Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/filemap.h>
40
41 /*
42 * FIXME: remove all knowledge of the buffer layer from the core VM
43 */
44 #include <linux/buffer_head.h> /* for try_to_free_buffers */
45
46 #include <asm/mman.h>
47
48 /*
49 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * though.
51 *
52 * Shared mappings now work. 15.8.1995 Bruno.
53 *
54 * finished 'unifying' the page and buffer cache and SMP-threaded the
55 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 *
57 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58 */
59
60 /*
61 * Lock ordering:
62 *
63 * ->i_mmap_mutex (truncate_pagecache)
64 * ->private_lock (__free_pte->__set_page_dirty_buffers)
65 * ->swap_lock (exclusive_swap_page, others)
66 * ->mapping->tree_lock
67 *
68 * ->i_mutex
69 * ->i_mmap_mutex (truncate->unmap_mapping_range)
70 *
71 * ->mmap_sem
72 * ->i_mmap_mutex
73 * ->page_table_lock or pte_lock (various, mainly in memory.c)
74 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 *
76 * ->mmap_sem
77 * ->lock_page (access_process_vm)
78 *
79 * ->i_mutex (generic_file_buffered_write)
80 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 *
82 * bdi->wb.list_lock
83 * sb_lock (fs/fs-writeback.c)
84 * ->mapping->tree_lock (__sync_single_inode)
85 *
86 * ->i_mmap_mutex
87 * ->anon_vma.lock (vma_adjust)
88 *
89 * ->anon_vma.lock
90 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
91 *
92 * ->page_table_lock or pte_lock
93 * ->swap_lock (try_to_unmap_one)
94 * ->private_lock (try_to_unmap_one)
95 * ->tree_lock (try_to_unmap_one)
96 * ->zone.lru_lock (follow_page->mark_page_accessed)
97 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
98 * ->private_lock (page_remove_rmap->set_page_dirty)
99 * ->tree_lock (page_remove_rmap->set_page_dirty)
100 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
101 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
103 * ->inode->i_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
106 * ->i_mmap_mutex
107 * ->tasklist_lock (memory_failure, collect_procs_ao)
108 */
109
110 /*
111 * Delete a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
114 */
115 void __delete_from_page_cache(struct page *page)
116 {
117 struct address_space *mapping = page->mapping;
118
119 trace_mm_filemap_delete_from_page_cache(page);
120 /*
121 * if we're uptodate, flush out into the cleancache, otherwise
122 * invalidate any existing cleancache entries. We can't leave
123 * stale data around in the cleancache once our page is gone
124 */
125 if (PageUptodate(page) && PageMappedToDisk(page))
126 cleancache_put_page(page);
127 else
128 cleancache_invalidate_page(mapping, page);
129
130 radix_tree_delete(&mapping->page_tree, page->index);
131 page->mapping = NULL;
132 /* Leave page->index set: truncation lookup relies upon it */
133 mapping->nrpages--;
134 __dec_zone_page_state(page, NR_FILE_PAGES);
135 if (PageSwapBacked(page))
136 __dec_zone_page_state(page, NR_SHMEM);
137 BUG_ON(page_mapped(page));
138
139 /*
140 * Some filesystems seem to re-dirty the page even after
141 * the VM has canceled the dirty bit (eg ext3 journaling).
142 *
143 * Fix it up by doing a final dirty accounting check after
144 * having removed the page entirely.
145 */
146 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
147 dec_zone_page_state(page, NR_FILE_DIRTY);
148 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
149 }
150 }
151
152 /**
153 * delete_from_page_cache - delete page from page cache
154 * @page: the page which the kernel is trying to remove from page cache
155 *
156 * This must be called only on pages that have been verified to be in the page
157 * cache and locked. It will never put the page into the free list, the caller
158 * has a reference on the page.
159 */
160 void delete_from_page_cache(struct page *page)
161 {
162 struct address_space *mapping = page->mapping;
163 void (*freepage)(struct page *);
164
165 BUG_ON(!PageLocked(page));
166
167 freepage = mapping->a_ops->freepage;
168 spin_lock_irq(&mapping->tree_lock);
169 __delete_from_page_cache(page);
170 spin_unlock_irq(&mapping->tree_lock);
171 mem_cgroup_uncharge_cache_page(page);
172
173 if (freepage)
174 freepage(page);
175 page_cache_release(page);
176 }
177 EXPORT_SYMBOL(delete_from_page_cache);
178
179 static int sleep_on_page(void *word)
180 {
181 io_schedule();
182 return 0;
183 }
184
185 static int sleep_on_page_killable(void *word)
186 {
187 sleep_on_page(word);
188 return fatal_signal_pending(current) ? -EINTR : 0;
189 }
190
191 static int filemap_check_errors(struct address_space *mapping)
192 {
193 int ret = 0;
194 /* Check for outstanding write errors */
195 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
196 ret = -ENOSPC;
197 if (test_and_clear_bit(AS_EIO, &mapping->flags))
198 ret = -EIO;
199 return ret;
200 }
201
202 /**
203 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
204 * @mapping: address space structure to write
205 * @start: offset in bytes where the range starts
206 * @end: offset in bytes where the range ends (inclusive)
207 * @sync_mode: enable synchronous operation
208 *
209 * Start writeback against all of a mapping's dirty pages that lie
210 * within the byte offsets <start, end> inclusive.
211 *
212 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
213 * opposed to a regular memory cleansing writeback. The difference between
214 * these two operations is that if a dirty page/buffer is encountered, it must
215 * be waited upon, and not just skipped over.
216 */
217 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 loff_t end, int sync_mode)
219 {
220 int ret;
221 struct writeback_control wbc = {
222 .sync_mode = sync_mode,
223 .nr_to_write = LONG_MAX,
224 .range_start = start,
225 .range_end = end,
226 };
227
228 if (!mapping_cap_writeback_dirty(mapping))
229 return 0;
230
231 ret = do_writepages(mapping, &wbc);
232 return ret;
233 }
234
235 static inline int __filemap_fdatawrite(struct address_space *mapping,
236 int sync_mode)
237 {
238 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
239 }
240
241 int filemap_fdatawrite(struct address_space *mapping)
242 {
243 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
244 }
245 EXPORT_SYMBOL(filemap_fdatawrite);
246
247 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
248 loff_t end)
249 {
250 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
251 }
252 EXPORT_SYMBOL(filemap_fdatawrite_range);
253
254 /**
255 * filemap_flush - mostly a non-blocking flush
256 * @mapping: target address_space
257 *
258 * This is a mostly non-blocking flush. Not suitable for data-integrity
259 * purposes - I/O may not be started against all dirty pages.
260 */
261 int filemap_flush(struct address_space *mapping)
262 {
263 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
264 }
265 EXPORT_SYMBOL(filemap_flush);
266
267 /**
268 * filemap_fdatawait_range - wait for writeback to complete
269 * @mapping: address space structure to wait for
270 * @start_byte: offset in bytes where the range starts
271 * @end_byte: offset in bytes where the range ends (inclusive)
272 *
273 * Walk the list of under-writeback pages of the given address space
274 * in the given range and wait for all of them.
275 */
276 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
277 loff_t end_byte)
278 {
279 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
280 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
281 struct pagevec pvec;
282 int nr_pages;
283 int ret2, ret = 0;
284
285 if (end_byte < start_byte)
286 goto out;
287
288 pagevec_init(&pvec, 0);
289 while ((index <= end) &&
290 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
291 PAGECACHE_TAG_WRITEBACK,
292 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
293 unsigned i;
294
295 for (i = 0; i < nr_pages; i++) {
296 struct page *page = pvec.pages[i];
297
298 /* until radix tree lookup accepts end_index */
299 if (page->index > end)
300 continue;
301
302 wait_on_page_writeback(page);
303 if (TestClearPageError(page))
304 ret = -EIO;
305 }
306 pagevec_release(&pvec);
307 cond_resched();
308 }
309 out:
310 ret2 = filemap_check_errors(mapping);
311 if (!ret)
312 ret = ret2;
313
314 return ret;
315 }
316 EXPORT_SYMBOL(filemap_fdatawait_range);
317
318 /**
319 * filemap_fdatawait - wait for all under-writeback pages to complete
320 * @mapping: address space structure to wait for
321 *
322 * Walk the list of under-writeback pages of the given address space
323 * and wait for all of them.
324 */
325 int filemap_fdatawait(struct address_space *mapping)
326 {
327 loff_t i_size = i_size_read(mapping->host);
328
329 if (i_size == 0)
330 return 0;
331
332 return filemap_fdatawait_range(mapping, 0, i_size - 1);
333 }
334 EXPORT_SYMBOL(filemap_fdatawait);
335
336 int filemap_write_and_wait(struct address_space *mapping)
337 {
338 int err = 0;
339
340 if (mapping->nrpages) {
341 err = filemap_fdatawrite(mapping);
342 /*
343 * Even if the above returned error, the pages may be
344 * written partially (e.g. -ENOSPC), so we wait for it.
345 * But the -EIO is special case, it may indicate the worst
346 * thing (e.g. bug) happened, so we avoid waiting for it.
347 */
348 if (err != -EIO) {
349 int err2 = filemap_fdatawait(mapping);
350 if (!err)
351 err = err2;
352 }
353 } else {
354 err = filemap_check_errors(mapping);
355 }
356 return err;
357 }
358 EXPORT_SYMBOL(filemap_write_and_wait);
359
360 /**
361 * filemap_write_and_wait_range - write out & wait on a file range
362 * @mapping: the address_space for the pages
363 * @lstart: offset in bytes where the range starts
364 * @lend: offset in bytes where the range ends (inclusive)
365 *
366 * Write out and wait upon file offsets lstart->lend, inclusive.
367 *
368 * Note that `lend' is inclusive (describes the last byte to be written) so
369 * that this function can be used to write to the very end-of-file (end = -1).
370 */
371 int filemap_write_and_wait_range(struct address_space *mapping,
372 loff_t lstart, loff_t lend)
373 {
374 int err = 0;
375
376 if (mapping->nrpages) {
377 err = __filemap_fdatawrite_range(mapping, lstart, lend,
378 WB_SYNC_ALL);
379 /* See comment of filemap_write_and_wait() */
380 if (err != -EIO) {
381 int err2 = filemap_fdatawait_range(mapping,
382 lstart, lend);
383 if (!err)
384 err = err2;
385 }
386 } else {
387 err = filemap_check_errors(mapping);
388 }
389 return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait_range);
392
393 /**
394 * replace_page_cache_page - replace a pagecache page with a new one
395 * @old: page to be replaced
396 * @new: page to replace with
397 * @gfp_mask: allocation mode
398 *
399 * This function replaces a page in the pagecache with a new one. On
400 * success it acquires the pagecache reference for the new page and
401 * drops it for the old page. Both the old and new pages must be
402 * locked. This function does not add the new page to the LRU, the
403 * caller must do that.
404 *
405 * The remove + add is atomic. The only way this function can fail is
406 * memory allocation failure.
407 */
408 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
409 {
410 int error;
411
412 VM_BUG_ON(!PageLocked(old));
413 VM_BUG_ON(!PageLocked(new));
414 VM_BUG_ON(new->mapping);
415
416 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
417 if (!error) {
418 struct address_space *mapping = old->mapping;
419 void (*freepage)(struct page *);
420
421 pgoff_t offset = old->index;
422 freepage = mapping->a_ops->freepage;
423
424 page_cache_get(new);
425 new->mapping = mapping;
426 new->index = offset;
427
428 spin_lock_irq(&mapping->tree_lock);
429 __delete_from_page_cache(old);
430 error = radix_tree_insert(&mapping->page_tree, offset, new);
431 BUG_ON(error);
432 mapping->nrpages++;
433 __inc_zone_page_state(new, NR_FILE_PAGES);
434 if (PageSwapBacked(new))
435 __inc_zone_page_state(new, NR_SHMEM);
436 spin_unlock_irq(&mapping->tree_lock);
437 /* mem_cgroup codes must not be called under tree_lock */
438 mem_cgroup_replace_page_cache(old, new);
439 radix_tree_preload_end();
440 if (freepage)
441 freepage(old);
442 page_cache_release(old);
443 }
444
445 return error;
446 }
447 EXPORT_SYMBOL_GPL(replace_page_cache_page);
448
449 /**
450 * add_to_page_cache_locked - add a locked page to the pagecache
451 * @page: page to add
452 * @mapping: the page's address_space
453 * @offset: page index
454 * @gfp_mask: page allocation mode
455 *
456 * This function is used to add a page to the pagecache. It must be locked.
457 * This function does not add the page to the LRU. The caller must do that.
458 */
459 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
460 pgoff_t offset, gfp_t gfp_mask)
461 {
462 int error;
463
464 VM_BUG_ON(!PageLocked(page));
465 VM_BUG_ON(PageSwapBacked(page));
466
467 error = mem_cgroup_cache_charge(page, current->mm,
468 gfp_mask & GFP_RECLAIM_MASK);
469 if (error)
470 goto out;
471
472 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
473 if (error == 0) {
474 page_cache_get(page);
475 page->mapping = mapping;
476 page->index = offset;
477
478 spin_lock_irq(&mapping->tree_lock);
479 error = radix_tree_insert(&mapping->page_tree, offset, page);
480 if (likely(!error)) {
481 mapping->nrpages++;
482 __inc_zone_page_state(page, NR_FILE_PAGES);
483 spin_unlock_irq(&mapping->tree_lock);
484 trace_mm_filemap_add_to_page_cache(page);
485 } else {
486 page->mapping = NULL;
487 /* Leave page->index set: truncation relies upon it */
488 spin_unlock_irq(&mapping->tree_lock);
489 mem_cgroup_uncharge_cache_page(page);
490 page_cache_release(page);
491 }
492 radix_tree_preload_end();
493 } else
494 mem_cgroup_uncharge_cache_page(page);
495 out:
496 return error;
497 }
498 EXPORT_SYMBOL(add_to_page_cache_locked);
499
500 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
501 pgoff_t offset, gfp_t gfp_mask)
502 {
503 int ret;
504
505 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
506 if (ret == 0)
507 lru_cache_add_file(page);
508 return ret;
509 }
510 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
511
512 #ifdef CONFIG_NUMA
513 struct page *__page_cache_alloc(gfp_t gfp)
514 {
515 int n;
516 struct page *page;
517
518 if (cpuset_do_page_mem_spread()) {
519 unsigned int cpuset_mems_cookie;
520 do {
521 cpuset_mems_cookie = get_mems_allowed();
522 n = cpuset_mem_spread_node();
523 page = alloc_pages_exact_node(n, gfp, 0);
524 } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
525
526 return page;
527 }
528 return alloc_pages(gfp, 0);
529 }
530 EXPORT_SYMBOL(__page_cache_alloc);
531 #endif
532
533 /*
534 * In order to wait for pages to become available there must be
535 * waitqueues associated with pages. By using a hash table of
536 * waitqueues where the bucket discipline is to maintain all
537 * waiters on the same queue and wake all when any of the pages
538 * become available, and for the woken contexts to check to be
539 * sure the appropriate page became available, this saves space
540 * at a cost of "thundering herd" phenomena during rare hash
541 * collisions.
542 */
543 static wait_queue_head_t *page_waitqueue(struct page *page)
544 {
545 const struct zone *zone = page_zone(page);
546
547 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
548 }
549
550 static inline void wake_up_page(struct page *page, int bit)
551 {
552 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
553 }
554
555 void wait_on_page_bit(struct page *page, int bit_nr)
556 {
557 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
558
559 if (test_bit(bit_nr, &page->flags))
560 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
561 TASK_UNINTERRUPTIBLE);
562 }
563 EXPORT_SYMBOL(wait_on_page_bit);
564
565 int wait_on_page_bit_killable(struct page *page, int bit_nr)
566 {
567 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
568
569 if (!test_bit(bit_nr, &page->flags))
570 return 0;
571
572 return __wait_on_bit(page_waitqueue(page), &wait,
573 sleep_on_page_killable, TASK_KILLABLE);
574 }
575
576 /**
577 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
578 * @page: Page defining the wait queue of interest
579 * @waiter: Waiter to add to the queue
580 *
581 * Add an arbitrary @waiter to the wait queue for the nominated @page.
582 */
583 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
584 {
585 wait_queue_head_t *q = page_waitqueue(page);
586 unsigned long flags;
587
588 spin_lock_irqsave(&q->lock, flags);
589 __add_wait_queue(q, waiter);
590 spin_unlock_irqrestore(&q->lock, flags);
591 }
592 EXPORT_SYMBOL_GPL(add_page_wait_queue);
593
594 /**
595 * unlock_page - unlock a locked page
596 * @page: the page
597 *
598 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
599 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
600 * mechananism between PageLocked pages and PageWriteback pages is shared.
601 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
602 *
603 * The mb is necessary to enforce ordering between the clear_bit and the read
604 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
605 */
606 void unlock_page(struct page *page)
607 {
608 VM_BUG_ON(!PageLocked(page));
609 clear_bit_unlock(PG_locked, &page->flags);
610 smp_mb__after_clear_bit();
611 wake_up_page(page, PG_locked);
612 }
613 EXPORT_SYMBOL(unlock_page);
614
615 /**
616 * end_page_writeback - end writeback against a page
617 * @page: the page
618 */
619 void end_page_writeback(struct page *page)
620 {
621 if (TestClearPageReclaim(page))
622 rotate_reclaimable_page(page);
623
624 if (!test_clear_page_writeback(page))
625 BUG();
626
627 smp_mb__after_clear_bit();
628 wake_up_page(page, PG_writeback);
629 }
630 EXPORT_SYMBOL(end_page_writeback);
631
632 /**
633 * __lock_page - get a lock on the page, assuming we need to sleep to get it
634 * @page: the page to lock
635 */
636 void __lock_page(struct page *page)
637 {
638 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
639
640 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
641 TASK_UNINTERRUPTIBLE);
642 }
643 EXPORT_SYMBOL(__lock_page);
644
645 int __lock_page_killable(struct page *page)
646 {
647 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
648
649 return __wait_on_bit_lock(page_waitqueue(page), &wait,
650 sleep_on_page_killable, TASK_KILLABLE);
651 }
652 EXPORT_SYMBOL_GPL(__lock_page_killable);
653
654 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
655 unsigned int flags)
656 {
657 if (flags & FAULT_FLAG_ALLOW_RETRY) {
658 /*
659 * CAUTION! In this case, mmap_sem is not released
660 * even though return 0.
661 */
662 if (flags & FAULT_FLAG_RETRY_NOWAIT)
663 return 0;
664
665 up_read(&mm->mmap_sem);
666 if (flags & FAULT_FLAG_KILLABLE)
667 wait_on_page_locked_killable(page);
668 else
669 wait_on_page_locked(page);
670 return 0;
671 } else {
672 if (flags & FAULT_FLAG_KILLABLE) {
673 int ret;
674
675 ret = __lock_page_killable(page);
676 if (ret) {
677 up_read(&mm->mmap_sem);
678 return 0;
679 }
680 } else
681 __lock_page(page);
682 return 1;
683 }
684 }
685
686 /**
687 * find_get_page - find and get a page reference
688 * @mapping: the address_space to search
689 * @offset: the page index
690 *
691 * Is there a pagecache struct page at the given (mapping, offset) tuple?
692 * If yes, increment its refcount and return it; if no, return NULL.
693 */
694 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
695 {
696 void **pagep;
697 struct page *page;
698
699 rcu_read_lock();
700 repeat:
701 page = NULL;
702 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
703 if (pagep) {
704 page = radix_tree_deref_slot(pagep);
705 if (unlikely(!page))
706 goto out;
707 if (radix_tree_exception(page)) {
708 if (radix_tree_deref_retry(page))
709 goto repeat;
710 /*
711 * Otherwise, shmem/tmpfs must be storing a swap entry
712 * here as an exceptional entry: so return it without
713 * attempting to raise page count.
714 */
715 goto out;
716 }
717 if (!page_cache_get_speculative(page))
718 goto repeat;
719
720 /*
721 * Has the page moved?
722 * This is part of the lockless pagecache protocol. See
723 * include/linux/pagemap.h for details.
724 */
725 if (unlikely(page != *pagep)) {
726 page_cache_release(page);
727 goto repeat;
728 }
729 }
730 out:
731 rcu_read_unlock();
732
733 return page;
734 }
735 EXPORT_SYMBOL(find_get_page);
736
737 /**
738 * find_lock_page - locate, pin and lock a pagecache page
739 * @mapping: the address_space to search
740 * @offset: the page index
741 *
742 * Locates the desired pagecache page, locks it, increments its reference
743 * count and returns its address.
744 *
745 * Returns zero if the page was not present. find_lock_page() may sleep.
746 */
747 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
748 {
749 struct page *page;
750
751 repeat:
752 page = find_get_page(mapping, offset);
753 if (page && !radix_tree_exception(page)) {
754 lock_page(page);
755 /* Has the page been truncated? */
756 if (unlikely(page->mapping != mapping)) {
757 unlock_page(page);
758 page_cache_release(page);
759 goto repeat;
760 }
761 VM_BUG_ON(page->index != offset);
762 }
763 return page;
764 }
765 EXPORT_SYMBOL(find_lock_page);
766
767 /**
768 * find_or_create_page - locate or add a pagecache page
769 * @mapping: the page's address_space
770 * @index: the page's index into the mapping
771 * @gfp_mask: page allocation mode
772 *
773 * Locates a page in the pagecache. If the page is not present, a new page
774 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
775 * LRU list. The returned page is locked and has its reference count
776 * incremented.
777 *
778 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
779 * allocation!
780 *
781 * find_or_create_page() returns the desired page's address, or zero on
782 * memory exhaustion.
783 */
784 struct page *find_or_create_page(struct address_space *mapping,
785 pgoff_t index, gfp_t gfp_mask)
786 {
787 struct page *page;
788 int err;
789 repeat:
790 page = find_lock_page(mapping, index);
791 if (!page) {
792 page = __page_cache_alloc(gfp_mask);
793 if (!page)
794 return NULL;
795 /*
796 * We want a regular kernel memory (not highmem or DMA etc)
797 * allocation for the radix tree nodes, but we need to honour
798 * the context-specific requirements the caller has asked for.
799 * GFP_RECLAIM_MASK collects those requirements.
800 */
801 err = add_to_page_cache_lru(page, mapping, index,
802 (gfp_mask & GFP_RECLAIM_MASK));
803 if (unlikely(err)) {
804 page_cache_release(page);
805 page = NULL;
806 if (err == -EEXIST)
807 goto repeat;
808 }
809 }
810 return page;
811 }
812 EXPORT_SYMBOL(find_or_create_page);
813
814 /**
815 * find_get_pages - gang pagecache lookup
816 * @mapping: The address_space to search
817 * @start: The starting page index
818 * @nr_pages: The maximum number of pages
819 * @pages: Where the resulting pages are placed
820 *
821 * find_get_pages() will search for and return a group of up to
822 * @nr_pages pages in the mapping. The pages are placed at @pages.
823 * find_get_pages() takes a reference against the returned pages.
824 *
825 * The search returns a group of mapping-contiguous pages with ascending
826 * indexes. There may be holes in the indices due to not-present pages.
827 *
828 * find_get_pages() returns the number of pages which were found.
829 */
830 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
831 unsigned int nr_pages, struct page **pages)
832 {
833 struct radix_tree_iter iter;
834 void **slot;
835 unsigned ret = 0;
836
837 if (unlikely(!nr_pages))
838 return 0;
839
840 rcu_read_lock();
841 restart:
842 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
843 struct page *page;
844 repeat:
845 page = radix_tree_deref_slot(slot);
846 if (unlikely(!page))
847 continue;
848
849 if (radix_tree_exception(page)) {
850 if (radix_tree_deref_retry(page)) {
851 /*
852 * Transient condition which can only trigger
853 * when entry at index 0 moves out of or back
854 * to root: none yet gotten, safe to restart.
855 */
856 WARN_ON(iter.index);
857 goto restart;
858 }
859 /*
860 * Otherwise, shmem/tmpfs must be storing a swap entry
861 * here as an exceptional entry: so skip over it -
862 * we only reach this from invalidate_mapping_pages().
863 */
864 continue;
865 }
866
867 if (!page_cache_get_speculative(page))
868 goto repeat;
869
870 /* Has the page moved? */
871 if (unlikely(page != *slot)) {
872 page_cache_release(page);
873 goto repeat;
874 }
875
876 pages[ret] = page;
877 if (++ret == nr_pages)
878 break;
879 }
880
881 rcu_read_unlock();
882 return ret;
883 }
884
885 /**
886 * find_get_pages_contig - gang contiguous pagecache lookup
887 * @mapping: The address_space to search
888 * @index: The starting page index
889 * @nr_pages: The maximum number of pages
890 * @pages: Where the resulting pages are placed
891 *
892 * find_get_pages_contig() works exactly like find_get_pages(), except
893 * that the returned number of pages are guaranteed to be contiguous.
894 *
895 * find_get_pages_contig() returns the number of pages which were found.
896 */
897 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
898 unsigned int nr_pages, struct page **pages)
899 {
900 struct radix_tree_iter iter;
901 void **slot;
902 unsigned int ret = 0;
903
904 if (unlikely(!nr_pages))
905 return 0;
906
907 rcu_read_lock();
908 restart:
909 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
910 struct page *page;
911 repeat:
912 page = radix_tree_deref_slot(slot);
913 /* The hole, there no reason to continue */
914 if (unlikely(!page))
915 break;
916
917 if (radix_tree_exception(page)) {
918 if (radix_tree_deref_retry(page)) {
919 /*
920 * Transient condition which can only trigger
921 * when entry at index 0 moves out of or back
922 * to root: none yet gotten, safe to restart.
923 */
924 goto restart;
925 }
926 /*
927 * Otherwise, shmem/tmpfs must be storing a swap entry
928 * here as an exceptional entry: so stop looking for
929 * contiguous pages.
930 */
931 break;
932 }
933
934 if (!page_cache_get_speculative(page))
935 goto repeat;
936
937 /* Has the page moved? */
938 if (unlikely(page != *slot)) {
939 page_cache_release(page);
940 goto repeat;
941 }
942
943 /*
944 * must check mapping and index after taking the ref.
945 * otherwise we can get both false positives and false
946 * negatives, which is just confusing to the caller.
947 */
948 if (page->mapping == NULL || page->index != iter.index) {
949 page_cache_release(page);
950 break;
951 }
952
953 pages[ret] = page;
954 if (++ret == nr_pages)
955 break;
956 }
957 rcu_read_unlock();
958 return ret;
959 }
960 EXPORT_SYMBOL(find_get_pages_contig);
961
962 /**
963 * find_get_pages_tag - find and return pages that match @tag
964 * @mapping: the address_space to search
965 * @index: the starting page index
966 * @tag: the tag index
967 * @nr_pages: the maximum number of pages
968 * @pages: where the resulting pages are placed
969 *
970 * Like find_get_pages, except we only return pages which are tagged with
971 * @tag. We update @index to index the next page for the traversal.
972 */
973 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
974 int tag, unsigned int nr_pages, struct page **pages)
975 {
976 struct radix_tree_iter iter;
977 void **slot;
978 unsigned ret = 0;
979
980 if (unlikely(!nr_pages))
981 return 0;
982
983 rcu_read_lock();
984 restart:
985 radix_tree_for_each_tagged(slot, &mapping->page_tree,
986 &iter, *index, tag) {
987 struct page *page;
988 repeat:
989 page = radix_tree_deref_slot(slot);
990 if (unlikely(!page))
991 continue;
992
993 if (radix_tree_exception(page)) {
994 if (radix_tree_deref_retry(page)) {
995 /*
996 * Transient condition which can only trigger
997 * when entry at index 0 moves out of or back
998 * to root: none yet gotten, safe to restart.
999 */
1000 goto restart;
1001 }
1002 /*
1003 * This function is never used on a shmem/tmpfs
1004 * mapping, so a swap entry won't be found here.
1005 */
1006 BUG();
1007 }
1008
1009 if (!page_cache_get_speculative(page))
1010 goto repeat;
1011
1012 /* Has the page moved? */
1013 if (unlikely(page != *slot)) {
1014 page_cache_release(page);
1015 goto repeat;
1016 }
1017
1018 pages[ret] = page;
1019 if (++ret == nr_pages)
1020 break;
1021 }
1022
1023 rcu_read_unlock();
1024
1025 if (ret)
1026 *index = pages[ret - 1]->index + 1;
1027
1028 return ret;
1029 }
1030 EXPORT_SYMBOL(find_get_pages_tag);
1031
1032 /**
1033 * grab_cache_page_nowait - returns locked page at given index in given cache
1034 * @mapping: target address_space
1035 * @index: the page index
1036 *
1037 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1038 * This is intended for speculative data generators, where the data can
1039 * be regenerated if the page couldn't be grabbed. This routine should
1040 * be safe to call while holding the lock for another page.
1041 *
1042 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1043 * and deadlock against the caller's locked page.
1044 */
1045 struct page *
1046 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1047 {
1048 struct page *page = find_get_page(mapping, index);
1049
1050 if (page) {
1051 if (trylock_page(page))
1052 return page;
1053 page_cache_release(page);
1054 return NULL;
1055 }
1056 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1057 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1058 page_cache_release(page);
1059 page = NULL;
1060 }
1061 return page;
1062 }
1063 EXPORT_SYMBOL(grab_cache_page_nowait);
1064
1065 /*
1066 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1067 * a _large_ part of the i/o request. Imagine the worst scenario:
1068 *
1069 * ---R__________________________________________B__________
1070 * ^ reading here ^ bad block(assume 4k)
1071 *
1072 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1073 * => failing the whole request => read(R) => read(R+1) =>
1074 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1075 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1076 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1077 *
1078 * It is going insane. Fix it by quickly scaling down the readahead size.
1079 */
1080 static void shrink_readahead_size_eio(struct file *filp,
1081 struct file_ra_state *ra)
1082 {
1083 ra->ra_pages /= 4;
1084 }
1085
1086 /**
1087 * do_generic_file_read - generic file read routine
1088 * @filp: the file to read
1089 * @ppos: current file position
1090 * @desc: read_descriptor
1091 * @actor: read method
1092 *
1093 * This is a generic file read routine, and uses the
1094 * mapping->a_ops->readpage() function for the actual low-level stuff.
1095 *
1096 * This is really ugly. But the goto's actually try to clarify some
1097 * of the logic when it comes to error handling etc.
1098 */
1099 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1100 read_descriptor_t *desc, read_actor_t actor)
1101 {
1102 struct address_space *mapping = filp->f_mapping;
1103 struct inode *inode = mapping->host;
1104 struct file_ra_state *ra = &filp->f_ra;
1105 pgoff_t index;
1106 pgoff_t last_index;
1107 pgoff_t prev_index;
1108 unsigned long offset; /* offset into pagecache page */
1109 unsigned int prev_offset;
1110 int error;
1111
1112 index = *ppos >> PAGE_CACHE_SHIFT;
1113 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1114 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1115 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1116 offset = *ppos & ~PAGE_CACHE_MASK;
1117
1118 for (;;) {
1119 struct page *page;
1120 pgoff_t end_index;
1121 loff_t isize;
1122 unsigned long nr, ret;
1123
1124 cond_resched();
1125 find_page:
1126 page = find_get_page(mapping, index);
1127 if (!page) {
1128 page_cache_sync_readahead(mapping,
1129 ra, filp,
1130 index, last_index - index);
1131 page = find_get_page(mapping, index);
1132 if (unlikely(page == NULL))
1133 goto no_cached_page;
1134 }
1135 if (PageReadahead(page)) {
1136 page_cache_async_readahead(mapping,
1137 ra, filp, page,
1138 index, last_index - index);
1139 }
1140 if (!PageUptodate(page)) {
1141 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1142 !mapping->a_ops->is_partially_uptodate)
1143 goto page_not_up_to_date;
1144 if (!trylock_page(page))
1145 goto page_not_up_to_date;
1146 /* Did it get truncated before we got the lock? */
1147 if (!page->mapping)
1148 goto page_not_up_to_date_locked;
1149 if (!mapping->a_ops->is_partially_uptodate(page,
1150 desc, offset))
1151 goto page_not_up_to_date_locked;
1152 unlock_page(page);
1153 }
1154 page_ok:
1155 /*
1156 * i_size must be checked after we know the page is Uptodate.
1157 *
1158 * Checking i_size after the check allows us to calculate
1159 * the correct value for "nr", which means the zero-filled
1160 * part of the page is not copied back to userspace (unless
1161 * another truncate extends the file - this is desired though).
1162 */
1163
1164 isize = i_size_read(inode);
1165 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1166 if (unlikely(!isize || index > end_index)) {
1167 page_cache_release(page);
1168 goto out;
1169 }
1170
1171 /* nr is the maximum number of bytes to copy from this page */
1172 nr = PAGE_CACHE_SIZE;
1173 if (index == end_index) {
1174 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1175 if (nr <= offset) {
1176 page_cache_release(page);
1177 goto out;
1178 }
1179 }
1180 nr = nr - offset;
1181
1182 /* If users can be writing to this page using arbitrary
1183 * virtual addresses, take care about potential aliasing
1184 * before reading the page on the kernel side.
1185 */
1186 if (mapping_writably_mapped(mapping))
1187 flush_dcache_page(page);
1188
1189 /*
1190 * When a sequential read accesses a page several times,
1191 * only mark it as accessed the first time.
1192 */
1193 if (prev_index != index || offset != prev_offset)
1194 mark_page_accessed(page);
1195 prev_index = index;
1196
1197 /*
1198 * Ok, we have the page, and it's up-to-date, so
1199 * now we can copy it to user space...
1200 *
1201 * The actor routine returns how many bytes were actually used..
1202 * NOTE! This may not be the same as how much of a user buffer
1203 * we filled up (we may be padding etc), so we can only update
1204 * "pos" here (the actor routine has to update the user buffer
1205 * pointers and the remaining count).
1206 */
1207 ret = actor(desc, page, offset, nr);
1208 offset += ret;
1209 index += offset >> PAGE_CACHE_SHIFT;
1210 offset &= ~PAGE_CACHE_MASK;
1211 prev_offset = offset;
1212
1213 page_cache_release(page);
1214 if (ret == nr && desc->count)
1215 continue;
1216 goto out;
1217
1218 page_not_up_to_date:
1219 /* Get exclusive access to the page ... */
1220 error = lock_page_killable(page);
1221 if (unlikely(error))
1222 goto readpage_error;
1223
1224 page_not_up_to_date_locked:
1225 /* Did it get truncated before we got the lock? */
1226 if (!page->mapping) {
1227 unlock_page(page);
1228 page_cache_release(page);
1229 continue;
1230 }
1231
1232 /* Did somebody else fill it already? */
1233 if (PageUptodate(page)) {
1234 unlock_page(page);
1235 goto page_ok;
1236 }
1237
1238 readpage:
1239 /*
1240 * A previous I/O error may have been due to temporary
1241 * failures, eg. multipath errors.
1242 * PG_error will be set again if readpage fails.
1243 */
1244 ClearPageError(page);
1245 /* Start the actual read. The read will unlock the page. */
1246 error = mapping->a_ops->readpage(filp, page);
1247
1248 if (unlikely(error)) {
1249 if (error == AOP_TRUNCATED_PAGE) {
1250 page_cache_release(page);
1251 goto find_page;
1252 }
1253 goto readpage_error;
1254 }
1255
1256 if (!PageUptodate(page)) {
1257 error = lock_page_killable(page);
1258 if (unlikely(error))
1259 goto readpage_error;
1260 if (!PageUptodate(page)) {
1261 if (page->mapping == NULL) {
1262 /*
1263 * invalidate_mapping_pages got it
1264 */
1265 unlock_page(page);
1266 page_cache_release(page);
1267 goto find_page;
1268 }
1269 unlock_page(page);
1270 shrink_readahead_size_eio(filp, ra);
1271 error = -EIO;
1272 goto readpage_error;
1273 }
1274 unlock_page(page);
1275 }
1276
1277 goto page_ok;
1278
1279 readpage_error:
1280 /* UHHUH! A synchronous read error occurred. Report it */
1281 desc->error = error;
1282 page_cache_release(page);
1283 goto out;
1284
1285 no_cached_page:
1286 /*
1287 * Ok, it wasn't cached, so we need to create a new
1288 * page..
1289 */
1290 page = page_cache_alloc_cold(mapping);
1291 if (!page) {
1292 desc->error = -ENOMEM;
1293 goto out;
1294 }
1295 error = add_to_page_cache_lru(page, mapping,
1296 index, GFP_KERNEL);
1297 if (error) {
1298 page_cache_release(page);
1299 if (error == -EEXIST)
1300 goto find_page;
1301 desc->error = error;
1302 goto out;
1303 }
1304 goto readpage;
1305 }
1306
1307 out:
1308 ra->prev_pos = prev_index;
1309 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1310 ra->prev_pos |= prev_offset;
1311
1312 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1313 file_accessed(filp);
1314 }
1315
1316 int file_read_actor(read_descriptor_t *desc, struct page *page,
1317 unsigned long offset, unsigned long size)
1318 {
1319 char *kaddr;
1320 unsigned long left, count = desc->count;
1321
1322 if (size > count)
1323 size = count;
1324
1325 /*
1326 * Faults on the destination of a read are common, so do it before
1327 * taking the kmap.
1328 */
1329 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1330 kaddr = kmap_atomic(page);
1331 left = __copy_to_user_inatomic(desc->arg.buf,
1332 kaddr + offset, size);
1333 kunmap_atomic(kaddr);
1334 if (left == 0)
1335 goto success;
1336 }
1337
1338 /* Do it the slow way */
1339 kaddr = kmap(page);
1340 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1341 kunmap(page);
1342
1343 if (left) {
1344 size -= left;
1345 desc->error = -EFAULT;
1346 }
1347 success:
1348 desc->count = count - size;
1349 desc->written += size;
1350 desc->arg.buf += size;
1351 return size;
1352 }
1353
1354 /*
1355 * Performs necessary checks before doing a write
1356 * @iov: io vector request
1357 * @nr_segs: number of segments in the iovec
1358 * @count: number of bytes to write
1359 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1360 *
1361 * Adjust number of segments and amount of bytes to write (nr_segs should be
1362 * properly initialized first). Returns appropriate error code that caller
1363 * should return or zero in case that write should be allowed.
1364 */
1365 int generic_segment_checks(const struct iovec *iov,
1366 unsigned long *nr_segs, size_t *count, int access_flags)
1367 {
1368 unsigned long seg;
1369 size_t cnt = 0;
1370 for (seg = 0; seg < *nr_segs; seg++) {
1371 const struct iovec *iv = &iov[seg];
1372
1373 /*
1374 * If any segment has a negative length, or the cumulative
1375 * length ever wraps negative then return -EINVAL.
1376 */
1377 cnt += iv->iov_len;
1378 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1379 return -EINVAL;
1380 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1381 continue;
1382 if (seg == 0)
1383 return -EFAULT;
1384 *nr_segs = seg;
1385 cnt -= iv->iov_len; /* This segment is no good */
1386 break;
1387 }
1388 *count = cnt;
1389 return 0;
1390 }
1391 EXPORT_SYMBOL(generic_segment_checks);
1392
1393 /**
1394 * generic_file_aio_read - generic filesystem read routine
1395 * @iocb: kernel I/O control block
1396 * @iov: io vector request
1397 * @nr_segs: number of segments in the iovec
1398 * @pos: current file position
1399 *
1400 * This is the "read()" routine for all filesystems
1401 * that can use the page cache directly.
1402 */
1403 ssize_t
1404 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1405 unsigned long nr_segs, loff_t pos)
1406 {
1407 struct file *filp = iocb->ki_filp;
1408 ssize_t retval;
1409 unsigned long seg = 0;
1410 size_t count;
1411 loff_t *ppos = &iocb->ki_pos;
1412
1413 count = 0;
1414 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1415 if (retval)
1416 return retval;
1417
1418 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1419 if (filp->f_flags & O_DIRECT) {
1420 loff_t size;
1421 struct address_space *mapping;
1422 struct inode *inode;
1423
1424 mapping = filp->f_mapping;
1425 inode = mapping->host;
1426 if (!count)
1427 goto out; /* skip atime */
1428 size = i_size_read(inode);
1429 if (pos < size) {
1430 retval = filemap_write_and_wait_range(mapping, pos,
1431 pos + iov_length(iov, nr_segs) - 1);
1432 if (!retval) {
1433 retval = mapping->a_ops->direct_IO(READ, iocb,
1434 iov, pos, nr_segs);
1435 }
1436 if (retval > 0) {
1437 *ppos = pos + retval;
1438 count -= retval;
1439 }
1440
1441 /*
1442 * Btrfs can have a short DIO read if we encounter
1443 * compressed extents, so if there was an error, or if
1444 * we've already read everything we wanted to, or if
1445 * there was a short read because we hit EOF, go ahead
1446 * and return. Otherwise fallthrough to buffered io for
1447 * the rest of the read.
1448 */
1449 if (retval < 0 || !count || *ppos >= size) {
1450 file_accessed(filp);
1451 goto out;
1452 }
1453 }
1454 }
1455
1456 count = retval;
1457 for (seg = 0; seg < nr_segs; seg++) {
1458 read_descriptor_t desc;
1459 loff_t offset = 0;
1460
1461 /*
1462 * If we did a short DIO read we need to skip the section of the
1463 * iov that we've already read data into.
1464 */
1465 if (count) {
1466 if (count > iov[seg].iov_len) {
1467 count -= iov[seg].iov_len;
1468 continue;
1469 }
1470 offset = count;
1471 count = 0;
1472 }
1473
1474 desc.written = 0;
1475 desc.arg.buf = iov[seg].iov_base + offset;
1476 desc.count = iov[seg].iov_len - offset;
1477 if (desc.count == 0)
1478 continue;
1479 desc.error = 0;
1480 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1481 retval += desc.written;
1482 if (desc.error) {
1483 retval = retval ?: desc.error;
1484 break;
1485 }
1486 if (desc.count > 0)
1487 break;
1488 }
1489 out:
1490 return retval;
1491 }
1492 EXPORT_SYMBOL(generic_file_aio_read);
1493
1494 #ifdef CONFIG_MMU
1495 /**
1496 * page_cache_read - adds requested page to the page cache if not already there
1497 * @file: file to read
1498 * @offset: page index
1499 *
1500 * This adds the requested page to the page cache if it isn't already there,
1501 * and schedules an I/O to read in its contents from disk.
1502 */
1503 static int page_cache_read(struct file *file, pgoff_t offset)
1504 {
1505 struct address_space *mapping = file->f_mapping;
1506 struct page *page;
1507 int ret;
1508
1509 do {
1510 page = page_cache_alloc_cold(mapping);
1511 if (!page)
1512 return -ENOMEM;
1513
1514 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1515 if (ret == 0)
1516 ret = mapping->a_ops->readpage(file, page);
1517 else if (ret == -EEXIST)
1518 ret = 0; /* losing race to add is OK */
1519
1520 page_cache_release(page);
1521
1522 } while (ret == AOP_TRUNCATED_PAGE);
1523
1524 return ret;
1525 }
1526
1527 #define MMAP_LOTSAMISS (100)
1528
1529 /*
1530 * Synchronous readahead happens when we don't even find
1531 * a page in the page cache at all.
1532 */
1533 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1534 struct file_ra_state *ra,
1535 struct file *file,
1536 pgoff_t offset)
1537 {
1538 unsigned long ra_pages;
1539 struct address_space *mapping = file->f_mapping;
1540
1541 /* If we don't want any read-ahead, don't bother */
1542 if (VM_RandomReadHint(vma))
1543 return;
1544 if (!ra->ra_pages)
1545 return;
1546
1547 if (VM_SequentialReadHint(vma)) {
1548 page_cache_sync_readahead(mapping, ra, file, offset,
1549 ra->ra_pages);
1550 return;
1551 }
1552
1553 /* Avoid banging the cache line if not needed */
1554 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1555 ra->mmap_miss++;
1556
1557 /*
1558 * Do we miss much more than hit in this file? If so,
1559 * stop bothering with read-ahead. It will only hurt.
1560 */
1561 if (ra->mmap_miss > MMAP_LOTSAMISS)
1562 return;
1563
1564 /*
1565 * mmap read-around
1566 */
1567 ra_pages = max_sane_readahead(ra->ra_pages);
1568 ra->start = max_t(long, 0, offset - ra_pages / 2);
1569 ra->size = ra_pages;
1570 ra->async_size = ra_pages / 4;
1571 ra_submit(ra, mapping, file);
1572 }
1573
1574 /*
1575 * Asynchronous readahead happens when we find the page and PG_readahead,
1576 * so we want to possibly extend the readahead further..
1577 */
1578 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1579 struct file_ra_state *ra,
1580 struct file *file,
1581 struct page *page,
1582 pgoff_t offset)
1583 {
1584 struct address_space *mapping = file->f_mapping;
1585
1586 /* If we don't want any read-ahead, don't bother */
1587 if (VM_RandomReadHint(vma))
1588 return;
1589 if (ra->mmap_miss > 0)
1590 ra->mmap_miss--;
1591 if (PageReadahead(page))
1592 page_cache_async_readahead(mapping, ra, file,
1593 page, offset, ra->ra_pages);
1594 }
1595
1596 /**
1597 * filemap_fault - read in file data for page fault handling
1598 * @vma: vma in which the fault was taken
1599 * @vmf: struct vm_fault containing details of the fault
1600 *
1601 * filemap_fault() is invoked via the vma operations vector for a
1602 * mapped memory region to read in file data during a page fault.
1603 *
1604 * The goto's are kind of ugly, but this streamlines the normal case of having
1605 * it in the page cache, and handles the special cases reasonably without
1606 * having a lot of duplicated code.
1607 */
1608 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1609 {
1610 int error;
1611 struct file *file = vma->vm_file;
1612 struct address_space *mapping = file->f_mapping;
1613 struct file_ra_state *ra = &file->f_ra;
1614 struct inode *inode = mapping->host;
1615 pgoff_t offset = vmf->pgoff;
1616 struct page *page;
1617 pgoff_t size;
1618 int ret = 0;
1619
1620 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1621 if (offset >= size)
1622 return VM_FAULT_SIGBUS;
1623
1624 /*
1625 * Do we have something in the page cache already?
1626 */
1627 page = find_get_page(mapping, offset);
1628 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1629 /*
1630 * We found the page, so try async readahead before
1631 * waiting for the lock.
1632 */
1633 do_async_mmap_readahead(vma, ra, file, page, offset);
1634 } else if (!page) {
1635 /* No page in the page cache at all */
1636 do_sync_mmap_readahead(vma, ra, file, offset);
1637 #ifdef CONFIG_ZRAM
1638 current->fm_flt++;
1639 #endif
1640 count_vm_event(PGFMFAULT);
1641 count_vm_event(PGMAJFAULT);
1642 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1643 ret = VM_FAULT_MAJOR;
1644 retry_find:
1645 page = find_get_page(mapping, offset);
1646 if (!page)
1647 goto no_cached_page;
1648 }
1649
1650 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1651 page_cache_release(page);
1652 return ret | VM_FAULT_RETRY;
1653 }
1654
1655 /* Did it get truncated? */
1656 if (unlikely(page->mapping != mapping)) {
1657 unlock_page(page);
1658 put_page(page);
1659 goto retry_find;
1660 }
1661 VM_BUG_ON(page->index != offset);
1662
1663 /*
1664 * We have a locked page in the page cache, now we need to check
1665 * that it's up-to-date. If not, it is going to be due to an error.
1666 */
1667 if (unlikely(!PageUptodate(page)))
1668 goto page_not_uptodate;
1669
1670 /*
1671 * Found the page and have a reference on it.
1672 * We must recheck i_size under page lock.
1673 */
1674 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1675 if (unlikely(offset >= size)) {
1676 unlock_page(page);
1677 page_cache_release(page);
1678 return VM_FAULT_SIGBUS;
1679 }
1680
1681 vmf->page = page;
1682 return ret | VM_FAULT_LOCKED;
1683
1684 no_cached_page:
1685 /*
1686 * We're only likely to ever get here if MADV_RANDOM is in
1687 * effect.
1688 */
1689 error = page_cache_read(file, offset);
1690
1691 /*
1692 * The page we want has now been added to the page cache.
1693 * In the unlikely event that someone removed it in the
1694 * meantime, we'll just come back here and read it again.
1695 */
1696 if (error >= 0)
1697 goto retry_find;
1698
1699 /*
1700 * An error return from page_cache_read can result if the
1701 * system is low on memory, or a problem occurs while trying
1702 * to schedule I/O.
1703 */
1704 if (error == -ENOMEM)
1705 return VM_FAULT_OOM;
1706 return VM_FAULT_SIGBUS;
1707
1708 page_not_uptodate:
1709 /*
1710 * Umm, take care of errors if the page isn't up-to-date.
1711 * Try to re-read it _once_. We do this synchronously,
1712 * because there really aren't any performance issues here
1713 * and we need to check for errors.
1714 */
1715 ClearPageError(page);
1716 error = mapping->a_ops->readpage(file, page);
1717 if (!error) {
1718 wait_on_page_locked(page);
1719 if (!PageUptodate(page))
1720 error = -EIO;
1721 }
1722 page_cache_release(page);
1723
1724 if (!error || error == AOP_TRUNCATED_PAGE)
1725 goto retry_find;
1726
1727 /* Things didn't work out. Return zero to tell the mm layer so. */
1728 shrink_readahead_size_eio(file, ra);
1729 return VM_FAULT_SIGBUS;
1730 }
1731 EXPORT_SYMBOL(filemap_fault);
1732
1733 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1734 {
1735 struct page *page = vmf->page;
1736 struct inode *inode = file_inode(vma->vm_file);
1737 int ret = VM_FAULT_LOCKED;
1738
1739 sb_start_pagefault(inode->i_sb);
1740 file_update_time(vma->vm_file);
1741 lock_page(page);
1742 if (page->mapping != inode->i_mapping) {
1743 unlock_page(page);
1744 ret = VM_FAULT_NOPAGE;
1745 goto out;
1746 }
1747 /*
1748 * We mark the page dirty already here so that when freeze is in
1749 * progress, we are guaranteed that writeback during freezing will
1750 * see the dirty page and writeprotect it again.
1751 */
1752 set_page_dirty(page);
1753 wait_for_stable_page(page);
1754 out:
1755 sb_end_pagefault(inode->i_sb);
1756 return ret;
1757 }
1758 EXPORT_SYMBOL(filemap_page_mkwrite);
1759
1760 const struct vm_operations_struct generic_file_vm_ops = {
1761 .fault = filemap_fault,
1762 .page_mkwrite = filemap_page_mkwrite,
1763 .remap_pages = generic_file_remap_pages,
1764 };
1765
1766 /* This is used for a general mmap of a disk file */
1767
1768 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1769 {
1770 struct address_space *mapping = file->f_mapping;
1771
1772 if (!mapping->a_ops->readpage)
1773 return -ENOEXEC;
1774 file_accessed(file);
1775 vma->vm_ops = &generic_file_vm_ops;
1776 return 0;
1777 }
1778
1779 /*
1780 * This is for filesystems which do not implement ->writepage.
1781 */
1782 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1783 {
1784 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1785 return -EINVAL;
1786 return generic_file_mmap(file, vma);
1787 }
1788 #else
1789 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1790 {
1791 return -ENOSYS;
1792 }
1793 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1794 {
1795 return -ENOSYS;
1796 }
1797 #endif /* CONFIG_MMU */
1798
1799 EXPORT_SYMBOL(generic_file_mmap);
1800 EXPORT_SYMBOL(generic_file_readonly_mmap);
1801
1802 static struct page *__read_cache_page(struct address_space *mapping,
1803 pgoff_t index,
1804 int (*filler)(void *, struct page *),
1805 void *data,
1806 gfp_t gfp)
1807 {
1808 struct page *page;
1809 int err;
1810 repeat:
1811 page = find_get_page(mapping, index);
1812 if (!page) {
1813 page = __page_cache_alloc(gfp | __GFP_COLD);
1814 if (!page)
1815 return ERR_PTR(-ENOMEM);
1816 err = add_to_page_cache_lru(page, mapping, index, gfp);
1817 if (unlikely(err)) {
1818 page_cache_release(page);
1819 if (err == -EEXIST)
1820 goto repeat;
1821 /* Presumably ENOMEM for radix tree node */
1822 return ERR_PTR(err);
1823 }
1824 err = filler(data, page);
1825 if (err < 0) {
1826 page_cache_release(page);
1827 page = ERR_PTR(err);
1828 }
1829 }
1830 return page;
1831 }
1832
1833 static struct page *do_read_cache_page(struct address_space *mapping,
1834 pgoff_t index,
1835 int (*filler)(void *, struct page *),
1836 void *data,
1837 gfp_t gfp)
1838
1839 {
1840 struct page *page;
1841 int err;
1842
1843 retry:
1844 page = __read_cache_page(mapping, index, filler, data, gfp);
1845 if (IS_ERR(page))
1846 return page;
1847 if (PageUptodate(page))
1848 goto out;
1849
1850 lock_page(page);
1851 if (!page->mapping) {
1852 unlock_page(page);
1853 page_cache_release(page);
1854 goto retry;
1855 }
1856 if (PageUptodate(page)) {
1857 unlock_page(page);
1858 goto out;
1859 }
1860 err = filler(data, page);
1861 if (err < 0) {
1862 page_cache_release(page);
1863 return ERR_PTR(err);
1864 }
1865 out:
1866 mark_page_accessed(page);
1867 return page;
1868 }
1869
1870 /**
1871 * read_cache_page_async - read into page cache, fill it if needed
1872 * @mapping: the page's address_space
1873 * @index: the page index
1874 * @filler: function to perform the read
1875 * @data: first arg to filler(data, page) function, often left as NULL
1876 *
1877 * Same as read_cache_page, but don't wait for page to become unlocked
1878 * after submitting it to the filler.
1879 *
1880 * Read into the page cache. If a page already exists, and PageUptodate() is
1881 * not set, try to fill the page but don't wait for it to become unlocked.
1882 *
1883 * If the page does not get brought uptodate, return -EIO.
1884 */
1885 struct page *read_cache_page_async(struct address_space *mapping,
1886 pgoff_t index,
1887 int (*filler)(void *, struct page *),
1888 void *data)
1889 {
1890 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1891 }
1892 EXPORT_SYMBOL(read_cache_page_async);
1893
1894 static struct page *wait_on_page_read(struct page *page)
1895 {
1896 if (!IS_ERR(page)) {
1897 wait_on_page_locked(page);
1898 if (!PageUptodate(page)) {
1899 page_cache_release(page);
1900 page = ERR_PTR(-EIO);
1901 }
1902 }
1903 return page;
1904 }
1905
1906 /**
1907 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1908 * @mapping: the page's address_space
1909 * @index: the page index
1910 * @gfp: the page allocator flags to use if allocating
1911 *
1912 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1913 * any new page allocations done using the specified allocation flags.
1914 *
1915 * If the page does not get brought uptodate, return -EIO.
1916 */
1917 struct page *read_cache_page_gfp(struct address_space *mapping,
1918 pgoff_t index,
1919 gfp_t gfp)
1920 {
1921 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1922
1923 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1924 }
1925 EXPORT_SYMBOL(read_cache_page_gfp);
1926
1927 /**
1928 * read_cache_page - read into page cache, fill it if needed
1929 * @mapping: the page's address_space
1930 * @index: the page index
1931 * @filler: function to perform the read
1932 * @data: first arg to filler(data, page) function, often left as NULL
1933 *
1934 * Read into the page cache. If a page already exists, and PageUptodate() is
1935 * not set, try to fill the page then wait for it to become unlocked.
1936 *
1937 * If the page does not get brought uptodate, return -EIO.
1938 */
1939 struct page *read_cache_page(struct address_space *mapping,
1940 pgoff_t index,
1941 int (*filler)(void *, struct page *),
1942 void *data)
1943 {
1944 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1945 }
1946 EXPORT_SYMBOL(read_cache_page);
1947
1948 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1949 const struct iovec *iov, size_t base, size_t bytes)
1950 {
1951 size_t copied = 0, left = 0;
1952
1953 while (bytes) {
1954 char __user *buf = iov->iov_base + base;
1955 int copy = min(bytes, iov->iov_len - base);
1956
1957 base = 0;
1958 left = __copy_from_user_inatomic(vaddr, buf, copy);
1959 copied += copy;
1960 bytes -= copy;
1961 vaddr += copy;
1962 iov++;
1963
1964 if (unlikely(left))
1965 break;
1966 }
1967 return copied - left;
1968 }
1969
1970 /*
1971 * Copy as much as we can into the page and return the number of bytes which
1972 * were successfully copied. If a fault is encountered then return the number of
1973 * bytes which were copied.
1974 */
1975 size_t iov_iter_copy_from_user_atomic(struct page *page,
1976 struct iov_iter *i, unsigned long offset, size_t bytes)
1977 {
1978 char *kaddr;
1979 size_t copied;
1980
1981 BUG_ON(!in_atomic());
1982 kaddr = kmap_atomic(page);
1983 if (likely(i->nr_segs == 1)) {
1984 int left;
1985 char __user *buf = i->iov->iov_base + i->iov_offset;
1986 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1987 copied = bytes - left;
1988 } else {
1989 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1990 i->iov, i->iov_offset, bytes);
1991 }
1992 kunmap_atomic(kaddr);
1993
1994 return copied;
1995 }
1996 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1997
1998 /*
1999 * This has the same sideeffects and return value as
2000 * iov_iter_copy_from_user_atomic().
2001 * The difference is that it attempts to resolve faults.
2002 * Page must not be locked.
2003 */
2004 size_t iov_iter_copy_from_user(struct page *page,
2005 struct iov_iter *i, unsigned long offset, size_t bytes)
2006 {
2007 char *kaddr;
2008 size_t copied;
2009
2010 kaddr = kmap(page);
2011 if (likely(i->nr_segs == 1)) {
2012 int left;
2013 char __user *buf = i->iov->iov_base + i->iov_offset;
2014 left = __copy_from_user(kaddr + offset, buf, bytes);
2015 copied = bytes - left;
2016 } else {
2017 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2018 i->iov, i->iov_offset, bytes);
2019 }
2020 kunmap(page);
2021 return copied;
2022 }
2023 EXPORT_SYMBOL(iov_iter_copy_from_user);
2024
2025 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2026 {
2027 BUG_ON(i->count < bytes);
2028
2029 if (likely(i->nr_segs == 1)) {
2030 i->iov_offset += bytes;
2031 i->count -= bytes;
2032 } else {
2033 const struct iovec *iov = i->iov;
2034 size_t base = i->iov_offset;
2035 unsigned long nr_segs = i->nr_segs;
2036
2037 /*
2038 * The !iov->iov_len check ensures we skip over unlikely
2039 * zero-length segments (without overruning the iovec).
2040 */
2041 while (bytes || unlikely(i->count && !iov->iov_len)) {
2042 int copy;
2043
2044 copy = min(bytes, iov->iov_len - base);
2045 BUG_ON(!i->count || i->count < copy);
2046 i->count -= copy;
2047 bytes -= copy;
2048 base += copy;
2049 if (iov->iov_len == base) {
2050 iov++;
2051 nr_segs--;
2052 base = 0;
2053 }
2054 }
2055 i->iov = iov;
2056 i->iov_offset = base;
2057 i->nr_segs = nr_segs;
2058 }
2059 }
2060 EXPORT_SYMBOL(iov_iter_advance);
2061
2062 /*
2063 * Fault in the first iovec of the given iov_iter, to a maximum length
2064 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2065 * accessed (ie. because it is an invalid address).
2066 *
2067 * writev-intensive code may want this to prefault several iovecs -- that
2068 * would be possible (callers must not rely on the fact that _only_ the
2069 * first iovec will be faulted with the current implementation).
2070 */
2071 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2072 {
2073 char __user *buf = i->iov->iov_base + i->iov_offset;
2074 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2075 return fault_in_pages_readable(buf, bytes);
2076 }
2077 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2078
2079 /*
2080 * Return the count of just the current iov_iter segment.
2081 */
2082 size_t iov_iter_single_seg_count(const struct iov_iter *i)
2083 {
2084 const struct iovec *iov = i->iov;
2085 if (i->nr_segs == 1)
2086 return i->count;
2087 else
2088 return min(i->count, iov->iov_len - i->iov_offset);
2089 }
2090 EXPORT_SYMBOL(iov_iter_single_seg_count);
2091
2092 /*
2093 * Performs necessary checks before doing a write
2094 *
2095 * Can adjust writing position or amount of bytes to write.
2096 * Returns appropriate error code that caller should return or
2097 * zero in case that write should be allowed.
2098 */
2099 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2100 {
2101 struct inode *inode = file->f_mapping->host;
2102 unsigned long limit = rlimit(RLIMIT_FSIZE);
2103
2104 if (unlikely(*pos < 0))
2105 return -EINVAL;
2106
2107 if (!isblk) {
2108 /* FIXME: this is for backwards compatibility with 2.4 */
2109 if (file->f_flags & O_APPEND)
2110 *pos = i_size_read(inode);
2111
2112 if (limit != RLIM_INFINITY) {
2113 if (*pos >= limit) {
2114 send_sig(SIGXFSZ, current, 0);
2115 return -EFBIG;
2116 }
2117 if (*count > limit - (typeof(limit))*pos) {
2118 *count = limit - (typeof(limit))*pos;
2119 }
2120 }
2121 }
2122
2123 /*
2124 * LFS rule
2125 */
2126 if (unlikely(*pos + *count > MAX_NON_LFS &&
2127 !(file->f_flags & O_LARGEFILE))) {
2128 if (*pos >= MAX_NON_LFS) {
2129 return -EFBIG;
2130 }
2131 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2132 *count = MAX_NON_LFS - (unsigned long)*pos;
2133 }
2134 }
2135
2136 /*
2137 * Are we about to exceed the fs block limit ?
2138 *
2139 * If we have written data it becomes a short write. If we have
2140 * exceeded without writing data we send a signal and return EFBIG.
2141 * Linus frestrict idea will clean these up nicely..
2142 */
2143 if (likely(!isblk)) {
2144 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2145 if (*count || *pos > inode->i_sb->s_maxbytes) {
2146 return -EFBIG;
2147 }
2148 /* zero-length writes at ->s_maxbytes are OK */
2149 }
2150
2151 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2152 *count = inode->i_sb->s_maxbytes - *pos;
2153 } else {
2154 #ifdef CONFIG_BLOCK
2155 loff_t isize;
2156 if (bdev_read_only(I_BDEV(inode)))
2157 return -EPERM;
2158 isize = i_size_read(inode);
2159 if (*pos >= isize) {
2160 if (*count || *pos > isize)
2161 return -ENOSPC;
2162 }
2163
2164 if (*pos + *count > isize)
2165 *count = isize - *pos;
2166 #else
2167 return -EPERM;
2168 #endif
2169 }
2170 return 0;
2171 }
2172 EXPORT_SYMBOL(generic_write_checks);
2173
2174 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2175 loff_t pos, unsigned len, unsigned flags,
2176 struct page **pagep, void **fsdata)
2177 {
2178 const struct address_space_operations *aops = mapping->a_ops;
2179
2180 return aops->write_begin(file, mapping, pos, len, flags,
2181 pagep, fsdata);
2182 }
2183 EXPORT_SYMBOL(pagecache_write_begin);
2184
2185 int pagecache_write_end(struct file *file, struct address_space *mapping,
2186 loff_t pos, unsigned len, unsigned copied,
2187 struct page *page, void *fsdata)
2188 {
2189 const struct address_space_operations *aops = mapping->a_ops;
2190
2191 mark_page_accessed(page);
2192 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2193 }
2194 EXPORT_SYMBOL(pagecache_write_end);
2195
2196 ssize_t
2197 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2198 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2199 size_t count, size_t ocount)
2200 {
2201 struct file *file = iocb->ki_filp;
2202 struct address_space *mapping = file->f_mapping;
2203 struct inode *inode = mapping->host;
2204 ssize_t written;
2205 size_t write_len;
2206 pgoff_t end;
2207
2208 if (count != ocount)
2209 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2210
2211 write_len = iov_length(iov, *nr_segs);
2212 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2213
2214 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2215 if (written)
2216 goto out;
2217
2218 /*
2219 * After a write we want buffered reads to be sure to go to disk to get
2220 * the new data. We invalidate clean cached page from the region we're
2221 * about to write. We do this *before* the write so that we can return
2222 * without clobbering -EIOCBQUEUED from ->direct_IO().
2223 */
2224 if (mapping->nrpages) {
2225 written = invalidate_inode_pages2_range(mapping,
2226 pos >> PAGE_CACHE_SHIFT, end);
2227 /*
2228 * If a page can not be invalidated, return 0 to fall back
2229 * to buffered write.
2230 */
2231 if (written) {
2232 if (written == -EBUSY)
2233 return 0;
2234 goto out;
2235 }
2236 }
2237
2238 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2239
2240 /*
2241 * Finally, try again to invalidate clean pages which might have been
2242 * cached by non-direct readahead, or faulted in by get_user_pages()
2243 * if the source of the write was an mmap'ed region of the file
2244 * we're writing. Either one is a pretty crazy thing to do,
2245 * so we don't support it 100%. If this invalidation
2246 * fails, tough, the write still worked...
2247 */
2248 if (mapping->nrpages) {
2249 invalidate_inode_pages2_range(mapping,
2250 pos >> PAGE_CACHE_SHIFT, end);
2251 }
2252
2253 if (written > 0) {
2254 pos += written;
2255 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2256 i_size_write(inode, pos);
2257 mark_inode_dirty(inode);
2258 }
2259 *ppos = pos;
2260 }
2261 out:
2262 return written;
2263 }
2264 EXPORT_SYMBOL(generic_file_direct_write);
2265
2266 /*
2267 * Find or create a page at the given pagecache position. Return the locked
2268 * page. This function is specifically for buffered writes.
2269 */
2270 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2271 pgoff_t index, unsigned flags)
2272 {
2273 int status;
2274 gfp_t gfp_mask;
2275 struct page *page;
2276 gfp_t gfp_notmask = 0;
2277
2278 gfp_mask = mapping_gfp_mask(mapping);
2279 if (mapping_cap_account_dirty(mapping))
2280 gfp_mask |= __GFP_WRITE;
2281 if (flags & AOP_FLAG_NOFS)
2282 gfp_notmask = __GFP_FS;
2283 repeat:
2284 page = find_lock_page(mapping, index);
2285 if (page)
2286 goto found;
2287
2288 page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2289 if (!page)
2290 return NULL;
2291 status = add_to_page_cache_lru(page, mapping, index,
2292 GFP_KERNEL & ~gfp_notmask);
2293 if (unlikely(status)) {
2294 page_cache_release(page);
2295 if (status == -EEXIST)
2296 goto repeat;
2297 return NULL;
2298 }
2299 found:
2300 wait_for_stable_page(page);
2301 return page;
2302 }
2303 EXPORT_SYMBOL(grab_cache_page_write_begin);
2304
2305 static ssize_t generic_perform_write(struct file *file,
2306 struct iov_iter *i, loff_t pos)
2307 {
2308 struct address_space *mapping = file->f_mapping;
2309 const struct address_space_operations *a_ops = mapping->a_ops;
2310 long status = 0;
2311 ssize_t written = 0;
2312 unsigned int flags = 0;
2313
2314 /*
2315 * Copies from kernel address space cannot fail (NFSD is a big user).
2316 */
2317 if (segment_eq(get_fs(), KERNEL_DS))
2318 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2319
2320 do {
2321 struct page *page;
2322 unsigned long offset; /* Offset into pagecache page */
2323 unsigned long bytes; /* Bytes to write to page */
2324 size_t copied; /* Bytes copied from user */
2325 void *fsdata;
2326
2327 offset = (pos & (PAGE_CACHE_SIZE - 1));
2328 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2329 iov_iter_count(i));
2330
2331 again:
2332 /*
2333 * Bring in the user page that we will copy from _first_.
2334 * Otherwise there's a nasty deadlock on copying from the
2335 * same page as we're writing to, without it being marked
2336 * up-to-date.
2337 *
2338 * Not only is this an optimisation, but it is also required
2339 * to check that the address is actually valid, when atomic
2340 * usercopies are used, below.
2341 */
2342 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2343 status = -EFAULT;
2344 break;
2345 }
2346
2347 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2348 &page, &fsdata);
2349 if (unlikely(status))
2350 break;
2351
2352 if (mapping_writably_mapped(mapping))
2353 flush_dcache_page(page);
2354
2355 pagefault_disable();
2356 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2357 pagefault_enable();
2358 flush_dcache_page(page);
2359
2360 mark_page_accessed(page);
2361 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2362 page, fsdata);
2363 if (unlikely(status < 0))
2364 break;
2365 copied = status;
2366
2367 cond_resched();
2368
2369 iov_iter_advance(i, copied);
2370 if (unlikely(copied == 0)) {
2371 /*
2372 * If we were unable to copy any data at all, we must
2373 * fall back to a single segment length write.
2374 *
2375 * If we didn't fallback here, we could livelock
2376 * because not all segments in the iov can be copied at
2377 * once without a pagefault.
2378 */
2379 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2380 iov_iter_single_seg_count(i));
2381 goto again;
2382 }
2383 pos += copied;
2384 written += copied;
2385
2386 balance_dirty_pages_ratelimited(mapping);
2387 if (fatal_signal_pending(current)) {
2388 status = -EINTR;
2389 break;
2390 }
2391 } while (iov_iter_count(i));
2392
2393 return written ? written : status;
2394 }
2395
2396 ssize_t
2397 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2398 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2399 size_t count, ssize_t written)
2400 {
2401 struct file *file = iocb->ki_filp;
2402 ssize_t status;
2403 struct iov_iter i;
2404
2405 iov_iter_init(&i, iov, nr_segs, count, written);
2406 status = generic_perform_write(file, &i, pos);
2407
2408 if (likely(status >= 0)) {
2409 written += status;
2410 *ppos = pos + status;
2411 }
2412
2413 return written ? written : status;
2414 }
2415 EXPORT_SYMBOL(generic_file_buffered_write);
2416
2417 /**
2418 * __generic_file_aio_write - write data to a file
2419 * @iocb: IO state structure (file, offset, etc.)
2420 * @iov: vector with data to write
2421 * @nr_segs: number of segments in the vector
2422 * @ppos: position where to write
2423 *
2424 * This function does all the work needed for actually writing data to a
2425 * file. It does all basic checks, removes SUID from the file, updates
2426 * modification times and calls proper subroutines depending on whether we
2427 * do direct IO or a standard buffered write.
2428 *
2429 * It expects i_mutex to be grabbed unless we work on a block device or similar
2430 * object which does not need locking at all.
2431 *
2432 * This function does *not* take care of syncing data in case of O_SYNC write.
2433 * A caller has to handle it. This is mainly due to the fact that we want to
2434 * avoid syncing under i_mutex.
2435 */
2436 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2437 unsigned long nr_segs, loff_t *ppos)
2438 {
2439 struct file *file = iocb->ki_filp;
2440 struct address_space * mapping = file->f_mapping;
2441 size_t ocount; /* original count */
2442 size_t count; /* after file limit checks */
2443 struct inode *inode = mapping->host;
2444 loff_t pos;
2445 ssize_t written;
2446 ssize_t err;
2447
2448 ocount = 0;
2449 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2450 if (err)
2451 return err;
2452
2453 count = ocount;
2454 pos = *ppos;
2455
2456 /* We can write back this queue in page reclaim */
2457 current->backing_dev_info = mapping->backing_dev_info;
2458 written = 0;
2459
2460 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2461 if (err)
2462 goto out;
2463
2464 if (count == 0)
2465 goto out;
2466
2467 err = file_remove_suid(file);
2468 if (err)
2469 goto out;
2470
2471 err = file_update_time(file);
2472 if (err)
2473 goto out;
2474
2475 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2476 if (unlikely(file->f_flags & O_DIRECT)) {
2477 loff_t endbyte;
2478 ssize_t written_buffered;
2479
2480 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2481 ppos, count, ocount);
2482 if (written < 0 || written == count)
2483 goto out;
2484 /*
2485 * direct-io write to a hole: fall through to buffered I/O
2486 * for completing the rest of the request.
2487 */
2488 pos += written;
2489 count -= written;
2490 written_buffered = generic_file_buffered_write(iocb, iov,
2491 nr_segs, pos, ppos, count,
2492 written);
2493 /*
2494 * If generic_file_buffered_write() retuned a synchronous error
2495 * then we want to return the number of bytes which were
2496 * direct-written, or the error code if that was zero. Note
2497 * that this differs from normal direct-io semantics, which
2498 * will return -EFOO even if some bytes were written.
2499 */
2500 if (written_buffered < 0) {
2501 err = written_buffered;
2502 goto out;
2503 }
2504
2505 /*
2506 * We need to ensure that the page cache pages are written to
2507 * disk and invalidated to preserve the expected O_DIRECT
2508 * semantics.
2509 */
2510 endbyte = pos + written_buffered - written - 1;
2511 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2512 if (err == 0) {
2513 written = written_buffered;
2514 invalidate_mapping_pages(mapping,
2515 pos >> PAGE_CACHE_SHIFT,
2516 endbyte >> PAGE_CACHE_SHIFT);
2517 } else {
2518 /*
2519 * We don't know how much we wrote, so just return
2520 * the number of bytes which were direct-written
2521 */
2522 }
2523 } else {
2524 written = generic_file_buffered_write(iocb, iov, nr_segs,
2525 pos, ppos, count, written);
2526 }
2527 out:
2528 current->backing_dev_info = NULL;
2529 return written ? written : err;
2530 }
2531 EXPORT_SYMBOL(__generic_file_aio_write);
2532
2533 /**
2534 * generic_file_aio_write - write data to a file
2535 * @iocb: IO state structure
2536 * @iov: vector with data to write
2537 * @nr_segs: number of segments in the vector
2538 * @pos: position in file where to write
2539 *
2540 * This is a wrapper around __generic_file_aio_write() to be used by most
2541 * filesystems. It takes care of syncing the file in case of O_SYNC file
2542 * and acquires i_mutex as needed.
2543 */
2544 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2545 unsigned long nr_segs, loff_t pos)
2546 {
2547 struct file *file = iocb->ki_filp;
2548 struct inode *inode = file->f_mapping->host;
2549 ssize_t ret;
2550
2551 BUG_ON(iocb->ki_pos != pos);
2552
2553 mutex_lock(&inode->i_mutex);
2554 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2555 mutex_unlock(&inode->i_mutex);
2556
2557 if (ret > 0 || ret == -EIOCBQUEUED) {
2558 ssize_t err;
2559
2560 err = generic_write_sync(file, pos, ret);
2561 if (err < 0 && ret > 0)
2562 ret = err;
2563 }
2564 return ret;
2565 }
2566 EXPORT_SYMBOL(generic_file_aio_write);
2567
2568 /**
2569 * try_to_release_page() - release old fs-specific metadata on a page
2570 *
2571 * @page: the page which the kernel is trying to free
2572 * @gfp_mask: memory allocation flags (and I/O mode)
2573 *
2574 * The address_space is to try to release any data against the page
2575 * (presumably at page->private). If the release was successful, return `1'.
2576 * Otherwise return zero.
2577 *
2578 * This may also be called if PG_fscache is set on a page, indicating that the
2579 * page is known to the local caching routines.
2580 *
2581 * The @gfp_mask argument specifies whether I/O may be performed to release
2582 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2583 *
2584 */
2585 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2586 {
2587 struct address_space * const mapping = page->mapping;
2588
2589 BUG_ON(!PageLocked(page));
2590 if (PageWriteback(page))
2591 return 0;
2592
2593 if (mapping && mapping->a_ops->releasepage)
2594 return mapping->a_ops->releasepage(page, gfp_mask);
2595 return try_to_free_buffers(page);
2596 }
2597
2598 EXPORT_SYMBOL(try_to_release_page);