Merge tag 'v3.10.68' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / bootmem.c
1 /*
2 * bootmem - A boot-time physical memory allocator and configurator
3 *
4 * Copyright (C) 1999 Ingo Molnar
5 * 1999 Kanoj Sarcar, SGI
6 * 2008 Johannes Weiner
7 *
8 * Access to this subsystem has to be serialized externally (which is true
9 * for the boot process anyway).
10 */
11 #include <linux/init.h>
12 #include <linux/pfn.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/export.h>
16 #include <linux/kmemleak.h>
17 #include <linux/range.h>
18 #include <linux/memblock.h>
19
20 #include <asm/bug.h>
21 #include <asm/io.h>
22 #include <asm/processor.h>
23
24 #include "internal.h"
25
26 #ifndef CONFIG_NEED_MULTIPLE_NODES
27 struct pglist_data __refdata contig_page_data = {
28 .bdata = &bootmem_node_data[0]
29 };
30 EXPORT_SYMBOL(contig_page_data);
31 #endif
32
33 unsigned long max_low_pfn;
34 unsigned long min_low_pfn;
35 unsigned long max_pfn;
36
37 bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
38
39 static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
40
41 static int bootmem_debug;
42
43 static int __init bootmem_debug_setup(char *buf)
44 {
45 bootmem_debug = 1;
46 return 0;
47 }
48 early_param("bootmem_debug", bootmem_debug_setup);
49
50 #define bdebug(fmt, args...) ({ \
51 if (unlikely(bootmem_debug)) \
52 printk(KERN_INFO \
53 "bootmem::%s " fmt, \
54 __func__, ## args); \
55 })
56
57 static unsigned long __init bootmap_bytes(unsigned long pages)
58 {
59 unsigned long bytes = DIV_ROUND_UP(pages, 8);
60
61 return ALIGN(bytes, sizeof(long));
62 }
63
64 /**
65 * bootmem_bootmap_pages - calculate bitmap size in pages
66 * @pages: number of pages the bitmap has to represent
67 */
68 unsigned long __init bootmem_bootmap_pages(unsigned long pages)
69 {
70 unsigned long bytes = bootmap_bytes(pages);
71
72 return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
73 }
74
75 /*
76 * link bdata in order
77 */
78 static void __init link_bootmem(bootmem_data_t *bdata)
79 {
80 bootmem_data_t *ent;
81
82 list_for_each_entry(ent, &bdata_list, list) {
83 if (bdata->node_min_pfn < ent->node_min_pfn) {
84 list_add_tail(&bdata->list, &ent->list);
85 return;
86 }
87 }
88
89 list_add_tail(&bdata->list, &bdata_list);
90 }
91
92 /*
93 * Called once to set up the allocator itself.
94 */
95 static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
96 unsigned long mapstart, unsigned long start, unsigned long end)
97 {
98 unsigned long mapsize;
99
100 mminit_validate_memmodel_limits(&start, &end);
101 bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
102 bdata->node_min_pfn = start;
103 bdata->node_low_pfn = end;
104 link_bootmem(bdata);
105
106 /*
107 * Initially all pages are reserved - setup_arch() has to
108 * register free RAM areas explicitly.
109 */
110 mapsize = bootmap_bytes(end - start);
111 memset(bdata->node_bootmem_map, 0xff, mapsize);
112
113 bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
114 bdata - bootmem_node_data, start, mapstart, end, mapsize);
115
116 return mapsize;
117 }
118
119 /**
120 * init_bootmem_node - register a node as boot memory
121 * @pgdat: node to register
122 * @freepfn: pfn where the bitmap for this node is to be placed
123 * @startpfn: first pfn on the node
124 * @endpfn: first pfn after the node
125 *
126 * Returns the number of bytes needed to hold the bitmap for this node.
127 */
128 unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
129 unsigned long startpfn, unsigned long endpfn)
130 {
131 return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
132 }
133
134 /**
135 * init_bootmem - register boot memory
136 * @start: pfn where the bitmap is to be placed
137 * @pages: number of available physical pages
138 *
139 * Returns the number of bytes needed to hold the bitmap.
140 */
141 unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
142 {
143 max_low_pfn = pages;
144 min_low_pfn = start;
145 return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
146 }
147
148 /*
149 * free_bootmem_late - free bootmem pages directly to page allocator
150 * @addr: starting physical address of the range
151 * @size: size of the range in bytes
152 *
153 * This is only useful when the bootmem allocator has already been torn
154 * down, but we are still initializing the system. Pages are given directly
155 * to the page allocator, no bootmem metadata is updated because it is gone.
156 */
157 void __init free_bootmem_late(unsigned long physaddr, unsigned long size)
158 {
159 unsigned long cursor, end;
160
161 kmemleak_free_part(__va(physaddr), size);
162
163 cursor = PFN_UP(physaddr);
164 end = PFN_DOWN(physaddr + size);
165
166 for (; cursor < end; cursor++) {
167 __free_pages_bootmem(pfn_to_page(cursor), 0);
168 totalram_pages++;
169 }
170 }
171
172 static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
173 {
174 struct page *page;
175 unsigned long start, end, pages, count = 0;
176
177 if (!bdata->node_bootmem_map)
178 return 0;
179
180 start = bdata->node_min_pfn;
181 end = bdata->node_low_pfn;
182
183 bdebug("nid=%td start=%lx end=%lx\n",
184 bdata - bootmem_node_data, start, end);
185
186 while (start < end) {
187 unsigned long *map, idx, vec;
188 unsigned shift;
189
190 map = bdata->node_bootmem_map;
191 idx = start - bdata->node_min_pfn;
192 shift = idx & (BITS_PER_LONG - 1);
193 /*
194 * vec holds at most BITS_PER_LONG map bits,
195 * bit 0 corresponds to start.
196 */
197 vec = ~map[idx / BITS_PER_LONG];
198
199 if (shift) {
200 vec >>= shift;
201 if (end - start >= BITS_PER_LONG)
202 vec |= ~map[idx / BITS_PER_LONG + 1] <<
203 (BITS_PER_LONG - shift);
204 }
205 /*
206 * If we have a properly aligned and fully unreserved
207 * BITS_PER_LONG block of pages in front of us, free
208 * it in one go.
209 */
210 if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
211 int order = ilog2(BITS_PER_LONG);
212
213 __free_pages_bootmem(pfn_to_page(start), order);
214 count += BITS_PER_LONG;
215 start += BITS_PER_LONG;
216 } else {
217 unsigned long cur = start;
218
219 start = ALIGN(start + 1, BITS_PER_LONG);
220 while (vec && cur != start) {
221 if (vec & 1) {
222 page = pfn_to_page(cur);
223 __free_pages_bootmem(page, 0);
224 count++;
225 }
226 vec >>= 1;
227 ++cur;
228 }
229 }
230 }
231
232 page = virt_to_page(bdata->node_bootmem_map);
233 pages = bdata->node_low_pfn - bdata->node_min_pfn;
234 pages = bootmem_bootmap_pages(pages);
235 count += pages;
236 while (pages--)
237 __free_pages_bootmem(page++, 0);
238
239 bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
240
241 return count;
242 }
243
244 static void reset_node_lowmem_managed_pages(pg_data_t *pgdat)
245 {
246 struct zone *z;
247
248 /*
249 * In free_area_init_core(), highmem zone's managed_pages is set to
250 * present_pages, and bootmem allocator doesn't allocate from highmem
251 * zones. So there's no need to recalculate managed_pages because all
252 * highmem pages will be managed by the buddy system. Here highmem
253 * zone also includes highmem movable zone.
254 */
255 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
256 if (!is_highmem(z))
257 z->managed_pages = 0;
258 }
259
260 /**
261 * free_all_bootmem_node - release a node's free pages to the buddy allocator
262 * @pgdat: node to be released
263 *
264 * Returns the number of pages actually released.
265 */
266 unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
267 {
268 register_page_bootmem_info_node(pgdat);
269 reset_node_lowmem_managed_pages(pgdat);
270 return free_all_bootmem_core(pgdat->bdata);
271 }
272
273 /**
274 * free_all_bootmem - release free pages to the buddy allocator
275 *
276 * Returns the number of pages actually released.
277 */
278 unsigned long __init free_all_bootmem(void)
279 {
280 unsigned long total_pages = 0;
281 bootmem_data_t *bdata;
282 struct pglist_data *pgdat;
283
284 for_each_online_pgdat(pgdat)
285 reset_node_lowmem_managed_pages(pgdat);
286
287 list_for_each_entry(bdata, &bdata_list, list)
288 total_pages += free_all_bootmem_core(bdata);
289
290 return total_pages;
291 }
292
293 static void __init __free(bootmem_data_t *bdata,
294 unsigned long sidx, unsigned long eidx)
295 {
296 unsigned long idx;
297
298 bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
299 sidx + bdata->node_min_pfn,
300 eidx + bdata->node_min_pfn);
301
302 if (bdata->hint_idx > sidx)
303 bdata->hint_idx = sidx;
304
305 for (idx = sidx; idx < eidx; idx++)
306 if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
307 BUG();
308 }
309
310 static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
311 unsigned long eidx, int flags)
312 {
313 unsigned long idx;
314 int exclusive = flags & BOOTMEM_EXCLUSIVE;
315
316 bdebug("nid=%td start=%lx end=%lx flags=%x\n",
317 bdata - bootmem_node_data,
318 sidx + bdata->node_min_pfn,
319 eidx + bdata->node_min_pfn,
320 flags);
321
322 for (idx = sidx; idx < eidx; idx++)
323 if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
324 if (exclusive) {
325 __free(bdata, sidx, idx);
326 return -EBUSY;
327 }
328 bdebug("silent double reserve of PFN %lx\n",
329 idx + bdata->node_min_pfn);
330 }
331 return 0;
332 }
333
334 static int __init mark_bootmem_node(bootmem_data_t *bdata,
335 unsigned long start, unsigned long end,
336 int reserve, int flags)
337 {
338 unsigned long sidx, eidx;
339
340 bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
341 bdata - bootmem_node_data, start, end, reserve, flags);
342
343 BUG_ON(start < bdata->node_min_pfn);
344 BUG_ON(end > bdata->node_low_pfn);
345
346 sidx = start - bdata->node_min_pfn;
347 eidx = end - bdata->node_min_pfn;
348
349 if (reserve)
350 return __reserve(bdata, sidx, eidx, flags);
351 else
352 __free(bdata, sidx, eidx);
353 return 0;
354 }
355
356 static int __init mark_bootmem(unsigned long start, unsigned long end,
357 int reserve, int flags)
358 {
359 unsigned long pos;
360 bootmem_data_t *bdata;
361
362 pos = start;
363 list_for_each_entry(bdata, &bdata_list, list) {
364 int err;
365 unsigned long max;
366
367 if (pos < bdata->node_min_pfn ||
368 pos >= bdata->node_low_pfn) {
369 BUG_ON(pos != start);
370 continue;
371 }
372
373 max = min(bdata->node_low_pfn, end);
374
375 err = mark_bootmem_node(bdata, pos, max, reserve, flags);
376 if (reserve && err) {
377 mark_bootmem(start, pos, 0, 0);
378 return err;
379 }
380
381 if (max == end)
382 return 0;
383 pos = bdata->node_low_pfn;
384 }
385 BUG();
386 }
387
388 /**
389 * free_bootmem_node - mark a page range as usable
390 * @pgdat: node the range resides on
391 * @physaddr: starting address of the range
392 * @size: size of the range in bytes
393 *
394 * Partial pages will be considered reserved and left as they are.
395 *
396 * The range must reside completely on the specified node.
397 */
398 void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
399 unsigned long size)
400 {
401 unsigned long start, end;
402
403 kmemleak_free_part(__va(physaddr), size);
404
405 start = PFN_UP(physaddr);
406 end = PFN_DOWN(physaddr + size);
407
408 mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
409 }
410
411 /**
412 * free_bootmem - mark a page range as usable
413 * @addr: starting physical address of the range
414 * @size: size of the range in bytes
415 *
416 * Partial pages will be considered reserved and left as they are.
417 *
418 * The range must be contiguous but may span node boundaries.
419 */
420 void __init free_bootmem(unsigned long physaddr, unsigned long size)
421 {
422 unsigned long start, end;
423
424 kmemleak_free_part(__va(physaddr), size);
425
426 start = PFN_UP(physaddr);
427 end = PFN_DOWN(physaddr + size);
428
429 mark_bootmem(start, end, 0, 0);
430 }
431
432 /**
433 * reserve_bootmem_node - mark a page range as reserved
434 * @pgdat: node the range resides on
435 * @physaddr: starting address of the range
436 * @size: size of the range in bytes
437 * @flags: reservation flags (see linux/bootmem.h)
438 *
439 * Partial pages will be reserved.
440 *
441 * The range must reside completely on the specified node.
442 */
443 int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
444 unsigned long size, int flags)
445 {
446 unsigned long start, end;
447
448 start = PFN_DOWN(physaddr);
449 end = PFN_UP(physaddr + size);
450
451 return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
452 }
453
454 /**
455 * reserve_bootmem - mark a page range as reserved
456 * @addr: starting address of the range
457 * @size: size of the range in bytes
458 * @flags: reservation flags (see linux/bootmem.h)
459 *
460 * Partial pages will be reserved.
461 *
462 * The range must be contiguous but may span node boundaries.
463 */
464 int __init reserve_bootmem(unsigned long addr, unsigned long size,
465 int flags)
466 {
467 unsigned long start, end;
468
469 start = PFN_DOWN(addr);
470 end = PFN_UP(addr + size);
471
472 return mark_bootmem(start, end, 1, flags);
473 }
474
475 static unsigned long __init align_idx(struct bootmem_data *bdata,
476 unsigned long idx, unsigned long step)
477 {
478 unsigned long base = bdata->node_min_pfn;
479
480 /*
481 * Align the index with respect to the node start so that the
482 * combination of both satisfies the requested alignment.
483 */
484
485 return ALIGN(base + idx, step) - base;
486 }
487
488 static unsigned long __init align_off(struct bootmem_data *bdata,
489 unsigned long off, unsigned long align)
490 {
491 unsigned long base = PFN_PHYS(bdata->node_min_pfn);
492
493 /* Same as align_idx for byte offsets */
494
495 return ALIGN(base + off, align) - base;
496 }
497
498 static void * __init alloc_bootmem_bdata(struct bootmem_data *bdata,
499 unsigned long size, unsigned long align,
500 unsigned long goal, unsigned long limit)
501 {
502 unsigned long fallback = 0;
503 unsigned long min, max, start, sidx, midx, step;
504
505 bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
506 bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
507 align, goal, limit);
508
509 BUG_ON(!size);
510 BUG_ON(align & (align - 1));
511 BUG_ON(limit && goal + size > limit);
512
513 if (!bdata->node_bootmem_map)
514 return NULL;
515
516 min = bdata->node_min_pfn;
517 max = bdata->node_low_pfn;
518
519 goal >>= PAGE_SHIFT;
520 limit >>= PAGE_SHIFT;
521
522 if (limit && max > limit)
523 max = limit;
524 if (max <= min)
525 return NULL;
526
527 step = max(align >> PAGE_SHIFT, 1UL);
528
529 if (goal && min < goal && goal < max)
530 start = ALIGN(goal, step);
531 else
532 start = ALIGN(min, step);
533
534 sidx = start - bdata->node_min_pfn;
535 midx = max - bdata->node_min_pfn;
536
537 if (bdata->hint_idx > sidx) {
538 /*
539 * Handle the valid case of sidx being zero and still
540 * catch the fallback below.
541 */
542 fallback = sidx + 1;
543 sidx = align_idx(bdata, bdata->hint_idx, step);
544 }
545
546 while (1) {
547 int merge;
548 void *region;
549 unsigned long eidx, i, start_off, end_off;
550 find_block:
551 sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
552 sidx = align_idx(bdata, sidx, step);
553 eidx = sidx + PFN_UP(size);
554
555 if (sidx >= midx || eidx > midx)
556 break;
557
558 for (i = sidx; i < eidx; i++)
559 if (test_bit(i, bdata->node_bootmem_map)) {
560 sidx = align_idx(bdata, i, step);
561 if (sidx == i)
562 sidx += step;
563 goto find_block;
564 }
565
566 if (bdata->last_end_off & (PAGE_SIZE - 1) &&
567 PFN_DOWN(bdata->last_end_off) + 1 == sidx)
568 start_off = align_off(bdata, bdata->last_end_off, align);
569 else
570 start_off = PFN_PHYS(sidx);
571
572 merge = PFN_DOWN(start_off) < sidx;
573 end_off = start_off + size;
574
575 bdata->last_end_off = end_off;
576 bdata->hint_idx = PFN_UP(end_off);
577
578 /*
579 * Reserve the area now:
580 */
581 if (__reserve(bdata, PFN_DOWN(start_off) + merge,
582 PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
583 BUG();
584
585 region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
586 start_off);
587 memset(region, 0, size);
588 /*
589 * The min_count is set to 0 so that bootmem allocated blocks
590 * are never reported as leaks.
591 */
592 kmemleak_alloc(region, size, 0, 0);
593 return region;
594 }
595
596 if (fallback) {
597 sidx = align_idx(bdata, fallback - 1, step);
598 fallback = 0;
599 goto find_block;
600 }
601
602 return NULL;
603 }
604
605 static void * __init alloc_bootmem_core(unsigned long size,
606 unsigned long align,
607 unsigned long goal,
608 unsigned long limit)
609 {
610 bootmem_data_t *bdata;
611 void *region;
612
613 if (WARN_ON_ONCE(slab_is_available()))
614 return kzalloc(size, GFP_NOWAIT);
615
616 list_for_each_entry(bdata, &bdata_list, list) {
617 if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
618 continue;
619 if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
620 break;
621
622 region = alloc_bootmem_bdata(bdata, size, align, goal, limit);
623 if (region)
624 return region;
625 }
626
627 return NULL;
628 }
629
630 static void * __init ___alloc_bootmem_nopanic(unsigned long size,
631 unsigned long align,
632 unsigned long goal,
633 unsigned long limit)
634 {
635 void *ptr;
636
637 restart:
638 ptr = alloc_bootmem_core(size, align, goal, limit);
639 if (ptr)
640 return ptr;
641 if (goal) {
642 goal = 0;
643 goto restart;
644 }
645
646 return NULL;
647 }
648
649 /**
650 * __alloc_bootmem_nopanic - allocate boot memory without panicking
651 * @size: size of the request in bytes
652 * @align: alignment of the region
653 * @goal: preferred starting address of the region
654 *
655 * The goal is dropped if it can not be satisfied and the allocation will
656 * fall back to memory below @goal.
657 *
658 * Allocation may happen on any node in the system.
659 *
660 * Returns NULL on failure.
661 */
662 void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
663 unsigned long goal)
664 {
665 unsigned long limit = 0;
666
667 return ___alloc_bootmem_nopanic(size, align, goal, limit);
668 }
669
670 static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
671 unsigned long goal, unsigned long limit)
672 {
673 void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
674
675 if (mem)
676 return mem;
677 /*
678 * Whoops, we cannot satisfy the allocation request.
679 */
680 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
681 panic("Out of memory");
682 return NULL;
683 }
684
685 /**
686 * __alloc_bootmem - allocate boot memory
687 * @size: size of the request in bytes
688 * @align: alignment of the region
689 * @goal: preferred starting address of the region
690 *
691 * The goal is dropped if it can not be satisfied and the allocation will
692 * fall back to memory below @goal.
693 *
694 * Allocation may happen on any node in the system.
695 *
696 * The function panics if the request can not be satisfied.
697 */
698 void * __init __alloc_bootmem(unsigned long size, unsigned long align,
699 unsigned long goal)
700 {
701 unsigned long limit = 0;
702
703 return ___alloc_bootmem(size, align, goal, limit);
704 }
705
706 void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
707 unsigned long size, unsigned long align,
708 unsigned long goal, unsigned long limit)
709 {
710 void *ptr;
711
712 if (WARN_ON_ONCE(slab_is_available()))
713 return kzalloc(size, GFP_NOWAIT);
714 again:
715
716 /* do not panic in alloc_bootmem_bdata() */
717 if (limit && goal + size > limit)
718 limit = 0;
719
720 ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, goal, limit);
721 if (ptr)
722 return ptr;
723
724 ptr = alloc_bootmem_core(size, align, goal, limit);
725 if (ptr)
726 return ptr;
727
728 if (goal) {
729 goal = 0;
730 goto again;
731 }
732
733 return NULL;
734 }
735
736 void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
737 unsigned long align, unsigned long goal)
738 {
739 if (WARN_ON_ONCE(slab_is_available()))
740 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
741
742 return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
743 }
744
745 void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
746 unsigned long align, unsigned long goal,
747 unsigned long limit)
748 {
749 void *ptr;
750
751 ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
752 if (ptr)
753 return ptr;
754
755 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
756 panic("Out of memory");
757 return NULL;
758 }
759
760 /**
761 * __alloc_bootmem_node - allocate boot memory from a specific node
762 * @pgdat: node to allocate from
763 * @size: size of the request in bytes
764 * @align: alignment of the region
765 * @goal: preferred starting address of the region
766 *
767 * The goal is dropped if it can not be satisfied and the allocation will
768 * fall back to memory below @goal.
769 *
770 * Allocation may fall back to any node in the system if the specified node
771 * can not hold the requested memory.
772 *
773 * The function panics if the request can not be satisfied.
774 */
775 void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
776 unsigned long align, unsigned long goal)
777 {
778 if (WARN_ON_ONCE(slab_is_available()))
779 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
780
781 return ___alloc_bootmem_node(pgdat, size, align, goal, 0);
782 }
783
784 void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
785 unsigned long align, unsigned long goal)
786 {
787 #ifdef MAX_DMA32_PFN
788 unsigned long end_pfn;
789
790 if (WARN_ON_ONCE(slab_is_available()))
791 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
792
793 /* update goal according ...MAX_DMA32_PFN */
794 end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;
795
796 if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
797 (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
798 void *ptr;
799 unsigned long new_goal;
800
801 new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
802 ptr = alloc_bootmem_bdata(pgdat->bdata, size, align,
803 new_goal, 0);
804 if (ptr)
805 return ptr;
806 }
807 #endif
808
809 return __alloc_bootmem_node(pgdat, size, align, goal);
810
811 }
812
813 #ifndef ARCH_LOW_ADDRESS_LIMIT
814 #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
815 #endif
816
817 /**
818 * __alloc_bootmem_low - allocate low boot memory
819 * @size: size of the request in bytes
820 * @align: alignment of the region
821 * @goal: preferred starting address of the region
822 *
823 * The goal is dropped if it can not be satisfied and the allocation will
824 * fall back to memory below @goal.
825 *
826 * Allocation may happen on any node in the system.
827 *
828 * The function panics if the request can not be satisfied.
829 */
830 void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
831 unsigned long goal)
832 {
833 return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
834 }
835
836 void * __init __alloc_bootmem_low_nopanic(unsigned long size,
837 unsigned long align,
838 unsigned long goal)
839 {
840 return ___alloc_bootmem_nopanic(size, align, goal,
841 ARCH_LOW_ADDRESS_LIMIT);
842 }
843
844 /**
845 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
846 * @pgdat: node to allocate from
847 * @size: size of the request in bytes
848 * @align: alignment of the region
849 * @goal: preferred starting address of the region
850 *
851 * The goal is dropped if it can not be satisfied and the allocation will
852 * fall back to memory below @goal.
853 *
854 * Allocation may fall back to any node in the system if the specified node
855 * can not hold the requested memory.
856 *
857 * The function panics if the request can not be satisfied.
858 */
859 void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
860 unsigned long align, unsigned long goal)
861 {
862 if (WARN_ON_ONCE(slab_is_available()))
863 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
864
865 return ___alloc_bootmem_node(pgdat, size, align,
866 goal, ARCH_LOW_ADDRESS_LIMIT);
867 }