Merge tag 'v3.10.107' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/filemap.h>
40
41 /*
42 * FIXME: remove all knowledge of the buffer layer from the core VM
43 */
44 #include <linux/buffer_head.h> /* for try_to_free_buffers */
45
46 #include <asm/mman.h>
47
48 /*
49 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * though.
51 *
52 * Shared mappings now work. 15.8.1995 Bruno.
53 *
54 * finished 'unifying' the page and buffer cache and SMP-threaded the
55 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 *
57 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58 */
59
60 /*
61 * Lock ordering:
62 *
63 * ->i_mmap_mutex (truncate_pagecache)
64 * ->private_lock (__free_pte->__set_page_dirty_buffers)
65 * ->swap_lock (exclusive_swap_page, others)
66 * ->mapping->tree_lock
67 *
68 * ->i_mutex
69 * ->i_mmap_mutex (truncate->unmap_mapping_range)
70 *
71 * ->mmap_sem
72 * ->i_mmap_mutex
73 * ->page_table_lock or pte_lock (various, mainly in memory.c)
74 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 *
76 * ->mmap_sem
77 * ->lock_page (access_process_vm)
78 *
79 * ->i_mutex (generic_file_buffered_write)
80 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 *
82 * bdi->wb.list_lock
83 * sb_lock (fs/fs-writeback.c)
84 * ->mapping->tree_lock (__sync_single_inode)
85 *
86 * ->i_mmap_mutex
87 * ->anon_vma.lock (vma_adjust)
88 *
89 * ->anon_vma.lock
90 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
91 *
92 * ->page_table_lock or pte_lock
93 * ->swap_lock (try_to_unmap_one)
94 * ->private_lock (try_to_unmap_one)
95 * ->tree_lock (try_to_unmap_one)
96 * ->zone.lru_lock (follow_page->mark_page_accessed)
97 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
98 * ->private_lock (page_remove_rmap->set_page_dirty)
99 * ->tree_lock (page_remove_rmap->set_page_dirty)
100 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
101 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
103 * ->inode->i_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
106 * ->i_mmap_mutex
107 * ->tasklist_lock (memory_failure, collect_procs_ao)
108 */
109
110 /*
111 * Delete a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
114 */
115 void __delete_from_page_cache(struct page *page)
116 {
117 struct address_space *mapping = page->mapping;
118
119 trace_mm_filemap_delete_from_page_cache(page);
120 /*
121 * if we're uptodate, flush out into the cleancache, otherwise
122 * invalidate any existing cleancache entries. We can't leave
123 * stale data around in the cleancache once our page is gone
124 */
125 if (PageUptodate(page) && PageMappedToDisk(page))
126 cleancache_put_page(page);
127 else
128 cleancache_invalidate_page(mapping, page);
129
130 radix_tree_delete(&mapping->page_tree, page->index);
131 page->mapping = NULL;
132 /* Leave page->index set: truncation lookup relies upon it */
133 mapping->nrpages--;
134 __dec_zone_page_state(page, NR_FILE_PAGES);
135 if (PageSwapBacked(page))
136 __dec_zone_page_state(page, NR_SHMEM);
137 BUG_ON(page_mapped(page));
138
139 /*
140 * Some filesystems seem to re-dirty the page even after
141 * the VM has canceled the dirty bit (eg ext3 journaling).
142 *
143 * Fix it up by doing a final dirty accounting check after
144 * having removed the page entirely.
145 */
146 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
147 dec_zone_page_state(page, NR_FILE_DIRTY);
148 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
149 }
150 }
151
152 /**
153 * delete_from_page_cache - delete page from page cache
154 * @page: the page which the kernel is trying to remove from page cache
155 *
156 * This must be called only on pages that have been verified to be in the page
157 * cache and locked. It will never put the page into the free list, the caller
158 * has a reference on the page.
159 */
160 void delete_from_page_cache(struct page *page)
161 {
162 struct address_space *mapping = page->mapping;
163 void (*freepage)(struct page *);
164
165 BUG_ON(!PageLocked(page));
166
167 freepage = mapping->a_ops->freepage;
168 spin_lock_irq(&mapping->tree_lock);
169 __delete_from_page_cache(page);
170 spin_unlock_irq(&mapping->tree_lock);
171 mem_cgroup_uncharge_cache_page(page);
172
173 if (freepage)
174 freepage(page);
175 page_cache_release(page);
176 }
177 EXPORT_SYMBOL(delete_from_page_cache);
178
179 static int sleep_on_page(void *word)
180 {
181 io_schedule();
182 return 0;
183 }
184
185 static int sleep_on_page_killable(void *word)
186 {
187 sleep_on_page(word);
188 return fatal_signal_pending(current) ? -EINTR : 0;
189 }
190
191 static int filemap_check_errors(struct address_space *mapping)
192 {
193 int ret = 0;
194 /* Check for outstanding write errors */
195 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
196 ret = -ENOSPC;
197 if (test_and_clear_bit(AS_EIO, &mapping->flags))
198 ret = -EIO;
199 return ret;
200 }
201
202 /**
203 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
204 * @mapping: address space structure to write
205 * @start: offset in bytes where the range starts
206 * @end: offset in bytes where the range ends (inclusive)
207 * @sync_mode: enable synchronous operation
208 *
209 * Start writeback against all of a mapping's dirty pages that lie
210 * within the byte offsets <start, end> inclusive.
211 *
212 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
213 * opposed to a regular memory cleansing writeback. The difference between
214 * these two operations is that if a dirty page/buffer is encountered, it must
215 * be waited upon, and not just skipped over.
216 */
217 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 loff_t end, int sync_mode)
219 {
220 int ret;
221 struct writeback_control wbc = {
222 .sync_mode = sync_mode,
223 .nr_to_write = LONG_MAX,
224 .range_start = start,
225 .range_end = end,
226 };
227
228 if (!mapping_cap_writeback_dirty(mapping))
229 return 0;
230
231 ret = do_writepages(mapping, &wbc);
232 return ret;
233 }
234
235 static inline int __filemap_fdatawrite(struct address_space *mapping,
236 int sync_mode)
237 {
238 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
239 }
240
241 int filemap_fdatawrite(struct address_space *mapping)
242 {
243 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
244 }
245 EXPORT_SYMBOL(filemap_fdatawrite);
246
247 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
248 loff_t end)
249 {
250 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
251 }
252 EXPORT_SYMBOL(filemap_fdatawrite_range);
253
254 /**
255 * filemap_flush - mostly a non-blocking flush
256 * @mapping: target address_space
257 *
258 * This is a mostly non-blocking flush. Not suitable for data-integrity
259 * purposes - I/O may not be started against all dirty pages.
260 */
261 int filemap_flush(struct address_space *mapping)
262 {
263 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
264 }
265 EXPORT_SYMBOL(filemap_flush);
266
267 /**
268 * filemap_fdatawait_range - wait for writeback to complete
269 * @mapping: address space structure to wait for
270 * @start_byte: offset in bytes where the range starts
271 * @end_byte: offset in bytes where the range ends (inclusive)
272 *
273 * Walk the list of under-writeback pages of the given address space
274 * in the given range and wait for all of them.
275 */
276 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
277 loff_t end_byte)
278 {
279 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
280 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
281 struct pagevec pvec;
282 int nr_pages;
283 int ret2, ret = 0;
284
285 if (end_byte < start_byte)
286 goto out;
287
288 pagevec_init(&pvec, 0);
289 while ((index <= end) &&
290 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
291 PAGECACHE_TAG_WRITEBACK,
292 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
293 unsigned i;
294
295 for (i = 0; i < nr_pages; i++) {
296 struct page *page = pvec.pages[i];
297
298 /* until radix tree lookup accepts end_index */
299 if (page->index > end)
300 continue;
301
302 wait_on_page_writeback(page);
303 if (TestClearPageError(page))
304 ret = -EIO;
305 }
306 pagevec_release(&pvec);
307 cond_resched();
308 }
309 out:
310 ret2 = filemap_check_errors(mapping);
311 if (!ret)
312 ret = ret2;
313
314 return ret;
315 }
316 EXPORT_SYMBOL(filemap_fdatawait_range);
317
318 /**
319 * filemap_fdatawait - wait for all under-writeback pages to complete
320 * @mapping: address space structure to wait for
321 *
322 * Walk the list of under-writeback pages of the given address space
323 * and wait for all of them.
324 */
325 int filemap_fdatawait(struct address_space *mapping)
326 {
327 loff_t i_size = i_size_read(mapping->host);
328
329 if (i_size == 0)
330 return 0;
331
332 return filemap_fdatawait_range(mapping, 0, i_size - 1);
333 }
334 EXPORT_SYMBOL(filemap_fdatawait);
335
336 int filemap_write_and_wait(struct address_space *mapping)
337 {
338 int err = 0;
339
340 if (mapping->nrpages) {
341 err = filemap_fdatawrite(mapping);
342 /*
343 * Even if the above returned error, the pages may be
344 * written partially (e.g. -ENOSPC), so we wait for it.
345 * But the -EIO is special case, it may indicate the worst
346 * thing (e.g. bug) happened, so we avoid waiting for it.
347 */
348 if (err != -EIO) {
349 int err2 = filemap_fdatawait(mapping);
350 if (!err)
351 err = err2;
352 }
353 } else {
354 err = filemap_check_errors(mapping);
355 }
356 return err;
357 }
358 EXPORT_SYMBOL(filemap_write_and_wait);
359
360 /**
361 * filemap_write_and_wait_range - write out & wait on a file range
362 * @mapping: the address_space for the pages
363 * @lstart: offset in bytes where the range starts
364 * @lend: offset in bytes where the range ends (inclusive)
365 *
366 * Write out and wait upon file offsets lstart->lend, inclusive.
367 *
368 * Note that `lend' is inclusive (describes the last byte to be written) so
369 * that this function can be used to write to the very end-of-file (end = -1).
370 */
371 int filemap_write_and_wait_range(struct address_space *mapping,
372 loff_t lstart, loff_t lend)
373 {
374 int err = 0;
375
376 if (mapping->nrpages) {
377 err = __filemap_fdatawrite_range(mapping, lstart, lend,
378 WB_SYNC_ALL);
379 /* See comment of filemap_write_and_wait() */
380 if (err != -EIO) {
381 int err2 = filemap_fdatawait_range(mapping,
382 lstart, lend);
383 if (!err)
384 err = err2;
385 }
386 } else {
387 err = filemap_check_errors(mapping);
388 }
389 return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait_range);
392
393 /**
394 * replace_page_cache_page - replace a pagecache page with a new one
395 * @old: page to be replaced
396 * @new: page to replace with
397 * @gfp_mask: allocation mode
398 *
399 * This function replaces a page in the pagecache with a new one. On
400 * success it acquires the pagecache reference for the new page and
401 * drops it for the old page. Both the old and new pages must be
402 * locked. This function does not add the new page to the LRU, the
403 * caller must do that.
404 *
405 * The remove + add is atomic. The only way this function can fail is
406 * memory allocation failure.
407 */
408 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
409 {
410 int error;
411
412 VM_BUG_ON(!PageLocked(old));
413 VM_BUG_ON(!PageLocked(new));
414 VM_BUG_ON(new->mapping);
415
416 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
417 if (!error) {
418 struct address_space *mapping = old->mapping;
419 void (*freepage)(struct page *);
420
421 pgoff_t offset = old->index;
422 freepage = mapping->a_ops->freepage;
423
424 page_cache_get(new);
425 new->mapping = mapping;
426 new->index = offset;
427
428 spin_lock_irq(&mapping->tree_lock);
429 __delete_from_page_cache(old);
430 error = radix_tree_insert(&mapping->page_tree, offset, new);
431 BUG_ON(error);
432 mapping->nrpages++;
433 __inc_zone_page_state(new, NR_FILE_PAGES);
434 if (PageSwapBacked(new))
435 __inc_zone_page_state(new, NR_SHMEM);
436 spin_unlock_irq(&mapping->tree_lock);
437 /* mem_cgroup codes must not be called under tree_lock */
438 mem_cgroup_replace_page_cache(old, new);
439 radix_tree_preload_end();
440 if (freepage)
441 freepage(old);
442 page_cache_release(old);
443 }
444
445 return error;
446 }
447 EXPORT_SYMBOL_GPL(replace_page_cache_page);
448
449 /**
450 * add_to_page_cache_locked - add a locked page to the pagecache
451 * @page: page to add
452 * @mapping: the page's address_space
453 * @offset: page index
454 * @gfp_mask: page allocation mode
455 *
456 * This function is used to add a page to the pagecache. It must be locked.
457 * This function does not add the page to the LRU. The caller must do that.
458 */
459 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
460 pgoff_t offset, gfp_t gfp_mask)
461 {
462 int error;
463
464 VM_BUG_ON(!PageLocked(page));
465 VM_BUG_ON(PageSwapBacked(page));
466
467 error = mem_cgroup_cache_charge(page, current->mm,
468 gfp_mask & GFP_RECLAIM_MASK);
469 if (error)
470 goto out;
471
472 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
473 if (error == 0) {
474 page_cache_get(page);
475 page->mapping = mapping;
476 page->index = offset;
477
478 spin_lock_irq(&mapping->tree_lock);
479 error = radix_tree_insert(&mapping->page_tree, offset, page);
480 if (likely(!error)) {
481 mapping->nrpages++;
482 __inc_zone_page_state(page, NR_FILE_PAGES);
483 spin_unlock_irq(&mapping->tree_lock);
484 trace_mm_filemap_add_to_page_cache(page);
485 } else {
486 page->mapping = NULL;
487 /* Leave page->index set: truncation relies upon it */
488 spin_unlock_irq(&mapping->tree_lock);
489 mem_cgroup_uncharge_cache_page(page);
490 page_cache_release(page);
491 }
492 radix_tree_preload_end();
493 } else
494 mem_cgroup_uncharge_cache_page(page);
495 out:
496 return error;
497 }
498 EXPORT_SYMBOL(add_to_page_cache_locked);
499
500 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
501 pgoff_t offset, gfp_t gfp_mask)
502 {
503 int ret;
504
505 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
506 if (ret == 0)
507 lru_cache_add_file(page);
508 return ret;
509 }
510 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
511
512 #ifdef CONFIG_NUMA
513 struct page *__page_cache_alloc(gfp_t gfp)
514 {
515 int n;
516 struct page *page;
517
518 if (cpuset_do_page_mem_spread()) {
519 unsigned int cpuset_mems_cookie;
520 do {
521 cpuset_mems_cookie = get_mems_allowed();
522 n = cpuset_mem_spread_node();
523 page = alloc_pages_exact_node(n, gfp, 0);
524 } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
525
526 return page;
527 }
528 return alloc_pages(gfp, 0);
529 }
530 EXPORT_SYMBOL(__page_cache_alloc);
531 #endif
532
533 /*
534 * In order to wait for pages to become available there must be
535 * waitqueues associated with pages. By using a hash table of
536 * waitqueues where the bucket discipline is to maintain all
537 * waiters on the same queue and wake all when any of the pages
538 * become available, and for the woken contexts to check to be
539 * sure the appropriate page became available, this saves space
540 * at a cost of "thundering herd" phenomena during rare hash
541 * collisions.
542 */
543 static wait_queue_head_t *page_waitqueue(struct page *page)
544 {
545 const struct zone *zone = page_zone(page);
546
547 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
548 }
549
550 static inline void wake_up_page(struct page *page, int bit)
551 {
552 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
553 }
554
555 void wait_on_page_bit(struct page *page, int bit_nr)
556 {
557 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
558
559 if (test_bit(bit_nr, &page->flags))
560 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
561 TASK_UNINTERRUPTIBLE);
562 }
563 EXPORT_SYMBOL(wait_on_page_bit);
564
565 int wait_on_page_bit_killable(struct page *page, int bit_nr)
566 {
567 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
568
569 if (!test_bit(bit_nr, &page->flags))
570 return 0;
571
572 return __wait_on_bit(page_waitqueue(page), &wait,
573 sleep_on_page_killable, TASK_KILLABLE);
574 }
575
576 /**
577 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
578 * @page: Page defining the wait queue of interest
579 * @waiter: Waiter to add to the queue
580 *
581 * Add an arbitrary @waiter to the wait queue for the nominated @page.
582 */
583 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
584 {
585 wait_queue_head_t *q = page_waitqueue(page);
586 unsigned long flags;
587
588 spin_lock_irqsave(&q->lock, flags);
589 __add_wait_queue(q, waiter);
590 spin_unlock_irqrestore(&q->lock, flags);
591 }
592 EXPORT_SYMBOL_GPL(add_page_wait_queue);
593
594 /**
595 * unlock_page - unlock a locked page
596 * @page: the page
597 *
598 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
599 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
600 * mechananism between PageLocked pages and PageWriteback pages is shared.
601 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
602 *
603 * The mb is necessary to enforce ordering between the clear_bit and the read
604 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
605 */
606 void unlock_page(struct page *page)
607 {
608 VM_BUG_ON(!PageLocked(page));
609 clear_bit_unlock(PG_locked, &page->flags);
610 smp_mb__after_clear_bit();
611 wake_up_page(page, PG_locked);
612 }
613 EXPORT_SYMBOL(unlock_page);
614
615 /**
616 * end_page_writeback - end writeback against a page
617 * @page: the page
618 */
619 void end_page_writeback(struct page *page)
620 {
621 if (TestClearPageReclaim(page))
622 rotate_reclaimable_page(page);
623
624 if (!test_clear_page_writeback(page))
625 BUG();
626
627 smp_mb__after_clear_bit();
628 wake_up_page(page, PG_writeback);
629 }
630 EXPORT_SYMBOL(end_page_writeback);
631
632 /**
633 * __lock_page - get a lock on the page, assuming we need to sleep to get it
634 * @page: the page to lock
635 */
636 void __lock_page(struct page *page)
637 {
638 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
639
640 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
641 TASK_UNINTERRUPTIBLE);
642 }
643 EXPORT_SYMBOL(__lock_page);
644
645 int __lock_page_killable(struct page *page)
646 {
647 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
648
649 return __wait_on_bit_lock(page_waitqueue(page), &wait,
650 sleep_on_page_killable, TASK_KILLABLE);
651 }
652 EXPORT_SYMBOL_GPL(__lock_page_killable);
653
654 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
655 unsigned int flags)
656 {
657 if (flags & FAULT_FLAG_ALLOW_RETRY) {
658 /*
659 * CAUTION! In this case, mmap_sem is not released
660 * even though return 0.
661 */
662 if (flags & FAULT_FLAG_RETRY_NOWAIT)
663 return 0;
664
665 up_read(&mm->mmap_sem);
666 if (flags & FAULT_FLAG_KILLABLE)
667 wait_on_page_locked_killable(page);
668 else
669 wait_on_page_locked(page);
670 return 0;
671 } else {
672 if (flags & FAULT_FLAG_KILLABLE) {
673 int ret;
674
675 ret = __lock_page_killable(page);
676 if (ret) {
677 up_read(&mm->mmap_sem);
678 return 0;
679 }
680 } else
681 __lock_page(page);
682 return 1;
683 }
684 }
685
686 /**
687 * find_get_page - find and get a page reference
688 * @mapping: the address_space to search
689 * @offset: the page index
690 *
691 * Is there a pagecache struct page at the given (mapping, offset) tuple?
692 * If yes, increment its refcount and return it; if no, return NULL.
693 */
694 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
695 {
696 void **pagep;
697 struct page *page;
698
699 rcu_read_lock();
700 repeat:
701 page = NULL;
702 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
703 if (pagep) {
704 page = radix_tree_deref_slot(pagep);
705 if (unlikely(!page))
706 goto out;
707 if (radix_tree_exception(page)) {
708 if (radix_tree_deref_retry(page))
709 goto repeat;
710 /*
711 * Otherwise, shmem/tmpfs must be storing a swap entry
712 * here as an exceptional entry: so return it without
713 * attempting to raise page count.
714 */
715 goto out;
716 }
717 if (!page_cache_get_speculative(page))
718 goto repeat;
719
720 /*
721 * Has the page moved?
722 * This is part of the lockless pagecache protocol. See
723 * include/linux/pagemap.h for details.
724 */
725 if (unlikely(page != *pagep)) {
726 page_cache_release(page);
727 goto repeat;
728 }
729 }
730 out:
731 rcu_read_unlock();
732
733 return page;
734 }
735 EXPORT_SYMBOL(find_get_page);
736
737 /**
738 * find_lock_page - locate, pin and lock a pagecache page
739 * @mapping: the address_space to search
740 * @offset: the page index
741 *
742 * Locates the desired pagecache page, locks it, increments its reference
743 * count and returns its address.
744 *
745 * Returns zero if the page was not present. find_lock_page() may sleep.
746 */
747 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
748 {
749 struct page *page;
750
751 repeat:
752 page = find_get_page(mapping, offset);
753 if (page && !radix_tree_exception(page)) {
754 lock_page(page);
755 /* Has the page been truncated? */
756 if (unlikely(page->mapping != mapping)) {
757 unlock_page(page);
758 page_cache_release(page);
759 goto repeat;
760 }
761 VM_BUG_ON(page->index != offset);
762 }
763 return page;
764 }
765 EXPORT_SYMBOL(find_lock_page);
766
767 /**
768 * find_or_create_page - locate or add a pagecache page
769 * @mapping: the page's address_space
770 * @index: the page's index into the mapping
771 * @gfp_mask: page allocation mode
772 *
773 * Locates a page in the pagecache. If the page is not present, a new page
774 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
775 * LRU list. The returned page is locked and has its reference count
776 * incremented.
777 *
778 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
779 * allocation!
780 *
781 * find_or_create_page() returns the desired page's address, or zero on
782 * memory exhaustion.
783 */
784 struct page *find_or_create_page(struct address_space *mapping,
785 pgoff_t index, gfp_t gfp_mask)
786 {
787 struct page *page;
788 int err;
789 repeat:
790 page = find_lock_page(mapping, index);
791 if (!page) {
792 page = __page_cache_alloc(gfp_mask);
793 if (!page)
794 return NULL;
795 /*
796 * We want a regular kernel memory (not highmem or DMA etc)
797 * allocation for the radix tree nodes, but we need to honour
798 * the context-specific requirements the caller has asked for.
799 * GFP_RECLAIM_MASK collects those requirements.
800 */
801 err = add_to_page_cache_lru(page, mapping, index,
802 (gfp_mask & GFP_RECLAIM_MASK));
803 if (unlikely(err)) {
804 page_cache_release(page);
805 page = NULL;
806 if (err == -EEXIST)
807 goto repeat;
808 }
809 }
810 return page;
811 }
812 EXPORT_SYMBOL(find_or_create_page);
813
814 /**
815 * find_get_pages - gang pagecache lookup
816 * @mapping: The address_space to search
817 * @start: The starting page index
818 * @nr_pages: The maximum number of pages
819 * @pages: Where the resulting pages are placed
820 *
821 * find_get_pages() will search for and return a group of up to
822 * @nr_pages pages in the mapping. The pages are placed at @pages.
823 * find_get_pages() takes a reference against the returned pages.
824 *
825 * The search returns a group of mapping-contiguous pages with ascending
826 * indexes. There may be holes in the indices due to not-present pages.
827 *
828 * find_get_pages() returns the number of pages which were found.
829 */
830 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
831 unsigned int nr_pages, struct page **pages)
832 {
833 struct radix_tree_iter iter;
834 void **slot;
835 unsigned ret = 0;
836
837 if (unlikely(!nr_pages))
838 return 0;
839
840 rcu_read_lock();
841 restart:
842 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
843 struct page *page;
844 repeat:
845 page = radix_tree_deref_slot(slot);
846 if (unlikely(!page))
847 continue;
848
849 if (radix_tree_exception(page)) {
850 if (radix_tree_deref_retry(page)) {
851 /*
852 * Transient condition which can only trigger
853 * when entry at index 0 moves out of or back
854 * to root: none yet gotten, safe to restart.
855 */
856 WARN_ON(iter.index);
857 goto restart;
858 }
859 /*
860 * Otherwise, shmem/tmpfs must be storing a swap entry
861 * here as an exceptional entry: so skip over it -
862 * we only reach this from invalidate_mapping_pages().
863 */
864 continue;
865 }
866
867 if (!page_cache_get_speculative(page))
868 goto repeat;
869
870 /* Has the page moved? */
871 if (unlikely(page != *slot)) {
872 page_cache_release(page);
873 goto repeat;
874 }
875
876 pages[ret] = page;
877 if (++ret == nr_pages)
878 break;
879 }
880
881 rcu_read_unlock();
882 return ret;
883 }
884
885 /**
886 * find_get_pages_contig - gang contiguous pagecache lookup
887 * @mapping: The address_space to search
888 * @index: The starting page index
889 * @nr_pages: The maximum number of pages
890 * @pages: Where the resulting pages are placed
891 *
892 * find_get_pages_contig() works exactly like find_get_pages(), except
893 * that the returned number of pages are guaranteed to be contiguous.
894 *
895 * find_get_pages_contig() returns the number of pages which were found.
896 */
897 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
898 unsigned int nr_pages, struct page **pages)
899 {
900 struct radix_tree_iter iter;
901 void **slot;
902 unsigned int ret = 0;
903
904 if (unlikely(!nr_pages))
905 return 0;
906
907 rcu_read_lock();
908 restart:
909 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
910 struct page *page;
911 repeat:
912 page = radix_tree_deref_slot(slot);
913 /* The hole, there no reason to continue */
914 if (unlikely(!page))
915 break;
916
917 if (radix_tree_exception(page)) {
918 if (radix_tree_deref_retry(page)) {
919 /*
920 * Transient condition which can only trigger
921 * when entry at index 0 moves out of or back
922 * to root: none yet gotten, safe to restart.
923 */
924 goto restart;
925 }
926 /*
927 * Otherwise, shmem/tmpfs must be storing a swap entry
928 * here as an exceptional entry: so stop looking for
929 * contiguous pages.
930 */
931 break;
932 }
933
934 if (!page_cache_get_speculative(page))
935 goto repeat;
936
937 /* Has the page moved? */
938 if (unlikely(page != *slot)) {
939 page_cache_release(page);
940 goto repeat;
941 }
942
943 /*
944 * must check mapping and index after taking the ref.
945 * otherwise we can get both false positives and false
946 * negatives, which is just confusing to the caller.
947 */
948 if (page->mapping == NULL || page->index != iter.index) {
949 page_cache_release(page);
950 break;
951 }
952
953 pages[ret] = page;
954 if (++ret == nr_pages)
955 break;
956 }
957 rcu_read_unlock();
958 return ret;
959 }
960 EXPORT_SYMBOL(find_get_pages_contig);
961
962 /**
963 * find_get_pages_tag - find and return pages that match @tag
964 * @mapping: the address_space to search
965 * @index: the starting page index
966 * @tag: the tag index
967 * @nr_pages: the maximum number of pages
968 * @pages: where the resulting pages are placed
969 *
970 * Like find_get_pages, except we only return pages which are tagged with
971 * @tag. We update @index to index the next page for the traversal.
972 */
973 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
974 int tag, unsigned int nr_pages, struct page **pages)
975 {
976 struct radix_tree_iter iter;
977 void **slot;
978 unsigned ret = 0;
979
980 if (unlikely(!nr_pages))
981 return 0;
982
983 rcu_read_lock();
984 restart:
985 radix_tree_for_each_tagged(slot, &mapping->page_tree,
986 &iter, *index, tag) {
987 struct page *page;
988 repeat:
989 page = radix_tree_deref_slot(slot);
990 if (unlikely(!page))
991 continue;
992
993 if (radix_tree_exception(page)) {
994 if (radix_tree_deref_retry(page)) {
995 /*
996 * Transient condition which can only trigger
997 * when entry at index 0 moves out of or back
998 * to root: none yet gotten, safe to restart.
999 */
1000 goto restart;
1001 }
1002 /*
1003 * This function is never used on a shmem/tmpfs
1004 * mapping, so a swap entry won't be found here.
1005 */
1006 BUG();
1007 }
1008
1009 if (!page_cache_get_speculative(page))
1010 goto repeat;
1011
1012 /* Has the page moved? */
1013 if (unlikely(page != *slot)) {
1014 page_cache_release(page);
1015 goto repeat;
1016 }
1017
1018 pages[ret] = page;
1019 if (++ret == nr_pages)
1020 break;
1021 }
1022
1023 rcu_read_unlock();
1024
1025 if (ret)
1026 *index = pages[ret - 1]->index + 1;
1027
1028 return ret;
1029 }
1030 EXPORT_SYMBOL(find_get_pages_tag);
1031
1032 /**
1033 * grab_cache_page_nowait - returns locked page at given index in given cache
1034 * @mapping: target address_space
1035 * @index: the page index
1036 *
1037 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1038 * This is intended for speculative data generators, where the data can
1039 * be regenerated if the page couldn't be grabbed. This routine should
1040 * be safe to call while holding the lock for another page.
1041 *
1042 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1043 * and deadlock against the caller's locked page.
1044 */
1045 struct page *
1046 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1047 {
1048 struct page *page = find_get_page(mapping, index);
1049
1050 if (page) {
1051 if (trylock_page(page))
1052 return page;
1053 page_cache_release(page);
1054 return NULL;
1055 }
1056 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1057 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1058 page_cache_release(page);
1059 page = NULL;
1060 }
1061 return page;
1062 }
1063 EXPORT_SYMBOL(grab_cache_page_nowait);
1064
1065 /*
1066 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1067 * a _large_ part of the i/o request. Imagine the worst scenario:
1068 *
1069 * ---R__________________________________________B__________
1070 * ^ reading here ^ bad block(assume 4k)
1071 *
1072 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1073 * => failing the whole request => read(R) => read(R+1) =>
1074 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1075 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1076 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1077 *
1078 * It is going insane. Fix it by quickly scaling down the readahead size.
1079 */
1080 static void shrink_readahead_size_eio(struct file *filp,
1081 struct file_ra_state *ra)
1082 {
1083 ra->ra_pages /= 4;
1084 }
1085
1086 /**
1087 * do_generic_file_read - generic file read routine
1088 * @filp: the file to read
1089 * @ppos: current file position
1090 * @desc: read_descriptor
1091 * @actor: read method
1092 *
1093 * This is a generic file read routine, and uses the
1094 * mapping->a_ops->readpage() function for the actual low-level stuff.
1095 *
1096 * This is really ugly. But the goto's actually try to clarify some
1097 * of the logic when it comes to error handling etc.
1098 */
1099 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1100 read_descriptor_t *desc, read_actor_t actor)
1101 {
1102 struct address_space *mapping = filp->f_mapping;
1103 struct inode *inode = mapping->host;
1104 struct file_ra_state *ra = &filp->f_ra;
1105 pgoff_t index;
1106 pgoff_t last_index;
1107 pgoff_t prev_index;
1108 unsigned long offset; /* offset into pagecache page */
1109 unsigned int prev_offset;
1110 int error;
1111
1112 index = *ppos >> PAGE_CACHE_SHIFT;
1113 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1114 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1115 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1116 offset = *ppos & ~PAGE_CACHE_MASK;
1117
1118 for (;;) {
1119 struct page *page;
1120 pgoff_t end_index;
1121 loff_t isize;
1122 unsigned long nr, ret;
1123
1124 cond_resched();
1125 find_page:
1126 if (fatal_signal_pending(current)) {
1127 error = -EINTR;
1128 goto out;
1129 }
1130
1131 page = find_get_page(mapping, index);
1132 if (!page) {
1133 page_cache_sync_readahead(mapping,
1134 ra, filp,
1135 index, last_index - index);
1136 page = find_get_page(mapping, index);
1137 if (unlikely(page == NULL))
1138 goto no_cached_page;
1139 }
1140 if (PageReadahead(page)) {
1141 page_cache_async_readahead(mapping,
1142 ra, filp, page,
1143 index, last_index - index);
1144 }
1145 if (!PageUptodate(page)) {
1146 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1147 !mapping->a_ops->is_partially_uptodate)
1148 goto page_not_up_to_date;
1149 if (!trylock_page(page))
1150 goto page_not_up_to_date;
1151 /* Did it get truncated before we got the lock? */
1152 if (!page->mapping)
1153 goto page_not_up_to_date_locked;
1154 if (!mapping->a_ops->is_partially_uptodate(page,
1155 desc, offset))
1156 goto page_not_up_to_date_locked;
1157 unlock_page(page);
1158 }
1159 page_ok:
1160 /*
1161 * i_size must be checked after we know the page is Uptodate.
1162 *
1163 * Checking i_size after the check allows us to calculate
1164 * the correct value for "nr", which means the zero-filled
1165 * part of the page is not copied back to userspace (unless
1166 * another truncate extends the file - this is desired though).
1167 */
1168
1169 isize = i_size_read(inode);
1170 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1171 if (unlikely(!isize || index > end_index)) {
1172 page_cache_release(page);
1173 goto out;
1174 }
1175
1176 /* nr is the maximum number of bytes to copy from this page */
1177 nr = PAGE_CACHE_SIZE;
1178 if (index == end_index) {
1179 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1180 if (nr <= offset) {
1181 page_cache_release(page);
1182 goto out;
1183 }
1184 }
1185 nr = nr - offset;
1186
1187 /* If users can be writing to this page using arbitrary
1188 * virtual addresses, take care about potential aliasing
1189 * before reading the page on the kernel side.
1190 */
1191 if (mapping_writably_mapped(mapping))
1192 flush_dcache_page(page);
1193
1194 /*
1195 * When a sequential read accesses a page several times,
1196 * only mark it as accessed the first time.
1197 */
1198 if (prev_index != index || offset != prev_offset)
1199 mark_page_accessed(page);
1200 prev_index = index;
1201
1202 /*
1203 * Ok, we have the page, and it's up-to-date, so
1204 * now we can copy it to user space...
1205 *
1206 * The actor routine returns how many bytes were actually used..
1207 * NOTE! This may not be the same as how much of a user buffer
1208 * we filled up (we may be padding etc), so we can only update
1209 * "pos" here (the actor routine has to update the user buffer
1210 * pointers and the remaining count).
1211 */
1212 ret = actor(desc, page, offset, nr);
1213 offset += ret;
1214 index += offset >> PAGE_CACHE_SHIFT;
1215 offset &= ~PAGE_CACHE_MASK;
1216 prev_offset = offset;
1217
1218 page_cache_release(page);
1219 if (ret == nr && desc->count)
1220 continue;
1221 goto out;
1222
1223 page_not_up_to_date:
1224 /* Get exclusive access to the page ... */
1225 error = lock_page_killable(page);
1226 if (unlikely(error))
1227 goto readpage_error;
1228
1229 page_not_up_to_date_locked:
1230 /* Did it get truncated before we got the lock? */
1231 if (!page->mapping) {
1232 unlock_page(page);
1233 page_cache_release(page);
1234 continue;
1235 }
1236
1237 /* Did somebody else fill it already? */
1238 if (PageUptodate(page)) {
1239 unlock_page(page);
1240 goto page_ok;
1241 }
1242
1243 readpage:
1244 /*
1245 * A previous I/O error may have been due to temporary
1246 * failures, eg. multipath errors.
1247 * PG_error will be set again if readpage fails.
1248 */
1249 ClearPageError(page);
1250 /* Start the actual read. The read will unlock the page. */
1251 error = mapping->a_ops->readpage(filp, page);
1252
1253 if (unlikely(error)) {
1254 if (error == AOP_TRUNCATED_PAGE) {
1255 page_cache_release(page);
1256 goto find_page;
1257 }
1258 goto readpage_error;
1259 }
1260
1261 if (!PageUptodate(page)) {
1262 error = lock_page_killable(page);
1263 if (unlikely(error))
1264 goto readpage_error;
1265 if (!PageUptodate(page)) {
1266 if (page->mapping == NULL) {
1267 /*
1268 * invalidate_mapping_pages got it
1269 */
1270 unlock_page(page);
1271 page_cache_release(page);
1272 goto find_page;
1273 }
1274 unlock_page(page);
1275 shrink_readahead_size_eio(filp, ra);
1276 error = -EIO;
1277 goto readpage_error;
1278 }
1279 unlock_page(page);
1280 }
1281
1282 goto page_ok;
1283
1284 readpage_error:
1285 /* UHHUH! A synchronous read error occurred. Report it */
1286 desc->error = error;
1287 page_cache_release(page);
1288 goto out;
1289
1290 no_cached_page:
1291 /*
1292 * Ok, it wasn't cached, so we need to create a new
1293 * page..
1294 */
1295 page = page_cache_alloc_cold(mapping);
1296 if (!page) {
1297 desc->error = -ENOMEM;
1298 goto out;
1299 }
1300 error = add_to_page_cache_lru(page, mapping,
1301 index, GFP_KERNEL);
1302 if (error) {
1303 page_cache_release(page);
1304 if (error == -EEXIST)
1305 goto find_page;
1306 desc->error = error;
1307 goto out;
1308 }
1309 goto readpage;
1310 }
1311
1312 out:
1313 ra->prev_pos = prev_index;
1314 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1315 ra->prev_pos |= prev_offset;
1316
1317 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1318 file_accessed(filp);
1319 }
1320
1321 int file_read_actor(read_descriptor_t *desc, struct page *page,
1322 unsigned long offset, unsigned long size)
1323 {
1324 char *kaddr;
1325 unsigned long left, count = desc->count;
1326
1327 if (size > count)
1328 size = count;
1329
1330 /*
1331 * Faults on the destination of a read are common, so do it before
1332 * taking the kmap.
1333 */
1334 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1335 kaddr = kmap_atomic(page);
1336 left = __copy_to_user_inatomic(desc->arg.buf,
1337 kaddr + offset, size);
1338 kunmap_atomic(kaddr);
1339 if (left == 0)
1340 goto success;
1341 }
1342
1343 /* Do it the slow way */
1344 kaddr = kmap(page);
1345 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1346 kunmap(page);
1347
1348 if (left) {
1349 size -= left;
1350 desc->error = -EFAULT;
1351 }
1352 success:
1353 desc->count = count - size;
1354 desc->written += size;
1355 desc->arg.buf += size;
1356 return size;
1357 }
1358
1359 /*
1360 * Performs necessary checks before doing a write
1361 * @iov: io vector request
1362 * @nr_segs: number of segments in the iovec
1363 * @count: number of bytes to write
1364 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1365 *
1366 * Adjust number of segments and amount of bytes to write (nr_segs should be
1367 * properly initialized first). Returns appropriate error code that caller
1368 * should return or zero in case that write should be allowed.
1369 */
1370 int generic_segment_checks(const struct iovec *iov,
1371 unsigned long *nr_segs, size_t *count, int access_flags)
1372 {
1373 unsigned long seg;
1374 size_t cnt = 0;
1375 for (seg = 0; seg < *nr_segs; seg++) {
1376 const struct iovec *iv = &iov[seg];
1377
1378 /*
1379 * If any segment has a negative length, or the cumulative
1380 * length ever wraps negative then return -EINVAL.
1381 */
1382 cnt += iv->iov_len;
1383 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1384 return -EINVAL;
1385 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1386 continue;
1387 if (seg == 0)
1388 return -EFAULT;
1389 *nr_segs = seg;
1390 cnt -= iv->iov_len; /* This segment is no good */
1391 break;
1392 }
1393 *count = cnt;
1394 return 0;
1395 }
1396 EXPORT_SYMBOL(generic_segment_checks);
1397
1398 /**
1399 * generic_file_aio_read - generic filesystem read routine
1400 * @iocb: kernel I/O control block
1401 * @iov: io vector request
1402 * @nr_segs: number of segments in the iovec
1403 * @pos: current file position
1404 *
1405 * This is the "read()" routine for all filesystems
1406 * that can use the page cache directly.
1407 */
1408 ssize_t
1409 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1410 unsigned long nr_segs, loff_t pos)
1411 {
1412 struct file *filp = iocb->ki_filp;
1413 ssize_t retval;
1414 unsigned long seg = 0;
1415 size_t count;
1416 loff_t *ppos = &iocb->ki_pos;
1417
1418 count = 0;
1419 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1420 if (retval)
1421 return retval;
1422
1423 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1424 if (filp->f_flags & O_DIRECT) {
1425 loff_t size;
1426 struct address_space *mapping;
1427 struct inode *inode;
1428
1429 mapping = filp->f_mapping;
1430 inode = mapping->host;
1431 if (!count)
1432 goto out; /* skip atime */
1433 size = i_size_read(inode);
1434 if (pos < size) {
1435 retval = filemap_write_and_wait_range(mapping, pos,
1436 pos + iov_length(iov, nr_segs) - 1);
1437 if (!retval) {
1438 retval = mapping->a_ops->direct_IO(READ, iocb,
1439 iov, pos, nr_segs);
1440 }
1441 if (retval > 0) {
1442 *ppos = pos + retval;
1443 count -= retval;
1444 }
1445
1446 /*
1447 * Btrfs can have a short DIO read if we encounter
1448 * compressed extents, so if there was an error, or if
1449 * we've already read everything we wanted to, or if
1450 * there was a short read because we hit EOF, go ahead
1451 * and return. Otherwise fallthrough to buffered io for
1452 * the rest of the read.
1453 */
1454 if (retval < 0 || !count || *ppos >= size) {
1455 file_accessed(filp);
1456 goto out;
1457 }
1458 }
1459 }
1460
1461 count = retval;
1462 for (seg = 0; seg < nr_segs; seg++) {
1463 read_descriptor_t desc;
1464 loff_t offset = 0;
1465
1466 /*
1467 * If we did a short DIO read we need to skip the section of the
1468 * iov that we've already read data into.
1469 */
1470 if (count) {
1471 if (count > iov[seg].iov_len) {
1472 count -= iov[seg].iov_len;
1473 continue;
1474 }
1475 offset = count;
1476 count = 0;
1477 }
1478
1479 desc.written = 0;
1480 desc.arg.buf = iov[seg].iov_base + offset;
1481 desc.count = iov[seg].iov_len - offset;
1482 if (desc.count == 0)
1483 continue;
1484 desc.error = 0;
1485 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1486 retval += desc.written;
1487 if (desc.error) {
1488 retval = retval ?: desc.error;
1489 break;
1490 }
1491 if (desc.count > 0)
1492 break;
1493 }
1494 out:
1495 return retval;
1496 }
1497 EXPORT_SYMBOL(generic_file_aio_read);
1498
1499 #ifdef CONFIG_MMU
1500 /**
1501 * page_cache_read - adds requested page to the page cache if not already there
1502 * @file: file to read
1503 * @offset: page index
1504 *
1505 * This adds the requested page to the page cache if it isn't already there,
1506 * and schedules an I/O to read in its contents from disk.
1507 */
1508 static int page_cache_read(struct file *file, pgoff_t offset)
1509 {
1510 struct address_space *mapping = file->f_mapping;
1511 struct page *page;
1512 int ret;
1513
1514 do {
1515 page = page_cache_alloc_cold(mapping);
1516 if (!page)
1517 return -ENOMEM;
1518
1519 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1520 if (ret == 0)
1521 ret = mapping->a_ops->readpage(file, page);
1522 else if (ret == -EEXIST)
1523 ret = 0; /* losing race to add is OK */
1524
1525 page_cache_release(page);
1526
1527 } while (ret == AOP_TRUNCATED_PAGE);
1528
1529 return ret;
1530 }
1531
1532 #define MMAP_LOTSAMISS (100)
1533
1534 /*
1535 * Synchronous readahead happens when we don't even find
1536 * a page in the page cache at all.
1537 */
1538 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1539 struct file_ra_state *ra,
1540 struct file *file,
1541 pgoff_t offset)
1542 {
1543 unsigned long ra_pages;
1544 struct address_space *mapping = file->f_mapping;
1545
1546 /* If we don't want any read-ahead, don't bother */
1547 if (VM_RandomReadHint(vma))
1548 return;
1549 if (!ra->ra_pages)
1550 return;
1551
1552 if (VM_SequentialReadHint(vma)) {
1553 page_cache_sync_readahead(mapping, ra, file, offset,
1554 ra->ra_pages);
1555 return;
1556 }
1557
1558 /* Avoid banging the cache line if not needed */
1559 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1560 ra->mmap_miss++;
1561
1562 /*
1563 * Do we miss much more than hit in this file? If so,
1564 * stop bothering with read-ahead. It will only hurt.
1565 */
1566 if (ra->mmap_miss > MMAP_LOTSAMISS)
1567 return;
1568
1569 /*
1570 * mmap read-around
1571 */
1572 ra_pages = max_sane_readahead(ra->ra_pages);
1573 ra->start = max_t(long, 0, offset - ra_pages / 2);
1574 ra->size = ra_pages;
1575 ra->async_size = ra_pages / 4;
1576 ra_submit(ra, mapping, file);
1577 }
1578
1579 /*
1580 * Asynchronous readahead happens when we find the page and PG_readahead,
1581 * so we want to possibly extend the readahead further..
1582 */
1583 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1584 struct file_ra_state *ra,
1585 struct file *file,
1586 struct page *page,
1587 pgoff_t offset)
1588 {
1589 struct address_space *mapping = file->f_mapping;
1590
1591 /* If we don't want any read-ahead, don't bother */
1592 if (VM_RandomReadHint(vma))
1593 return;
1594 if (ra->mmap_miss > 0)
1595 ra->mmap_miss--;
1596 if (PageReadahead(page))
1597 page_cache_async_readahead(mapping, ra, file,
1598 page, offset, ra->ra_pages);
1599 }
1600
1601 /**
1602 * filemap_fault - read in file data for page fault handling
1603 * @vma: vma in which the fault was taken
1604 * @vmf: struct vm_fault containing details of the fault
1605 *
1606 * filemap_fault() is invoked via the vma operations vector for a
1607 * mapped memory region to read in file data during a page fault.
1608 *
1609 * The goto's are kind of ugly, but this streamlines the normal case of having
1610 * it in the page cache, and handles the special cases reasonably without
1611 * having a lot of duplicated code.
1612 */
1613 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1614 {
1615 int error;
1616 struct file *file = vma->vm_file;
1617 struct address_space *mapping = file->f_mapping;
1618 struct file_ra_state *ra = &file->f_ra;
1619 struct inode *inode = mapping->host;
1620 pgoff_t offset = vmf->pgoff;
1621 struct page *page;
1622 pgoff_t size;
1623 int ret = 0;
1624
1625 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1626 if (offset >= size)
1627 return VM_FAULT_SIGBUS;
1628
1629 /*
1630 * Do we have something in the page cache already?
1631 */
1632 page = find_get_page(mapping, offset);
1633 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1634 /*
1635 * We found the page, so try async readahead before
1636 * waiting for the lock.
1637 */
1638 do_async_mmap_readahead(vma, ra, file, page, offset);
1639 } else if (!page) {
1640 /* No page in the page cache at all */
1641 do_sync_mmap_readahead(vma, ra, file, offset);
1642 #ifdef CONFIG_ZRAM
1643 current->fm_flt++;
1644 #endif
1645 count_vm_event(PGFMFAULT);
1646 count_vm_event(PGMAJFAULT);
1647 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1648 ret = VM_FAULT_MAJOR;
1649 retry_find:
1650 page = find_get_page(mapping, offset);
1651 if (!page)
1652 goto no_cached_page;
1653 }
1654
1655 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1656 page_cache_release(page);
1657 return ret | VM_FAULT_RETRY;
1658 }
1659
1660 /* Did it get truncated? */
1661 if (unlikely(page->mapping != mapping)) {
1662 unlock_page(page);
1663 put_page(page);
1664 goto retry_find;
1665 }
1666 VM_BUG_ON(page->index != offset);
1667
1668 /*
1669 * We have a locked page in the page cache, now we need to check
1670 * that it's up-to-date. If not, it is going to be due to an error.
1671 */
1672 if (unlikely(!PageUptodate(page)))
1673 goto page_not_uptodate;
1674
1675 /*
1676 * Found the page and have a reference on it.
1677 * We must recheck i_size under page lock.
1678 */
1679 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1680 if (unlikely(offset >= size)) {
1681 unlock_page(page);
1682 page_cache_release(page);
1683 return VM_FAULT_SIGBUS;
1684 }
1685
1686 vmf->page = page;
1687 return ret | VM_FAULT_LOCKED;
1688
1689 no_cached_page:
1690 /*
1691 * We're only likely to ever get here if MADV_RANDOM is in
1692 * effect.
1693 */
1694 error = page_cache_read(file, offset);
1695
1696 /*
1697 * The page we want has now been added to the page cache.
1698 * In the unlikely event that someone removed it in the
1699 * meantime, we'll just come back here and read it again.
1700 */
1701 if (error >= 0)
1702 goto retry_find;
1703
1704 /*
1705 * An error return from page_cache_read can result if the
1706 * system is low on memory, or a problem occurs while trying
1707 * to schedule I/O.
1708 */
1709 if (error == -ENOMEM)
1710 return VM_FAULT_OOM;
1711 return VM_FAULT_SIGBUS;
1712
1713 page_not_uptodate:
1714 /*
1715 * Umm, take care of errors if the page isn't up-to-date.
1716 * Try to re-read it _once_. We do this synchronously,
1717 * because there really aren't any performance issues here
1718 * and we need to check for errors.
1719 */
1720 ClearPageError(page);
1721 error = mapping->a_ops->readpage(file, page);
1722 if (!error) {
1723 wait_on_page_locked(page);
1724 if (!PageUptodate(page))
1725 error = -EIO;
1726 }
1727 page_cache_release(page);
1728
1729 if (!error || error == AOP_TRUNCATED_PAGE)
1730 goto retry_find;
1731
1732 /* Things didn't work out. Return zero to tell the mm layer so. */
1733 shrink_readahead_size_eio(file, ra);
1734 return VM_FAULT_SIGBUS;
1735 }
1736 EXPORT_SYMBOL(filemap_fault);
1737
1738 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1739 {
1740 struct page *page = vmf->page;
1741 struct inode *inode = file_inode(vma->vm_file);
1742 int ret = VM_FAULT_LOCKED;
1743
1744 sb_start_pagefault(inode->i_sb);
1745 file_update_time(vma->vm_file);
1746 lock_page(page);
1747 if (page->mapping != inode->i_mapping) {
1748 unlock_page(page);
1749 ret = VM_FAULT_NOPAGE;
1750 goto out;
1751 }
1752 /*
1753 * We mark the page dirty already here so that when freeze is in
1754 * progress, we are guaranteed that writeback during freezing will
1755 * see the dirty page and writeprotect it again.
1756 */
1757 set_page_dirty(page);
1758 wait_for_stable_page(page);
1759 out:
1760 sb_end_pagefault(inode->i_sb);
1761 return ret;
1762 }
1763 EXPORT_SYMBOL(filemap_page_mkwrite);
1764
1765 const struct vm_operations_struct generic_file_vm_ops = {
1766 .fault = filemap_fault,
1767 .page_mkwrite = filemap_page_mkwrite,
1768 .remap_pages = generic_file_remap_pages,
1769 };
1770
1771 /* This is used for a general mmap of a disk file */
1772
1773 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1774 {
1775 struct address_space *mapping = file->f_mapping;
1776
1777 if (!mapping->a_ops->readpage)
1778 return -ENOEXEC;
1779 file_accessed(file);
1780 vma->vm_ops = &generic_file_vm_ops;
1781 return 0;
1782 }
1783
1784 /*
1785 * This is for filesystems which do not implement ->writepage.
1786 */
1787 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1788 {
1789 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1790 return -EINVAL;
1791 return generic_file_mmap(file, vma);
1792 }
1793 #else
1794 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1795 {
1796 return -ENOSYS;
1797 }
1798 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1799 {
1800 return -ENOSYS;
1801 }
1802 #endif /* CONFIG_MMU */
1803
1804 EXPORT_SYMBOL(generic_file_mmap);
1805 EXPORT_SYMBOL(generic_file_readonly_mmap);
1806
1807 static struct page *__read_cache_page(struct address_space *mapping,
1808 pgoff_t index,
1809 int (*filler)(void *, struct page *),
1810 void *data,
1811 gfp_t gfp)
1812 {
1813 struct page *page;
1814 int err;
1815 repeat:
1816 page = find_get_page(mapping, index);
1817 if (!page) {
1818 page = __page_cache_alloc(gfp | __GFP_COLD);
1819 if (!page)
1820 return ERR_PTR(-ENOMEM);
1821 err = add_to_page_cache_lru(page, mapping, index, gfp);
1822 if (unlikely(err)) {
1823 page_cache_release(page);
1824 if (err == -EEXIST)
1825 goto repeat;
1826 /* Presumably ENOMEM for radix tree node */
1827 return ERR_PTR(err);
1828 }
1829 err = filler(data, page);
1830 if (err < 0) {
1831 page_cache_release(page);
1832 page = ERR_PTR(err);
1833 }
1834 }
1835 return page;
1836 }
1837
1838 static struct page *do_read_cache_page(struct address_space *mapping,
1839 pgoff_t index,
1840 int (*filler)(void *, struct page *),
1841 void *data,
1842 gfp_t gfp)
1843
1844 {
1845 struct page *page;
1846 int err;
1847
1848 retry:
1849 page = __read_cache_page(mapping, index, filler, data, gfp);
1850 if (IS_ERR(page))
1851 return page;
1852 if (PageUptodate(page))
1853 goto out;
1854
1855 lock_page(page);
1856 if (!page->mapping) {
1857 unlock_page(page);
1858 page_cache_release(page);
1859 goto retry;
1860 }
1861 if (PageUptodate(page)) {
1862 unlock_page(page);
1863 goto out;
1864 }
1865 err = filler(data, page);
1866 if (err < 0) {
1867 page_cache_release(page);
1868 return ERR_PTR(err);
1869 }
1870 out:
1871 mark_page_accessed(page);
1872 return page;
1873 }
1874
1875 /**
1876 * read_cache_page_async - read into page cache, fill it if needed
1877 * @mapping: the page's address_space
1878 * @index: the page index
1879 * @filler: function to perform the read
1880 * @data: first arg to filler(data, page) function, often left as NULL
1881 *
1882 * Same as read_cache_page, but don't wait for page to become unlocked
1883 * after submitting it to the filler.
1884 *
1885 * Read into the page cache. If a page already exists, and PageUptodate() is
1886 * not set, try to fill the page but don't wait for it to become unlocked.
1887 *
1888 * If the page does not get brought uptodate, return -EIO.
1889 */
1890 struct page *read_cache_page_async(struct address_space *mapping,
1891 pgoff_t index,
1892 int (*filler)(void *, struct page *),
1893 void *data)
1894 {
1895 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1896 }
1897 EXPORT_SYMBOL(read_cache_page_async);
1898
1899 static struct page *wait_on_page_read(struct page *page)
1900 {
1901 if (!IS_ERR(page)) {
1902 wait_on_page_locked(page);
1903 if (!PageUptodate(page)) {
1904 page_cache_release(page);
1905 page = ERR_PTR(-EIO);
1906 }
1907 }
1908 return page;
1909 }
1910
1911 /**
1912 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1913 * @mapping: the page's address_space
1914 * @index: the page index
1915 * @gfp: the page allocator flags to use if allocating
1916 *
1917 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1918 * any new page allocations done using the specified allocation flags.
1919 *
1920 * If the page does not get brought uptodate, return -EIO.
1921 */
1922 struct page *read_cache_page_gfp(struct address_space *mapping,
1923 pgoff_t index,
1924 gfp_t gfp)
1925 {
1926 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1927
1928 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1929 }
1930 EXPORT_SYMBOL(read_cache_page_gfp);
1931
1932 /**
1933 * read_cache_page - read into page cache, fill it if needed
1934 * @mapping: the page's address_space
1935 * @index: the page index
1936 * @filler: function to perform the read
1937 * @data: first arg to filler(data, page) function, often left as NULL
1938 *
1939 * Read into the page cache. If a page already exists, and PageUptodate() is
1940 * not set, try to fill the page then wait for it to become unlocked.
1941 *
1942 * If the page does not get brought uptodate, return -EIO.
1943 */
1944 struct page *read_cache_page(struct address_space *mapping,
1945 pgoff_t index,
1946 int (*filler)(void *, struct page *),
1947 void *data)
1948 {
1949 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1950 }
1951 EXPORT_SYMBOL(read_cache_page);
1952
1953 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1954 const struct iovec *iov, size_t base, size_t bytes)
1955 {
1956 size_t copied = 0, left = 0;
1957
1958 while (bytes) {
1959 char __user *buf = iov->iov_base + base;
1960 int copy = min(bytes, iov->iov_len - base);
1961
1962 base = 0;
1963 left = __copy_from_user_inatomic(vaddr, buf, copy);
1964 copied += copy;
1965 bytes -= copy;
1966 vaddr += copy;
1967 iov++;
1968
1969 if (unlikely(left))
1970 break;
1971 }
1972 return copied - left;
1973 }
1974
1975 /*
1976 * Copy as much as we can into the page and return the number of bytes which
1977 * were successfully copied. If a fault is encountered then return the number of
1978 * bytes which were copied.
1979 */
1980 size_t iov_iter_copy_from_user_atomic(struct page *page,
1981 struct iov_iter *i, unsigned long offset, size_t bytes)
1982 {
1983 char *kaddr;
1984 size_t copied;
1985
1986 BUG_ON(!in_atomic());
1987 kaddr = kmap_atomic(page);
1988 if (likely(i->nr_segs == 1)) {
1989 int left;
1990 char __user *buf = i->iov->iov_base + i->iov_offset;
1991 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1992 copied = bytes - left;
1993 } else {
1994 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1995 i->iov, i->iov_offset, bytes);
1996 }
1997 kunmap_atomic(kaddr);
1998
1999 return copied;
2000 }
2001 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2002
2003 /*
2004 * This has the same sideeffects and return value as
2005 * iov_iter_copy_from_user_atomic().
2006 * The difference is that it attempts to resolve faults.
2007 * Page must not be locked.
2008 */
2009 size_t iov_iter_copy_from_user(struct page *page,
2010 struct iov_iter *i, unsigned long offset, size_t bytes)
2011 {
2012 char *kaddr;
2013 size_t copied;
2014
2015 kaddr = kmap(page);
2016 if (likely(i->nr_segs == 1)) {
2017 int left;
2018 char __user *buf = i->iov->iov_base + i->iov_offset;
2019 left = __copy_from_user(kaddr + offset, buf, bytes);
2020 copied = bytes - left;
2021 } else {
2022 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2023 i->iov, i->iov_offset, bytes);
2024 }
2025 kunmap(page);
2026 return copied;
2027 }
2028 EXPORT_SYMBOL(iov_iter_copy_from_user);
2029
2030 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2031 {
2032 BUG_ON(i->count < bytes);
2033
2034 if (likely(i->nr_segs == 1)) {
2035 i->iov_offset += bytes;
2036 i->count -= bytes;
2037 } else {
2038 const struct iovec *iov = i->iov;
2039 size_t base = i->iov_offset;
2040 unsigned long nr_segs = i->nr_segs;
2041
2042 /*
2043 * The !iov->iov_len check ensures we skip over unlikely
2044 * zero-length segments (without overruning the iovec).
2045 */
2046 while (bytes || unlikely(i->count && !iov->iov_len)) {
2047 int copy;
2048
2049 copy = min(bytes, iov->iov_len - base);
2050 BUG_ON(!i->count || i->count < copy);
2051 i->count -= copy;
2052 bytes -= copy;
2053 base += copy;
2054 if (iov->iov_len == base) {
2055 iov++;
2056 nr_segs--;
2057 base = 0;
2058 }
2059 }
2060 i->iov = iov;
2061 i->iov_offset = base;
2062 i->nr_segs = nr_segs;
2063 }
2064 }
2065 EXPORT_SYMBOL(iov_iter_advance);
2066
2067 /*
2068 * Fault in the first iovec of the given iov_iter, to a maximum length
2069 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2070 * accessed (ie. because it is an invalid address).
2071 *
2072 * writev-intensive code may want this to prefault several iovecs -- that
2073 * would be possible (callers must not rely on the fact that _only_ the
2074 * first iovec will be faulted with the current implementation).
2075 */
2076 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2077 {
2078 char __user *buf = i->iov->iov_base + i->iov_offset;
2079 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2080 return fault_in_pages_readable(buf, bytes);
2081 }
2082 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2083
2084 /*
2085 * Return the count of just the current iov_iter segment.
2086 */
2087 size_t iov_iter_single_seg_count(const struct iov_iter *i)
2088 {
2089 const struct iovec *iov = i->iov;
2090 if (i->nr_segs == 1)
2091 return i->count;
2092 else
2093 return min(i->count, iov->iov_len - i->iov_offset);
2094 }
2095 EXPORT_SYMBOL(iov_iter_single_seg_count);
2096
2097 /*
2098 * Performs necessary checks before doing a write
2099 *
2100 * Can adjust writing position or amount of bytes to write.
2101 * Returns appropriate error code that caller should return or
2102 * zero in case that write should be allowed.
2103 */
2104 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2105 {
2106 struct inode *inode = file->f_mapping->host;
2107 unsigned long limit = rlimit(RLIMIT_FSIZE);
2108
2109 if (unlikely(*pos < 0))
2110 return -EINVAL;
2111
2112 if (!isblk) {
2113 /* FIXME: this is for backwards compatibility with 2.4 */
2114 if (file->f_flags & O_APPEND)
2115 *pos = i_size_read(inode);
2116
2117 if (limit != RLIM_INFINITY) {
2118 if (*pos >= limit) {
2119 send_sig(SIGXFSZ, current, 0);
2120 return -EFBIG;
2121 }
2122 if (*count > limit - (typeof(limit))*pos) {
2123 *count = limit - (typeof(limit))*pos;
2124 }
2125 }
2126 }
2127
2128 /*
2129 * LFS rule
2130 */
2131 if (unlikely(*pos + *count > MAX_NON_LFS &&
2132 !(file->f_flags & O_LARGEFILE))) {
2133 if (*pos >= MAX_NON_LFS) {
2134 return -EFBIG;
2135 }
2136 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2137 *count = MAX_NON_LFS - (unsigned long)*pos;
2138 }
2139 }
2140
2141 /*
2142 * Are we about to exceed the fs block limit ?
2143 *
2144 * If we have written data it becomes a short write. If we have
2145 * exceeded without writing data we send a signal and return EFBIG.
2146 * Linus frestrict idea will clean these up nicely..
2147 */
2148 if (likely(!isblk)) {
2149 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2150 if (*count || *pos > inode->i_sb->s_maxbytes) {
2151 return -EFBIG;
2152 }
2153 /* zero-length writes at ->s_maxbytes are OK */
2154 }
2155
2156 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2157 *count = inode->i_sb->s_maxbytes - *pos;
2158 } else {
2159 #ifdef CONFIG_BLOCK
2160 loff_t isize;
2161 if (bdev_read_only(I_BDEV(inode)))
2162 return -EPERM;
2163 isize = i_size_read(inode);
2164 if (*pos >= isize) {
2165 if (*count || *pos > isize)
2166 return -ENOSPC;
2167 }
2168
2169 if (*pos + *count > isize)
2170 *count = isize - *pos;
2171 #else
2172 return -EPERM;
2173 #endif
2174 }
2175 return 0;
2176 }
2177 EXPORT_SYMBOL(generic_write_checks);
2178
2179 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2180 loff_t pos, unsigned len, unsigned flags,
2181 struct page **pagep, void **fsdata)
2182 {
2183 const struct address_space_operations *aops = mapping->a_ops;
2184
2185 return aops->write_begin(file, mapping, pos, len, flags,
2186 pagep, fsdata);
2187 }
2188 EXPORT_SYMBOL(pagecache_write_begin);
2189
2190 int pagecache_write_end(struct file *file, struct address_space *mapping,
2191 loff_t pos, unsigned len, unsigned copied,
2192 struct page *page, void *fsdata)
2193 {
2194 const struct address_space_operations *aops = mapping->a_ops;
2195
2196 mark_page_accessed(page);
2197 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2198 }
2199 EXPORT_SYMBOL(pagecache_write_end);
2200
2201 ssize_t
2202 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2203 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2204 size_t count, size_t ocount)
2205 {
2206 struct file *file = iocb->ki_filp;
2207 struct address_space *mapping = file->f_mapping;
2208 struct inode *inode = mapping->host;
2209 ssize_t written;
2210 size_t write_len;
2211 pgoff_t end;
2212
2213 if (count != ocount)
2214 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2215
2216 write_len = iov_length(iov, *nr_segs);
2217 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2218
2219 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2220 if (written)
2221 goto out;
2222
2223 /*
2224 * After a write we want buffered reads to be sure to go to disk to get
2225 * the new data. We invalidate clean cached page from the region we're
2226 * about to write. We do this *before* the write so that we can return
2227 * without clobbering -EIOCBQUEUED from ->direct_IO().
2228 */
2229 if (mapping->nrpages) {
2230 written = invalidate_inode_pages2_range(mapping,
2231 pos >> PAGE_CACHE_SHIFT, end);
2232 /*
2233 * If a page can not be invalidated, return 0 to fall back
2234 * to buffered write.
2235 */
2236 if (written) {
2237 if (written == -EBUSY)
2238 return 0;
2239 goto out;
2240 }
2241 }
2242
2243 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2244
2245 /*
2246 * Finally, try again to invalidate clean pages which might have been
2247 * cached by non-direct readahead, or faulted in by get_user_pages()
2248 * if the source of the write was an mmap'ed region of the file
2249 * we're writing. Either one is a pretty crazy thing to do,
2250 * so we don't support it 100%. If this invalidation
2251 * fails, tough, the write still worked...
2252 */
2253 if (mapping->nrpages) {
2254 invalidate_inode_pages2_range(mapping,
2255 pos >> PAGE_CACHE_SHIFT, end);
2256 }
2257
2258 if (written > 0) {
2259 pos += written;
2260 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2261 i_size_write(inode, pos);
2262 mark_inode_dirty(inode);
2263 }
2264 *ppos = pos;
2265 }
2266 out:
2267 return written;
2268 }
2269 EXPORT_SYMBOL(generic_file_direct_write);
2270
2271 /*
2272 * Find or create a page at the given pagecache position. Return the locked
2273 * page. This function is specifically for buffered writes.
2274 */
2275 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2276 pgoff_t index, unsigned flags)
2277 {
2278 int status;
2279 gfp_t gfp_mask;
2280 struct page *page;
2281 gfp_t gfp_notmask = 0;
2282
2283 gfp_mask = mapping_gfp_mask(mapping);
2284 if (mapping_cap_account_dirty(mapping))
2285 gfp_mask |= __GFP_WRITE;
2286 if (flags & AOP_FLAG_NOFS)
2287 gfp_notmask = __GFP_FS;
2288 repeat:
2289 page = find_lock_page(mapping, index);
2290 if (page)
2291 goto found;
2292
2293 page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2294 if (!page)
2295 return NULL;
2296 status = add_to_page_cache_lru(page, mapping, index,
2297 GFP_KERNEL & ~gfp_notmask);
2298 if (unlikely(status)) {
2299 page_cache_release(page);
2300 if (status == -EEXIST)
2301 goto repeat;
2302 return NULL;
2303 }
2304 found:
2305 wait_for_stable_page(page);
2306 return page;
2307 }
2308 EXPORT_SYMBOL(grab_cache_page_write_begin);
2309
2310 static ssize_t generic_perform_write(struct file *file,
2311 struct iov_iter *i, loff_t pos)
2312 {
2313 struct address_space *mapping = file->f_mapping;
2314 const struct address_space_operations *a_ops = mapping->a_ops;
2315 long status = 0;
2316 ssize_t written = 0;
2317 unsigned int flags = 0;
2318
2319 /*
2320 * Copies from kernel address space cannot fail (NFSD is a big user).
2321 */
2322 if (segment_eq(get_fs(), KERNEL_DS))
2323 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2324
2325 do {
2326 struct page *page;
2327 unsigned long offset; /* Offset into pagecache page */
2328 unsigned long bytes; /* Bytes to write to page */
2329 size_t copied; /* Bytes copied from user */
2330 void *fsdata;
2331
2332 offset = (pos & (PAGE_CACHE_SIZE - 1));
2333 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2334 iov_iter_count(i));
2335
2336 again:
2337 /*
2338 * Bring in the user page that we will copy from _first_.
2339 * Otherwise there's a nasty deadlock on copying from the
2340 * same page as we're writing to, without it being marked
2341 * up-to-date.
2342 *
2343 * Not only is this an optimisation, but it is also required
2344 * to check that the address is actually valid, when atomic
2345 * usercopies are used, below.
2346 */
2347 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2348 status = -EFAULT;
2349 break;
2350 }
2351
2352 if (fatal_signal_pending(current)) {
2353 status = -EINTR;
2354 break;
2355 }
2356
2357 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2358 &page, &fsdata);
2359 if (unlikely(status))
2360 break;
2361
2362 if (mapping_writably_mapped(mapping))
2363 flush_dcache_page(page);
2364
2365 pagefault_disable();
2366 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2367 pagefault_enable();
2368 flush_dcache_page(page);
2369
2370 mark_page_accessed(page);
2371 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2372 page, fsdata);
2373 if (unlikely(status < 0))
2374 break;
2375 copied = status;
2376
2377 cond_resched();
2378
2379 iov_iter_advance(i, copied);
2380 if (unlikely(copied == 0)) {
2381 /*
2382 * If we were unable to copy any data at all, we must
2383 * fall back to a single segment length write.
2384 *
2385 * If we didn't fallback here, we could livelock
2386 * because not all segments in the iov can be copied at
2387 * once without a pagefault.
2388 */
2389 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2390 iov_iter_single_seg_count(i));
2391 goto again;
2392 }
2393 pos += copied;
2394 written += copied;
2395
2396 balance_dirty_pages_ratelimited(mapping);
2397 } while (iov_iter_count(i));
2398
2399 return written ? written : status;
2400 }
2401
2402 ssize_t
2403 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2404 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2405 size_t count, ssize_t written)
2406 {
2407 struct file *file = iocb->ki_filp;
2408 ssize_t status;
2409 struct iov_iter i;
2410
2411 iov_iter_init(&i, iov, nr_segs, count, written);
2412 status = generic_perform_write(file, &i, pos);
2413
2414 if (likely(status >= 0)) {
2415 written += status;
2416 *ppos = pos + status;
2417 }
2418
2419 return written ? written : status;
2420 }
2421 EXPORT_SYMBOL(generic_file_buffered_write);
2422
2423 /**
2424 * __generic_file_aio_write - write data to a file
2425 * @iocb: IO state structure (file, offset, etc.)
2426 * @iov: vector with data to write
2427 * @nr_segs: number of segments in the vector
2428 * @ppos: position where to write
2429 *
2430 * This function does all the work needed for actually writing data to a
2431 * file. It does all basic checks, removes SUID from the file, updates
2432 * modification times and calls proper subroutines depending on whether we
2433 * do direct IO or a standard buffered write.
2434 *
2435 * It expects i_mutex to be grabbed unless we work on a block device or similar
2436 * object which does not need locking at all.
2437 *
2438 * This function does *not* take care of syncing data in case of O_SYNC write.
2439 * A caller has to handle it. This is mainly due to the fact that we want to
2440 * avoid syncing under i_mutex.
2441 */
2442 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2443 unsigned long nr_segs, loff_t *ppos)
2444 {
2445 struct file *file = iocb->ki_filp;
2446 struct address_space * mapping = file->f_mapping;
2447 size_t ocount; /* original count */
2448 size_t count; /* after file limit checks */
2449 struct inode *inode = mapping->host;
2450 loff_t pos;
2451 ssize_t written;
2452 ssize_t err;
2453
2454 ocount = 0;
2455 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2456 if (err)
2457 return err;
2458
2459 count = ocount;
2460 pos = *ppos;
2461
2462 /* We can write back this queue in page reclaim */
2463 current->backing_dev_info = mapping->backing_dev_info;
2464 written = 0;
2465
2466 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2467 if (err)
2468 goto out;
2469
2470 if (count == 0)
2471 goto out;
2472
2473 err = file_remove_suid(file);
2474 if (err)
2475 goto out;
2476
2477 err = file_update_time(file);
2478 if (err)
2479 goto out;
2480
2481 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2482 if (unlikely(file->f_flags & O_DIRECT)) {
2483 loff_t endbyte;
2484 ssize_t written_buffered;
2485
2486 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2487 ppos, count, ocount);
2488 if (written < 0 || written == count)
2489 goto out;
2490 /*
2491 * direct-io write to a hole: fall through to buffered I/O
2492 * for completing the rest of the request.
2493 */
2494 pos += written;
2495 count -= written;
2496 written_buffered = generic_file_buffered_write(iocb, iov,
2497 nr_segs, pos, ppos, count,
2498 written);
2499 /*
2500 * If generic_file_buffered_write() retuned a synchronous error
2501 * then we want to return the number of bytes which were
2502 * direct-written, or the error code if that was zero. Note
2503 * that this differs from normal direct-io semantics, which
2504 * will return -EFOO even if some bytes were written.
2505 */
2506 if (written_buffered < 0) {
2507 err = written_buffered;
2508 goto out;
2509 }
2510
2511 /*
2512 * We need to ensure that the page cache pages are written to
2513 * disk and invalidated to preserve the expected O_DIRECT
2514 * semantics.
2515 */
2516 endbyte = pos + written_buffered - written - 1;
2517 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2518 if (err == 0) {
2519 written = written_buffered;
2520 invalidate_mapping_pages(mapping,
2521 pos >> PAGE_CACHE_SHIFT,
2522 endbyte >> PAGE_CACHE_SHIFT);
2523 } else {
2524 /*
2525 * We don't know how much we wrote, so just return
2526 * the number of bytes which were direct-written
2527 */
2528 }
2529 } else {
2530 written = generic_file_buffered_write(iocb, iov, nr_segs,
2531 pos, ppos, count, written);
2532 }
2533 out:
2534 current->backing_dev_info = NULL;
2535 return written ? written : err;
2536 }
2537 EXPORT_SYMBOL(__generic_file_aio_write);
2538
2539 /**
2540 * generic_file_aio_write - write data to a file
2541 * @iocb: IO state structure
2542 * @iov: vector with data to write
2543 * @nr_segs: number of segments in the vector
2544 * @pos: position in file where to write
2545 *
2546 * This is a wrapper around __generic_file_aio_write() to be used by most
2547 * filesystems. It takes care of syncing the file in case of O_SYNC file
2548 * and acquires i_mutex as needed.
2549 */
2550 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2551 unsigned long nr_segs, loff_t pos)
2552 {
2553 struct file *file = iocb->ki_filp;
2554 struct inode *inode = file->f_mapping->host;
2555 ssize_t ret;
2556
2557 BUG_ON(iocb->ki_pos != pos);
2558
2559 mutex_lock(&inode->i_mutex);
2560 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2561 mutex_unlock(&inode->i_mutex);
2562
2563 if (ret > 0 || ret == -EIOCBQUEUED) {
2564 ssize_t err;
2565
2566 err = generic_write_sync(file, pos, ret);
2567 if (err < 0 && ret > 0)
2568 ret = err;
2569 }
2570 return ret;
2571 }
2572 EXPORT_SYMBOL(generic_file_aio_write);
2573
2574 /**
2575 * try_to_release_page() - release old fs-specific metadata on a page
2576 *
2577 * @page: the page which the kernel is trying to free
2578 * @gfp_mask: memory allocation flags (and I/O mode)
2579 *
2580 * The address_space is to try to release any data against the page
2581 * (presumably at page->private). If the release was successful, return `1'.
2582 * Otherwise return zero.
2583 *
2584 * This may also be called if PG_fscache is set on a page, indicating that the
2585 * page is known to the local caching routines.
2586 *
2587 * The @gfp_mask argument specifies whether I/O may be performed to release
2588 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2589 *
2590 */
2591 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2592 {
2593 struct address_space * const mapping = page->mapping;
2594
2595 BUG_ON(!PageLocked(page));
2596 if (PageWriteback(page))
2597 return 0;
2598
2599 if (mapping && mapping->a_ops->releasepage)
2600 return mapping->a_ops->releasepage(page, gfp_mask);
2601 return try_to_free_buffers(page);
2602 }
2603
2604 EXPORT_SYMBOL(try_to_release_page);