5947 .read = mem_cgroup_read,
5948 },
5949 {
5950 .name = "limit_in_bytes",
5951 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5952 .write_string = mem_cgroup_write,
5953 .read = mem_cgroup_read,
5954 },
5955 {
5956 .name = "soft_limit_in_bytes",
5957 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5958 .write_string = mem_cgroup_write,
5959 .read = mem_cgroup_read,
5960 },
5961 {
5962 .name = "failcnt",
5963 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5964 .trigger = mem_cgroup_reset,
5965 .read = mem_cgroup_read,
5966 },
5967 {
5968 .name = "stat",
5969 .read_seq_string = memcg_stat_show,
5970 },
5971 {
5972 .name = "force_empty",
5973 .trigger = mem_cgroup_force_empty_write,
5974 },
5975 {
5976 .name = "use_hierarchy",
5977 .flags = CFTYPE_INSANE,
5978 .write_u64 = mem_cgroup_hierarchy_write,
5979 .read_u64 = mem_cgroup_hierarchy_read,
5980 },
5981 {
5982 .name = "swappiness",
5983 .read_u64 = mem_cgroup_swappiness_read,
5984 .write_u64 = mem_cgroup_swappiness_write,
5985 },
5986 {
5987 .name = "move_charge_at_immigrate",
5988 .read_u64 = mem_cgroup_move_charge_read,
5989 .write_u64 = mem_cgroup_move_charge_write,
5990 },
5991 {
5992 .name = "oom_control",
5993 .read_map = mem_cgroup_oom_control_read,
5994 .write_u64 = mem_cgroup_oom_control_write,
5995 .register_event = mem_cgroup_oom_register_event,
5996 .unregister_event = mem_cgroup_oom_unregister_event,
5997 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5998 },
5999 {
6000 .name = "pressure_level",
6001 .register_event = vmpressure_register_event,
6002 .unregister_event = vmpressure_unregister_event,
6003 },
6004 #ifdef CONFIG_NUMA
6005 {
6006 .name = "numa_stat",
6007 .read_seq_string = memcg_numa_stat_show,
6008 },
6009 #endif
6010 #ifdef CONFIG_MEMCG_KMEM
6011 {
6012 .name = "kmem.limit_in_bytes",
6013 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6014 .write_string = mem_cgroup_write,
6015 .read = mem_cgroup_read,
6016 },
6017 {
6018 .name = "kmem.usage_in_bytes",
6019 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6020 .read = mem_cgroup_read,
6021 },
6022 {
6023 .name = "kmem.failcnt",
6024 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6025 .trigger = mem_cgroup_reset,
6026 .read = mem_cgroup_read,
6027 },
6028 {
6029 .name = "kmem.max_usage_in_bytes",
6030 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6031 .trigger = mem_cgroup_reset,
6032 .read = mem_cgroup_read,
6033 },
6034 #ifdef CONFIG_SLABINFO
6035 {
6036 .name = "kmem.slabinfo",
6037 .read_seq_string = mem_cgroup_slabinfo_read,
6038 },
6039 #endif
6040 #endif
6041 { }, /* terminate */
6042 };
6043
6044 #ifdef CONFIG_MEMCG_SWAP
6045 static struct cftype memsw_cgroup_files[] = {
6046 {
6047 .name = "memsw.usage_in_bytes",
6048 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6049 .read = mem_cgroup_read,
6050 .register_event = mem_cgroup_usage_register_event,
6051 .unregister_event = mem_cgroup_usage_unregister_event,
6052 },
6053 {
6054 .name = "memsw.max_usage_in_bytes",
6055 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6056 .trigger = mem_cgroup_reset,
6057 .read = mem_cgroup_read,
6058 },
6059 {
6060 .name = "memsw.limit_in_bytes",
6061 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6062 .write_string = mem_cgroup_write,
6063 .read = mem_cgroup_read,
6064 },
6065 {
6066 .name = "memsw.failcnt",
6067 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6068 .trigger = mem_cgroup_reset,
6069 .read = mem_cgroup_read,
6070 },
6071 { }, /* terminate */
6072 };
6073 #endif
6074 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6075 {
6076 struct mem_cgroup_per_node *pn;
6077 struct mem_cgroup_per_zone *mz;
6078 int zone, tmp = node;
6079 /*
6080 * This routine is called against possible nodes.
6081 * But it's BUG to call kmalloc() against offline node.
6082 *
6083 * TODO: this routine can waste much memory for nodes which will
6084 * never be onlined. It's better to use memory hotplug callback
6085 * function.
6086 */
6087 if (!node_state(node, N_NORMAL_MEMORY))
6088 tmp = -1;
6089 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6090 if (!pn)
6091 return 1;
6092
6093 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6094 mz = &pn->zoneinfo[zone];
6095 lruvec_init(&mz->lruvec);
6096 mz->usage_in_excess = 0;
6097 mz->on_tree = false;
6098 mz->memcg = memcg;
6099 }
6100 memcg->info.nodeinfo[node] = pn;
6101 return 0;
6102 }
6103
6104 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6105 {
6106 kfree(memcg->info.nodeinfo[node]);
6107 }
6108
6109 static struct mem_cgroup *mem_cgroup_alloc(void)
6110 {
6111 struct mem_cgroup *memcg;
6112 size_t size = memcg_size();
6113
6114 /* Can be very big if nr_node_ids is very big */
6115 if (size < PAGE_SIZE)
6116 memcg = kzalloc(size, GFP_KERNEL);
6117 else
6118 memcg = vzalloc(size);
6119
6120 if (!memcg)
6121 return NULL;
6122
6123 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6124 if (!memcg->stat)
6125 goto out_free;
6126 spin_lock_init(&memcg->pcp_counter_lock);
6127 return memcg;
6128
6129 out_free:
6130 if (size < PAGE_SIZE)
6131 kfree(memcg);
6132 else
6133 vfree(memcg);
6134 return NULL;
6135 }
6136
6137 /*
6138 * At destroying mem_cgroup, references from swap_cgroup can remain.
6139 * (scanning all at force_empty is too costly...)
6140 *
6141 * Instead of clearing all references at force_empty, we remember
6142 * the number of reference from swap_cgroup and free mem_cgroup when
6143 * it goes down to 0.
6144 *
6145 * Removal of cgroup itself succeeds regardless of refs from swap.
6146 */
6147
6148 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6149 {
6150 int node;
6151 size_t size = memcg_size();
6152
6153 mem_cgroup_remove_from_trees(memcg);
6154 free_css_id(&mem_cgroup_subsys, &memcg->css);
6155
6156 for_each_node(node)
6157 free_mem_cgroup_per_zone_info(memcg, node);
6158
6159 free_percpu(memcg->stat);
6160
6161 /*
6162 * We need to make sure that (at least for now), the jump label
6163 * destruction code runs outside of the cgroup lock. This is because
6164 * get_online_cpus(), which is called from the static_branch update,
6165 * can't be called inside the cgroup_lock. cpusets are the ones
6166 * enforcing this dependency, so if they ever change, we might as well.
6167 *
6168 * schedule_work() will guarantee this happens. Be careful if you need
6169 * to move this code around, and make sure it is outside
6170 * the cgroup_lock.
6171 */
6172 disarm_static_keys(memcg);
6173 if (size < PAGE_SIZE)
6174 kfree(memcg);
6175 else
6176 vfree(memcg);
6177 }
6178
6179
6180 /*
6181 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6182 * but in process context. The work_freeing structure is overlaid
6183 * on the rcu_freeing structure, which itself is overlaid on memsw.
6184 */
6185 static void free_work(struct work_struct *work)
6186 {
6187 struct mem_cgroup *memcg;
6188
6189 memcg = container_of(work, struct mem_cgroup, work_freeing);
6190 __mem_cgroup_free(memcg);
6191 }
6192
6193 static void free_rcu(struct rcu_head *rcu_head)
6194 {
6195 struct mem_cgroup *memcg;
6196
6197 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6198 INIT_WORK(&memcg->work_freeing, free_work);
6199 schedule_work(&memcg->work_freeing);
6200 }
6201
6202 static void mem_cgroup_get(struct mem_cgroup *memcg)
6203 {
6204 atomic_inc(&memcg->refcnt);
6205 }
6206
6207 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6208 {
6209 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6210 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6211 call_rcu(&memcg->rcu_freeing, free_rcu);
6212 if (parent)
6213 mem_cgroup_put(parent);
6214 }
6215 }
6216
6217 static void mem_cgroup_put(struct mem_cgroup *memcg)
6218 {
6219 __mem_cgroup_put(memcg, 1);
6220 }
6221
6222 /*
6223 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6224 */
6225 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6226 {
6227 if (!memcg->res.parent)
6228 return NULL;
6229 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6230 }
6231 EXPORT_SYMBOL(parent_mem_cgroup);
6232
6233 static void __init mem_cgroup_soft_limit_tree_init(void)
6234 {
6235 struct mem_cgroup_tree_per_node *rtpn;
6236 struct mem_cgroup_tree_per_zone *rtpz;
6237 int tmp, node, zone;
6238
6239 for_each_node(node) {
6240 tmp = node;
6241 if (!node_state(node, N_NORMAL_MEMORY))
6242 tmp = -1;
6243 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6244 BUG_ON(!rtpn);
6245
6246 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6247
6248 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6249 rtpz = &rtpn->rb_tree_per_zone[zone];
6250 rtpz->rb_root = RB_ROOT;
6251 spin_lock_init(&rtpz->lock);
6252 }
6253 }
6254 }
6255
6256 static struct cgroup_subsys_state * __ref
6257 mem_cgroup_css_alloc(struct cgroup *cont)
6258 {
6259 struct mem_cgroup *memcg;
6260 long error = -ENOMEM;
6261 int node;
6262
6263 memcg = mem_cgroup_alloc();
6264 if (!memcg)
6265 return ERR_PTR(error);
6266
6267 for_each_node(node)
6268 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6269 goto free_out;
6270
6271 /* root ? */
6272 if (cont->parent == NULL) {
6273 root_mem_cgroup = memcg;
6274 res_counter_init(&memcg->res, NULL);
6275 res_counter_init(&memcg->memsw, NULL);
6276 res_counter_init(&memcg->kmem, NULL);
6277 }
6278
6279 memcg->last_scanned_node = MAX_NUMNODES;
6280 INIT_LIST_HEAD(&memcg->oom_notify);
6281 atomic_set(&memcg->refcnt, 1);
6282 memcg->move_charge_at_immigrate = 0;
6283 mutex_init(&memcg->thresholds_lock);
6284 spin_lock_init(&memcg->move_lock);
6285 vmpressure_init(&memcg->vmpressure);
6286
6287 return &memcg->css;
6288
6289 free_out:
6290 __mem_cgroup_free(memcg);
6291 return ERR_PTR(error);
6292 }
6293
6294 static int
6295 mem_cgroup_css_online(struct cgroup *cont)
6296 {
6297 struct mem_cgroup *memcg, *parent;
6298 int error = 0;
6299
6300 if (!cont->parent)
6301 return 0;
6302
6303 mutex_lock(&memcg_create_mutex);
6304 memcg = mem_cgroup_from_cont(cont);
6305 parent = mem_cgroup_from_cont(cont->parent);
6306
6307 memcg->use_hierarchy = parent->use_hierarchy;
6308 memcg->oom_kill_disable = parent->oom_kill_disable;
6309 memcg->swappiness = mem_cgroup_swappiness(parent);
6310
6311 if (parent->use_hierarchy) {
6312 res_counter_init(&memcg->res, &parent->res);
6313 res_counter_init(&memcg->memsw, &parent->memsw);
6314 res_counter_init(&memcg->kmem, &parent->kmem);
6315
6316 /*
6317 * We increment refcnt of the parent to ensure that we can
6318 * safely access it on res_counter_charge/uncharge.
6319 * This refcnt will be decremented when freeing this
6320 * mem_cgroup(see mem_cgroup_put).
6321 */
6322 mem_cgroup_get(parent);
6323 } else {
6324 res_counter_init(&memcg->res, NULL);
6325 res_counter_init(&memcg->memsw, NULL);
6326 res_counter_init(&memcg->kmem, NULL);
6327 /*
6328 * Deeper hierachy with use_hierarchy == false doesn't make
6329 * much sense so let cgroup subsystem know about this
6330 * unfortunate state in our controller.
6331 */
6332 if (parent != root_mem_cgroup)
6333 mem_cgroup_subsys.broken_hierarchy = true;
6334 }
6335
6336 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6337 mutex_unlock(&memcg_create_mutex);
6338 return error;
6339 }
6340
6341 /*
6342 * Announce all parents that a group from their hierarchy is gone.
6343 */
6344 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6345 {
6346 struct mem_cgroup *parent = memcg;
6347
6348 while ((parent = parent_mem_cgroup(parent)))
6349 atomic_inc(&parent->dead_count);
6350
6351 /*
6352 * if the root memcg is not hierarchical we have to check it
6353 * explicitely.
6354 */
6355 if (!root_mem_cgroup->use_hierarchy)
6356 atomic_inc(&root_mem_cgroup->dead_count);
6357 }
6358
6359 static void mem_cgroup_css_offline(struct cgroup *cont)
6360 {
6361 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6362 struct cgroup *iter;
6363
6364 mem_cgroup_invalidate_reclaim_iterators(memcg);
6365
6366 /*
6367 * This requires that offlining is serialized. Right now that is
6368 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6369 */
6370 rcu_read_lock();
6371 cgroup_for_each_descendant_post(iter, cont) {
6372 rcu_read_unlock();
6373 mem_cgroup_reparent_charges(mem_cgroup_from_cont(iter));
6374 rcu_read_lock();
6375 }
6376 rcu_read_unlock();
6377 mem_cgroup_reparent_charges(memcg);
6378
6379 mem_cgroup_destroy_all_caches(memcg);
6380 }
6381
6382 static void mem_cgroup_css_free(struct cgroup *cont)
6383 {
6384 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6385
6386 kmem_cgroup_destroy(memcg);
6387
6388 mem_cgroup_put(memcg);
6389 }
6390
6391 #ifdef CONFIG_MMU
6392 /* Handlers for move charge at task migration. */
6393 #define PRECHARGE_COUNT_AT_ONCE 256
6394 static int mem_cgroup_do_precharge(unsigned long count)
6395 {
6396 int ret = 0;
6397 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6398 struct mem_cgroup *memcg = mc.to;
6399
6400 if (mem_cgroup_is_root(memcg)) {
6401 mc.precharge += count;
6402 /* we don't need css_get for root */
6403 return ret;
6404 }
6405 /* try to charge at once */
6406 if (count > 1) {
6407 struct res_counter *dummy;
6408 /*
6409 * "memcg" cannot be under rmdir() because we've already checked
6410 * by cgroup_lock_live_cgroup() that it is not removed and we
6411 * are still under the same cgroup_mutex. So we can postpone
6412 * css_get().
6413 */
6414 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6415 goto one_by_one;
6416 if (do_swap_account && res_counter_charge(&memcg->memsw,
6417 PAGE_SIZE * count, &dummy)) {
6418 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6419 goto one_by_one;
6420 }
6421 mc.precharge += count;
6422 return ret;
6423 }
6424 one_by_one:
6425 /* fall back to one by one charge */
6426 while (count--) {
6427 if (signal_pending(current)) {
6428 ret = -EINTR;
6429 break;
6430 }
6431 if (!batch_count--) {
6432 batch_count = PRECHARGE_COUNT_AT_ONCE;
6433 cond_resched();
6434 }
6435 ret = __mem_cgroup_try_charge(NULL,
6436 GFP_KERNEL, 1, &memcg, false);
6437 if (ret)
6438 /* mem_cgroup_clear_mc() will do uncharge later */
6439 return ret;
6440 mc.precharge++;
6441 }
6442 return ret;
6443 }
6444
6445 /**
6446 * get_mctgt_type - get target type of moving charge
6447 * @vma: the vma the pte to be checked belongs
6448 * @addr: the address corresponding to the pte to be checked
6449 * @ptent: the pte to be checked
6450 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6451 *
6452 * Returns
6453 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6454 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6455 * move charge. if @target is not NULL, the page is stored in target->page
6456 * with extra refcnt got(Callers should handle it).
6457 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6458 * target for charge migration. if @target is not NULL, the entry is stored
6459 * in target->ent.
6460 *
6461 * Called with pte lock held.
6462 */
6463 union mc_target {
6464 struct page *page;
6465 swp_entry_t ent;
6466 };
6467
6468 enum mc_target_type {
6469 MC_TARGET_NONE = 0,
6470 MC_TARGET_PAGE,
6471 MC_TARGET_SWAP,
6472 };
6473
6474 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6475 unsigned long addr, pte_t ptent)
6476 {
6477 struct page *page = vm_normal_page(vma, addr, ptent);
6478
6479 if (!page || !page_mapped(page))
6480 return NULL;
6481 if (PageAnon(page)) {
6482 /* we don't move shared anon */
6483 if (!move_anon())
6484 return NULL;
6485 } else if (!move_file())
6486 /* we ignore mapcount for file pages */
6487 return NULL;
6488 if (!get_page_unless_zero(page))
6489 return NULL;
6490
6491 return page;
6492 }
6493
6494 #ifdef CONFIG_SWAP
6495 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6496 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6497 {
6498 struct page *page = NULL;
6499 swp_entry_t ent = pte_to_swp_entry(ptent);
6500
6501 if (!move_anon() || non_swap_entry(ent))
6502 return NULL;
6503 /*
6504 * Because lookup_swap_cache() updates some statistics counter,
6505 * we call find_get_page() with swapper_space directly.
6506 */
6507 page = find_get_page(swap_address_space(ent), ent.val);
6508 if (do_swap_account)
6509 entry->val = ent.val;
6510
6511 return page;
6512 }
6513 #else
6514 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6515 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6516 {
6517 return NULL;
6518 }
6519 #endif
6520
6521 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6522 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6523 {
6524 struct page *page = NULL;
6525 struct address_space *mapping;
6526 pgoff_t pgoff;
6527
6528 if (!vma->vm_file) /* anonymous vma */
6529 return NULL;
6530 if (!move_file())
6531 return NULL;
6532
6533 mapping = vma->vm_file->f_mapping;
6534 if (pte_none(ptent))
6535 pgoff = linear_page_index(vma, addr);
6536 else /* pte_file(ptent) is true */
6537 pgoff = pte_to_pgoff(ptent);
6538
6539 /* page is moved even if it's not RSS of this task(page-faulted). */
6540 page = find_get_page(mapping, pgoff);
6541
6542 #ifdef CONFIG_SWAP
6543 /* shmem/tmpfs may report page out on swap: account for that too. */
6544 if (radix_tree_exceptional_entry(page)) {
6545 swp_entry_t swap = radix_to_swp_entry(page);
6546 if (do_swap_account)
6547 *entry = swap;
6548 page = find_get_page(swap_address_space(swap), swap.val);
6549 }
6550 #endif
6551 return page;
6552 }
6553
6554 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6555 unsigned long addr, pte_t ptent, union mc_target *target)
6556 {
6557 struct page *page = NULL;
6558 struct page_cgroup *pc;
6559 enum mc_target_type ret = MC_TARGET_NONE;
6560 swp_entry_t ent = { .val = 0 };
6561
6562 if (pte_present(ptent))
6563 page = mc_handle_present_pte(vma, addr, ptent);
6564 else if (is_swap_pte(ptent))
6565 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6566 else if (pte_none(ptent) || pte_file(ptent))
6567 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6568
6569 if (!page && !ent.val)
6570 return ret;
6571 if (page) {
6572 pc = lookup_page_cgroup(page);
6573 /*
6574 * Do only loose check w/o page_cgroup lock.
6575 * mem_cgroup_move_account() checks the pc is valid or not under
6576 * the lock.
6577 */
6578 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6579 ret = MC_TARGET_PAGE;
6580 if (target)
6581 target->page = page;
6582 }
6583 if (!ret || !target)
6584 put_page(page);
6585 }
6586 /* There is a swap entry and a page doesn't exist or isn't charged */
6587 if (ent.val && !ret &&
6588 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6589 ret = MC_TARGET_SWAP;
6590 if (target)
6591 target->ent = ent;
6592 }
6593 return ret;
6594 }
6595
6596 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6597 /*
6598 * We don't consider swapping or file mapped pages because THP does not
6599 * support them for now.
6600 * Caller should make sure that pmd_trans_huge(pmd) is true.
6601 */
6602 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6603 unsigned long addr, pmd_t pmd, union mc_target *target)
6604 {
6605 struct page *page = NULL;
6606 struct page_cgroup *pc;
6607 enum mc_target_type ret = MC_TARGET_NONE;
6608
6609 page = pmd_page(pmd);
6610 VM_BUG_ON(!page || !PageHead(page));
6611 if (!move_anon())
6612 return ret;
6613 pc = lookup_page_cgroup(page);
6614 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6615 ret = MC_TARGET_PAGE;
6616 if (target) {
6617 get_page(page);
6618 target->page = page;
6619 }
6620 }
6621 return ret;
6622 }
6623 #else
6624 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6625 unsigned long addr, pmd_t pmd, union mc_target *target)
6626 {
6627 return MC_TARGET_NONE;
6628 }
6629 #endif
6630
6631 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6632 unsigned long addr, unsigned long end,
6633 struct mm_walk *walk)
6634 {
6635 struct vm_area_struct *vma = walk->private;
6636 pte_t *pte;
6637 spinlock_t *ptl;
6638
6639 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6640 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6641 mc.precharge += HPAGE_PMD_NR;
6642 spin_unlock(&vma->vm_mm->page_table_lock);
6643 return 0;
6644 }
6645
6646 if (pmd_trans_unstable(pmd))
6647 return 0;
6648 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6649 for (; addr != end; pte++, addr += PAGE_SIZE)
6650 if (get_mctgt_type(vma, addr, *pte, NULL))
6651 mc.precharge++; /* increment precharge temporarily */
6652 pte_unmap_unlock(pte - 1, ptl);
6653 cond_resched();
6654
6655 return 0;
6656 }
6657
6658 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6659 {
6660 unsigned long precharge;
6661 struct vm_area_struct *vma;
6662
6663 down_read(&mm->mmap_sem);
6664 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6665 struct mm_walk mem_cgroup_count_precharge_walk = {
6666 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6667 .mm = mm,
6668 .private = vma,
6669 };
6670 if (is_vm_hugetlb_page(vma))
6671 continue;
6672 walk_page_range(vma->vm_start, vma->vm_end,
6673 &mem_cgroup_count_precharge_walk);
6674 }
6675 up_read(&mm->mmap_sem);
6676
6677 precharge = mc.precharge;
6678 mc.precharge = 0;
6679
6680 return precharge;
6681 }
6682
6683 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6684 {
6685 unsigned long precharge = mem_cgroup_count_precharge(mm);
6686
6687 VM_BUG_ON(mc.moving_task);
6688 mc.moving_task = current;
6689 return mem_cgroup_do_precharge(precharge);
6690 }
6691
6692 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6693 static void __mem_cgroup_clear_mc(void)
6694 {
6695 struct mem_cgroup *from = mc.from;
6696 struct mem_cgroup *to = mc.to;
6697
6698 /* we must uncharge all the leftover precharges from mc.to */
6699 if (mc.precharge) {
6700 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6701 mc.precharge = 0;
6702 }
6703 /*
6704 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6705 * we must uncharge here.
6706 */
6707 if (mc.moved_charge) {
6708 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6709 mc.moved_charge = 0;
6710 }
6711 /* we must fixup refcnts and charges */
6712 if (mc.moved_swap) {
6713 /* uncharge swap account from the old cgroup */
6714 if (!mem_cgroup_is_root(mc.from))
6715 res_counter_uncharge(&mc.from->memsw,
6716 PAGE_SIZE * mc.moved_swap);
6717 __mem_cgroup_put(mc.from, mc.moved_swap);
6718
6719 if (!mem_cgroup_is_root(mc.to)) {
6720 /*
6721 * we charged both to->res and to->memsw, so we should
6722 * uncharge to->res.
6723 */
6724 res_counter_uncharge(&mc.to->res,
6725 PAGE_SIZE * mc.moved_swap);
6726 }
6727 /* we've already done mem_cgroup_get(mc.to) */
6728 mc.moved_swap = 0;
6729 }
6730 memcg_oom_recover(from);
6731 memcg_oom_recover(to);
6732 wake_up_all(&mc.waitq);
6733 }
6734
6735 static void mem_cgroup_clear_mc(void)
6736 {
6737 struct mem_cgroup *from = mc.from;
6738
6739 /*
6740 * we must clear moving_task before waking up waiters at the end of
6741 * task migration.
6742 */
6743 mc.moving_task = NULL;
6744 __mem_cgroup_clear_mc();
6745 spin_lock(&mc.lock);
6746 mc.from = NULL;
6747 mc.to = NULL;
6748 spin_unlock(&mc.lock);
6749 mem_cgroup_end_move(from);
6750 }
6751
6752 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6753 struct cgroup_taskset *tset)
6754 {
6755 struct task_struct *p = cgroup_taskset_first(tset);
6756 int ret = 0;
6757 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6758 unsigned long move_charge_at_immigrate;
6759
6760 /*
6761 * We are now commited to this value whatever it is. Changes in this
6762 * tunable will only affect upcoming migrations, not the current one.
6763 * So we need to save it, and keep it going.
6764 */
6765 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6766 if (move_charge_at_immigrate) {
6767 struct mm_struct *mm;
6768 struct mem_cgroup *from = mem_cgroup_from_task(p);
6769
6770 VM_BUG_ON(from == memcg);
6771
6772 mm = get_task_mm(p);
6773 if (!mm)
6774 return 0;
6775 /* We move charges only when we move a owner of the mm */
6776 if (mm->owner == p) {
6777 VM_BUG_ON(mc.from);
6778 VM_BUG_ON(mc.to);
6779 VM_BUG_ON(mc.precharge);
6780 VM_BUG_ON(mc.moved_charge);
6781 VM_BUG_ON(mc.moved_swap);
6782 mem_cgroup_start_move(from);
6783 spin_lock(&mc.lock);
6784 mc.from = from;
6785 mc.to = memcg;
6786 mc.immigrate_flags = move_charge_at_immigrate;
6787 spin_unlock(&mc.lock);
6788 /* We set mc.moving_task later */
6789
6790 ret = mem_cgroup_precharge_mc(mm);
6791 if (ret)
6792 mem_cgroup_clear_mc();
6793 }
6794 mmput(mm);
6795 }
6796 return ret;
6797 }
6798
6799 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6800 struct cgroup_taskset *tset)
6801 {
6802 mem_cgroup_clear_mc();
6803 }
6804
6805 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6806 unsigned long addr, unsigned long end,
6807 struct mm_walk *walk)
6808 {
6809 int ret = 0;
6810 struct vm_area_struct *vma = walk->private;
6811 pte_t *pte;
6812 spinlock_t *ptl;
6813 enum mc_target_type target_type;
6814 union mc_target target;
6815 struct page *page;
6816 struct page_cgroup *pc;
6817
6818 /*
6819 * We don't take compound_lock() here but no race with splitting thp
6820 * happens because:
6821 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6822 * under splitting, which means there's no concurrent thp split,
6823 * - if another thread runs into split_huge_page() just after we
6824 * entered this if-block, the thread must wait for page table lock
6825 * to be unlocked in __split_huge_page_splitting(), where the main
6826 * part of thp split is not executed yet.
6827 */
6828 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6829 if (mc.precharge < HPAGE_PMD_NR) {
6830 spin_unlock(&vma->vm_mm->page_table_lock);
6831 return 0;
6832 }
6833 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6834 if (target_type == MC_TARGET_PAGE) {
6835 page = target.page;
6836 if (!isolate_lru_page(page)) {
6837 pc = lookup_page_cgroup(page);
6838 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6839 pc, mc.from, mc.to)) {
6840 mc.precharge -= HPAGE_PMD_NR;
6841 mc.moved_charge += HPAGE_PMD_NR;
6842 }
6843 putback_lru_page(page);
6844 }
6845 put_page(page);
6846 }
6847 spin_unlock(&vma->vm_mm->page_table_lock);
6848 return 0;
6849 }
6850
6851 if (pmd_trans_unstable(pmd))
6852 return 0;
6853 retry:
6854 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6855 for (; addr != end; addr += PAGE_SIZE) {
6856 pte_t ptent = *(pte++);
6857 swp_entry_t ent;
6858
6859 if (!mc.precharge)
6860 break;
6861
6862 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6863 case MC_TARGET_PAGE:
6864 page = target.page;
6865 if (isolate_lru_page(page))
6866 goto put;
6867 pc = lookup_page_cgroup(page);
6868 if (!mem_cgroup_move_account(page, 1, pc,
6869 mc.from, mc.to)) {
6870 mc.precharge--;
6871 /* we uncharge from mc.from later. */
6872 mc.moved_charge++;
6873 }
6874 putback_lru_page(page);
6875 put: /* get_mctgt_type() gets the page */
6876 put_page(page);
6877 break;
6878 case MC_TARGET_SWAP:
6879 ent = target.ent;
6880 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6881 mc.precharge--;
6882 /* we fixup refcnts and charges later. */
6883 mc.moved_swap++;
6884 }
6885 break;
6886 default:
6887 break;
6888 }
6889 }
6890 pte_unmap_unlock(pte - 1, ptl);
6891 cond_resched();
6892
6893 if (addr != end) {
6894 /*
6895 * We have consumed all precharges we got in can_attach().
6896 * We try charge one by one, but don't do any additional
6897 * charges to mc.to if we have failed in charge once in attach()
6898 * phase.
6899 */
6900 ret = mem_cgroup_do_precharge(1);
6901 if (!ret)
6902 goto retry;
6903 }
6904
6905 return ret;
6906 }
6907
6908 static void mem_cgroup_move_charge(struct mm_struct *mm)
6909 {
6910 struct vm_area_struct *vma;
6911
6912 lru_add_drain_all();
6913 retry:
6914 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6915 /*
6916 * Someone who are holding the mmap_sem might be waiting in
6917 * waitq. So we cancel all extra charges, wake up all waiters,
6918 * and retry. Because we cancel precharges, we might not be able
6919 * to move enough charges, but moving charge is a best-effort
6920 * feature anyway, so it wouldn't be a big problem.
6921 */
6922 __mem_cgroup_clear_mc();
6923 cond_resched();
6924 goto retry;
6925 }
6926 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6927 int ret;
6928 struct mm_walk mem_cgroup_move_charge_walk = {
6929 .pmd_entry = mem_cgroup_move_charge_pte_range,
6930 .mm = mm,
6931 .private = vma,
6932 };
6933 if (is_vm_hugetlb_page(vma))
6934 continue;
6935 ret = walk_page_range(vma->vm_start, vma->vm_end,
6936 &mem_cgroup_move_charge_walk);
6937 if (ret)
6938 /*
6939 * means we have consumed all precharges and failed in
6940 * doing additional charge. Just abandon here.
6941 */
6942 break;
6943 }
6944 up_read(&mm->mmap_sem);
6945 }
6946
6947 static void mem_cgroup_move_task(struct cgroup *cont,
6948 struct cgroup_taskset *tset)
6949 {
6950 struct task_struct *p = cgroup_taskset_first(tset);
6951 struct mm_struct *mm = get_task_mm(p);
6952
6953 if (mm) {
6954 if (mc.to)
6955 mem_cgroup_move_charge(mm);
6956 mmput(mm);
6957 }
6958 if (mc.to)
6959 mem_cgroup_clear_mc();
6960 }
6961 #else /* !CONFIG_MMU */
6962 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6963 struct cgroup_taskset *tset)
6964 {
6965 return 0;
6966 }
6967 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6968 struct cgroup_taskset *tset)
6969 {
6970 }
6971 static void mem_cgroup_move_task(struct cgroup *cont,
6972 struct cgroup_taskset *tset)
6973 {
6974 }
6975 #endif
6976
6977 /*
6978 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6979 * to verify sane_behavior flag on each mount attempt.
6980 */
6981 static void mem_cgroup_bind(struct cgroup *root)
6982 {
6983 /*
6984 * use_hierarchy is forced with sane_behavior. cgroup core
6985 * guarantees that @root doesn't have any children, so turning it
6986 * on for the root memcg is enough.
6987 */
6988 if (cgroup_sane_behavior(root))
6989 mem_cgroup_from_cont(root)->use_hierarchy = true;
6990 }
6991
6992 struct cgroup_subsys mem_cgroup_subsys = {
6993 .name = "memory",
6994 .subsys_id = mem_cgroup_subsys_id,
6995 .css_alloc = mem_cgroup_css_alloc,
6996 .css_online = mem_cgroup_css_online,
6997 .css_offline = mem_cgroup_css_offline,
6998 .css_free = mem_cgroup_css_free,
6999 .can_attach = mem_cgroup_can_attach,
7000 .cancel_attach = mem_cgroup_cancel_attach,
7001 .attach = mem_cgroup_move_task,
7002 .bind = mem_cgroup_bind,
7003 .base_cftypes = mem_cgroup_files,
7004 .early_init = 0,
7005 .use_id = 1,
7006 };
7007
7008 #ifdef CONFIG_MEMCG_SWAP
7009 static int __init enable_swap_account(char *s)
7010 {
7011 /* consider enabled if no parameter or 1 is given */
7012 if (!strcmp(s, "1"))
7013 really_do_swap_account = 1;
7014 else if (!strcmp(s, "0"))
7015 really_do_swap_account = 0;
7016 return 1;
7017 }
7018 __setup("swapaccount=", enable_swap_account);
7019
7020 static void __init memsw_file_init(void)
7021 {
7022 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7023 }
7024
7025 static void __init enable_swap_cgroup(void)
7026 {
7027 if (!mem_cgroup_disabled() && really_do_swap_account) {
7028 do_swap_account = 1;
7029 memsw_file_init();
7030 }
7031 }
7032
7033 #else
7034 static void __init enable_swap_cgroup(void)
7035 {
7036 }
7037 #endif
7038
7039 /*
7040 * subsys_initcall() for memory controller.
7041 *
7042 * Some parts like hotcpu_notifier() have to be initialized from this context
7043 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7044 * everything that doesn't depend on a specific mem_cgroup structure should
7045 * be initialized from here.
7046 */
7047 static int __init mem_cgroup_init(void)
7048 {
7049 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7050 enable_swap_cgroup();
7051 mem_cgroup_soft_limit_tree_init();
7052 memcg_stock_init();
7053 return 0;
7054 }
7055 subsys_initcall(mem_cgroup_init);