Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22 #include <linux/kallsyms.h>
23 #include <mach/mtk_memcfg.h>
24
25 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
26 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
27
28 struct memblock memblock __initdata_memblock = {
29 .memory.regions = memblock_memory_init_regions,
30 .memory.cnt = 1, /* empty dummy entry */
31 .memory.max = INIT_MEMBLOCK_REGIONS,
32
33 .reserved.regions = memblock_reserved_init_regions,
34 .reserved.cnt = 1, /* empty dummy entry */
35 .reserved.max = INIT_MEMBLOCK_REGIONS,
36
37 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
38 };
39
40 int memblock_debug __initdata_memblock;
41 static int memblock_can_resize __initdata_memblock;
42 static int memblock_memory_in_slab __initdata_memblock = 0;
43 static int memblock_reserved_in_slab __initdata_memblock = 0;
44
45 /* inline so we don't get a warning when pr_debug is compiled out */
46 static __init_memblock const char *
47 memblock_type_name(struct memblock_type *type)
48 {
49 if (type == &memblock.memory)
50 return "memory";
51 else if (type == &memblock.reserved)
52 return "reserved";
53 else
54 return "unknown";
55 }
56
57 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
58 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
59 {
60 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
61 }
62
63 /*
64 * Address comparison utilities
65 */
66 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
67 phys_addr_t base2, phys_addr_t size2)
68 {
69 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
70 }
71
72 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
73 phys_addr_t base, phys_addr_t size)
74 {
75 unsigned long i;
76
77 for (i = 0; i < type->cnt; i++) {
78 phys_addr_t rgnbase = type->regions[i].base;
79 phys_addr_t rgnsize = type->regions[i].size;
80 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
81 break;
82 }
83
84 return (i < type->cnt) ? i : -1;
85 }
86
87 /**
88 * memblock_find_in_range_node - find free area in given range and node
89 * @start: start of candidate range
90 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
91 * @size: size of free area to find
92 * @align: alignment of free area to find
93 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
94 *
95 * Find @size free area aligned to @align in the specified range and node.
96 *
97 * RETURNS:
98 * Found address on success, %0 on failure.
99 */
100 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
101 phys_addr_t end, phys_addr_t size,
102 phys_addr_t align, int nid)
103 {
104 phys_addr_t this_start, this_end, cand;
105 u64 i;
106
107 /* pump up @end */
108 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
109 end = memblock.current_limit;
110
111 /* avoid allocating the first page */
112 start = max_t(phys_addr_t, start, PAGE_SIZE);
113 end = max(start, end);
114
115 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
116 this_start = clamp(this_start, start, end);
117 this_end = clamp(this_end, start, end);
118
119 if (this_end < size)
120 continue;
121
122 cand = round_down(this_end - size, align);
123 if (cand >= this_start)
124 return cand;
125 }
126 return 0;
127 }
128
129 /**
130 * memblock_find_in_range - find free area in given range
131 * @start: start of candidate range
132 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
133 * @size: size of free area to find
134 * @align: alignment of free area to find
135 *
136 * Find @size free area aligned to @align in the specified range.
137 *
138 * RETURNS:
139 * Found address on success, %0 on failure.
140 */
141 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
142 phys_addr_t end, phys_addr_t size,
143 phys_addr_t align)
144 {
145 return memblock_find_in_range_node(start, end, size, align,
146 MAX_NUMNODES);
147 }
148
149 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
150 {
151 type->total_size -= type->regions[r].size;
152 memmove(&type->regions[r], &type->regions[r + 1],
153 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
154 type->cnt--;
155
156 /* Special case for empty arrays */
157 if (type->cnt == 0) {
158 WARN_ON(type->total_size != 0);
159 type->cnt = 1;
160 type->regions[0].base = 0;
161 type->regions[0].size = 0;
162 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
163 }
164 }
165
166 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
167 phys_addr_t *addr)
168 {
169 if (memblock.reserved.regions == memblock_reserved_init_regions)
170 return 0;
171
172 *addr = __pa(memblock.reserved.regions);
173
174 return PAGE_ALIGN(sizeof(struct memblock_region) *
175 memblock.reserved.max);
176 }
177
178 /**
179 * memblock_double_array - double the size of the memblock regions array
180 * @type: memblock type of the regions array being doubled
181 * @new_area_start: starting address of memory range to avoid overlap with
182 * @new_area_size: size of memory range to avoid overlap with
183 *
184 * Double the size of the @type regions array. If memblock is being used to
185 * allocate memory for a new reserved regions array and there is a previously
186 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
187 * waiting to be reserved, ensure the memory used by the new array does
188 * not overlap.
189 *
190 * RETURNS:
191 * 0 on success, -1 on failure.
192 */
193 static int __init_memblock memblock_double_array(struct memblock_type *type,
194 phys_addr_t new_area_start,
195 phys_addr_t new_area_size)
196 {
197 struct memblock_region *new_array, *old_array;
198 phys_addr_t old_alloc_size, new_alloc_size;
199 phys_addr_t old_size, new_size, addr;
200 int use_slab = slab_is_available();
201 int *in_slab;
202
203 /* We don't allow resizing until we know about the reserved regions
204 * of memory that aren't suitable for allocation
205 */
206 if (!memblock_can_resize)
207 return -1;
208
209 /* Calculate new doubled size */
210 old_size = type->max * sizeof(struct memblock_region);
211 new_size = old_size << 1;
212 /*
213 * We need to allocated new one align to PAGE_SIZE,
214 * so we can free them completely later.
215 */
216 old_alloc_size = PAGE_ALIGN(old_size);
217 new_alloc_size = PAGE_ALIGN(new_size);
218
219 /* Retrieve the slab flag */
220 if (type == &memblock.memory)
221 in_slab = &memblock_memory_in_slab;
222 else
223 in_slab = &memblock_reserved_in_slab;
224
225 /* Try to find some space for it.
226 *
227 * WARNING: We assume that either slab_is_available() and we use it or
228 * we use MEMBLOCK for allocations. That means that this is unsafe to
229 * use when bootmem is currently active (unless bootmem itself is
230 * implemented on top of MEMBLOCK which isn't the case yet)
231 *
232 * This should however not be an issue for now, as we currently only
233 * call into MEMBLOCK while it's still active, or much later when slab
234 * is active for memory hotplug operations
235 */
236 if (use_slab) {
237 new_array = kmalloc(new_size, GFP_KERNEL);
238 addr = new_array ? __pa(new_array) : 0;
239 } else {
240 /* only exclude range when trying to double reserved.regions */
241 if (type != &memblock.reserved)
242 new_area_start = new_area_size = 0;
243
244 addr = memblock_find_in_range(new_area_start + new_area_size,
245 memblock.current_limit,
246 new_alloc_size, PAGE_SIZE);
247 if (!addr && new_area_size)
248 addr = memblock_find_in_range(0,
249 min(new_area_start, memblock.current_limit),
250 new_alloc_size, PAGE_SIZE);
251
252 new_array = addr ? __va(addr) : NULL;
253 }
254 if (!addr) {
255 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
256 memblock_type_name(type), type->max, type->max * 2);
257 return -1;
258 }
259
260 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
261 memblock_type_name(type), type->max * 2, (u64)addr,
262 (u64)addr + new_size - 1);
263
264 /*
265 * Found space, we now need to move the array over before we add the
266 * reserved region since it may be our reserved array itself that is
267 * full.
268 */
269 memcpy(new_array, type->regions, old_size);
270 memset(new_array + type->max, 0, old_size);
271 old_array = type->regions;
272 type->regions = new_array;
273 type->max <<= 1;
274
275 /* Free old array. We needn't free it if the array is the static one */
276 if (*in_slab)
277 kfree(old_array);
278 else if (old_array != memblock_memory_init_regions &&
279 old_array != memblock_reserved_init_regions)
280 memblock_free(__pa(old_array), old_alloc_size);
281
282 /*
283 * Reserve the new array if that comes from the memblock. Otherwise, we
284 * needn't do it
285 */
286 if (!use_slab)
287 BUG_ON(memblock_reserve(addr, new_alloc_size));
288
289 /* Update slab flag */
290 *in_slab = use_slab;
291
292 return 0;
293 }
294
295 /**
296 * memblock_merge_regions - merge neighboring compatible regions
297 * @type: memblock type to scan
298 *
299 * Scan @type and merge neighboring compatible regions.
300 */
301 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
302 {
303 int i = 0;
304
305 /* cnt never goes below 1 */
306 while (i < type->cnt - 1) {
307 struct memblock_region *this = &type->regions[i];
308 struct memblock_region *next = &type->regions[i + 1];
309
310 if (this->base + this->size != next->base ||
311 memblock_get_region_node(this) !=
312 memblock_get_region_node(next)) {
313 BUG_ON(this->base + this->size > next->base);
314 i++;
315 continue;
316 }
317
318 this->size += next->size;
319 /* move forward from next + 1, index of which is i + 2 */
320 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
321 type->cnt--;
322 }
323 }
324
325 /**
326 * memblock_insert_region - insert new memblock region
327 * @type: memblock type to insert into
328 * @idx: index for the insertion point
329 * @base: base address of the new region
330 * @size: size of the new region
331 * @nid: node id of the new region
332 *
333 * Insert new memblock region [@base,@base+@size) into @type at @idx.
334 * @type must already have extra room to accomodate the new region.
335 */
336 static void __init_memblock memblock_insert_region(struct memblock_type *type,
337 int idx, phys_addr_t base,
338 phys_addr_t size, int nid)
339 {
340 struct memblock_region *rgn = &type->regions[idx];
341
342 BUG_ON(type->cnt >= type->max);
343 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
344 rgn->base = base;
345 rgn->size = size;
346 memblock_set_region_node(rgn, nid);
347 type->cnt++;
348 type->total_size += size;
349 }
350
351 /**
352 * memblock_add_region - add new memblock region
353 * @type: memblock type to add new region into
354 * @base: base address of the new region
355 * @size: size of the new region
356 * @nid: nid of the new region
357 *
358 * Add new memblock region [@base,@base+@size) into @type. The new region
359 * is allowed to overlap with existing ones - overlaps don't affect already
360 * existing regions. @type is guaranteed to be minimal (all neighbouring
361 * compatible regions are merged) after the addition.
362 *
363 * RETURNS:
364 * 0 on success, -errno on failure.
365 */
366 static int __init_memblock memblock_add_region(struct memblock_type *type,
367 phys_addr_t base, phys_addr_t size, int nid)
368 {
369 bool insert = false;
370 phys_addr_t obase = base;
371 phys_addr_t end = base + memblock_cap_size(base, &size);
372 int i, nr_new;
373
374 if (!size)
375 return 0;
376
377 /* special case for empty array */
378 if (type->regions[0].size == 0) {
379 WARN_ON(type->cnt != 1 || type->total_size);
380 type->regions[0].base = base;
381 type->regions[0].size = size;
382 memblock_set_region_node(&type->regions[0], nid);
383 type->total_size = size;
384 return 0;
385 }
386 repeat:
387 /*
388 * The following is executed twice. Once with %false @insert and
389 * then with %true. The first counts the number of regions needed
390 * to accomodate the new area. The second actually inserts them.
391 */
392 base = obase;
393 nr_new = 0;
394
395 for (i = 0; i < type->cnt; i++) {
396 struct memblock_region *rgn = &type->regions[i];
397 phys_addr_t rbase = rgn->base;
398 phys_addr_t rend = rbase + rgn->size;
399
400 if (rbase >= end)
401 break;
402 if (rend <= base)
403 continue;
404 /*
405 * @rgn overlaps. If it separates the lower part of new
406 * area, insert that portion.
407 */
408 if (rbase > base) {
409 nr_new++;
410 if (insert)
411 memblock_insert_region(type, i++, base,
412 rbase - base, nid);
413 }
414 /* area below @rend is dealt with, forget about it */
415 base = min(rend, end);
416 }
417
418 /* insert the remaining portion */
419 if (base < end) {
420 nr_new++;
421 if (insert)
422 memblock_insert_region(type, i, base, end - base, nid);
423 }
424
425 /*
426 * If this was the first round, resize array and repeat for actual
427 * insertions; otherwise, merge and return.
428 */
429 if (!insert) {
430 while (type->cnt + nr_new > type->max)
431 if (memblock_double_array(type, obase, size) < 0)
432 return -ENOMEM;
433 insert = true;
434 goto repeat;
435 } else {
436 memblock_merge_regions(type);
437 return 0;
438 }
439 }
440
441 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
442 int nid)
443 {
444 return memblock_add_region(&memblock.memory, base, size, nid);
445 }
446
447 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
448 {
449 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
450 }
451
452 /**
453 * memblock_isolate_range - isolate given range into disjoint memblocks
454 * @type: memblock type to isolate range for
455 * @base: base of range to isolate
456 * @size: size of range to isolate
457 * @start_rgn: out parameter for the start of isolated region
458 * @end_rgn: out parameter for the end of isolated region
459 *
460 * Walk @type and ensure that regions don't cross the boundaries defined by
461 * [@base,@base+@size). Crossing regions are split at the boundaries,
462 * which may create at most two more regions. The index of the first
463 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
464 *
465 * RETURNS:
466 * 0 on success, -errno on failure.
467 */
468 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
469 phys_addr_t base, phys_addr_t size,
470 int *start_rgn, int *end_rgn)
471 {
472 phys_addr_t end = base + memblock_cap_size(base, &size);
473 int i;
474
475 *start_rgn = *end_rgn = 0;
476
477 if (!size)
478 return 0;
479
480 /* we'll create at most two more regions */
481 while (type->cnt + 2 > type->max)
482 if (memblock_double_array(type, base, size) < 0)
483 return -ENOMEM;
484
485 for (i = 0; i < type->cnt; i++) {
486 struct memblock_region *rgn = &type->regions[i];
487 phys_addr_t rbase = rgn->base;
488 phys_addr_t rend = rbase + rgn->size;
489
490 if (rbase >= end)
491 break;
492 if (rend <= base)
493 continue;
494
495 if (rbase < base) {
496 /*
497 * @rgn intersects from below. Split and continue
498 * to process the next region - the new top half.
499 */
500 rgn->base = base;
501 rgn->size -= base - rbase;
502 type->total_size -= base - rbase;
503 memblock_insert_region(type, i, rbase, base - rbase,
504 memblock_get_region_node(rgn));
505 } else if (rend > end) {
506 /*
507 * @rgn intersects from above. Split and redo the
508 * current region - the new bottom half.
509 */
510 rgn->base = end;
511 rgn->size -= end - rbase;
512 type->total_size -= end - rbase;
513 memblock_insert_region(type, i--, rbase, end - rbase,
514 memblock_get_region_node(rgn));
515 } else {
516 /* @rgn is fully contained, record it */
517 if (!*end_rgn)
518 *start_rgn = i;
519 *end_rgn = i + 1;
520 }
521 }
522
523 return 0;
524 }
525
526 static int __init_memblock __memblock_remove(struct memblock_type *type,
527 phys_addr_t base, phys_addr_t size)
528 {
529 int start_rgn, end_rgn;
530 int i, ret;
531
532 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
533 if (ret)
534 return ret;
535
536 for (i = end_rgn - 1; i >= start_rgn; i--)
537 memblock_remove_region(type, i);
538 return 0;
539 }
540
541 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
542 {
543 return __memblock_remove(&memblock.memory, base, size);
544 }
545
546 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
547 {
548 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
549 (unsigned long long)base,
550 (unsigned long long)base + size,
551 (void *)_RET_IP_);
552
553 return __memblock_remove(&memblock.reserved, base, size);
554 }
555
556 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
557 {
558 struct memblock_type *_rgn = &memblock.reserved;
559 char symname[KSYM_NAME_LEN];
560
561 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
562 (unsigned long long)base,
563 (unsigned long long)base + size,
564 (void *)_RET_IP_);
565
566 if (lookup_symbol_name(_RET_IP_, symname) >= 0) {
567 /* filter common case */
568 if ((!strcmp(symname, "memblock_alloc_base_nid")) ||
569 (!strcmp(symname, "arm_mm_memblock_reserve")) ||
570 (!strcmp(symname, "arm64_memblock_init")) ||
571 (!strcmp(symname, "__alloc_memory_core_early")) ||
572 (!strcmp(symname, "arm_memblock_init"))) {
573 } else {
574 MTK_MEMCFG_LOG_AND_PRINTK(KERN_ALERT"[memblock]%pf: "
575 "0x%08llx - 0x%08llx (0x%08llx)\n",
576 (void *)_RET_IP_,
577 (unsigned long long)base,
578 (unsigned long long)base + size - 1,
579 (unsigned long long)size);
580 }
581 }
582
583 if (memblock_is_region_reserved(base, size)) {
584 /* trap memory reserve conflict */
585 mtk_memcfg_late_warning(WARN_MEMBLOCK_CONFLICT);
586 MTK_MEMCFG_LOG_AND_PRINTK("[rsv conflict]%pS: "
587 "0x%08llx - 0x%08llx (0x%08llx)\n",
588 __builtin_return_address(0),
589 (unsigned long long)base,
590 (unsigned long long)base + size,
591 (unsigned long long)size);
592 }
593
594 return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
595 }
596
597 /**
598 * __next_free_mem_range - next function for for_each_free_mem_range()
599 * @idx: pointer to u64 loop variable
600 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
601 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
602 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
603 * @out_nid: ptr to int for nid of the range, can be %NULL
604 *
605 * Find the first free area from *@idx which matches @nid, fill the out
606 * parameters, and update *@idx for the next iteration. The lower 32bit of
607 * *@idx contains index into memory region and the upper 32bit indexes the
608 * areas before each reserved region. For example, if reserved regions
609 * look like the following,
610 *
611 * 0:[0-16), 1:[32-48), 2:[128-130)
612 *
613 * The upper 32bit indexes the following regions.
614 *
615 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
616 *
617 * As both region arrays are sorted, the function advances the two indices
618 * in lockstep and returns each intersection.
619 */
620 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
621 phys_addr_t *out_start,
622 phys_addr_t *out_end, int *out_nid)
623 {
624 struct memblock_type *mem = &memblock.memory;
625 struct memblock_type *rsv = &memblock.reserved;
626 int mi = *idx & 0xffffffff;
627 int ri = *idx >> 32;
628
629 for ( ; mi < mem->cnt; mi++) {
630 struct memblock_region *m = &mem->regions[mi];
631 phys_addr_t m_start = m->base;
632 phys_addr_t m_end = m->base + m->size;
633
634 /* only memory regions are associated with nodes, check it */
635 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
636 continue;
637
638 /* scan areas before each reservation for intersection */
639 for ( ; ri < rsv->cnt + 1; ri++) {
640 struct memblock_region *r = &rsv->regions[ri];
641 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
642 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
643
644 /* if ri advanced past mi, break out to advance mi */
645 if (r_start >= m_end)
646 break;
647 /* if the two regions intersect, we're done */
648 if (m_start < r_end) {
649 if (out_start)
650 *out_start = max(m_start, r_start);
651 if (out_end)
652 *out_end = min(m_end, r_end);
653 if (out_nid)
654 *out_nid = memblock_get_region_node(m);
655 /*
656 * The region which ends first is advanced
657 * for the next iteration.
658 */
659 if (m_end <= r_end)
660 mi++;
661 else
662 ri++;
663 *idx = (u32)mi | (u64)ri << 32;
664 return;
665 }
666 }
667 }
668
669 /* signal end of iteration */
670 *idx = ULLONG_MAX;
671 }
672
673 /**
674 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
675 * @idx: pointer to u64 loop variable
676 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
677 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
678 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
679 * @out_nid: ptr to int for nid of the range, can be %NULL
680 *
681 * Reverse of __next_free_mem_range().
682 */
683 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
684 phys_addr_t *out_start,
685 phys_addr_t *out_end, int *out_nid)
686 {
687 struct memblock_type *mem = &memblock.memory;
688 struct memblock_type *rsv = &memblock.reserved;
689 int mi = *idx & 0xffffffff;
690 int ri = *idx >> 32;
691
692 if (*idx == (u64)ULLONG_MAX) {
693 mi = mem->cnt - 1;
694 ri = rsv->cnt;
695 }
696
697 for ( ; mi >= 0; mi--) {
698 struct memblock_region *m = &mem->regions[mi];
699 phys_addr_t m_start = m->base;
700 phys_addr_t m_end = m->base + m->size;
701
702 /* only memory regions are associated with nodes, check it */
703 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
704 continue;
705
706 /* scan areas before each reservation for intersection */
707 for ( ; ri >= 0; ri--) {
708 struct memblock_region *r = &rsv->regions[ri];
709 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
710 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
711
712 /* if ri advanced past mi, break out to advance mi */
713 if (r_end <= m_start)
714 break;
715 /* if the two regions intersect, we're done */
716 if (m_end > r_start) {
717 if (out_start)
718 *out_start = max(m_start, r_start);
719 if (out_end)
720 *out_end = min(m_end, r_end);
721 if (out_nid)
722 *out_nid = memblock_get_region_node(m);
723
724 if (m_start >= r_start)
725 mi--;
726 else
727 ri--;
728 *idx = (u32)mi | (u64)ri << 32;
729 return;
730 }
731 }
732 }
733
734 *idx = ULLONG_MAX;
735 }
736
737 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
738 /*
739 * Common iterator interface used to define for_each_mem_range().
740 */
741 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
742 unsigned long *out_start_pfn,
743 unsigned long *out_end_pfn, int *out_nid)
744 {
745 struct memblock_type *type = &memblock.memory;
746 struct memblock_region *r;
747
748 while (++*idx < type->cnt) {
749 r = &type->regions[*idx];
750
751 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
752 continue;
753 if (nid == MAX_NUMNODES || nid == r->nid)
754 break;
755 }
756 if (*idx >= type->cnt) {
757 *idx = -1;
758 return;
759 }
760
761 if (out_start_pfn)
762 *out_start_pfn = PFN_UP(r->base);
763 if (out_end_pfn)
764 *out_end_pfn = PFN_DOWN(r->base + r->size);
765 if (out_nid)
766 *out_nid = r->nid;
767 }
768
769 /**
770 * memblock_set_node - set node ID on memblock regions
771 * @base: base of area to set node ID for
772 * @size: size of area to set node ID for
773 * @nid: node ID to set
774 *
775 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
776 * Regions which cross the area boundaries are split as necessary.
777 *
778 * RETURNS:
779 * 0 on success, -errno on failure.
780 */
781 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
782 int nid)
783 {
784 struct memblock_type *type = &memblock.memory;
785 int start_rgn, end_rgn;
786 int i, ret;
787
788 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
789 if (ret)
790 return ret;
791
792 for (i = start_rgn; i < end_rgn; i++)
793 memblock_set_region_node(&type->regions[i], nid);
794
795 memblock_merge_regions(type);
796 return 0;
797 }
798 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
799
800 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
801 phys_addr_t align, phys_addr_t max_addr,
802 int nid)
803 {
804 phys_addr_t found;
805
806 if (WARN_ON(!align))
807 align = __alignof__(long long);
808
809 /* align @size to avoid excessive fragmentation on reserved array */
810 /* do not align size, we need every available memory */
811 //size = round_up(size, align);
812
813 found = memblock_find_in_range_node(0, max_addr, size, align, nid);
814 if (found && !memblock_reserve(found, size))
815 return found;
816
817 return 0;
818 }
819
820 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
821 {
822 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
823 }
824
825 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
826 {
827 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
828 }
829
830 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
831 {
832 phys_addr_t alloc;
833
834 alloc = __memblock_alloc_base(size, align, max_addr);
835
836 if (alloc == 0)
837 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
838 (unsigned long long) size, (unsigned long long) max_addr);
839
840 return alloc;
841 }
842
843 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
844 {
845 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
846 }
847
848 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
849 {
850 phys_addr_t res = memblock_alloc_nid(size, align, nid);
851
852 if (res)
853 return res;
854 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
855 }
856
857
858 /*
859 * Remaining API functions
860 */
861
862 phys_addr_t __init memblock_phys_mem_size(void)
863 {
864 return memblock.memory.total_size;
865 }
866
867 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
868 {
869 unsigned long pages = 0;
870 struct memblock_region *r;
871 unsigned long start_pfn, end_pfn;
872
873 for_each_memblock(memory, r) {
874 start_pfn = memblock_region_memory_base_pfn(r);
875 end_pfn = memblock_region_memory_end_pfn(r);
876 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
877 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
878 pages += end_pfn - start_pfn;
879 }
880
881 return (phys_addr_t)pages << PAGE_SHIFT;
882 }
883
884 /* lowest address */
885 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
886 {
887 return memblock.memory.regions[0].base;
888 }
889
890 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
891 {
892 int idx = memblock.memory.cnt - 1;
893
894 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
895 }
896
897 void __init memblock_enforce_memory_limit(phys_addr_t limit)
898 {
899 unsigned long i;
900 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
901
902 if (!limit)
903 return;
904
905 /* find out max address */
906 for (i = 0; i < memblock.memory.cnt; i++) {
907 struct memblock_region *r = &memblock.memory.regions[i];
908
909 if (limit <= r->size) {
910 max_addr = r->base + limit;
911 break;
912 }
913 limit -= r->size;
914 }
915
916 /* truncate both memory and reserved regions */
917 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
918 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
919 }
920
921 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
922 {
923 unsigned int left = 0, right = type->cnt;
924
925 do {
926 unsigned int mid = (right + left) / 2;
927
928 if (addr < type->regions[mid].base)
929 right = mid;
930 else if (addr >= (type->regions[mid].base +
931 type->regions[mid].size))
932 left = mid + 1;
933 else
934 return mid;
935 } while (left < right);
936 return -1;
937 }
938
939 int __init memblock_is_reserved(phys_addr_t addr)
940 {
941 return memblock_search(&memblock.reserved, addr) != -1;
942 }
943
944 int __init_memblock memblock_is_memory(phys_addr_t addr)
945 {
946 return memblock_search(&memblock.memory, addr) != -1;
947 }
948
949 /**
950 * memblock_is_region_memory - check if a region is a subset of memory
951 * @base: base of region to check
952 * @size: size of region to check
953 *
954 * Check if the region [@base, @base+@size) is a subset of a memory block.
955 *
956 * RETURNS:
957 * 0 if false, non-zero if true
958 */
959 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
960 {
961 int idx = memblock_search(&memblock.memory, base);
962 phys_addr_t end = base + memblock_cap_size(base, &size);
963
964 if (idx == -1)
965 return 0;
966 return memblock.memory.regions[idx].base <= base &&
967 (memblock.memory.regions[idx].base +
968 memblock.memory.regions[idx].size) >= end;
969 }
970
971 /**
972 * memblock_is_region_reserved - check if a region intersects reserved memory
973 * @base: base of region to check
974 * @size: size of region to check
975 *
976 * Check if the region [@base, @base+@size) intersects a reserved memory block.
977 *
978 * RETURNS:
979 * 0 if false, non-zero if true
980 */
981 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
982 {
983 memblock_cap_size(base, &size);
984 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
985 }
986
987 void __init_memblock memblock_trim_memory(phys_addr_t align)
988 {
989 int i;
990 phys_addr_t start, end, orig_start, orig_end;
991 struct memblock_type *mem = &memblock.memory;
992
993 for (i = 0; i < mem->cnt; i++) {
994 orig_start = mem->regions[i].base;
995 orig_end = mem->regions[i].base + mem->regions[i].size;
996 start = round_up(orig_start, align);
997 end = round_down(orig_end, align);
998
999 if (start == orig_start && end == orig_end)
1000 continue;
1001
1002 if (start < end) {
1003 mem->regions[i].base = start;
1004 mem->regions[i].size = end - start;
1005 } else {
1006 memblock_remove_region(mem, i);
1007 i--;
1008 }
1009 }
1010 }
1011
1012 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1013 {
1014 memblock.current_limit = limit;
1015 }
1016
1017 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1018 {
1019 unsigned long long base, size;
1020 int i;
1021
1022 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
1023
1024 for (i = 0; i < type->cnt; i++) {
1025 struct memblock_region *rgn = &type->regions[i];
1026 char nid_buf[32] = "";
1027
1028 base = rgn->base;
1029 size = rgn->size;
1030 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1031 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1032 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1033 memblock_get_region_node(rgn));
1034 #endif
1035 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
1036 name, i, base, base + size - 1, size, nid_buf);
1037 }
1038 }
1039
1040 void __init_memblock __memblock_dump_all(void)
1041 {
1042 pr_info("MEMBLOCK configuration:\n");
1043 pr_info(" memory size = %#llx reserved size = %#llx\n",
1044 (unsigned long long)memblock.memory.total_size,
1045 (unsigned long long)memblock.reserved.total_size);
1046
1047 memblock_dump(&memblock.memory, "memory");
1048 memblock_dump(&memblock.reserved, "reserved");
1049 }
1050
1051 void __init memblock_allow_resize(void)
1052 {
1053 memblock_can_resize = 1;
1054 }
1055
1056 static int __init early_memblock(char *p)
1057 {
1058 if (p && strstr(p, "debug"))
1059 memblock_debug = 1;
1060 return 0;
1061 }
1062 early_param("memblock", early_memblock);
1063
1064 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1065
1066 static int memblock_debug_show(struct seq_file *m, void *private)
1067 {
1068 struct memblock_type *type = m->private;
1069 struct memblock_region *reg;
1070 int i;
1071
1072 for (i = 0; i < type->cnt; i++) {
1073 reg = &type->regions[i];
1074 seq_printf(m, "%4d: ", i);
1075 if (sizeof(phys_addr_t) == 4)
1076 seq_printf(m, "0x%08lx..0x%08lx\n",
1077 (unsigned long)reg->base,
1078 (unsigned long)(reg->base + reg->size - 1));
1079 else
1080 seq_printf(m, "0x%016llx..0x%016llx\n",
1081 (unsigned long long)reg->base,
1082 (unsigned long long)(reg->base + reg->size - 1));
1083
1084 }
1085 return 0;
1086 }
1087
1088 static int memblock_debug_open(struct inode *inode, struct file *file)
1089 {
1090 return single_open(file, memblock_debug_show, inode->i_private);
1091 }
1092
1093 static const struct file_operations memblock_debug_fops = {
1094 .open = memblock_debug_open,
1095 .read = seq_read,
1096 .llseek = seq_lseek,
1097 .release = single_release,
1098 };
1099
1100 static int __init memblock_init_debugfs(void)
1101 {
1102 struct dentry *root = debugfs_create_dir("memblock", NULL);
1103 if (!root)
1104 return -ENXIO;
1105 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1106 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1107
1108 return 0;
1109 }
1110 __initcall(memblock_init_debugfs);
1111
1112 #endif /* CONFIG_DEBUG_FS */