[PATCH] Vectorize aio_read/aio_write fileop methods
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
35
36 /*
37 * FIXME: remove all knowledge of the buffer layer from the core VM
38 */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40
41 #include <asm/mman.h>
42
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 loff_t offset, unsigned long nr_segs);
46
47 /*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995 Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59 /*
60 * Lock ordering:
61 *
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
66 *
67 * ->i_mutex
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 *
70 * ->mmap_sem
71 * ->i_mmap_lock
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 *
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
77 *
78 * ->mmap_sem
79 * ->i_mutex (msync)
80 *
81 * ->i_mutex
82 * ->i_alloc_sem (various)
83 *
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
108 */
109
110 /*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
114 */
115 void __remove_from_page_cache(struct page *page)
116 {
117 struct address_space *mapping = page->mapping;
118
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 }
124
125 void remove_from_page_cache(struct page *page)
126 {
127 struct address_space *mapping = page->mapping;
128
129 BUG_ON(!PageLocked(page));
130
131 write_lock_irq(&mapping->tree_lock);
132 __remove_from_page_cache(page);
133 write_unlock_irq(&mapping->tree_lock);
134 }
135
136 static int sync_page(void *word)
137 {
138 struct address_space *mapping;
139 struct page *page;
140
141 page = container_of((unsigned long *)word, struct page, flags);
142
143 /*
144 * page_mapping() is being called without PG_locked held.
145 * Some knowledge of the state and use of the page is used to
146 * reduce the requirements down to a memory barrier.
147 * The danger here is of a stale page_mapping() return value
148 * indicating a struct address_space different from the one it's
149 * associated with when it is associated with one.
150 * After smp_mb(), it's either the correct page_mapping() for
151 * the page, or an old page_mapping() and the page's own
152 * page_mapping() has gone NULL.
153 * The ->sync_page() address_space operation must tolerate
154 * page_mapping() going NULL. By an amazing coincidence,
155 * this comes about because none of the users of the page
156 * in the ->sync_page() methods make essential use of the
157 * page_mapping(), merely passing the page down to the backing
158 * device's unplug functions when it's non-NULL, which in turn
159 * ignore it for all cases but swap, where only page_private(page) is
160 * of interest. When page_mapping() does go NULL, the entire
161 * call stack gracefully ignores the page and returns.
162 * -- wli
163 */
164 smp_mb();
165 mapping = page_mapping(page);
166 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
167 mapping->a_ops->sync_page(page);
168 io_schedule();
169 return 0;
170 }
171
172 /**
173 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
174 * @mapping: address space structure to write
175 * @start: offset in bytes where the range starts
176 * @end: offset in bytes where the range ends (inclusive)
177 * @sync_mode: enable synchronous operation
178 *
179 * Start writeback against all of a mapping's dirty pages that lie
180 * within the byte offsets <start, end> inclusive.
181 *
182 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
183 * opposed to a regular memory cleansing writeback. The difference between
184 * these two operations is that if a dirty page/buffer is encountered, it must
185 * be waited upon, and not just skipped over.
186 */
187 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
188 loff_t end, int sync_mode)
189 {
190 int ret;
191 struct writeback_control wbc = {
192 .sync_mode = sync_mode,
193 .nr_to_write = mapping->nrpages * 2,
194 .range_start = start,
195 .range_end = end,
196 };
197
198 if (!mapping_cap_writeback_dirty(mapping))
199 return 0;
200
201 ret = do_writepages(mapping, &wbc);
202 return ret;
203 }
204
205 static inline int __filemap_fdatawrite(struct address_space *mapping,
206 int sync_mode)
207 {
208 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
209 }
210
211 int filemap_fdatawrite(struct address_space *mapping)
212 {
213 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
214 }
215 EXPORT_SYMBOL(filemap_fdatawrite);
216
217 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 loff_t end)
219 {
220 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
221 }
222
223 /**
224 * filemap_flush - mostly a non-blocking flush
225 * @mapping: target address_space
226 *
227 * This is a mostly non-blocking flush. Not suitable for data-integrity
228 * purposes - I/O may not be started against all dirty pages.
229 */
230 int filemap_flush(struct address_space *mapping)
231 {
232 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
233 }
234 EXPORT_SYMBOL(filemap_flush);
235
236 /**
237 * wait_on_page_writeback_range - wait for writeback to complete
238 * @mapping: target address_space
239 * @start: beginning page index
240 * @end: ending page index
241 *
242 * Wait for writeback to complete against pages indexed by start->end
243 * inclusive
244 */
245 int wait_on_page_writeback_range(struct address_space *mapping,
246 pgoff_t start, pgoff_t end)
247 {
248 struct pagevec pvec;
249 int nr_pages;
250 int ret = 0;
251 pgoff_t index;
252
253 if (end < start)
254 return 0;
255
256 pagevec_init(&pvec, 0);
257 index = start;
258 while ((index <= end) &&
259 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
260 PAGECACHE_TAG_WRITEBACK,
261 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
262 unsigned i;
263
264 for (i = 0; i < nr_pages; i++) {
265 struct page *page = pvec.pages[i];
266
267 /* until radix tree lookup accepts end_index */
268 if (page->index > end)
269 continue;
270
271 wait_on_page_writeback(page);
272 if (PageError(page))
273 ret = -EIO;
274 }
275 pagevec_release(&pvec);
276 cond_resched();
277 }
278
279 /* Check for outstanding write errors */
280 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
281 ret = -ENOSPC;
282 if (test_and_clear_bit(AS_EIO, &mapping->flags))
283 ret = -EIO;
284
285 return ret;
286 }
287
288 /**
289 * sync_page_range - write and wait on all pages in the passed range
290 * @inode: target inode
291 * @mapping: target address_space
292 * @pos: beginning offset in pages to write
293 * @count: number of bytes to write
294 *
295 * Write and wait upon all the pages in the passed range. This is a "data
296 * integrity" operation. It waits upon in-flight writeout before starting and
297 * waiting upon new writeout. If there was an IO error, return it.
298 *
299 * We need to re-take i_mutex during the generic_osync_inode list walk because
300 * it is otherwise livelockable.
301 */
302 int sync_page_range(struct inode *inode, struct address_space *mapping,
303 loff_t pos, loff_t count)
304 {
305 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
306 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
307 int ret;
308
309 if (!mapping_cap_writeback_dirty(mapping) || !count)
310 return 0;
311 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
312 if (ret == 0) {
313 mutex_lock(&inode->i_mutex);
314 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
315 mutex_unlock(&inode->i_mutex);
316 }
317 if (ret == 0)
318 ret = wait_on_page_writeback_range(mapping, start, end);
319 return ret;
320 }
321 EXPORT_SYMBOL(sync_page_range);
322
323 /**
324 * sync_page_range_nolock
325 * @inode: target inode
326 * @mapping: target address_space
327 * @pos: beginning offset in pages to write
328 * @count: number of bytes to write
329 *
330 * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
331 * as it forces O_SYNC writers to different parts of the same file
332 * to be serialised right until io completion.
333 */
334 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
335 loff_t pos, loff_t count)
336 {
337 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
338 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
339 int ret;
340
341 if (!mapping_cap_writeback_dirty(mapping) || !count)
342 return 0;
343 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
344 if (ret == 0)
345 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
346 if (ret == 0)
347 ret = wait_on_page_writeback_range(mapping, start, end);
348 return ret;
349 }
350 EXPORT_SYMBOL(sync_page_range_nolock);
351
352 /**
353 * filemap_fdatawait - wait for all under-writeback pages to complete
354 * @mapping: address space structure to wait for
355 *
356 * Walk the list of under-writeback pages of the given address space
357 * and wait for all of them.
358 */
359 int filemap_fdatawait(struct address_space *mapping)
360 {
361 loff_t i_size = i_size_read(mapping->host);
362
363 if (i_size == 0)
364 return 0;
365
366 return wait_on_page_writeback_range(mapping, 0,
367 (i_size - 1) >> PAGE_CACHE_SHIFT);
368 }
369 EXPORT_SYMBOL(filemap_fdatawait);
370
371 int filemap_write_and_wait(struct address_space *mapping)
372 {
373 int err = 0;
374
375 if (mapping->nrpages) {
376 err = filemap_fdatawrite(mapping);
377 /*
378 * Even if the above returned error, the pages may be
379 * written partially (e.g. -ENOSPC), so we wait for it.
380 * But the -EIO is special case, it may indicate the worst
381 * thing (e.g. bug) happened, so we avoid waiting for it.
382 */
383 if (err != -EIO) {
384 int err2 = filemap_fdatawait(mapping);
385 if (!err)
386 err = err2;
387 }
388 }
389 return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait);
392
393 /**
394 * filemap_write_and_wait_range - write out & wait on a file range
395 * @mapping: the address_space for the pages
396 * @lstart: offset in bytes where the range starts
397 * @lend: offset in bytes where the range ends (inclusive)
398 *
399 * Write out and wait upon file offsets lstart->lend, inclusive.
400 *
401 * Note that `lend' is inclusive (describes the last byte to be written) so
402 * that this function can be used to write to the very end-of-file (end = -1).
403 */
404 int filemap_write_and_wait_range(struct address_space *mapping,
405 loff_t lstart, loff_t lend)
406 {
407 int err = 0;
408
409 if (mapping->nrpages) {
410 err = __filemap_fdatawrite_range(mapping, lstart, lend,
411 WB_SYNC_ALL);
412 /* See comment of filemap_write_and_wait() */
413 if (err != -EIO) {
414 int err2 = wait_on_page_writeback_range(mapping,
415 lstart >> PAGE_CACHE_SHIFT,
416 lend >> PAGE_CACHE_SHIFT);
417 if (!err)
418 err = err2;
419 }
420 }
421 return err;
422 }
423
424 /**
425 * add_to_page_cache - add newly allocated pagecache pages
426 * @page: page to add
427 * @mapping: the page's address_space
428 * @offset: page index
429 * @gfp_mask: page allocation mode
430 *
431 * This function is used to add newly allocated pagecache pages;
432 * the page is new, so we can just run SetPageLocked() against it.
433 * The other page state flags were set by rmqueue().
434 *
435 * This function does not add the page to the LRU. The caller must do that.
436 */
437 int add_to_page_cache(struct page *page, struct address_space *mapping,
438 pgoff_t offset, gfp_t gfp_mask)
439 {
440 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
441
442 if (error == 0) {
443 write_lock_irq(&mapping->tree_lock);
444 error = radix_tree_insert(&mapping->page_tree, offset, page);
445 if (!error) {
446 page_cache_get(page);
447 SetPageLocked(page);
448 page->mapping = mapping;
449 page->index = offset;
450 mapping->nrpages++;
451 __inc_zone_page_state(page, NR_FILE_PAGES);
452 }
453 write_unlock_irq(&mapping->tree_lock);
454 radix_tree_preload_end();
455 }
456 return error;
457 }
458 EXPORT_SYMBOL(add_to_page_cache);
459
460 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
461 pgoff_t offset, gfp_t gfp_mask)
462 {
463 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
464 if (ret == 0)
465 lru_cache_add(page);
466 return ret;
467 }
468
469 #ifdef CONFIG_NUMA
470 struct page *page_cache_alloc(struct address_space *x)
471 {
472 if (cpuset_do_page_mem_spread()) {
473 int n = cpuset_mem_spread_node();
474 return alloc_pages_node(n, mapping_gfp_mask(x), 0);
475 }
476 return alloc_pages(mapping_gfp_mask(x), 0);
477 }
478 EXPORT_SYMBOL(page_cache_alloc);
479
480 struct page *page_cache_alloc_cold(struct address_space *x)
481 {
482 if (cpuset_do_page_mem_spread()) {
483 int n = cpuset_mem_spread_node();
484 return alloc_pages_node(n, mapping_gfp_mask(x)|__GFP_COLD, 0);
485 }
486 return alloc_pages(mapping_gfp_mask(x)|__GFP_COLD, 0);
487 }
488 EXPORT_SYMBOL(page_cache_alloc_cold);
489 #endif
490
491 static int __sleep_on_page_lock(void *word)
492 {
493 io_schedule();
494 return 0;
495 }
496
497 /*
498 * In order to wait for pages to become available there must be
499 * waitqueues associated with pages. By using a hash table of
500 * waitqueues where the bucket discipline is to maintain all
501 * waiters on the same queue and wake all when any of the pages
502 * become available, and for the woken contexts to check to be
503 * sure the appropriate page became available, this saves space
504 * at a cost of "thundering herd" phenomena during rare hash
505 * collisions.
506 */
507 static wait_queue_head_t *page_waitqueue(struct page *page)
508 {
509 const struct zone *zone = page_zone(page);
510
511 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
512 }
513
514 static inline void wake_up_page(struct page *page, int bit)
515 {
516 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
517 }
518
519 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
520 {
521 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
522
523 if (test_bit(bit_nr, &page->flags))
524 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
525 TASK_UNINTERRUPTIBLE);
526 }
527 EXPORT_SYMBOL(wait_on_page_bit);
528
529 /**
530 * unlock_page - unlock a locked page
531 * @page: the page
532 *
533 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
534 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
535 * mechananism between PageLocked pages and PageWriteback pages is shared.
536 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
537 *
538 * The first mb is necessary to safely close the critical section opened by the
539 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
540 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
541 * parallel wait_on_page_locked()).
542 */
543 void fastcall unlock_page(struct page *page)
544 {
545 smp_mb__before_clear_bit();
546 if (!TestClearPageLocked(page))
547 BUG();
548 smp_mb__after_clear_bit();
549 wake_up_page(page, PG_locked);
550 }
551 EXPORT_SYMBOL(unlock_page);
552
553 /**
554 * end_page_writeback - end writeback against a page
555 * @page: the page
556 */
557 void end_page_writeback(struct page *page)
558 {
559 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
560 if (!test_clear_page_writeback(page))
561 BUG();
562 }
563 smp_mb__after_clear_bit();
564 wake_up_page(page, PG_writeback);
565 }
566 EXPORT_SYMBOL(end_page_writeback);
567
568 /**
569 * __lock_page - get a lock on the page, assuming we need to sleep to get it
570 * @page: the page to lock
571 *
572 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
573 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
574 * chances are that on the second loop, the block layer's plug list is empty,
575 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
576 */
577 void fastcall __lock_page(struct page *page)
578 {
579 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
580
581 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
582 TASK_UNINTERRUPTIBLE);
583 }
584 EXPORT_SYMBOL(__lock_page);
585
586 /*
587 * Variant of lock_page that does not require the caller to hold a reference
588 * on the page's mapping.
589 */
590 void fastcall __lock_page_nosync(struct page *page)
591 {
592 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
593 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
594 TASK_UNINTERRUPTIBLE);
595 }
596
597 /**
598 * find_get_page - find and get a page reference
599 * @mapping: the address_space to search
600 * @offset: the page index
601 *
602 * Is there a pagecache struct page at the given (mapping, offset) tuple?
603 * If yes, increment its refcount and return it; if no, return NULL.
604 */
605 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
606 {
607 struct page *page;
608
609 read_lock_irq(&mapping->tree_lock);
610 page = radix_tree_lookup(&mapping->page_tree, offset);
611 if (page)
612 page_cache_get(page);
613 read_unlock_irq(&mapping->tree_lock);
614 return page;
615 }
616 EXPORT_SYMBOL(find_get_page);
617
618 /**
619 * find_trylock_page - find and lock a page
620 * @mapping: the address_space to search
621 * @offset: the page index
622 *
623 * Same as find_get_page(), but trylock it instead of incrementing the count.
624 */
625 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
626 {
627 struct page *page;
628
629 read_lock_irq(&mapping->tree_lock);
630 page = radix_tree_lookup(&mapping->page_tree, offset);
631 if (page && TestSetPageLocked(page))
632 page = NULL;
633 read_unlock_irq(&mapping->tree_lock);
634 return page;
635 }
636 EXPORT_SYMBOL(find_trylock_page);
637
638 /**
639 * find_lock_page - locate, pin and lock a pagecache page
640 * @mapping: the address_space to search
641 * @offset: the page index
642 *
643 * Locates the desired pagecache page, locks it, increments its reference
644 * count and returns its address.
645 *
646 * Returns zero if the page was not present. find_lock_page() may sleep.
647 */
648 struct page *find_lock_page(struct address_space *mapping,
649 unsigned long offset)
650 {
651 struct page *page;
652
653 read_lock_irq(&mapping->tree_lock);
654 repeat:
655 page = radix_tree_lookup(&mapping->page_tree, offset);
656 if (page) {
657 page_cache_get(page);
658 if (TestSetPageLocked(page)) {
659 read_unlock_irq(&mapping->tree_lock);
660 __lock_page(page);
661 read_lock_irq(&mapping->tree_lock);
662
663 /* Has the page been truncated while we slept? */
664 if (unlikely(page->mapping != mapping ||
665 page->index != offset)) {
666 unlock_page(page);
667 page_cache_release(page);
668 goto repeat;
669 }
670 }
671 }
672 read_unlock_irq(&mapping->tree_lock);
673 return page;
674 }
675 EXPORT_SYMBOL(find_lock_page);
676
677 /**
678 * find_or_create_page - locate or add a pagecache page
679 * @mapping: the page's address_space
680 * @index: the page's index into the mapping
681 * @gfp_mask: page allocation mode
682 *
683 * Locates a page in the pagecache. If the page is not present, a new page
684 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
685 * LRU list. The returned page is locked and has its reference count
686 * incremented.
687 *
688 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
689 * allocation!
690 *
691 * find_or_create_page() returns the desired page's address, or zero on
692 * memory exhaustion.
693 */
694 struct page *find_or_create_page(struct address_space *mapping,
695 unsigned long index, gfp_t gfp_mask)
696 {
697 struct page *page, *cached_page = NULL;
698 int err;
699 repeat:
700 page = find_lock_page(mapping, index);
701 if (!page) {
702 if (!cached_page) {
703 cached_page = alloc_page(gfp_mask);
704 if (!cached_page)
705 return NULL;
706 }
707 err = add_to_page_cache_lru(cached_page, mapping,
708 index, gfp_mask);
709 if (!err) {
710 page = cached_page;
711 cached_page = NULL;
712 } else if (err == -EEXIST)
713 goto repeat;
714 }
715 if (cached_page)
716 page_cache_release(cached_page);
717 return page;
718 }
719 EXPORT_SYMBOL(find_or_create_page);
720
721 /**
722 * find_get_pages - gang pagecache lookup
723 * @mapping: The address_space to search
724 * @start: The starting page index
725 * @nr_pages: The maximum number of pages
726 * @pages: Where the resulting pages are placed
727 *
728 * find_get_pages() will search for and return a group of up to
729 * @nr_pages pages in the mapping. The pages are placed at @pages.
730 * find_get_pages() takes a reference against the returned pages.
731 *
732 * The search returns a group of mapping-contiguous pages with ascending
733 * indexes. There may be holes in the indices due to not-present pages.
734 *
735 * find_get_pages() returns the number of pages which were found.
736 */
737 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
738 unsigned int nr_pages, struct page **pages)
739 {
740 unsigned int i;
741 unsigned int ret;
742
743 read_lock_irq(&mapping->tree_lock);
744 ret = radix_tree_gang_lookup(&mapping->page_tree,
745 (void **)pages, start, nr_pages);
746 for (i = 0; i < ret; i++)
747 page_cache_get(pages[i]);
748 read_unlock_irq(&mapping->tree_lock);
749 return ret;
750 }
751
752 /**
753 * find_get_pages_contig - gang contiguous pagecache lookup
754 * @mapping: The address_space to search
755 * @index: The starting page index
756 * @nr_pages: The maximum number of pages
757 * @pages: Where the resulting pages are placed
758 *
759 * find_get_pages_contig() works exactly like find_get_pages(), except
760 * that the returned number of pages are guaranteed to be contiguous.
761 *
762 * find_get_pages_contig() returns the number of pages which were found.
763 */
764 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
765 unsigned int nr_pages, struct page **pages)
766 {
767 unsigned int i;
768 unsigned int ret;
769
770 read_lock_irq(&mapping->tree_lock);
771 ret = radix_tree_gang_lookup(&mapping->page_tree,
772 (void **)pages, index, nr_pages);
773 for (i = 0; i < ret; i++) {
774 if (pages[i]->mapping == NULL || pages[i]->index != index)
775 break;
776
777 page_cache_get(pages[i]);
778 index++;
779 }
780 read_unlock_irq(&mapping->tree_lock);
781 return i;
782 }
783
784 /**
785 * find_get_pages_tag - find and return pages that match @tag
786 * @mapping: the address_space to search
787 * @index: the starting page index
788 * @tag: the tag index
789 * @nr_pages: the maximum number of pages
790 * @pages: where the resulting pages are placed
791 *
792 * Like find_get_pages, except we only return pages which are tagged with
793 * @tag. We update @index to index the next page for the traversal.
794 */
795 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
796 int tag, unsigned int nr_pages, struct page **pages)
797 {
798 unsigned int i;
799 unsigned int ret;
800
801 read_lock_irq(&mapping->tree_lock);
802 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
803 (void **)pages, *index, nr_pages, tag);
804 for (i = 0; i < ret; i++)
805 page_cache_get(pages[i]);
806 if (ret)
807 *index = pages[ret - 1]->index + 1;
808 read_unlock_irq(&mapping->tree_lock);
809 return ret;
810 }
811
812 /**
813 * grab_cache_page_nowait - returns locked page at given index in given cache
814 * @mapping: target address_space
815 * @index: the page index
816 *
817 * Same as grab_cache_page, but do not wait if the page is unavailable.
818 * This is intended for speculative data generators, where the data can
819 * be regenerated if the page couldn't be grabbed. This routine should
820 * be safe to call while holding the lock for another page.
821 *
822 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
823 * and deadlock against the caller's locked page.
824 */
825 struct page *
826 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
827 {
828 struct page *page = find_get_page(mapping, index);
829 gfp_t gfp_mask;
830
831 if (page) {
832 if (!TestSetPageLocked(page))
833 return page;
834 page_cache_release(page);
835 return NULL;
836 }
837 gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
838 page = alloc_pages(gfp_mask, 0);
839 if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
840 page_cache_release(page);
841 page = NULL;
842 }
843 return page;
844 }
845 EXPORT_SYMBOL(grab_cache_page_nowait);
846
847 /*
848 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
849 * a _large_ part of the i/o request. Imagine the worst scenario:
850 *
851 * ---R__________________________________________B__________
852 * ^ reading here ^ bad block(assume 4k)
853 *
854 * read(R) => miss => readahead(R...B) => media error => frustrating retries
855 * => failing the whole request => read(R) => read(R+1) =>
856 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
857 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
858 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
859 *
860 * It is going insane. Fix it by quickly scaling down the readahead size.
861 */
862 static void shrink_readahead_size_eio(struct file *filp,
863 struct file_ra_state *ra)
864 {
865 if (!ra->ra_pages)
866 return;
867
868 ra->ra_pages /= 4;
869 }
870
871 /**
872 * do_generic_mapping_read - generic file read routine
873 * @mapping: address_space to be read
874 * @_ra: file's readahead state
875 * @filp: the file to read
876 * @ppos: current file position
877 * @desc: read_descriptor
878 * @actor: read method
879 *
880 * This is a generic file read routine, and uses the
881 * mapping->a_ops->readpage() function for the actual low-level stuff.
882 *
883 * This is really ugly. But the goto's actually try to clarify some
884 * of the logic when it comes to error handling etc.
885 *
886 * Note the struct file* is only passed for the use of readpage.
887 * It may be NULL.
888 */
889 void do_generic_mapping_read(struct address_space *mapping,
890 struct file_ra_state *_ra,
891 struct file *filp,
892 loff_t *ppos,
893 read_descriptor_t *desc,
894 read_actor_t actor)
895 {
896 struct inode *inode = mapping->host;
897 unsigned long index;
898 unsigned long end_index;
899 unsigned long offset;
900 unsigned long last_index;
901 unsigned long next_index;
902 unsigned long prev_index;
903 loff_t isize;
904 struct page *cached_page;
905 int error;
906 struct file_ra_state ra = *_ra;
907
908 cached_page = NULL;
909 index = *ppos >> PAGE_CACHE_SHIFT;
910 next_index = index;
911 prev_index = ra.prev_page;
912 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
913 offset = *ppos & ~PAGE_CACHE_MASK;
914
915 isize = i_size_read(inode);
916 if (!isize)
917 goto out;
918
919 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
920 for (;;) {
921 struct page *page;
922 unsigned long nr, ret;
923
924 /* nr is the maximum number of bytes to copy from this page */
925 nr = PAGE_CACHE_SIZE;
926 if (index >= end_index) {
927 if (index > end_index)
928 goto out;
929 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
930 if (nr <= offset) {
931 goto out;
932 }
933 }
934 nr = nr - offset;
935
936 cond_resched();
937 if (index == next_index)
938 next_index = page_cache_readahead(mapping, &ra, filp,
939 index, last_index - index);
940
941 find_page:
942 page = find_get_page(mapping, index);
943 if (unlikely(page == NULL)) {
944 handle_ra_miss(mapping, &ra, index);
945 goto no_cached_page;
946 }
947 if (!PageUptodate(page))
948 goto page_not_up_to_date;
949 page_ok:
950
951 /* If users can be writing to this page using arbitrary
952 * virtual addresses, take care about potential aliasing
953 * before reading the page on the kernel side.
954 */
955 if (mapping_writably_mapped(mapping))
956 flush_dcache_page(page);
957
958 /*
959 * When (part of) the same page is read multiple times
960 * in succession, only mark it as accessed the first time.
961 */
962 if (prev_index != index)
963 mark_page_accessed(page);
964 prev_index = index;
965
966 /*
967 * Ok, we have the page, and it's up-to-date, so
968 * now we can copy it to user space...
969 *
970 * The actor routine returns how many bytes were actually used..
971 * NOTE! This may not be the same as how much of a user buffer
972 * we filled up (we may be padding etc), so we can only update
973 * "pos" here (the actor routine has to update the user buffer
974 * pointers and the remaining count).
975 */
976 ret = actor(desc, page, offset, nr);
977 offset += ret;
978 index += offset >> PAGE_CACHE_SHIFT;
979 offset &= ~PAGE_CACHE_MASK;
980
981 page_cache_release(page);
982 if (ret == nr && desc->count)
983 continue;
984 goto out;
985
986 page_not_up_to_date:
987 /* Get exclusive access to the page ... */
988 lock_page(page);
989
990 /* Did it get truncated before we got the lock? */
991 if (!page->mapping) {
992 unlock_page(page);
993 page_cache_release(page);
994 continue;
995 }
996
997 /* Did somebody else fill it already? */
998 if (PageUptodate(page)) {
999 unlock_page(page);
1000 goto page_ok;
1001 }
1002
1003 readpage:
1004 /* Start the actual read. The read will unlock the page. */
1005 error = mapping->a_ops->readpage(filp, page);
1006
1007 if (unlikely(error)) {
1008 if (error == AOP_TRUNCATED_PAGE) {
1009 page_cache_release(page);
1010 goto find_page;
1011 }
1012 goto readpage_error;
1013 }
1014
1015 if (!PageUptodate(page)) {
1016 lock_page(page);
1017 if (!PageUptodate(page)) {
1018 if (page->mapping == NULL) {
1019 /*
1020 * invalidate_inode_pages got it
1021 */
1022 unlock_page(page);
1023 page_cache_release(page);
1024 goto find_page;
1025 }
1026 unlock_page(page);
1027 error = -EIO;
1028 shrink_readahead_size_eio(filp, &ra);
1029 goto readpage_error;
1030 }
1031 unlock_page(page);
1032 }
1033
1034 /*
1035 * i_size must be checked after we have done ->readpage.
1036 *
1037 * Checking i_size after the readpage allows us to calculate
1038 * the correct value for "nr", which means the zero-filled
1039 * part of the page is not copied back to userspace (unless
1040 * another truncate extends the file - this is desired though).
1041 */
1042 isize = i_size_read(inode);
1043 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1044 if (unlikely(!isize || index > end_index)) {
1045 page_cache_release(page);
1046 goto out;
1047 }
1048
1049 /* nr is the maximum number of bytes to copy from this page */
1050 nr = PAGE_CACHE_SIZE;
1051 if (index == end_index) {
1052 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1053 if (nr <= offset) {
1054 page_cache_release(page);
1055 goto out;
1056 }
1057 }
1058 nr = nr - offset;
1059 goto page_ok;
1060
1061 readpage_error:
1062 /* UHHUH! A synchronous read error occurred. Report it */
1063 desc->error = error;
1064 page_cache_release(page);
1065 goto out;
1066
1067 no_cached_page:
1068 /*
1069 * Ok, it wasn't cached, so we need to create a new
1070 * page..
1071 */
1072 if (!cached_page) {
1073 cached_page = page_cache_alloc_cold(mapping);
1074 if (!cached_page) {
1075 desc->error = -ENOMEM;
1076 goto out;
1077 }
1078 }
1079 error = add_to_page_cache_lru(cached_page, mapping,
1080 index, GFP_KERNEL);
1081 if (error) {
1082 if (error == -EEXIST)
1083 goto find_page;
1084 desc->error = error;
1085 goto out;
1086 }
1087 page = cached_page;
1088 cached_page = NULL;
1089 goto readpage;
1090 }
1091
1092 out:
1093 *_ra = ra;
1094
1095 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1096 if (cached_page)
1097 page_cache_release(cached_page);
1098 if (filp)
1099 file_accessed(filp);
1100 }
1101 EXPORT_SYMBOL(do_generic_mapping_read);
1102
1103 int file_read_actor(read_descriptor_t *desc, struct page *page,
1104 unsigned long offset, unsigned long size)
1105 {
1106 char *kaddr;
1107 unsigned long left, count = desc->count;
1108
1109 if (size > count)
1110 size = count;
1111
1112 /*
1113 * Faults on the destination of a read are common, so do it before
1114 * taking the kmap.
1115 */
1116 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1117 kaddr = kmap_atomic(page, KM_USER0);
1118 left = __copy_to_user_inatomic(desc->arg.buf,
1119 kaddr + offset, size);
1120 kunmap_atomic(kaddr, KM_USER0);
1121 if (left == 0)
1122 goto success;
1123 }
1124
1125 /* Do it the slow way */
1126 kaddr = kmap(page);
1127 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1128 kunmap(page);
1129
1130 if (left) {
1131 size -= left;
1132 desc->error = -EFAULT;
1133 }
1134 success:
1135 desc->count = count - size;
1136 desc->written += size;
1137 desc->arg.buf += size;
1138 return size;
1139 }
1140
1141 /**
1142 * __generic_file_aio_read - generic filesystem read routine
1143 * @iocb: kernel I/O control block
1144 * @iov: io vector request
1145 * @nr_segs: number of segments in the iovec
1146 * @ppos: current file position
1147 *
1148 * This is the "read()" routine for all filesystems
1149 * that can use the page cache directly.
1150 */
1151 ssize_t
1152 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1153 unsigned long nr_segs, loff_t *ppos)
1154 {
1155 struct file *filp = iocb->ki_filp;
1156 ssize_t retval;
1157 unsigned long seg;
1158 size_t count;
1159
1160 count = 0;
1161 for (seg = 0; seg < nr_segs; seg++) {
1162 const struct iovec *iv = &iov[seg];
1163
1164 /*
1165 * If any segment has a negative length, or the cumulative
1166 * length ever wraps negative then return -EINVAL.
1167 */
1168 count += iv->iov_len;
1169 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1170 return -EINVAL;
1171 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1172 continue;
1173 if (seg == 0)
1174 return -EFAULT;
1175 nr_segs = seg;
1176 count -= iv->iov_len; /* This segment is no good */
1177 break;
1178 }
1179
1180 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1181 if (filp->f_flags & O_DIRECT) {
1182 loff_t pos = *ppos, size;
1183 struct address_space *mapping;
1184 struct inode *inode;
1185
1186 mapping = filp->f_mapping;
1187 inode = mapping->host;
1188 retval = 0;
1189 if (!count)
1190 goto out; /* skip atime */
1191 size = i_size_read(inode);
1192 if (pos < size) {
1193 retval = generic_file_direct_IO(READ, iocb,
1194 iov, pos, nr_segs);
1195 if (retval > 0 && !is_sync_kiocb(iocb))
1196 retval = -EIOCBQUEUED;
1197 if (retval > 0)
1198 *ppos = pos + retval;
1199 }
1200 file_accessed(filp);
1201 goto out;
1202 }
1203
1204 retval = 0;
1205 if (count) {
1206 for (seg = 0; seg < nr_segs; seg++) {
1207 read_descriptor_t desc;
1208
1209 desc.written = 0;
1210 desc.arg.buf = iov[seg].iov_base;
1211 desc.count = iov[seg].iov_len;
1212 if (desc.count == 0)
1213 continue;
1214 desc.error = 0;
1215 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1216 retval += desc.written;
1217 if (desc.error) {
1218 retval = retval ?: desc.error;
1219 break;
1220 }
1221 }
1222 }
1223 out:
1224 return retval;
1225 }
1226 EXPORT_SYMBOL(__generic_file_aio_read);
1227
1228 ssize_t
1229 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1230 unsigned long nr_segs, loff_t pos)
1231 {
1232 BUG_ON(iocb->ki_pos != pos);
1233 return __generic_file_aio_read(iocb, iov, nr_segs, &iocb->ki_pos);
1234 }
1235 EXPORT_SYMBOL(generic_file_aio_read);
1236
1237 ssize_t
1238 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1239 {
1240 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1241 struct kiocb kiocb;
1242 ssize_t ret;
1243
1244 init_sync_kiocb(&kiocb, filp);
1245 ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1246 if (-EIOCBQUEUED == ret)
1247 ret = wait_on_sync_kiocb(&kiocb);
1248 return ret;
1249 }
1250 EXPORT_SYMBOL(generic_file_read);
1251
1252 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1253 {
1254 ssize_t written;
1255 unsigned long count = desc->count;
1256 struct file *file = desc->arg.data;
1257
1258 if (size > count)
1259 size = count;
1260
1261 written = file->f_op->sendpage(file, page, offset,
1262 size, &file->f_pos, size<count);
1263 if (written < 0) {
1264 desc->error = written;
1265 written = 0;
1266 }
1267 desc->count = count - written;
1268 desc->written += written;
1269 return written;
1270 }
1271
1272 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1273 size_t count, read_actor_t actor, void *target)
1274 {
1275 read_descriptor_t desc;
1276
1277 if (!count)
1278 return 0;
1279
1280 desc.written = 0;
1281 desc.count = count;
1282 desc.arg.data = target;
1283 desc.error = 0;
1284
1285 do_generic_file_read(in_file, ppos, &desc, actor);
1286 if (desc.written)
1287 return desc.written;
1288 return desc.error;
1289 }
1290 EXPORT_SYMBOL(generic_file_sendfile);
1291
1292 static ssize_t
1293 do_readahead(struct address_space *mapping, struct file *filp,
1294 unsigned long index, unsigned long nr)
1295 {
1296 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1297 return -EINVAL;
1298
1299 force_page_cache_readahead(mapping, filp, index,
1300 max_sane_readahead(nr));
1301 return 0;
1302 }
1303
1304 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1305 {
1306 ssize_t ret;
1307 struct file *file;
1308
1309 ret = -EBADF;
1310 file = fget(fd);
1311 if (file) {
1312 if (file->f_mode & FMODE_READ) {
1313 struct address_space *mapping = file->f_mapping;
1314 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1315 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1316 unsigned long len = end - start + 1;
1317 ret = do_readahead(mapping, file, start, len);
1318 }
1319 fput(file);
1320 }
1321 return ret;
1322 }
1323
1324 #ifdef CONFIG_MMU
1325 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1326 /**
1327 * page_cache_read - adds requested page to the page cache if not already there
1328 * @file: file to read
1329 * @offset: page index
1330 *
1331 * This adds the requested page to the page cache if it isn't already there,
1332 * and schedules an I/O to read in its contents from disk.
1333 */
1334 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1335 {
1336 struct address_space *mapping = file->f_mapping;
1337 struct page *page;
1338 int ret;
1339
1340 do {
1341 page = page_cache_alloc_cold(mapping);
1342 if (!page)
1343 return -ENOMEM;
1344
1345 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1346 if (ret == 0)
1347 ret = mapping->a_ops->readpage(file, page);
1348 else if (ret == -EEXIST)
1349 ret = 0; /* losing race to add is OK */
1350
1351 page_cache_release(page);
1352
1353 } while (ret == AOP_TRUNCATED_PAGE);
1354
1355 return ret;
1356 }
1357
1358 #define MMAP_LOTSAMISS (100)
1359
1360 /**
1361 * filemap_nopage - read in file data for page fault handling
1362 * @area: the applicable vm_area
1363 * @address: target address to read in
1364 * @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1365 *
1366 * filemap_nopage() is invoked via the vma operations vector for a
1367 * mapped memory region to read in file data during a page fault.
1368 *
1369 * The goto's are kind of ugly, but this streamlines the normal case of having
1370 * it in the page cache, and handles the special cases reasonably without
1371 * having a lot of duplicated code.
1372 */
1373 struct page *filemap_nopage(struct vm_area_struct *area,
1374 unsigned long address, int *type)
1375 {
1376 int error;
1377 struct file *file = area->vm_file;
1378 struct address_space *mapping = file->f_mapping;
1379 struct file_ra_state *ra = &file->f_ra;
1380 struct inode *inode = mapping->host;
1381 struct page *page;
1382 unsigned long size, pgoff;
1383 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1384
1385 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1386
1387 retry_all:
1388 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1389 if (pgoff >= size)
1390 goto outside_data_content;
1391
1392 /* If we don't want any read-ahead, don't bother */
1393 if (VM_RandomReadHint(area))
1394 goto no_cached_page;
1395
1396 /*
1397 * The readahead code wants to be told about each and every page
1398 * so it can build and shrink its windows appropriately
1399 *
1400 * For sequential accesses, we use the generic readahead logic.
1401 */
1402 if (VM_SequentialReadHint(area))
1403 page_cache_readahead(mapping, ra, file, pgoff, 1);
1404
1405 /*
1406 * Do we have something in the page cache already?
1407 */
1408 retry_find:
1409 page = find_get_page(mapping, pgoff);
1410 if (!page) {
1411 unsigned long ra_pages;
1412
1413 if (VM_SequentialReadHint(area)) {
1414 handle_ra_miss(mapping, ra, pgoff);
1415 goto no_cached_page;
1416 }
1417 ra->mmap_miss++;
1418
1419 /*
1420 * Do we miss much more than hit in this file? If so,
1421 * stop bothering with read-ahead. It will only hurt.
1422 */
1423 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1424 goto no_cached_page;
1425
1426 /*
1427 * To keep the pgmajfault counter straight, we need to
1428 * check did_readaround, as this is an inner loop.
1429 */
1430 if (!did_readaround) {
1431 majmin = VM_FAULT_MAJOR;
1432 count_vm_event(PGMAJFAULT);
1433 }
1434 did_readaround = 1;
1435 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1436 if (ra_pages) {
1437 pgoff_t start = 0;
1438
1439 if (pgoff > ra_pages / 2)
1440 start = pgoff - ra_pages / 2;
1441 do_page_cache_readahead(mapping, file, start, ra_pages);
1442 }
1443 page = find_get_page(mapping, pgoff);
1444 if (!page)
1445 goto no_cached_page;
1446 }
1447
1448 if (!did_readaround)
1449 ra->mmap_hit++;
1450
1451 /*
1452 * Ok, found a page in the page cache, now we need to check
1453 * that it's up-to-date.
1454 */
1455 if (!PageUptodate(page))
1456 goto page_not_uptodate;
1457
1458 success:
1459 /*
1460 * Found the page and have a reference on it.
1461 */
1462 mark_page_accessed(page);
1463 if (type)
1464 *type = majmin;
1465 return page;
1466
1467 outside_data_content:
1468 /*
1469 * An external ptracer can access pages that normally aren't
1470 * accessible..
1471 */
1472 if (area->vm_mm == current->mm)
1473 return NOPAGE_SIGBUS;
1474 /* Fall through to the non-read-ahead case */
1475 no_cached_page:
1476 /*
1477 * We're only likely to ever get here if MADV_RANDOM is in
1478 * effect.
1479 */
1480 error = page_cache_read(file, pgoff);
1481 grab_swap_token();
1482
1483 /*
1484 * The page we want has now been added to the page cache.
1485 * In the unlikely event that someone removed it in the
1486 * meantime, we'll just come back here and read it again.
1487 */
1488 if (error >= 0)
1489 goto retry_find;
1490
1491 /*
1492 * An error return from page_cache_read can result if the
1493 * system is low on memory, or a problem occurs while trying
1494 * to schedule I/O.
1495 */
1496 if (error == -ENOMEM)
1497 return NOPAGE_OOM;
1498 return NOPAGE_SIGBUS;
1499
1500 page_not_uptodate:
1501 if (!did_readaround) {
1502 majmin = VM_FAULT_MAJOR;
1503 count_vm_event(PGMAJFAULT);
1504 }
1505 lock_page(page);
1506
1507 /* Did it get unhashed while we waited for it? */
1508 if (!page->mapping) {
1509 unlock_page(page);
1510 page_cache_release(page);
1511 goto retry_all;
1512 }
1513
1514 /* Did somebody else get it up-to-date? */
1515 if (PageUptodate(page)) {
1516 unlock_page(page);
1517 goto success;
1518 }
1519
1520 error = mapping->a_ops->readpage(file, page);
1521 if (!error) {
1522 wait_on_page_locked(page);
1523 if (PageUptodate(page))
1524 goto success;
1525 } else if (error == AOP_TRUNCATED_PAGE) {
1526 page_cache_release(page);
1527 goto retry_find;
1528 }
1529
1530 /*
1531 * Umm, take care of errors if the page isn't up-to-date.
1532 * Try to re-read it _once_. We do this synchronously,
1533 * because there really aren't any performance issues here
1534 * and we need to check for errors.
1535 */
1536 lock_page(page);
1537
1538 /* Somebody truncated the page on us? */
1539 if (!page->mapping) {
1540 unlock_page(page);
1541 page_cache_release(page);
1542 goto retry_all;
1543 }
1544
1545 /* Somebody else successfully read it in? */
1546 if (PageUptodate(page)) {
1547 unlock_page(page);
1548 goto success;
1549 }
1550 ClearPageError(page);
1551 error = mapping->a_ops->readpage(file, page);
1552 if (!error) {
1553 wait_on_page_locked(page);
1554 if (PageUptodate(page))
1555 goto success;
1556 } else if (error == AOP_TRUNCATED_PAGE) {
1557 page_cache_release(page);
1558 goto retry_find;
1559 }
1560
1561 /*
1562 * Things didn't work out. Return zero to tell the
1563 * mm layer so, possibly freeing the page cache page first.
1564 */
1565 shrink_readahead_size_eio(file, ra);
1566 page_cache_release(page);
1567 return NOPAGE_SIGBUS;
1568 }
1569 EXPORT_SYMBOL(filemap_nopage);
1570
1571 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1572 int nonblock)
1573 {
1574 struct address_space *mapping = file->f_mapping;
1575 struct page *page;
1576 int error;
1577
1578 /*
1579 * Do we have something in the page cache already?
1580 */
1581 retry_find:
1582 page = find_get_page(mapping, pgoff);
1583 if (!page) {
1584 if (nonblock)
1585 return NULL;
1586 goto no_cached_page;
1587 }
1588
1589 /*
1590 * Ok, found a page in the page cache, now we need to check
1591 * that it's up-to-date.
1592 */
1593 if (!PageUptodate(page)) {
1594 if (nonblock) {
1595 page_cache_release(page);
1596 return NULL;
1597 }
1598 goto page_not_uptodate;
1599 }
1600
1601 success:
1602 /*
1603 * Found the page and have a reference on it.
1604 */
1605 mark_page_accessed(page);
1606 return page;
1607
1608 no_cached_page:
1609 error = page_cache_read(file, pgoff);
1610
1611 /*
1612 * The page we want has now been added to the page cache.
1613 * In the unlikely event that someone removed it in the
1614 * meantime, we'll just come back here and read it again.
1615 */
1616 if (error >= 0)
1617 goto retry_find;
1618
1619 /*
1620 * An error return from page_cache_read can result if the
1621 * system is low on memory, or a problem occurs while trying
1622 * to schedule I/O.
1623 */
1624 return NULL;
1625
1626 page_not_uptodate:
1627 lock_page(page);
1628
1629 /* Did it get truncated while we waited for it? */
1630 if (!page->mapping) {
1631 unlock_page(page);
1632 goto err;
1633 }
1634
1635 /* Did somebody else get it up-to-date? */
1636 if (PageUptodate(page)) {
1637 unlock_page(page);
1638 goto success;
1639 }
1640
1641 error = mapping->a_ops->readpage(file, page);
1642 if (!error) {
1643 wait_on_page_locked(page);
1644 if (PageUptodate(page))
1645 goto success;
1646 } else if (error == AOP_TRUNCATED_PAGE) {
1647 page_cache_release(page);
1648 goto retry_find;
1649 }
1650
1651 /*
1652 * Umm, take care of errors if the page isn't up-to-date.
1653 * Try to re-read it _once_. We do this synchronously,
1654 * because there really aren't any performance issues here
1655 * and we need to check for errors.
1656 */
1657 lock_page(page);
1658
1659 /* Somebody truncated the page on us? */
1660 if (!page->mapping) {
1661 unlock_page(page);
1662 goto err;
1663 }
1664 /* Somebody else successfully read it in? */
1665 if (PageUptodate(page)) {
1666 unlock_page(page);
1667 goto success;
1668 }
1669
1670 ClearPageError(page);
1671 error = mapping->a_ops->readpage(file, page);
1672 if (!error) {
1673 wait_on_page_locked(page);
1674 if (PageUptodate(page))
1675 goto success;
1676 } else if (error == AOP_TRUNCATED_PAGE) {
1677 page_cache_release(page);
1678 goto retry_find;
1679 }
1680
1681 /*
1682 * Things didn't work out. Return zero to tell the
1683 * mm layer so, possibly freeing the page cache page first.
1684 */
1685 err:
1686 page_cache_release(page);
1687
1688 return NULL;
1689 }
1690
1691 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1692 unsigned long len, pgprot_t prot, unsigned long pgoff,
1693 int nonblock)
1694 {
1695 struct file *file = vma->vm_file;
1696 struct address_space *mapping = file->f_mapping;
1697 struct inode *inode = mapping->host;
1698 unsigned long size;
1699 struct mm_struct *mm = vma->vm_mm;
1700 struct page *page;
1701 int err;
1702
1703 if (!nonblock)
1704 force_page_cache_readahead(mapping, vma->vm_file,
1705 pgoff, len >> PAGE_CACHE_SHIFT);
1706
1707 repeat:
1708 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1709 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1710 return -EINVAL;
1711
1712 page = filemap_getpage(file, pgoff, nonblock);
1713
1714 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1715 * done in shmem_populate calling shmem_getpage */
1716 if (!page && !nonblock)
1717 return -ENOMEM;
1718
1719 if (page) {
1720 err = install_page(mm, vma, addr, page, prot);
1721 if (err) {
1722 page_cache_release(page);
1723 return err;
1724 }
1725 } else if (vma->vm_flags & VM_NONLINEAR) {
1726 /* No page was found just because we can't read it in now (being
1727 * here implies nonblock != 0), but the page may exist, so set
1728 * the PTE to fault it in later. */
1729 err = install_file_pte(mm, vma, addr, pgoff, prot);
1730 if (err)
1731 return err;
1732 }
1733
1734 len -= PAGE_SIZE;
1735 addr += PAGE_SIZE;
1736 pgoff++;
1737 if (len)
1738 goto repeat;
1739
1740 return 0;
1741 }
1742 EXPORT_SYMBOL(filemap_populate);
1743
1744 struct vm_operations_struct generic_file_vm_ops = {
1745 .nopage = filemap_nopage,
1746 .populate = filemap_populate,
1747 };
1748
1749 /* This is used for a general mmap of a disk file */
1750
1751 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1752 {
1753 struct address_space *mapping = file->f_mapping;
1754
1755 if (!mapping->a_ops->readpage)
1756 return -ENOEXEC;
1757 file_accessed(file);
1758 vma->vm_ops = &generic_file_vm_ops;
1759 return 0;
1760 }
1761
1762 /*
1763 * This is for filesystems which do not implement ->writepage.
1764 */
1765 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1766 {
1767 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1768 return -EINVAL;
1769 return generic_file_mmap(file, vma);
1770 }
1771 #else
1772 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1773 {
1774 return -ENOSYS;
1775 }
1776 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1777 {
1778 return -ENOSYS;
1779 }
1780 #endif /* CONFIG_MMU */
1781
1782 EXPORT_SYMBOL(generic_file_mmap);
1783 EXPORT_SYMBOL(generic_file_readonly_mmap);
1784
1785 static inline struct page *__read_cache_page(struct address_space *mapping,
1786 unsigned long index,
1787 int (*filler)(void *,struct page*),
1788 void *data)
1789 {
1790 struct page *page, *cached_page = NULL;
1791 int err;
1792 repeat:
1793 page = find_get_page(mapping, index);
1794 if (!page) {
1795 if (!cached_page) {
1796 cached_page = page_cache_alloc_cold(mapping);
1797 if (!cached_page)
1798 return ERR_PTR(-ENOMEM);
1799 }
1800 err = add_to_page_cache_lru(cached_page, mapping,
1801 index, GFP_KERNEL);
1802 if (err == -EEXIST)
1803 goto repeat;
1804 if (err < 0) {
1805 /* Presumably ENOMEM for radix tree node */
1806 page_cache_release(cached_page);
1807 return ERR_PTR(err);
1808 }
1809 page = cached_page;
1810 cached_page = NULL;
1811 err = filler(data, page);
1812 if (err < 0) {
1813 page_cache_release(page);
1814 page = ERR_PTR(err);
1815 }
1816 }
1817 if (cached_page)
1818 page_cache_release(cached_page);
1819 return page;
1820 }
1821
1822 /**
1823 * read_cache_page - read into page cache, fill it if needed
1824 * @mapping: the page's address_space
1825 * @index: the page index
1826 * @filler: function to perform the read
1827 * @data: destination for read data
1828 *
1829 * Read into the page cache. If a page already exists,
1830 * and PageUptodate() is not set, try to fill the page.
1831 */
1832 struct page *read_cache_page(struct address_space *mapping,
1833 unsigned long index,
1834 int (*filler)(void *,struct page*),
1835 void *data)
1836 {
1837 struct page *page;
1838 int err;
1839
1840 retry:
1841 page = __read_cache_page(mapping, index, filler, data);
1842 if (IS_ERR(page))
1843 goto out;
1844 mark_page_accessed(page);
1845 if (PageUptodate(page))
1846 goto out;
1847
1848 lock_page(page);
1849 if (!page->mapping) {
1850 unlock_page(page);
1851 page_cache_release(page);
1852 goto retry;
1853 }
1854 if (PageUptodate(page)) {
1855 unlock_page(page);
1856 goto out;
1857 }
1858 err = filler(data, page);
1859 if (err < 0) {
1860 page_cache_release(page);
1861 page = ERR_PTR(err);
1862 }
1863 out:
1864 return page;
1865 }
1866 EXPORT_SYMBOL(read_cache_page);
1867
1868 /*
1869 * If the page was newly created, increment its refcount and add it to the
1870 * caller's lru-buffering pagevec. This function is specifically for
1871 * generic_file_write().
1872 */
1873 static inline struct page *
1874 __grab_cache_page(struct address_space *mapping, unsigned long index,
1875 struct page **cached_page, struct pagevec *lru_pvec)
1876 {
1877 int err;
1878 struct page *page;
1879 repeat:
1880 page = find_lock_page(mapping, index);
1881 if (!page) {
1882 if (!*cached_page) {
1883 *cached_page = page_cache_alloc(mapping);
1884 if (!*cached_page)
1885 return NULL;
1886 }
1887 err = add_to_page_cache(*cached_page, mapping,
1888 index, GFP_KERNEL);
1889 if (err == -EEXIST)
1890 goto repeat;
1891 if (err == 0) {
1892 page = *cached_page;
1893 page_cache_get(page);
1894 if (!pagevec_add(lru_pvec, page))
1895 __pagevec_lru_add(lru_pvec);
1896 *cached_page = NULL;
1897 }
1898 }
1899 return page;
1900 }
1901
1902 /*
1903 * The logic we want is
1904 *
1905 * if suid or (sgid and xgrp)
1906 * remove privs
1907 */
1908 int remove_suid(struct dentry *dentry)
1909 {
1910 mode_t mode = dentry->d_inode->i_mode;
1911 int kill = 0;
1912 int result = 0;
1913
1914 /* suid always must be killed */
1915 if (unlikely(mode & S_ISUID))
1916 kill = ATTR_KILL_SUID;
1917
1918 /*
1919 * sgid without any exec bits is just a mandatory locking mark; leave
1920 * it alone. If some exec bits are set, it's a real sgid; kill it.
1921 */
1922 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1923 kill |= ATTR_KILL_SGID;
1924
1925 if (unlikely(kill && !capable(CAP_FSETID))) {
1926 struct iattr newattrs;
1927
1928 newattrs.ia_valid = ATTR_FORCE | kill;
1929 result = notify_change(dentry, &newattrs);
1930 }
1931 return result;
1932 }
1933 EXPORT_SYMBOL(remove_suid);
1934
1935 size_t
1936 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1937 const struct iovec *iov, size_t base, size_t bytes)
1938 {
1939 size_t copied = 0, left = 0;
1940
1941 while (bytes) {
1942 char __user *buf = iov->iov_base + base;
1943 int copy = min(bytes, iov->iov_len - base);
1944
1945 base = 0;
1946 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1947 copied += copy;
1948 bytes -= copy;
1949 vaddr += copy;
1950 iov++;
1951
1952 if (unlikely(left))
1953 break;
1954 }
1955 return copied - left;
1956 }
1957
1958 /*
1959 * Performs necessary checks before doing a write
1960 *
1961 * Can adjust writing position or amount of bytes to write.
1962 * Returns appropriate error code that caller should return or
1963 * zero in case that write should be allowed.
1964 */
1965 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1966 {
1967 struct inode *inode = file->f_mapping->host;
1968 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1969
1970 if (unlikely(*pos < 0))
1971 return -EINVAL;
1972
1973 if (!isblk) {
1974 /* FIXME: this is for backwards compatibility with 2.4 */
1975 if (file->f_flags & O_APPEND)
1976 *pos = i_size_read(inode);
1977
1978 if (limit != RLIM_INFINITY) {
1979 if (*pos >= limit) {
1980 send_sig(SIGXFSZ, current, 0);
1981 return -EFBIG;
1982 }
1983 if (*count > limit - (typeof(limit))*pos) {
1984 *count = limit - (typeof(limit))*pos;
1985 }
1986 }
1987 }
1988
1989 /*
1990 * LFS rule
1991 */
1992 if (unlikely(*pos + *count > MAX_NON_LFS &&
1993 !(file->f_flags & O_LARGEFILE))) {
1994 if (*pos >= MAX_NON_LFS) {
1995 send_sig(SIGXFSZ, current, 0);
1996 return -EFBIG;
1997 }
1998 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1999 *count = MAX_NON_LFS - (unsigned long)*pos;
2000 }
2001 }
2002
2003 /*
2004 * Are we about to exceed the fs block limit ?
2005 *
2006 * If we have written data it becomes a short write. If we have
2007 * exceeded without writing data we send a signal and return EFBIG.
2008 * Linus frestrict idea will clean these up nicely..
2009 */
2010 if (likely(!isblk)) {
2011 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2012 if (*count || *pos > inode->i_sb->s_maxbytes) {
2013 send_sig(SIGXFSZ, current, 0);
2014 return -EFBIG;
2015 }
2016 /* zero-length writes at ->s_maxbytes are OK */
2017 }
2018
2019 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2020 *count = inode->i_sb->s_maxbytes - *pos;
2021 } else {
2022 #ifdef CONFIG_BLOCK
2023 loff_t isize;
2024 if (bdev_read_only(I_BDEV(inode)))
2025 return -EPERM;
2026 isize = i_size_read(inode);
2027 if (*pos >= isize) {
2028 if (*count || *pos > isize)
2029 return -ENOSPC;
2030 }
2031
2032 if (*pos + *count > isize)
2033 *count = isize - *pos;
2034 #else
2035 return -EPERM;
2036 #endif
2037 }
2038 return 0;
2039 }
2040 EXPORT_SYMBOL(generic_write_checks);
2041
2042 ssize_t
2043 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2044 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2045 size_t count, size_t ocount)
2046 {
2047 struct file *file = iocb->ki_filp;
2048 struct address_space *mapping = file->f_mapping;
2049 struct inode *inode = mapping->host;
2050 ssize_t written;
2051
2052 if (count != ocount)
2053 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2054
2055 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2056 if (written > 0) {
2057 loff_t end = pos + written;
2058 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2059 i_size_write(inode, end);
2060 mark_inode_dirty(inode);
2061 }
2062 *ppos = end;
2063 }
2064
2065 /*
2066 * Sync the fs metadata but not the minor inode changes and
2067 * of course not the data as we did direct DMA for the IO.
2068 * i_mutex is held, which protects generic_osync_inode() from
2069 * livelocking.
2070 */
2071 if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2072 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2073 if (err < 0)
2074 written = err;
2075 }
2076 if (written == count && !is_sync_kiocb(iocb))
2077 written = -EIOCBQUEUED;
2078 return written;
2079 }
2080 EXPORT_SYMBOL(generic_file_direct_write);
2081
2082 ssize_t
2083 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2084 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2085 size_t count, ssize_t written)
2086 {
2087 struct file *file = iocb->ki_filp;
2088 struct address_space * mapping = file->f_mapping;
2089 const struct address_space_operations *a_ops = mapping->a_ops;
2090 struct inode *inode = mapping->host;
2091 long status = 0;
2092 struct page *page;
2093 struct page *cached_page = NULL;
2094 size_t bytes;
2095 struct pagevec lru_pvec;
2096 const struct iovec *cur_iov = iov; /* current iovec */
2097 size_t iov_base = 0; /* offset in the current iovec */
2098 char __user *buf;
2099
2100 pagevec_init(&lru_pvec, 0);
2101
2102 /*
2103 * handle partial DIO write. Adjust cur_iov if needed.
2104 */
2105 if (likely(nr_segs == 1))
2106 buf = iov->iov_base + written;
2107 else {
2108 filemap_set_next_iovec(&cur_iov, &iov_base, written);
2109 buf = cur_iov->iov_base + iov_base;
2110 }
2111
2112 do {
2113 unsigned long index;
2114 unsigned long offset;
2115 size_t copied;
2116
2117 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2118 index = pos >> PAGE_CACHE_SHIFT;
2119 bytes = PAGE_CACHE_SIZE - offset;
2120
2121 /* Limit the size of the copy to the caller's write size */
2122 bytes = min(bytes, count);
2123
2124 /*
2125 * Limit the size of the copy to that of the current segment,
2126 * because fault_in_pages_readable() doesn't know how to walk
2127 * segments.
2128 */
2129 bytes = min(bytes, cur_iov->iov_len - iov_base);
2130
2131 /*
2132 * Bring in the user page that we will copy from _first_.
2133 * Otherwise there's a nasty deadlock on copying from the
2134 * same page as we're writing to, without it being marked
2135 * up-to-date.
2136 */
2137 fault_in_pages_readable(buf, bytes);
2138
2139 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2140 if (!page) {
2141 status = -ENOMEM;
2142 break;
2143 }
2144
2145 if (unlikely(bytes == 0)) {
2146 status = 0;
2147 copied = 0;
2148 goto zero_length_segment;
2149 }
2150
2151 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2152 if (unlikely(status)) {
2153 loff_t isize = i_size_read(inode);
2154
2155 if (status != AOP_TRUNCATED_PAGE)
2156 unlock_page(page);
2157 page_cache_release(page);
2158 if (status == AOP_TRUNCATED_PAGE)
2159 continue;
2160 /*
2161 * prepare_write() may have instantiated a few blocks
2162 * outside i_size. Trim these off again.
2163 */
2164 if (pos + bytes > isize)
2165 vmtruncate(inode, isize);
2166 break;
2167 }
2168 if (likely(nr_segs == 1))
2169 copied = filemap_copy_from_user(page, offset,
2170 buf, bytes);
2171 else
2172 copied = filemap_copy_from_user_iovec(page, offset,
2173 cur_iov, iov_base, bytes);
2174 flush_dcache_page(page);
2175 status = a_ops->commit_write(file, page, offset, offset+bytes);
2176 if (status == AOP_TRUNCATED_PAGE) {
2177 page_cache_release(page);
2178 continue;
2179 }
2180 zero_length_segment:
2181 if (likely(copied >= 0)) {
2182 if (!status)
2183 status = copied;
2184
2185 if (status >= 0) {
2186 written += status;
2187 count -= status;
2188 pos += status;
2189 buf += status;
2190 if (unlikely(nr_segs > 1)) {
2191 filemap_set_next_iovec(&cur_iov,
2192 &iov_base, status);
2193 if (count)
2194 buf = cur_iov->iov_base +
2195 iov_base;
2196 } else {
2197 iov_base += status;
2198 }
2199 }
2200 }
2201 if (unlikely(copied != bytes))
2202 if (status >= 0)
2203 status = -EFAULT;
2204 unlock_page(page);
2205 mark_page_accessed(page);
2206 page_cache_release(page);
2207 if (status < 0)
2208 break;
2209 balance_dirty_pages_ratelimited(mapping);
2210 cond_resched();
2211 } while (count);
2212 *ppos = pos;
2213
2214 if (cached_page)
2215 page_cache_release(cached_page);
2216
2217 /*
2218 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2219 */
2220 if (likely(status >= 0)) {
2221 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2222 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2223 status = generic_osync_inode(inode, mapping,
2224 OSYNC_METADATA|OSYNC_DATA);
2225 }
2226 }
2227
2228 /*
2229 * If we get here for O_DIRECT writes then we must have fallen through
2230 * to buffered writes (block instantiation inside i_size). So we sync
2231 * the file data here, to try to honour O_DIRECT expectations.
2232 */
2233 if (unlikely(file->f_flags & O_DIRECT) && written)
2234 status = filemap_write_and_wait(mapping);
2235
2236 pagevec_lru_add(&lru_pvec);
2237 return written ? written : status;
2238 }
2239 EXPORT_SYMBOL(generic_file_buffered_write);
2240
2241 static ssize_t
2242 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2243 unsigned long nr_segs, loff_t *ppos)
2244 {
2245 struct file *file = iocb->ki_filp;
2246 const struct address_space * mapping = file->f_mapping;
2247 size_t ocount; /* original count */
2248 size_t count; /* after file limit checks */
2249 struct inode *inode = mapping->host;
2250 unsigned long seg;
2251 loff_t pos;
2252 ssize_t written;
2253 ssize_t err;
2254
2255 ocount = 0;
2256 for (seg = 0; seg < nr_segs; seg++) {
2257 const struct iovec *iv = &iov[seg];
2258
2259 /*
2260 * If any segment has a negative length, or the cumulative
2261 * length ever wraps negative then return -EINVAL.
2262 */
2263 ocount += iv->iov_len;
2264 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2265 return -EINVAL;
2266 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2267 continue;
2268 if (seg == 0)
2269 return -EFAULT;
2270 nr_segs = seg;
2271 ocount -= iv->iov_len; /* This segment is no good */
2272 break;
2273 }
2274
2275 count = ocount;
2276 pos = *ppos;
2277
2278 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2279
2280 /* We can write back this queue in page reclaim */
2281 current->backing_dev_info = mapping->backing_dev_info;
2282 written = 0;
2283
2284 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2285 if (err)
2286 goto out;
2287
2288 if (count == 0)
2289 goto out;
2290
2291 err = remove_suid(file->f_dentry);
2292 if (err)
2293 goto out;
2294
2295 file_update_time(file);
2296
2297 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2298 if (unlikely(file->f_flags & O_DIRECT)) {
2299 written = generic_file_direct_write(iocb, iov,
2300 &nr_segs, pos, ppos, count, ocount);
2301 if (written < 0 || written == count)
2302 goto out;
2303 /*
2304 * direct-io write to a hole: fall through to buffered I/O
2305 * for completing the rest of the request.
2306 */
2307 pos += written;
2308 count -= written;
2309 }
2310
2311 written = generic_file_buffered_write(iocb, iov, nr_segs,
2312 pos, ppos, count, written);
2313 out:
2314 current->backing_dev_info = NULL;
2315 return written ? written : err;
2316 }
2317
2318 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2319 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2320 {
2321 struct file *file = iocb->ki_filp;
2322 struct address_space *mapping = file->f_mapping;
2323 struct inode *inode = mapping->host;
2324 ssize_t ret;
2325
2326 BUG_ON(iocb->ki_pos != pos);
2327
2328 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2329 &iocb->ki_pos);
2330
2331 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2332 ssize_t err;
2333
2334 err = sync_page_range_nolock(inode, mapping, pos, ret);
2335 if (err < 0)
2336 ret = err;
2337 }
2338 return ret;
2339 }
2340 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2341
2342 static ssize_t
2343 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2344 unsigned long nr_segs, loff_t *ppos)
2345 {
2346 struct kiocb kiocb;
2347 ssize_t ret;
2348
2349 init_sync_kiocb(&kiocb, file);
2350 kiocb.ki_pos = *ppos;
2351 ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2352 if (-EIOCBQUEUED == ret)
2353 ret = wait_on_sync_kiocb(&kiocb);
2354 return ret;
2355 }
2356
2357 ssize_t
2358 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2359 unsigned long nr_segs, loff_t *ppos)
2360 {
2361 struct kiocb kiocb;
2362 ssize_t ret;
2363
2364 init_sync_kiocb(&kiocb, file);
2365 kiocb.ki_pos = *ppos;
2366 ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, *ppos);
2367 if (-EIOCBQUEUED == ret)
2368 ret = wait_on_sync_kiocb(&kiocb);
2369 *ppos = kiocb.ki_pos;
2370 return ret;
2371 }
2372 EXPORT_SYMBOL(generic_file_write_nolock);
2373
2374 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2375 unsigned long nr_segs, loff_t pos)
2376 {
2377 struct file *file = iocb->ki_filp;
2378 struct address_space *mapping = file->f_mapping;
2379 struct inode *inode = mapping->host;
2380 ssize_t ret;
2381
2382 BUG_ON(iocb->ki_pos != pos);
2383
2384 mutex_lock(&inode->i_mutex);
2385 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2386 &iocb->ki_pos);
2387 mutex_unlock(&inode->i_mutex);
2388
2389 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2390 ssize_t err;
2391
2392 err = sync_page_range(inode, mapping, pos, ret);
2393 if (err < 0)
2394 ret = err;
2395 }
2396 return ret;
2397 }
2398 EXPORT_SYMBOL(generic_file_aio_write);
2399
2400 ssize_t generic_file_write(struct file *file, const char __user *buf,
2401 size_t count, loff_t *ppos)
2402 {
2403 struct address_space *mapping = file->f_mapping;
2404 struct inode *inode = mapping->host;
2405 ssize_t ret;
2406 struct iovec local_iov = { .iov_base = (void __user *)buf,
2407 .iov_len = count };
2408
2409 mutex_lock(&inode->i_mutex);
2410 ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2411 mutex_unlock(&inode->i_mutex);
2412
2413 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2414 ssize_t err;
2415
2416 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2417 if (err < 0)
2418 ret = err;
2419 }
2420 return ret;
2421 }
2422 EXPORT_SYMBOL(generic_file_write);
2423
2424 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2425 unsigned long nr_segs, loff_t *ppos)
2426 {
2427 struct kiocb kiocb;
2428 ssize_t ret;
2429
2430 init_sync_kiocb(&kiocb, filp);
2431 ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2432 if (-EIOCBQUEUED == ret)
2433 ret = wait_on_sync_kiocb(&kiocb);
2434 return ret;
2435 }
2436 EXPORT_SYMBOL(generic_file_readv);
2437
2438 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2439 unsigned long nr_segs, loff_t *ppos)
2440 {
2441 struct address_space *mapping = file->f_mapping;
2442 struct inode *inode = mapping->host;
2443 ssize_t ret;
2444
2445 mutex_lock(&inode->i_mutex);
2446 ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2447 mutex_unlock(&inode->i_mutex);
2448
2449 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2450 int err;
2451
2452 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2453 if (err < 0)
2454 ret = err;
2455 }
2456 return ret;
2457 }
2458 EXPORT_SYMBOL(generic_file_writev);
2459
2460 /*
2461 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2462 * went wrong during pagecache shootdown.
2463 */
2464 static ssize_t
2465 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2466 loff_t offset, unsigned long nr_segs)
2467 {
2468 struct file *file = iocb->ki_filp;
2469 struct address_space *mapping = file->f_mapping;
2470 ssize_t retval;
2471 size_t write_len = 0;
2472
2473 /*
2474 * If it's a write, unmap all mmappings of the file up-front. This
2475 * will cause any pte dirty bits to be propagated into the pageframes
2476 * for the subsequent filemap_write_and_wait().
2477 */
2478 if (rw == WRITE) {
2479 write_len = iov_length(iov, nr_segs);
2480 if (mapping_mapped(mapping))
2481 unmap_mapping_range(mapping, offset, write_len, 0);
2482 }
2483
2484 retval = filemap_write_and_wait(mapping);
2485 if (retval == 0) {
2486 retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2487 offset, nr_segs);
2488 if (rw == WRITE && mapping->nrpages) {
2489 pgoff_t end = (offset + write_len - 1)
2490 >> PAGE_CACHE_SHIFT;
2491 int err = invalidate_inode_pages2_range(mapping,
2492 offset >> PAGE_CACHE_SHIFT, end);
2493 if (err)
2494 retval = err;
2495 }
2496 }
2497 return retval;
2498 }
2499
2500 /**
2501 * try_to_release_page() - release old fs-specific metadata on a page
2502 *
2503 * @page: the page which the kernel is trying to free
2504 * @gfp_mask: memory allocation flags (and I/O mode)
2505 *
2506 * The address_space is to try to release any data against the page
2507 * (presumably at page->private). If the release was successful, return `1'.
2508 * Otherwise return zero.
2509 *
2510 * The @gfp_mask argument specifies whether I/O may be performed to release
2511 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2512 *
2513 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2514 */
2515 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2516 {
2517 struct address_space * const mapping = page->mapping;
2518
2519 BUG_ON(!PageLocked(page));
2520 if (PageWriteback(page))
2521 return 0;
2522
2523 if (mapping && mapping->a_ops->releasepage)
2524 return mapping->a_ops->releasepage(page, gfp_mask);
2525 return try_to_free_buffers(page);
2526 }
2527
2528 EXPORT_SYMBOL(try_to_release_page);