drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / lib / radix-tree.c
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2, or (at
11 * your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/radix-tree.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/cpu.h>
32 #include <linux/string.h>
33 #include <linux/bitops.h>
34 #include <linux/rcupdate.h>
35
36
37 #ifdef __KERNEL__
38 #define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
39 #else
40 #define RADIX_TREE_MAP_SHIFT 3 /* For more stressful testing */
41 #endif
42
43 #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
44 #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1)
45
46 #define RADIX_TREE_TAG_LONGS \
47 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
48
49 struct radix_tree_node {
50 unsigned int height; /* Height from the bottom */
51 unsigned int count;
52 union {
53 struct radix_tree_node *parent; /* Used when ascending tree */
54 struct rcu_head rcu_head; /* Used when freeing node */
55 };
56 void __rcu *slots[RADIX_TREE_MAP_SIZE];
57 unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
58 };
59
60 #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long))
61 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
62 RADIX_TREE_MAP_SHIFT))
63
64 /*
65 * The height_to_maxindex array needs to be one deeper than the maximum
66 * path as height 0 holds only 1 entry.
67 */
68 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
69
70 /*
71 * Radix tree node cache.
72 */
73 static struct kmem_cache *radix_tree_node_cachep;
74
75 /*
76 * The radix tree is variable-height, so an insert operation not only has
77 * to build the branch to its corresponding item, it also has to build the
78 * branch to existing items if the size has to be increased (by
79 * radix_tree_extend).
80 *
81 * The worst case is a zero height tree with just a single item at index 0,
82 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
83 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
84 * Hence:
85 */
86 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
87
88 /*
89 * Per-cpu pool of preloaded nodes
90 */
91 struct radix_tree_preload {
92 int nr;
93 struct radix_tree_node *nodes[RADIX_TREE_PRELOAD_SIZE];
94 };
95 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
96
97 static inline void *ptr_to_indirect(void *ptr)
98 {
99 return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
100 }
101
102 static inline void *indirect_to_ptr(void *ptr)
103 {
104 return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
105 }
106
107 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
108 {
109 return root->gfp_mask & __GFP_BITS_MASK;
110 }
111
112 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
113 int offset)
114 {
115 __set_bit(offset, node->tags[tag]);
116 }
117
118 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
119 int offset)
120 {
121 __clear_bit(offset, node->tags[tag]);
122 }
123
124 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
125 int offset)
126 {
127 return test_bit(offset, node->tags[tag]);
128 }
129
130 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
131 {
132 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
133 }
134
135 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
136 {
137 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
138 }
139
140 static inline void root_tag_clear_all(struct radix_tree_root *root)
141 {
142 root->gfp_mask &= __GFP_BITS_MASK;
143 }
144
145 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
146 {
147 return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
148 }
149
150 /*
151 * Returns 1 if any slot in the node has this tag set.
152 * Otherwise returns 0.
153 */
154 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
155 {
156 int idx;
157 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
158 if (node->tags[tag][idx])
159 return 1;
160 }
161 return 0;
162 }
163
164 /**
165 * radix_tree_find_next_bit - find the next set bit in a memory region
166 *
167 * @addr: The address to base the search on
168 * @size: The bitmap size in bits
169 * @offset: The bitnumber to start searching at
170 *
171 * Unrollable variant of find_next_bit() for constant size arrays.
172 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
173 * Returns next bit offset, or size if nothing found.
174 */
175 static __always_inline unsigned long
176 radix_tree_find_next_bit(const unsigned long *addr,
177 unsigned long size, unsigned long offset)
178 {
179 if (!__builtin_constant_p(size))
180 return find_next_bit(addr, size, offset);
181
182 if (offset < size) {
183 unsigned long tmp;
184
185 addr += offset / BITS_PER_LONG;
186 tmp = *addr >> (offset % BITS_PER_LONG);
187 if (tmp)
188 return __ffs(tmp) + offset;
189 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
190 while (offset < size) {
191 tmp = *++addr;
192 if (tmp)
193 return __ffs(tmp) + offset;
194 offset += BITS_PER_LONG;
195 }
196 }
197 return size;
198 }
199
200 /*
201 * This assumes that the caller has performed appropriate preallocation, and
202 * that the caller has pinned this thread of control to the current CPU.
203 */
204 static struct radix_tree_node *
205 radix_tree_node_alloc(struct radix_tree_root *root)
206 {
207 struct radix_tree_node *ret = NULL;
208 gfp_t gfp_mask = root_gfp_mask(root);
209
210 if (!(gfp_mask & __GFP_WAIT)) {
211 struct radix_tree_preload *rtp;
212
213 /*
214 * Provided the caller has preloaded here, we will always
215 * succeed in getting a node here (and never reach
216 * kmem_cache_alloc)
217 */
218 rtp = &__get_cpu_var(radix_tree_preloads);
219 if (rtp->nr) {
220 ret = rtp->nodes[rtp->nr - 1];
221 rtp->nodes[rtp->nr - 1] = NULL;
222 rtp->nr--;
223 }
224 }
225 if (ret == NULL)
226 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
227
228 BUG_ON(radix_tree_is_indirect_ptr(ret));
229 return ret;
230 }
231
232 static void radix_tree_node_rcu_free(struct rcu_head *head)
233 {
234 struct radix_tree_node *node =
235 container_of(head, struct radix_tree_node, rcu_head);
236 int i;
237
238 /*
239 * must only free zeroed nodes into the slab. radix_tree_shrink
240 * can leave us with a non-NULL entry in the first slot, so clear
241 * that here to make sure.
242 */
243 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
244 tag_clear(node, i, 0);
245
246 node->slots[0] = NULL;
247 node->count = 0;
248
249 kmem_cache_free(radix_tree_node_cachep, node);
250 }
251
252 static inline void
253 radix_tree_node_free(struct radix_tree_node *node)
254 {
255 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
256 }
257
258 /*
259 * Load up this CPU's radix_tree_node buffer with sufficient objects to
260 * ensure that the addition of a single element in the tree cannot fail. On
261 * success, return zero, with preemption disabled. On error, return -ENOMEM
262 * with preemption not disabled.
263 *
264 * To make use of this facility, the radix tree must be initialised without
265 * __GFP_WAIT being passed to INIT_RADIX_TREE().
266 */
267 int radix_tree_preload(gfp_t gfp_mask)
268 {
269 struct radix_tree_preload *rtp;
270 struct radix_tree_node *node;
271 int ret = -ENOMEM;
272
273 preempt_disable();
274 rtp = &__get_cpu_var(radix_tree_preloads);
275 while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
276 preempt_enable();
277 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
278 if (node == NULL)
279 goto out;
280 preempt_disable();
281 rtp = &__get_cpu_var(radix_tree_preloads);
282 if (rtp->nr < ARRAY_SIZE(rtp->nodes))
283 rtp->nodes[rtp->nr++] = node;
284 else
285 kmem_cache_free(radix_tree_node_cachep, node);
286 }
287 ret = 0;
288 out:
289 return ret;
290 }
291 EXPORT_SYMBOL(radix_tree_preload);
292
293 /*
294 * Return the maximum key which can be store into a
295 * radix tree with height HEIGHT.
296 */
297 static inline unsigned long radix_tree_maxindex(unsigned int height)
298 {
299 return height_to_maxindex[height];
300 }
301
302 /*
303 * Extend a radix tree so it can store key @index.
304 */
305 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
306 {
307 struct radix_tree_node *node;
308 struct radix_tree_node *slot;
309 unsigned int height;
310 int tag;
311
312 /* Figure out what the height should be. */
313 height = root->height + 1;
314 while (index > radix_tree_maxindex(height))
315 height++;
316
317 if (root->rnode == NULL) {
318 root->height = height;
319 goto out;
320 }
321
322 do {
323 unsigned int newheight;
324 if (!(node = radix_tree_node_alloc(root)))
325 return -ENOMEM;
326
327 /* Propagate the aggregated tag info into the new root */
328 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
329 if (root_tag_get(root, tag))
330 tag_set(node, tag, 0);
331 }
332
333 /* Increase the height. */
334 newheight = root->height+1;
335 node->height = newheight;
336 node->count = 1;
337 node->parent = NULL;
338 slot = root->rnode;
339 if (newheight > 1) {
340 slot = indirect_to_ptr(slot);
341 slot->parent = node;
342 }
343 node->slots[0] = slot;
344 node = ptr_to_indirect(node);
345 rcu_assign_pointer(root->rnode, node);
346 root->height = newheight;
347 } while (height > root->height);
348 out:
349 return 0;
350 }
351
352 /**
353 * radix_tree_insert - insert into a radix tree
354 * @root: radix tree root
355 * @index: index key
356 * @item: item to insert
357 *
358 * Insert an item into the radix tree at position @index.
359 */
360 int radix_tree_insert(struct radix_tree_root *root,
361 unsigned long index, void *item)
362 {
363 struct radix_tree_node *node = NULL, *slot;
364 unsigned int height, shift;
365 int offset;
366 int error;
367
368 BUG_ON(radix_tree_is_indirect_ptr(item));
369
370 /* Make sure the tree is high enough. */
371 if (index > radix_tree_maxindex(root->height)) {
372 error = radix_tree_extend(root, index);
373 if (error)
374 return error;
375 }
376
377 slot = indirect_to_ptr(root->rnode);
378
379 height = root->height;
380 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
381
382 offset = 0; /* uninitialised var warning */
383 while (height > 0) {
384 if (slot == NULL) {
385 /* Have to add a child node. */
386 if (!(slot = radix_tree_node_alloc(root)))
387 return -ENOMEM;
388 slot->height = height;
389 slot->parent = node;
390 if (node) {
391 rcu_assign_pointer(node->slots[offset], slot);
392 node->count++;
393 } else
394 rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
395 }
396
397 /* Go a level down */
398 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
399 node = slot;
400 slot = node->slots[offset];
401 shift -= RADIX_TREE_MAP_SHIFT;
402 height--;
403 }
404
405 if (slot != NULL)
406 return -EEXIST;
407
408 if (node) {
409 node->count++;
410 rcu_assign_pointer(node->slots[offset], item);
411 BUG_ON(tag_get(node, 0, offset));
412 BUG_ON(tag_get(node, 1, offset));
413 } else {
414 rcu_assign_pointer(root->rnode, item);
415 BUG_ON(root_tag_get(root, 0));
416 BUG_ON(root_tag_get(root, 1));
417 }
418
419 return 0;
420 }
421 EXPORT_SYMBOL(radix_tree_insert);
422
423 /*
424 * is_slot == 1 : search for the slot.
425 * is_slot == 0 : search for the node.
426 */
427 static void *radix_tree_lookup_element(struct radix_tree_root *root,
428 unsigned long index, int is_slot)
429 {
430 unsigned int height, shift;
431 struct radix_tree_node *node, **slot;
432
433 node = rcu_dereference_raw(root->rnode);
434 if (node == NULL)
435 return NULL;
436
437 if (!radix_tree_is_indirect_ptr(node)) {
438 if (index > 0)
439 return NULL;
440 return is_slot ? (void *)&root->rnode : node;
441 }
442 node = indirect_to_ptr(node);
443
444 height = node->height;
445 if (index > radix_tree_maxindex(height))
446 return NULL;
447
448 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
449
450 do {
451 slot = (struct radix_tree_node **)
452 (node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
453 node = rcu_dereference_raw(*slot);
454 if (node == NULL)
455 return NULL;
456
457 shift -= RADIX_TREE_MAP_SHIFT;
458 height--;
459 } while (height > 0);
460
461 return is_slot ? (void *)slot : indirect_to_ptr(node);
462 }
463
464 /**
465 * radix_tree_lookup_slot - lookup a slot in a radix tree
466 * @root: radix tree root
467 * @index: index key
468 *
469 * Returns: the slot corresponding to the position @index in the
470 * radix tree @root. This is useful for update-if-exists operations.
471 *
472 * This function can be called under rcu_read_lock iff the slot is not
473 * modified by radix_tree_replace_slot, otherwise it must be called
474 * exclusive from other writers. Any dereference of the slot must be done
475 * using radix_tree_deref_slot.
476 */
477 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
478 {
479 return (void **)radix_tree_lookup_element(root, index, 1);
480 }
481 EXPORT_SYMBOL(radix_tree_lookup_slot);
482
483 /**
484 * radix_tree_lookup - perform lookup operation on a radix tree
485 * @root: radix tree root
486 * @index: index key
487 *
488 * Lookup the item at the position @index in the radix tree @root.
489 *
490 * This function can be called under rcu_read_lock, however the caller
491 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
492 * them safely). No RCU barriers are required to access or modify the
493 * returned item, however.
494 */
495 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
496 {
497 return radix_tree_lookup_element(root, index, 0);
498 }
499 EXPORT_SYMBOL(radix_tree_lookup);
500
501 /**
502 * radix_tree_tag_set - set a tag on a radix tree node
503 * @root: radix tree root
504 * @index: index key
505 * @tag: tag index
506 *
507 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
508 * corresponding to @index in the radix tree. From
509 * the root all the way down to the leaf node.
510 *
511 * Returns the address of the tagged item. Setting a tag on a not-present
512 * item is a bug.
513 */
514 void *radix_tree_tag_set(struct radix_tree_root *root,
515 unsigned long index, unsigned int tag)
516 {
517 unsigned int height, shift;
518 struct radix_tree_node *slot;
519
520 height = root->height;
521 BUG_ON(index > radix_tree_maxindex(height));
522
523 slot = indirect_to_ptr(root->rnode);
524 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
525
526 while (height > 0) {
527 int offset;
528
529 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
530 if (!tag_get(slot, tag, offset))
531 tag_set(slot, tag, offset);
532 slot = slot->slots[offset];
533 BUG_ON(slot == NULL);
534 shift -= RADIX_TREE_MAP_SHIFT;
535 height--;
536 }
537
538 /* set the root's tag bit */
539 if (slot && !root_tag_get(root, tag))
540 root_tag_set(root, tag);
541
542 return slot;
543 }
544 EXPORT_SYMBOL(radix_tree_tag_set);
545
546 /**
547 * radix_tree_tag_clear - clear a tag on a radix tree node
548 * @root: radix tree root
549 * @index: index key
550 * @tag: tag index
551 *
552 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
553 * corresponding to @index in the radix tree. If
554 * this causes the leaf node to have no tags set then clear the tag in the
555 * next-to-leaf node, etc.
556 *
557 * Returns the address of the tagged item on success, else NULL. ie:
558 * has the same return value and semantics as radix_tree_lookup().
559 */
560 void *radix_tree_tag_clear(struct radix_tree_root *root,
561 unsigned long index, unsigned int tag)
562 {
563 struct radix_tree_node *node = NULL;
564 struct radix_tree_node *slot = NULL;
565 unsigned int height, shift;
566 int uninitialized_var(offset);
567
568 height = root->height;
569 if (index > radix_tree_maxindex(height))
570 goto out;
571
572 shift = height * RADIX_TREE_MAP_SHIFT;
573 slot = indirect_to_ptr(root->rnode);
574
575 while (shift) {
576 if (slot == NULL)
577 goto out;
578
579 shift -= RADIX_TREE_MAP_SHIFT;
580 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
581 node = slot;
582 slot = slot->slots[offset];
583 }
584
585 if (slot == NULL)
586 goto out;
587
588 while (node) {
589 if (!tag_get(node, tag, offset))
590 goto out;
591 tag_clear(node, tag, offset);
592 if (any_tag_set(node, tag))
593 goto out;
594
595 index >>= RADIX_TREE_MAP_SHIFT;
596 offset = index & RADIX_TREE_MAP_MASK;
597 node = node->parent;
598 }
599
600 /* clear the root's tag bit */
601 if (root_tag_get(root, tag))
602 root_tag_clear(root, tag);
603
604 out:
605 return slot;
606 }
607 EXPORT_SYMBOL(radix_tree_tag_clear);
608
609 /**
610 * radix_tree_tag_get - get a tag on a radix tree node
611 * @root: radix tree root
612 * @index: index key
613 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
614 *
615 * Return values:
616 *
617 * 0: tag not present or not set
618 * 1: tag set
619 *
620 * Note that the return value of this function may not be relied on, even if
621 * the RCU lock is held, unless tag modification and node deletion are excluded
622 * from concurrency.
623 */
624 int radix_tree_tag_get(struct radix_tree_root *root,
625 unsigned long index, unsigned int tag)
626 {
627 unsigned int height, shift;
628 struct radix_tree_node *node;
629
630 /* check the root's tag bit */
631 if (!root_tag_get(root, tag))
632 return 0;
633
634 node = rcu_dereference_raw(root->rnode);
635 if (node == NULL)
636 return 0;
637
638 if (!radix_tree_is_indirect_ptr(node))
639 return (index == 0);
640 node = indirect_to_ptr(node);
641
642 height = node->height;
643 if (index > radix_tree_maxindex(height))
644 return 0;
645
646 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
647
648 for ( ; ; ) {
649 int offset;
650
651 if (node == NULL)
652 return 0;
653
654 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
655 if (!tag_get(node, tag, offset))
656 return 0;
657 if (height == 1)
658 return 1;
659 node = rcu_dereference_raw(node->slots[offset]);
660 shift -= RADIX_TREE_MAP_SHIFT;
661 height--;
662 }
663 }
664 EXPORT_SYMBOL(radix_tree_tag_get);
665
666 /**
667 * radix_tree_next_chunk - find next chunk of slots for iteration
668 *
669 * @root: radix tree root
670 * @iter: iterator state
671 * @flags: RADIX_TREE_ITER_* flags and tag index
672 * Returns: pointer to chunk first slot, or NULL if iteration is over
673 */
674 void **radix_tree_next_chunk(struct radix_tree_root *root,
675 struct radix_tree_iter *iter, unsigned flags)
676 {
677 unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
678 struct radix_tree_node *rnode, *node;
679 unsigned long index, offset;
680
681 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
682 return NULL;
683
684 /*
685 * Catch next_index overflow after ~0UL. iter->index never overflows
686 * during iterating; it can be zero only at the beginning.
687 * And we cannot overflow iter->next_index in a single step,
688 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
689 *
690 * This condition also used by radix_tree_next_slot() to stop
691 * contiguous iterating, and forbid swithing to the next chunk.
692 */
693 index = iter->next_index;
694 if (!index && iter->index)
695 return NULL;
696
697 rnode = rcu_dereference_raw(root->rnode);
698 if (radix_tree_is_indirect_ptr(rnode)) {
699 rnode = indirect_to_ptr(rnode);
700 } else if (rnode && !index) {
701 /* Single-slot tree */
702 iter->index = 0;
703 iter->next_index = 1;
704 iter->tags = 1;
705 return (void **)&root->rnode;
706 } else
707 return NULL;
708
709 restart:
710 shift = (rnode->height - 1) * RADIX_TREE_MAP_SHIFT;
711 offset = index >> shift;
712
713 /* Index outside of the tree */
714 if (offset >= RADIX_TREE_MAP_SIZE)
715 return NULL;
716
717 node = rnode;
718 while (1) {
719 if ((flags & RADIX_TREE_ITER_TAGGED) ?
720 !test_bit(offset, node->tags[tag]) :
721 !node->slots[offset]) {
722 /* Hole detected */
723 if (flags & RADIX_TREE_ITER_CONTIG)
724 return NULL;
725
726 if (flags & RADIX_TREE_ITER_TAGGED)
727 offset = radix_tree_find_next_bit(
728 node->tags[tag],
729 RADIX_TREE_MAP_SIZE,
730 offset + 1);
731 else
732 while (++offset < RADIX_TREE_MAP_SIZE) {
733 if (node->slots[offset])
734 break;
735 }
736 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
737 index += offset << shift;
738 /* Overflow after ~0UL */
739 if (!index)
740 return NULL;
741 if (offset == RADIX_TREE_MAP_SIZE)
742 goto restart;
743 }
744
745 /* This is leaf-node */
746 if (!shift)
747 break;
748
749 node = rcu_dereference_raw(node->slots[offset]);
750 if (node == NULL)
751 goto restart;
752 shift -= RADIX_TREE_MAP_SHIFT;
753 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
754 }
755
756 /* Update the iterator state */
757 iter->index = index;
758 iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1;
759
760 /* Construct iter->tags bit-mask from node->tags[tag] array */
761 if (flags & RADIX_TREE_ITER_TAGGED) {
762 unsigned tag_long, tag_bit;
763
764 tag_long = offset / BITS_PER_LONG;
765 tag_bit = offset % BITS_PER_LONG;
766 iter->tags = node->tags[tag][tag_long] >> tag_bit;
767 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
768 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
769 /* Pick tags from next element */
770 if (tag_bit)
771 iter->tags |= node->tags[tag][tag_long + 1] <<
772 (BITS_PER_LONG - tag_bit);
773 /* Clip chunk size, here only BITS_PER_LONG tags */
774 iter->next_index = index + BITS_PER_LONG;
775 }
776 }
777
778 return node->slots + offset;
779 }
780 EXPORT_SYMBOL(radix_tree_next_chunk);
781
782 /**
783 * radix_tree_range_tag_if_tagged - for each item in given range set given
784 * tag if item has another tag set
785 * @root: radix tree root
786 * @first_indexp: pointer to a starting index of a range to scan
787 * @last_index: last index of a range to scan
788 * @nr_to_tag: maximum number items to tag
789 * @iftag: tag index to test
790 * @settag: tag index to set if tested tag is set
791 *
792 * This function scans range of radix tree from first_index to last_index
793 * (inclusive). For each item in the range if iftag is set, the function sets
794 * also settag. The function stops either after tagging nr_to_tag items or
795 * after reaching last_index.
796 *
797 * The tags must be set from the leaf level only and propagated back up the
798 * path to the root. We must do this so that we resolve the full path before
799 * setting any tags on intermediate nodes. If we set tags as we descend, then
800 * we can get to the leaf node and find that the index that has the iftag
801 * set is outside the range we are scanning. This reults in dangling tags and
802 * can lead to problems with later tag operations (e.g. livelocks on lookups).
803 *
804 * The function returns number of leaves where the tag was set and sets
805 * *first_indexp to the first unscanned index.
806 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
807 * be prepared to handle that.
808 */
809 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
810 unsigned long *first_indexp, unsigned long last_index,
811 unsigned long nr_to_tag,
812 unsigned int iftag, unsigned int settag)
813 {
814 unsigned int height = root->height;
815 struct radix_tree_node *node = NULL;
816 struct radix_tree_node *slot;
817 unsigned int shift;
818 unsigned long tagged = 0;
819 unsigned long index = *first_indexp;
820
821 last_index = min(last_index, radix_tree_maxindex(height));
822 if (index > last_index)
823 return 0;
824 if (!nr_to_tag)
825 return 0;
826 if (!root_tag_get(root, iftag)) {
827 *first_indexp = last_index + 1;
828 return 0;
829 }
830 if (height == 0) {
831 *first_indexp = last_index + 1;
832 root_tag_set(root, settag);
833 return 1;
834 }
835
836 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
837 slot = indirect_to_ptr(root->rnode);
838
839 for (;;) {
840 unsigned long upindex;
841 int offset;
842
843 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
844 if (!slot->slots[offset])
845 goto next;
846 if (!tag_get(slot, iftag, offset))
847 goto next;
848 if (shift) {
849 /* Go down one level */
850 shift -= RADIX_TREE_MAP_SHIFT;
851 node = slot;
852 slot = slot->slots[offset];
853 continue;
854 }
855
856 /* tag the leaf */
857 tagged++;
858 tag_set(slot, settag, offset);
859
860 /* walk back up the path tagging interior nodes */
861 upindex = index;
862 while (node) {
863 upindex >>= RADIX_TREE_MAP_SHIFT;
864 offset = upindex & RADIX_TREE_MAP_MASK;
865
866 /* stop if we find a node with the tag already set */
867 if (tag_get(node, settag, offset))
868 break;
869 tag_set(node, settag, offset);
870 node = node->parent;
871 }
872
873 /*
874 * Small optimization: now clear that node pointer.
875 * Since all of this slot's ancestors now have the tag set
876 * from setting it above, we have no further need to walk
877 * back up the tree setting tags, until we update slot to
878 * point to another radix_tree_node.
879 */
880 node = NULL;
881
882 next:
883 /* Go to next item at level determined by 'shift' */
884 index = ((index >> shift) + 1) << shift;
885 /* Overflow can happen when last_index is ~0UL... */
886 if (index > last_index || !index)
887 break;
888 if (tagged >= nr_to_tag)
889 break;
890 while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
891 /*
892 * We've fully scanned this node. Go up. Because
893 * last_index is guaranteed to be in the tree, what
894 * we do below cannot wander astray.
895 */
896 slot = slot->parent;
897 shift += RADIX_TREE_MAP_SHIFT;
898 }
899 }
900 /*
901 * We need not to tag the root tag if there is no tag which is set with
902 * settag within the range from *first_indexp to last_index.
903 */
904 if (tagged > 0)
905 root_tag_set(root, settag);
906 *first_indexp = index;
907
908 return tagged;
909 }
910 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
911
912
913 /**
914 * radix_tree_next_hole - find the next hole (not-present entry)
915 * @root: tree root
916 * @index: index key
917 * @max_scan: maximum range to search
918 *
919 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
920 * indexed hole.
921 *
922 * Returns: the index of the hole if found, otherwise returns an index
923 * outside of the set specified (in which case 'return - index >= max_scan'
924 * will be true). In rare cases of index wrap-around, 0 will be returned.
925 *
926 * radix_tree_next_hole may be called under rcu_read_lock. However, like
927 * radix_tree_gang_lookup, this will not atomically search a snapshot of
928 * the tree at a single point in time. For example, if a hole is created
929 * at index 5, then subsequently a hole is created at index 10,
930 * radix_tree_next_hole covering both indexes may return 10 if called
931 * under rcu_read_lock.
932 */
933 unsigned long radix_tree_next_hole(struct radix_tree_root *root,
934 unsigned long index, unsigned long max_scan)
935 {
936 unsigned long i;
937
938 for (i = 0; i < max_scan; i++) {
939 if (!radix_tree_lookup(root, index))
940 break;
941 index++;
942 if (index == 0)
943 break;
944 }
945
946 return index;
947 }
948 EXPORT_SYMBOL(radix_tree_next_hole);
949
950 /**
951 * radix_tree_prev_hole - find the prev hole (not-present entry)
952 * @root: tree root
953 * @index: index key
954 * @max_scan: maximum range to search
955 *
956 * Search backwards in the range [max(index-max_scan+1, 0), index]
957 * for the first hole.
958 *
959 * Returns: the index of the hole if found, otherwise returns an index
960 * outside of the set specified (in which case 'index - return >= max_scan'
961 * will be true). In rare cases of wrap-around, ULONG_MAX will be returned.
962 *
963 * radix_tree_next_hole may be called under rcu_read_lock. However, like
964 * radix_tree_gang_lookup, this will not atomically search a snapshot of
965 * the tree at a single point in time. For example, if a hole is created
966 * at index 10, then subsequently a hole is created at index 5,
967 * radix_tree_prev_hole covering both indexes may return 5 if called under
968 * rcu_read_lock.
969 */
970 unsigned long radix_tree_prev_hole(struct radix_tree_root *root,
971 unsigned long index, unsigned long max_scan)
972 {
973 unsigned long i;
974
975 for (i = 0; i < max_scan; i++) {
976 if (!radix_tree_lookup(root, index))
977 break;
978 index--;
979 if (index == ULONG_MAX)
980 break;
981 }
982
983 return index;
984 }
985 EXPORT_SYMBOL(radix_tree_prev_hole);
986
987 /**
988 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
989 * @root: radix tree root
990 * @results: where the results of the lookup are placed
991 * @first_index: start the lookup from this key
992 * @max_items: place up to this many items at *results
993 *
994 * Performs an index-ascending scan of the tree for present items. Places
995 * them at *@results and returns the number of items which were placed at
996 * *@results.
997 *
998 * The implementation is naive.
999 *
1000 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1001 * rcu_read_lock. In this case, rather than the returned results being
1002 * an atomic snapshot of the tree at a single point in time, the semantics
1003 * of an RCU protected gang lookup are as though multiple radix_tree_lookups
1004 * have been issued in individual locks, and results stored in 'results'.
1005 */
1006 unsigned int
1007 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1008 unsigned long first_index, unsigned int max_items)
1009 {
1010 struct radix_tree_iter iter;
1011 void **slot;
1012 unsigned int ret = 0;
1013
1014 if (unlikely(!max_items))
1015 return 0;
1016
1017 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1018 results[ret] = rcu_dereference_raw(*slot);
1019 if (!results[ret])
1020 continue;
1021 if (radix_tree_is_indirect_ptr(results[ret])) {
1022 slot = radix_tree_iter_retry(&iter);
1023 continue;
1024 }
1025 if (++ret == max_items)
1026 break;
1027 }
1028
1029 return ret;
1030 }
1031 EXPORT_SYMBOL(radix_tree_gang_lookup);
1032
1033 /**
1034 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1035 * @root: radix tree root
1036 * @results: where the results of the lookup are placed
1037 * @indices: where their indices should be placed (but usually NULL)
1038 * @first_index: start the lookup from this key
1039 * @max_items: place up to this many items at *results
1040 *
1041 * Performs an index-ascending scan of the tree for present items. Places
1042 * their slots at *@results and returns the number of items which were
1043 * placed at *@results.
1044 *
1045 * The implementation is naive.
1046 *
1047 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1048 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1049 * protection, radix_tree_deref_slot may fail requiring a retry.
1050 */
1051 unsigned int
1052 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1053 void ***results, unsigned long *indices,
1054 unsigned long first_index, unsigned int max_items)
1055 {
1056 struct radix_tree_iter iter;
1057 void **slot;
1058 unsigned int ret = 0;
1059
1060 if (unlikely(!max_items))
1061 return 0;
1062
1063 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1064 results[ret] = slot;
1065 if (indices)
1066 indices[ret] = iter.index;
1067 if (++ret == max_items)
1068 break;
1069 }
1070
1071 return ret;
1072 }
1073 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1074
1075 /**
1076 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1077 * based on a tag
1078 * @root: radix tree root
1079 * @results: where the results of the lookup are placed
1080 * @first_index: start the lookup from this key
1081 * @max_items: place up to this many items at *results
1082 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1083 *
1084 * Performs an index-ascending scan of the tree for present items which
1085 * have the tag indexed by @tag set. Places the items at *@results and
1086 * returns the number of items which were placed at *@results.
1087 */
1088 unsigned int
1089 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1090 unsigned long first_index, unsigned int max_items,
1091 unsigned int tag)
1092 {
1093 struct radix_tree_iter iter;
1094 void **slot;
1095 unsigned int ret = 0;
1096
1097 if (unlikely(!max_items))
1098 return 0;
1099
1100 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1101 results[ret] = rcu_dereference_raw(*slot);
1102 if (!results[ret])
1103 continue;
1104 if (radix_tree_is_indirect_ptr(results[ret])) {
1105 slot = radix_tree_iter_retry(&iter);
1106 continue;
1107 }
1108 if (++ret == max_items)
1109 break;
1110 }
1111
1112 return ret;
1113 }
1114 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1115
1116 /**
1117 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1118 * radix tree based on a tag
1119 * @root: radix tree root
1120 * @results: where the results of the lookup are placed
1121 * @first_index: start the lookup from this key
1122 * @max_items: place up to this many items at *results
1123 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1124 *
1125 * Performs an index-ascending scan of the tree for present items which
1126 * have the tag indexed by @tag set. Places the slots at *@results and
1127 * returns the number of slots which were placed at *@results.
1128 */
1129 unsigned int
1130 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1131 unsigned long first_index, unsigned int max_items,
1132 unsigned int tag)
1133 {
1134 struct radix_tree_iter iter;
1135 void **slot;
1136 unsigned int ret = 0;
1137
1138 if (unlikely(!max_items))
1139 return 0;
1140
1141 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1142 results[ret] = slot;
1143 if (++ret == max_items)
1144 break;
1145 }
1146
1147 return ret;
1148 }
1149 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1150
1151 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1152 #include <linux/sched.h> /* for cond_resched() */
1153
1154 /*
1155 * This linear search is at present only useful to shmem_unuse_inode().
1156 */
1157 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1158 unsigned long index, unsigned long *found_index)
1159 {
1160 unsigned int shift, height;
1161 unsigned long i;
1162
1163 height = slot->height;
1164 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1165
1166 for ( ; height > 1; height--) {
1167 i = (index >> shift) & RADIX_TREE_MAP_MASK;
1168 for (;;) {
1169 if (slot->slots[i] != NULL)
1170 break;
1171 index &= ~((1UL << shift) - 1);
1172 index += 1UL << shift;
1173 if (index == 0)
1174 goto out; /* 32-bit wraparound */
1175 i++;
1176 if (i == RADIX_TREE_MAP_SIZE)
1177 goto out;
1178 }
1179
1180 shift -= RADIX_TREE_MAP_SHIFT;
1181 slot = rcu_dereference_raw(slot->slots[i]);
1182 if (slot == NULL)
1183 goto out;
1184 }
1185
1186 /* Bottom level: check items */
1187 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1188 if (slot->slots[i] == item) {
1189 *found_index = index + i;
1190 index = 0;
1191 goto out;
1192 }
1193 }
1194 index += RADIX_TREE_MAP_SIZE;
1195 out:
1196 return index;
1197 }
1198
1199 /**
1200 * radix_tree_locate_item - search through radix tree for item
1201 * @root: radix tree root
1202 * @item: item to be found
1203 *
1204 * Returns index where item was found, or -1 if not found.
1205 * Caller must hold no lock (since this time-consuming function needs
1206 * to be preemptible), and must check afterwards if item is still there.
1207 */
1208 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1209 {
1210 struct radix_tree_node *node;
1211 unsigned long max_index;
1212 unsigned long cur_index = 0;
1213 unsigned long found_index = -1;
1214
1215 do {
1216 rcu_read_lock();
1217 node = rcu_dereference_raw(root->rnode);
1218 if (!radix_tree_is_indirect_ptr(node)) {
1219 rcu_read_unlock();
1220 if (node == item)
1221 found_index = 0;
1222 break;
1223 }
1224
1225 node = indirect_to_ptr(node);
1226 max_index = radix_tree_maxindex(node->height);
1227 if (cur_index > max_index)
1228 break;
1229
1230 cur_index = __locate(node, item, cur_index, &found_index);
1231 rcu_read_unlock();
1232 cond_resched();
1233 } while (cur_index != 0 && cur_index <= max_index);
1234
1235 return found_index;
1236 }
1237 #else
1238 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1239 {
1240 return -1;
1241 }
1242 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1243
1244 /**
1245 * radix_tree_shrink - shrink height of a radix tree to minimal
1246 * @root radix tree root
1247 */
1248 static inline void radix_tree_shrink(struct radix_tree_root *root)
1249 {
1250 /* try to shrink tree height */
1251 while (root->height > 0) {
1252 struct radix_tree_node *to_free = root->rnode;
1253 struct radix_tree_node *slot;
1254
1255 BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1256 to_free = indirect_to_ptr(to_free);
1257
1258 /*
1259 * The candidate node has more than one child, or its child
1260 * is not at the leftmost slot, we cannot shrink.
1261 */
1262 if (to_free->count != 1)
1263 break;
1264 if (!to_free->slots[0])
1265 break;
1266
1267 /*
1268 * We don't need rcu_assign_pointer(), since we are simply
1269 * moving the node from one part of the tree to another: if it
1270 * was safe to dereference the old pointer to it
1271 * (to_free->slots[0]), it will be safe to dereference the new
1272 * one (root->rnode) as far as dependent read barriers go.
1273 */
1274 slot = to_free->slots[0];
1275 if (root->height > 1) {
1276 slot->parent = NULL;
1277 slot = ptr_to_indirect(slot);
1278 }
1279 root->rnode = slot;
1280 root->height--;
1281
1282 /*
1283 * We have a dilemma here. The node's slot[0] must not be
1284 * NULLed in case there are concurrent lookups expecting to
1285 * find the item. However if this was a bottom-level node,
1286 * then it may be subject to the slot pointer being visible
1287 * to callers dereferencing it. If item corresponding to
1288 * slot[0] is subsequently deleted, these callers would expect
1289 * their slot to become empty sooner or later.
1290 *
1291 * For example, lockless pagecache will look up a slot, deref
1292 * the page pointer, and if the page is 0 refcount it means it
1293 * was concurrently deleted from pagecache so try the deref
1294 * again. Fortunately there is already a requirement for logic
1295 * to retry the entire slot lookup -- the indirect pointer
1296 * problem (replacing direct root node with an indirect pointer
1297 * also results in a stale slot). So tag the slot as indirect
1298 * to force callers to retry.
1299 */
1300 if (root->height == 0)
1301 *((unsigned long *)&to_free->slots[0]) |=
1302 RADIX_TREE_INDIRECT_PTR;
1303
1304 radix_tree_node_free(to_free);
1305 }
1306 }
1307
1308 /**
1309 * radix_tree_delete - delete an item from a radix tree
1310 * @root: radix tree root
1311 * @index: index key
1312 *
1313 * Remove the item at @index from the radix tree rooted at @root.
1314 *
1315 * Returns the address of the deleted item, or NULL if it was not present.
1316 */
1317 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1318 {
1319 struct radix_tree_node *node = NULL;
1320 struct radix_tree_node *slot = NULL;
1321 struct radix_tree_node *to_free;
1322 unsigned int height, shift;
1323 int tag;
1324 int uninitialized_var(offset);
1325
1326 height = root->height;
1327 if (index > radix_tree_maxindex(height))
1328 goto out;
1329
1330 slot = root->rnode;
1331 if (height == 0) {
1332 root_tag_clear_all(root);
1333 root->rnode = NULL;
1334 goto out;
1335 }
1336 slot = indirect_to_ptr(slot);
1337 shift = height * RADIX_TREE_MAP_SHIFT;
1338
1339 do {
1340 if (slot == NULL)
1341 goto out;
1342
1343 shift -= RADIX_TREE_MAP_SHIFT;
1344 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1345 node = slot;
1346 slot = slot->slots[offset];
1347 } while (shift);
1348
1349 if (slot == NULL)
1350 goto out;
1351
1352 /*
1353 * Clear all tags associated with the item to be deleted.
1354 * This way of doing it would be inefficient, but seldom is any set.
1355 */
1356 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1357 if (tag_get(node, tag, offset))
1358 radix_tree_tag_clear(root, index, tag);
1359 }
1360
1361 to_free = NULL;
1362 /* Now free the nodes we do not need anymore */
1363 while (node) {
1364 node->slots[offset] = NULL;
1365 node->count--;
1366 /*
1367 * Queue the node for deferred freeing after the
1368 * last reference to it disappears (set NULL, above).
1369 */
1370 if (to_free)
1371 radix_tree_node_free(to_free);
1372
1373 if (node->count) {
1374 if (node == indirect_to_ptr(root->rnode))
1375 radix_tree_shrink(root);
1376 goto out;
1377 }
1378
1379 /* Node with zero slots in use so free it */
1380 to_free = node;
1381
1382 index >>= RADIX_TREE_MAP_SHIFT;
1383 offset = index & RADIX_TREE_MAP_MASK;
1384 node = node->parent;
1385 }
1386
1387 root_tag_clear_all(root);
1388 root->height = 0;
1389 root->rnode = NULL;
1390 if (to_free)
1391 radix_tree_node_free(to_free);
1392
1393 out:
1394 return slot;
1395 }
1396 EXPORT_SYMBOL(radix_tree_delete);
1397
1398 /**
1399 * radix_tree_tagged - test whether any items in the tree are tagged
1400 * @root: radix tree root
1401 * @tag: tag to test
1402 */
1403 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1404 {
1405 return root_tag_get(root, tag);
1406 }
1407 EXPORT_SYMBOL(radix_tree_tagged);
1408
1409 static void
1410 radix_tree_node_ctor(void *node)
1411 {
1412 memset(node, 0, sizeof(struct radix_tree_node));
1413 }
1414
1415 static __init unsigned long __maxindex(unsigned int height)
1416 {
1417 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1418 int shift = RADIX_TREE_INDEX_BITS - width;
1419
1420 if (shift < 0)
1421 return ~0UL;
1422 if (shift >= BITS_PER_LONG)
1423 return 0UL;
1424 return ~0UL >> shift;
1425 }
1426
1427 static __init void radix_tree_init_maxindex(void)
1428 {
1429 unsigned int i;
1430
1431 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1432 height_to_maxindex[i] = __maxindex(i);
1433 }
1434
1435 static int radix_tree_callback(struct notifier_block *nfb,
1436 unsigned long action,
1437 void *hcpu)
1438 {
1439 int cpu = (long)hcpu;
1440 struct radix_tree_preload *rtp;
1441
1442 /* Free per-cpu pool of perloaded nodes */
1443 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1444 rtp = &per_cpu(radix_tree_preloads, cpu);
1445 while (rtp->nr) {
1446 kmem_cache_free(radix_tree_node_cachep,
1447 rtp->nodes[rtp->nr-1]);
1448 rtp->nodes[rtp->nr-1] = NULL;
1449 rtp->nr--;
1450 }
1451 }
1452 return NOTIFY_OK;
1453 }
1454
1455 void __init radix_tree_init(void)
1456 {
1457 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1458 sizeof(struct radix_tree_node), 0,
1459 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1460 radix_tree_node_ctor);
1461 radix_tree_init_maxindex();
1462 hotcpu_notifier(radix_tree_callback, 0);
1463 }