drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / lib / swiotlb.c
1 /*
2 * Dynamic DMA mapping support.
3 *
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
18 */
19
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mm.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
32
33 #include <asm/io.h>
34 #include <asm/dma.h>
35 #include <asm/scatterlist.h>
36
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
40
41 #define OFFSET(val,align) ((unsigned long) \
42 ( (val) & ( (align) - 1)))
43
44 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
45
46 /*
47 * Minimum IO TLB size to bother booting with. Systems with mainly
48 * 64bit capable cards will only lightly use the swiotlb. If we can't
49 * allocate a contiguous 1MB, we're probably in trouble anyway.
50 */
51 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
52
53 int swiotlb_force;
54
55 /*
56 * Used to do a quick range check in swiotlb_tbl_unmap_single and
57 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
58 * API.
59 */
60 static phys_addr_t io_tlb_start, io_tlb_end;
61
62 /*
63 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
64 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
65 */
66 static unsigned long io_tlb_nslabs;
67
68 /*
69 * When the IOMMU overflows we return a fallback buffer. This sets the size.
70 */
71 static unsigned long io_tlb_overflow = 32*1024;
72
73 static phys_addr_t io_tlb_overflow_buffer;
74
75 /*
76 * This is a free list describing the number of free entries available from
77 * each index
78 */
79 static unsigned int *io_tlb_list;
80 static unsigned int io_tlb_index;
81
82 /*
83 * We need to save away the original address corresponding to a mapped entry
84 * for the sync operations.
85 */
86 static phys_addr_t *io_tlb_orig_addr;
87
88 /*
89 * Protect the above data structures in the map and unmap calls
90 */
91 static DEFINE_SPINLOCK(io_tlb_lock);
92
93 static int late_alloc;
94
95 static int __init
96 setup_io_tlb_npages(char *str)
97 {
98 if (isdigit(*str)) {
99 io_tlb_nslabs = simple_strtoul(str, &str, 0);
100 /* avoid tail segment of size < IO_TLB_SEGSIZE */
101 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
102 }
103 if (*str == ',')
104 ++str;
105 if (!strcmp(str, "force"))
106 swiotlb_force = 1;
107
108 return 0;
109 }
110 early_param("swiotlb", setup_io_tlb_npages);
111 /* make io_tlb_overflow tunable too? */
112
113 unsigned long swiotlb_nr_tbl(void)
114 {
115 return io_tlb_nslabs;
116 }
117 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
118
119 /* default to 64MB */
120 #ifdef CONFIG_MTK_LM_MODE
121 #define IO_TLB_DEFAULT_SIZE (SZ_64M)
122 #else
123 #define IO_TLB_DEFAULT_SIZE ((1 << IO_TLB_SHIFT) * IO_TLB_SEGSIZE)
124 #endif // end of CONFIG_MTK_LM_MODE
125 unsigned long swiotlb_size_or_default(void)
126 {
127 unsigned long size;
128
129 size = io_tlb_nslabs << IO_TLB_SHIFT;
130
131 return size ? size : (IO_TLB_DEFAULT_SIZE);
132 }
133
134 /* Note that this doesn't work with highmem page */
135 static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
136 volatile void *address)
137 {
138 return phys_to_dma(hwdev, virt_to_phys(address));
139 }
140
141 static bool no_iotlb_memory;
142
143 void swiotlb_print_info(void)
144 {
145 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
146 unsigned char *vstart, *vend;
147
148 if (no_iotlb_memory) {
149 pr_warn("software IO TLB: No low mem\n");
150 return;
151 }
152
153 vstart = phys_to_virt(io_tlb_start);
154 vend = phys_to_virt(io_tlb_end);
155
156 printk(KERN_ALERT"software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
157 (unsigned long long)io_tlb_start,
158 (unsigned long long)io_tlb_end,
159 bytes >> 20, vstart, vend - 1);
160 }
161
162 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
163 {
164 void *v_overflow_buffer;
165 unsigned long i, bytes;
166
167 bytes = nslabs << IO_TLB_SHIFT;
168
169 io_tlb_nslabs = nslabs;
170 io_tlb_start = __pa(tlb);
171 io_tlb_end = io_tlb_start + bytes;
172
173 /*
174 * Get the overflow emergency buffer
175 */
176 v_overflow_buffer = alloc_bootmem_low_pages_nopanic(
177 PAGE_ALIGN(io_tlb_overflow));
178 if (!v_overflow_buffer)
179 return -ENOMEM;
180
181 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
182
183 /*
184 * Allocate and initialize the free list array. This array is used
185 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
186 * between io_tlb_start and io_tlb_end.
187 */
188 io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
189 for (i = 0; i < io_tlb_nslabs; i++)
190 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
191 io_tlb_index = 0;
192 io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
193
194 if (verbose)
195 swiotlb_print_info();
196
197 return 0;
198 }
199
200 /*
201 * Statically reserve bounce buffer space and initialize bounce buffer data
202 * structures for the software IO TLB used to implement the DMA API.
203 */
204 void __init
205 swiotlb_init(int verbose)
206 {
207 size_t default_size = IO_TLB_DEFAULT_SIZE;
208 unsigned char *vstart;
209 unsigned long bytes;
210
211 if (!io_tlb_nslabs) {
212 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
213 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
214 }
215
216 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
217
218 /* Get IO TLB memory from the low pages */
219 vstart = alloc_bootmem_low_pages_nopanic(PAGE_ALIGN(bytes));
220 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
221 return;
222
223 if (io_tlb_start)
224 free_bootmem(io_tlb_start,
225 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
226 pr_warn("Cannot allocate SWIOTLB buffer");
227 no_iotlb_memory = true;
228 }
229
230 /*
231 * Systems with larger DMA zones (those that don't support ISA) can
232 * initialize the swiotlb later using the slab allocator if needed.
233 * This should be just like above, but with some error catching.
234 */
235 int
236 swiotlb_late_init_with_default_size(size_t default_size)
237 {
238 unsigned long bytes, req_nslabs = io_tlb_nslabs;
239 unsigned char *vstart = NULL;
240 unsigned int order;
241 int rc = 0;
242
243 if (!io_tlb_nslabs) {
244 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
245 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
246 }
247
248 /*
249 * Get IO TLB memory from the low pages
250 */
251 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
252 io_tlb_nslabs = SLABS_PER_PAGE << order;
253 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
254
255 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
256 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
257 order);
258 if (vstart)
259 break;
260 order--;
261 }
262
263 if (!vstart) {
264 io_tlb_nslabs = req_nslabs;
265 return -ENOMEM;
266 }
267 if (order != get_order(bytes)) {
268 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
269 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
270 io_tlb_nslabs = SLABS_PER_PAGE << order;
271 }
272 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
273 if (rc)
274 free_pages((unsigned long)vstart, order);
275 return rc;
276 }
277
278 int
279 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
280 {
281 unsigned long i, bytes;
282 unsigned char *v_overflow_buffer;
283
284 bytes = nslabs << IO_TLB_SHIFT;
285
286 io_tlb_nslabs = nslabs;
287 io_tlb_start = virt_to_phys(tlb);
288 io_tlb_end = io_tlb_start + bytes;
289
290 memset(tlb, 0, bytes);
291
292 /*
293 * Get the overflow emergency buffer
294 */
295 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
296 get_order(io_tlb_overflow));
297 if (!v_overflow_buffer)
298 goto cleanup2;
299
300 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
301
302 /*
303 * Allocate and initialize the free list array. This array is used
304 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
305 * between io_tlb_start and io_tlb_end.
306 */
307 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
308 get_order(io_tlb_nslabs * sizeof(int)));
309 if (!io_tlb_list)
310 goto cleanup3;
311
312 for (i = 0; i < io_tlb_nslabs; i++)
313 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
314 io_tlb_index = 0;
315
316 io_tlb_orig_addr = (phys_addr_t *)
317 __get_free_pages(GFP_KERNEL,
318 get_order(io_tlb_nslabs *
319 sizeof(phys_addr_t)));
320 if (!io_tlb_orig_addr)
321 goto cleanup4;
322
323 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
324
325 swiotlb_print_info();
326
327 late_alloc = 1;
328
329 return 0;
330
331 cleanup4:
332 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
333 sizeof(int)));
334 io_tlb_list = NULL;
335 cleanup3:
336 free_pages((unsigned long)v_overflow_buffer,
337 get_order(io_tlb_overflow));
338 io_tlb_overflow_buffer = 0;
339 cleanup2:
340 io_tlb_end = 0;
341 io_tlb_start = 0;
342 io_tlb_nslabs = 0;
343 return -ENOMEM;
344 }
345
346 void __init swiotlb_free(void)
347 {
348 if (!io_tlb_orig_addr)
349 return;
350
351 if (late_alloc) {
352 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
353 get_order(io_tlb_overflow));
354 free_pages((unsigned long)io_tlb_orig_addr,
355 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
356 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
357 sizeof(int)));
358 free_pages((unsigned long)phys_to_virt(io_tlb_start),
359 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
360 } else {
361 free_bootmem_late(io_tlb_overflow_buffer,
362 PAGE_ALIGN(io_tlb_overflow));
363 free_bootmem_late(__pa(io_tlb_orig_addr),
364 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
365 free_bootmem_late(__pa(io_tlb_list),
366 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
367 free_bootmem_late(io_tlb_start,
368 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
369 }
370 io_tlb_nslabs = 0;
371 }
372
373 static int is_swiotlb_buffer(phys_addr_t paddr)
374 {
375 return paddr >= io_tlb_start && paddr < io_tlb_end;
376 }
377
378 /*
379 * Bounce: copy the swiotlb buffer back to the original dma location
380 */
381 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
382 size_t size, enum dma_data_direction dir)
383 {
384 unsigned long pfn = PFN_DOWN(orig_addr);
385 unsigned char *vaddr = phys_to_virt(tlb_addr);
386
387 if (PageHighMem(pfn_to_page(pfn))) {
388 /* The buffer does not have a mapping. Map it in and copy */
389 unsigned int offset = orig_addr & ~PAGE_MASK;
390 char *buffer;
391 unsigned int sz = 0;
392 unsigned long flags;
393
394 while (size) {
395 sz = min_t(size_t, PAGE_SIZE - offset, size);
396
397 local_irq_save(flags);
398 buffer = kmap_atomic(pfn_to_page(pfn));
399 if (dir == DMA_TO_DEVICE)
400 memcpy(vaddr, buffer + offset, sz);
401 else
402 memcpy(buffer + offset, vaddr, sz);
403 kunmap_atomic(buffer);
404 local_irq_restore(flags);
405
406 size -= sz;
407 pfn++;
408 vaddr += sz;
409 offset = 0;
410 }
411 } else if (dir == DMA_TO_DEVICE) {
412 memcpy(vaddr, phys_to_virt(orig_addr), size);
413 } else {
414 memcpy(phys_to_virt(orig_addr), vaddr, size);
415 }
416 }
417
418 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
419 dma_addr_t tbl_dma_addr,
420 phys_addr_t orig_addr, size_t size,
421 enum dma_data_direction dir)
422 {
423 unsigned long flags;
424 phys_addr_t tlb_addr;
425 unsigned int nslots, stride, index, wrap;
426 int i;
427 unsigned long mask;
428 unsigned long offset_slots;
429 unsigned long max_slots;
430
431 if (no_iotlb_memory)
432 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
433
434 mask = dma_get_seg_boundary(hwdev);
435
436 tbl_dma_addr &= mask;
437
438 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
439
440 /*
441 * Carefully handle integer overflow which can occur when mask == ~0UL.
442 */
443 max_slots = mask + 1
444 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
445 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
446
447 /*
448 * For mappings greater than a page, we limit the stride (and
449 * hence alignment) to a page size.
450 */
451 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
452 if (size > PAGE_SIZE)
453 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
454 else
455 stride = 1;
456
457 BUG_ON(!nslots);
458
459 /*
460 * Find suitable number of IO TLB entries size that will fit this
461 * request and allocate a buffer from that IO TLB pool.
462 */
463 spin_lock_irqsave(&io_tlb_lock, flags);
464 index = ALIGN(io_tlb_index, stride);
465 if (index >= io_tlb_nslabs)
466 index = 0;
467 wrap = index;
468
469 do {
470 while (iommu_is_span_boundary(index, nslots, offset_slots,
471 max_slots)) {
472 index += stride;
473 if (index >= io_tlb_nslabs)
474 index = 0;
475 if (index == wrap)
476 goto not_found;
477 }
478
479 /*
480 * If we find a slot that indicates we have 'nslots' number of
481 * contiguous buffers, we allocate the buffers from that slot
482 * and mark the entries as '0' indicating unavailable.
483 */
484 if (io_tlb_list[index] >= nslots) {
485 int count = 0;
486
487 for (i = index; i < (int) (index + nslots); i++)
488 io_tlb_list[i] = 0;
489 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
490 io_tlb_list[i] = ++count;
491 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
492
493 /*
494 * Update the indices to avoid searching in the next
495 * round.
496 */
497 io_tlb_index = ((index + nslots) < io_tlb_nslabs
498 ? (index + nslots) : 0);
499
500 goto found;
501 }
502 index += stride;
503 if (index >= io_tlb_nslabs)
504 index = 0;
505 } while (index != wrap);
506
507 not_found:
508 spin_unlock_irqrestore(&io_tlb_lock, flags);
509 return SWIOTLB_MAP_ERROR;
510 found:
511 spin_unlock_irqrestore(&io_tlb_lock, flags);
512
513 /*
514 * Save away the mapping from the original address to the DMA address.
515 * This is needed when we sync the memory. Then we sync the buffer if
516 * needed.
517 */
518 for (i = 0; i < nslots; i++)
519 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
520 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
521 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
522
523 return tlb_addr;
524 }
525 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
526
527 /*
528 * Allocates bounce buffer and returns its kernel virtual address.
529 */
530
531 phys_addr_t map_single(struct device *hwdev, phys_addr_t phys, size_t size,
532 enum dma_data_direction dir)
533 {
534 dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
535
536 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
537 }
538
539 /*
540 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
541 */
542 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
543 size_t size, enum dma_data_direction dir)
544 {
545 unsigned long flags;
546 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
547 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
548 phys_addr_t orig_addr = io_tlb_orig_addr[index];
549
550 /*
551 * First, sync the memory before unmapping the entry
552 */
553 if (orig_addr && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
554 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
555
556 /*
557 * Return the buffer to the free list by setting the corresponding
558 * entries to indicate the number of contiguous entries available.
559 * While returning the entries to the free list, we merge the entries
560 * with slots below and above the pool being returned.
561 */
562 spin_lock_irqsave(&io_tlb_lock, flags);
563 {
564 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
565 io_tlb_list[index + nslots] : 0);
566 /*
567 * Step 1: return the slots to the free list, merging the
568 * slots with superceeding slots
569 */
570 for (i = index + nslots - 1; i >= index; i--)
571 io_tlb_list[i] = ++count;
572 /*
573 * Step 2: merge the returned slots with the preceding slots,
574 * if available (non zero)
575 */
576 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
577 io_tlb_list[i] = ++count;
578 }
579 spin_unlock_irqrestore(&io_tlb_lock, flags);
580 }
581 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
582
583 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
584 size_t size, enum dma_data_direction dir,
585 enum dma_sync_target target)
586 {
587 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
588 phys_addr_t orig_addr = io_tlb_orig_addr[index];
589
590 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
591
592 switch (target) {
593 case SYNC_FOR_CPU:
594 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
595 swiotlb_bounce(orig_addr, tlb_addr,
596 size, DMA_FROM_DEVICE);
597 else
598 BUG_ON(dir != DMA_TO_DEVICE);
599 break;
600 case SYNC_FOR_DEVICE:
601 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
602 swiotlb_bounce(orig_addr, tlb_addr,
603 size, DMA_TO_DEVICE);
604 else
605 BUG_ON(dir != DMA_FROM_DEVICE);
606 break;
607 default:
608 BUG();
609 }
610 }
611 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
612
613 void *
614 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
615 dma_addr_t *dma_handle, gfp_t flags)
616 {
617 dma_addr_t dev_addr;
618 void *ret;
619 int order = get_order(size);
620 u64 dma_mask = DMA_BIT_MASK(32);
621
622 if (hwdev && hwdev->coherent_dma_mask)
623 dma_mask = hwdev->coherent_dma_mask;
624
625 ret = (void *)__get_free_pages(flags, order);
626 if (ret) {
627 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
628 if (dev_addr + size - 1 > dma_mask) {
629 /*
630 * The allocated memory isn't reachable by the device.
631 */
632 free_pages((unsigned long) ret, order);
633 ret = NULL;
634 }
635 }
636 if (!ret) {
637 /*
638 * We are either out of memory or the device can't DMA to
639 * GFP_DMA memory; fall back on map_single(), which
640 * will grab memory from the lowest available address range.
641 */
642 phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
643 if (paddr == SWIOTLB_MAP_ERROR)
644 return NULL;
645
646 ret = phys_to_virt(paddr);
647 dev_addr = phys_to_dma(hwdev, paddr);
648
649 /* Confirm address can be DMA'd by device */
650 if (dev_addr + size - 1 > dma_mask) {
651 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
652 (unsigned long long)dma_mask,
653 (unsigned long long)dev_addr);
654
655 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
656 swiotlb_tbl_unmap_single(hwdev, paddr,
657 size, DMA_TO_DEVICE);
658 return NULL;
659 }
660 }
661
662 *dma_handle = dev_addr;
663 memset(ret, 0, size);
664
665 return ret;
666 }
667 EXPORT_SYMBOL(swiotlb_alloc_coherent);
668
669 void
670 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
671 dma_addr_t dev_addr)
672 {
673 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
674
675 WARN_ON(irqs_disabled());
676 if (!is_swiotlb_buffer(paddr))
677 free_pages((unsigned long)vaddr, get_order(size));
678 else
679 /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
680 swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
681 }
682 EXPORT_SYMBOL(swiotlb_free_coherent);
683
684 static void
685 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
686 int do_panic)
687 {
688 /*
689 * Ran out of IOMMU space for this operation. This is very bad.
690 * Unfortunately the drivers cannot handle this operation properly.
691 * unless they check for dma_mapping_error (most don't)
692 * When the mapping is small enough return a static buffer to limit
693 * the damage, or panic when the transfer is too big.
694 */
695 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
696 "device %s\n", size, dev ? dev_name(dev) : "?");
697 BUG();
698
699 if (size <= io_tlb_overflow || !do_panic)
700 return;
701
702 if (dir == DMA_BIDIRECTIONAL)
703 panic("DMA: Random memory could be DMA accessed\n");
704 if (dir == DMA_FROM_DEVICE)
705 panic("DMA: Random memory could be DMA written\n");
706 if (dir == DMA_TO_DEVICE)
707 panic("DMA: Random memory could be DMA read\n");
708 }
709
710 /*
711 * Map a single buffer of the indicated size for DMA in streaming mode. The
712 * physical address to use is returned.
713 *
714 * Once the device is given the dma address, the device owns this memory until
715 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
716 */
717 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
718 unsigned long offset, size_t size,
719 enum dma_data_direction dir,
720 struct dma_attrs *attrs)
721 {
722 phys_addr_t map, phys = page_to_phys(page) + offset;
723 dma_addr_t dev_addr = phys_to_dma(dev, phys);
724
725 BUG_ON(dir == DMA_NONE);
726 /*
727 * If the address happens to be in the device's DMA window,
728 * we can safely return the device addr and not worry about bounce
729 * buffering it.
730 */
731 if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
732 return dev_addr;
733
734 /* Oh well, have to allocate and map a bounce buffer. */
735 map = map_single(dev, phys, size, dir);
736 if (map == SWIOTLB_MAP_ERROR) {
737 swiotlb_full(dev, size, dir, 1);
738 return phys_to_dma(dev, io_tlb_overflow_buffer);
739 }
740
741 dev_addr = phys_to_dma(dev, map);
742
743 /* Ensure that the address returned is DMA'ble */
744 if (!dma_capable(dev, dev_addr, size)) {
745 swiotlb_tbl_unmap_single(dev, map, size, dir);
746 return phys_to_dma(dev, io_tlb_overflow_buffer);
747 }
748
749 return dev_addr;
750 }
751 EXPORT_SYMBOL_GPL(swiotlb_map_page);
752
753 /*
754 * Unmap a single streaming mode DMA translation. The dma_addr and size must
755 * match what was provided for in a previous swiotlb_map_page call. All
756 * other usages are undefined.
757 *
758 * After this call, reads by the cpu to the buffer are guaranteed to see
759 * whatever the device wrote there.
760 */
761 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
762 size_t size, enum dma_data_direction dir)
763 {
764 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
765
766 BUG_ON(dir == DMA_NONE);
767
768 if (is_swiotlb_buffer(paddr)) {
769 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
770 return;
771 }
772
773 if (dir != DMA_FROM_DEVICE)
774 return;
775
776 /*
777 * phys_to_virt doesn't work with hihgmem page but we could
778 * call dma_mark_clean() with hihgmem page here. However, we
779 * are fine since dma_mark_clean() is null on POWERPC. We can
780 * make dma_mark_clean() take a physical address if necessary.
781 */
782 dma_mark_clean(phys_to_virt(paddr), size);
783 }
784
785 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
786 size_t size, enum dma_data_direction dir,
787 struct dma_attrs *attrs)
788 {
789 unmap_single(hwdev, dev_addr, size, dir);
790 }
791 EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
792
793 /*
794 * Make physical memory consistent for a single streaming mode DMA translation
795 * after a transfer.
796 *
797 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
798 * using the cpu, yet do not wish to teardown the dma mapping, you must
799 * call this function before doing so. At the next point you give the dma
800 * address back to the card, you must first perform a
801 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
802 */
803 static void
804 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
805 size_t size, enum dma_data_direction dir,
806 enum dma_sync_target target)
807 {
808 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
809
810 BUG_ON(dir == DMA_NONE);
811
812 if (is_swiotlb_buffer(paddr)) {
813 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
814 return;
815 }
816
817 if (dir != DMA_FROM_DEVICE)
818 return;
819
820 dma_mark_clean(phys_to_virt(paddr), size);
821 }
822
823 void
824 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
825 size_t size, enum dma_data_direction dir)
826 {
827 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
828 }
829 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
830
831 void
832 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
833 size_t size, enum dma_data_direction dir)
834 {
835 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
836 }
837 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
838
839 /*
840 * Map a set of buffers described by scatterlist in streaming mode for DMA.
841 * This is the scatter-gather version of the above swiotlb_map_page
842 * interface. Here the scatter gather list elements are each tagged with the
843 * appropriate dma address and length. They are obtained via
844 * sg_dma_{address,length}(SG).
845 *
846 * NOTE: An implementation may be able to use a smaller number of
847 * DMA address/length pairs than there are SG table elements.
848 * (for example via virtual mapping capabilities)
849 * The routine returns the number of addr/length pairs actually
850 * used, at most nents.
851 *
852 * Device ownership issues as mentioned above for swiotlb_map_page are the
853 * same here.
854 */
855 int
856 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
857 enum dma_data_direction dir, struct dma_attrs *attrs)
858 {
859 struct scatterlist *sg;
860 int i;
861
862 BUG_ON(dir == DMA_NONE);
863
864 for_each_sg(sgl, sg, nelems, i) {
865 phys_addr_t paddr = sg_phys(sg);
866 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
867
868 if (swiotlb_force ||
869 !dma_capable(hwdev, dev_addr, sg->length)) {
870 phys_addr_t map = map_single(hwdev, sg_phys(sg),
871 sg->length, dir);
872 if (map == SWIOTLB_MAP_ERROR) {
873 /* Don't panic here, we expect map_sg users
874 to do proper error handling. */
875 swiotlb_full(hwdev, sg->length, dir, 0);
876 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
877 attrs);
878 sgl[0].dma_length = 0;
879 return 0;
880 }
881 sg->dma_address = phys_to_dma(hwdev, map);
882 } else
883 sg->dma_address = dev_addr;
884 sg->dma_length = sg->length;
885 }
886 return nelems;
887 }
888 EXPORT_SYMBOL(swiotlb_map_sg_attrs);
889
890 int
891 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
892 enum dma_data_direction dir)
893 {
894 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
895 }
896 EXPORT_SYMBOL(swiotlb_map_sg);
897
898 /*
899 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
900 * concerning calls here are the same as for swiotlb_unmap_page() above.
901 */
902 void
903 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
904 int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
905 {
906 struct scatterlist *sg;
907 int i;
908
909 BUG_ON(dir == DMA_NONE);
910
911 for_each_sg(sgl, sg, nelems, i)
912 unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
913
914 }
915 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
916
917 void
918 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
919 enum dma_data_direction dir)
920 {
921 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
922 }
923 EXPORT_SYMBOL(swiotlb_unmap_sg);
924
925 /*
926 * Make physical memory consistent for a set of streaming mode DMA translations
927 * after a transfer.
928 *
929 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
930 * and usage.
931 */
932 static void
933 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
934 int nelems, enum dma_data_direction dir,
935 enum dma_sync_target target)
936 {
937 struct scatterlist *sg;
938 int i;
939
940 for_each_sg(sgl, sg, nelems, i)
941 swiotlb_sync_single(hwdev, sg->dma_address,
942 sg->dma_length, dir, target);
943 }
944
945 void
946 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
947 int nelems, enum dma_data_direction dir)
948 {
949 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
950 }
951 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
952
953 void
954 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
955 int nelems, enum dma_data_direction dir)
956 {
957 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
958 }
959 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
960
961 int
962 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
963 {
964 return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
965 }
966 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
967
968 /*
969 * Return whether the given device DMA address mask can be supported
970 * properly. For example, if your device can only drive the low 24-bits
971 * during bus mastering, then you would pass 0x00ffffff as the mask to
972 * this function.
973 */
974 int
975 swiotlb_dma_supported(struct device *hwdev, u64 mask)
976 {
977 return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
978 }
979 EXPORT_SYMBOL(swiotlb_dma_supported);