mm: fix new crash in unmapped_area_topdown()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38 unsigned long hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43
44 __initdata LIST_HEAD(huge_boot_pages);
45
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50
51 /*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94 {
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113 {
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131 return subpool_inode(file_inode(vma->vm_file));
132 }
133
134 /*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
142 *
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
147 */
148 struct file_region {
149 struct list_head link;
150 long from;
151 long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156 struct file_region *rg, *nrg, *trg;
157
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
162
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
166
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
174
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 }
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192 struct file_region *rg, *nrg;
193 long chg = 0;
194
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
199
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
211
212 return t - f;
213 }
214
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
219
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
226
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
233 }
234 chg -= rg->to - rg->from;
235 }
236 return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241 struct file_region *rg, *trg;
242 long chg = 0;
243
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
250
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
256 }
257
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
265 }
266 return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271 struct file_region *rg;
272 long chg = 0;
273
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
276 long seg_from;
277 long seg_to;
278
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
283
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
286
287 chg += seg_to - seg_from;
288 }
289
290 return chg;
291 }
292
293 /*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
299 {
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
306 {
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316 struct hstate *hstate;
317
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
320
321 hstate = hstate_vma(vma);
322
323 return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336 return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
367 */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370 return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
375 {
376 vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380 struct kref refs;
381 struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
389
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
392
393 return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
411 return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435 return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440 struct vm_area_struct *vma)
441 {
442 if (vma->vm_flags & VM_NORESERVE)
443 return;
444
445 if (vma->vm_flags & VM_MAYSHARE) {
446 /* Shared mappings always use reserves */
447 h->resv_huge_pages--;
448 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449 /*
450 * Only the process that called mmap() has reserves for
451 * private mappings.
452 */
453 h->resv_huge_pages--;
454 }
455 }
456
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 {
460 VM_BUG_ON(!is_vm_hugetlb_page(vma));
461 if (!(vma->vm_flags & VM_MAYSHARE))
462 vma->vm_private_data = (void *)0;
463 }
464
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
467 {
468 if (vma->vm_flags & VM_MAYSHARE)
469 return 1;
470 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471 return 1;
472 return 0;
473 }
474
475 static void copy_gigantic_page(struct page *dst, struct page *src)
476 {
477 int i;
478 struct hstate *h = page_hstate(src);
479 struct page *dst_base = dst;
480 struct page *src_base = src;
481
482 for (i = 0; i < pages_per_huge_page(h); ) {
483 cond_resched();
484 copy_highpage(dst, src);
485
486 i++;
487 dst = mem_map_next(dst, dst_base, i);
488 src = mem_map_next(src, src_base, i);
489 }
490 }
491
492 void copy_huge_page(struct page *dst, struct page *src)
493 {
494 int i;
495 struct hstate *h = page_hstate(src);
496
497 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498 copy_gigantic_page(dst, src);
499 return;
500 }
501
502 might_sleep();
503 for (i = 0; i < pages_per_huge_page(h); i++) {
504 cond_resched();
505 copy_highpage(dst + i, src + i);
506 }
507 }
508
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 {
511 int nid = page_to_nid(page);
512 list_move(&page->lru, &h->hugepage_freelists[nid]);
513 h->free_huge_pages++;
514 h->free_huge_pages_node[nid]++;
515 }
516
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 {
519 struct page *page;
520
521 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
522 if (!is_migrate_isolate_page(page))
523 break;
524 /*
525 * if 'non-isolated free hugepage' not found on the list,
526 * the allocation fails.
527 */
528 if (&h->hugepage_freelists[nid] == &page->lru)
529 return NULL;
530 list_move(&page->lru, &h->hugepage_activelist);
531 set_page_refcounted(page);
532 h->free_huge_pages--;
533 h->free_huge_pages_node[nid]--;
534 return page;
535 }
536
537 static struct page *dequeue_huge_page_vma(struct hstate *h,
538 struct vm_area_struct *vma,
539 unsigned long address, int avoid_reserve)
540 {
541 struct page *page = NULL;
542 struct mempolicy *mpol;
543 nodemask_t *nodemask;
544 struct zonelist *zonelist;
545 struct zone *zone;
546 struct zoneref *z;
547 unsigned int cpuset_mems_cookie;
548
549 retry_cpuset:
550 cpuset_mems_cookie = get_mems_allowed();
551 zonelist = huge_zonelist(vma, address,
552 htlb_alloc_mask, &mpol, &nodemask);
553 /*
554 * A child process with MAP_PRIVATE mappings created by their parent
555 * have no page reserves. This check ensures that reservations are
556 * not "stolen". The child may still get SIGKILLed
557 */
558 if (!vma_has_reserves(vma) &&
559 h->free_huge_pages - h->resv_huge_pages == 0)
560 goto err;
561
562 /* If reserves cannot be used, ensure enough pages are in the pool */
563 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
564 goto err;
565
566 for_each_zone_zonelist_nodemask(zone, z, zonelist,
567 MAX_NR_ZONES - 1, nodemask) {
568 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
569 page = dequeue_huge_page_node(h, zone_to_nid(zone));
570 if (page) {
571 if (!avoid_reserve)
572 decrement_hugepage_resv_vma(h, vma);
573 break;
574 }
575 }
576 }
577
578 mpol_cond_put(mpol);
579 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
580 goto retry_cpuset;
581 return page;
582
583 err:
584 mpol_cond_put(mpol);
585 return NULL;
586 }
587
588 static void update_and_free_page(struct hstate *h, struct page *page)
589 {
590 int i;
591
592 VM_BUG_ON(h->order >= MAX_ORDER);
593
594 h->nr_huge_pages--;
595 h->nr_huge_pages_node[page_to_nid(page)]--;
596 for (i = 0; i < pages_per_huge_page(h); i++) {
597 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
598 1 << PG_referenced | 1 << PG_dirty |
599 1 << PG_active | 1 << PG_reserved |
600 1 << PG_private | 1 << PG_writeback);
601 }
602 VM_BUG_ON(hugetlb_cgroup_from_page(page));
603 set_compound_page_dtor(page, NULL);
604 set_page_refcounted(page);
605 arch_release_hugepage(page);
606 __free_pages(page, huge_page_order(h));
607 }
608
609 struct hstate *size_to_hstate(unsigned long size)
610 {
611 struct hstate *h;
612
613 for_each_hstate(h) {
614 if (huge_page_size(h) == size)
615 return h;
616 }
617 return NULL;
618 }
619
620 static void free_huge_page(struct page *page)
621 {
622 /*
623 * Can't pass hstate in here because it is called from the
624 * compound page destructor.
625 */
626 struct hstate *h = page_hstate(page);
627 int nid = page_to_nid(page);
628 struct hugepage_subpool *spool =
629 (struct hugepage_subpool *)page_private(page);
630
631 set_page_private(page, 0);
632 page->mapping = NULL;
633 BUG_ON(page_count(page));
634 BUG_ON(page_mapcount(page));
635
636 spin_lock(&hugetlb_lock);
637 hugetlb_cgroup_uncharge_page(hstate_index(h),
638 pages_per_huge_page(h), page);
639 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
640 /* remove the page from active list */
641 list_del(&page->lru);
642 update_and_free_page(h, page);
643 h->surplus_huge_pages--;
644 h->surplus_huge_pages_node[nid]--;
645 } else {
646 arch_clear_hugepage_flags(page);
647 enqueue_huge_page(h, page);
648 }
649 spin_unlock(&hugetlb_lock);
650 hugepage_subpool_put_pages(spool, 1);
651 }
652
653 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
654 {
655 INIT_LIST_HEAD(&page->lru);
656 set_compound_page_dtor(page, free_huge_page);
657 spin_lock(&hugetlb_lock);
658 set_hugetlb_cgroup(page, NULL);
659 h->nr_huge_pages++;
660 h->nr_huge_pages_node[nid]++;
661 spin_unlock(&hugetlb_lock);
662 put_page(page); /* free it into the hugepage allocator */
663 }
664
665 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
666 {
667 int i;
668 int nr_pages = 1 << order;
669 struct page *p = page + 1;
670
671 /* we rely on prep_new_huge_page to set the destructor */
672 set_compound_order(page, order);
673 __SetPageHead(page);
674 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
675 __SetPageTail(p);
676 set_page_count(p, 0);
677 p->first_page = page;
678 }
679 }
680
681 /*
682 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
683 * transparent huge pages. See the PageTransHuge() documentation for more
684 * details.
685 */
686 int PageHuge(struct page *page)
687 {
688 compound_page_dtor *dtor;
689
690 if (!PageCompound(page))
691 return 0;
692
693 page = compound_head(page);
694 dtor = get_compound_page_dtor(page);
695
696 return dtor == free_huge_page;
697 }
698 EXPORT_SYMBOL_GPL(PageHuge);
699
700 /*
701 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
702 * normal or transparent huge pages.
703 */
704 int PageHeadHuge(struct page *page_head)
705 {
706 compound_page_dtor *dtor;
707
708 if (!PageHead(page_head))
709 return 0;
710
711 dtor = get_compound_page_dtor(page_head);
712
713 return dtor == free_huge_page;
714 }
715 EXPORT_SYMBOL_GPL(PageHeadHuge);
716
717 pgoff_t __basepage_index(struct page *page)
718 {
719 struct page *page_head = compound_head(page);
720 pgoff_t index = page_index(page_head);
721 unsigned long compound_idx;
722
723 if (!PageHuge(page_head))
724 return page_index(page);
725
726 if (compound_order(page_head) >= MAX_ORDER)
727 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
728 else
729 compound_idx = page - page_head;
730
731 return (index << compound_order(page_head)) + compound_idx;
732 }
733
734 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
735 {
736 struct page *page;
737
738 if (h->order >= MAX_ORDER)
739 return NULL;
740
741 page = alloc_pages_exact_node(nid,
742 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
743 __GFP_REPEAT|__GFP_NOWARN,
744 huge_page_order(h));
745 if (page) {
746 if (arch_prepare_hugepage(page)) {
747 __free_pages(page, huge_page_order(h));
748 return NULL;
749 }
750 prep_new_huge_page(h, page, nid);
751 }
752
753 return page;
754 }
755
756 /*
757 * common helper functions for hstate_next_node_to_{alloc|free}.
758 * We may have allocated or freed a huge page based on a different
759 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
760 * be outside of *nodes_allowed. Ensure that we use an allowed
761 * node for alloc or free.
762 */
763 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
764 {
765 nid = next_node(nid, *nodes_allowed);
766 if (nid == MAX_NUMNODES)
767 nid = first_node(*nodes_allowed);
768 VM_BUG_ON(nid >= MAX_NUMNODES);
769
770 return nid;
771 }
772
773 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
774 {
775 if (!node_isset(nid, *nodes_allowed))
776 nid = next_node_allowed(nid, nodes_allowed);
777 return nid;
778 }
779
780 /*
781 * returns the previously saved node ["this node"] from which to
782 * allocate a persistent huge page for the pool and advance the
783 * next node from which to allocate, handling wrap at end of node
784 * mask.
785 */
786 static int hstate_next_node_to_alloc(struct hstate *h,
787 nodemask_t *nodes_allowed)
788 {
789 int nid;
790
791 VM_BUG_ON(!nodes_allowed);
792
793 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
794 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
795
796 return nid;
797 }
798
799 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
800 {
801 struct page *page;
802 int start_nid;
803 int next_nid;
804 int ret = 0;
805
806 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
807 next_nid = start_nid;
808
809 do {
810 page = alloc_fresh_huge_page_node(h, next_nid);
811 if (page) {
812 ret = 1;
813 break;
814 }
815 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
816 } while (next_nid != start_nid);
817
818 if (ret)
819 count_vm_event(HTLB_BUDDY_PGALLOC);
820 else
821 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
822
823 return ret;
824 }
825
826 /*
827 * helper for free_pool_huge_page() - return the previously saved
828 * node ["this node"] from which to free a huge page. Advance the
829 * next node id whether or not we find a free huge page to free so
830 * that the next attempt to free addresses the next node.
831 */
832 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
833 {
834 int nid;
835
836 VM_BUG_ON(!nodes_allowed);
837
838 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
839 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
840
841 return nid;
842 }
843
844 /*
845 * Free huge page from pool from next node to free.
846 * Attempt to keep persistent huge pages more or less
847 * balanced over allowed nodes.
848 * Called with hugetlb_lock locked.
849 */
850 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
851 bool acct_surplus)
852 {
853 int start_nid;
854 int next_nid;
855 int ret = 0;
856
857 start_nid = hstate_next_node_to_free(h, nodes_allowed);
858 next_nid = start_nid;
859
860 do {
861 /*
862 * If we're returning unused surplus pages, only examine
863 * nodes with surplus pages.
864 */
865 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
866 !list_empty(&h->hugepage_freelists[next_nid])) {
867 struct page *page =
868 list_entry(h->hugepage_freelists[next_nid].next,
869 struct page, lru);
870 list_del(&page->lru);
871 h->free_huge_pages--;
872 h->free_huge_pages_node[next_nid]--;
873 if (acct_surplus) {
874 h->surplus_huge_pages--;
875 h->surplus_huge_pages_node[next_nid]--;
876 }
877 update_and_free_page(h, page);
878 ret = 1;
879 break;
880 }
881 next_nid = hstate_next_node_to_free(h, nodes_allowed);
882 } while (next_nid != start_nid);
883
884 return ret;
885 }
886
887 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
888 {
889 struct page *page;
890 unsigned int r_nid;
891
892 if (h->order >= MAX_ORDER)
893 return NULL;
894
895 /*
896 * Assume we will successfully allocate the surplus page to
897 * prevent racing processes from causing the surplus to exceed
898 * overcommit
899 *
900 * This however introduces a different race, where a process B
901 * tries to grow the static hugepage pool while alloc_pages() is
902 * called by process A. B will only examine the per-node
903 * counters in determining if surplus huge pages can be
904 * converted to normal huge pages in adjust_pool_surplus(). A
905 * won't be able to increment the per-node counter, until the
906 * lock is dropped by B, but B doesn't drop hugetlb_lock until
907 * no more huge pages can be converted from surplus to normal
908 * state (and doesn't try to convert again). Thus, we have a
909 * case where a surplus huge page exists, the pool is grown, and
910 * the surplus huge page still exists after, even though it
911 * should just have been converted to a normal huge page. This
912 * does not leak memory, though, as the hugepage will be freed
913 * once it is out of use. It also does not allow the counters to
914 * go out of whack in adjust_pool_surplus() as we don't modify
915 * the node values until we've gotten the hugepage and only the
916 * per-node value is checked there.
917 */
918 spin_lock(&hugetlb_lock);
919 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
920 spin_unlock(&hugetlb_lock);
921 return NULL;
922 } else {
923 h->nr_huge_pages++;
924 h->surplus_huge_pages++;
925 }
926 spin_unlock(&hugetlb_lock);
927
928 if (nid == NUMA_NO_NODE)
929 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
930 __GFP_REPEAT|__GFP_NOWARN,
931 huge_page_order(h));
932 else
933 page = alloc_pages_exact_node(nid,
934 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
935 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
936
937 if (page && arch_prepare_hugepage(page)) {
938 __free_pages(page, huge_page_order(h));
939 page = NULL;
940 }
941
942 spin_lock(&hugetlb_lock);
943 if (page) {
944 INIT_LIST_HEAD(&page->lru);
945 r_nid = page_to_nid(page);
946 set_compound_page_dtor(page, free_huge_page);
947 set_hugetlb_cgroup(page, NULL);
948 /*
949 * We incremented the global counters already
950 */
951 h->nr_huge_pages_node[r_nid]++;
952 h->surplus_huge_pages_node[r_nid]++;
953 __count_vm_event(HTLB_BUDDY_PGALLOC);
954 } else {
955 h->nr_huge_pages--;
956 h->surplus_huge_pages--;
957 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
958 }
959 spin_unlock(&hugetlb_lock);
960
961 return page;
962 }
963
964 /*
965 * This allocation function is useful in the context where vma is irrelevant.
966 * E.g. soft-offlining uses this function because it only cares physical
967 * address of error page.
968 */
969 struct page *alloc_huge_page_node(struct hstate *h, int nid)
970 {
971 struct page *page;
972
973 spin_lock(&hugetlb_lock);
974 page = dequeue_huge_page_node(h, nid);
975 spin_unlock(&hugetlb_lock);
976
977 if (!page)
978 page = alloc_buddy_huge_page(h, nid);
979
980 return page;
981 }
982
983 /*
984 * Increase the hugetlb pool such that it can accommodate a reservation
985 * of size 'delta'.
986 */
987 static int gather_surplus_pages(struct hstate *h, int delta)
988 {
989 struct list_head surplus_list;
990 struct page *page, *tmp;
991 int ret, i;
992 int needed, allocated;
993 bool alloc_ok = true;
994
995 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
996 if (needed <= 0) {
997 h->resv_huge_pages += delta;
998 return 0;
999 }
1000
1001 allocated = 0;
1002 INIT_LIST_HEAD(&surplus_list);
1003
1004 ret = -ENOMEM;
1005 retry:
1006 spin_unlock(&hugetlb_lock);
1007 for (i = 0; i < needed; i++) {
1008 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1009 if (!page) {
1010 alloc_ok = false;
1011 break;
1012 }
1013 list_add(&page->lru, &surplus_list);
1014 }
1015 allocated += i;
1016
1017 /*
1018 * After retaking hugetlb_lock, we need to recalculate 'needed'
1019 * because either resv_huge_pages or free_huge_pages may have changed.
1020 */
1021 spin_lock(&hugetlb_lock);
1022 needed = (h->resv_huge_pages + delta) -
1023 (h->free_huge_pages + allocated);
1024 if (needed > 0) {
1025 if (alloc_ok)
1026 goto retry;
1027 /*
1028 * We were not able to allocate enough pages to
1029 * satisfy the entire reservation so we free what
1030 * we've allocated so far.
1031 */
1032 goto free;
1033 }
1034 /*
1035 * The surplus_list now contains _at_least_ the number of extra pages
1036 * needed to accommodate the reservation. Add the appropriate number
1037 * of pages to the hugetlb pool and free the extras back to the buddy
1038 * allocator. Commit the entire reservation here to prevent another
1039 * process from stealing the pages as they are added to the pool but
1040 * before they are reserved.
1041 */
1042 needed += allocated;
1043 h->resv_huge_pages += delta;
1044 ret = 0;
1045
1046 /* Free the needed pages to the hugetlb pool */
1047 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1048 if ((--needed) < 0)
1049 break;
1050 /*
1051 * This page is now managed by the hugetlb allocator and has
1052 * no users -- drop the buddy allocator's reference.
1053 */
1054 put_page_testzero(page);
1055 VM_BUG_ON(page_count(page));
1056 enqueue_huge_page(h, page);
1057 }
1058 free:
1059 spin_unlock(&hugetlb_lock);
1060
1061 /* Free unnecessary surplus pages to the buddy allocator */
1062 if (!list_empty(&surplus_list)) {
1063 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1064 put_page(page);
1065 }
1066 }
1067 spin_lock(&hugetlb_lock);
1068
1069 return ret;
1070 }
1071
1072 /*
1073 * This routine has two main purposes:
1074 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1075 * in unused_resv_pages. This corresponds to the prior adjustments made
1076 * to the associated reservation map.
1077 * 2) Free any unused surplus pages that may have been allocated to satisfy
1078 * the reservation. As many as unused_resv_pages may be freed.
1079 *
1080 * Called with hugetlb_lock held. However, the lock could be dropped (and
1081 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1082 * we must make sure nobody else can claim pages we are in the process of
1083 * freeing. Do this by ensuring resv_huge_page always is greater than the
1084 * number of huge pages we plan to free when dropping the lock.
1085 */
1086 static void return_unused_surplus_pages(struct hstate *h,
1087 unsigned long unused_resv_pages)
1088 {
1089 unsigned long nr_pages;
1090
1091 /* Cannot return gigantic pages currently */
1092 if (h->order >= MAX_ORDER)
1093 goto out;
1094
1095 /*
1096 * Part (or even all) of the reservation could have been backed
1097 * by pre-allocated pages. Only free surplus pages.
1098 */
1099 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1100
1101 /*
1102 * We want to release as many surplus pages as possible, spread
1103 * evenly across all nodes with memory. Iterate across these nodes
1104 * until we can no longer free unreserved surplus pages. This occurs
1105 * when the nodes with surplus pages have no free pages.
1106 * free_pool_huge_page() will balance the the freed pages across the
1107 * on-line nodes with memory and will handle the hstate accounting.
1108 *
1109 * Note that we decrement resv_huge_pages as we free the pages. If
1110 * we drop the lock, resv_huge_pages will still be sufficiently large
1111 * to cover subsequent pages we may free.
1112 */
1113 while (nr_pages--) {
1114 h->resv_huge_pages--;
1115 unused_resv_pages--;
1116 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1117 goto out;
1118 cond_resched_lock(&hugetlb_lock);
1119 }
1120
1121 out:
1122 /* Fully uncommit the reservation */
1123 h->resv_huge_pages -= unused_resv_pages;
1124 }
1125
1126 /*
1127 * Determine if the huge page at addr within the vma has an associated
1128 * reservation. Where it does not we will need to logically increase
1129 * reservation and actually increase subpool usage before an allocation
1130 * can occur. Where any new reservation would be required the
1131 * reservation change is prepared, but not committed. Once the page
1132 * has been allocated from the subpool and instantiated the change should
1133 * be committed via vma_commit_reservation. No action is required on
1134 * failure.
1135 */
1136 static long vma_needs_reservation(struct hstate *h,
1137 struct vm_area_struct *vma, unsigned long addr)
1138 {
1139 struct address_space *mapping = vma->vm_file->f_mapping;
1140 struct inode *inode = mapping->host;
1141
1142 if (vma->vm_flags & VM_MAYSHARE) {
1143 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1144 return region_chg(&inode->i_mapping->private_list,
1145 idx, idx + 1);
1146
1147 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1148 return 1;
1149
1150 } else {
1151 long err;
1152 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1153 struct resv_map *reservations = vma_resv_map(vma);
1154
1155 err = region_chg(&reservations->regions, idx, idx + 1);
1156 if (err < 0)
1157 return err;
1158 return 0;
1159 }
1160 }
1161 static void vma_commit_reservation(struct hstate *h,
1162 struct vm_area_struct *vma, unsigned long addr)
1163 {
1164 struct address_space *mapping = vma->vm_file->f_mapping;
1165 struct inode *inode = mapping->host;
1166
1167 if (vma->vm_flags & VM_MAYSHARE) {
1168 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1169 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1170
1171 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1172 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1173 struct resv_map *reservations = vma_resv_map(vma);
1174
1175 /* Mark this page used in the map. */
1176 region_add(&reservations->regions, idx, idx + 1);
1177 }
1178 }
1179
1180 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1181 unsigned long addr, int avoid_reserve)
1182 {
1183 struct hugepage_subpool *spool = subpool_vma(vma);
1184 struct hstate *h = hstate_vma(vma);
1185 struct page *page;
1186 long chg;
1187 int ret, idx;
1188 struct hugetlb_cgroup *h_cg;
1189
1190 idx = hstate_index(h);
1191 /*
1192 * Processes that did not create the mapping will have no
1193 * reserves and will not have accounted against subpool
1194 * limit. Check that the subpool limit can be made before
1195 * satisfying the allocation MAP_NORESERVE mappings may also
1196 * need pages and subpool limit allocated allocated if no reserve
1197 * mapping overlaps.
1198 */
1199 chg = vma_needs_reservation(h, vma, addr);
1200 if (chg < 0)
1201 return ERR_PTR(-ENOMEM);
1202 if (chg)
1203 if (hugepage_subpool_get_pages(spool, chg))
1204 return ERR_PTR(-ENOSPC);
1205
1206 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1207 if (ret) {
1208 hugepage_subpool_put_pages(spool, chg);
1209 return ERR_PTR(-ENOSPC);
1210 }
1211 spin_lock(&hugetlb_lock);
1212 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1213 if (page) {
1214 /* update page cgroup details */
1215 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1216 h_cg, page);
1217 spin_unlock(&hugetlb_lock);
1218 } else {
1219 spin_unlock(&hugetlb_lock);
1220 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1221 if (!page) {
1222 hugetlb_cgroup_uncharge_cgroup(idx,
1223 pages_per_huge_page(h),
1224 h_cg);
1225 hugepage_subpool_put_pages(spool, chg);
1226 return ERR_PTR(-ENOSPC);
1227 }
1228 spin_lock(&hugetlb_lock);
1229 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1230 h_cg, page);
1231 list_move(&page->lru, &h->hugepage_activelist);
1232 spin_unlock(&hugetlb_lock);
1233 }
1234
1235 set_page_private(page, (unsigned long)spool);
1236
1237 vma_commit_reservation(h, vma, addr);
1238 return page;
1239 }
1240
1241 int __weak alloc_bootmem_huge_page(struct hstate *h)
1242 {
1243 struct huge_bootmem_page *m;
1244 int nr_nodes = nodes_weight(node_states[N_MEMORY]);
1245
1246 while (nr_nodes) {
1247 void *addr;
1248
1249 addr = __alloc_bootmem_node_nopanic(
1250 NODE_DATA(hstate_next_node_to_alloc(h,
1251 &node_states[N_MEMORY])),
1252 huge_page_size(h), huge_page_size(h), 0);
1253
1254 if (addr) {
1255 /*
1256 * Use the beginning of the huge page to store the
1257 * huge_bootmem_page struct (until gather_bootmem
1258 * puts them into the mem_map).
1259 */
1260 m = addr;
1261 goto found;
1262 }
1263 nr_nodes--;
1264 }
1265 return 0;
1266
1267 found:
1268 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1269 /* Put them into a private list first because mem_map is not up yet */
1270 list_add(&m->list, &huge_boot_pages);
1271 m->hstate = h;
1272 return 1;
1273 }
1274
1275 static void prep_compound_huge_page(struct page *page, int order)
1276 {
1277 if (unlikely(order > (MAX_ORDER - 1)))
1278 prep_compound_gigantic_page(page, order);
1279 else
1280 prep_compound_page(page, order);
1281 }
1282
1283 /* Put bootmem huge pages into the standard lists after mem_map is up */
1284 static void __init gather_bootmem_prealloc(void)
1285 {
1286 struct huge_bootmem_page *m;
1287
1288 list_for_each_entry(m, &huge_boot_pages, list) {
1289 struct hstate *h = m->hstate;
1290 struct page *page;
1291
1292 #ifdef CONFIG_HIGHMEM
1293 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1294 free_bootmem_late((unsigned long)m,
1295 sizeof(struct huge_bootmem_page));
1296 #else
1297 page = virt_to_page(m);
1298 #endif
1299 __ClearPageReserved(page);
1300 WARN_ON(page_count(page) != 1);
1301 prep_compound_huge_page(page, h->order);
1302 prep_new_huge_page(h, page, page_to_nid(page));
1303 /*
1304 * If we had gigantic hugepages allocated at boot time, we need
1305 * to restore the 'stolen' pages to totalram_pages in order to
1306 * fix confusing memory reports from free(1) and another
1307 * side-effects, like CommitLimit going negative.
1308 */
1309 if (h->order > (MAX_ORDER - 1))
1310 totalram_pages += 1 << h->order;
1311 }
1312 }
1313
1314 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1315 {
1316 unsigned long i;
1317
1318 for (i = 0; i < h->max_huge_pages; ++i) {
1319 if (h->order >= MAX_ORDER) {
1320 if (!alloc_bootmem_huge_page(h))
1321 break;
1322 } else if (!alloc_fresh_huge_page(h,
1323 &node_states[N_MEMORY]))
1324 break;
1325 }
1326 h->max_huge_pages = i;
1327 }
1328
1329 static void __init hugetlb_init_hstates(void)
1330 {
1331 struct hstate *h;
1332
1333 for_each_hstate(h) {
1334 /* oversize hugepages were init'ed in early boot */
1335 if (h->order < MAX_ORDER)
1336 hugetlb_hstate_alloc_pages(h);
1337 }
1338 }
1339
1340 static char * __init memfmt(char *buf, unsigned long n)
1341 {
1342 if (n >= (1UL << 30))
1343 sprintf(buf, "%lu GB", n >> 30);
1344 else if (n >= (1UL << 20))
1345 sprintf(buf, "%lu MB", n >> 20);
1346 else
1347 sprintf(buf, "%lu KB", n >> 10);
1348 return buf;
1349 }
1350
1351 static void __init report_hugepages(void)
1352 {
1353 struct hstate *h;
1354
1355 for_each_hstate(h) {
1356 char buf[32];
1357 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1358 memfmt(buf, huge_page_size(h)),
1359 h->free_huge_pages);
1360 }
1361 }
1362
1363 #ifdef CONFIG_HIGHMEM
1364 static void try_to_free_low(struct hstate *h, unsigned long count,
1365 nodemask_t *nodes_allowed)
1366 {
1367 int i;
1368
1369 if (h->order >= MAX_ORDER)
1370 return;
1371
1372 for_each_node_mask(i, *nodes_allowed) {
1373 struct page *page, *next;
1374 struct list_head *freel = &h->hugepage_freelists[i];
1375 list_for_each_entry_safe(page, next, freel, lru) {
1376 if (count >= h->nr_huge_pages)
1377 return;
1378 if (PageHighMem(page))
1379 continue;
1380 list_del(&page->lru);
1381 update_and_free_page(h, page);
1382 h->free_huge_pages--;
1383 h->free_huge_pages_node[page_to_nid(page)]--;
1384 }
1385 }
1386 }
1387 #else
1388 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1389 nodemask_t *nodes_allowed)
1390 {
1391 }
1392 #endif
1393
1394 /*
1395 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1396 * balanced by operating on them in a round-robin fashion.
1397 * Returns 1 if an adjustment was made.
1398 */
1399 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1400 int delta)
1401 {
1402 int start_nid, next_nid;
1403 int ret = 0;
1404
1405 VM_BUG_ON(delta != -1 && delta != 1);
1406
1407 if (delta < 0)
1408 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1409 else
1410 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1411 next_nid = start_nid;
1412
1413 do {
1414 int nid = next_nid;
1415 if (delta < 0) {
1416 /*
1417 * To shrink on this node, there must be a surplus page
1418 */
1419 if (!h->surplus_huge_pages_node[nid]) {
1420 next_nid = hstate_next_node_to_alloc(h,
1421 nodes_allowed);
1422 continue;
1423 }
1424 }
1425 if (delta > 0) {
1426 /*
1427 * Surplus cannot exceed the total number of pages
1428 */
1429 if (h->surplus_huge_pages_node[nid] >=
1430 h->nr_huge_pages_node[nid]) {
1431 next_nid = hstate_next_node_to_free(h,
1432 nodes_allowed);
1433 continue;
1434 }
1435 }
1436
1437 h->surplus_huge_pages += delta;
1438 h->surplus_huge_pages_node[nid] += delta;
1439 ret = 1;
1440 break;
1441 } while (next_nid != start_nid);
1442
1443 return ret;
1444 }
1445
1446 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1447 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1448 nodemask_t *nodes_allowed)
1449 {
1450 unsigned long min_count, ret;
1451
1452 if (h->order >= MAX_ORDER)
1453 return h->max_huge_pages;
1454
1455 /*
1456 * Increase the pool size
1457 * First take pages out of surplus state. Then make up the
1458 * remaining difference by allocating fresh huge pages.
1459 *
1460 * We might race with alloc_buddy_huge_page() here and be unable
1461 * to convert a surplus huge page to a normal huge page. That is
1462 * not critical, though, it just means the overall size of the
1463 * pool might be one hugepage larger than it needs to be, but
1464 * within all the constraints specified by the sysctls.
1465 */
1466 spin_lock(&hugetlb_lock);
1467 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1468 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1469 break;
1470 }
1471
1472 while (count > persistent_huge_pages(h)) {
1473 /*
1474 * If this allocation races such that we no longer need the
1475 * page, free_huge_page will handle it by freeing the page
1476 * and reducing the surplus.
1477 */
1478 spin_unlock(&hugetlb_lock);
1479 ret = alloc_fresh_huge_page(h, nodes_allowed);
1480 spin_lock(&hugetlb_lock);
1481 if (!ret)
1482 goto out;
1483
1484 /* Bail for signals. Probably ctrl-c from user */
1485 if (signal_pending(current))
1486 goto out;
1487 }
1488
1489 /*
1490 * Decrease the pool size
1491 * First return free pages to the buddy allocator (being careful
1492 * to keep enough around to satisfy reservations). Then place
1493 * pages into surplus state as needed so the pool will shrink
1494 * to the desired size as pages become free.
1495 *
1496 * By placing pages into the surplus state independent of the
1497 * overcommit value, we are allowing the surplus pool size to
1498 * exceed overcommit. There are few sane options here. Since
1499 * alloc_buddy_huge_page() is checking the global counter,
1500 * though, we'll note that we're not allowed to exceed surplus
1501 * and won't grow the pool anywhere else. Not until one of the
1502 * sysctls are changed, or the surplus pages go out of use.
1503 */
1504 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1505 min_count = max(count, min_count);
1506 try_to_free_low(h, min_count, nodes_allowed);
1507 while (min_count < persistent_huge_pages(h)) {
1508 if (!free_pool_huge_page(h, nodes_allowed, 0))
1509 break;
1510 cond_resched_lock(&hugetlb_lock);
1511 }
1512 while (count < persistent_huge_pages(h)) {
1513 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1514 break;
1515 }
1516 out:
1517 ret = persistent_huge_pages(h);
1518 spin_unlock(&hugetlb_lock);
1519 return ret;
1520 }
1521
1522 #define HSTATE_ATTR_RO(_name) \
1523 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1524
1525 #define HSTATE_ATTR(_name) \
1526 static struct kobj_attribute _name##_attr = \
1527 __ATTR(_name, 0644, _name##_show, _name##_store)
1528
1529 static struct kobject *hugepages_kobj;
1530 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1531
1532 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1533
1534 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1535 {
1536 int i;
1537
1538 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1539 if (hstate_kobjs[i] == kobj) {
1540 if (nidp)
1541 *nidp = NUMA_NO_NODE;
1542 return &hstates[i];
1543 }
1544
1545 return kobj_to_node_hstate(kobj, nidp);
1546 }
1547
1548 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1549 struct kobj_attribute *attr, char *buf)
1550 {
1551 struct hstate *h;
1552 unsigned long nr_huge_pages;
1553 int nid;
1554
1555 h = kobj_to_hstate(kobj, &nid);
1556 if (nid == NUMA_NO_NODE)
1557 nr_huge_pages = h->nr_huge_pages;
1558 else
1559 nr_huge_pages = h->nr_huge_pages_node[nid];
1560
1561 return sprintf(buf, "%lu\n", nr_huge_pages);
1562 }
1563
1564 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1565 struct kobject *kobj, struct kobj_attribute *attr,
1566 const char *buf, size_t len)
1567 {
1568 int err;
1569 int nid;
1570 unsigned long count;
1571 struct hstate *h;
1572 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1573
1574 err = strict_strtoul(buf, 10, &count);
1575 if (err)
1576 goto out;
1577
1578 h = kobj_to_hstate(kobj, &nid);
1579 if (h->order >= MAX_ORDER) {
1580 err = -EINVAL;
1581 goto out;
1582 }
1583
1584 if (nid == NUMA_NO_NODE) {
1585 /*
1586 * global hstate attribute
1587 */
1588 if (!(obey_mempolicy &&
1589 init_nodemask_of_mempolicy(nodes_allowed))) {
1590 NODEMASK_FREE(nodes_allowed);
1591 nodes_allowed = &node_states[N_MEMORY];
1592 }
1593 } else if (nodes_allowed) {
1594 /*
1595 * per node hstate attribute: adjust count to global,
1596 * but restrict alloc/free to the specified node.
1597 */
1598 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1599 init_nodemask_of_node(nodes_allowed, nid);
1600 } else
1601 nodes_allowed = &node_states[N_MEMORY];
1602
1603 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1604
1605 if (nodes_allowed != &node_states[N_MEMORY])
1606 NODEMASK_FREE(nodes_allowed);
1607
1608 return len;
1609 out:
1610 NODEMASK_FREE(nodes_allowed);
1611 return err;
1612 }
1613
1614 static ssize_t nr_hugepages_show(struct kobject *kobj,
1615 struct kobj_attribute *attr, char *buf)
1616 {
1617 return nr_hugepages_show_common(kobj, attr, buf);
1618 }
1619
1620 static ssize_t nr_hugepages_store(struct kobject *kobj,
1621 struct kobj_attribute *attr, const char *buf, size_t len)
1622 {
1623 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1624 }
1625 HSTATE_ATTR(nr_hugepages);
1626
1627 #ifdef CONFIG_NUMA
1628
1629 /*
1630 * hstate attribute for optionally mempolicy-based constraint on persistent
1631 * huge page alloc/free.
1632 */
1633 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1634 struct kobj_attribute *attr, char *buf)
1635 {
1636 return nr_hugepages_show_common(kobj, attr, buf);
1637 }
1638
1639 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1640 struct kobj_attribute *attr, const char *buf, size_t len)
1641 {
1642 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1643 }
1644 HSTATE_ATTR(nr_hugepages_mempolicy);
1645 #endif
1646
1647
1648 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1649 struct kobj_attribute *attr, char *buf)
1650 {
1651 struct hstate *h = kobj_to_hstate(kobj, NULL);
1652 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1653 }
1654
1655 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1656 struct kobj_attribute *attr, const char *buf, size_t count)
1657 {
1658 int err;
1659 unsigned long input;
1660 struct hstate *h = kobj_to_hstate(kobj, NULL);
1661
1662 if (h->order >= MAX_ORDER)
1663 return -EINVAL;
1664
1665 err = strict_strtoul(buf, 10, &input);
1666 if (err)
1667 return err;
1668
1669 spin_lock(&hugetlb_lock);
1670 h->nr_overcommit_huge_pages = input;
1671 spin_unlock(&hugetlb_lock);
1672
1673 return count;
1674 }
1675 HSTATE_ATTR(nr_overcommit_hugepages);
1676
1677 static ssize_t free_hugepages_show(struct kobject *kobj,
1678 struct kobj_attribute *attr, char *buf)
1679 {
1680 struct hstate *h;
1681 unsigned long free_huge_pages;
1682 int nid;
1683
1684 h = kobj_to_hstate(kobj, &nid);
1685 if (nid == NUMA_NO_NODE)
1686 free_huge_pages = h->free_huge_pages;
1687 else
1688 free_huge_pages = h->free_huge_pages_node[nid];
1689
1690 return sprintf(buf, "%lu\n", free_huge_pages);
1691 }
1692 HSTATE_ATTR_RO(free_hugepages);
1693
1694 static ssize_t resv_hugepages_show(struct kobject *kobj,
1695 struct kobj_attribute *attr, char *buf)
1696 {
1697 struct hstate *h = kobj_to_hstate(kobj, NULL);
1698 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1699 }
1700 HSTATE_ATTR_RO(resv_hugepages);
1701
1702 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1703 struct kobj_attribute *attr, char *buf)
1704 {
1705 struct hstate *h;
1706 unsigned long surplus_huge_pages;
1707 int nid;
1708
1709 h = kobj_to_hstate(kobj, &nid);
1710 if (nid == NUMA_NO_NODE)
1711 surplus_huge_pages = h->surplus_huge_pages;
1712 else
1713 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1714
1715 return sprintf(buf, "%lu\n", surplus_huge_pages);
1716 }
1717 HSTATE_ATTR_RO(surplus_hugepages);
1718
1719 static struct attribute *hstate_attrs[] = {
1720 &nr_hugepages_attr.attr,
1721 &nr_overcommit_hugepages_attr.attr,
1722 &free_hugepages_attr.attr,
1723 &resv_hugepages_attr.attr,
1724 &surplus_hugepages_attr.attr,
1725 #ifdef CONFIG_NUMA
1726 &nr_hugepages_mempolicy_attr.attr,
1727 #endif
1728 NULL,
1729 };
1730
1731 static struct attribute_group hstate_attr_group = {
1732 .attrs = hstate_attrs,
1733 };
1734
1735 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1736 struct kobject **hstate_kobjs,
1737 struct attribute_group *hstate_attr_group)
1738 {
1739 int retval;
1740 int hi = hstate_index(h);
1741
1742 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1743 if (!hstate_kobjs[hi])
1744 return -ENOMEM;
1745
1746 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1747 if (retval)
1748 kobject_put(hstate_kobjs[hi]);
1749
1750 return retval;
1751 }
1752
1753 static void __init hugetlb_sysfs_init(void)
1754 {
1755 struct hstate *h;
1756 int err;
1757
1758 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1759 if (!hugepages_kobj)
1760 return;
1761
1762 for_each_hstate(h) {
1763 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1764 hstate_kobjs, &hstate_attr_group);
1765 if (err)
1766 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1767 }
1768 }
1769
1770 #ifdef CONFIG_NUMA
1771
1772 /*
1773 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1774 * with node devices in node_devices[] using a parallel array. The array
1775 * index of a node device or _hstate == node id.
1776 * This is here to avoid any static dependency of the node device driver, in
1777 * the base kernel, on the hugetlb module.
1778 */
1779 struct node_hstate {
1780 struct kobject *hugepages_kobj;
1781 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1782 };
1783 struct node_hstate node_hstates[MAX_NUMNODES];
1784
1785 /*
1786 * A subset of global hstate attributes for node devices
1787 */
1788 static struct attribute *per_node_hstate_attrs[] = {
1789 &nr_hugepages_attr.attr,
1790 &free_hugepages_attr.attr,
1791 &surplus_hugepages_attr.attr,
1792 NULL,
1793 };
1794
1795 static struct attribute_group per_node_hstate_attr_group = {
1796 .attrs = per_node_hstate_attrs,
1797 };
1798
1799 /*
1800 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1801 * Returns node id via non-NULL nidp.
1802 */
1803 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1804 {
1805 int nid;
1806
1807 for (nid = 0; nid < nr_node_ids; nid++) {
1808 struct node_hstate *nhs = &node_hstates[nid];
1809 int i;
1810 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1811 if (nhs->hstate_kobjs[i] == kobj) {
1812 if (nidp)
1813 *nidp = nid;
1814 return &hstates[i];
1815 }
1816 }
1817
1818 BUG();
1819 return NULL;
1820 }
1821
1822 /*
1823 * Unregister hstate attributes from a single node device.
1824 * No-op if no hstate attributes attached.
1825 */
1826 static void hugetlb_unregister_node(struct node *node)
1827 {
1828 struct hstate *h;
1829 struct node_hstate *nhs = &node_hstates[node->dev.id];
1830
1831 if (!nhs->hugepages_kobj)
1832 return; /* no hstate attributes */
1833
1834 for_each_hstate(h) {
1835 int idx = hstate_index(h);
1836 if (nhs->hstate_kobjs[idx]) {
1837 kobject_put(nhs->hstate_kobjs[idx]);
1838 nhs->hstate_kobjs[idx] = NULL;
1839 }
1840 }
1841
1842 kobject_put(nhs->hugepages_kobj);
1843 nhs->hugepages_kobj = NULL;
1844 }
1845
1846 /*
1847 * hugetlb module exit: unregister hstate attributes from node devices
1848 * that have them.
1849 */
1850 static void hugetlb_unregister_all_nodes(void)
1851 {
1852 int nid;
1853
1854 /*
1855 * disable node device registrations.
1856 */
1857 register_hugetlbfs_with_node(NULL, NULL);
1858
1859 /*
1860 * remove hstate attributes from any nodes that have them.
1861 */
1862 for (nid = 0; nid < nr_node_ids; nid++)
1863 hugetlb_unregister_node(node_devices[nid]);
1864 }
1865
1866 /*
1867 * Register hstate attributes for a single node device.
1868 * No-op if attributes already registered.
1869 */
1870 static void hugetlb_register_node(struct node *node)
1871 {
1872 struct hstate *h;
1873 struct node_hstate *nhs = &node_hstates[node->dev.id];
1874 int err;
1875
1876 if (nhs->hugepages_kobj)
1877 return; /* already allocated */
1878
1879 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1880 &node->dev.kobj);
1881 if (!nhs->hugepages_kobj)
1882 return;
1883
1884 for_each_hstate(h) {
1885 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1886 nhs->hstate_kobjs,
1887 &per_node_hstate_attr_group);
1888 if (err) {
1889 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1890 h->name, node->dev.id);
1891 hugetlb_unregister_node(node);
1892 break;
1893 }
1894 }
1895 }
1896
1897 /*
1898 * hugetlb init time: register hstate attributes for all registered node
1899 * devices of nodes that have memory. All on-line nodes should have
1900 * registered their associated device by this time.
1901 */
1902 static void hugetlb_register_all_nodes(void)
1903 {
1904 int nid;
1905
1906 for_each_node_state(nid, N_MEMORY) {
1907 struct node *node = node_devices[nid];
1908 if (node->dev.id == nid)
1909 hugetlb_register_node(node);
1910 }
1911
1912 /*
1913 * Let the node device driver know we're here so it can
1914 * [un]register hstate attributes on node hotplug.
1915 */
1916 register_hugetlbfs_with_node(hugetlb_register_node,
1917 hugetlb_unregister_node);
1918 }
1919 #else /* !CONFIG_NUMA */
1920
1921 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1922 {
1923 BUG();
1924 if (nidp)
1925 *nidp = -1;
1926 return NULL;
1927 }
1928
1929 static void hugetlb_unregister_all_nodes(void) { }
1930
1931 static void hugetlb_register_all_nodes(void) { }
1932
1933 #endif
1934
1935 static void __exit hugetlb_exit(void)
1936 {
1937 struct hstate *h;
1938
1939 hugetlb_unregister_all_nodes();
1940
1941 for_each_hstate(h) {
1942 kobject_put(hstate_kobjs[hstate_index(h)]);
1943 }
1944
1945 kobject_put(hugepages_kobj);
1946 }
1947 module_exit(hugetlb_exit);
1948
1949 static int __init hugetlb_init(void)
1950 {
1951 /* Some platform decide whether they support huge pages at boot
1952 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1953 * there is no such support
1954 */
1955 if (HPAGE_SHIFT == 0)
1956 return 0;
1957
1958 if (!size_to_hstate(default_hstate_size)) {
1959 default_hstate_size = HPAGE_SIZE;
1960 if (!size_to_hstate(default_hstate_size))
1961 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1962 }
1963 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1964 if (default_hstate_max_huge_pages)
1965 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1966
1967 hugetlb_init_hstates();
1968 gather_bootmem_prealloc();
1969 report_hugepages();
1970
1971 hugetlb_sysfs_init();
1972 hugetlb_register_all_nodes();
1973 hugetlb_cgroup_file_init();
1974
1975 return 0;
1976 }
1977 module_init(hugetlb_init);
1978
1979 /* Should be called on processing a hugepagesz=... option */
1980 void __init hugetlb_add_hstate(unsigned order)
1981 {
1982 struct hstate *h;
1983 unsigned long i;
1984
1985 if (size_to_hstate(PAGE_SIZE << order)) {
1986 pr_warning("hugepagesz= specified twice, ignoring\n");
1987 return;
1988 }
1989 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1990 BUG_ON(order == 0);
1991 h = &hstates[hugetlb_max_hstate++];
1992 h->order = order;
1993 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1994 h->nr_huge_pages = 0;
1995 h->free_huge_pages = 0;
1996 for (i = 0; i < MAX_NUMNODES; ++i)
1997 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1998 INIT_LIST_HEAD(&h->hugepage_activelist);
1999 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2000 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2001 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2002 huge_page_size(h)/1024);
2003
2004 parsed_hstate = h;
2005 }
2006
2007 static int __init hugetlb_nrpages_setup(char *s)
2008 {
2009 unsigned long *mhp;
2010 static unsigned long *last_mhp;
2011
2012 /*
2013 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2014 * so this hugepages= parameter goes to the "default hstate".
2015 */
2016 if (!hugetlb_max_hstate)
2017 mhp = &default_hstate_max_huge_pages;
2018 else
2019 mhp = &parsed_hstate->max_huge_pages;
2020
2021 if (mhp == last_mhp) {
2022 pr_warning("hugepages= specified twice without "
2023 "interleaving hugepagesz=, ignoring\n");
2024 return 1;
2025 }
2026
2027 if (sscanf(s, "%lu", mhp) <= 0)
2028 *mhp = 0;
2029
2030 /*
2031 * Global state is always initialized later in hugetlb_init.
2032 * But we need to allocate >= MAX_ORDER hstates here early to still
2033 * use the bootmem allocator.
2034 */
2035 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2036 hugetlb_hstate_alloc_pages(parsed_hstate);
2037
2038 last_mhp = mhp;
2039
2040 return 1;
2041 }
2042 __setup("hugepages=", hugetlb_nrpages_setup);
2043
2044 static int __init hugetlb_default_setup(char *s)
2045 {
2046 default_hstate_size = memparse(s, &s);
2047 return 1;
2048 }
2049 __setup("default_hugepagesz=", hugetlb_default_setup);
2050
2051 static unsigned int cpuset_mems_nr(unsigned int *array)
2052 {
2053 int node;
2054 unsigned int nr = 0;
2055
2056 for_each_node_mask(node, cpuset_current_mems_allowed)
2057 nr += array[node];
2058
2059 return nr;
2060 }
2061
2062 #ifdef CONFIG_SYSCTL
2063 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2064 struct ctl_table *table, int write,
2065 void __user *buffer, size_t *length, loff_t *ppos)
2066 {
2067 struct hstate *h = &default_hstate;
2068 unsigned long tmp;
2069 int ret;
2070
2071 tmp = h->max_huge_pages;
2072
2073 if (write && h->order >= MAX_ORDER)
2074 return -EINVAL;
2075
2076 table->data = &tmp;
2077 table->maxlen = sizeof(unsigned long);
2078 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2079 if (ret)
2080 goto out;
2081
2082 if (write) {
2083 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2084 GFP_KERNEL | __GFP_NORETRY);
2085 if (!(obey_mempolicy &&
2086 init_nodemask_of_mempolicy(nodes_allowed))) {
2087 NODEMASK_FREE(nodes_allowed);
2088 nodes_allowed = &node_states[N_MEMORY];
2089 }
2090 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2091
2092 if (nodes_allowed != &node_states[N_MEMORY])
2093 NODEMASK_FREE(nodes_allowed);
2094 }
2095 out:
2096 return ret;
2097 }
2098
2099 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2100 void __user *buffer, size_t *length, loff_t *ppos)
2101 {
2102
2103 return hugetlb_sysctl_handler_common(false, table, write,
2104 buffer, length, ppos);
2105 }
2106
2107 #ifdef CONFIG_NUMA
2108 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2109 void __user *buffer, size_t *length, loff_t *ppos)
2110 {
2111 return hugetlb_sysctl_handler_common(true, table, write,
2112 buffer, length, ppos);
2113 }
2114 #endif /* CONFIG_NUMA */
2115
2116 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2117 void __user *buffer,
2118 size_t *length, loff_t *ppos)
2119 {
2120 proc_dointvec(table, write, buffer, length, ppos);
2121 if (hugepages_treat_as_movable)
2122 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2123 else
2124 htlb_alloc_mask = GFP_HIGHUSER;
2125 return 0;
2126 }
2127
2128 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2129 void __user *buffer,
2130 size_t *length, loff_t *ppos)
2131 {
2132 struct hstate *h = &default_hstate;
2133 unsigned long tmp;
2134 int ret;
2135
2136 tmp = h->nr_overcommit_huge_pages;
2137
2138 if (write && h->order >= MAX_ORDER)
2139 return -EINVAL;
2140
2141 table->data = &tmp;
2142 table->maxlen = sizeof(unsigned long);
2143 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2144 if (ret)
2145 goto out;
2146
2147 if (write) {
2148 spin_lock(&hugetlb_lock);
2149 h->nr_overcommit_huge_pages = tmp;
2150 spin_unlock(&hugetlb_lock);
2151 }
2152 out:
2153 return ret;
2154 }
2155
2156 #endif /* CONFIG_SYSCTL */
2157
2158 void hugetlb_report_meminfo(struct seq_file *m)
2159 {
2160 struct hstate *h = &default_hstate;
2161 seq_printf(m,
2162 "HugePages_Total: %5lu\n"
2163 "HugePages_Free: %5lu\n"
2164 "HugePages_Rsvd: %5lu\n"
2165 "HugePages_Surp: %5lu\n"
2166 "Hugepagesize: %8lu kB\n",
2167 h->nr_huge_pages,
2168 h->free_huge_pages,
2169 h->resv_huge_pages,
2170 h->surplus_huge_pages,
2171 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2172 }
2173
2174 int hugetlb_report_node_meminfo(int nid, char *buf)
2175 {
2176 struct hstate *h = &default_hstate;
2177 return sprintf(buf,
2178 "Node %d HugePages_Total: %5u\n"
2179 "Node %d HugePages_Free: %5u\n"
2180 "Node %d HugePages_Surp: %5u\n",
2181 nid, h->nr_huge_pages_node[nid],
2182 nid, h->free_huge_pages_node[nid],
2183 nid, h->surplus_huge_pages_node[nid]);
2184 }
2185
2186 void hugetlb_show_meminfo(void)
2187 {
2188 struct hstate *h;
2189 int nid;
2190
2191 for_each_node_state(nid, N_MEMORY)
2192 for_each_hstate(h)
2193 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2194 nid,
2195 h->nr_huge_pages_node[nid],
2196 h->free_huge_pages_node[nid],
2197 h->surplus_huge_pages_node[nid],
2198 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2199 }
2200
2201 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2202 unsigned long hugetlb_total_pages(void)
2203 {
2204 struct hstate *h;
2205 unsigned long nr_total_pages = 0;
2206
2207 for_each_hstate(h)
2208 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2209 return nr_total_pages;
2210 }
2211
2212 static int hugetlb_acct_memory(struct hstate *h, long delta)
2213 {
2214 int ret = -ENOMEM;
2215
2216 spin_lock(&hugetlb_lock);
2217 /*
2218 * When cpuset is configured, it breaks the strict hugetlb page
2219 * reservation as the accounting is done on a global variable. Such
2220 * reservation is completely rubbish in the presence of cpuset because
2221 * the reservation is not checked against page availability for the
2222 * current cpuset. Application can still potentially OOM'ed by kernel
2223 * with lack of free htlb page in cpuset that the task is in.
2224 * Attempt to enforce strict accounting with cpuset is almost
2225 * impossible (or too ugly) because cpuset is too fluid that
2226 * task or memory node can be dynamically moved between cpusets.
2227 *
2228 * The change of semantics for shared hugetlb mapping with cpuset is
2229 * undesirable. However, in order to preserve some of the semantics,
2230 * we fall back to check against current free page availability as
2231 * a best attempt and hopefully to minimize the impact of changing
2232 * semantics that cpuset has.
2233 */
2234 if (delta > 0) {
2235 if (gather_surplus_pages(h, delta) < 0)
2236 goto out;
2237
2238 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2239 return_unused_surplus_pages(h, delta);
2240 goto out;
2241 }
2242 }
2243
2244 ret = 0;
2245 if (delta < 0)
2246 return_unused_surplus_pages(h, (unsigned long) -delta);
2247
2248 out:
2249 spin_unlock(&hugetlb_lock);
2250 return ret;
2251 }
2252
2253 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2254 {
2255 struct resv_map *reservations = vma_resv_map(vma);
2256
2257 /*
2258 * This new VMA should share its siblings reservation map if present.
2259 * The VMA will only ever have a valid reservation map pointer where
2260 * it is being copied for another still existing VMA. As that VMA
2261 * has a reference to the reservation map it cannot disappear until
2262 * after this open call completes. It is therefore safe to take a
2263 * new reference here without additional locking.
2264 */
2265 if (reservations)
2266 kref_get(&reservations->refs);
2267 }
2268
2269 static void resv_map_put(struct vm_area_struct *vma)
2270 {
2271 struct resv_map *reservations = vma_resv_map(vma);
2272
2273 if (!reservations)
2274 return;
2275 kref_put(&reservations->refs, resv_map_release);
2276 }
2277
2278 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2279 {
2280 struct hstate *h = hstate_vma(vma);
2281 struct resv_map *reservations = vma_resv_map(vma);
2282 struct hugepage_subpool *spool = subpool_vma(vma);
2283 unsigned long reserve;
2284 unsigned long start;
2285 unsigned long end;
2286
2287 if (reservations) {
2288 start = vma_hugecache_offset(h, vma, vma->vm_start);
2289 end = vma_hugecache_offset(h, vma, vma->vm_end);
2290
2291 reserve = (end - start) -
2292 region_count(&reservations->regions, start, end);
2293
2294 resv_map_put(vma);
2295
2296 if (reserve) {
2297 hugetlb_acct_memory(h, -reserve);
2298 hugepage_subpool_put_pages(spool, reserve);
2299 }
2300 }
2301 }
2302
2303 /*
2304 * We cannot handle pagefaults against hugetlb pages at all. They cause
2305 * handle_mm_fault() to try to instantiate regular-sized pages in the
2306 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2307 * this far.
2308 */
2309 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2310 {
2311 BUG();
2312 return 0;
2313 }
2314
2315 const struct vm_operations_struct hugetlb_vm_ops = {
2316 .fault = hugetlb_vm_op_fault,
2317 .open = hugetlb_vm_op_open,
2318 .close = hugetlb_vm_op_close,
2319 };
2320
2321 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2322 int writable)
2323 {
2324 pte_t entry;
2325
2326 if (writable) {
2327 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2328 vma->vm_page_prot)));
2329 } else {
2330 entry = huge_pte_wrprotect(mk_huge_pte(page,
2331 vma->vm_page_prot));
2332 }
2333 entry = pte_mkyoung(entry);
2334 entry = pte_mkhuge(entry);
2335 entry = arch_make_huge_pte(entry, vma, page, writable);
2336
2337 return entry;
2338 }
2339
2340 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2341 unsigned long address, pte_t *ptep)
2342 {
2343 pte_t entry;
2344
2345 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2346 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2347 update_mmu_cache(vma, address, ptep);
2348 }
2349
2350 static int is_hugetlb_entry_migration(pte_t pte)
2351 {
2352 swp_entry_t swp;
2353
2354 if (huge_pte_none(pte) || pte_present(pte))
2355 return 0;
2356 swp = pte_to_swp_entry(pte);
2357 if (non_swap_entry(swp) && is_migration_entry(swp))
2358 return 1;
2359 else
2360 return 0;
2361 }
2362
2363 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2364 {
2365 swp_entry_t swp;
2366
2367 if (huge_pte_none(pte) || pte_present(pte))
2368 return 0;
2369 swp = pte_to_swp_entry(pte);
2370 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2371 return 1;
2372 else
2373 return 0;
2374 }
2375
2376 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2377 struct vm_area_struct *vma)
2378 {
2379 pte_t *src_pte, *dst_pte, entry;
2380 struct page *ptepage;
2381 unsigned long addr;
2382 int cow;
2383 struct hstate *h = hstate_vma(vma);
2384 unsigned long sz = huge_page_size(h);
2385
2386 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2387
2388 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2389 src_pte = huge_pte_offset(src, addr);
2390 if (!src_pte)
2391 continue;
2392 dst_pte = huge_pte_alloc(dst, addr, sz);
2393 if (!dst_pte)
2394 goto nomem;
2395
2396 /* If the pagetables are shared don't copy or take references */
2397 if (dst_pte == src_pte)
2398 continue;
2399
2400 spin_lock(&dst->page_table_lock);
2401 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2402 entry = huge_ptep_get(src_pte);
2403 if (huge_pte_none(entry)) { /* skip none entry */
2404 ;
2405 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2406 is_hugetlb_entry_hwpoisoned(entry))) {
2407 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2408
2409 if (is_write_migration_entry(swp_entry) && cow) {
2410 /*
2411 * COW mappings require pages in both
2412 * parent and child to be set to read.
2413 */
2414 make_migration_entry_read(&swp_entry);
2415 entry = swp_entry_to_pte(swp_entry);
2416 set_huge_pte_at(src, addr, src_pte, entry);
2417 }
2418 set_huge_pte_at(dst, addr, dst_pte, entry);
2419 } else {
2420 if (cow)
2421 huge_ptep_set_wrprotect(src, addr, src_pte);
2422 entry = huge_ptep_get(src_pte);
2423 ptepage = pte_page(entry);
2424 get_page(ptepage);
2425 page_dup_rmap(ptepage);
2426 set_huge_pte_at(dst, addr, dst_pte, entry);
2427 }
2428 spin_unlock(&src->page_table_lock);
2429 spin_unlock(&dst->page_table_lock);
2430 }
2431 return 0;
2432
2433 nomem:
2434 return -ENOMEM;
2435 }
2436
2437 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2438 unsigned long start, unsigned long end,
2439 struct page *ref_page)
2440 {
2441 int force_flush = 0;
2442 struct mm_struct *mm = vma->vm_mm;
2443 unsigned long address;
2444 pte_t *ptep;
2445 pte_t pte;
2446 struct page *page;
2447 struct hstate *h = hstate_vma(vma);
2448 unsigned long sz = huge_page_size(h);
2449 const unsigned long mmun_start = start; /* For mmu_notifiers */
2450 const unsigned long mmun_end = end; /* For mmu_notifiers */
2451
2452 WARN_ON(!is_vm_hugetlb_page(vma));
2453 BUG_ON(start & ~huge_page_mask(h));
2454 BUG_ON(end & ~huge_page_mask(h));
2455
2456 tlb_start_vma(tlb, vma);
2457 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2458 again:
2459 spin_lock(&mm->page_table_lock);
2460 for (address = start; address < end; address += sz) {
2461 ptep = huge_pte_offset(mm, address);
2462 if (!ptep)
2463 continue;
2464
2465 if (huge_pmd_unshare(mm, &address, ptep))
2466 continue;
2467
2468 pte = huge_ptep_get(ptep);
2469 if (huge_pte_none(pte))
2470 continue;
2471
2472 /*
2473 * Migrating hugepage or HWPoisoned hugepage is already
2474 * unmapped and its refcount is dropped, so just clear pte here.
2475 */
2476 if (unlikely(!pte_present(pte))) {
2477 huge_pte_clear(mm, address, ptep);
2478 continue;
2479 }
2480
2481 page = pte_page(pte);
2482 /*
2483 * If a reference page is supplied, it is because a specific
2484 * page is being unmapped, not a range. Ensure the page we
2485 * are about to unmap is the actual page of interest.
2486 */
2487 if (ref_page) {
2488 if (page != ref_page)
2489 continue;
2490
2491 /*
2492 * Mark the VMA as having unmapped its page so that
2493 * future faults in this VMA will fail rather than
2494 * looking like data was lost
2495 */
2496 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2497 }
2498
2499 pte = huge_ptep_get_and_clear(mm, address, ptep);
2500 tlb_remove_tlb_entry(tlb, ptep, address);
2501 if (huge_pte_dirty(pte))
2502 set_page_dirty(page);
2503
2504 page_remove_rmap(page);
2505 force_flush = !__tlb_remove_page(tlb, page);
2506 if (force_flush)
2507 break;
2508 /* Bail out after unmapping reference page if supplied */
2509 if (ref_page)
2510 break;
2511 }
2512 spin_unlock(&mm->page_table_lock);
2513 /*
2514 * mmu_gather ran out of room to batch pages, we break out of
2515 * the PTE lock to avoid doing the potential expensive TLB invalidate
2516 * and page-free while holding it.
2517 */
2518 if (force_flush) {
2519 force_flush = 0;
2520 tlb_flush_mmu(tlb);
2521 if (address < end && !ref_page)
2522 goto again;
2523 }
2524 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2525 tlb_end_vma(tlb, vma);
2526 }
2527
2528 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2529 struct vm_area_struct *vma, unsigned long start,
2530 unsigned long end, struct page *ref_page)
2531 {
2532 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2533
2534 /*
2535 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2536 * test will fail on a vma being torn down, and not grab a page table
2537 * on its way out. We're lucky that the flag has such an appropriate
2538 * name, and can in fact be safely cleared here. We could clear it
2539 * before the __unmap_hugepage_range above, but all that's necessary
2540 * is to clear it before releasing the i_mmap_mutex. This works
2541 * because in the context this is called, the VMA is about to be
2542 * destroyed and the i_mmap_mutex is held.
2543 */
2544 vma->vm_flags &= ~VM_MAYSHARE;
2545 }
2546
2547 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2548 unsigned long end, struct page *ref_page)
2549 {
2550 struct mm_struct *mm;
2551 struct mmu_gather tlb;
2552
2553 mm = vma->vm_mm;
2554
2555 tlb_gather_mmu(&tlb, mm, start, end);
2556 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2557 tlb_finish_mmu(&tlb, start, end);
2558 }
2559
2560 /*
2561 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2562 * mappping it owns the reserve page for. The intention is to unmap the page
2563 * from other VMAs and let the children be SIGKILLed if they are faulting the
2564 * same region.
2565 */
2566 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2567 struct page *page, unsigned long address)
2568 {
2569 struct hstate *h = hstate_vma(vma);
2570 struct vm_area_struct *iter_vma;
2571 struct address_space *mapping;
2572 pgoff_t pgoff;
2573
2574 /*
2575 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2576 * from page cache lookup which is in HPAGE_SIZE units.
2577 */
2578 address = address & huge_page_mask(h);
2579 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2580 vma->vm_pgoff;
2581 mapping = file_inode(vma->vm_file)->i_mapping;
2582
2583 /*
2584 * Take the mapping lock for the duration of the table walk. As
2585 * this mapping should be shared between all the VMAs,
2586 * __unmap_hugepage_range() is called as the lock is already held
2587 */
2588 mutex_lock(&mapping->i_mmap_mutex);
2589 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2590 /* Do not unmap the current VMA */
2591 if (iter_vma == vma)
2592 continue;
2593
2594 /*
2595 * Shared VMAs have their own reserves and do not affect
2596 * MAP_PRIVATE accounting but it is possible that a shared
2597 * VMA is using the same page so check and skip such VMAs.
2598 */
2599 if (iter_vma->vm_flags & VM_MAYSHARE)
2600 continue;
2601
2602 /*
2603 * Unmap the page from other VMAs without their own reserves.
2604 * They get marked to be SIGKILLed if they fault in these
2605 * areas. This is because a future no-page fault on this VMA
2606 * could insert a zeroed page instead of the data existing
2607 * from the time of fork. This would look like data corruption
2608 */
2609 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2610 unmap_hugepage_range(iter_vma, address,
2611 address + huge_page_size(h), page);
2612 }
2613 mutex_unlock(&mapping->i_mmap_mutex);
2614
2615 return 1;
2616 }
2617
2618 /*
2619 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2620 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2621 * cannot race with other handlers or page migration.
2622 * Keep the pte_same checks anyway to make transition from the mutex easier.
2623 */
2624 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2625 unsigned long address, pte_t *ptep, pte_t pte,
2626 struct page *pagecache_page)
2627 {
2628 struct hstate *h = hstate_vma(vma);
2629 struct page *old_page, *new_page;
2630 int avoidcopy;
2631 int outside_reserve = 0;
2632 unsigned long mmun_start; /* For mmu_notifiers */
2633 unsigned long mmun_end; /* For mmu_notifiers */
2634
2635 old_page = pte_page(pte);
2636
2637 retry_avoidcopy:
2638 /* If no-one else is actually using this page, avoid the copy
2639 * and just make the page writable */
2640 avoidcopy = (page_mapcount(old_page) == 1);
2641 if (avoidcopy) {
2642 if (PageAnon(old_page))
2643 page_move_anon_rmap(old_page, vma, address);
2644 set_huge_ptep_writable(vma, address, ptep);
2645 return 0;
2646 }
2647
2648 /*
2649 * If the process that created a MAP_PRIVATE mapping is about to
2650 * perform a COW due to a shared page count, attempt to satisfy
2651 * the allocation without using the existing reserves. The pagecache
2652 * page is used to determine if the reserve at this address was
2653 * consumed or not. If reserves were used, a partial faulted mapping
2654 * at the time of fork() could consume its reserves on COW instead
2655 * of the full address range.
2656 */
2657 if (!(vma->vm_flags & VM_MAYSHARE) &&
2658 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2659 old_page != pagecache_page)
2660 outside_reserve = 1;
2661
2662 page_cache_get(old_page);
2663
2664 /* Drop page_table_lock as buddy allocator may be called */
2665 spin_unlock(&mm->page_table_lock);
2666 new_page = alloc_huge_page(vma, address, outside_reserve);
2667
2668 if (IS_ERR(new_page)) {
2669 long err = PTR_ERR(new_page);
2670 page_cache_release(old_page);
2671
2672 /*
2673 * If a process owning a MAP_PRIVATE mapping fails to COW,
2674 * it is due to references held by a child and an insufficient
2675 * huge page pool. To guarantee the original mappers
2676 * reliability, unmap the page from child processes. The child
2677 * may get SIGKILLed if it later faults.
2678 */
2679 if (outside_reserve) {
2680 BUG_ON(huge_pte_none(pte));
2681 if (unmap_ref_private(mm, vma, old_page, address)) {
2682 BUG_ON(huge_pte_none(pte));
2683 spin_lock(&mm->page_table_lock);
2684 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2685 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2686 goto retry_avoidcopy;
2687 /*
2688 * race occurs while re-acquiring page_table_lock, and
2689 * our job is done.
2690 */
2691 return 0;
2692 }
2693 WARN_ON_ONCE(1);
2694 }
2695
2696 /* Caller expects lock to be held */
2697 spin_lock(&mm->page_table_lock);
2698 if (err == -ENOMEM)
2699 return VM_FAULT_OOM;
2700 else
2701 return VM_FAULT_SIGBUS;
2702 }
2703
2704 /*
2705 * When the original hugepage is shared one, it does not have
2706 * anon_vma prepared.
2707 */
2708 if (unlikely(anon_vma_prepare(vma))) {
2709 page_cache_release(new_page);
2710 page_cache_release(old_page);
2711 /* Caller expects lock to be held */
2712 spin_lock(&mm->page_table_lock);
2713 return VM_FAULT_OOM;
2714 }
2715
2716 copy_user_huge_page(new_page, old_page, address, vma,
2717 pages_per_huge_page(h));
2718 __SetPageUptodate(new_page);
2719
2720 mmun_start = address & huge_page_mask(h);
2721 mmun_end = mmun_start + huge_page_size(h);
2722 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2723 /*
2724 * Retake the page_table_lock to check for racing updates
2725 * before the page tables are altered
2726 */
2727 spin_lock(&mm->page_table_lock);
2728 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2729 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2730 /* Break COW */
2731 huge_ptep_clear_flush(vma, address, ptep);
2732 set_huge_pte_at(mm, address, ptep,
2733 make_huge_pte(vma, new_page, 1));
2734 page_remove_rmap(old_page);
2735 hugepage_add_new_anon_rmap(new_page, vma, address);
2736 /* Make the old page be freed below */
2737 new_page = old_page;
2738 }
2739 spin_unlock(&mm->page_table_lock);
2740 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2741 /* Caller expects lock to be held */
2742 spin_lock(&mm->page_table_lock);
2743 page_cache_release(new_page);
2744 page_cache_release(old_page);
2745 return 0;
2746 }
2747
2748 /* Return the pagecache page at a given address within a VMA */
2749 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2750 struct vm_area_struct *vma, unsigned long address)
2751 {
2752 struct address_space *mapping;
2753 pgoff_t idx;
2754
2755 mapping = vma->vm_file->f_mapping;
2756 idx = vma_hugecache_offset(h, vma, address);
2757
2758 return find_lock_page(mapping, idx);
2759 }
2760
2761 /*
2762 * Return whether there is a pagecache page to back given address within VMA.
2763 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2764 */
2765 static bool hugetlbfs_pagecache_present(struct hstate *h,
2766 struct vm_area_struct *vma, unsigned long address)
2767 {
2768 struct address_space *mapping;
2769 pgoff_t idx;
2770 struct page *page;
2771
2772 mapping = vma->vm_file->f_mapping;
2773 idx = vma_hugecache_offset(h, vma, address);
2774
2775 page = find_get_page(mapping, idx);
2776 if (page)
2777 put_page(page);
2778 return page != NULL;
2779 }
2780
2781 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2782 unsigned long address, pte_t *ptep, unsigned int flags)
2783 {
2784 struct hstate *h = hstate_vma(vma);
2785 int ret = VM_FAULT_SIGBUS;
2786 int anon_rmap = 0;
2787 pgoff_t idx;
2788 unsigned long size;
2789 struct page *page;
2790 struct address_space *mapping;
2791 pte_t new_pte;
2792
2793 /*
2794 * Currently, we are forced to kill the process in the event the
2795 * original mapper has unmapped pages from the child due to a failed
2796 * COW. Warn that such a situation has occurred as it may not be obvious
2797 */
2798 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2799 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2800 current->pid);
2801 return ret;
2802 }
2803
2804 mapping = vma->vm_file->f_mapping;
2805 idx = vma_hugecache_offset(h, vma, address);
2806
2807 /*
2808 * Use page lock to guard against racing truncation
2809 * before we get page_table_lock.
2810 */
2811 retry:
2812 page = find_lock_page(mapping, idx);
2813 if (!page) {
2814 size = i_size_read(mapping->host) >> huge_page_shift(h);
2815 if (idx >= size)
2816 goto out;
2817 page = alloc_huge_page(vma, address, 0);
2818 if (IS_ERR(page)) {
2819 ret = PTR_ERR(page);
2820 if (ret == -ENOMEM)
2821 ret = VM_FAULT_OOM;
2822 else
2823 ret = VM_FAULT_SIGBUS;
2824 goto out;
2825 }
2826 clear_huge_page(page, address, pages_per_huge_page(h));
2827 __SetPageUptodate(page);
2828
2829 if (vma->vm_flags & VM_MAYSHARE) {
2830 int err;
2831 struct inode *inode = mapping->host;
2832
2833 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2834 if (err) {
2835 put_page(page);
2836 if (err == -EEXIST)
2837 goto retry;
2838 goto out;
2839 }
2840
2841 spin_lock(&inode->i_lock);
2842 inode->i_blocks += blocks_per_huge_page(h);
2843 spin_unlock(&inode->i_lock);
2844 } else {
2845 lock_page(page);
2846 if (unlikely(anon_vma_prepare(vma))) {
2847 ret = VM_FAULT_OOM;
2848 goto backout_unlocked;
2849 }
2850 anon_rmap = 1;
2851 }
2852 } else {
2853 /*
2854 * If memory error occurs between mmap() and fault, some process
2855 * don't have hwpoisoned swap entry for errored virtual address.
2856 * So we need to block hugepage fault by PG_hwpoison bit check.
2857 */
2858 if (unlikely(PageHWPoison(page))) {
2859 ret = VM_FAULT_HWPOISON |
2860 VM_FAULT_SET_HINDEX(hstate_index(h));
2861 goto backout_unlocked;
2862 }
2863 }
2864
2865 /*
2866 * If we are going to COW a private mapping later, we examine the
2867 * pending reservations for this page now. This will ensure that
2868 * any allocations necessary to record that reservation occur outside
2869 * the spinlock.
2870 */
2871 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2872 if (vma_needs_reservation(h, vma, address) < 0) {
2873 ret = VM_FAULT_OOM;
2874 goto backout_unlocked;
2875 }
2876
2877 spin_lock(&mm->page_table_lock);
2878 size = i_size_read(mapping->host) >> huge_page_shift(h);
2879 if (idx >= size)
2880 goto backout;
2881
2882 ret = 0;
2883 if (!huge_pte_none(huge_ptep_get(ptep)))
2884 goto backout;
2885
2886 if (anon_rmap)
2887 hugepage_add_new_anon_rmap(page, vma, address);
2888 else
2889 page_dup_rmap(page);
2890 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2891 && (vma->vm_flags & VM_SHARED)));
2892 set_huge_pte_at(mm, address, ptep, new_pte);
2893
2894 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2895 /* Optimization, do the COW without a second fault */
2896 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2897 }
2898
2899 spin_unlock(&mm->page_table_lock);
2900 unlock_page(page);
2901 out:
2902 return ret;
2903
2904 backout:
2905 spin_unlock(&mm->page_table_lock);
2906 backout_unlocked:
2907 unlock_page(page);
2908 put_page(page);
2909 goto out;
2910 }
2911
2912 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2913 unsigned long address, unsigned int flags)
2914 {
2915 pte_t *ptep;
2916 pte_t entry;
2917 int ret;
2918 struct page *page = NULL;
2919 struct page *pagecache_page = NULL;
2920 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2921 struct hstate *h = hstate_vma(vma);
2922
2923 address &= huge_page_mask(h);
2924
2925 ptep = huge_pte_offset(mm, address);
2926 if (ptep) {
2927 entry = huge_ptep_get(ptep);
2928 if (unlikely(is_hugetlb_entry_migration(entry))) {
2929 migration_entry_wait_huge(mm, ptep);
2930 return 0;
2931 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2932 return VM_FAULT_HWPOISON_LARGE |
2933 VM_FAULT_SET_HINDEX(hstate_index(h));
2934 }
2935
2936 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2937 if (!ptep)
2938 return VM_FAULT_OOM;
2939
2940 /*
2941 * Serialize hugepage allocation and instantiation, so that we don't
2942 * get spurious allocation failures if two CPUs race to instantiate
2943 * the same page in the page cache.
2944 */
2945 mutex_lock(&hugetlb_instantiation_mutex);
2946 entry = huge_ptep_get(ptep);
2947 if (huge_pte_none(entry)) {
2948 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2949 goto out_mutex;
2950 }
2951
2952 ret = 0;
2953
2954 /*
2955 * If we are going to COW the mapping later, we examine the pending
2956 * reservations for this page now. This will ensure that any
2957 * allocations necessary to record that reservation occur outside the
2958 * spinlock. For private mappings, we also lookup the pagecache
2959 * page now as it is used to determine if a reservation has been
2960 * consumed.
2961 */
2962 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2963 if (vma_needs_reservation(h, vma, address) < 0) {
2964 ret = VM_FAULT_OOM;
2965 goto out_mutex;
2966 }
2967
2968 if (!(vma->vm_flags & VM_MAYSHARE))
2969 pagecache_page = hugetlbfs_pagecache_page(h,
2970 vma, address);
2971 }
2972
2973 /*
2974 * hugetlb_cow() requires page locks of pte_page(entry) and
2975 * pagecache_page, so here we need take the former one
2976 * when page != pagecache_page or !pagecache_page.
2977 * Note that locking order is always pagecache_page -> page,
2978 * so no worry about deadlock.
2979 */
2980 page = pte_page(entry);
2981 get_page(page);
2982 if (page != pagecache_page)
2983 lock_page(page);
2984
2985 spin_lock(&mm->page_table_lock);
2986 /* Check for a racing update before calling hugetlb_cow */
2987 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2988 goto out_page_table_lock;
2989
2990
2991 if (flags & FAULT_FLAG_WRITE) {
2992 if (!huge_pte_write(entry)) {
2993 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2994 pagecache_page);
2995 goto out_page_table_lock;
2996 }
2997 entry = huge_pte_mkdirty(entry);
2998 }
2999 entry = pte_mkyoung(entry);
3000 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3001 flags & FAULT_FLAG_WRITE))
3002 update_mmu_cache(vma, address, ptep);
3003
3004 out_page_table_lock:
3005 spin_unlock(&mm->page_table_lock);
3006
3007 if (pagecache_page) {
3008 unlock_page(pagecache_page);
3009 put_page(pagecache_page);
3010 }
3011 if (page != pagecache_page)
3012 unlock_page(page);
3013 put_page(page);
3014
3015 out_mutex:
3016 mutex_unlock(&hugetlb_instantiation_mutex);
3017
3018 return ret;
3019 }
3020
3021 /* Can be overriden by architectures */
3022 __attribute__((weak)) struct page *
3023 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3024 pud_t *pud, int write)
3025 {
3026 BUG();
3027 return NULL;
3028 }
3029
3030 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3031 struct page **pages, struct vm_area_struct **vmas,
3032 unsigned long *position, unsigned long *nr_pages,
3033 long i, unsigned int flags)
3034 {
3035 unsigned long pfn_offset;
3036 unsigned long vaddr = *position;
3037 unsigned long remainder = *nr_pages;
3038 struct hstate *h = hstate_vma(vma);
3039
3040 spin_lock(&mm->page_table_lock);
3041 while (vaddr < vma->vm_end && remainder) {
3042 pte_t *pte;
3043 int absent;
3044 struct page *page;
3045
3046 /*
3047 * Some archs (sparc64, sh*) have multiple pte_ts to
3048 * each hugepage. We have to make sure we get the
3049 * first, for the page indexing below to work.
3050 */
3051 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3052 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3053
3054 /*
3055 * When coredumping, it suits get_dump_page if we just return
3056 * an error where there's an empty slot with no huge pagecache
3057 * to back it. This way, we avoid allocating a hugepage, and
3058 * the sparse dumpfile avoids allocating disk blocks, but its
3059 * huge holes still show up with zeroes where they need to be.
3060 */
3061 if (absent && (flags & FOLL_DUMP) &&
3062 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3063 remainder = 0;
3064 break;
3065 }
3066
3067 /*
3068 * We need call hugetlb_fault for both hugepages under migration
3069 * (in which case hugetlb_fault waits for the migration,) and
3070 * hwpoisoned hugepages (in which case we need to prevent the
3071 * caller from accessing to them.) In order to do this, we use
3072 * here is_swap_pte instead of is_hugetlb_entry_migration and
3073 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3074 * both cases, and because we can't follow correct pages
3075 * directly from any kind of swap entries.
3076 */
3077 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3078 ((flags & FOLL_WRITE) &&
3079 !huge_pte_write(huge_ptep_get(pte)))) {
3080 int ret;
3081
3082 spin_unlock(&mm->page_table_lock);
3083 ret = hugetlb_fault(mm, vma, vaddr,
3084 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3085 spin_lock(&mm->page_table_lock);
3086 if (!(ret & VM_FAULT_ERROR))
3087 continue;
3088
3089 remainder = 0;
3090 break;
3091 }
3092
3093 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3094 page = pte_page(huge_ptep_get(pte));
3095 same_page:
3096 if (pages) {
3097 pages[i] = mem_map_offset(page, pfn_offset);
3098 get_page(pages[i]);
3099 }
3100
3101 if (vmas)
3102 vmas[i] = vma;
3103
3104 vaddr += PAGE_SIZE;
3105 ++pfn_offset;
3106 --remainder;
3107 ++i;
3108 if (vaddr < vma->vm_end && remainder &&
3109 pfn_offset < pages_per_huge_page(h)) {
3110 /*
3111 * We use pfn_offset to avoid touching the pageframes
3112 * of this compound page.
3113 */
3114 goto same_page;
3115 }
3116 }
3117 spin_unlock(&mm->page_table_lock);
3118 *nr_pages = remainder;
3119 *position = vaddr;
3120
3121 return i ? i : -EFAULT;
3122 }
3123
3124 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3125 unsigned long address, unsigned long end, pgprot_t newprot)
3126 {
3127 struct mm_struct *mm = vma->vm_mm;
3128 unsigned long start = address;
3129 pte_t *ptep;
3130 pte_t pte;
3131 struct hstate *h = hstate_vma(vma);
3132 unsigned long pages = 0;
3133
3134 BUG_ON(address >= end);
3135 flush_cache_range(vma, address, end);
3136
3137 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3138 spin_lock(&mm->page_table_lock);
3139 for (; address < end; address += huge_page_size(h)) {
3140 ptep = huge_pte_offset(mm, address);
3141 if (!ptep)
3142 continue;
3143 if (huge_pmd_unshare(mm, &address, ptep)) {
3144 pages++;
3145 continue;
3146 }
3147 if (!huge_pte_none(huge_ptep_get(ptep))) {
3148 pte = huge_ptep_get_and_clear(mm, address, ptep);
3149 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3150 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3151 set_huge_pte_at(mm, address, ptep, pte);
3152 pages++;
3153 }
3154 }
3155 spin_unlock(&mm->page_table_lock);
3156 /*
3157 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3158 * may have cleared our pud entry and done put_page on the page table:
3159 * once we release i_mmap_mutex, another task can do the final put_page
3160 * and that page table be reused and filled with junk.
3161 */
3162 flush_tlb_range(vma, start, end);
3163 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3164
3165 return pages << h->order;
3166 }
3167
3168 int hugetlb_reserve_pages(struct inode *inode,
3169 long from, long to,
3170 struct vm_area_struct *vma,
3171 vm_flags_t vm_flags)
3172 {
3173 long ret, chg;
3174 struct hstate *h = hstate_inode(inode);
3175 struct hugepage_subpool *spool = subpool_inode(inode);
3176
3177 /*
3178 * Only apply hugepage reservation if asked. At fault time, an
3179 * attempt will be made for VM_NORESERVE to allocate a page
3180 * without using reserves
3181 */
3182 if (vm_flags & VM_NORESERVE)
3183 return 0;
3184
3185 /*
3186 * Shared mappings base their reservation on the number of pages that
3187 * are already allocated on behalf of the file. Private mappings need
3188 * to reserve the full area even if read-only as mprotect() may be
3189 * called to make the mapping read-write. Assume !vma is a shm mapping
3190 */
3191 if (!vma || vma->vm_flags & VM_MAYSHARE)
3192 chg = region_chg(&inode->i_mapping->private_list, from, to);
3193 else {
3194 struct resv_map *resv_map = resv_map_alloc();
3195 if (!resv_map)
3196 return -ENOMEM;
3197
3198 chg = to - from;
3199
3200 set_vma_resv_map(vma, resv_map);
3201 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3202 }
3203
3204 if (chg < 0) {
3205 ret = chg;
3206 goto out_err;
3207 }
3208
3209 /* There must be enough pages in the subpool for the mapping */
3210 if (hugepage_subpool_get_pages(spool, chg)) {
3211 ret = -ENOSPC;
3212 goto out_err;
3213 }
3214
3215 /*
3216 * Check enough hugepages are available for the reservation.
3217 * Hand the pages back to the subpool if there are not
3218 */
3219 ret = hugetlb_acct_memory(h, chg);
3220 if (ret < 0) {
3221 hugepage_subpool_put_pages(spool, chg);
3222 goto out_err;
3223 }
3224
3225 /*
3226 * Account for the reservations made. Shared mappings record regions
3227 * that have reservations as they are shared by multiple VMAs.
3228 * When the last VMA disappears, the region map says how much
3229 * the reservation was and the page cache tells how much of
3230 * the reservation was consumed. Private mappings are per-VMA and
3231 * only the consumed reservations are tracked. When the VMA
3232 * disappears, the original reservation is the VMA size and the
3233 * consumed reservations are stored in the map. Hence, nothing
3234 * else has to be done for private mappings here
3235 */
3236 if (!vma || vma->vm_flags & VM_MAYSHARE)
3237 region_add(&inode->i_mapping->private_list, from, to);
3238 return 0;
3239 out_err:
3240 if (vma)
3241 resv_map_put(vma);
3242 return ret;
3243 }
3244
3245 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3246 {
3247 struct hstate *h = hstate_inode(inode);
3248 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3249 struct hugepage_subpool *spool = subpool_inode(inode);
3250
3251 spin_lock(&inode->i_lock);
3252 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3253 spin_unlock(&inode->i_lock);
3254
3255 hugepage_subpool_put_pages(spool, (chg - freed));
3256 hugetlb_acct_memory(h, -(chg - freed));
3257 }
3258
3259 #ifdef CONFIG_MEMORY_FAILURE
3260
3261 /* Should be called in hugetlb_lock */
3262 static int is_hugepage_on_freelist(struct page *hpage)
3263 {
3264 struct page *page;
3265 struct page *tmp;
3266 struct hstate *h = page_hstate(hpage);
3267 int nid = page_to_nid(hpage);
3268
3269 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3270 if (page == hpage)
3271 return 1;
3272 return 0;
3273 }
3274
3275 /*
3276 * This function is called from memory failure code.
3277 * Assume the caller holds page lock of the head page.
3278 */
3279 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3280 {
3281 struct hstate *h = page_hstate(hpage);
3282 int nid = page_to_nid(hpage);
3283 int ret = -EBUSY;
3284
3285 spin_lock(&hugetlb_lock);
3286 if (is_hugepage_on_freelist(hpage)) {
3287 /*
3288 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3289 * but dangling hpage->lru can trigger list-debug warnings
3290 * (this happens when we call unpoison_memory() on it),
3291 * so let it point to itself with list_del_init().
3292 */
3293 list_del_init(&hpage->lru);
3294 set_page_refcounted(hpage);
3295 h->free_huge_pages--;
3296 h->free_huge_pages_node[nid]--;
3297 ret = 0;
3298 }
3299 spin_unlock(&hugetlb_lock);
3300 return ret;
3301 }
3302 #endif