Merge tag 'v3.10.95' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20
21 #ifdef CONFIG_HAS_EARLYSUSPEND
22 #include <linux/earlysuspend.h>
23 #endif
24
25 #ifdef CONFIG_COMPACTION
26 static inline void count_compact_event(enum vm_event_item item)
27 {
28 count_vm_event(item);
29 }
30
31 static inline void count_compact_events(enum vm_event_item item, long delta)
32 {
33 count_vm_events(item, delta);
34 }
35 #else
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
38 #endif
39
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
44
45 static unsigned long release_freepages(struct list_head *freelist)
46 {
47 struct page *page, *next;
48 unsigned long count = 0;
49
50 list_for_each_entry_safe(page, next, freelist, lru) {
51 list_del(&page->lru);
52 __free_page(page);
53 count++;
54 }
55
56 return count;
57 }
58
59 static void map_pages(struct list_head *list)
60 {
61 struct page *page;
62
63 list_for_each_entry(page, list, lru) {
64 arch_alloc_page(page, 0);
65 kernel_map_pages(page, 1, 1);
66 }
67 }
68
69 static inline bool migrate_async_suitable(int migratetype)
70 {
71 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
72 }
73
74 #ifdef CONFIG_COMPACTION
75 /* Returns true if the pageblock should be scanned for pages to isolate. */
76 static inline bool isolation_suitable(struct compact_control *cc,
77 struct page *page)
78 {
79 if (cc->ignore_skip_hint)
80 return true;
81
82 return !get_pageblock_skip(page);
83 }
84
85 /*
86 * This function is called to clear all cached information on pageblocks that
87 * should be skipped for page isolation when the migrate and free page scanner
88 * meet.
89 */
90 static void __reset_isolation_suitable(struct zone *zone)
91 {
92 unsigned long start_pfn = zone->zone_start_pfn;
93 unsigned long end_pfn = zone_end_pfn(zone);
94 unsigned long pfn;
95
96 zone->compact_cached_migrate_pfn = start_pfn;
97 zone->compact_cached_free_pfn = end_pfn;
98 zone->compact_blockskip_flush = false;
99
100 /* Walk the zone and mark every pageblock as suitable for isolation */
101 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
102 struct page *page;
103
104 cond_resched();
105
106 if (!pfn_valid(pfn))
107 continue;
108
109 page = pfn_to_page(pfn);
110 if (zone != page_zone(page))
111 continue;
112
113 clear_pageblock_skip(page);
114 }
115 }
116
117 void reset_isolation_suitable(pg_data_t *pgdat)
118 {
119 int zoneid;
120
121 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
122 struct zone *zone = &pgdat->node_zones[zoneid];
123 if (!populated_zone(zone))
124 continue;
125
126 /* Only flush if a full compaction finished recently */
127 if (zone->compact_blockskip_flush)
128 __reset_isolation_suitable(zone);
129 }
130 }
131
132 /*
133 * If no pages were isolated then mark this pageblock to be skipped in the
134 * future. The information is later cleared by __reset_isolation_suitable().
135 */
136 static void update_pageblock_skip(struct compact_control *cc,
137 struct page *page, unsigned long nr_isolated,
138 bool migrate_scanner)
139 {
140 struct zone *zone = cc->zone;
141
142 if (cc->ignore_skip_hint)
143 return;
144
145 if (!page)
146 return;
147
148 if (!nr_isolated) {
149 unsigned long pfn = page_to_pfn(page);
150 set_pageblock_skip(page);
151
152 /* Update where compaction should restart */
153 if (migrate_scanner) {
154 if (!cc->finished_update_migrate &&
155 pfn > zone->compact_cached_migrate_pfn)
156 zone->compact_cached_migrate_pfn = pfn;
157 } else {
158 if (!cc->finished_update_free &&
159 pfn < zone->compact_cached_free_pfn)
160 zone->compact_cached_free_pfn = pfn;
161 }
162 }
163 }
164 #else
165 static inline bool isolation_suitable(struct compact_control *cc,
166 struct page *page)
167 {
168 return true;
169 }
170
171 static void update_pageblock_skip(struct compact_control *cc,
172 struct page *page, unsigned long nr_isolated,
173 bool migrate_scanner)
174 {
175 }
176 #endif /* CONFIG_COMPACTION */
177
178 static inline bool should_release_lock(spinlock_t *lock)
179 {
180 return need_resched() || spin_is_contended(lock);
181 }
182
183 /*
184 * Compaction requires the taking of some coarse locks that are potentially
185 * very heavily contended. Check if the process needs to be scheduled or
186 * if the lock is contended. For async compaction, back out in the event
187 * if contention is severe. For sync compaction, schedule.
188 *
189 * Returns true if the lock is held.
190 * Returns false if the lock is released and compaction should abort
191 */
192 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
193 bool locked, struct compact_control *cc)
194 {
195 if (should_release_lock(lock)) {
196 if (locked) {
197 spin_unlock_irqrestore(lock, *flags);
198 locked = false;
199 }
200
201 /* async aborts if taking too long or contended */
202 if (!cc->sync) {
203 cc->contended = true;
204 return false;
205 }
206
207 cond_resched();
208 }
209
210 if (!locked)
211 spin_lock_irqsave(lock, *flags);
212 return true;
213 }
214
215 static inline bool compact_trylock_irqsave(spinlock_t *lock,
216 unsigned long *flags, struct compact_control *cc)
217 {
218 return compact_checklock_irqsave(lock, flags, false, cc);
219 }
220
221 /* Returns true if the page is within a block suitable for migration to */
222 static bool suitable_migration_target(struct page *page)
223 {
224 int migratetype = get_pageblock_migratetype(page);
225
226 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
227 if (migratetype == MIGRATE_RESERVE)
228 return false;
229
230 if (is_migrate_isolate(migratetype))
231 return false;
232
233 if (is_migrate_mtkpasr(migratetype))
234 return false;
235
236 /* If the page is a large free page, then allow migration */
237 if (PageBuddy(page) && page_order(page) >= pageblock_order)
238 return true;
239
240 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
241 if (migrate_async_suitable(migratetype))
242 return true;
243
244 /* Otherwise skip the block */
245 return false;
246 }
247
248 /*
249 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
250 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
251 * pages inside of the pageblock (even though it may still end up isolating
252 * some pages).
253 */
254 static unsigned long isolate_freepages_block(struct compact_control *cc,
255 unsigned long blockpfn,
256 unsigned long end_pfn,
257 struct list_head *freelist,
258 bool strict)
259 {
260 int nr_scanned = 0, total_isolated = 0;
261 struct page *cursor, *valid_page = NULL;
262 unsigned long flags;
263 bool locked = false;
264
265 cursor = pfn_to_page(blockpfn);
266
267 /* Isolate free pages. */
268 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
269 int isolated, i;
270 struct page *page = cursor;
271
272 nr_scanned++;
273 if (!pfn_valid_within(blockpfn))
274 goto isolate_fail;
275
276 if (!valid_page)
277 valid_page = page;
278 if (!PageBuddy(page))
279 goto isolate_fail;
280
281 /*
282 * The zone lock must be held to isolate freepages.
283 * Unfortunately this is a very coarse lock and can be
284 * heavily contended if there are parallel allocations
285 * or parallel compactions. For async compaction do not
286 * spin on the lock and we acquire the lock as late as
287 * possible.
288 */
289 locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
290 locked, cc);
291 if (!locked)
292 break;
293
294 /* Recheck this is a suitable migration target under lock */
295 if (!strict && !suitable_migration_target(page))
296 break;
297
298 /* Recheck this is a buddy page under lock */
299 if (!PageBuddy(page))
300 goto isolate_fail;
301
302 /* Found a free page, break it into order-0 pages */
303 isolated = split_free_page(page);
304 total_isolated += isolated;
305 for (i = 0; i < isolated; i++) {
306 list_add(&page->lru, freelist);
307 page++;
308 }
309
310 /* If a page was split, advance to the end of it */
311 if (isolated) {
312 blockpfn += isolated - 1;
313 cursor += isolated - 1;
314 continue;
315 }
316
317 isolate_fail:
318 if (strict)
319 break;
320 else
321 continue;
322
323 }
324
325 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
326
327 /*
328 * If strict isolation is requested by CMA then check that all the
329 * pages requested were isolated. If there were any failures, 0 is
330 * returned and CMA will fail.
331 */
332 if (strict && blockpfn < end_pfn)
333 total_isolated = 0;
334
335 if (locked)
336 spin_unlock_irqrestore(&cc->zone->lock, flags);
337
338 /* Update the pageblock-skip if the whole pageblock was scanned */
339 if (blockpfn == end_pfn)
340 update_pageblock_skip(cc, valid_page, total_isolated, false);
341
342 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
343 if (total_isolated)
344 count_compact_events(COMPACTISOLATED, total_isolated);
345 return total_isolated;
346 }
347
348 /**
349 * isolate_freepages_range() - isolate free pages.
350 * @start_pfn: The first PFN to start isolating.
351 * @end_pfn: The one-past-last PFN.
352 *
353 * Non-free pages, invalid PFNs, or zone boundaries within the
354 * [start_pfn, end_pfn) range are considered errors, cause function to
355 * undo its actions and return zero.
356 *
357 * Otherwise, function returns one-past-the-last PFN of isolated page
358 * (which may be greater then end_pfn if end fell in a middle of
359 * a free page).
360 */
361 unsigned long
362 isolate_freepages_range(struct compact_control *cc,
363 unsigned long start_pfn, unsigned long end_pfn)
364 {
365 unsigned long isolated, pfn, block_end_pfn;
366 LIST_HEAD(freelist);
367
368 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
369 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
370 break;
371
372 /*
373 * On subsequent iterations ALIGN() is actually not needed,
374 * but we keep it that we not to complicate the code.
375 */
376 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
377 block_end_pfn = min(block_end_pfn, end_pfn);
378
379 isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
380 &freelist, true);
381
382 /*
383 * In strict mode, isolate_freepages_block() returns 0 if
384 * there are any holes in the block (ie. invalid PFNs or
385 * non-free pages).
386 */
387 if (!isolated)
388 break;
389
390 /*
391 * If we managed to isolate pages, it is always (1 << n) *
392 * pageblock_nr_pages for some non-negative n. (Max order
393 * page may span two pageblocks).
394 */
395 }
396
397 /* split_free_page does not map the pages */
398 map_pages(&freelist);
399
400 if (pfn < end_pfn) {
401 /* Loop terminated early, cleanup. */
402 release_freepages(&freelist);
403 return 0;
404 }
405
406 /* We don't use freelists for anything. */
407 return pfn;
408 }
409
410 /* Update the number of anon and file isolated pages in the zone */
411 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
412 {
413 struct page *page;
414 unsigned int count[2] = { 0, };
415
416 list_for_each_entry(page, &cc->migratepages, lru)
417 count[!!page_is_file_cache(page)]++;
418
419 /* If locked we can use the interrupt unsafe versions */
420 if (locked) {
421 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
422 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
423 } else {
424 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
425 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
426 }
427 }
428
429 /* Similar to reclaim, but different enough that they don't share logic */
430 static bool too_many_isolated(struct zone *zone)
431 {
432 unsigned long active, inactive, isolated;
433
434 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
435 zone_page_state(zone, NR_INACTIVE_ANON);
436 active = zone_page_state(zone, NR_ACTIVE_FILE) +
437 zone_page_state(zone, NR_ACTIVE_ANON);
438 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
439 zone_page_state(zone, NR_ISOLATED_ANON);
440
441 return isolated > (inactive + active) / 2;
442 }
443
444 /**
445 * isolate_migratepages_range() - isolate all migrate-able pages in range.
446 * @zone: Zone pages are in.
447 * @cc: Compaction control structure.
448 * @low_pfn: The first PFN of the range.
449 * @end_pfn: The one-past-the-last PFN of the range.
450 * @unevictable: true if it allows to isolate unevictable pages
451 *
452 * Isolate all pages that can be migrated from the range specified by
453 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
454 * pending), otherwise PFN of the first page that was not scanned
455 * (which may be both less, equal to or more then end_pfn).
456 *
457 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
458 * zero.
459 *
460 * Apart from cc->migratepages and cc->nr_migratetypes this function
461 * does not modify any cc's fields, in particular it does not modify
462 * (or read for that matter) cc->migrate_pfn.
463 */
464 unsigned long
465 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
466 unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
467 {
468 unsigned long last_pageblock_nr = 0, pageblock_nr;
469 unsigned long nr_scanned = 0, nr_isolated = 0;
470 struct list_head *migratelist = &cc->migratepages;
471 isolate_mode_t mode = 0;
472 struct lruvec *lruvec;
473 unsigned long flags;
474 bool locked = false;
475 struct page *page = NULL, *valid_page = NULL;
476
477 /*
478 * Ensure that there are not too many pages isolated from the LRU
479 * list by either parallel reclaimers or compaction. If there are,
480 * delay for some time until fewer pages are isolated
481 */
482 while (unlikely(too_many_isolated(zone))) {
483 /* async migration should just abort */
484 if (!cc->sync)
485 return 0;
486
487 congestion_wait(BLK_RW_ASYNC, HZ/10);
488
489 if (fatal_signal_pending(current))
490 return 0;
491 }
492
493 /* Time to isolate some pages for migration */
494 cond_resched();
495 for (; low_pfn < end_pfn; low_pfn++) {
496 /* give a chance to irqs before checking need_resched() */
497 if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
498 if (should_release_lock(&zone->lru_lock)) {
499 spin_unlock_irqrestore(&zone->lru_lock, flags);
500 locked = false;
501 }
502 }
503
504 /*
505 * migrate_pfn does not necessarily start aligned to a
506 * pageblock. Ensure that pfn_valid is called when moving
507 * into a new MAX_ORDER_NR_PAGES range in case of large
508 * memory holes within the zone
509 */
510 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
511 if (!pfn_valid(low_pfn)) {
512 low_pfn += MAX_ORDER_NR_PAGES - 1;
513 continue;
514 }
515 }
516
517 if (!pfn_valid_within(low_pfn))
518 continue;
519 nr_scanned++;
520
521 /*
522 * Get the page and ensure the page is within the same zone.
523 * See the comment in isolate_freepages about overlapping
524 * nodes. It is deliberate that the new zone lock is not taken
525 * as memory compaction should not move pages between nodes.
526 */
527 page = pfn_to_page(low_pfn);
528 if (page_zone(page) != zone)
529 continue;
530
531 if (!valid_page)
532 valid_page = page;
533
534 /* If isolation recently failed, do not retry */
535 pageblock_nr = low_pfn >> pageblock_order;
536 if (!isolation_suitable(cc, page))
537 goto next_pageblock;
538
539 /* Skip if free */
540 if (PageBuddy(page))
541 continue;
542
543 /*
544 * For async migration, also only scan in MOVABLE blocks. Async
545 * migration is optimistic to see if the minimum amount of work
546 * satisfies the allocation
547 */
548 if (!cc->sync && last_pageblock_nr != pageblock_nr &&
549 !migrate_async_suitable(get_pageblock_migratetype(page))) {
550 cc->finished_update_migrate = true;
551 goto next_pageblock;
552 }
553
554 /*
555 * Check may be lockless but that's ok as we recheck later.
556 * It's possible to migrate LRU pages and balloon pages
557 * Skip any other type of page
558 */
559 if (!PageLRU(page)) {
560 if (unlikely(balloon_page_movable(page))) {
561 if (locked && balloon_page_isolate(page)) {
562 /* Successfully isolated */
563 cc->finished_update_migrate = true;
564 list_add(&page->lru, migratelist);
565 cc->nr_migratepages++;
566 nr_isolated++;
567 goto check_compact_cluster;
568 }
569 }
570 continue;
571 }
572
573 /*
574 * PageLRU is set. lru_lock normally excludes isolation
575 * splitting and collapsing (collapsing has already happened
576 * if PageLRU is set) but the lock is not necessarily taken
577 * here and it is wasteful to take it just to check transhuge.
578 * Check TransHuge without lock and skip the whole pageblock if
579 * it's either a transhuge or hugetlbfs page, as calling
580 * compound_order() without preventing THP from splitting the
581 * page underneath us may return surprising results.
582 */
583 if (PageTransHuge(page)) {
584 if (!locked)
585 goto next_pageblock;
586 low_pfn += (1 << compound_order(page)) - 1;
587 continue;
588 }
589
590 /* Check if it is ok to still hold the lock */
591 locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
592 locked, cc);
593 if (!locked || fatal_signal_pending(current))
594 break;
595
596 /* Recheck PageLRU and PageTransHuge under lock */
597 if (!PageLRU(page))
598 continue;
599 if (PageTransHuge(page)) {
600 low_pfn += (1 << compound_order(page)) - 1;
601 continue;
602 }
603
604 if (!cc->sync)
605 mode |= ISOLATE_ASYNC_MIGRATE;
606
607 if (unevictable)
608 mode |= ISOLATE_UNEVICTABLE;
609
610 lruvec = mem_cgroup_page_lruvec(page, zone);
611
612 /* Try isolate the page */
613 if (__isolate_lru_page(page, mode) != 0)
614 continue;
615
616 VM_BUG_ON(PageTransCompound(page));
617
618 /* Successfully isolated */
619 cc->finished_update_migrate = true;
620 del_page_from_lru_list(page, lruvec, page_lru(page));
621 list_add(&page->lru, migratelist);
622 cc->nr_migratepages++;
623 nr_isolated++;
624
625 check_compact_cluster:
626 /* Avoid isolating too much */
627 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
628 ++low_pfn;
629 break;
630 }
631
632 continue;
633
634 next_pageblock:
635 low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
636 last_pageblock_nr = pageblock_nr;
637 }
638
639 acct_isolated(zone, locked, cc);
640
641 if (locked)
642 spin_unlock_irqrestore(&zone->lru_lock, flags);
643
644 /* Update the pageblock-skip if the whole pageblock was scanned */
645 if (low_pfn == end_pfn)
646 update_pageblock_skip(cc, valid_page, nr_isolated, true);
647
648 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
649
650 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
651 if (nr_isolated)
652 count_compact_events(COMPACTISOLATED, nr_isolated);
653
654 return low_pfn;
655 }
656
657 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
658 #ifdef CONFIG_COMPACTION
659 /*
660 * Based on information in the current compact_control, find blocks
661 * suitable for isolating free pages from and then isolate them.
662 */
663 static void isolate_freepages(struct zone *zone,
664 struct compact_control *cc)
665 {
666 struct page *page;
667 unsigned long high_pfn, low_pfn, pfn, z_end_pfn;
668 int nr_freepages = cc->nr_freepages;
669 struct list_head *freelist = &cc->freepages;
670
671 /*
672 * Initialise the free scanner. The starting point is where we last
673 * successfully isolated from, zone-cached value, or the end of the
674 * zone when isolating for the first time. We need this aligned to
675 * the pageblock boundary, because we do pfn -= pageblock_nr_pages
676 * in the for loop.
677 * The low boundary is the end of the pageblock the migration scanner
678 * is using.
679 */
680 pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
681 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
682
683 /*
684 * Take care that if the migration scanner is at the end of the zone
685 * that the free scanner does not accidentally move to the next zone
686 * in the next isolation cycle.
687 */
688 high_pfn = min(low_pfn, pfn);
689
690 z_end_pfn = zone_end_pfn(zone);
691
692 /*
693 * Isolate free pages until enough are available to migrate the
694 * pages on cc->migratepages. We stop searching if the migrate
695 * and free page scanners meet or enough free pages are isolated.
696 */
697 for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
698 pfn -= pageblock_nr_pages) {
699 unsigned long isolated;
700 unsigned long end_pfn;
701
702 if (!pfn_valid(pfn))
703 continue;
704
705 /*
706 * Check for overlapping nodes/zones. It's possible on some
707 * configurations to have a setup like
708 * node0 node1 node0
709 * i.e. it's possible that all pages within a zones range of
710 * pages do not belong to a single zone.
711 */
712 page = pfn_to_page(pfn);
713 if (page_zone(page) != zone)
714 continue;
715
716 /* Check the block is suitable for migration */
717 if (!suitable_migration_target(page))
718 continue;
719
720 /* If isolation recently failed, do not retry */
721 if (!isolation_suitable(cc, page))
722 continue;
723
724 /* Found a block suitable for isolating free pages from */
725 isolated = 0;
726
727 /*
728 * Take care when isolating in last pageblock of a zone which
729 * ends in the middle of a pageblock.
730 */
731 end_pfn = min(pfn + pageblock_nr_pages, z_end_pfn);
732 isolated = isolate_freepages_block(cc, pfn, end_pfn,
733 freelist, false);
734 nr_freepages += isolated;
735
736 /*
737 * Record the highest PFN we isolated pages from. When next
738 * looking for free pages, the search will restart here as
739 * page migration may have returned some pages to the allocator
740 */
741 if (isolated) {
742 cc->finished_update_free = true;
743 high_pfn = max(high_pfn, pfn);
744 }
745 }
746
747 /* split_free_page does not map the pages */
748 map_pages(freelist);
749
750 /*
751 * If we crossed the migrate scanner, we want to keep it that way
752 * so that compact_finished() may detect this
753 */
754 if (pfn < low_pfn)
755 cc->free_pfn = max(pfn, zone->zone_start_pfn);
756 else
757 cc->free_pfn = high_pfn;
758 cc->nr_freepages = nr_freepages;
759 }
760
761 /*
762 * This is a migrate-callback that "allocates" freepages by taking pages
763 * from the isolated freelists in the block we are migrating to.
764 */
765 static struct page *compaction_alloc(struct page *migratepage,
766 unsigned long data,
767 int **result)
768 {
769 struct compact_control *cc = (struct compact_control *)data;
770 struct page *freepage;
771
772 /* Isolate free pages if necessary */
773 if (list_empty(&cc->freepages)) {
774 isolate_freepages(cc->zone, cc);
775
776 if (list_empty(&cc->freepages))
777 return NULL;
778 }
779
780 freepage = list_entry(cc->freepages.next, struct page, lru);
781 list_del(&freepage->lru);
782 cc->nr_freepages--;
783
784 return freepage;
785 }
786
787 /*
788 * We cannot control nr_migratepages and nr_freepages fully when migration is
789 * running as migrate_pages() has no knowledge of compact_control. When
790 * migration is complete, we count the number of pages on the lists by hand.
791 */
792 static void update_nr_listpages(struct compact_control *cc)
793 {
794 int nr_migratepages = 0;
795 int nr_freepages = 0;
796 struct page *page;
797
798 list_for_each_entry(page, &cc->migratepages, lru)
799 nr_migratepages++;
800 list_for_each_entry(page, &cc->freepages, lru)
801 nr_freepages++;
802
803 cc->nr_migratepages = nr_migratepages;
804 cc->nr_freepages = nr_freepages;
805 }
806
807 /* possible outcome of isolate_migratepages */
808 typedef enum {
809 ISOLATE_ABORT, /* Abort compaction now */
810 ISOLATE_NONE, /* No pages isolated, continue scanning */
811 ISOLATE_SUCCESS, /* Pages isolated, migrate */
812 } isolate_migrate_t;
813
814 /*
815 * Isolate all pages that can be migrated from the block pointed to by
816 * the migrate scanner within compact_control.
817 */
818 static isolate_migrate_t isolate_migratepages(struct zone *zone,
819 struct compact_control *cc)
820 {
821 unsigned long low_pfn, end_pfn;
822
823 /* Do not scan outside zone boundaries */
824 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
825
826 /* Only scan within a pageblock boundary */
827 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
828
829 /* Do not cross the free scanner or scan within a memory hole */
830 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
831 cc->migrate_pfn = end_pfn;
832 return ISOLATE_NONE;
833 }
834
835 /* Perform the isolation */
836 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
837 if (!low_pfn || cc->contended)
838 return ISOLATE_ABORT;
839
840 cc->migrate_pfn = low_pfn;
841
842 return ISOLATE_SUCCESS;
843 }
844
845 static int compact_finished(struct zone *zone,
846 struct compact_control *cc)
847 {
848 unsigned int order;
849 unsigned long watermark;
850
851 if (fatal_signal_pending(current))
852 return COMPACT_PARTIAL;
853
854 /* Compaction run completes if the migrate and free scanner meet */
855 if (cc->free_pfn <= cc->migrate_pfn) {
856 /*
857 * Mark that the PG_migrate_skip information should be cleared
858 * by kswapd when it goes to sleep. kswapd does not set the
859 * flag itself as the decision to be clear should be directly
860 * based on an allocation request.
861 */
862 if (!current_is_kswapd())
863 zone->compact_blockskip_flush = true;
864
865 return COMPACT_COMPLETE;
866 }
867
868 /*
869 * order == -1 is expected when compacting via
870 * /proc/sys/vm/compact_memory
871 */
872 if (cc->order == -1)
873 return COMPACT_CONTINUE;
874
875 /* Compaction run is not finished if the watermark is not met */
876 watermark = low_wmark_pages(zone);
877 watermark += (1 << cc->order);
878
879 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
880 return COMPACT_CONTINUE;
881
882 /* Direct compactor: Is a suitable page free? */
883 for (order = cc->order; order < MAX_ORDER; order++) {
884 struct free_area *area = &zone->free_area[order];
885
886 /* Job done if page is free of the right migratetype */
887 if (!list_empty(&area->free_list[cc->migratetype]))
888 return COMPACT_PARTIAL;
889
890 /* Job done if allocation would set block type */
891 if (order >= pageblock_order && area->nr_free)
892 return COMPACT_PARTIAL;
893 }
894
895 return COMPACT_CONTINUE;
896 }
897
898 /*
899 * compaction_suitable: Is this suitable to run compaction on this zone now?
900 * Returns
901 * COMPACT_SKIPPED - If there are too few free pages for compaction
902 * COMPACT_PARTIAL - If the allocation would succeed without compaction
903 * COMPACT_CONTINUE - If compaction should run now
904 */
905 unsigned long compaction_suitable(struct zone *zone, int order)
906 {
907 int fragindex;
908 unsigned long watermark;
909
910 /*
911 * order == -1 is expected when compacting via
912 * /proc/sys/vm/compact_memory
913 */
914 if (order == -1)
915 return COMPACT_CONTINUE;
916
917 /*
918 * Watermarks for order-0 must be met for compaction. Note the 2UL.
919 * This is because during migration, copies of pages need to be
920 * allocated and for a short time, the footprint is higher
921 */
922 watermark = low_wmark_pages(zone) + (2UL << order);
923 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
924 return COMPACT_SKIPPED;
925
926 /*
927 * fragmentation index determines if allocation failures are due to
928 * low memory or external fragmentation
929 *
930 * index of -1000 implies allocations might succeed depending on
931 * watermarks
932 * index towards 0 implies failure is due to lack of memory
933 * index towards 1000 implies failure is due to fragmentation
934 *
935 * Only compact if a failure would be due to fragmentation.
936 */
937 fragindex = fragmentation_index(zone, order);
938 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
939 return COMPACT_SKIPPED;
940
941 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
942 0, 0))
943 return COMPACT_PARTIAL;
944
945 return COMPACT_CONTINUE;
946 }
947
948 static int compact_zone(struct zone *zone, struct compact_control *cc)
949 {
950 int ret;
951 unsigned long start_pfn = zone->zone_start_pfn;
952 unsigned long end_pfn = zone_end_pfn(zone);
953
954 ret = compaction_suitable(zone, cc->order);
955 switch (ret) {
956 case COMPACT_PARTIAL:
957 case COMPACT_SKIPPED:
958 /* Compaction is likely to fail */
959 return ret;
960 case COMPACT_CONTINUE:
961 /* Fall through to compaction */
962 ;
963 }
964
965 /*
966 * Clear pageblock skip if there were failures recently and compaction
967 * is about to be retried after being deferred. kswapd does not do
968 * this reset as it'll reset the cached information when going to sleep.
969 */
970 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
971 __reset_isolation_suitable(zone);
972
973 /*
974 * Setup to move all movable pages to the end of the zone. Used cached
975 * information on where the scanners should start but check that it
976 * is initialised by ensuring the values are within zone boundaries.
977 */
978 cc->migrate_pfn = zone->compact_cached_migrate_pfn;
979 cc->free_pfn = zone->compact_cached_free_pfn;
980 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
981 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
982 zone->compact_cached_free_pfn = cc->free_pfn;
983 }
984 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
985 cc->migrate_pfn = start_pfn;
986 zone->compact_cached_migrate_pfn = cc->migrate_pfn;
987 }
988
989 migrate_prep_local();
990
991 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
992 unsigned long nr_migrate, nr_remaining;
993 int err;
994
995 switch (isolate_migratepages(zone, cc)) {
996 case ISOLATE_ABORT:
997 ret = COMPACT_PARTIAL;
998 putback_movable_pages(&cc->migratepages);
999 cc->nr_migratepages = 0;
1000 goto out;
1001 case ISOLATE_NONE:
1002 continue;
1003 case ISOLATE_SUCCESS:
1004 ;
1005 }
1006
1007 nr_migrate = cc->nr_migratepages;
1008 err = migrate_pages(&cc->migratepages, compaction_alloc,
1009 (unsigned long)cc,
1010 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
1011 MR_COMPACTION);
1012 update_nr_listpages(cc);
1013 nr_remaining = cc->nr_migratepages;
1014
1015 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
1016 nr_remaining);
1017
1018 /* Release isolated pages not migrated */
1019 if (err) {
1020 putback_movable_pages(&cc->migratepages);
1021 cc->nr_migratepages = 0;
1022 /*
1023 * migrate_pages() may return -ENOMEM when scanners meet
1024 * and we want compact_finished() to detect it
1025 */
1026 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1027 ret = COMPACT_PARTIAL;
1028 goto out;
1029 }
1030 }
1031 }
1032
1033 out:
1034 /* Release free pages and check accounting */
1035 cc->nr_freepages -= release_freepages(&cc->freepages);
1036 VM_BUG_ON(cc->nr_freepages != 0);
1037
1038 return ret;
1039 }
1040
1041 static unsigned long compact_zone_order(struct zone *zone,
1042 int order, gfp_t gfp_mask,
1043 bool sync, bool *contended)
1044 {
1045 unsigned long ret;
1046 struct compact_control cc = {
1047 .nr_freepages = 0,
1048 .nr_migratepages = 0,
1049 .order = order,
1050 .migratetype = allocflags_to_migratetype(gfp_mask),
1051 .zone = zone,
1052 .sync = sync,
1053 };
1054 INIT_LIST_HEAD(&cc.freepages);
1055 INIT_LIST_HEAD(&cc.migratepages);
1056
1057 ret = compact_zone(zone, &cc);
1058
1059 VM_BUG_ON(!list_empty(&cc.freepages));
1060 VM_BUG_ON(!list_empty(&cc.migratepages));
1061
1062 *contended = cc.contended;
1063 return ret;
1064 }
1065
1066 int sysctl_extfrag_threshold = 500;
1067
1068 /**
1069 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1070 * @zonelist: The zonelist used for the current allocation
1071 * @order: The order of the current allocation
1072 * @gfp_mask: The GFP mask of the current allocation
1073 * @nodemask: The allowed nodes to allocate from
1074 * @sync: Whether migration is synchronous or not
1075 * @contended: Return value that is true if compaction was aborted due to lock contention
1076 * @page: Optionally capture a free page of the requested order during compaction
1077 *
1078 * This is the main entry point for direct page compaction.
1079 */
1080 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1081 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1082 bool sync, bool *contended)
1083 {
1084 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1085 int may_enter_fs = gfp_mask & __GFP_FS;
1086 int may_perform_io = gfp_mask & __GFP_IO;
1087 struct zoneref *z;
1088 struct zone *zone;
1089 int rc = COMPACT_SKIPPED;
1090 int alloc_flags = 0;
1091
1092 /* Check if the GFP flags allow compaction */
1093 if (!order || !may_enter_fs || !may_perform_io)
1094 return rc;
1095
1096 count_compact_event(COMPACTSTALL);
1097
1098 #ifdef CONFIG_CMA
1099 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1100 alloc_flags |= ALLOC_CMA;
1101 #endif
1102 /* Compact each zone in the list */
1103 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1104 nodemask) {
1105 int status;
1106
1107 status = compact_zone_order(zone, order, gfp_mask, sync,
1108 contended);
1109 rc = max(status, rc);
1110
1111 /* If a normal allocation would succeed, stop compacting */
1112 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1113 alloc_flags))
1114 break;
1115 }
1116
1117 return rc;
1118 }
1119
1120
1121 /* Compact all zones within a node */
1122 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1123 {
1124 int zoneid;
1125 struct zone *zone;
1126
1127 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1128
1129 zone = &pgdat->node_zones[zoneid];
1130 if (!populated_zone(zone))
1131 continue;
1132
1133 cc->nr_freepages = 0;
1134 cc->nr_migratepages = 0;
1135 cc->zone = zone;
1136 INIT_LIST_HEAD(&cc->freepages);
1137 INIT_LIST_HEAD(&cc->migratepages);
1138
1139 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1140 compact_zone(zone, cc);
1141
1142 if (cc->order > 0) {
1143 int ok = zone_watermark_ok(zone, cc->order,
1144 low_wmark_pages(zone), 0, 0);
1145 if (ok && cc->order >= zone->compact_order_failed)
1146 zone->compact_order_failed = cc->order + 1;
1147 /* Currently async compaction is never deferred. */
1148 else if (!ok && cc->sync)
1149 defer_compaction(zone, cc->order);
1150 }
1151
1152 VM_BUG_ON(!list_empty(&cc->freepages));
1153 VM_BUG_ON(!list_empty(&cc->migratepages));
1154 }
1155 }
1156
1157 void compact_pgdat(pg_data_t *pgdat, int order)
1158 {
1159 struct compact_control cc = {
1160 .order = order,
1161 .sync = false,
1162 };
1163
1164 __compact_pgdat(pgdat, &cc);
1165 }
1166
1167 static void compact_node(int nid)
1168 {
1169 struct compact_control cc = {
1170 .order = -1,
1171 .sync = true,
1172 };
1173
1174 __compact_pgdat(NODE_DATA(nid), &cc);
1175 }
1176
1177 /* Compact all nodes in the system */
1178 static void compact_nodes(void)
1179 {
1180 int nid;
1181
1182 /* Flush pending updates to the LRU lists */
1183 lru_add_drain_all();
1184
1185 for_each_online_node(nid)
1186 compact_node(nid);
1187 }
1188
1189 /* The written value is actually unused, all memory is compacted */
1190 int sysctl_compact_memory;
1191
1192 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1193 int sysctl_compaction_handler(struct ctl_table *table, int write,
1194 void __user *buffer, size_t *length, loff_t *ppos)
1195 {
1196 if (write)
1197 compact_nodes();
1198
1199 return 0;
1200 }
1201
1202 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1203 void __user *buffer, size_t *length, loff_t *ppos)
1204 {
1205 proc_dointvec_minmax(table, write, buffer, length, ppos);
1206
1207 return 0;
1208 }
1209
1210 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1211 ssize_t sysfs_compact_node(struct device *dev,
1212 struct device_attribute *attr,
1213 const char *buf, size_t count)
1214 {
1215 int nid = dev->id;
1216
1217 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1218 /* Flush pending updates to the LRU lists */
1219 lru_add_drain_all();
1220
1221 compact_node(nid);
1222 }
1223
1224 return count;
1225 }
1226 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1227
1228 int compaction_register_node(struct node *node)
1229 {
1230 return device_create_file(&node->dev, &dev_attr_compact);
1231 }
1232
1233 void compaction_unregister_node(struct node *node)
1234 {
1235 return device_remove_file(&node->dev, &dev_attr_compact);
1236 }
1237 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1238
1239 #endif /* CONFIG_COMPACTION */
1240
1241 #ifdef CONFIG_HAS_EARLYSUSPEND
1242 extern void drop_pagecache(void);
1243 //extern void kick_lmk_from_compaction(gfp_t);
1244 static void kick_compaction_early_suspend(struct early_suspend *h)
1245 {
1246 struct zone *z = &NODE_DATA(0)->node_zones[ZONE_NORMAL];
1247 int status;
1248 int retry = 3;
1249 int safe_order = THREAD_SIZE_ORDER + 1;
1250 bool contended;
1251 gfp_t gfp_mask = GFP_KERNEL;
1252
1253 /* Check whether gfp is restricted. */
1254 if (gfp_mask != (gfp_mask & gfp_allowed_mask)) {
1255 printk("XXXXXX GFP is restricted! XXXXXX\n");
1256 return;
1257 }
1258
1259 /* We try retry times at most. */
1260 while (retry > 0) {
1261 /* If it is safe under low watermark, then break. */
1262 if (zone_watermark_ok(z, safe_order, low_wmark_pages(z), 0, 0))
1263 break;
1264 status = compact_zone_order(z, safe_order, gfp_mask, true, &contended);
1265 --retry;
1266 }
1267 }
1268
1269 static void kick_compaction_late_resume(struct early_suspend *h)
1270 {
1271 /* Do nothing */
1272 }
1273
1274 static struct early_suspend kick_compaction_early_suspend_desc = {
1275 .level = EARLY_SUSPEND_LEVEL_DISABLE_FB + 1,
1276 .suspend = kick_compaction_early_suspend,
1277 .resume = kick_compaction_late_resume,
1278 };
1279
1280 static int __init compaction_init(void)
1281 {
1282 printk("@@@@@@ [%s] Register early suspend callback @@@@@@\n",__FUNCTION__);
1283 register_early_suspend(&kick_compaction_early_suspend_desc);
1284 return 0;
1285 }
1286 static void __exit compaction_exit(void)
1287 {
1288 printk("@@@@@@ [%s] Unregister early suspend callback @@@@@@\n",__FUNCTION__);
1289 unregister_early_suspend(&kick_compaction_early_suspend_desc);
1290 }
1291
1292 module_init(compaction_init);
1293 module_exit(compaction_exit);
1294 #endif