Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
24
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28
29 /*
30 * By default transparent hugepage support is enabled for all mappings
31 * and khugepaged scans all mappings. Defrag is only invoked by
32 * khugepaged hugepage allocations and by page faults inside
33 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
34 * allocations.
35 */
36 unsigned long transparent_hugepage_flags __read_mostly =
37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
38 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
39 #endif
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
41 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
42 #endif
43 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
45 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
46
47 /* default scan 8*512 pte (or vmas) every 30 second */
48 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
49 static unsigned int khugepaged_pages_collapsed;
50 static unsigned int khugepaged_full_scans;
51 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
52 /* during fragmentation poll the hugepage allocator once every minute */
53 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
54 static struct task_struct *khugepaged_thread __read_mostly;
55 static DEFINE_MUTEX(khugepaged_mutex);
56 static DEFINE_SPINLOCK(khugepaged_mm_lock);
57 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
58 /*
59 * default collapse hugepages if there is at least one pte mapped like
60 * it would have happened if the vma was large enough during page
61 * fault.
62 */
63 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
64
65 static int khugepaged(void *none);
66 static int khugepaged_slab_init(void);
67
68 #define MM_SLOTS_HASH_BITS 10
69 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
70
71 static struct kmem_cache *mm_slot_cache __read_mostly;
72
73 /**
74 * struct mm_slot - hash lookup from mm to mm_slot
75 * @hash: hash collision list
76 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
77 * @mm: the mm that this information is valid for
78 */
79 struct mm_slot {
80 struct hlist_node hash;
81 struct list_head mm_node;
82 struct mm_struct *mm;
83 };
84
85 /**
86 * struct khugepaged_scan - cursor for scanning
87 * @mm_head: the head of the mm list to scan
88 * @mm_slot: the current mm_slot we are scanning
89 * @address: the next address inside that to be scanned
90 *
91 * There is only the one khugepaged_scan instance of this cursor structure.
92 */
93 struct khugepaged_scan {
94 struct list_head mm_head;
95 struct mm_slot *mm_slot;
96 unsigned long address;
97 };
98 static struct khugepaged_scan khugepaged_scan = {
99 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
100 };
101
102
103 static int set_recommended_min_free_kbytes(void)
104 {
105 struct zone *zone;
106 int nr_zones = 0;
107 unsigned long recommended_min;
108
109 if (!khugepaged_enabled())
110 return 0;
111
112 for_each_populated_zone(zone)
113 nr_zones++;
114
115 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
116 recommended_min = pageblock_nr_pages * nr_zones * 2;
117
118 /*
119 * Make sure that on average at least two pageblocks are almost free
120 * of another type, one for a migratetype to fall back to and a
121 * second to avoid subsequent fallbacks of other types There are 3
122 * MIGRATE_TYPES we care about.
123 */
124 recommended_min += pageblock_nr_pages * nr_zones *
125 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
126
127 /* don't ever allow to reserve more than 5% of the lowmem */
128 recommended_min = min(recommended_min,
129 (unsigned long) nr_free_buffer_pages() / 20);
130 recommended_min <<= (PAGE_SHIFT-10);
131
132 if (recommended_min > min_free_kbytes)
133 min_free_kbytes = recommended_min;
134 setup_per_zone_wmarks();
135 return 0;
136 }
137 late_initcall(set_recommended_min_free_kbytes);
138
139 static int start_khugepaged(void)
140 {
141 int err = 0;
142 if (khugepaged_enabled()) {
143 if (!khugepaged_thread)
144 khugepaged_thread = kthread_run(khugepaged, NULL,
145 "khugepaged");
146 if (unlikely(IS_ERR(khugepaged_thread))) {
147 printk(KERN_ERR
148 "khugepaged: kthread_run(khugepaged) failed\n");
149 err = PTR_ERR(khugepaged_thread);
150 khugepaged_thread = NULL;
151 }
152
153 if (!list_empty(&khugepaged_scan.mm_head))
154 wake_up_interruptible(&khugepaged_wait);
155
156 set_recommended_min_free_kbytes();
157 } else if (khugepaged_thread) {
158 kthread_stop(khugepaged_thread);
159 khugepaged_thread = NULL;
160 }
161
162 return err;
163 }
164
165 static atomic_t huge_zero_refcount;
166 static struct page *huge_zero_page __read_mostly;
167
168 static inline bool is_huge_zero_page(struct page *page)
169 {
170 return ACCESS_ONCE(huge_zero_page) == page;
171 }
172
173 static inline bool is_huge_zero_pmd(pmd_t pmd)
174 {
175 return is_huge_zero_page(pmd_page(pmd));
176 }
177
178 static struct page *get_huge_zero_page(void)
179 {
180 struct page *zero_page;
181 retry:
182 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
183 return ACCESS_ONCE(huge_zero_page);
184
185 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
186 HPAGE_PMD_ORDER);
187 if (!zero_page) {
188 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
189 return NULL;
190 }
191 count_vm_event(THP_ZERO_PAGE_ALLOC);
192 preempt_disable();
193 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
194 preempt_enable();
195 __free_page(zero_page);
196 goto retry;
197 }
198
199 /* We take additional reference here. It will be put back by shrinker */
200 atomic_set(&huge_zero_refcount, 2);
201 preempt_enable();
202 return ACCESS_ONCE(huge_zero_page);
203 }
204
205 static void put_huge_zero_page(void)
206 {
207 /*
208 * Counter should never go to zero here. Only shrinker can put
209 * last reference.
210 */
211 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
212 }
213
214 static int shrink_huge_zero_page(struct shrinker *shrink,
215 struct shrink_control *sc)
216 {
217 if (!sc->nr_to_scan)
218 /* we can free zero page only if last reference remains */
219 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
220
221 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
222 struct page *zero_page = xchg(&huge_zero_page, NULL);
223 BUG_ON(zero_page == NULL);
224 __free_page(zero_page);
225 }
226
227 return 0;
228 }
229
230 static struct shrinker huge_zero_page_shrinker = {
231 .shrink = shrink_huge_zero_page,
232 .seeks = DEFAULT_SEEKS,
233 };
234
235 #ifdef CONFIG_SYSFS
236
237 static ssize_t double_flag_show(struct kobject *kobj,
238 struct kobj_attribute *attr, char *buf,
239 enum transparent_hugepage_flag enabled,
240 enum transparent_hugepage_flag req_madv)
241 {
242 if (test_bit(enabled, &transparent_hugepage_flags)) {
243 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
244 return sprintf(buf, "[always] madvise never\n");
245 } else if (test_bit(req_madv, &transparent_hugepage_flags))
246 return sprintf(buf, "always [madvise] never\n");
247 else
248 return sprintf(buf, "always madvise [never]\n");
249 }
250 static ssize_t double_flag_store(struct kobject *kobj,
251 struct kobj_attribute *attr,
252 const char *buf, size_t count,
253 enum transparent_hugepage_flag enabled,
254 enum transparent_hugepage_flag req_madv)
255 {
256 if (!memcmp("always", buf,
257 min(sizeof("always")-1, count))) {
258 set_bit(enabled, &transparent_hugepage_flags);
259 clear_bit(req_madv, &transparent_hugepage_flags);
260 } else if (!memcmp("madvise", buf,
261 min(sizeof("madvise")-1, count))) {
262 clear_bit(enabled, &transparent_hugepage_flags);
263 set_bit(req_madv, &transparent_hugepage_flags);
264 } else if (!memcmp("never", buf,
265 min(sizeof("never")-1, count))) {
266 clear_bit(enabled, &transparent_hugepage_flags);
267 clear_bit(req_madv, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
270
271 return count;
272 }
273
274 static ssize_t enabled_show(struct kobject *kobj,
275 struct kobj_attribute *attr, char *buf)
276 {
277 return double_flag_show(kobj, attr, buf,
278 TRANSPARENT_HUGEPAGE_FLAG,
279 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
280 }
281 static ssize_t enabled_store(struct kobject *kobj,
282 struct kobj_attribute *attr,
283 const char *buf, size_t count)
284 {
285 ssize_t ret;
286
287 ret = double_flag_store(kobj, attr, buf, count,
288 TRANSPARENT_HUGEPAGE_FLAG,
289 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
290
291 if (ret > 0) {
292 int err;
293
294 mutex_lock(&khugepaged_mutex);
295 err = start_khugepaged();
296 mutex_unlock(&khugepaged_mutex);
297
298 if (err)
299 ret = err;
300 }
301
302 return ret;
303 }
304 static struct kobj_attribute enabled_attr =
305 __ATTR(enabled, 0644, enabled_show, enabled_store);
306
307 static ssize_t single_flag_show(struct kobject *kobj,
308 struct kobj_attribute *attr, char *buf,
309 enum transparent_hugepage_flag flag)
310 {
311 return sprintf(buf, "%d\n",
312 !!test_bit(flag, &transparent_hugepage_flags));
313 }
314
315 static ssize_t single_flag_store(struct kobject *kobj,
316 struct kobj_attribute *attr,
317 const char *buf, size_t count,
318 enum transparent_hugepage_flag flag)
319 {
320 unsigned long value;
321 int ret;
322
323 ret = kstrtoul(buf, 10, &value);
324 if (ret < 0)
325 return ret;
326 if (value > 1)
327 return -EINVAL;
328
329 if (value)
330 set_bit(flag, &transparent_hugepage_flags);
331 else
332 clear_bit(flag, &transparent_hugepage_flags);
333
334 return count;
335 }
336
337 /*
338 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
339 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
340 * memory just to allocate one more hugepage.
341 */
342 static ssize_t defrag_show(struct kobject *kobj,
343 struct kobj_attribute *attr, char *buf)
344 {
345 return double_flag_show(kobj, attr, buf,
346 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
347 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
348 }
349 static ssize_t defrag_store(struct kobject *kobj,
350 struct kobj_attribute *attr,
351 const char *buf, size_t count)
352 {
353 return double_flag_store(kobj, attr, buf, count,
354 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
355 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
356 }
357 static struct kobj_attribute defrag_attr =
358 __ATTR(defrag, 0644, defrag_show, defrag_store);
359
360 static ssize_t use_zero_page_show(struct kobject *kobj,
361 struct kobj_attribute *attr, char *buf)
362 {
363 return single_flag_show(kobj, attr, buf,
364 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
365 }
366 static ssize_t use_zero_page_store(struct kobject *kobj,
367 struct kobj_attribute *attr, const char *buf, size_t count)
368 {
369 return single_flag_store(kobj, attr, buf, count,
370 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
371 }
372 static struct kobj_attribute use_zero_page_attr =
373 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
374 #ifdef CONFIG_DEBUG_VM
375 static ssize_t debug_cow_show(struct kobject *kobj,
376 struct kobj_attribute *attr, char *buf)
377 {
378 return single_flag_show(kobj, attr, buf,
379 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
380 }
381 static ssize_t debug_cow_store(struct kobject *kobj,
382 struct kobj_attribute *attr,
383 const char *buf, size_t count)
384 {
385 return single_flag_store(kobj, attr, buf, count,
386 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
387 }
388 static struct kobj_attribute debug_cow_attr =
389 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
390 #endif /* CONFIG_DEBUG_VM */
391
392 static struct attribute *hugepage_attr[] = {
393 &enabled_attr.attr,
394 &defrag_attr.attr,
395 &use_zero_page_attr.attr,
396 #ifdef CONFIG_DEBUG_VM
397 &debug_cow_attr.attr,
398 #endif
399 NULL,
400 };
401
402 static struct attribute_group hugepage_attr_group = {
403 .attrs = hugepage_attr,
404 };
405
406 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
407 struct kobj_attribute *attr,
408 char *buf)
409 {
410 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
411 }
412
413 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
414 struct kobj_attribute *attr,
415 const char *buf, size_t count)
416 {
417 unsigned long msecs;
418 int err;
419
420 err = strict_strtoul(buf, 10, &msecs);
421 if (err || msecs > UINT_MAX)
422 return -EINVAL;
423
424 khugepaged_scan_sleep_millisecs = msecs;
425 wake_up_interruptible(&khugepaged_wait);
426
427 return count;
428 }
429 static struct kobj_attribute scan_sleep_millisecs_attr =
430 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
431 scan_sleep_millisecs_store);
432
433 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
434 struct kobj_attribute *attr,
435 char *buf)
436 {
437 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
438 }
439
440 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
441 struct kobj_attribute *attr,
442 const char *buf, size_t count)
443 {
444 unsigned long msecs;
445 int err;
446
447 err = strict_strtoul(buf, 10, &msecs);
448 if (err || msecs > UINT_MAX)
449 return -EINVAL;
450
451 khugepaged_alloc_sleep_millisecs = msecs;
452 wake_up_interruptible(&khugepaged_wait);
453
454 return count;
455 }
456 static struct kobj_attribute alloc_sleep_millisecs_attr =
457 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
458 alloc_sleep_millisecs_store);
459
460 static ssize_t pages_to_scan_show(struct kobject *kobj,
461 struct kobj_attribute *attr,
462 char *buf)
463 {
464 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
465 }
466 static ssize_t pages_to_scan_store(struct kobject *kobj,
467 struct kobj_attribute *attr,
468 const char *buf, size_t count)
469 {
470 int err;
471 unsigned long pages;
472
473 err = strict_strtoul(buf, 10, &pages);
474 if (err || !pages || pages > UINT_MAX)
475 return -EINVAL;
476
477 khugepaged_pages_to_scan = pages;
478
479 return count;
480 }
481 static struct kobj_attribute pages_to_scan_attr =
482 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
483 pages_to_scan_store);
484
485 static ssize_t pages_collapsed_show(struct kobject *kobj,
486 struct kobj_attribute *attr,
487 char *buf)
488 {
489 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
490 }
491 static struct kobj_attribute pages_collapsed_attr =
492 __ATTR_RO(pages_collapsed);
493
494 static ssize_t full_scans_show(struct kobject *kobj,
495 struct kobj_attribute *attr,
496 char *buf)
497 {
498 return sprintf(buf, "%u\n", khugepaged_full_scans);
499 }
500 static struct kobj_attribute full_scans_attr =
501 __ATTR_RO(full_scans);
502
503 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
504 struct kobj_attribute *attr, char *buf)
505 {
506 return single_flag_show(kobj, attr, buf,
507 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
508 }
509 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
510 struct kobj_attribute *attr,
511 const char *buf, size_t count)
512 {
513 return single_flag_store(kobj, attr, buf, count,
514 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
515 }
516 static struct kobj_attribute khugepaged_defrag_attr =
517 __ATTR(defrag, 0644, khugepaged_defrag_show,
518 khugepaged_defrag_store);
519
520 /*
521 * max_ptes_none controls if khugepaged should collapse hugepages over
522 * any unmapped ptes in turn potentially increasing the memory
523 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
524 * reduce the available free memory in the system as it
525 * runs. Increasing max_ptes_none will instead potentially reduce the
526 * free memory in the system during the khugepaged scan.
527 */
528 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
529 struct kobj_attribute *attr,
530 char *buf)
531 {
532 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
533 }
534 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
535 struct kobj_attribute *attr,
536 const char *buf, size_t count)
537 {
538 int err;
539 unsigned long max_ptes_none;
540
541 err = strict_strtoul(buf, 10, &max_ptes_none);
542 if (err || max_ptes_none > HPAGE_PMD_NR-1)
543 return -EINVAL;
544
545 khugepaged_max_ptes_none = max_ptes_none;
546
547 return count;
548 }
549 static struct kobj_attribute khugepaged_max_ptes_none_attr =
550 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
551 khugepaged_max_ptes_none_store);
552
553 static struct attribute *khugepaged_attr[] = {
554 &khugepaged_defrag_attr.attr,
555 &khugepaged_max_ptes_none_attr.attr,
556 &pages_to_scan_attr.attr,
557 &pages_collapsed_attr.attr,
558 &full_scans_attr.attr,
559 &scan_sleep_millisecs_attr.attr,
560 &alloc_sleep_millisecs_attr.attr,
561 NULL,
562 };
563
564 static struct attribute_group khugepaged_attr_group = {
565 .attrs = khugepaged_attr,
566 .name = "khugepaged",
567 };
568
569 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
570 {
571 int err;
572
573 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
574 if (unlikely(!*hugepage_kobj)) {
575 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
576 return -ENOMEM;
577 }
578
579 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
580 if (err) {
581 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
582 goto delete_obj;
583 }
584
585 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
586 if (err) {
587 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
588 goto remove_hp_group;
589 }
590
591 return 0;
592
593 remove_hp_group:
594 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
595 delete_obj:
596 kobject_put(*hugepage_kobj);
597 return err;
598 }
599
600 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
601 {
602 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
603 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
604 kobject_put(hugepage_kobj);
605 }
606 #else
607 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
608 {
609 return 0;
610 }
611
612 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
613 {
614 }
615 #endif /* CONFIG_SYSFS */
616
617 static int __init hugepage_init(void)
618 {
619 int err;
620 struct kobject *hugepage_kobj;
621
622 if (!has_transparent_hugepage()) {
623 transparent_hugepage_flags = 0;
624 return -EINVAL;
625 }
626
627 err = hugepage_init_sysfs(&hugepage_kobj);
628 if (err)
629 return err;
630
631 err = khugepaged_slab_init();
632 if (err)
633 goto out;
634
635 register_shrinker(&huge_zero_page_shrinker);
636
637 /*
638 * By default disable transparent hugepages on smaller systems,
639 * where the extra memory used could hurt more than TLB overhead
640 * is likely to save. The admin can still enable it through /sys.
641 */
642 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
643 transparent_hugepage_flags = 0;
644
645 start_khugepaged();
646
647 return 0;
648 out:
649 hugepage_exit_sysfs(hugepage_kobj);
650 return err;
651 }
652 module_init(hugepage_init)
653
654 static int __init setup_transparent_hugepage(char *str)
655 {
656 int ret = 0;
657 if (!str)
658 goto out;
659 if (!strcmp(str, "always")) {
660 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
661 &transparent_hugepage_flags);
662 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
663 &transparent_hugepage_flags);
664 ret = 1;
665 } else if (!strcmp(str, "madvise")) {
666 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
667 &transparent_hugepage_flags);
668 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
669 &transparent_hugepage_flags);
670 ret = 1;
671 } else if (!strcmp(str, "never")) {
672 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 &transparent_hugepage_flags);
674 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 &transparent_hugepage_flags);
676 ret = 1;
677 }
678 out:
679 if (!ret)
680 printk(KERN_WARNING
681 "transparent_hugepage= cannot parse, ignored\n");
682 return ret;
683 }
684 __setup("transparent_hugepage=", setup_transparent_hugepage);
685
686 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
687 {
688 if (likely(vma->vm_flags & VM_WRITE))
689 pmd = pmd_mkwrite(pmd);
690 return pmd;
691 }
692
693 static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
694 {
695 pmd_t entry;
696 entry = mk_pmd(page, vma->vm_page_prot);
697 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
698 entry = pmd_mkhuge(entry);
699 return entry;
700 }
701
702 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
703 struct vm_area_struct *vma,
704 unsigned long haddr, pmd_t *pmd,
705 struct page *page)
706 {
707 pgtable_t pgtable;
708
709 VM_BUG_ON(!PageCompound(page));
710 pgtable = pte_alloc_one(mm, haddr);
711 if (unlikely(!pgtable))
712 return VM_FAULT_OOM;
713
714 clear_huge_page(page, haddr, HPAGE_PMD_NR);
715 /*
716 * The memory barrier inside __SetPageUptodate makes sure that
717 * clear_huge_page writes become visible before the set_pmd_at()
718 * write.
719 */
720 __SetPageUptodate(page);
721
722 spin_lock(&mm->page_table_lock);
723 if (unlikely(!pmd_none(*pmd))) {
724 spin_unlock(&mm->page_table_lock);
725 mem_cgroup_uncharge_page(page);
726 put_page(page);
727 pte_free(mm, pgtable);
728 } else {
729 pmd_t entry;
730 entry = mk_huge_pmd(page, vma);
731 page_add_new_anon_rmap(page, vma, haddr);
732 set_pmd_at(mm, haddr, pmd, entry);
733 pgtable_trans_huge_deposit(mm, pgtable);
734 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
735 mm->nr_ptes++;
736 spin_unlock(&mm->page_table_lock);
737 }
738
739 return 0;
740 }
741
742 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
743 {
744 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
745 }
746
747 static inline struct page *alloc_hugepage_vma(int defrag,
748 struct vm_area_struct *vma,
749 unsigned long haddr, int nd,
750 gfp_t extra_gfp)
751 {
752 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
753 HPAGE_PMD_ORDER, vma, haddr, nd);
754 }
755
756 #ifndef CONFIG_NUMA
757 static inline struct page *alloc_hugepage(int defrag)
758 {
759 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
760 HPAGE_PMD_ORDER);
761 }
762 #endif
763
764 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
765 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
766 struct page *zero_page)
767 {
768 pmd_t entry;
769 if (!pmd_none(*pmd))
770 return false;
771 entry = mk_pmd(zero_page, vma->vm_page_prot);
772 entry = pmd_wrprotect(entry);
773 entry = pmd_mkhuge(entry);
774 set_pmd_at(mm, haddr, pmd, entry);
775 pgtable_trans_huge_deposit(mm, pgtable);
776 mm->nr_ptes++;
777 return true;
778 }
779
780 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
781 unsigned long address, pmd_t *pmd,
782 unsigned int flags)
783 {
784 struct page *page;
785 unsigned long haddr = address & HPAGE_PMD_MASK;
786 pte_t *pte;
787
788 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
789 if (unlikely(anon_vma_prepare(vma)))
790 return VM_FAULT_OOM;
791 if (unlikely(khugepaged_enter(vma)))
792 return VM_FAULT_OOM;
793 if (!(flags & FAULT_FLAG_WRITE) &&
794 transparent_hugepage_use_zero_page()) {
795 pgtable_t pgtable;
796 struct page *zero_page;
797 bool set;
798 pgtable = pte_alloc_one(mm, haddr);
799 if (unlikely(!pgtable))
800 return VM_FAULT_OOM;
801 zero_page = get_huge_zero_page();
802 if (unlikely(!zero_page)) {
803 pte_free(mm, pgtable);
804 count_vm_event(THP_FAULT_FALLBACK);
805 goto out;
806 }
807 spin_lock(&mm->page_table_lock);
808 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
809 zero_page);
810 spin_unlock(&mm->page_table_lock);
811 if (!set) {
812 pte_free(mm, pgtable);
813 put_huge_zero_page();
814 }
815 return 0;
816 }
817 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
818 vma, haddr, numa_node_id(), 0);
819 if (unlikely(!page)) {
820 count_vm_event(THP_FAULT_FALLBACK);
821 goto out;
822 }
823 count_vm_event(THP_FAULT_ALLOC);
824 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
825 put_page(page);
826 goto out;
827 }
828 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
829 page))) {
830 mem_cgroup_uncharge_page(page);
831 put_page(page);
832 goto out;
833 }
834
835 return 0;
836 }
837 out:
838 /*
839 * Use __pte_alloc instead of pte_alloc_map, because we can't
840 * run pte_offset_map on the pmd, if an huge pmd could
841 * materialize from under us from a different thread.
842 */
843 if (unlikely(pmd_none(*pmd)) &&
844 unlikely(__pte_alloc(mm, vma, pmd, address)))
845 return VM_FAULT_OOM;
846 /* if an huge pmd materialized from under us just retry later */
847 if (unlikely(pmd_trans_huge(*pmd)))
848 return 0;
849 /*
850 * A regular pmd is established and it can't morph into a huge pmd
851 * from under us anymore at this point because we hold the mmap_sem
852 * read mode and khugepaged takes it in write mode. So now it's
853 * safe to run pte_offset_map().
854 */
855 pte = pte_offset_map(pmd, address);
856 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
857 }
858
859 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
860 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
861 struct vm_area_struct *vma)
862 {
863 struct page *src_page;
864 pmd_t pmd;
865 pgtable_t pgtable;
866 int ret;
867
868 ret = -ENOMEM;
869 pgtable = pte_alloc_one(dst_mm, addr);
870 if (unlikely(!pgtable))
871 goto out;
872
873 spin_lock(&dst_mm->page_table_lock);
874 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
875
876 ret = -EAGAIN;
877 pmd = *src_pmd;
878 if (unlikely(!pmd_trans_huge(pmd))) {
879 pte_free(dst_mm, pgtable);
880 goto out_unlock;
881 }
882 /*
883 * mm->page_table_lock is enough to be sure that huge zero pmd is not
884 * under splitting since we don't split the page itself, only pmd to
885 * a page table.
886 */
887 if (is_huge_zero_pmd(pmd)) {
888 struct page *zero_page;
889 bool set;
890 /*
891 * get_huge_zero_page() will never allocate a new page here,
892 * since we already have a zero page to copy. It just takes a
893 * reference.
894 */
895 zero_page = get_huge_zero_page();
896 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
897 zero_page);
898 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
899 ret = 0;
900 goto out_unlock;
901 }
902 if (unlikely(pmd_trans_splitting(pmd))) {
903 /* split huge page running from under us */
904 spin_unlock(&src_mm->page_table_lock);
905 spin_unlock(&dst_mm->page_table_lock);
906 pte_free(dst_mm, pgtable);
907
908 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
909 goto out;
910 }
911 src_page = pmd_page(pmd);
912 VM_BUG_ON(!PageHead(src_page));
913 get_page(src_page);
914 page_dup_rmap(src_page);
915 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
916
917 pmdp_set_wrprotect(src_mm, addr, src_pmd);
918 pmd = pmd_mkold(pmd_wrprotect(pmd));
919 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
920 pgtable_trans_huge_deposit(dst_mm, pgtable);
921 dst_mm->nr_ptes++;
922
923 ret = 0;
924 out_unlock:
925 spin_unlock(&src_mm->page_table_lock);
926 spin_unlock(&dst_mm->page_table_lock);
927 out:
928 return ret;
929 }
930
931 void huge_pmd_set_accessed(struct mm_struct *mm,
932 struct vm_area_struct *vma,
933 unsigned long address,
934 pmd_t *pmd, pmd_t orig_pmd,
935 int dirty)
936 {
937 pmd_t entry;
938 unsigned long haddr;
939
940 spin_lock(&mm->page_table_lock);
941 if (unlikely(!pmd_same(*pmd, orig_pmd)))
942 goto unlock;
943
944 entry = pmd_mkyoung(orig_pmd);
945 haddr = address & HPAGE_PMD_MASK;
946 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
947 update_mmu_cache_pmd(vma, address, pmd);
948
949 unlock:
950 spin_unlock(&mm->page_table_lock);
951 }
952
953 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
954 struct vm_area_struct *vma, unsigned long address,
955 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
956 {
957 pgtable_t pgtable;
958 pmd_t _pmd;
959 struct page *page;
960 int i, ret = 0;
961 unsigned long mmun_start; /* For mmu_notifiers */
962 unsigned long mmun_end; /* For mmu_notifiers */
963
964 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
965 if (!page) {
966 ret |= VM_FAULT_OOM;
967 goto out;
968 }
969
970 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
971 put_page(page);
972 ret |= VM_FAULT_OOM;
973 goto out;
974 }
975
976 clear_user_highpage(page, address);
977 __SetPageUptodate(page);
978
979 mmun_start = haddr;
980 mmun_end = haddr + HPAGE_PMD_SIZE;
981 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
982
983 spin_lock(&mm->page_table_lock);
984 if (unlikely(!pmd_same(*pmd, orig_pmd)))
985 goto out_free_page;
986
987 pmdp_clear_flush(vma, haddr, pmd);
988 /* leave pmd empty until pte is filled */
989
990 pgtable = pgtable_trans_huge_withdraw(mm);
991 pmd_populate(mm, &_pmd, pgtable);
992
993 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
994 pte_t *pte, entry;
995 if (haddr == (address & PAGE_MASK)) {
996 entry = mk_pte(page, vma->vm_page_prot);
997 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
998 page_add_new_anon_rmap(page, vma, haddr);
999 } else {
1000 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1001 entry = pte_mkspecial(entry);
1002 }
1003 pte = pte_offset_map(&_pmd, haddr);
1004 VM_BUG_ON(!pte_none(*pte));
1005 set_pte_at(mm, haddr, pte, entry);
1006 pte_unmap(pte);
1007 }
1008 smp_wmb(); /* make pte visible before pmd */
1009 pmd_populate(mm, pmd, pgtable);
1010 spin_unlock(&mm->page_table_lock);
1011 put_huge_zero_page();
1012 inc_mm_counter(mm, MM_ANONPAGES);
1013
1014 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1015
1016 ret |= VM_FAULT_WRITE;
1017 out:
1018 return ret;
1019 out_free_page:
1020 spin_unlock(&mm->page_table_lock);
1021 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1022 mem_cgroup_uncharge_page(page);
1023 put_page(page);
1024 goto out;
1025 }
1026
1027 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1028 struct vm_area_struct *vma,
1029 unsigned long address,
1030 pmd_t *pmd, pmd_t orig_pmd,
1031 struct page *page,
1032 unsigned long haddr)
1033 {
1034 pgtable_t pgtable;
1035 pmd_t _pmd;
1036 int ret = 0, i;
1037 struct page **pages;
1038 unsigned long mmun_start; /* For mmu_notifiers */
1039 unsigned long mmun_end; /* For mmu_notifiers */
1040
1041 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1042 GFP_KERNEL);
1043 if (unlikely(!pages)) {
1044 ret |= VM_FAULT_OOM;
1045 goto out;
1046 }
1047
1048 for (i = 0; i < HPAGE_PMD_NR; i++) {
1049 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1050 __GFP_OTHER_NODE,
1051 vma, address, page_to_nid(page));
1052 if (unlikely(!pages[i] ||
1053 mem_cgroup_newpage_charge(pages[i], mm,
1054 GFP_KERNEL))) {
1055 if (pages[i])
1056 put_page(pages[i]);
1057 mem_cgroup_uncharge_start();
1058 while (--i >= 0) {
1059 mem_cgroup_uncharge_page(pages[i]);
1060 put_page(pages[i]);
1061 }
1062 mem_cgroup_uncharge_end();
1063 kfree(pages);
1064 ret |= VM_FAULT_OOM;
1065 goto out;
1066 }
1067 }
1068
1069 for (i = 0; i < HPAGE_PMD_NR; i++) {
1070 copy_user_highpage(pages[i], page + i,
1071 haddr + PAGE_SIZE * i, vma);
1072 __SetPageUptodate(pages[i]);
1073 cond_resched();
1074 }
1075
1076 mmun_start = haddr;
1077 mmun_end = haddr + HPAGE_PMD_SIZE;
1078 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1079
1080 spin_lock(&mm->page_table_lock);
1081 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1082 goto out_free_pages;
1083 VM_BUG_ON(!PageHead(page));
1084
1085 pmdp_clear_flush(vma, haddr, pmd);
1086 /* leave pmd empty until pte is filled */
1087
1088 pgtable = pgtable_trans_huge_withdraw(mm);
1089 pmd_populate(mm, &_pmd, pgtable);
1090
1091 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1092 pte_t *pte, entry;
1093 entry = mk_pte(pages[i], vma->vm_page_prot);
1094 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1095 page_add_new_anon_rmap(pages[i], vma, haddr);
1096 pte = pte_offset_map(&_pmd, haddr);
1097 VM_BUG_ON(!pte_none(*pte));
1098 set_pte_at(mm, haddr, pte, entry);
1099 pte_unmap(pte);
1100 }
1101 kfree(pages);
1102
1103 smp_wmb(); /* make pte visible before pmd */
1104 pmd_populate(mm, pmd, pgtable);
1105 page_remove_rmap(page);
1106 spin_unlock(&mm->page_table_lock);
1107
1108 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1109
1110 ret |= VM_FAULT_WRITE;
1111 put_page(page);
1112
1113 out:
1114 return ret;
1115
1116 out_free_pages:
1117 spin_unlock(&mm->page_table_lock);
1118 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1119 mem_cgroup_uncharge_start();
1120 for (i = 0; i < HPAGE_PMD_NR; i++) {
1121 mem_cgroup_uncharge_page(pages[i]);
1122 put_page(pages[i]);
1123 }
1124 mem_cgroup_uncharge_end();
1125 kfree(pages);
1126 goto out;
1127 }
1128
1129 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1130 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1131 {
1132 int ret = 0;
1133 struct page *page = NULL, *new_page;
1134 unsigned long haddr;
1135 unsigned long mmun_start; /* For mmu_notifiers */
1136 unsigned long mmun_end; /* For mmu_notifiers */
1137
1138 VM_BUG_ON(!vma->anon_vma);
1139 haddr = address & HPAGE_PMD_MASK;
1140 if (is_huge_zero_pmd(orig_pmd))
1141 goto alloc;
1142 spin_lock(&mm->page_table_lock);
1143 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1144 goto out_unlock;
1145
1146 page = pmd_page(orig_pmd);
1147 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1148 if (page_mapcount(page) == 1) {
1149 pmd_t entry;
1150 entry = pmd_mkyoung(orig_pmd);
1151 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1152 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1153 update_mmu_cache_pmd(vma, address, pmd);
1154 ret |= VM_FAULT_WRITE;
1155 goto out_unlock;
1156 }
1157 get_page(page);
1158 spin_unlock(&mm->page_table_lock);
1159 alloc:
1160 if (transparent_hugepage_enabled(vma) &&
1161 !transparent_hugepage_debug_cow())
1162 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1163 vma, haddr, numa_node_id(), 0);
1164 else
1165 new_page = NULL;
1166
1167 if (unlikely(!new_page)) {
1168 count_vm_event(THP_FAULT_FALLBACK);
1169 if (!page) {
1170 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1171 address, pmd, orig_pmd, haddr);
1172 } else {
1173 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1174 pmd, orig_pmd, page, haddr);
1175 if (ret & VM_FAULT_OOM)
1176 split_huge_page(page);
1177 put_page(page);
1178 }
1179 goto out;
1180 }
1181 count_vm_event(THP_FAULT_ALLOC);
1182
1183 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1184 put_page(new_page);
1185 if (page) {
1186 split_huge_page(page);
1187 put_page(page);
1188 }
1189 ret |= VM_FAULT_OOM;
1190 goto out;
1191 }
1192
1193 if (!page)
1194 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1195 else
1196 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1197 __SetPageUptodate(new_page);
1198
1199 mmun_start = haddr;
1200 mmun_end = haddr + HPAGE_PMD_SIZE;
1201 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1202
1203 spin_lock(&mm->page_table_lock);
1204 if (page)
1205 put_page(page);
1206 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1207 spin_unlock(&mm->page_table_lock);
1208 mem_cgroup_uncharge_page(new_page);
1209 put_page(new_page);
1210 goto out_mn;
1211 } else {
1212 pmd_t entry;
1213 entry = mk_huge_pmd(new_page, vma);
1214 pmdp_clear_flush(vma, haddr, pmd);
1215 page_add_new_anon_rmap(new_page, vma, haddr);
1216 set_pmd_at(mm, haddr, pmd, entry);
1217 update_mmu_cache_pmd(vma, address, pmd);
1218 if (!page) {
1219 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1220 put_huge_zero_page();
1221 } else {
1222 VM_BUG_ON(!PageHead(page));
1223 page_remove_rmap(page);
1224 put_page(page);
1225 }
1226 ret |= VM_FAULT_WRITE;
1227 }
1228 spin_unlock(&mm->page_table_lock);
1229 out_mn:
1230 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1231 out:
1232 return ret;
1233 out_unlock:
1234 spin_unlock(&mm->page_table_lock);
1235 return ret;
1236 }
1237
1238 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1239 unsigned long addr,
1240 pmd_t *pmd,
1241 unsigned int flags)
1242 {
1243 struct mm_struct *mm = vma->vm_mm;
1244 struct page *page = NULL;
1245
1246 assert_spin_locked(&mm->page_table_lock);
1247
1248 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1249 goto out;
1250
1251 /* Avoid dumping huge zero page */
1252 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1253 return ERR_PTR(-EFAULT);
1254
1255 page = pmd_page(*pmd);
1256 VM_BUG_ON(!PageHead(page));
1257 if (flags & FOLL_TOUCH) {
1258 pmd_t _pmd;
1259 /*
1260 * We should set the dirty bit only for FOLL_WRITE but
1261 * for now the dirty bit in the pmd is meaningless.
1262 * And if the dirty bit will become meaningful and
1263 * we'll only set it with FOLL_WRITE, an atomic
1264 * set_bit will be required on the pmd to set the
1265 * young bit, instead of the current set_pmd_at.
1266 */
1267 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1268 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1269 }
1270 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1271 if (page->mapping && trylock_page(page)) {
1272 lru_add_drain();
1273 if (page->mapping)
1274 mlock_vma_page(page);
1275 unlock_page(page);
1276 }
1277 }
1278 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1279 VM_BUG_ON(!PageCompound(page));
1280 if (flags & FOLL_GET)
1281 get_page_foll(page);
1282
1283 out:
1284 return page;
1285 }
1286
1287 /* NUMA hinting page fault entry point for trans huge pmds */
1288 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1289 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1290 {
1291 struct anon_vma *anon_vma = NULL;
1292 struct page *page;
1293 unsigned long haddr = addr & HPAGE_PMD_MASK;
1294 int page_nid = -1, this_nid = numa_node_id();
1295 int target_nid;
1296 bool page_locked;
1297 bool migrated = false;
1298
1299 spin_lock(&mm->page_table_lock);
1300 if (unlikely(!pmd_same(pmd, *pmdp)))
1301 goto out_unlock;
1302
1303 page = pmd_page(pmd);
1304 page_nid = page_to_nid(page);
1305 count_vm_numa_event(NUMA_HINT_FAULTS);
1306 if (page_nid == this_nid)
1307 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1308
1309 /*
1310 * Acquire the page lock to serialise THP migrations but avoid dropping
1311 * page_table_lock if at all possible
1312 */
1313 page_locked = trylock_page(page);
1314 target_nid = mpol_misplaced(page, vma, haddr);
1315 if (target_nid == -1) {
1316 /* If the page was locked, there are no parallel migrations */
1317 if (page_locked)
1318 goto clear_pmdnuma;
1319
1320 /*
1321 * Otherwise wait for potential migrations and retry. We do
1322 * relock and check_same as the page may no longer be mapped.
1323 * As the fault is being retried, do not account for it.
1324 */
1325 spin_unlock(&mm->page_table_lock);
1326 wait_on_page_locked(page);
1327 page_nid = -1;
1328 goto out;
1329 }
1330
1331 /* Page is misplaced, serialise migrations and parallel THP splits */
1332 get_page(page);
1333 spin_unlock(&mm->page_table_lock);
1334 if (!page_locked)
1335 lock_page(page);
1336 anon_vma = page_lock_anon_vma_read(page);
1337
1338 /* Confirm the PTE did not while locked */
1339 spin_lock(&mm->page_table_lock);
1340 if (unlikely(!pmd_same(pmd, *pmdp))) {
1341 unlock_page(page);
1342 put_page(page);
1343 page_nid = -1;
1344 goto out_unlock;
1345 }
1346
1347 /* Bail if we fail to protect against THP splits for any reason */
1348 if (unlikely(!anon_vma)) {
1349 put_page(page);
1350 page_nid = -1;
1351 goto clear_pmdnuma;
1352 }
1353
1354 /*
1355 * The page_table_lock above provides a memory barrier
1356 * with change_protection_range.
1357 */
1358 if (mm_tlb_flush_pending(mm))
1359 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1360
1361 /*
1362 * Migrate the THP to the requested node, returns with page unlocked
1363 * and pmd_numa cleared.
1364 */
1365 spin_unlock(&mm->page_table_lock);
1366 migrated = migrate_misplaced_transhuge_page(mm, vma,
1367 pmdp, pmd, addr, page, target_nid);
1368 if (migrated)
1369 page_nid = target_nid;
1370
1371 goto out;
1372 clear_pmdnuma:
1373 BUG_ON(!PageLocked(page));
1374 pmd = pmd_mknonnuma(pmd);
1375 set_pmd_at(mm, haddr, pmdp, pmd);
1376 VM_BUG_ON(pmd_numa(*pmdp));
1377 update_mmu_cache_pmd(vma, addr, pmdp);
1378 unlock_page(page);
1379 out_unlock:
1380 spin_unlock(&mm->page_table_lock);
1381
1382 out:
1383 if (anon_vma)
1384 page_unlock_anon_vma_read(anon_vma);
1385
1386 if (page_nid != -1)
1387 task_numa_fault(page_nid, HPAGE_PMD_NR, migrated);
1388
1389 return 0;
1390 }
1391
1392 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1393 pmd_t *pmd, unsigned long addr)
1394 {
1395 int ret = 0;
1396
1397 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1398 struct page *page;
1399 pgtable_t pgtable;
1400 pmd_t orig_pmd;
1401 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
1402 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1403 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1404 if (is_huge_zero_pmd(orig_pmd)) {
1405 tlb->mm->nr_ptes--;
1406 spin_unlock(&tlb->mm->page_table_lock);
1407 put_huge_zero_page();
1408 } else {
1409 page = pmd_page(orig_pmd);
1410 page_remove_rmap(page);
1411 VM_BUG_ON(page_mapcount(page) < 0);
1412 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1413 VM_BUG_ON(!PageHead(page));
1414 tlb->mm->nr_ptes--;
1415 spin_unlock(&tlb->mm->page_table_lock);
1416 tlb_remove_page(tlb, page);
1417 }
1418 pte_free(tlb->mm, pgtable);
1419 ret = 1;
1420 }
1421 return ret;
1422 }
1423
1424 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1425 unsigned long addr, unsigned long end,
1426 unsigned char *vec)
1427 {
1428 int ret = 0;
1429
1430 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1431 /*
1432 * All logical pages in the range are present
1433 * if backed by a huge page.
1434 */
1435 spin_unlock(&vma->vm_mm->page_table_lock);
1436 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1437 ret = 1;
1438 }
1439
1440 return ret;
1441 }
1442
1443 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1444 unsigned long old_addr,
1445 unsigned long new_addr, unsigned long old_end,
1446 pmd_t *old_pmd, pmd_t *new_pmd)
1447 {
1448 int ret = 0;
1449 pmd_t pmd;
1450
1451 struct mm_struct *mm = vma->vm_mm;
1452
1453 if ((old_addr & ~HPAGE_PMD_MASK) ||
1454 (new_addr & ~HPAGE_PMD_MASK) ||
1455 old_end - old_addr < HPAGE_PMD_SIZE ||
1456 (new_vma->vm_flags & VM_NOHUGEPAGE))
1457 goto out;
1458
1459 /*
1460 * The destination pmd shouldn't be established, free_pgtables()
1461 * should have release it.
1462 */
1463 if (WARN_ON(!pmd_none(*new_pmd))) {
1464 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1465 goto out;
1466 }
1467
1468 ret = __pmd_trans_huge_lock(old_pmd, vma);
1469 if (ret == 1) {
1470 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1471 VM_BUG_ON(!pmd_none(*new_pmd));
1472 set_pmd_at(mm, new_addr, new_pmd, pmd);
1473 spin_unlock(&mm->page_table_lock);
1474 }
1475 out:
1476 return ret;
1477 }
1478
1479 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1480 unsigned long addr, pgprot_t newprot, int prot_numa)
1481 {
1482 struct mm_struct *mm = vma->vm_mm;
1483 int ret = 0;
1484
1485 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1486 pmd_t entry;
1487 entry = pmdp_get_and_clear(mm, addr, pmd);
1488 if (!prot_numa) {
1489 entry = pmd_modify(entry, newprot);
1490 BUG_ON(pmd_write(entry));
1491 } else {
1492 struct page *page = pmd_page(*pmd);
1493
1494 /* only check non-shared pages */
1495 if (page_mapcount(page) == 1 &&
1496 !pmd_numa(*pmd)) {
1497 entry = pmd_mknuma(entry);
1498 }
1499 }
1500 set_pmd_at(mm, addr, pmd, entry);
1501 spin_unlock(&vma->vm_mm->page_table_lock);
1502 ret = 1;
1503 }
1504
1505 return ret;
1506 }
1507
1508 /*
1509 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1510 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1511 *
1512 * Note that if it returns 1, this routine returns without unlocking page
1513 * table locks. So callers must unlock them.
1514 */
1515 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1516 {
1517 spin_lock(&vma->vm_mm->page_table_lock);
1518 if (likely(pmd_trans_huge(*pmd))) {
1519 if (unlikely(pmd_trans_splitting(*pmd))) {
1520 spin_unlock(&vma->vm_mm->page_table_lock);
1521 wait_split_huge_page(vma->anon_vma, pmd);
1522 return -1;
1523 } else {
1524 /* Thp mapped by 'pmd' is stable, so we can
1525 * handle it as it is. */
1526 return 1;
1527 }
1528 }
1529 spin_unlock(&vma->vm_mm->page_table_lock);
1530 return 0;
1531 }
1532
1533 pmd_t *page_check_address_pmd(struct page *page,
1534 struct mm_struct *mm,
1535 unsigned long address,
1536 enum page_check_address_pmd_flag flag)
1537 {
1538 pmd_t *pmd, *ret = NULL;
1539
1540 if (address & ~HPAGE_PMD_MASK)
1541 goto out;
1542
1543 pmd = mm_find_pmd(mm, address);
1544 if (!pmd)
1545 goto out;
1546 if (pmd_none(*pmd))
1547 goto out;
1548 if (pmd_page(*pmd) != page)
1549 goto out;
1550 /*
1551 * split_vma() may create temporary aliased mappings. There is
1552 * no risk as long as all huge pmd are found and have their
1553 * splitting bit set before __split_huge_page_refcount
1554 * runs. Finding the same huge pmd more than once during the
1555 * same rmap walk is not a problem.
1556 */
1557 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1558 pmd_trans_splitting(*pmd))
1559 goto out;
1560 if (pmd_trans_huge(*pmd)) {
1561 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1562 !pmd_trans_splitting(*pmd));
1563 ret = pmd;
1564 }
1565 out:
1566 return ret;
1567 }
1568
1569 static int __split_huge_page_splitting(struct page *page,
1570 struct vm_area_struct *vma,
1571 unsigned long address)
1572 {
1573 struct mm_struct *mm = vma->vm_mm;
1574 pmd_t *pmd;
1575 int ret = 0;
1576 /* For mmu_notifiers */
1577 const unsigned long mmun_start = address;
1578 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1579
1580 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1581 spin_lock(&mm->page_table_lock);
1582 pmd = page_check_address_pmd(page, mm, address,
1583 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1584 if (pmd) {
1585 /*
1586 * We can't temporarily set the pmd to null in order
1587 * to split it, the pmd must remain marked huge at all
1588 * times or the VM won't take the pmd_trans_huge paths
1589 * and it won't wait on the anon_vma->root->rwsem to
1590 * serialize against split_huge_page*.
1591 */
1592 pmdp_splitting_flush(vma, address, pmd);
1593 ret = 1;
1594 }
1595 spin_unlock(&mm->page_table_lock);
1596 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1597
1598 return ret;
1599 }
1600
1601 static void __split_huge_page_refcount(struct page *page,
1602 struct list_head *list)
1603 {
1604 int i;
1605 struct zone *zone = page_zone(page);
1606 struct lruvec *lruvec;
1607 int tail_count = 0;
1608
1609 /* prevent PageLRU to go away from under us, and freeze lru stats */
1610 spin_lock_irq(&zone->lru_lock);
1611 lruvec = mem_cgroup_page_lruvec(page, zone);
1612
1613 compound_lock(page);
1614 /* complete memcg works before add pages to LRU */
1615 mem_cgroup_split_huge_fixup(page);
1616
1617 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1618 struct page *page_tail = page + i;
1619
1620 /* tail_page->_mapcount cannot change */
1621 BUG_ON(page_mapcount(page_tail) < 0);
1622 tail_count += page_mapcount(page_tail);
1623 /* check for overflow */
1624 BUG_ON(tail_count < 0);
1625 BUG_ON(atomic_read(&page_tail->_count) != 0);
1626 /*
1627 * tail_page->_count is zero and not changing from
1628 * under us. But get_page_unless_zero() may be running
1629 * from under us on the tail_page. If we used
1630 * atomic_set() below instead of atomic_add(), we
1631 * would then run atomic_set() concurrently with
1632 * get_page_unless_zero(), and atomic_set() is
1633 * implemented in C not using locked ops. spin_unlock
1634 * on x86 sometime uses locked ops because of PPro
1635 * errata 66, 92, so unless somebody can guarantee
1636 * atomic_set() here would be safe on all archs (and
1637 * not only on x86), it's safer to use atomic_add().
1638 */
1639 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1640 &page_tail->_count);
1641
1642 /* after clearing PageTail the gup refcount can be released */
1643 smp_mb();
1644
1645 /*
1646 * retain hwpoison flag of the poisoned tail page:
1647 * fix for the unsuitable process killed on Guest Machine(KVM)
1648 * by the memory-failure.
1649 */
1650 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1651 page_tail->flags |= (page->flags &
1652 ((1L << PG_referenced) |
1653 (1L << PG_swapbacked) |
1654 (1L << PG_mlocked) |
1655 (1L << PG_uptodate)));
1656 page_tail->flags |= (1L << PG_dirty);
1657
1658 /* clear PageTail before overwriting first_page */
1659 smp_wmb();
1660
1661 /*
1662 * __split_huge_page_splitting() already set the
1663 * splitting bit in all pmd that could map this
1664 * hugepage, that will ensure no CPU can alter the
1665 * mapcount on the head page. The mapcount is only
1666 * accounted in the head page and it has to be
1667 * transferred to all tail pages in the below code. So
1668 * for this code to be safe, the split the mapcount
1669 * can't change. But that doesn't mean userland can't
1670 * keep changing and reading the page contents while
1671 * we transfer the mapcount, so the pmd splitting
1672 * status is achieved setting a reserved bit in the
1673 * pmd, not by clearing the present bit.
1674 */
1675 page_tail->_mapcount = page->_mapcount;
1676
1677 BUG_ON(page_tail->mapping);
1678 page_tail->mapping = page->mapping;
1679
1680 page_tail->index = page->index + i;
1681 page_nid_xchg_last(page_tail, page_nid_last(page));
1682
1683 BUG_ON(!PageAnon(page_tail));
1684 BUG_ON(!PageUptodate(page_tail));
1685 BUG_ON(!PageDirty(page_tail));
1686 BUG_ON(!PageSwapBacked(page_tail));
1687
1688 lru_add_page_tail(page, page_tail, lruvec, list);
1689 }
1690 atomic_sub(tail_count, &page->_count);
1691 BUG_ON(atomic_read(&page->_count) <= 0);
1692
1693 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1694 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1695
1696 ClearPageCompound(page);
1697 compound_unlock(page);
1698 spin_unlock_irq(&zone->lru_lock);
1699
1700 for (i = 1; i < HPAGE_PMD_NR; i++) {
1701 struct page *page_tail = page + i;
1702 BUG_ON(page_count(page_tail) <= 0);
1703 /*
1704 * Tail pages may be freed if there wasn't any mapping
1705 * like if add_to_swap() is running on a lru page that
1706 * had its mapping zapped. And freeing these pages
1707 * requires taking the lru_lock so we do the put_page
1708 * of the tail pages after the split is complete.
1709 */
1710 put_page(page_tail);
1711 }
1712
1713 /*
1714 * Only the head page (now become a regular page) is required
1715 * to be pinned by the caller.
1716 */
1717 BUG_ON(page_count(page) <= 0);
1718 }
1719
1720 static int __split_huge_page_map(struct page *page,
1721 struct vm_area_struct *vma,
1722 unsigned long address)
1723 {
1724 struct mm_struct *mm = vma->vm_mm;
1725 pmd_t *pmd, _pmd;
1726 int ret = 0, i;
1727 pgtable_t pgtable;
1728 unsigned long haddr;
1729
1730 spin_lock(&mm->page_table_lock);
1731 pmd = page_check_address_pmd(page, mm, address,
1732 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1733 if (pmd) {
1734 pgtable = pgtable_trans_huge_withdraw(mm);
1735 pmd_populate(mm, &_pmd, pgtable);
1736 if (pmd_write(*pmd))
1737 BUG_ON(page_mapcount(page) != 1);
1738
1739 haddr = address;
1740 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1741 pte_t *pte, entry;
1742 BUG_ON(PageCompound(page+i));
1743 /*
1744 * Note that pmd_numa is not transferred deliberately
1745 * to avoid any possibility that pte_numa leaks to
1746 * a PROT_NONE VMA by accident.
1747 */
1748 entry = mk_pte(page + i, vma->vm_page_prot);
1749 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1750 if (!pmd_write(*pmd))
1751 entry = pte_wrprotect(entry);
1752 if (!pmd_young(*pmd))
1753 entry = pte_mkold(entry);
1754 pte = pte_offset_map(&_pmd, haddr);
1755 BUG_ON(!pte_none(*pte));
1756 set_pte_at(mm, haddr, pte, entry);
1757 pte_unmap(pte);
1758 }
1759
1760 smp_wmb(); /* make pte visible before pmd */
1761 /*
1762 * Up to this point the pmd is present and huge and
1763 * userland has the whole access to the hugepage
1764 * during the split (which happens in place). If we
1765 * overwrite the pmd with the not-huge version
1766 * pointing to the pte here (which of course we could
1767 * if all CPUs were bug free), userland could trigger
1768 * a small page size TLB miss on the small sized TLB
1769 * while the hugepage TLB entry is still established
1770 * in the huge TLB. Some CPU doesn't like that. See
1771 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1772 * Erratum 383 on page 93. Intel should be safe but is
1773 * also warns that it's only safe if the permission
1774 * and cache attributes of the two entries loaded in
1775 * the two TLB is identical (which should be the case
1776 * here). But it is generally safer to never allow
1777 * small and huge TLB entries for the same virtual
1778 * address to be loaded simultaneously. So instead of
1779 * doing "pmd_populate(); flush_tlb_range();" we first
1780 * mark the current pmd notpresent (atomically because
1781 * here the pmd_trans_huge and pmd_trans_splitting
1782 * must remain set at all times on the pmd until the
1783 * split is complete for this pmd), then we flush the
1784 * SMP TLB and finally we write the non-huge version
1785 * of the pmd entry with pmd_populate.
1786 */
1787 pmdp_invalidate(vma, address, pmd);
1788 pmd_populate(mm, pmd, pgtable);
1789 ret = 1;
1790 }
1791 spin_unlock(&mm->page_table_lock);
1792
1793 return ret;
1794 }
1795
1796 /* must be called with anon_vma->root->rwsem held */
1797 static void __split_huge_page(struct page *page,
1798 struct anon_vma *anon_vma,
1799 struct list_head *list)
1800 {
1801 int mapcount, mapcount2;
1802 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1803 struct anon_vma_chain *avc;
1804
1805 BUG_ON(!PageHead(page));
1806 BUG_ON(PageTail(page));
1807
1808 mapcount = 0;
1809 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1810 struct vm_area_struct *vma = avc->vma;
1811 unsigned long addr = vma_address(page, vma);
1812 BUG_ON(is_vma_temporary_stack(vma));
1813 mapcount += __split_huge_page_splitting(page, vma, addr);
1814 }
1815 /*
1816 * It is critical that new vmas are added to the tail of the
1817 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1818 * and establishes a child pmd before
1819 * __split_huge_page_splitting() freezes the parent pmd (so if
1820 * we fail to prevent copy_huge_pmd() from running until the
1821 * whole __split_huge_page() is complete), we will still see
1822 * the newly established pmd of the child later during the
1823 * walk, to be able to set it as pmd_trans_splitting too.
1824 */
1825 if (mapcount != page_mapcount(page))
1826 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1827 mapcount, page_mapcount(page));
1828 BUG_ON(mapcount != page_mapcount(page));
1829
1830 __split_huge_page_refcount(page, list);
1831
1832 mapcount2 = 0;
1833 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1834 struct vm_area_struct *vma = avc->vma;
1835 unsigned long addr = vma_address(page, vma);
1836 BUG_ON(is_vma_temporary_stack(vma));
1837 mapcount2 += __split_huge_page_map(page, vma, addr);
1838 }
1839 if (mapcount != mapcount2)
1840 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1841 mapcount, mapcount2, page_mapcount(page));
1842 BUG_ON(mapcount != mapcount2);
1843 }
1844
1845 /*
1846 * Split a hugepage into normal pages. This doesn't change the position of head
1847 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1848 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1849 * from the hugepage.
1850 * Return 0 if the hugepage is split successfully otherwise return 1.
1851 */
1852 int split_huge_page_to_list(struct page *page, struct list_head *list)
1853 {
1854 struct anon_vma *anon_vma;
1855 int ret = 1;
1856
1857 BUG_ON(is_huge_zero_page(page));
1858 BUG_ON(!PageAnon(page));
1859
1860 /*
1861 * The caller does not necessarily hold an mmap_sem that would prevent
1862 * the anon_vma disappearing so we first we take a reference to it
1863 * and then lock the anon_vma for write. This is similar to
1864 * page_lock_anon_vma_read except the write lock is taken to serialise
1865 * against parallel split or collapse operations.
1866 */
1867 anon_vma = page_get_anon_vma(page);
1868 if (!anon_vma)
1869 goto out;
1870 anon_vma_lock_write(anon_vma);
1871
1872 ret = 0;
1873 if (!PageCompound(page))
1874 goto out_unlock;
1875
1876 BUG_ON(!PageSwapBacked(page));
1877 __split_huge_page(page, anon_vma, list);
1878 count_vm_event(THP_SPLIT);
1879
1880 BUG_ON(PageCompound(page));
1881 out_unlock:
1882 anon_vma_unlock_write(anon_vma);
1883 put_anon_vma(anon_vma);
1884 out:
1885 return ret;
1886 }
1887
1888 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1889
1890 int hugepage_madvise(struct vm_area_struct *vma,
1891 unsigned long *vm_flags, int advice)
1892 {
1893 struct mm_struct *mm = vma->vm_mm;
1894
1895 switch (advice) {
1896 case MADV_HUGEPAGE:
1897 /*
1898 * Be somewhat over-protective like KSM for now!
1899 */
1900 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1901 return -EINVAL;
1902 if (mm->def_flags & VM_NOHUGEPAGE)
1903 return -EINVAL;
1904 *vm_flags &= ~VM_NOHUGEPAGE;
1905 *vm_flags |= VM_HUGEPAGE;
1906 /*
1907 * If the vma become good for khugepaged to scan,
1908 * register it here without waiting a page fault that
1909 * may not happen any time soon.
1910 */
1911 if (unlikely(khugepaged_enter_vma_merge(vma)))
1912 return -ENOMEM;
1913 break;
1914 case MADV_NOHUGEPAGE:
1915 /*
1916 * Be somewhat over-protective like KSM for now!
1917 */
1918 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1919 return -EINVAL;
1920 *vm_flags &= ~VM_HUGEPAGE;
1921 *vm_flags |= VM_NOHUGEPAGE;
1922 /*
1923 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1924 * this vma even if we leave the mm registered in khugepaged if
1925 * it got registered before VM_NOHUGEPAGE was set.
1926 */
1927 break;
1928 }
1929
1930 return 0;
1931 }
1932
1933 static int __init khugepaged_slab_init(void)
1934 {
1935 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1936 sizeof(struct mm_slot),
1937 __alignof__(struct mm_slot), 0, NULL);
1938 if (!mm_slot_cache)
1939 return -ENOMEM;
1940
1941 return 0;
1942 }
1943
1944 static inline struct mm_slot *alloc_mm_slot(void)
1945 {
1946 if (!mm_slot_cache) /* initialization failed */
1947 return NULL;
1948 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1949 }
1950
1951 static inline void free_mm_slot(struct mm_slot *mm_slot)
1952 {
1953 kmem_cache_free(mm_slot_cache, mm_slot);
1954 }
1955
1956 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1957 {
1958 struct mm_slot *mm_slot;
1959
1960 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1961 if (mm == mm_slot->mm)
1962 return mm_slot;
1963
1964 return NULL;
1965 }
1966
1967 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1968 struct mm_slot *mm_slot)
1969 {
1970 mm_slot->mm = mm;
1971 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1972 }
1973
1974 static inline int khugepaged_test_exit(struct mm_struct *mm)
1975 {
1976 return atomic_read(&mm->mm_users) == 0;
1977 }
1978
1979 int __khugepaged_enter(struct mm_struct *mm)
1980 {
1981 struct mm_slot *mm_slot;
1982 int wakeup;
1983
1984 mm_slot = alloc_mm_slot();
1985 if (!mm_slot)
1986 return -ENOMEM;
1987
1988 /* __khugepaged_exit() must not run from under us */
1989 VM_BUG_ON(khugepaged_test_exit(mm));
1990 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1991 free_mm_slot(mm_slot);
1992 return 0;
1993 }
1994
1995 spin_lock(&khugepaged_mm_lock);
1996 insert_to_mm_slots_hash(mm, mm_slot);
1997 /*
1998 * Insert just behind the scanning cursor, to let the area settle
1999 * down a little.
2000 */
2001 wakeup = list_empty(&khugepaged_scan.mm_head);
2002 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2003 spin_unlock(&khugepaged_mm_lock);
2004
2005 atomic_inc(&mm->mm_count);
2006 if (wakeup)
2007 wake_up_interruptible(&khugepaged_wait);
2008
2009 return 0;
2010 }
2011
2012 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2013 {
2014 unsigned long hstart, hend;
2015 if (!vma->anon_vma)
2016 /*
2017 * Not yet faulted in so we will register later in the
2018 * page fault if needed.
2019 */
2020 return 0;
2021 if (vma->vm_ops)
2022 /* khugepaged not yet working on file or special mappings */
2023 return 0;
2024 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2025 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2026 hend = vma->vm_end & HPAGE_PMD_MASK;
2027 if (hstart < hend)
2028 return khugepaged_enter(vma);
2029 return 0;
2030 }
2031
2032 void __khugepaged_exit(struct mm_struct *mm)
2033 {
2034 struct mm_slot *mm_slot;
2035 int free = 0;
2036
2037 spin_lock(&khugepaged_mm_lock);
2038 mm_slot = get_mm_slot(mm);
2039 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2040 hash_del(&mm_slot->hash);
2041 list_del(&mm_slot->mm_node);
2042 free = 1;
2043 }
2044 spin_unlock(&khugepaged_mm_lock);
2045
2046 if (free) {
2047 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2048 free_mm_slot(mm_slot);
2049 mmdrop(mm);
2050 } else if (mm_slot) {
2051 /*
2052 * This is required to serialize against
2053 * khugepaged_test_exit() (which is guaranteed to run
2054 * under mmap sem read mode). Stop here (after we
2055 * return all pagetables will be destroyed) until
2056 * khugepaged has finished working on the pagetables
2057 * under the mmap_sem.
2058 */
2059 down_write(&mm->mmap_sem);
2060 up_write(&mm->mmap_sem);
2061 }
2062 }
2063
2064 static void release_pte_page(struct page *page)
2065 {
2066 /* 0 stands for page_is_file_cache(page) == false */
2067 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2068 unlock_page(page);
2069 putback_lru_page(page);
2070 }
2071
2072 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2073 {
2074 while (--_pte >= pte) {
2075 pte_t pteval = *_pte;
2076 if (!pte_none(pteval))
2077 release_pte_page(pte_page(pteval));
2078 }
2079 }
2080
2081 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2082 unsigned long address,
2083 pte_t *pte)
2084 {
2085 struct page *page;
2086 pte_t *_pte;
2087 int referenced = 0, none = 0;
2088 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2089 _pte++, address += PAGE_SIZE) {
2090 pte_t pteval = *_pte;
2091 if (pte_none(pteval)) {
2092 if (++none <= khugepaged_max_ptes_none)
2093 continue;
2094 else
2095 goto out;
2096 }
2097 if (!pte_present(pteval) || !pte_write(pteval))
2098 goto out;
2099 page = vm_normal_page(vma, address, pteval);
2100 if (unlikely(!page))
2101 goto out;
2102
2103 VM_BUG_ON(PageCompound(page));
2104 BUG_ON(!PageAnon(page));
2105 VM_BUG_ON(!PageSwapBacked(page));
2106
2107 /* cannot use mapcount: can't collapse if there's a gup pin */
2108 if (page_count(page) != 1)
2109 goto out;
2110 /*
2111 * We can do it before isolate_lru_page because the
2112 * page can't be freed from under us. NOTE: PG_lock
2113 * is needed to serialize against split_huge_page
2114 * when invoked from the VM.
2115 */
2116 if (!trylock_page(page))
2117 goto out;
2118 /*
2119 * Isolate the page to avoid collapsing an hugepage
2120 * currently in use by the VM.
2121 */
2122 if (isolate_lru_page(page)) {
2123 unlock_page(page);
2124 goto out;
2125 }
2126 /* 0 stands for page_is_file_cache(page) == false */
2127 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2128 VM_BUG_ON(!PageLocked(page));
2129 VM_BUG_ON(PageLRU(page));
2130
2131 /* If there is no mapped pte young don't collapse the page */
2132 if (pte_young(pteval) || PageReferenced(page) ||
2133 mmu_notifier_test_young(vma->vm_mm, address))
2134 referenced = 1;
2135 }
2136 if (likely(referenced))
2137 return 1;
2138 out:
2139 release_pte_pages(pte, _pte);
2140 return 0;
2141 }
2142
2143 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2144 struct vm_area_struct *vma,
2145 unsigned long address,
2146 spinlock_t *ptl)
2147 {
2148 pte_t *_pte;
2149 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2150 pte_t pteval = *_pte;
2151 struct page *src_page;
2152
2153 if (pte_none(pteval)) {
2154 clear_user_highpage(page, address);
2155 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2156 } else {
2157 src_page = pte_page(pteval);
2158 copy_user_highpage(page, src_page, address, vma);
2159 VM_BUG_ON(page_mapcount(src_page) != 1);
2160 release_pte_page(src_page);
2161 /*
2162 * ptl mostly unnecessary, but preempt has to
2163 * be disabled to update the per-cpu stats
2164 * inside page_remove_rmap().
2165 */
2166 spin_lock(ptl);
2167 /*
2168 * paravirt calls inside pte_clear here are
2169 * superfluous.
2170 */
2171 pte_clear(vma->vm_mm, address, _pte);
2172 page_remove_rmap(src_page);
2173 spin_unlock(ptl);
2174 free_page_and_swap_cache(src_page);
2175 }
2176
2177 address += PAGE_SIZE;
2178 page++;
2179 }
2180 }
2181
2182 static void khugepaged_alloc_sleep(void)
2183 {
2184 wait_event_freezable_timeout(khugepaged_wait, false,
2185 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2186 }
2187
2188 #ifdef CONFIG_NUMA
2189 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2190 {
2191 if (IS_ERR(*hpage)) {
2192 if (!*wait)
2193 return false;
2194
2195 *wait = false;
2196 *hpage = NULL;
2197 khugepaged_alloc_sleep();
2198 } else if (*hpage) {
2199 put_page(*hpage);
2200 *hpage = NULL;
2201 }
2202
2203 return true;
2204 }
2205
2206 static struct page
2207 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2208 struct vm_area_struct *vma, unsigned long address,
2209 int node)
2210 {
2211 VM_BUG_ON(*hpage);
2212 /*
2213 * Allocate the page while the vma is still valid and under
2214 * the mmap_sem read mode so there is no memory allocation
2215 * later when we take the mmap_sem in write mode. This is more
2216 * friendly behavior (OTOH it may actually hide bugs) to
2217 * filesystems in userland with daemons allocating memory in
2218 * the userland I/O paths. Allocating memory with the
2219 * mmap_sem in read mode is good idea also to allow greater
2220 * scalability.
2221 */
2222 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
2223 node, __GFP_OTHER_NODE);
2224
2225 /*
2226 * After allocating the hugepage, release the mmap_sem read lock in
2227 * preparation for taking it in write mode.
2228 */
2229 up_read(&mm->mmap_sem);
2230 if (unlikely(!*hpage)) {
2231 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2232 *hpage = ERR_PTR(-ENOMEM);
2233 return NULL;
2234 }
2235
2236 count_vm_event(THP_COLLAPSE_ALLOC);
2237 return *hpage;
2238 }
2239 #else
2240 static struct page *khugepaged_alloc_hugepage(bool *wait)
2241 {
2242 struct page *hpage;
2243
2244 do {
2245 hpage = alloc_hugepage(khugepaged_defrag());
2246 if (!hpage) {
2247 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2248 if (!*wait)
2249 return NULL;
2250
2251 *wait = false;
2252 khugepaged_alloc_sleep();
2253 } else
2254 count_vm_event(THP_COLLAPSE_ALLOC);
2255 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2256
2257 return hpage;
2258 }
2259
2260 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2261 {
2262 if (!*hpage)
2263 *hpage = khugepaged_alloc_hugepage(wait);
2264
2265 if (unlikely(!*hpage))
2266 return false;
2267
2268 return true;
2269 }
2270
2271 static struct page
2272 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2273 struct vm_area_struct *vma, unsigned long address,
2274 int node)
2275 {
2276 up_read(&mm->mmap_sem);
2277 VM_BUG_ON(!*hpage);
2278 return *hpage;
2279 }
2280 #endif
2281
2282 static bool hugepage_vma_check(struct vm_area_struct *vma)
2283 {
2284 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2285 (vma->vm_flags & VM_NOHUGEPAGE))
2286 return false;
2287
2288 if (!vma->anon_vma || vma->vm_ops)
2289 return false;
2290 if (is_vma_temporary_stack(vma))
2291 return false;
2292 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2293 return true;
2294 }
2295
2296 static void collapse_huge_page(struct mm_struct *mm,
2297 unsigned long address,
2298 struct page **hpage,
2299 struct vm_area_struct *vma,
2300 int node)
2301 {
2302 pmd_t *pmd, _pmd;
2303 pte_t *pte;
2304 pgtable_t pgtable;
2305 struct page *new_page;
2306 spinlock_t *ptl;
2307 int isolated;
2308 unsigned long hstart, hend;
2309 unsigned long mmun_start; /* For mmu_notifiers */
2310 unsigned long mmun_end; /* For mmu_notifiers */
2311
2312 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2313
2314 /* release the mmap_sem read lock. */
2315 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2316 if (!new_page)
2317 return;
2318
2319 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2320 return;
2321
2322 /*
2323 * Prevent all access to pagetables with the exception of
2324 * gup_fast later hanlded by the ptep_clear_flush and the VM
2325 * handled by the anon_vma lock + PG_lock.
2326 */
2327 down_write(&mm->mmap_sem);
2328 if (unlikely(khugepaged_test_exit(mm)))
2329 goto out;
2330
2331 vma = find_vma(mm, address);
2332 if (!vma)
2333 goto out;
2334 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2335 hend = vma->vm_end & HPAGE_PMD_MASK;
2336 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2337 goto out;
2338 if (!hugepage_vma_check(vma))
2339 goto out;
2340 pmd = mm_find_pmd(mm, address);
2341 if (!pmd)
2342 goto out;
2343 if (pmd_trans_huge(*pmd))
2344 goto out;
2345
2346 anon_vma_lock_write(vma->anon_vma);
2347
2348 pte = pte_offset_map(pmd, address);
2349 ptl = pte_lockptr(mm, pmd);
2350
2351 mmun_start = address;
2352 mmun_end = address + HPAGE_PMD_SIZE;
2353 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2354 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2355 /*
2356 * After this gup_fast can't run anymore. This also removes
2357 * any huge TLB entry from the CPU so we won't allow
2358 * huge and small TLB entries for the same virtual address
2359 * to avoid the risk of CPU bugs in that area.
2360 */
2361 _pmd = pmdp_clear_flush(vma, address, pmd);
2362 spin_unlock(&mm->page_table_lock);
2363 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2364
2365 spin_lock(ptl);
2366 isolated = __collapse_huge_page_isolate(vma, address, pte);
2367 spin_unlock(ptl);
2368
2369 if (unlikely(!isolated)) {
2370 pte_unmap(pte);
2371 spin_lock(&mm->page_table_lock);
2372 BUG_ON(!pmd_none(*pmd));
2373 /*
2374 * We can only use set_pmd_at when establishing
2375 * hugepmds and never for establishing regular pmds that
2376 * points to regular pagetables. Use pmd_populate for that
2377 */
2378 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2379 spin_unlock(&mm->page_table_lock);
2380 anon_vma_unlock_write(vma->anon_vma);
2381 goto out;
2382 }
2383
2384 /*
2385 * All pages are isolated and locked so anon_vma rmap
2386 * can't run anymore.
2387 */
2388 anon_vma_unlock_write(vma->anon_vma);
2389
2390 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2391 pte_unmap(pte);
2392 __SetPageUptodate(new_page);
2393 pgtable = pmd_pgtable(_pmd);
2394
2395 _pmd = mk_huge_pmd(new_page, vma);
2396
2397 /*
2398 * spin_lock() below is not the equivalent of smp_wmb(), so
2399 * this is needed to avoid the copy_huge_page writes to become
2400 * visible after the set_pmd_at() write.
2401 */
2402 smp_wmb();
2403
2404 spin_lock(&mm->page_table_lock);
2405 BUG_ON(!pmd_none(*pmd));
2406 page_add_new_anon_rmap(new_page, vma, address);
2407 set_pmd_at(mm, address, pmd, _pmd);
2408 update_mmu_cache_pmd(vma, address, pmd);
2409 pgtable_trans_huge_deposit(mm, pgtable);
2410 spin_unlock(&mm->page_table_lock);
2411
2412 *hpage = NULL;
2413
2414 khugepaged_pages_collapsed++;
2415 out_up_write:
2416 up_write(&mm->mmap_sem);
2417 return;
2418
2419 out:
2420 mem_cgroup_uncharge_page(new_page);
2421 goto out_up_write;
2422 }
2423
2424 static int khugepaged_scan_pmd(struct mm_struct *mm,
2425 struct vm_area_struct *vma,
2426 unsigned long address,
2427 struct page **hpage)
2428 {
2429 pmd_t *pmd;
2430 pte_t *pte, *_pte;
2431 int ret = 0, referenced = 0, none = 0;
2432 struct page *page;
2433 unsigned long _address;
2434 spinlock_t *ptl;
2435 int node = NUMA_NO_NODE;
2436
2437 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2438
2439 pmd = mm_find_pmd(mm, address);
2440 if (!pmd)
2441 goto out;
2442 if (pmd_trans_huge(*pmd))
2443 goto out;
2444
2445 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2446 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2447 _pte++, _address += PAGE_SIZE) {
2448 pte_t pteval = *_pte;
2449 if (pte_none(pteval)) {
2450 if (++none <= khugepaged_max_ptes_none)
2451 continue;
2452 else
2453 goto out_unmap;
2454 }
2455 if (!pte_present(pteval) || !pte_write(pteval))
2456 goto out_unmap;
2457 page = vm_normal_page(vma, _address, pteval);
2458 if (unlikely(!page))
2459 goto out_unmap;
2460 /*
2461 * Chose the node of the first page. This could
2462 * be more sophisticated and look at more pages,
2463 * but isn't for now.
2464 */
2465 if (node == NUMA_NO_NODE)
2466 node = page_to_nid(page);
2467 VM_BUG_ON(PageCompound(page));
2468 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2469 goto out_unmap;
2470 /* cannot use mapcount: can't collapse if there's a gup pin */
2471 if (page_count(page) != 1)
2472 goto out_unmap;
2473 if (pte_young(pteval) || PageReferenced(page) ||
2474 mmu_notifier_test_young(vma->vm_mm, address))
2475 referenced = 1;
2476 }
2477 if (referenced)
2478 ret = 1;
2479 out_unmap:
2480 pte_unmap_unlock(pte, ptl);
2481 if (ret)
2482 /* collapse_huge_page will return with the mmap_sem released */
2483 collapse_huge_page(mm, address, hpage, vma, node);
2484 out:
2485 return ret;
2486 }
2487
2488 static void collect_mm_slot(struct mm_slot *mm_slot)
2489 {
2490 struct mm_struct *mm = mm_slot->mm;
2491
2492 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2493
2494 if (khugepaged_test_exit(mm)) {
2495 /* free mm_slot */
2496 hash_del(&mm_slot->hash);
2497 list_del(&mm_slot->mm_node);
2498
2499 /*
2500 * Not strictly needed because the mm exited already.
2501 *
2502 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2503 */
2504
2505 /* khugepaged_mm_lock actually not necessary for the below */
2506 free_mm_slot(mm_slot);
2507 mmdrop(mm);
2508 }
2509 }
2510
2511 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2512 struct page **hpage)
2513 __releases(&khugepaged_mm_lock)
2514 __acquires(&khugepaged_mm_lock)
2515 {
2516 struct mm_slot *mm_slot;
2517 struct mm_struct *mm;
2518 struct vm_area_struct *vma;
2519 int progress = 0;
2520
2521 VM_BUG_ON(!pages);
2522 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2523
2524 if (khugepaged_scan.mm_slot)
2525 mm_slot = khugepaged_scan.mm_slot;
2526 else {
2527 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2528 struct mm_slot, mm_node);
2529 khugepaged_scan.address = 0;
2530 khugepaged_scan.mm_slot = mm_slot;
2531 }
2532 spin_unlock(&khugepaged_mm_lock);
2533
2534 mm = mm_slot->mm;
2535 down_read(&mm->mmap_sem);
2536 if (unlikely(khugepaged_test_exit(mm)))
2537 vma = NULL;
2538 else
2539 vma = find_vma(mm, khugepaged_scan.address);
2540
2541 progress++;
2542 for (; vma; vma = vma->vm_next) {
2543 unsigned long hstart, hend;
2544
2545 cond_resched();
2546 if (unlikely(khugepaged_test_exit(mm))) {
2547 progress++;
2548 break;
2549 }
2550 if (!hugepage_vma_check(vma)) {
2551 skip:
2552 progress++;
2553 continue;
2554 }
2555 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2556 hend = vma->vm_end & HPAGE_PMD_MASK;
2557 if (hstart >= hend)
2558 goto skip;
2559 if (khugepaged_scan.address > hend)
2560 goto skip;
2561 if (khugepaged_scan.address < hstart)
2562 khugepaged_scan.address = hstart;
2563 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2564
2565 while (khugepaged_scan.address < hend) {
2566 int ret;
2567 cond_resched();
2568 if (unlikely(khugepaged_test_exit(mm)))
2569 goto breakouterloop;
2570
2571 VM_BUG_ON(khugepaged_scan.address < hstart ||
2572 khugepaged_scan.address + HPAGE_PMD_SIZE >
2573 hend);
2574 ret = khugepaged_scan_pmd(mm, vma,
2575 khugepaged_scan.address,
2576 hpage);
2577 /* move to next address */
2578 khugepaged_scan.address += HPAGE_PMD_SIZE;
2579 progress += HPAGE_PMD_NR;
2580 if (ret)
2581 /* we released mmap_sem so break loop */
2582 goto breakouterloop_mmap_sem;
2583 if (progress >= pages)
2584 goto breakouterloop;
2585 }
2586 }
2587 breakouterloop:
2588 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2589 breakouterloop_mmap_sem:
2590
2591 spin_lock(&khugepaged_mm_lock);
2592 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2593 /*
2594 * Release the current mm_slot if this mm is about to die, or
2595 * if we scanned all vmas of this mm.
2596 */
2597 if (khugepaged_test_exit(mm) || !vma) {
2598 /*
2599 * Make sure that if mm_users is reaching zero while
2600 * khugepaged runs here, khugepaged_exit will find
2601 * mm_slot not pointing to the exiting mm.
2602 */
2603 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2604 khugepaged_scan.mm_slot = list_entry(
2605 mm_slot->mm_node.next,
2606 struct mm_slot, mm_node);
2607 khugepaged_scan.address = 0;
2608 } else {
2609 khugepaged_scan.mm_slot = NULL;
2610 khugepaged_full_scans++;
2611 }
2612
2613 collect_mm_slot(mm_slot);
2614 }
2615
2616 return progress;
2617 }
2618
2619 static int khugepaged_has_work(void)
2620 {
2621 return !list_empty(&khugepaged_scan.mm_head) &&
2622 khugepaged_enabled();
2623 }
2624
2625 static int khugepaged_wait_event(void)
2626 {
2627 return !list_empty(&khugepaged_scan.mm_head) ||
2628 kthread_should_stop();
2629 }
2630
2631 static void khugepaged_do_scan(void)
2632 {
2633 struct page *hpage = NULL;
2634 unsigned int progress = 0, pass_through_head = 0;
2635 unsigned int pages = khugepaged_pages_to_scan;
2636 bool wait = true;
2637
2638 barrier(); /* write khugepaged_pages_to_scan to local stack */
2639
2640 while (progress < pages) {
2641 if (!khugepaged_prealloc_page(&hpage, &wait))
2642 break;
2643
2644 cond_resched();
2645
2646 if (unlikely(kthread_should_stop() || freezing(current)))
2647 break;
2648
2649 spin_lock(&khugepaged_mm_lock);
2650 if (!khugepaged_scan.mm_slot)
2651 pass_through_head++;
2652 if (khugepaged_has_work() &&
2653 pass_through_head < 2)
2654 progress += khugepaged_scan_mm_slot(pages - progress,
2655 &hpage);
2656 else
2657 progress = pages;
2658 spin_unlock(&khugepaged_mm_lock);
2659 }
2660
2661 if (!IS_ERR_OR_NULL(hpage))
2662 put_page(hpage);
2663 }
2664
2665 static void khugepaged_wait_work(void)
2666 {
2667 try_to_freeze();
2668
2669 if (khugepaged_has_work()) {
2670 if (!khugepaged_scan_sleep_millisecs)
2671 return;
2672
2673 wait_event_freezable_timeout(khugepaged_wait,
2674 kthread_should_stop(),
2675 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2676 return;
2677 }
2678
2679 if (khugepaged_enabled())
2680 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2681 }
2682
2683 static int khugepaged(void *none)
2684 {
2685 struct mm_slot *mm_slot;
2686
2687 set_freezable();
2688 set_user_nice(current, 19);
2689
2690 while (!kthread_should_stop()) {
2691 khugepaged_do_scan();
2692 khugepaged_wait_work();
2693 }
2694
2695 spin_lock(&khugepaged_mm_lock);
2696 mm_slot = khugepaged_scan.mm_slot;
2697 khugepaged_scan.mm_slot = NULL;
2698 if (mm_slot)
2699 collect_mm_slot(mm_slot);
2700 spin_unlock(&khugepaged_mm_lock);
2701 return 0;
2702 }
2703
2704 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2705 unsigned long haddr, pmd_t *pmd)
2706 {
2707 struct mm_struct *mm = vma->vm_mm;
2708 pgtable_t pgtable;
2709 pmd_t _pmd;
2710 int i;
2711
2712 pmdp_clear_flush(vma, haddr, pmd);
2713 /* leave pmd empty until pte is filled */
2714
2715 pgtable = pgtable_trans_huge_withdraw(mm);
2716 pmd_populate(mm, &_pmd, pgtable);
2717
2718 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2719 pte_t *pte, entry;
2720 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2721 entry = pte_mkspecial(entry);
2722 pte = pte_offset_map(&_pmd, haddr);
2723 VM_BUG_ON(!pte_none(*pte));
2724 set_pte_at(mm, haddr, pte, entry);
2725 pte_unmap(pte);
2726 }
2727 smp_wmb(); /* make pte visible before pmd */
2728 pmd_populate(mm, pmd, pgtable);
2729 put_huge_zero_page();
2730 }
2731
2732 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2733 pmd_t *pmd)
2734 {
2735 struct page *page;
2736 struct mm_struct *mm = vma->vm_mm;
2737 unsigned long haddr = address & HPAGE_PMD_MASK;
2738 unsigned long mmun_start; /* For mmu_notifiers */
2739 unsigned long mmun_end; /* For mmu_notifiers */
2740
2741 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2742
2743 mmun_start = haddr;
2744 mmun_end = haddr + HPAGE_PMD_SIZE;
2745 again:
2746 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2747 spin_lock(&mm->page_table_lock);
2748 if (unlikely(!pmd_trans_huge(*pmd))) {
2749 spin_unlock(&mm->page_table_lock);
2750 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2751 return;
2752 }
2753 if (is_huge_zero_pmd(*pmd)) {
2754 __split_huge_zero_page_pmd(vma, haddr, pmd);
2755 spin_unlock(&mm->page_table_lock);
2756 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2757 return;
2758 }
2759 page = pmd_page(*pmd);
2760 VM_BUG_ON(!page_count(page));
2761 get_page(page);
2762 spin_unlock(&mm->page_table_lock);
2763 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2764
2765 split_huge_page(page);
2766
2767 put_page(page);
2768
2769 /*
2770 * We don't always have down_write of mmap_sem here: a racing
2771 * do_huge_pmd_wp_page() might have copied-on-write to another
2772 * huge page before our split_huge_page() got the anon_vma lock.
2773 */
2774 if (unlikely(pmd_trans_huge(*pmd)))
2775 goto again;
2776 }
2777
2778 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2779 pmd_t *pmd)
2780 {
2781 struct vm_area_struct *vma;
2782
2783 vma = find_vma(mm, address);
2784 BUG_ON(vma == NULL);
2785 split_huge_page_pmd(vma, address, pmd);
2786 }
2787
2788 static void split_huge_page_address(struct mm_struct *mm,
2789 unsigned long address)
2790 {
2791 pmd_t *pmd;
2792
2793 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2794
2795 pmd = mm_find_pmd(mm, address);
2796 if (!pmd)
2797 return;
2798 /*
2799 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2800 * materialize from under us.
2801 */
2802 split_huge_page_pmd_mm(mm, address, pmd);
2803 }
2804
2805 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2806 unsigned long start,
2807 unsigned long end,
2808 long adjust_next)
2809 {
2810 /*
2811 * If the new start address isn't hpage aligned and it could
2812 * previously contain an hugepage: check if we need to split
2813 * an huge pmd.
2814 */
2815 if (start & ~HPAGE_PMD_MASK &&
2816 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2817 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2818 split_huge_page_address(vma->vm_mm, start);
2819
2820 /*
2821 * If the new end address isn't hpage aligned and it could
2822 * previously contain an hugepage: check if we need to split
2823 * an huge pmd.
2824 */
2825 if (end & ~HPAGE_PMD_MASK &&
2826 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2827 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2828 split_huge_page_address(vma->vm_mm, end);
2829
2830 /*
2831 * If we're also updating the vma->vm_next->vm_start, if the new
2832 * vm_next->vm_start isn't page aligned and it could previously
2833 * contain an hugepage: check if we need to split an huge pmd.
2834 */
2835 if (adjust_next > 0) {
2836 struct vm_area_struct *next = vma->vm_next;
2837 unsigned long nstart = next->vm_start;
2838 nstart += adjust_next << PAGE_SHIFT;
2839 if (nstart & ~HPAGE_PMD_MASK &&
2840 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2841 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2842 split_huge_page_address(next->vm_mm, nstart);
2843 }
2844 }