mm/memory_hotplug.c: check start_pfn in test_pages_in_a_zone()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
24
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28
29 /*
30 * By default transparent hugepage support is enabled for all mappings
31 * and khugepaged scans all mappings. Defrag is only invoked by
32 * khugepaged hugepage allocations and by page faults inside
33 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
34 * allocations.
35 */
36 unsigned long transparent_hugepage_flags __read_mostly =
37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
38 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
39 #endif
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
41 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
42 #endif
43 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
45 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
46
47 /* default scan 8*512 pte (or vmas) every 30 second */
48 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
49 static unsigned int khugepaged_pages_collapsed;
50 static unsigned int khugepaged_full_scans;
51 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
52 /* during fragmentation poll the hugepage allocator once every minute */
53 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
54 static struct task_struct *khugepaged_thread __read_mostly;
55 static DEFINE_MUTEX(khugepaged_mutex);
56 static DEFINE_SPINLOCK(khugepaged_mm_lock);
57 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
58 /*
59 * default collapse hugepages if there is at least one pte mapped like
60 * it would have happened if the vma was large enough during page
61 * fault.
62 */
63 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
64
65 static int khugepaged(void *none);
66 static int khugepaged_slab_init(void);
67
68 #define MM_SLOTS_HASH_BITS 10
69 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
70
71 static struct kmem_cache *mm_slot_cache __read_mostly;
72
73 /**
74 * struct mm_slot - hash lookup from mm to mm_slot
75 * @hash: hash collision list
76 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
77 * @mm: the mm that this information is valid for
78 */
79 struct mm_slot {
80 struct hlist_node hash;
81 struct list_head mm_node;
82 struct mm_struct *mm;
83 };
84
85 /**
86 * struct khugepaged_scan - cursor for scanning
87 * @mm_head: the head of the mm list to scan
88 * @mm_slot: the current mm_slot we are scanning
89 * @address: the next address inside that to be scanned
90 *
91 * There is only the one khugepaged_scan instance of this cursor structure.
92 */
93 struct khugepaged_scan {
94 struct list_head mm_head;
95 struct mm_slot *mm_slot;
96 unsigned long address;
97 };
98 static struct khugepaged_scan khugepaged_scan = {
99 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
100 };
101
102
103 static int set_recommended_min_free_kbytes(void)
104 {
105 struct zone *zone;
106 int nr_zones = 0;
107 unsigned long recommended_min;
108
109 if (!khugepaged_enabled())
110 return 0;
111
112 for_each_populated_zone(zone)
113 nr_zones++;
114
115 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
116 recommended_min = pageblock_nr_pages * nr_zones * 2;
117
118 /*
119 * Make sure that on average at least two pageblocks are almost free
120 * of another type, one for a migratetype to fall back to and a
121 * second to avoid subsequent fallbacks of other types There are 3
122 * MIGRATE_TYPES we care about.
123 */
124 recommended_min += pageblock_nr_pages * nr_zones *
125 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
126
127 /* don't ever allow to reserve more than 5% of the lowmem */
128 recommended_min = min(recommended_min,
129 (unsigned long) nr_free_buffer_pages() / 20);
130 recommended_min <<= (PAGE_SHIFT-10);
131
132 if (recommended_min > min_free_kbytes)
133 min_free_kbytes = recommended_min;
134 setup_per_zone_wmarks();
135 return 0;
136 }
137 late_initcall(set_recommended_min_free_kbytes);
138
139 static int start_khugepaged(void)
140 {
141 int err = 0;
142 if (khugepaged_enabled()) {
143 if (!khugepaged_thread)
144 khugepaged_thread = kthread_run(khugepaged, NULL,
145 "khugepaged");
146 if (unlikely(IS_ERR(khugepaged_thread))) {
147 printk(KERN_ERR
148 "khugepaged: kthread_run(khugepaged) failed\n");
149 err = PTR_ERR(khugepaged_thread);
150 khugepaged_thread = NULL;
151 }
152
153 if (!list_empty(&khugepaged_scan.mm_head))
154 wake_up_interruptible(&khugepaged_wait);
155
156 set_recommended_min_free_kbytes();
157 } else if (khugepaged_thread) {
158 kthread_stop(khugepaged_thread);
159 khugepaged_thread = NULL;
160 }
161
162 return err;
163 }
164
165 static atomic_t huge_zero_refcount;
166 static struct page *huge_zero_page __read_mostly;
167
168 static inline bool is_huge_zero_page(struct page *page)
169 {
170 return ACCESS_ONCE(huge_zero_page) == page;
171 }
172
173 static inline bool is_huge_zero_pmd(pmd_t pmd)
174 {
175 return is_huge_zero_page(pmd_page(pmd));
176 }
177
178 static struct page *get_huge_zero_page(void)
179 {
180 struct page *zero_page;
181 retry:
182 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
183 return ACCESS_ONCE(huge_zero_page);
184
185 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
186 HPAGE_PMD_ORDER);
187 if (!zero_page) {
188 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
189 return NULL;
190 }
191 count_vm_event(THP_ZERO_PAGE_ALLOC);
192 preempt_disable();
193 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
194 preempt_enable();
195 __free_page(zero_page);
196 goto retry;
197 }
198
199 /* We take additional reference here. It will be put back by shrinker */
200 atomic_set(&huge_zero_refcount, 2);
201 preempt_enable();
202 return ACCESS_ONCE(huge_zero_page);
203 }
204
205 static void put_huge_zero_page(void)
206 {
207 /*
208 * Counter should never go to zero here. Only shrinker can put
209 * last reference.
210 */
211 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
212 }
213
214 static int shrink_huge_zero_page(struct shrinker *shrink,
215 struct shrink_control *sc)
216 {
217 if (!sc->nr_to_scan)
218 /* we can free zero page only if last reference remains */
219 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
220
221 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
222 struct page *zero_page = xchg(&huge_zero_page, NULL);
223 BUG_ON(zero_page == NULL);
224 __free_page(zero_page);
225 }
226
227 return 0;
228 }
229
230 static struct shrinker huge_zero_page_shrinker = {
231 .shrink = shrink_huge_zero_page,
232 .seeks = DEFAULT_SEEKS,
233 };
234
235 #ifdef CONFIG_SYSFS
236
237 static ssize_t double_flag_show(struct kobject *kobj,
238 struct kobj_attribute *attr, char *buf,
239 enum transparent_hugepage_flag enabled,
240 enum transparent_hugepage_flag req_madv)
241 {
242 if (test_bit(enabled, &transparent_hugepage_flags)) {
243 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
244 return sprintf(buf, "[always] madvise never\n");
245 } else if (test_bit(req_madv, &transparent_hugepage_flags))
246 return sprintf(buf, "always [madvise] never\n");
247 else
248 return sprintf(buf, "always madvise [never]\n");
249 }
250 static ssize_t double_flag_store(struct kobject *kobj,
251 struct kobj_attribute *attr,
252 const char *buf, size_t count,
253 enum transparent_hugepage_flag enabled,
254 enum transparent_hugepage_flag req_madv)
255 {
256 if (!memcmp("always", buf,
257 min(sizeof("always")-1, count))) {
258 set_bit(enabled, &transparent_hugepage_flags);
259 clear_bit(req_madv, &transparent_hugepage_flags);
260 } else if (!memcmp("madvise", buf,
261 min(sizeof("madvise")-1, count))) {
262 clear_bit(enabled, &transparent_hugepage_flags);
263 set_bit(req_madv, &transparent_hugepage_flags);
264 } else if (!memcmp("never", buf,
265 min(sizeof("never")-1, count))) {
266 clear_bit(enabled, &transparent_hugepage_flags);
267 clear_bit(req_madv, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
270
271 return count;
272 }
273
274 static ssize_t enabled_show(struct kobject *kobj,
275 struct kobj_attribute *attr, char *buf)
276 {
277 return double_flag_show(kobj, attr, buf,
278 TRANSPARENT_HUGEPAGE_FLAG,
279 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
280 }
281 static ssize_t enabled_store(struct kobject *kobj,
282 struct kobj_attribute *attr,
283 const char *buf, size_t count)
284 {
285 ssize_t ret;
286
287 ret = double_flag_store(kobj, attr, buf, count,
288 TRANSPARENT_HUGEPAGE_FLAG,
289 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
290
291 if (ret > 0) {
292 int err;
293
294 mutex_lock(&khugepaged_mutex);
295 err = start_khugepaged();
296 mutex_unlock(&khugepaged_mutex);
297
298 if (err)
299 ret = err;
300 }
301
302 return ret;
303 }
304 static struct kobj_attribute enabled_attr =
305 __ATTR(enabled, 0644, enabled_show, enabled_store);
306
307 static ssize_t single_flag_show(struct kobject *kobj,
308 struct kobj_attribute *attr, char *buf,
309 enum transparent_hugepage_flag flag)
310 {
311 return sprintf(buf, "%d\n",
312 !!test_bit(flag, &transparent_hugepage_flags));
313 }
314
315 static ssize_t single_flag_store(struct kobject *kobj,
316 struct kobj_attribute *attr,
317 const char *buf, size_t count,
318 enum transparent_hugepage_flag flag)
319 {
320 unsigned long value;
321 int ret;
322
323 ret = kstrtoul(buf, 10, &value);
324 if (ret < 0)
325 return ret;
326 if (value > 1)
327 return -EINVAL;
328
329 if (value)
330 set_bit(flag, &transparent_hugepage_flags);
331 else
332 clear_bit(flag, &transparent_hugepage_flags);
333
334 return count;
335 }
336
337 /*
338 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
339 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
340 * memory just to allocate one more hugepage.
341 */
342 static ssize_t defrag_show(struct kobject *kobj,
343 struct kobj_attribute *attr, char *buf)
344 {
345 return double_flag_show(kobj, attr, buf,
346 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
347 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
348 }
349 static ssize_t defrag_store(struct kobject *kobj,
350 struct kobj_attribute *attr,
351 const char *buf, size_t count)
352 {
353 return double_flag_store(kobj, attr, buf, count,
354 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
355 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
356 }
357 static struct kobj_attribute defrag_attr =
358 __ATTR(defrag, 0644, defrag_show, defrag_store);
359
360 static ssize_t use_zero_page_show(struct kobject *kobj,
361 struct kobj_attribute *attr, char *buf)
362 {
363 return single_flag_show(kobj, attr, buf,
364 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
365 }
366 static ssize_t use_zero_page_store(struct kobject *kobj,
367 struct kobj_attribute *attr, const char *buf, size_t count)
368 {
369 return single_flag_store(kobj, attr, buf, count,
370 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
371 }
372 static struct kobj_attribute use_zero_page_attr =
373 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
374 #ifdef CONFIG_DEBUG_VM
375 static ssize_t debug_cow_show(struct kobject *kobj,
376 struct kobj_attribute *attr, char *buf)
377 {
378 return single_flag_show(kobj, attr, buf,
379 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
380 }
381 static ssize_t debug_cow_store(struct kobject *kobj,
382 struct kobj_attribute *attr,
383 const char *buf, size_t count)
384 {
385 return single_flag_store(kobj, attr, buf, count,
386 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
387 }
388 static struct kobj_attribute debug_cow_attr =
389 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
390 #endif /* CONFIG_DEBUG_VM */
391
392 static struct attribute *hugepage_attr[] = {
393 &enabled_attr.attr,
394 &defrag_attr.attr,
395 &use_zero_page_attr.attr,
396 #ifdef CONFIG_DEBUG_VM
397 &debug_cow_attr.attr,
398 #endif
399 NULL,
400 };
401
402 static struct attribute_group hugepage_attr_group = {
403 .attrs = hugepage_attr,
404 };
405
406 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
407 struct kobj_attribute *attr,
408 char *buf)
409 {
410 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
411 }
412
413 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
414 struct kobj_attribute *attr,
415 const char *buf, size_t count)
416 {
417 unsigned long msecs;
418 int err;
419
420 err = strict_strtoul(buf, 10, &msecs);
421 if (err || msecs > UINT_MAX)
422 return -EINVAL;
423
424 khugepaged_scan_sleep_millisecs = msecs;
425 wake_up_interruptible(&khugepaged_wait);
426
427 return count;
428 }
429 static struct kobj_attribute scan_sleep_millisecs_attr =
430 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
431 scan_sleep_millisecs_store);
432
433 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
434 struct kobj_attribute *attr,
435 char *buf)
436 {
437 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
438 }
439
440 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
441 struct kobj_attribute *attr,
442 const char *buf, size_t count)
443 {
444 unsigned long msecs;
445 int err;
446
447 err = strict_strtoul(buf, 10, &msecs);
448 if (err || msecs > UINT_MAX)
449 return -EINVAL;
450
451 khugepaged_alloc_sleep_millisecs = msecs;
452 wake_up_interruptible(&khugepaged_wait);
453
454 return count;
455 }
456 static struct kobj_attribute alloc_sleep_millisecs_attr =
457 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
458 alloc_sleep_millisecs_store);
459
460 static ssize_t pages_to_scan_show(struct kobject *kobj,
461 struct kobj_attribute *attr,
462 char *buf)
463 {
464 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
465 }
466 static ssize_t pages_to_scan_store(struct kobject *kobj,
467 struct kobj_attribute *attr,
468 const char *buf, size_t count)
469 {
470 int err;
471 unsigned long pages;
472
473 err = strict_strtoul(buf, 10, &pages);
474 if (err || !pages || pages > UINT_MAX)
475 return -EINVAL;
476
477 khugepaged_pages_to_scan = pages;
478
479 return count;
480 }
481 static struct kobj_attribute pages_to_scan_attr =
482 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
483 pages_to_scan_store);
484
485 static ssize_t pages_collapsed_show(struct kobject *kobj,
486 struct kobj_attribute *attr,
487 char *buf)
488 {
489 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
490 }
491 static struct kobj_attribute pages_collapsed_attr =
492 __ATTR_RO(pages_collapsed);
493
494 static ssize_t full_scans_show(struct kobject *kobj,
495 struct kobj_attribute *attr,
496 char *buf)
497 {
498 return sprintf(buf, "%u\n", khugepaged_full_scans);
499 }
500 static struct kobj_attribute full_scans_attr =
501 __ATTR_RO(full_scans);
502
503 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
504 struct kobj_attribute *attr, char *buf)
505 {
506 return single_flag_show(kobj, attr, buf,
507 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
508 }
509 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
510 struct kobj_attribute *attr,
511 const char *buf, size_t count)
512 {
513 return single_flag_store(kobj, attr, buf, count,
514 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
515 }
516 static struct kobj_attribute khugepaged_defrag_attr =
517 __ATTR(defrag, 0644, khugepaged_defrag_show,
518 khugepaged_defrag_store);
519
520 /*
521 * max_ptes_none controls if khugepaged should collapse hugepages over
522 * any unmapped ptes in turn potentially increasing the memory
523 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
524 * reduce the available free memory in the system as it
525 * runs. Increasing max_ptes_none will instead potentially reduce the
526 * free memory in the system during the khugepaged scan.
527 */
528 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
529 struct kobj_attribute *attr,
530 char *buf)
531 {
532 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
533 }
534 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
535 struct kobj_attribute *attr,
536 const char *buf, size_t count)
537 {
538 int err;
539 unsigned long max_ptes_none;
540
541 err = strict_strtoul(buf, 10, &max_ptes_none);
542 if (err || max_ptes_none > HPAGE_PMD_NR-1)
543 return -EINVAL;
544
545 khugepaged_max_ptes_none = max_ptes_none;
546
547 return count;
548 }
549 static struct kobj_attribute khugepaged_max_ptes_none_attr =
550 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
551 khugepaged_max_ptes_none_store);
552
553 static struct attribute *khugepaged_attr[] = {
554 &khugepaged_defrag_attr.attr,
555 &khugepaged_max_ptes_none_attr.attr,
556 &pages_to_scan_attr.attr,
557 &pages_collapsed_attr.attr,
558 &full_scans_attr.attr,
559 &scan_sleep_millisecs_attr.attr,
560 &alloc_sleep_millisecs_attr.attr,
561 NULL,
562 };
563
564 static struct attribute_group khugepaged_attr_group = {
565 .attrs = khugepaged_attr,
566 .name = "khugepaged",
567 };
568
569 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
570 {
571 int err;
572
573 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
574 if (unlikely(!*hugepage_kobj)) {
575 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
576 return -ENOMEM;
577 }
578
579 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
580 if (err) {
581 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
582 goto delete_obj;
583 }
584
585 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
586 if (err) {
587 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
588 goto remove_hp_group;
589 }
590
591 return 0;
592
593 remove_hp_group:
594 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
595 delete_obj:
596 kobject_put(*hugepage_kobj);
597 return err;
598 }
599
600 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
601 {
602 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
603 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
604 kobject_put(hugepage_kobj);
605 }
606 #else
607 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
608 {
609 return 0;
610 }
611
612 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
613 {
614 }
615 #endif /* CONFIG_SYSFS */
616
617 static int __init hugepage_init(void)
618 {
619 int err;
620 struct kobject *hugepage_kobj;
621
622 if (!has_transparent_hugepage()) {
623 transparent_hugepage_flags = 0;
624 return -EINVAL;
625 }
626
627 err = hugepage_init_sysfs(&hugepage_kobj);
628 if (err)
629 return err;
630
631 err = khugepaged_slab_init();
632 if (err)
633 goto out;
634
635 register_shrinker(&huge_zero_page_shrinker);
636
637 /*
638 * By default disable transparent hugepages on smaller systems,
639 * where the extra memory used could hurt more than TLB overhead
640 * is likely to save. The admin can still enable it through /sys.
641 */
642 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
643 transparent_hugepage_flags = 0;
644
645 start_khugepaged();
646
647 return 0;
648 out:
649 hugepage_exit_sysfs(hugepage_kobj);
650 return err;
651 }
652 module_init(hugepage_init)
653
654 static int __init setup_transparent_hugepage(char *str)
655 {
656 int ret = 0;
657 if (!str)
658 goto out;
659 if (!strcmp(str, "always")) {
660 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
661 &transparent_hugepage_flags);
662 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
663 &transparent_hugepage_flags);
664 ret = 1;
665 } else if (!strcmp(str, "madvise")) {
666 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
667 &transparent_hugepage_flags);
668 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
669 &transparent_hugepage_flags);
670 ret = 1;
671 } else if (!strcmp(str, "never")) {
672 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 &transparent_hugepage_flags);
674 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 &transparent_hugepage_flags);
676 ret = 1;
677 }
678 out:
679 if (!ret)
680 printk(KERN_WARNING
681 "transparent_hugepage= cannot parse, ignored\n");
682 return ret;
683 }
684 __setup("transparent_hugepage=", setup_transparent_hugepage);
685
686 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
687 {
688 if (likely(vma->vm_flags & VM_WRITE))
689 pmd = pmd_mkwrite(pmd);
690 return pmd;
691 }
692
693 static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
694 {
695 pmd_t entry;
696 entry = mk_pmd(page, vma->vm_page_prot);
697 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
698 entry = pmd_mkhuge(entry);
699 return entry;
700 }
701
702 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
703 struct vm_area_struct *vma,
704 unsigned long haddr, pmd_t *pmd,
705 struct page *page)
706 {
707 pgtable_t pgtable;
708
709 VM_BUG_ON(!PageCompound(page));
710 pgtable = pte_alloc_one(mm, haddr);
711 if (unlikely(!pgtable))
712 return VM_FAULT_OOM;
713
714 clear_huge_page(page, haddr, HPAGE_PMD_NR);
715 /*
716 * The memory barrier inside __SetPageUptodate makes sure that
717 * clear_huge_page writes become visible before the set_pmd_at()
718 * write.
719 */
720 __SetPageUptodate(page);
721
722 spin_lock(&mm->page_table_lock);
723 if (unlikely(!pmd_none(*pmd))) {
724 spin_unlock(&mm->page_table_lock);
725 mem_cgroup_uncharge_page(page);
726 put_page(page);
727 pte_free(mm, pgtable);
728 } else {
729 pmd_t entry;
730 entry = mk_huge_pmd(page, vma);
731 page_add_new_anon_rmap(page, vma, haddr);
732 set_pmd_at(mm, haddr, pmd, entry);
733 pgtable_trans_huge_deposit(mm, pgtable);
734 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
735 mm->nr_ptes++;
736 spin_unlock(&mm->page_table_lock);
737 }
738
739 return 0;
740 }
741
742 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
743 {
744 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
745 }
746
747 static inline struct page *alloc_hugepage_vma(int defrag,
748 struct vm_area_struct *vma,
749 unsigned long haddr, int nd,
750 gfp_t extra_gfp)
751 {
752 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
753 HPAGE_PMD_ORDER, vma, haddr, nd);
754 }
755
756 #ifndef CONFIG_NUMA
757 static inline struct page *alloc_hugepage(int defrag)
758 {
759 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
760 HPAGE_PMD_ORDER);
761 }
762 #endif
763
764 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
765 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
766 struct page *zero_page)
767 {
768 pmd_t entry;
769 if (!pmd_none(*pmd))
770 return false;
771 entry = mk_pmd(zero_page, vma->vm_page_prot);
772 entry = pmd_wrprotect(entry);
773 entry = pmd_mkhuge(entry);
774 set_pmd_at(mm, haddr, pmd, entry);
775 pgtable_trans_huge_deposit(mm, pgtable);
776 mm->nr_ptes++;
777 return true;
778 }
779
780 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
781 unsigned long address, pmd_t *pmd,
782 unsigned int flags)
783 {
784 struct page *page;
785 unsigned long haddr = address & HPAGE_PMD_MASK;
786 pte_t *pte;
787
788 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
789 if (unlikely(anon_vma_prepare(vma)))
790 return VM_FAULT_OOM;
791 if (unlikely(khugepaged_enter(vma)))
792 return VM_FAULT_OOM;
793 if (!(flags & FAULT_FLAG_WRITE) &&
794 transparent_hugepage_use_zero_page()) {
795 pgtable_t pgtable;
796 struct page *zero_page;
797 bool set;
798 pgtable = pte_alloc_one(mm, haddr);
799 if (unlikely(!pgtable))
800 return VM_FAULT_OOM;
801 zero_page = get_huge_zero_page();
802 if (unlikely(!zero_page)) {
803 pte_free(mm, pgtable);
804 count_vm_event(THP_FAULT_FALLBACK);
805 goto out;
806 }
807 spin_lock(&mm->page_table_lock);
808 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
809 zero_page);
810 spin_unlock(&mm->page_table_lock);
811 if (!set) {
812 pte_free(mm, pgtable);
813 put_huge_zero_page();
814 }
815 return 0;
816 }
817 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
818 vma, haddr, numa_node_id(), 0);
819 if (unlikely(!page)) {
820 count_vm_event(THP_FAULT_FALLBACK);
821 goto out;
822 }
823 count_vm_event(THP_FAULT_ALLOC);
824 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
825 put_page(page);
826 goto out;
827 }
828 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
829 page))) {
830 mem_cgroup_uncharge_page(page);
831 put_page(page);
832 goto out;
833 }
834
835 return 0;
836 }
837 out:
838 /*
839 * Use __pte_alloc instead of pte_alloc_map, because we can't
840 * run pte_offset_map on the pmd, if an huge pmd could
841 * materialize from under us from a different thread.
842 */
843 if (unlikely(pmd_none(*pmd)) &&
844 unlikely(__pte_alloc(mm, vma, pmd, address)))
845 return VM_FAULT_OOM;
846 /* if an huge pmd materialized from under us just retry later */
847 if (unlikely(pmd_trans_huge(*pmd)))
848 return 0;
849 /*
850 * A regular pmd is established and it can't morph into a huge pmd
851 * from under us anymore at this point because we hold the mmap_sem
852 * read mode and khugepaged takes it in write mode. So now it's
853 * safe to run pte_offset_map().
854 */
855 pte = pte_offset_map(pmd, address);
856 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
857 }
858
859 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
860 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
861 struct vm_area_struct *vma)
862 {
863 struct page *src_page;
864 pmd_t pmd;
865 pgtable_t pgtable;
866 int ret;
867
868 ret = -ENOMEM;
869 pgtable = pte_alloc_one(dst_mm, addr);
870 if (unlikely(!pgtable))
871 goto out;
872
873 spin_lock(&dst_mm->page_table_lock);
874 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
875
876 ret = -EAGAIN;
877 pmd = *src_pmd;
878 if (unlikely(!pmd_trans_huge(pmd))) {
879 pte_free(dst_mm, pgtable);
880 goto out_unlock;
881 }
882 /*
883 * mm->page_table_lock is enough to be sure that huge zero pmd is not
884 * under splitting since we don't split the page itself, only pmd to
885 * a page table.
886 */
887 if (is_huge_zero_pmd(pmd)) {
888 struct page *zero_page;
889 bool set;
890 /*
891 * get_huge_zero_page() will never allocate a new page here,
892 * since we already have a zero page to copy. It just takes a
893 * reference.
894 */
895 zero_page = get_huge_zero_page();
896 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
897 zero_page);
898 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
899 ret = 0;
900 goto out_unlock;
901 }
902 if (unlikely(pmd_trans_splitting(pmd))) {
903 /* split huge page running from under us */
904 spin_unlock(&src_mm->page_table_lock);
905 spin_unlock(&dst_mm->page_table_lock);
906 pte_free(dst_mm, pgtable);
907
908 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
909 goto out;
910 }
911 src_page = pmd_page(pmd);
912 VM_BUG_ON(!PageHead(src_page));
913 get_page(src_page);
914 page_dup_rmap(src_page);
915 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
916
917 pmdp_set_wrprotect(src_mm, addr, src_pmd);
918 pmd = pmd_mkold(pmd_wrprotect(pmd));
919 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
920 pgtable_trans_huge_deposit(dst_mm, pgtable);
921 dst_mm->nr_ptes++;
922
923 ret = 0;
924 out_unlock:
925 spin_unlock(&src_mm->page_table_lock);
926 spin_unlock(&dst_mm->page_table_lock);
927 out:
928 return ret;
929 }
930
931 void huge_pmd_set_accessed(struct mm_struct *mm,
932 struct vm_area_struct *vma,
933 unsigned long address,
934 pmd_t *pmd, pmd_t orig_pmd,
935 int dirty)
936 {
937 pmd_t entry;
938 unsigned long haddr;
939
940 spin_lock(&mm->page_table_lock);
941 if (unlikely(!pmd_same(*pmd, orig_pmd)))
942 goto unlock;
943
944 entry = pmd_mkyoung(orig_pmd);
945 haddr = address & HPAGE_PMD_MASK;
946 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
947 update_mmu_cache_pmd(vma, address, pmd);
948
949 unlock:
950 spin_unlock(&mm->page_table_lock);
951 }
952
953 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
954 struct vm_area_struct *vma, unsigned long address,
955 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
956 {
957 pgtable_t pgtable;
958 pmd_t _pmd;
959 struct page *page;
960 int i, ret = 0;
961 unsigned long mmun_start; /* For mmu_notifiers */
962 unsigned long mmun_end; /* For mmu_notifiers */
963
964 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
965 if (!page) {
966 ret |= VM_FAULT_OOM;
967 goto out;
968 }
969
970 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
971 put_page(page);
972 ret |= VM_FAULT_OOM;
973 goto out;
974 }
975
976 clear_user_highpage(page, address);
977 __SetPageUptodate(page);
978
979 mmun_start = haddr;
980 mmun_end = haddr + HPAGE_PMD_SIZE;
981 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
982
983 spin_lock(&mm->page_table_lock);
984 if (unlikely(!pmd_same(*pmd, orig_pmd)))
985 goto out_free_page;
986
987 pmdp_clear_flush(vma, haddr, pmd);
988 /* leave pmd empty until pte is filled */
989
990 pgtable = pgtable_trans_huge_withdraw(mm);
991 pmd_populate(mm, &_pmd, pgtable);
992
993 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
994 pte_t *pte, entry;
995 if (haddr == (address & PAGE_MASK)) {
996 entry = mk_pte(page, vma->vm_page_prot);
997 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
998 page_add_new_anon_rmap(page, vma, haddr);
999 } else {
1000 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1001 entry = pte_mkspecial(entry);
1002 }
1003 pte = pte_offset_map(&_pmd, haddr);
1004 VM_BUG_ON(!pte_none(*pte));
1005 set_pte_at(mm, haddr, pte, entry);
1006 pte_unmap(pte);
1007 }
1008 smp_wmb(); /* make pte visible before pmd */
1009 pmd_populate(mm, pmd, pgtable);
1010 spin_unlock(&mm->page_table_lock);
1011 put_huge_zero_page();
1012 inc_mm_counter(mm, MM_ANONPAGES);
1013
1014 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1015
1016 ret |= VM_FAULT_WRITE;
1017 out:
1018 return ret;
1019 out_free_page:
1020 spin_unlock(&mm->page_table_lock);
1021 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1022 mem_cgroup_uncharge_page(page);
1023 put_page(page);
1024 goto out;
1025 }
1026
1027 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1028 struct vm_area_struct *vma,
1029 unsigned long address,
1030 pmd_t *pmd, pmd_t orig_pmd,
1031 struct page *page,
1032 unsigned long haddr)
1033 {
1034 pgtable_t pgtable;
1035 pmd_t _pmd;
1036 int ret = 0, i;
1037 struct page **pages;
1038 unsigned long mmun_start; /* For mmu_notifiers */
1039 unsigned long mmun_end; /* For mmu_notifiers */
1040
1041 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1042 GFP_KERNEL);
1043 if (unlikely(!pages)) {
1044 ret |= VM_FAULT_OOM;
1045 goto out;
1046 }
1047
1048 for (i = 0; i < HPAGE_PMD_NR; i++) {
1049 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1050 __GFP_OTHER_NODE,
1051 vma, address, page_to_nid(page));
1052 if (unlikely(!pages[i] ||
1053 mem_cgroup_newpage_charge(pages[i], mm,
1054 GFP_KERNEL))) {
1055 if (pages[i])
1056 put_page(pages[i]);
1057 mem_cgroup_uncharge_start();
1058 while (--i >= 0) {
1059 mem_cgroup_uncharge_page(pages[i]);
1060 put_page(pages[i]);
1061 }
1062 mem_cgroup_uncharge_end();
1063 kfree(pages);
1064 ret |= VM_FAULT_OOM;
1065 goto out;
1066 }
1067 }
1068
1069 for (i = 0; i < HPAGE_PMD_NR; i++) {
1070 copy_user_highpage(pages[i], page + i,
1071 haddr + PAGE_SIZE * i, vma);
1072 __SetPageUptodate(pages[i]);
1073 cond_resched();
1074 }
1075
1076 mmun_start = haddr;
1077 mmun_end = haddr + HPAGE_PMD_SIZE;
1078 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1079
1080 spin_lock(&mm->page_table_lock);
1081 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1082 goto out_free_pages;
1083 VM_BUG_ON(!PageHead(page));
1084
1085 pmdp_clear_flush(vma, haddr, pmd);
1086 /* leave pmd empty until pte is filled */
1087
1088 pgtable = pgtable_trans_huge_withdraw(mm);
1089 pmd_populate(mm, &_pmd, pgtable);
1090
1091 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1092 pte_t *pte, entry;
1093 entry = mk_pte(pages[i], vma->vm_page_prot);
1094 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1095 page_add_new_anon_rmap(pages[i], vma, haddr);
1096 pte = pte_offset_map(&_pmd, haddr);
1097 VM_BUG_ON(!pte_none(*pte));
1098 set_pte_at(mm, haddr, pte, entry);
1099 pte_unmap(pte);
1100 }
1101 kfree(pages);
1102
1103 smp_wmb(); /* make pte visible before pmd */
1104 pmd_populate(mm, pmd, pgtable);
1105 page_remove_rmap(page);
1106 spin_unlock(&mm->page_table_lock);
1107
1108 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1109
1110 ret |= VM_FAULT_WRITE;
1111 put_page(page);
1112
1113 out:
1114 return ret;
1115
1116 out_free_pages:
1117 spin_unlock(&mm->page_table_lock);
1118 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1119 mem_cgroup_uncharge_start();
1120 for (i = 0; i < HPAGE_PMD_NR; i++) {
1121 mem_cgroup_uncharge_page(pages[i]);
1122 put_page(pages[i]);
1123 }
1124 mem_cgroup_uncharge_end();
1125 kfree(pages);
1126 goto out;
1127 }
1128
1129 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1130 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1131 {
1132 int ret = 0;
1133 struct page *page = NULL, *new_page;
1134 unsigned long haddr;
1135 unsigned long mmun_start; /* For mmu_notifiers */
1136 unsigned long mmun_end; /* For mmu_notifiers */
1137
1138 VM_BUG_ON(!vma->anon_vma);
1139 haddr = address & HPAGE_PMD_MASK;
1140 if (is_huge_zero_pmd(orig_pmd))
1141 goto alloc;
1142 spin_lock(&mm->page_table_lock);
1143 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1144 goto out_unlock;
1145
1146 page = pmd_page(orig_pmd);
1147 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1148 if (page_mapcount(page) == 1) {
1149 pmd_t entry;
1150 entry = pmd_mkyoung(orig_pmd);
1151 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1152 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1153 update_mmu_cache_pmd(vma, address, pmd);
1154 ret |= VM_FAULT_WRITE;
1155 goto out_unlock;
1156 }
1157 get_page(page);
1158 spin_unlock(&mm->page_table_lock);
1159 alloc:
1160 if (transparent_hugepage_enabled(vma) &&
1161 !transparent_hugepage_debug_cow())
1162 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1163 vma, haddr, numa_node_id(), 0);
1164 else
1165 new_page = NULL;
1166
1167 if (unlikely(!new_page)) {
1168 count_vm_event(THP_FAULT_FALLBACK);
1169 if (!page) {
1170 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1171 address, pmd, orig_pmd, haddr);
1172 } else {
1173 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1174 pmd, orig_pmd, page, haddr);
1175 if (ret & VM_FAULT_OOM)
1176 split_huge_page(page);
1177 put_page(page);
1178 }
1179 goto out;
1180 }
1181 count_vm_event(THP_FAULT_ALLOC);
1182
1183 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1184 put_page(new_page);
1185 if (page) {
1186 split_huge_page(page);
1187 put_page(page);
1188 }
1189 ret |= VM_FAULT_OOM;
1190 goto out;
1191 }
1192
1193 if (!page)
1194 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1195 else
1196 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1197 __SetPageUptodate(new_page);
1198
1199 mmun_start = haddr;
1200 mmun_end = haddr + HPAGE_PMD_SIZE;
1201 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1202
1203 spin_lock(&mm->page_table_lock);
1204 if (page)
1205 put_page(page);
1206 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1207 spin_unlock(&mm->page_table_lock);
1208 mem_cgroup_uncharge_page(new_page);
1209 put_page(new_page);
1210 goto out_mn;
1211 } else {
1212 pmd_t entry;
1213 entry = mk_huge_pmd(new_page, vma);
1214 pmdp_clear_flush(vma, haddr, pmd);
1215 page_add_new_anon_rmap(new_page, vma, haddr);
1216 set_pmd_at(mm, haddr, pmd, entry);
1217 update_mmu_cache_pmd(vma, address, pmd);
1218 if (!page) {
1219 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1220 put_huge_zero_page();
1221 } else {
1222 VM_BUG_ON(!PageHead(page));
1223 page_remove_rmap(page);
1224 put_page(page);
1225 }
1226 ret |= VM_FAULT_WRITE;
1227 }
1228 spin_unlock(&mm->page_table_lock);
1229 out_mn:
1230 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1231 out:
1232 return ret;
1233 out_unlock:
1234 spin_unlock(&mm->page_table_lock);
1235 return ret;
1236 }
1237
1238 /*
1239 * foll_force can write to even unwritable pmd's, but only
1240 * after we've gone through a cow cycle and they are dirty.
1241 */
1242 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1243 unsigned int flags)
1244 {
1245 return pmd_write(pmd) ||
1246 ((flags & FOLL_FORCE) && (flags & FOLL_COW) &&
1247 page && PageAnon(page));
1248 }
1249
1250 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1251 unsigned long addr,
1252 pmd_t *pmd,
1253 unsigned int flags)
1254 {
1255 struct mm_struct *mm = vma->vm_mm;
1256 struct page *page = NULL;
1257
1258 assert_spin_locked(&mm->page_table_lock);
1259
1260 /* Avoid dumping huge zero page */
1261 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1262 return ERR_PTR(-EFAULT);
1263
1264 page = pmd_page(*pmd);
1265 VM_BUG_ON(!PageHead(page));
1266
1267 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, page, flags))
1268 return NULL;
1269
1270 if (flags & FOLL_TOUCH) {
1271 pmd_t _pmd;
1272 /*
1273 * We should set the dirty bit only for FOLL_WRITE but
1274 * for now the dirty bit in the pmd is meaningless.
1275 * And if the dirty bit will become meaningful and
1276 * we'll only set it with FOLL_WRITE, an atomic
1277 * set_bit will be required on the pmd to set the
1278 * young bit, instead of the current set_pmd_at.
1279 */
1280 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1281 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1282 }
1283 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1284 if (page->mapping && trylock_page(page)) {
1285 lru_add_drain();
1286 if (page->mapping)
1287 mlock_vma_page(page);
1288 unlock_page(page);
1289 }
1290 }
1291 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1292 VM_BUG_ON(!PageCompound(page));
1293 if (flags & FOLL_GET)
1294 get_page_foll(page);
1295
1296 out:
1297 return page;
1298 }
1299
1300 /* NUMA hinting page fault entry point for trans huge pmds */
1301 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1302 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1303 {
1304 struct anon_vma *anon_vma = NULL;
1305 struct page *page;
1306 unsigned long haddr = addr & HPAGE_PMD_MASK;
1307 int page_nid = -1, this_nid = numa_node_id();
1308 int target_nid;
1309 bool page_locked;
1310 bool migrated = false;
1311
1312 spin_lock(&mm->page_table_lock);
1313 if (unlikely(!pmd_same(pmd, *pmdp)))
1314 goto out_unlock;
1315
1316 page = pmd_page(pmd);
1317 page_nid = page_to_nid(page);
1318 count_vm_numa_event(NUMA_HINT_FAULTS);
1319 if (page_nid == this_nid)
1320 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1321
1322 /*
1323 * Acquire the page lock to serialise THP migrations but avoid dropping
1324 * page_table_lock if at all possible
1325 */
1326 page_locked = trylock_page(page);
1327 target_nid = mpol_misplaced(page, vma, haddr);
1328 if (target_nid == -1) {
1329 /* If the page was locked, there are no parallel migrations */
1330 if (page_locked)
1331 goto clear_pmdnuma;
1332
1333 /*
1334 * Otherwise wait for potential migrations and retry. We do
1335 * relock and check_same as the page may no longer be mapped.
1336 * As the fault is being retried, do not account for it.
1337 */
1338 spin_unlock(&mm->page_table_lock);
1339 wait_on_page_locked(page);
1340 page_nid = -1;
1341 goto out;
1342 }
1343
1344 /* Page is misplaced, serialise migrations and parallel THP splits */
1345 get_page(page);
1346 spin_unlock(&mm->page_table_lock);
1347 if (!page_locked)
1348 lock_page(page);
1349 anon_vma = page_lock_anon_vma_read(page);
1350
1351 /* Confirm the PTE did not while locked */
1352 spin_lock(&mm->page_table_lock);
1353 if (unlikely(!pmd_same(pmd, *pmdp))) {
1354 unlock_page(page);
1355 put_page(page);
1356 page_nid = -1;
1357 goto out_unlock;
1358 }
1359
1360 /* Bail if we fail to protect against THP splits for any reason */
1361 if (unlikely(!anon_vma)) {
1362 put_page(page);
1363 page_nid = -1;
1364 goto clear_pmdnuma;
1365 }
1366
1367 /*
1368 * The page_table_lock above provides a memory barrier
1369 * with change_protection_range.
1370 */
1371 if (mm_tlb_flush_pending(mm))
1372 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1373
1374 /*
1375 * Migrate the THP to the requested node, returns with page unlocked
1376 * and pmd_numa cleared.
1377 */
1378 spin_unlock(&mm->page_table_lock);
1379 migrated = migrate_misplaced_transhuge_page(mm, vma,
1380 pmdp, pmd, addr, page, target_nid);
1381 if (migrated)
1382 page_nid = target_nid;
1383
1384 goto out;
1385 clear_pmdnuma:
1386 BUG_ON(!PageLocked(page));
1387 pmd = pmd_mknonnuma(pmd);
1388 set_pmd_at(mm, haddr, pmdp, pmd);
1389 VM_BUG_ON(pmd_numa(*pmdp));
1390 update_mmu_cache_pmd(vma, addr, pmdp);
1391 unlock_page(page);
1392 out_unlock:
1393 spin_unlock(&mm->page_table_lock);
1394
1395 out:
1396 if (anon_vma)
1397 page_unlock_anon_vma_read(anon_vma);
1398
1399 if (page_nid != -1)
1400 task_numa_fault(page_nid, HPAGE_PMD_NR, migrated);
1401
1402 return 0;
1403 }
1404
1405 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1406 pmd_t *pmd, unsigned long addr)
1407 {
1408 int ret = 0;
1409
1410 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1411 struct page *page;
1412 pgtable_t pgtable;
1413 pmd_t orig_pmd;
1414 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
1415 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1416 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1417 if (is_huge_zero_pmd(orig_pmd)) {
1418 tlb->mm->nr_ptes--;
1419 spin_unlock(&tlb->mm->page_table_lock);
1420 put_huge_zero_page();
1421 } else {
1422 page = pmd_page(orig_pmd);
1423 page_remove_rmap(page);
1424 VM_BUG_ON(page_mapcount(page) < 0);
1425 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1426 VM_BUG_ON(!PageHead(page));
1427 tlb->mm->nr_ptes--;
1428 spin_unlock(&tlb->mm->page_table_lock);
1429 tlb_remove_page(tlb, page);
1430 }
1431 pte_free(tlb->mm, pgtable);
1432 ret = 1;
1433 }
1434 return ret;
1435 }
1436
1437 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1438 unsigned long addr, unsigned long end,
1439 unsigned char *vec)
1440 {
1441 int ret = 0;
1442
1443 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1444 /*
1445 * All logical pages in the range are present
1446 * if backed by a huge page.
1447 */
1448 spin_unlock(&vma->vm_mm->page_table_lock);
1449 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1450 ret = 1;
1451 }
1452
1453 return ret;
1454 }
1455
1456 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1457 unsigned long old_addr,
1458 unsigned long new_addr, unsigned long old_end,
1459 pmd_t *old_pmd, pmd_t *new_pmd)
1460 {
1461 int ret = 0;
1462 pmd_t pmd;
1463
1464 struct mm_struct *mm = vma->vm_mm;
1465
1466 if ((old_addr & ~HPAGE_PMD_MASK) ||
1467 (new_addr & ~HPAGE_PMD_MASK) ||
1468 old_end - old_addr < HPAGE_PMD_SIZE ||
1469 (new_vma->vm_flags & VM_NOHUGEPAGE))
1470 goto out;
1471
1472 /*
1473 * The destination pmd shouldn't be established, free_pgtables()
1474 * should have release it.
1475 */
1476 if (WARN_ON(!pmd_none(*new_pmd))) {
1477 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1478 goto out;
1479 }
1480
1481 ret = __pmd_trans_huge_lock(old_pmd, vma);
1482 if (ret == 1) {
1483 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1484 VM_BUG_ON(!pmd_none(*new_pmd));
1485 set_pmd_at(mm, new_addr, new_pmd, pmd);
1486 spin_unlock(&mm->page_table_lock);
1487 }
1488 out:
1489 return ret;
1490 }
1491
1492 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1493 unsigned long addr, pgprot_t newprot, int prot_numa)
1494 {
1495 struct mm_struct *mm = vma->vm_mm;
1496 int ret = 0;
1497
1498 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1499 pmd_t entry;
1500 entry = pmdp_get_and_clear(mm, addr, pmd);
1501 if (!prot_numa) {
1502 entry = pmd_modify(entry, newprot);
1503 BUG_ON(pmd_write(entry));
1504 } else {
1505 struct page *page = pmd_page(*pmd);
1506
1507 /* only check non-shared pages */
1508 if (page_mapcount(page) == 1 &&
1509 !pmd_numa(*pmd)) {
1510 entry = pmd_mknuma(entry);
1511 }
1512 }
1513 set_pmd_at(mm, addr, pmd, entry);
1514 spin_unlock(&vma->vm_mm->page_table_lock);
1515 ret = 1;
1516 }
1517
1518 return ret;
1519 }
1520
1521 /*
1522 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1523 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1524 *
1525 * Note that if it returns 1, this routine returns without unlocking page
1526 * table locks. So callers must unlock them.
1527 */
1528 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1529 {
1530 spin_lock(&vma->vm_mm->page_table_lock);
1531 if (likely(pmd_trans_huge(*pmd))) {
1532 if (unlikely(pmd_trans_splitting(*pmd))) {
1533 spin_unlock(&vma->vm_mm->page_table_lock);
1534 wait_split_huge_page(vma->anon_vma, pmd);
1535 return -1;
1536 } else {
1537 /* Thp mapped by 'pmd' is stable, so we can
1538 * handle it as it is. */
1539 return 1;
1540 }
1541 }
1542 spin_unlock(&vma->vm_mm->page_table_lock);
1543 return 0;
1544 }
1545
1546 pmd_t *page_check_address_pmd(struct page *page,
1547 struct mm_struct *mm,
1548 unsigned long address,
1549 enum page_check_address_pmd_flag flag)
1550 {
1551 pmd_t *pmd, *ret = NULL;
1552
1553 if (address & ~HPAGE_PMD_MASK)
1554 goto out;
1555
1556 pmd = mm_find_pmd(mm, address);
1557 if (!pmd)
1558 goto out;
1559 if (pmd_none(*pmd))
1560 goto out;
1561 if (pmd_page(*pmd) != page)
1562 goto out;
1563 /*
1564 * split_vma() may create temporary aliased mappings. There is
1565 * no risk as long as all huge pmd are found and have their
1566 * splitting bit set before __split_huge_page_refcount
1567 * runs. Finding the same huge pmd more than once during the
1568 * same rmap walk is not a problem.
1569 */
1570 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1571 pmd_trans_splitting(*pmd))
1572 goto out;
1573 if (pmd_trans_huge(*pmd)) {
1574 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1575 !pmd_trans_splitting(*pmd));
1576 ret = pmd;
1577 }
1578 out:
1579 return ret;
1580 }
1581
1582 static int __split_huge_page_splitting(struct page *page,
1583 struct vm_area_struct *vma,
1584 unsigned long address)
1585 {
1586 struct mm_struct *mm = vma->vm_mm;
1587 pmd_t *pmd;
1588 int ret = 0;
1589 /* For mmu_notifiers */
1590 const unsigned long mmun_start = address;
1591 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1592
1593 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1594 spin_lock(&mm->page_table_lock);
1595 pmd = page_check_address_pmd(page, mm, address,
1596 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1597 if (pmd) {
1598 /*
1599 * We can't temporarily set the pmd to null in order
1600 * to split it, the pmd must remain marked huge at all
1601 * times or the VM won't take the pmd_trans_huge paths
1602 * and it won't wait on the anon_vma->root->rwsem to
1603 * serialize against split_huge_page*.
1604 */
1605 pmdp_splitting_flush(vma, address, pmd);
1606 ret = 1;
1607 }
1608 spin_unlock(&mm->page_table_lock);
1609 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1610
1611 return ret;
1612 }
1613
1614 static void __split_huge_page_refcount(struct page *page,
1615 struct list_head *list)
1616 {
1617 int i;
1618 struct zone *zone = page_zone(page);
1619 struct lruvec *lruvec;
1620 int tail_count = 0;
1621
1622 /* prevent PageLRU to go away from under us, and freeze lru stats */
1623 spin_lock_irq(&zone->lru_lock);
1624 lruvec = mem_cgroup_page_lruvec(page, zone);
1625
1626 compound_lock(page);
1627 /* complete memcg works before add pages to LRU */
1628 mem_cgroup_split_huge_fixup(page);
1629
1630 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1631 struct page *page_tail = page + i;
1632
1633 /* tail_page->_mapcount cannot change */
1634 BUG_ON(page_mapcount(page_tail) < 0);
1635 tail_count += page_mapcount(page_tail);
1636 /* check for overflow */
1637 BUG_ON(tail_count < 0);
1638 BUG_ON(atomic_read(&page_tail->_count) != 0);
1639 /*
1640 * tail_page->_count is zero and not changing from
1641 * under us. But get_page_unless_zero() may be running
1642 * from under us on the tail_page. If we used
1643 * atomic_set() below instead of atomic_add(), we
1644 * would then run atomic_set() concurrently with
1645 * get_page_unless_zero(), and atomic_set() is
1646 * implemented in C not using locked ops. spin_unlock
1647 * on x86 sometime uses locked ops because of PPro
1648 * errata 66, 92, so unless somebody can guarantee
1649 * atomic_set() here would be safe on all archs (and
1650 * not only on x86), it's safer to use atomic_add().
1651 */
1652 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1653 &page_tail->_count);
1654
1655 /* after clearing PageTail the gup refcount can be released */
1656 smp_mb();
1657
1658 /*
1659 * retain hwpoison flag of the poisoned tail page:
1660 * fix for the unsuitable process killed on Guest Machine(KVM)
1661 * by the memory-failure.
1662 */
1663 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1664 page_tail->flags |= (page->flags &
1665 ((1L << PG_referenced) |
1666 (1L << PG_swapbacked) |
1667 (1L << PG_mlocked) |
1668 (1L << PG_uptodate)));
1669 page_tail->flags |= (1L << PG_dirty);
1670
1671 /* clear PageTail before overwriting first_page */
1672 smp_wmb();
1673
1674 /*
1675 * __split_huge_page_splitting() already set the
1676 * splitting bit in all pmd that could map this
1677 * hugepage, that will ensure no CPU can alter the
1678 * mapcount on the head page. The mapcount is only
1679 * accounted in the head page and it has to be
1680 * transferred to all tail pages in the below code. So
1681 * for this code to be safe, the split the mapcount
1682 * can't change. But that doesn't mean userland can't
1683 * keep changing and reading the page contents while
1684 * we transfer the mapcount, so the pmd splitting
1685 * status is achieved setting a reserved bit in the
1686 * pmd, not by clearing the present bit.
1687 */
1688 page_tail->_mapcount = page->_mapcount;
1689
1690 BUG_ON(page_tail->mapping);
1691 page_tail->mapping = page->mapping;
1692
1693 page_tail->index = page->index + i;
1694 page_nid_xchg_last(page_tail, page_nid_last(page));
1695
1696 BUG_ON(!PageAnon(page_tail));
1697 BUG_ON(!PageUptodate(page_tail));
1698 BUG_ON(!PageDirty(page_tail));
1699 BUG_ON(!PageSwapBacked(page_tail));
1700
1701 lru_add_page_tail(page, page_tail, lruvec, list);
1702 }
1703 atomic_sub(tail_count, &page->_count);
1704 BUG_ON(atomic_read(&page->_count) <= 0);
1705
1706 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1707 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1708
1709 ClearPageCompound(page);
1710 compound_unlock(page);
1711 spin_unlock_irq(&zone->lru_lock);
1712
1713 for (i = 1; i < HPAGE_PMD_NR; i++) {
1714 struct page *page_tail = page + i;
1715 BUG_ON(page_count(page_tail) <= 0);
1716 /*
1717 * Tail pages may be freed if there wasn't any mapping
1718 * like if add_to_swap() is running on a lru page that
1719 * had its mapping zapped. And freeing these pages
1720 * requires taking the lru_lock so we do the put_page
1721 * of the tail pages after the split is complete.
1722 */
1723 put_page(page_tail);
1724 }
1725
1726 /*
1727 * Only the head page (now become a regular page) is required
1728 * to be pinned by the caller.
1729 */
1730 BUG_ON(page_count(page) <= 0);
1731 }
1732
1733 static int __split_huge_page_map(struct page *page,
1734 struct vm_area_struct *vma,
1735 unsigned long address)
1736 {
1737 struct mm_struct *mm = vma->vm_mm;
1738 pmd_t *pmd, _pmd;
1739 int ret = 0, i;
1740 pgtable_t pgtable;
1741 unsigned long haddr;
1742
1743 spin_lock(&mm->page_table_lock);
1744 pmd = page_check_address_pmd(page, mm, address,
1745 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1746 if (pmd) {
1747 pgtable = pgtable_trans_huge_withdraw(mm);
1748 pmd_populate(mm, &_pmd, pgtable);
1749 if (pmd_write(*pmd))
1750 BUG_ON(page_mapcount(page) != 1);
1751
1752 haddr = address;
1753 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1754 pte_t *pte, entry;
1755 BUG_ON(PageCompound(page+i));
1756 /*
1757 * Note that pmd_numa is not transferred deliberately
1758 * to avoid any possibility that pte_numa leaks to
1759 * a PROT_NONE VMA by accident.
1760 */
1761 entry = mk_pte(page + i, vma->vm_page_prot);
1762 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1763 if (!pmd_write(*pmd))
1764 entry = pte_wrprotect(entry);
1765 if (!pmd_young(*pmd))
1766 entry = pte_mkold(entry);
1767 pte = pte_offset_map(&_pmd, haddr);
1768 BUG_ON(!pte_none(*pte));
1769 set_pte_at(mm, haddr, pte, entry);
1770 pte_unmap(pte);
1771 }
1772
1773 smp_wmb(); /* make pte visible before pmd */
1774 /*
1775 * Up to this point the pmd is present and huge and
1776 * userland has the whole access to the hugepage
1777 * during the split (which happens in place). If we
1778 * overwrite the pmd with the not-huge version
1779 * pointing to the pte here (which of course we could
1780 * if all CPUs were bug free), userland could trigger
1781 * a small page size TLB miss on the small sized TLB
1782 * while the hugepage TLB entry is still established
1783 * in the huge TLB. Some CPU doesn't like that. See
1784 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1785 * Erratum 383 on page 93. Intel should be safe but is
1786 * also warns that it's only safe if the permission
1787 * and cache attributes of the two entries loaded in
1788 * the two TLB is identical (which should be the case
1789 * here). But it is generally safer to never allow
1790 * small and huge TLB entries for the same virtual
1791 * address to be loaded simultaneously. So instead of
1792 * doing "pmd_populate(); flush_tlb_range();" we first
1793 * mark the current pmd notpresent (atomically because
1794 * here the pmd_trans_huge and pmd_trans_splitting
1795 * must remain set at all times on the pmd until the
1796 * split is complete for this pmd), then we flush the
1797 * SMP TLB and finally we write the non-huge version
1798 * of the pmd entry with pmd_populate.
1799 */
1800 pmdp_invalidate(vma, address, pmd);
1801 pmd_populate(mm, pmd, pgtable);
1802 ret = 1;
1803 }
1804 spin_unlock(&mm->page_table_lock);
1805
1806 return ret;
1807 }
1808
1809 /* must be called with anon_vma->root->rwsem held */
1810 static void __split_huge_page(struct page *page,
1811 struct anon_vma *anon_vma,
1812 struct list_head *list)
1813 {
1814 int mapcount, mapcount2;
1815 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1816 struct anon_vma_chain *avc;
1817
1818 BUG_ON(!PageHead(page));
1819 BUG_ON(PageTail(page));
1820
1821 mapcount = 0;
1822 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1823 struct vm_area_struct *vma = avc->vma;
1824 unsigned long addr = vma_address(page, vma);
1825 BUG_ON(is_vma_temporary_stack(vma));
1826 mapcount += __split_huge_page_splitting(page, vma, addr);
1827 }
1828 /*
1829 * It is critical that new vmas are added to the tail of the
1830 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1831 * and establishes a child pmd before
1832 * __split_huge_page_splitting() freezes the parent pmd (so if
1833 * we fail to prevent copy_huge_pmd() from running until the
1834 * whole __split_huge_page() is complete), we will still see
1835 * the newly established pmd of the child later during the
1836 * walk, to be able to set it as pmd_trans_splitting too.
1837 */
1838 if (mapcount != page_mapcount(page))
1839 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1840 mapcount, page_mapcount(page));
1841 BUG_ON(mapcount != page_mapcount(page));
1842
1843 __split_huge_page_refcount(page, list);
1844
1845 mapcount2 = 0;
1846 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1847 struct vm_area_struct *vma = avc->vma;
1848 unsigned long addr = vma_address(page, vma);
1849 BUG_ON(is_vma_temporary_stack(vma));
1850 mapcount2 += __split_huge_page_map(page, vma, addr);
1851 }
1852 if (mapcount != mapcount2)
1853 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1854 mapcount, mapcount2, page_mapcount(page));
1855 BUG_ON(mapcount != mapcount2);
1856 }
1857
1858 /*
1859 * Split a hugepage into normal pages. This doesn't change the position of head
1860 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1861 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1862 * from the hugepage.
1863 * Return 0 if the hugepage is split successfully otherwise return 1.
1864 */
1865 int split_huge_page_to_list(struct page *page, struct list_head *list)
1866 {
1867 struct anon_vma *anon_vma;
1868 int ret = 1;
1869
1870 BUG_ON(is_huge_zero_page(page));
1871 BUG_ON(!PageAnon(page));
1872
1873 /*
1874 * The caller does not necessarily hold an mmap_sem that would prevent
1875 * the anon_vma disappearing so we first we take a reference to it
1876 * and then lock the anon_vma for write. This is similar to
1877 * page_lock_anon_vma_read except the write lock is taken to serialise
1878 * against parallel split or collapse operations.
1879 */
1880 anon_vma = page_get_anon_vma(page);
1881 if (!anon_vma)
1882 goto out;
1883 anon_vma_lock_write(anon_vma);
1884
1885 ret = 0;
1886 if (!PageCompound(page))
1887 goto out_unlock;
1888
1889 BUG_ON(!PageSwapBacked(page));
1890 __split_huge_page(page, anon_vma, list);
1891 count_vm_event(THP_SPLIT);
1892
1893 BUG_ON(PageCompound(page));
1894 out_unlock:
1895 anon_vma_unlock_write(anon_vma);
1896 put_anon_vma(anon_vma);
1897 out:
1898 return ret;
1899 }
1900
1901 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1902
1903 int hugepage_madvise(struct vm_area_struct *vma,
1904 unsigned long *vm_flags, int advice)
1905 {
1906 struct mm_struct *mm = vma->vm_mm;
1907
1908 switch (advice) {
1909 case MADV_HUGEPAGE:
1910 /*
1911 * Be somewhat over-protective like KSM for now!
1912 */
1913 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1914 return -EINVAL;
1915 if (mm->def_flags & VM_NOHUGEPAGE)
1916 return -EINVAL;
1917 *vm_flags &= ~VM_NOHUGEPAGE;
1918 *vm_flags |= VM_HUGEPAGE;
1919 /*
1920 * If the vma become good for khugepaged to scan,
1921 * register it here without waiting a page fault that
1922 * may not happen any time soon.
1923 */
1924 if (unlikely(khugepaged_enter_vma_merge(vma)))
1925 return -ENOMEM;
1926 break;
1927 case MADV_NOHUGEPAGE:
1928 /*
1929 * Be somewhat over-protective like KSM for now!
1930 */
1931 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1932 return -EINVAL;
1933 *vm_flags &= ~VM_HUGEPAGE;
1934 *vm_flags |= VM_NOHUGEPAGE;
1935 /*
1936 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1937 * this vma even if we leave the mm registered in khugepaged if
1938 * it got registered before VM_NOHUGEPAGE was set.
1939 */
1940 break;
1941 }
1942
1943 return 0;
1944 }
1945
1946 static int __init khugepaged_slab_init(void)
1947 {
1948 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1949 sizeof(struct mm_slot),
1950 __alignof__(struct mm_slot), 0, NULL);
1951 if (!mm_slot_cache)
1952 return -ENOMEM;
1953
1954 return 0;
1955 }
1956
1957 static inline struct mm_slot *alloc_mm_slot(void)
1958 {
1959 if (!mm_slot_cache) /* initialization failed */
1960 return NULL;
1961 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1962 }
1963
1964 static inline void free_mm_slot(struct mm_slot *mm_slot)
1965 {
1966 kmem_cache_free(mm_slot_cache, mm_slot);
1967 }
1968
1969 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1970 {
1971 struct mm_slot *mm_slot;
1972
1973 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1974 if (mm == mm_slot->mm)
1975 return mm_slot;
1976
1977 return NULL;
1978 }
1979
1980 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1981 struct mm_slot *mm_slot)
1982 {
1983 mm_slot->mm = mm;
1984 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1985 }
1986
1987 static inline int khugepaged_test_exit(struct mm_struct *mm)
1988 {
1989 return atomic_read(&mm->mm_users) == 0;
1990 }
1991
1992 int __khugepaged_enter(struct mm_struct *mm)
1993 {
1994 struct mm_slot *mm_slot;
1995 int wakeup;
1996
1997 mm_slot = alloc_mm_slot();
1998 if (!mm_slot)
1999 return -ENOMEM;
2000
2001 /* __khugepaged_exit() must not run from under us */
2002 VM_BUG_ON(khugepaged_test_exit(mm));
2003 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2004 free_mm_slot(mm_slot);
2005 return 0;
2006 }
2007
2008 spin_lock(&khugepaged_mm_lock);
2009 insert_to_mm_slots_hash(mm, mm_slot);
2010 /*
2011 * Insert just behind the scanning cursor, to let the area settle
2012 * down a little.
2013 */
2014 wakeup = list_empty(&khugepaged_scan.mm_head);
2015 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2016 spin_unlock(&khugepaged_mm_lock);
2017
2018 atomic_inc(&mm->mm_count);
2019 if (wakeup)
2020 wake_up_interruptible(&khugepaged_wait);
2021
2022 return 0;
2023 }
2024
2025 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2026 {
2027 unsigned long hstart, hend;
2028 if (!vma->anon_vma)
2029 /*
2030 * Not yet faulted in so we will register later in the
2031 * page fault if needed.
2032 */
2033 return 0;
2034 if (vma->vm_ops)
2035 /* khugepaged not yet working on file or special mappings */
2036 return 0;
2037 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2038 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2039 hend = vma->vm_end & HPAGE_PMD_MASK;
2040 if (hstart < hend)
2041 return khugepaged_enter(vma);
2042 return 0;
2043 }
2044
2045 void __khugepaged_exit(struct mm_struct *mm)
2046 {
2047 struct mm_slot *mm_slot;
2048 int free = 0;
2049
2050 spin_lock(&khugepaged_mm_lock);
2051 mm_slot = get_mm_slot(mm);
2052 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2053 hash_del(&mm_slot->hash);
2054 list_del(&mm_slot->mm_node);
2055 free = 1;
2056 }
2057 spin_unlock(&khugepaged_mm_lock);
2058
2059 if (free) {
2060 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2061 free_mm_slot(mm_slot);
2062 mmdrop(mm);
2063 } else if (mm_slot) {
2064 /*
2065 * This is required to serialize against
2066 * khugepaged_test_exit() (which is guaranteed to run
2067 * under mmap sem read mode). Stop here (after we
2068 * return all pagetables will be destroyed) until
2069 * khugepaged has finished working on the pagetables
2070 * under the mmap_sem.
2071 */
2072 down_write(&mm->mmap_sem);
2073 up_write(&mm->mmap_sem);
2074 }
2075 }
2076
2077 static void release_pte_page(struct page *page)
2078 {
2079 /* 0 stands for page_is_file_cache(page) == false */
2080 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2081 unlock_page(page);
2082 putback_lru_page(page);
2083 }
2084
2085 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2086 {
2087 while (--_pte >= pte) {
2088 pte_t pteval = *_pte;
2089 if (!pte_none(pteval))
2090 release_pte_page(pte_page(pteval));
2091 }
2092 }
2093
2094 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2095 unsigned long address,
2096 pte_t *pte)
2097 {
2098 struct page *page;
2099 pte_t *_pte;
2100 int referenced = 0, none = 0;
2101 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2102 _pte++, address += PAGE_SIZE) {
2103 pte_t pteval = *_pte;
2104 if (pte_none(pteval)) {
2105 if (++none <= khugepaged_max_ptes_none)
2106 continue;
2107 else
2108 goto out;
2109 }
2110 if (!pte_present(pteval) || !pte_write(pteval))
2111 goto out;
2112 page = vm_normal_page(vma, address, pteval);
2113 if (unlikely(!page))
2114 goto out;
2115
2116 VM_BUG_ON(PageCompound(page));
2117 BUG_ON(!PageAnon(page));
2118 VM_BUG_ON(!PageSwapBacked(page));
2119
2120 /* cannot use mapcount: can't collapse if there's a gup pin */
2121 if (page_count(page) != 1)
2122 goto out;
2123 /*
2124 * We can do it before isolate_lru_page because the
2125 * page can't be freed from under us. NOTE: PG_lock
2126 * is needed to serialize against split_huge_page
2127 * when invoked from the VM.
2128 */
2129 if (!trylock_page(page))
2130 goto out;
2131 /*
2132 * Isolate the page to avoid collapsing an hugepage
2133 * currently in use by the VM.
2134 */
2135 if (isolate_lru_page(page)) {
2136 unlock_page(page);
2137 goto out;
2138 }
2139 /* 0 stands for page_is_file_cache(page) == false */
2140 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2141 VM_BUG_ON(!PageLocked(page));
2142 VM_BUG_ON(PageLRU(page));
2143
2144 /* If there is no mapped pte young don't collapse the page */
2145 if (pte_young(pteval) || PageReferenced(page) ||
2146 mmu_notifier_test_young(vma->vm_mm, address))
2147 referenced = 1;
2148 }
2149 if (likely(referenced))
2150 return 1;
2151 out:
2152 release_pte_pages(pte, _pte);
2153 return 0;
2154 }
2155
2156 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2157 struct vm_area_struct *vma,
2158 unsigned long address,
2159 spinlock_t *ptl)
2160 {
2161 pte_t *_pte;
2162 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2163 pte_t pteval = *_pte;
2164 struct page *src_page;
2165
2166 if (pte_none(pteval)) {
2167 clear_user_highpage(page, address);
2168 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2169 } else {
2170 src_page = pte_page(pteval);
2171 copy_user_highpage(page, src_page, address, vma);
2172 VM_BUG_ON(page_mapcount(src_page) != 1);
2173 release_pte_page(src_page);
2174 /*
2175 * ptl mostly unnecessary, but preempt has to
2176 * be disabled to update the per-cpu stats
2177 * inside page_remove_rmap().
2178 */
2179 spin_lock(ptl);
2180 /*
2181 * paravirt calls inside pte_clear here are
2182 * superfluous.
2183 */
2184 pte_clear(vma->vm_mm, address, _pte);
2185 page_remove_rmap(src_page);
2186 spin_unlock(ptl);
2187 free_page_and_swap_cache(src_page);
2188 }
2189
2190 address += PAGE_SIZE;
2191 page++;
2192 }
2193 }
2194
2195 static void khugepaged_alloc_sleep(void)
2196 {
2197 wait_event_freezable_timeout(khugepaged_wait, false,
2198 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2199 }
2200
2201 #ifdef CONFIG_NUMA
2202 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2203 {
2204 if (IS_ERR(*hpage)) {
2205 if (!*wait)
2206 return false;
2207
2208 *wait = false;
2209 *hpage = NULL;
2210 khugepaged_alloc_sleep();
2211 } else if (*hpage) {
2212 put_page(*hpage);
2213 *hpage = NULL;
2214 }
2215
2216 return true;
2217 }
2218
2219 static struct page
2220 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2221 struct vm_area_struct *vma, unsigned long address,
2222 int node)
2223 {
2224 VM_BUG_ON(*hpage);
2225 /*
2226 * Allocate the page while the vma is still valid and under
2227 * the mmap_sem read mode so there is no memory allocation
2228 * later when we take the mmap_sem in write mode. This is more
2229 * friendly behavior (OTOH it may actually hide bugs) to
2230 * filesystems in userland with daemons allocating memory in
2231 * the userland I/O paths. Allocating memory with the
2232 * mmap_sem in read mode is good idea also to allow greater
2233 * scalability.
2234 */
2235 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
2236 node, __GFP_OTHER_NODE);
2237
2238 /*
2239 * After allocating the hugepage, release the mmap_sem read lock in
2240 * preparation for taking it in write mode.
2241 */
2242 up_read(&mm->mmap_sem);
2243 if (unlikely(!*hpage)) {
2244 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2245 *hpage = ERR_PTR(-ENOMEM);
2246 return NULL;
2247 }
2248
2249 count_vm_event(THP_COLLAPSE_ALLOC);
2250 return *hpage;
2251 }
2252 #else
2253 static struct page *khugepaged_alloc_hugepage(bool *wait)
2254 {
2255 struct page *hpage;
2256
2257 do {
2258 hpage = alloc_hugepage(khugepaged_defrag());
2259 if (!hpage) {
2260 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2261 if (!*wait)
2262 return NULL;
2263
2264 *wait = false;
2265 khugepaged_alloc_sleep();
2266 } else
2267 count_vm_event(THP_COLLAPSE_ALLOC);
2268 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2269
2270 return hpage;
2271 }
2272
2273 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2274 {
2275 if (!*hpage)
2276 *hpage = khugepaged_alloc_hugepage(wait);
2277
2278 if (unlikely(!*hpage))
2279 return false;
2280
2281 return true;
2282 }
2283
2284 static struct page
2285 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2286 struct vm_area_struct *vma, unsigned long address,
2287 int node)
2288 {
2289 up_read(&mm->mmap_sem);
2290 VM_BUG_ON(!*hpage);
2291 return *hpage;
2292 }
2293 #endif
2294
2295 static bool hugepage_vma_check(struct vm_area_struct *vma)
2296 {
2297 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2298 (vma->vm_flags & VM_NOHUGEPAGE))
2299 return false;
2300
2301 if (!vma->anon_vma || vma->vm_ops)
2302 return false;
2303 if (is_vma_temporary_stack(vma))
2304 return false;
2305 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2306 return true;
2307 }
2308
2309 static void collapse_huge_page(struct mm_struct *mm,
2310 unsigned long address,
2311 struct page **hpage,
2312 struct vm_area_struct *vma,
2313 int node)
2314 {
2315 pmd_t *pmd, _pmd;
2316 pte_t *pte;
2317 pgtable_t pgtable;
2318 struct page *new_page;
2319 spinlock_t *ptl;
2320 int isolated;
2321 unsigned long hstart, hend;
2322 unsigned long mmun_start; /* For mmu_notifiers */
2323 unsigned long mmun_end; /* For mmu_notifiers */
2324
2325 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2326
2327 /* release the mmap_sem read lock. */
2328 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2329 if (!new_page)
2330 return;
2331
2332 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2333 return;
2334
2335 /*
2336 * Prevent all access to pagetables with the exception of
2337 * gup_fast later hanlded by the ptep_clear_flush and the VM
2338 * handled by the anon_vma lock + PG_lock.
2339 */
2340 down_write(&mm->mmap_sem);
2341 if (unlikely(khugepaged_test_exit(mm)))
2342 goto out;
2343
2344 vma = find_vma(mm, address);
2345 if (!vma)
2346 goto out;
2347 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2348 hend = vma->vm_end & HPAGE_PMD_MASK;
2349 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2350 goto out;
2351 if (!hugepage_vma_check(vma))
2352 goto out;
2353 pmd = mm_find_pmd(mm, address);
2354 if (!pmd)
2355 goto out;
2356 if (pmd_trans_huge(*pmd))
2357 goto out;
2358
2359 anon_vma_lock_write(vma->anon_vma);
2360
2361 pte = pte_offset_map(pmd, address);
2362 ptl = pte_lockptr(mm, pmd);
2363
2364 mmun_start = address;
2365 mmun_end = address + HPAGE_PMD_SIZE;
2366 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2367 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2368 /*
2369 * After this gup_fast can't run anymore. This also removes
2370 * any huge TLB entry from the CPU so we won't allow
2371 * huge and small TLB entries for the same virtual address
2372 * to avoid the risk of CPU bugs in that area.
2373 */
2374 _pmd = pmdp_clear_flush(vma, address, pmd);
2375 spin_unlock(&mm->page_table_lock);
2376 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2377
2378 spin_lock(ptl);
2379 isolated = __collapse_huge_page_isolate(vma, address, pte);
2380 spin_unlock(ptl);
2381
2382 if (unlikely(!isolated)) {
2383 pte_unmap(pte);
2384 spin_lock(&mm->page_table_lock);
2385 BUG_ON(!pmd_none(*pmd));
2386 /*
2387 * We can only use set_pmd_at when establishing
2388 * hugepmds and never for establishing regular pmds that
2389 * points to regular pagetables. Use pmd_populate for that
2390 */
2391 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2392 spin_unlock(&mm->page_table_lock);
2393 anon_vma_unlock_write(vma->anon_vma);
2394 goto out;
2395 }
2396
2397 /*
2398 * All pages are isolated and locked so anon_vma rmap
2399 * can't run anymore.
2400 */
2401 anon_vma_unlock_write(vma->anon_vma);
2402
2403 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2404 pte_unmap(pte);
2405 __SetPageUptodate(new_page);
2406 pgtable = pmd_pgtable(_pmd);
2407
2408 _pmd = mk_huge_pmd(new_page, vma);
2409
2410 /*
2411 * spin_lock() below is not the equivalent of smp_wmb(), so
2412 * this is needed to avoid the copy_huge_page writes to become
2413 * visible after the set_pmd_at() write.
2414 */
2415 smp_wmb();
2416
2417 spin_lock(&mm->page_table_lock);
2418 BUG_ON(!pmd_none(*pmd));
2419 page_add_new_anon_rmap(new_page, vma, address);
2420 set_pmd_at(mm, address, pmd, _pmd);
2421 update_mmu_cache_pmd(vma, address, pmd);
2422 pgtable_trans_huge_deposit(mm, pgtable);
2423 spin_unlock(&mm->page_table_lock);
2424
2425 *hpage = NULL;
2426
2427 khugepaged_pages_collapsed++;
2428 out_up_write:
2429 up_write(&mm->mmap_sem);
2430 return;
2431
2432 out:
2433 mem_cgroup_uncharge_page(new_page);
2434 goto out_up_write;
2435 }
2436
2437 static int khugepaged_scan_pmd(struct mm_struct *mm,
2438 struct vm_area_struct *vma,
2439 unsigned long address,
2440 struct page **hpage)
2441 {
2442 pmd_t *pmd;
2443 pte_t *pte, *_pte;
2444 int ret = 0, referenced = 0, none = 0;
2445 struct page *page;
2446 unsigned long _address;
2447 spinlock_t *ptl;
2448 int node = NUMA_NO_NODE;
2449
2450 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2451
2452 pmd = mm_find_pmd(mm, address);
2453 if (!pmd)
2454 goto out;
2455 if (pmd_trans_huge(*pmd))
2456 goto out;
2457
2458 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2459 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2460 _pte++, _address += PAGE_SIZE) {
2461 pte_t pteval = *_pte;
2462 if (pte_none(pteval)) {
2463 if (++none <= khugepaged_max_ptes_none)
2464 continue;
2465 else
2466 goto out_unmap;
2467 }
2468 if (!pte_present(pteval) || !pte_write(pteval))
2469 goto out_unmap;
2470 page = vm_normal_page(vma, _address, pteval);
2471 if (unlikely(!page))
2472 goto out_unmap;
2473 /*
2474 * Chose the node of the first page. This could
2475 * be more sophisticated and look at more pages,
2476 * but isn't for now.
2477 */
2478 if (node == NUMA_NO_NODE)
2479 node = page_to_nid(page);
2480 VM_BUG_ON(PageCompound(page));
2481 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2482 goto out_unmap;
2483 /* cannot use mapcount: can't collapse if there's a gup pin */
2484 if (page_count(page) != 1)
2485 goto out_unmap;
2486 if (pte_young(pteval) || PageReferenced(page) ||
2487 mmu_notifier_test_young(vma->vm_mm, address))
2488 referenced = 1;
2489 }
2490 if (referenced)
2491 ret = 1;
2492 out_unmap:
2493 pte_unmap_unlock(pte, ptl);
2494 if (ret)
2495 /* collapse_huge_page will return with the mmap_sem released */
2496 collapse_huge_page(mm, address, hpage, vma, node);
2497 out:
2498 return ret;
2499 }
2500
2501 static void collect_mm_slot(struct mm_slot *mm_slot)
2502 {
2503 struct mm_struct *mm = mm_slot->mm;
2504
2505 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2506
2507 if (khugepaged_test_exit(mm)) {
2508 /* free mm_slot */
2509 hash_del(&mm_slot->hash);
2510 list_del(&mm_slot->mm_node);
2511
2512 /*
2513 * Not strictly needed because the mm exited already.
2514 *
2515 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2516 */
2517
2518 /* khugepaged_mm_lock actually not necessary for the below */
2519 free_mm_slot(mm_slot);
2520 mmdrop(mm);
2521 }
2522 }
2523
2524 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2525 struct page **hpage)
2526 __releases(&khugepaged_mm_lock)
2527 __acquires(&khugepaged_mm_lock)
2528 {
2529 struct mm_slot *mm_slot;
2530 struct mm_struct *mm;
2531 struct vm_area_struct *vma;
2532 int progress = 0;
2533
2534 VM_BUG_ON(!pages);
2535 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2536
2537 if (khugepaged_scan.mm_slot)
2538 mm_slot = khugepaged_scan.mm_slot;
2539 else {
2540 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2541 struct mm_slot, mm_node);
2542 khugepaged_scan.address = 0;
2543 khugepaged_scan.mm_slot = mm_slot;
2544 }
2545 spin_unlock(&khugepaged_mm_lock);
2546
2547 mm = mm_slot->mm;
2548 down_read(&mm->mmap_sem);
2549 if (unlikely(khugepaged_test_exit(mm)))
2550 vma = NULL;
2551 else
2552 vma = find_vma(mm, khugepaged_scan.address);
2553
2554 progress++;
2555 for (; vma; vma = vma->vm_next) {
2556 unsigned long hstart, hend;
2557
2558 cond_resched();
2559 if (unlikely(khugepaged_test_exit(mm))) {
2560 progress++;
2561 break;
2562 }
2563 if (!hugepage_vma_check(vma)) {
2564 skip:
2565 progress++;
2566 continue;
2567 }
2568 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2569 hend = vma->vm_end & HPAGE_PMD_MASK;
2570 if (hstart >= hend)
2571 goto skip;
2572 if (khugepaged_scan.address > hend)
2573 goto skip;
2574 if (khugepaged_scan.address < hstart)
2575 khugepaged_scan.address = hstart;
2576 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2577
2578 while (khugepaged_scan.address < hend) {
2579 int ret;
2580 cond_resched();
2581 if (unlikely(khugepaged_test_exit(mm)))
2582 goto breakouterloop;
2583
2584 VM_BUG_ON(khugepaged_scan.address < hstart ||
2585 khugepaged_scan.address + HPAGE_PMD_SIZE >
2586 hend);
2587 ret = khugepaged_scan_pmd(mm, vma,
2588 khugepaged_scan.address,
2589 hpage);
2590 /* move to next address */
2591 khugepaged_scan.address += HPAGE_PMD_SIZE;
2592 progress += HPAGE_PMD_NR;
2593 if (ret)
2594 /* we released mmap_sem so break loop */
2595 goto breakouterloop_mmap_sem;
2596 if (progress >= pages)
2597 goto breakouterloop;
2598 }
2599 }
2600 breakouterloop:
2601 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2602 breakouterloop_mmap_sem:
2603
2604 spin_lock(&khugepaged_mm_lock);
2605 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2606 /*
2607 * Release the current mm_slot if this mm is about to die, or
2608 * if we scanned all vmas of this mm.
2609 */
2610 if (khugepaged_test_exit(mm) || !vma) {
2611 /*
2612 * Make sure that if mm_users is reaching zero while
2613 * khugepaged runs here, khugepaged_exit will find
2614 * mm_slot not pointing to the exiting mm.
2615 */
2616 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2617 khugepaged_scan.mm_slot = list_entry(
2618 mm_slot->mm_node.next,
2619 struct mm_slot, mm_node);
2620 khugepaged_scan.address = 0;
2621 } else {
2622 khugepaged_scan.mm_slot = NULL;
2623 khugepaged_full_scans++;
2624 }
2625
2626 collect_mm_slot(mm_slot);
2627 }
2628
2629 return progress;
2630 }
2631
2632 static int khugepaged_has_work(void)
2633 {
2634 return !list_empty(&khugepaged_scan.mm_head) &&
2635 khugepaged_enabled();
2636 }
2637
2638 static int khugepaged_wait_event(void)
2639 {
2640 return !list_empty(&khugepaged_scan.mm_head) ||
2641 kthread_should_stop();
2642 }
2643
2644 static void khugepaged_do_scan(void)
2645 {
2646 struct page *hpage = NULL;
2647 unsigned int progress = 0, pass_through_head = 0;
2648 unsigned int pages = khugepaged_pages_to_scan;
2649 bool wait = true;
2650
2651 barrier(); /* write khugepaged_pages_to_scan to local stack */
2652
2653 while (progress < pages) {
2654 if (!khugepaged_prealloc_page(&hpage, &wait))
2655 break;
2656
2657 cond_resched();
2658
2659 if (unlikely(kthread_should_stop() || freezing(current)))
2660 break;
2661
2662 spin_lock(&khugepaged_mm_lock);
2663 if (!khugepaged_scan.mm_slot)
2664 pass_through_head++;
2665 if (khugepaged_has_work() &&
2666 pass_through_head < 2)
2667 progress += khugepaged_scan_mm_slot(pages - progress,
2668 &hpage);
2669 else
2670 progress = pages;
2671 spin_unlock(&khugepaged_mm_lock);
2672 }
2673
2674 if (!IS_ERR_OR_NULL(hpage))
2675 put_page(hpage);
2676 }
2677
2678 static void khugepaged_wait_work(void)
2679 {
2680 try_to_freeze();
2681
2682 if (khugepaged_has_work()) {
2683 if (!khugepaged_scan_sleep_millisecs)
2684 return;
2685
2686 wait_event_freezable_timeout(khugepaged_wait,
2687 kthread_should_stop(),
2688 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2689 return;
2690 }
2691
2692 if (khugepaged_enabled())
2693 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2694 }
2695
2696 static int khugepaged(void *none)
2697 {
2698 struct mm_slot *mm_slot;
2699
2700 set_freezable();
2701 set_user_nice(current, 19);
2702
2703 while (!kthread_should_stop()) {
2704 khugepaged_do_scan();
2705 khugepaged_wait_work();
2706 }
2707
2708 spin_lock(&khugepaged_mm_lock);
2709 mm_slot = khugepaged_scan.mm_slot;
2710 khugepaged_scan.mm_slot = NULL;
2711 if (mm_slot)
2712 collect_mm_slot(mm_slot);
2713 spin_unlock(&khugepaged_mm_lock);
2714 return 0;
2715 }
2716
2717 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2718 unsigned long haddr, pmd_t *pmd)
2719 {
2720 struct mm_struct *mm = vma->vm_mm;
2721 pgtable_t pgtable;
2722 pmd_t _pmd;
2723 int i;
2724
2725 pmdp_clear_flush(vma, haddr, pmd);
2726 /* leave pmd empty until pte is filled */
2727
2728 pgtable = pgtable_trans_huge_withdraw(mm);
2729 pmd_populate(mm, &_pmd, pgtable);
2730
2731 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2732 pte_t *pte, entry;
2733 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2734 entry = pte_mkspecial(entry);
2735 pte = pte_offset_map(&_pmd, haddr);
2736 VM_BUG_ON(!pte_none(*pte));
2737 set_pte_at(mm, haddr, pte, entry);
2738 pte_unmap(pte);
2739 }
2740 smp_wmb(); /* make pte visible before pmd */
2741 pmd_populate(mm, pmd, pgtable);
2742 put_huge_zero_page();
2743 }
2744
2745 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2746 pmd_t *pmd)
2747 {
2748 struct page *page;
2749 struct mm_struct *mm = vma->vm_mm;
2750 unsigned long haddr = address & HPAGE_PMD_MASK;
2751 unsigned long mmun_start; /* For mmu_notifiers */
2752 unsigned long mmun_end; /* For mmu_notifiers */
2753
2754 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2755
2756 mmun_start = haddr;
2757 mmun_end = haddr + HPAGE_PMD_SIZE;
2758 again:
2759 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2760 spin_lock(&mm->page_table_lock);
2761 if (unlikely(!pmd_trans_huge(*pmd))) {
2762 spin_unlock(&mm->page_table_lock);
2763 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2764 return;
2765 }
2766 if (is_huge_zero_pmd(*pmd)) {
2767 __split_huge_zero_page_pmd(vma, haddr, pmd);
2768 spin_unlock(&mm->page_table_lock);
2769 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2770 return;
2771 }
2772 page = pmd_page(*pmd);
2773 VM_BUG_ON(!page_count(page));
2774 get_page(page);
2775 spin_unlock(&mm->page_table_lock);
2776 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2777
2778 split_huge_page(page);
2779
2780 put_page(page);
2781
2782 /*
2783 * We don't always have down_write of mmap_sem here: a racing
2784 * do_huge_pmd_wp_page() might have copied-on-write to another
2785 * huge page before our split_huge_page() got the anon_vma lock.
2786 */
2787 if (unlikely(pmd_trans_huge(*pmd)))
2788 goto again;
2789 }
2790
2791 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2792 pmd_t *pmd)
2793 {
2794 struct vm_area_struct *vma;
2795
2796 vma = find_vma(mm, address);
2797 BUG_ON(vma == NULL);
2798 split_huge_page_pmd(vma, address, pmd);
2799 }
2800
2801 static void split_huge_page_address(struct mm_struct *mm,
2802 unsigned long address)
2803 {
2804 pmd_t *pmd;
2805
2806 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2807
2808 pmd = mm_find_pmd(mm, address);
2809 if (!pmd)
2810 return;
2811 /*
2812 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2813 * materialize from under us.
2814 */
2815 split_huge_page_pmd_mm(mm, address, pmd);
2816 }
2817
2818 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2819 unsigned long start,
2820 unsigned long end,
2821 long adjust_next)
2822 {
2823 /*
2824 * If the new start address isn't hpage aligned and it could
2825 * previously contain an hugepage: check if we need to split
2826 * an huge pmd.
2827 */
2828 if (start & ~HPAGE_PMD_MASK &&
2829 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2830 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2831 split_huge_page_address(vma->vm_mm, start);
2832
2833 /*
2834 * If the new end address isn't hpage aligned and it could
2835 * previously contain an hugepage: check if we need to split
2836 * an huge pmd.
2837 */
2838 if (end & ~HPAGE_PMD_MASK &&
2839 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2840 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2841 split_huge_page_address(vma->vm_mm, end);
2842
2843 /*
2844 * If we're also updating the vma->vm_next->vm_start, if the new
2845 * vm_next->vm_start isn't page aligned and it could previously
2846 * contain an hugepage: check if we need to split an huge pmd.
2847 */
2848 if (adjust_next > 0) {
2849 struct vm_area_struct *next = vma->vm_next;
2850 unsigned long nstart = next->vm_start;
2851 nstart += adjust_next << PAGE_SHIFT;
2852 if (nstart & ~HPAGE_PMD_MASK &&
2853 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2854 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2855 split_huge_page_address(next->vm_mm, nstart);
2856 }
2857 }