Merge tag 'v3.10.79' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / lib / bitmap.c
1 /*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <asm/uaccess.h>
16
17 /*
18 * bitmaps provide an array of bits, implemented using an an
19 * array of unsigned longs. The number of valid bits in a
20 * given bitmap does _not_ need to be an exact multiple of
21 * BITS_PER_LONG.
22 *
23 * The possible unused bits in the last, partially used word
24 * of a bitmap are 'don't care'. The implementation makes
25 * no particular effort to keep them zero. It ensures that
26 * their value will not affect the results of any operation.
27 * The bitmap operations that return Boolean (bitmap_empty,
28 * for example) or scalar (bitmap_weight, for example) results
29 * carefully filter out these unused bits from impacting their
30 * results.
31 *
32 * These operations actually hold to a slightly stronger rule:
33 * if you don't input any bitmaps to these ops that have some
34 * unused bits set, then they won't output any set unused bits
35 * in output bitmaps.
36 *
37 * The byte ordering of bitmaps is more natural on little
38 * endian architectures. See the big-endian headers
39 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
40 * for the best explanations of this ordering.
41 */
42
43 int __bitmap_empty(const unsigned long *bitmap, int bits)
44 {
45 int k, lim = bits/BITS_PER_LONG;
46 for (k = 0; k < lim; ++k)
47 if (bitmap[k])
48 return 0;
49
50 if (bits % BITS_PER_LONG)
51 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
52 return 0;
53
54 return 1;
55 }
56 EXPORT_SYMBOL(__bitmap_empty);
57
58 int __bitmap_full(const unsigned long *bitmap, int bits)
59 {
60 int k, lim = bits/BITS_PER_LONG;
61 for (k = 0; k < lim; ++k)
62 if (~bitmap[k])
63 return 0;
64
65 if (bits % BITS_PER_LONG)
66 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
67 return 0;
68
69 return 1;
70 }
71 EXPORT_SYMBOL(__bitmap_full);
72
73 int __bitmap_equal(const unsigned long *bitmap1,
74 const unsigned long *bitmap2, int bits)
75 {
76 int k, lim = bits/BITS_PER_LONG;
77 for (k = 0; k < lim; ++k)
78 if (bitmap1[k] != bitmap2[k])
79 return 0;
80
81 if (bits % BITS_PER_LONG)
82 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
83 return 0;
84
85 return 1;
86 }
87 EXPORT_SYMBOL(__bitmap_equal);
88
89 void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
90 {
91 int k, lim = bits/BITS_PER_LONG;
92 for (k = 0; k < lim; ++k)
93 dst[k] = ~src[k];
94
95 if (bits % BITS_PER_LONG)
96 dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
97 }
98 EXPORT_SYMBOL(__bitmap_complement);
99
100 /**
101 * __bitmap_shift_right - logical right shift of the bits in a bitmap
102 * @dst : destination bitmap
103 * @src : source bitmap
104 * @shift : shift by this many bits
105 * @bits : bitmap size, in bits
106 *
107 * Shifting right (dividing) means moving bits in the MS -> LS bit
108 * direction. Zeros are fed into the vacated MS positions and the
109 * LS bits shifted off the bottom are lost.
110 */
111 void __bitmap_shift_right(unsigned long *dst,
112 const unsigned long *src, int shift, int bits)
113 {
114 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
115 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
116 unsigned long mask = (1UL << left) - 1;
117 for (k = 0; off + k < lim; ++k) {
118 unsigned long upper, lower;
119
120 /*
121 * If shift is not word aligned, take lower rem bits of
122 * word above and make them the top rem bits of result.
123 */
124 if (!rem || off + k + 1 >= lim)
125 upper = 0;
126 else {
127 upper = src[off + k + 1];
128 if (off + k + 1 == lim - 1 && left)
129 upper &= mask;
130 }
131 lower = src[off + k];
132 if (left && off + k == lim - 1)
133 lower &= mask;
134 dst[k] = lower >> rem;
135 if (rem)
136 dst[k] |= upper << (BITS_PER_LONG - rem);
137 if (left && k == lim - 1)
138 dst[k] &= mask;
139 }
140 if (off)
141 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
142 }
143 EXPORT_SYMBOL(__bitmap_shift_right);
144
145
146 /**
147 * __bitmap_shift_left - logical left shift of the bits in a bitmap
148 * @dst : destination bitmap
149 * @src : source bitmap
150 * @shift : shift by this many bits
151 * @bits : bitmap size, in bits
152 *
153 * Shifting left (multiplying) means moving bits in the LS -> MS
154 * direction. Zeros are fed into the vacated LS bit positions
155 * and those MS bits shifted off the top are lost.
156 */
157
158 void __bitmap_shift_left(unsigned long *dst,
159 const unsigned long *src, int shift, int bits)
160 {
161 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
162 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
163 for (k = lim - off - 1; k >= 0; --k) {
164 unsigned long upper, lower;
165
166 /*
167 * If shift is not word aligned, take upper rem bits of
168 * word below and make them the bottom rem bits of result.
169 */
170 if (rem && k > 0)
171 lower = src[k - 1];
172 else
173 lower = 0;
174 upper = src[k];
175 if (left && k == lim - 1)
176 upper &= (1UL << left) - 1;
177 dst[k + off] = upper << rem;
178 if (rem)
179 dst[k + off] |= lower >> (BITS_PER_LONG - rem);
180 if (left && k + off == lim - 1)
181 dst[k + off] &= (1UL << left) - 1;
182 }
183 if (off)
184 memset(dst, 0, off*sizeof(unsigned long));
185 }
186 EXPORT_SYMBOL(__bitmap_shift_left);
187
188 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
189 const unsigned long *bitmap2, int bits)
190 {
191 int k;
192 int nr = BITS_TO_LONGS(bits);
193 unsigned long result = 0;
194
195 for (k = 0; k < nr; k++)
196 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
197 return result != 0;
198 }
199 EXPORT_SYMBOL(__bitmap_and);
200
201 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
202 const unsigned long *bitmap2, int bits)
203 {
204 int k;
205 int nr = BITS_TO_LONGS(bits);
206
207 for (k = 0; k < nr; k++)
208 dst[k] = bitmap1[k] | bitmap2[k];
209 }
210 EXPORT_SYMBOL(__bitmap_or);
211
212 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
213 const unsigned long *bitmap2, int bits)
214 {
215 int k;
216 int nr = BITS_TO_LONGS(bits);
217
218 for (k = 0; k < nr; k++)
219 dst[k] = bitmap1[k] ^ bitmap2[k];
220 }
221 EXPORT_SYMBOL(__bitmap_xor);
222
223 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
224 const unsigned long *bitmap2, int bits)
225 {
226 int k;
227 int nr = BITS_TO_LONGS(bits);
228 unsigned long result = 0;
229
230 for (k = 0; k < nr; k++)
231 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
232 return result != 0;
233 }
234 EXPORT_SYMBOL(__bitmap_andnot);
235
236 int __bitmap_intersects(const unsigned long *bitmap1,
237 const unsigned long *bitmap2, int bits)
238 {
239 int k, lim = bits/BITS_PER_LONG;
240 for (k = 0; k < lim; ++k)
241 if (bitmap1[k] & bitmap2[k])
242 return 1;
243
244 if (bits % BITS_PER_LONG)
245 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
246 return 1;
247 return 0;
248 }
249 EXPORT_SYMBOL(__bitmap_intersects);
250
251 int __bitmap_subset(const unsigned long *bitmap1,
252 const unsigned long *bitmap2, int bits)
253 {
254 int k, lim = bits/BITS_PER_LONG;
255 for (k = 0; k < lim; ++k)
256 if (bitmap1[k] & ~bitmap2[k])
257 return 0;
258
259 if (bits % BITS_PER_LONG)
260 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
261 return 0;
262 return 1;
263 }
264 EXPORT_SYMBOL(__bitmap_subset);
265
266 int __bitmap_weight(const unsigned long *bitmap, int bits)
267 {
268 int k, w = 0, lim = bits/BITS_PER_LONG;
269
270 for (k = 0; k < lim; k++)
271 w += hweight_long(bitmap[k]);
272
273 if (bits % BITS_PER_LONG)
274 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
275
276 return w;
277 }
278 EXPORT_SYMBOL(__bitmap_weight);
279
280 void bitmap_set(unsigned long *map, int start, int nr)
281 {
282 unsigned long *p = map + BIT_WORD(start);
283 const int size = start + nr;
284 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
285 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
286
287 while (nr - bits_to_set >= 0) {
288 *p |= mask_to_set;
289 nr -= bits_to_set;
290 bits_to_set = BITS_PER_LONG;
291 mask_to_set = ~0UL;
292 p++;
293 }
294 if (nr) {
295 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
296 *p |= mask_to_set;
297 }
298 }
299 EXPORT_SYMBOL(bitmap_set);
300
301 void bitmap_clear(unsigned long *map, int start, int nr)
302 {
303 unsigned long *p = map + BIT_WORD(start);
304 const int size = start + nr;
305 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
306 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
307
308 while (nr - bits_to_clear >= 0) {
309 *p &= ~mask_to_clear;
310 nr -= bits_to_clear;
311 bits_to_clear = BITS_PER_LONG;
312 mask_to_clear = ~0UL;
313 p++;
314 }
315 if (nr) {
316 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
317 *p &= ~mask_to_clear;
318 }
319 }
320 EXPORT_SYMBOL(bitmap_clear);
321
322 /*
323 * bitmap_find_next_zero_area - find a contiguous aligned zero area
324 * @map: The address to base the search on
325 * @size: The bitmap size in bits
326 * @start: The bitnumber to start searching at
327 * @nr: The number of zeroed bits we're looking for
328 * @align_mask: Alignment mask for zero area
329 *
330 * The @align_mask should be one less than a power of 2; the effect is that
331 * the bit offset of all zero areas this function finds is multiples of that
332 * power of 2. A @align_mask of 0 means no alignment is required.
333 */
334 unsigned long bitmap_find_next_zero_area(unsigned long *map,
335 unsigned long size,
336 unsigned long start,
337 unsigned int nr,
338 unsigned long align_mask)
339 {
340 unsigned long index, end, i;
341 again:
342 index = find_next_zero_bit(map, size, start);
343
344 /* Align allocation */
345 index = __ALIGN_MASK(index, align_mask);
346
347 end = index + nr;
348 if (end > size)
349 return end;
350 i = find_next_bit(map, end, index);
351 if (i < end) {
352 start = i + 1;
353 goto again;
354 }
355 return index;
356 }
357 EXPORT_SYMBOL(bitmap_find_next_zero_area);
358
359 /*
360 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
361 * second version by Paul Jackson, third by Joe Korty.
362 */
363
364 #define CHUNKSZ 32
365 #define nbits_to_hold_value(val) fls(val)
366 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
367
368 /**
369 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
370 * @buf: byte buffer into which string is placed
371 * @buflen: reserved size of @buf, in bytes
372 * @maskp: pointer to bitmap to convert
373 * @nmaskbits: size of bitmap, in bits
374 *
375 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
376 * comma-separated sets of eight digits per set. Returns the number of
377 * characters which were written to *buf, excluding the trailing \0.
378 */
379 int bitmap_scnprintf(char *buf, unsigned int buflen,
380 const unsigned long *maskp, int nmaskbits)
381 {
382 int i, word, bit, len = 0;
383 unsigned long val;
384 const char *sep = "";
385 int chunksz;
386 u32 chunkmask;
387
388 chunksz = nmaskbits & (CHUNKSZ - 1);
389 if (chunksz == 0)
390 chunksz = CHUNKSZ;
391
392 i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
393 for (; i >= 0; i -= CHUNKSZ) {
394 chunkmask = ((1ULL << chunksz) - 1);
395 word = i / BITS_PER_LONG;
396 bit = i % BITS_PER_LONG;
397 val = (maskp[word] >> bit) & chunkmask;
398 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
399 (chunksz+3)/4, val);
400 chunksz = CHUNKSZ;
401 sep = ",";
402 }
403 return len;
404 }
405 EXPORT_SYMBOL(bitmap_scnprintf);
406
407 /**
408 * __bitmap_parse - convert an ASCII hex string into a bitmap.
409 * @buf: pointer to buffer containing string.
410 * @buflen: buffer size in bytes. If string is smaller than this
411 * then it must be terminated with a \0.
412 * @is_user: location of buffer, 0 indicates kernel space
413 * @maskp: pointer to bitmap array that will contain result.
414 * @nmaskbits: size of bitmap, in bits.
415 *
416 * Commas group hex digits into chunks. Each chunk defines exactly 32
417 * bits of the resultant bitmask. No chunk may specify a value larger
418 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
419 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
420 * characters and for grouping errors such as "1,,5", ",44", "," and "".
421 * Leading and trailing whitespace accepted, but not embedded whitespace.
422 */
423 int __bitmap_parse(const char *buf, unsigned int buflen,
424 int is_user, unsigned long *maskp,
425 int nmaskbits)
426 {
427 int c, old_c, totaldigits, ndigits, nchunks, nbits;
428 u32 chunk;
429 const char __user __force *ubuf = (const char __user __force *)buf;
430
431 bitmap_zero(maskp, nmaskbits);
432
433 nchunks = nbits = totaldigits = c = 0;
434 do {
435 chunk = ndigits = 0;
436
437 /* Get the next chunk of the bitmap */
438 while (buflen) {
439 old_c = c;
440 if (is_user) {
441 if (__get_user(c, ubuf++))
442 return -EFAULT;
443 }
444 else
445 c = *buf++;
446 buflen--;
447 if (isspace(c))
448 continue;
449
450 /*
451 * If the last character was a space and the current
452 * character isn't '\0', we've got embedded whitespace.
453 * This is a no-no, so throw an error.
454 */
455 if (totaldigits && c && isspace(old_c))
456 return -EINVAL;
457
458 /* A '\0' or a ',' signal the end of the chunk */
459 if (c == '\0' || c == ',')
460 break;
461
462 if (!isxdigit(c))
463 return -EINVAL;
464
465 /*
466 * Make sure there are at least 4 free bits in 'chunk'.
467 * If not, this hexdigit will overflow 'chunk', so
468 * throw an error.
469 */
470 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
471 return -EOVERFLOW;
472
473 chunk = (chunk << 4) | hex_to_bin(c);
474 ndigits++; totaldigits++;
475 }
476 if (ndigits == 0)
477 return -EINVAL;
478 if (nchunks == 0 && chunk == 0)
479 continue;
480
481 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
482 *maskp |= chunk;
483 nchunks++;
484 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
485 if (nbits > nmaskbits)
486 return -EOVERFLOW;
487 } while (buflen && c == ',');
488
489 return 0;
490 }
491 EXPORT_SYMBOL(__bitmap_parse);
492
493 /**
494 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
495 *
496 * @ubuf: pointer to user buffer containing string.
497 * @ulen: buffer size in bytes. If string is smaller than this
498 * then it must be terminated with a \0.
499 * @maskp: pointer to bitmap array that will contain result.
500 * @nmaskbits: size of bitmap, in bits.
501 *
502 * Wrapper for __bitmap_parse(), providing it with user buffer.
503 *
504 * We cannot have this as an inline function in bitmap.h because it needs
505 * linux/uaccess.h to get the access_ok() declaration and this causes
506 * cyclic dependencies.
507 */
508 int bitmap_parse_user(const char __user *ubuf,
509 unsigned int ulen, unsigned long *maskp,
510 int nmaskbits)
511 {
512 if (!access_ok(VERIFY_READ, ubuf, ulen))
513 return -EFAULT;
514 return __bitmap_parse((const char __force *)ubuf,
515 ulen, 1, maskp, nmaskbits);
516
517 }
518 EXPORT_SYMBOL(bitmap_parse_user);
519
520 /*
521 * bscnl_emit(buf, buflen, rbot, rtop, bp)
522 *
523 * Helper routine for bitmap_scnlistprintf(). Write decimal number
524 * or range to buf, suppressing output past buf+buflen, with optional
525 * comma-prefix. Return len of what was written to *buf, excluding the
526 * trailing \0.
527 */
528 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
529 {
530 if (len > 0)
531 len += scnprintf(buf + len, buflen - len, ",");
532 if (rbot == rtop)
533 len += scnprintf(buf + len, buflen - len, "%d", rbot);
534 else
535 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
536 return len;
537 }
538
539 /**
540 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
541 * @buf: byte buffer into which string is placed
542 * @buflen: reserved size of @buf, in bytes
543 * @maskp: pointer to bitmap to convert
544 * @nmaskbits: size of bitmap, in bits
545 *
546 * Output format is a comma-separated list of decimal numbers and
547 * ranges. Consecutively set bits are shown as two hyphen-separated
548 * decimal numbers, the smallest and largest bit numbers set in
549 * the range. Output format is compatible with the format
550 * accepted as input by bitmap_parselist().
551 *
552 * The return value is the number of characters which were written to *buf
553 * excluding the trailing '\0', as per ISO C99's scnprintf.
554 */
555 int bitmap_scnlistprintf(char *buf, unsigned int buflen,
556 const unsigned long *maskp, int nmaskbits)
557 {
558 int len = 0;
559 /* current bit is 'cur', most recently seen range is [rbot, rtop] */
560 int cur, rbot, rtop;
561
562 if (buflen == 0)
563 return 0;
564 buf[0] = 0;
565
566 rbot = cur = find_first_bit(maskp, nmaskbits);
567 while (cur < nmaskbits) {
568 rtop = cur;
569 cur = find_next_bit(maskp, nmaskbits, cur+1);
570 if (cur >= nmaskbits || cur > rtop + 1) {
571 len = bscnl_emit(buf, buflen, rbot, rtop, len);
572 rbot = cur;
573 }
574 }
575 return len;
576 }
577 EXPORT_SYMBOL(bitmap_scnlistprintf);
578
579 /**
580 * __bitmap_parselist - convert list format ASCII string to bitmap
581 * @buf: read nul-terminated user string from this buffer
582 * @buflen: buffer size in bytes. If string is smaller than this
583 * then it must be terminated with a \0.
584 * @is_user: location of buffer, 0 indicates kernel space
585 * @maskp: write resulting mask here
586 * @nmaskbits: number of bits in mask to be written
587 *
588 * Input format is a comma-separated list of decimal numbers and
589 * ranges. Consecutively set bits are shown as two hyphen-separated
590 * decimal numbers, the smallest and largest bit numbers set in
591 * the range.
592 *
593 * Returns 0 on success, -errno on invalid input strings.
594 * Error values:
595 * %-EINVAL: second number in range smaller than first
596 * %-EINVAL: invalid character in string
597 * %-ERANGE: bit number specified too large for mask
598 */
599 static int __bitmap_parselist(const char *buf, unsigned int buflen,
600 int is_user, unsigned long *maskp,
601 int nmaskbits)
602 {
603 unsigned a, b;
604 int c, old_c, totaldigits;
605 const char __user __force *ubuf = (const char __user __force *)buf;
606 int exp_digit, in_range;
607
608 totaldigits = c = 0;
609 bitmap_zero(maskp, nmaskbits);
610 do {
611 exp_digit = 1;
612 in_range = 0;
613 a = b = 0;
614
615 /* Get the next cpu# or a range of cpu#'s */
616 while (buflen) {
617 old_c = c;
618 if (is_user) {
619 if (__get_user(c, ubuf++))
620 return -EFAULT;
621 } else
622 c = *buf++;
623 buflen--;
624 if (isspace(c))
625 continue;
626
627 /*
628 * If the last character was a space and the current
629 * character isn't '\0', we've got embedded whitespace.
630 * This is a no-no, so throw an error.
631 */
632 if (totaldigits && c && isspace(old_c))
633 return -EINVAL;
634
635 /* A '\0' or a ',' signal the end of a cpu# or range */
636 if (c == '\0' || c == ',')
637 break;
638
639 if (c == '-') {
640 if (exp_digit || in_range)
641 return -EINVAL;
642 b = 0;
643 in_range = 1;
644 exp_digit = 1;
645 continue;
646 }
647
648 if (!isdigit(c))
649 return -EINVAL;
650
651 b = b * 10 + (c - '0');
652 if (!in_range)
653 a = b;
654 exp_digit = 0;
655 totaldigits++;
656 }
657 if (!(a <= b))
658 return -EINVAL;
659 if (b >= nmaskbits)
660 return -ERANGE;
661 while (a <= b) {
662 set_bit(a, maskp);
663 a++;
664 }
665 } while (buflen && c == ',');
666 return 0;
667 }
668
669 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
670 {
671 char *nl = strchr(bp, '\n');
672 int len;
673
674 if (nl)
675 len = nl - bp;
676 else
677 len = strlen(bp);
678
679 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
680 }
681 EXPORT_SYMBOL(bitmap_parselist);
682
683
684 /**
685 * bitmap_parselist_user()
686 *
687 * @ubuf: pointer to user buffer containing string.
688 * @ulen: buffer size in bytes. If string is smaller than this
689 * then it must be terminated with a \0.
690 * @maskp: pointer to bitmap array that will contain result.
691 * @nmaskbits: size of bitmap, in bits.
692 *
693 * Wrapper for bitmap_parselist(), providing it with user buffer.
694 *
695 * We cannot have this as an inline function in bitmap.h because it needs
696 * linux/uaccess.h to get the access_ok() declaration and this causes
697 * cyclic dependencies.
698 */
699 int bitmap_parselist_user(const char __user *ubuf,
700 unsigned int ulen, unsigned long *maskp,
701 int nmaskbits)
702 {
703 if (!access_ok(VERIFY_READ, ubuf, ulen))
704 return -EFAULT;
705 return __bitmap_parselist((const char __force *)ubuf,
706 ulen, 1, maskp, nmaskbits);
707 }
708 EXPORT_SYMBOL(bitmap_parselist_user);
709
710
711 /**
712 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
713 * @buf: pointer to a bitmap
714 * @pos: a bit position in @buf (0 <= @pos < @bits)
715 * @bits: number of valid bit positions in @buf
716 *
717 * Map the bit at position @pos in @buf (of length @bits) to the
718 * ordinal of which set bit it is. If it is not set or if @pos
719 * is not a valid bit position, map to -1.
720 *
721 * If for example, just bits 4 through 7 are set in @buf, then @pos
722 * values 4 through 7 will get mapped to 0 through 3, respectively,
723 * and other @pos values will get mapped to 0. When @pos value 7
724 * gets mapped to (returns) @ord value 3 in this example, that means
725 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
726 *
727 * The bit positions 0 through @bits are valid positions in @buf.
728 */
729 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
730 {
731 int i, ord;
732
733 if (pos < 0 || pos >= bits || !test_bit(pos, buf))
734 return -1;
735
736 i = find_first_bit(buf, bits);
737 ord = 0;
738 while (i < pos) {
739 i = find_next_bit(buf, bits, i + 1);
740 ord++;
741 }
742 BUG_ON(i != pos);
743
744 return ord;
745 }
746
747 /**
748 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
749 * @buf: pointer to bitmap
750 * @ord: ordinal bit position (n-th set bit, n >= 0)
751 * @bits: number of valid bit positions in @buf
752 *
753 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
754 * Value of @ord should be in range 0 <= @ord < weight(buf), else
755 * results are undefined.
756 *
757 * If for example, just bits 4 through 7 are set in @buf, then @ord
758 * values 0 through 3 will get mapped to 4 through 7, respectively,
759 * and all other @ord values return undefined values. When @ord value 3
760 * gets mapped to (returns) @pos value 7 in this example, that means
761 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
762 *
763 * The bit positions 0 through @bits are valid positions in @buf.
764 */
765 int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
766 {
767 int pos = 0;
768
769 if (ord >= 0 && ord < bits) {
770 int i;
771
772 for (i = find_first_bit(buf, bits);
773 i < bits && ord > 0;
774 i = find_next_bit(buf, bits, i + 1))
775 ord--;
776 if (i < bits && ord == 0)
777 pos = i;
778 }
779
780 return pos;
781 }
782
783 /**
784 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
785 * @dst: remapped result
786 * @src: subset to be remapped
787 * @old: defines domain of map
788 * @new: defines range of map
789 * @bits: number of bits in each of these bitmaps
790 *
791 * Let @old and @new define a mapping of bit positions, such that
792 * whatever position is held by the n-th set bit in @old is mapped
793 * to the n-th set bit in @new. In the more general case, allowing
794 * for the possibility that the weight 'w' of @new is less than the
795 * weight of @old, map the position of the n-th set bit in @old to
796 * the position of the m-th set bit in @new, where m == n % w.
797 *
798 * If either of the @old and @new bitmaps are empty, or if @src and
799 * @dst point to the same location, then this routine copies @src
800 * to @dst.
801 *
802 * The positions of unset bits in @old are mapped to themselves
803 * (the identify map).
804 *
805 * Apply the above specified mapping to @src, placing the result in
806 * @dst, clearing any bits previously set in @dst.
807 *
808 * For example, lets say that @old has bits 4 through 7 set, and
809 * @new has bits 12 through 15 set. This defines the mapping of bit
810 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
811 * bit positions unchanged. So if say @src comes into this routine
812 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
813 * 13 and 15 set.
814 */
815 void bitmap_remap(unsigned long *dst, const unsigned long *src,
816 const unsigned long *old, const unsigned long *new,
817 int bits)
818 {
819 int oldbit, w;
820
821 if (dst == src) /* following doesn't handle inplace remaps */
822 return;
823 bitmap_zero(dst, bits);
824
825 w = bitmap_weight(new, bits);
826 for_each_set_bit(oldbit, src, bits) {
827 int n = bitmap_pos_to_ord(old, oldbit, bits);
828
829 if (n < 0 || w == 0)
830 set_bit(oldbit, dst); /* identity map */
831 else
832 set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
833 }
834 }
835 EXPORT_SYMBOL(bitmap_remap);
836
837 /**
838 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
839 * @oldbit: bit position to be mapped
840 * @old: defines domain of map
841 * @new: defines range of map
842 * @bits: number of bits in each of these bitmaps
843 *
844 * Let @old and @new define a mapping of bit positions, such that
845 * whatever position is held by the n-th set bit in @old is mapped
846 * to the n-th set bit in @new. In the more general case, allowing
847 * for the possibility that the weight 'w' of @new is less than the
848 * weight of @old, map the position of the n-th set bit in @old to
849 * the position of the m-th set bit in @new, where m == n % w.
850 *
851 * The positions of unset bits in @old are mapped to themselves
852 * (the identify map).
853 *
854 * Apply the above specified mapping to bit position @oldbit, returning
855 * the new bit position.
856 *
857 * For example, lets say that @old has bits 4 through 7 set, and
858 * @new has bits 12 through 15 set. This defines the mapping of bit
859 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
860 * bit positions unchanged. So if say @oldbit is 5, then this routine
861 * returns 13.
862 */
863 int bitmap_bitremap(int oldbit, const unsigned long *old,
864 const unsigned long *new, int bits)
865 {
866 int w = bitmap_weight(new, bits);
867 int n = bitmap_pos_to_ord(old, oldbit, bits);
868 if (n < 0 || w == 0)
869 return oldbit;
870 else
871 return bitmap_ord_to_pos(new, n % w, bits);
872 }
873 EXPORT_SYMBOL(bitmap_bitremap);
874
875 /**
876 * bitmap_onto - translate one bitmap relative to another
877 * @dst: resulting translated bitmap
878 * @orig: original untranslated bitmap
879 * @relmap: bitmap relative to which translated
880 * @bits: number of bits in each of these bitmaps
881 *
882 * Set the n-th bit of @dst iff there exists some m such that the
883 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
884 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
885 * (If you understood the previous sentence the first time your
886 * read it, you're overqualified for your current job.)
887 *
888 * In other words, @orig is mapped onto (surjectively) @dst,
889 * using the the map { <n, m> | the n-th bit of @relmap is the
890 * m-th set bit of @relmap }.
891 *
892 * Any set bits in @orig above bit number W, where W is the
893 * weight of (number of set bits in) @relmap are mapped nowhere.
894 * In particular, if for all bits m set in @orig, m >= W, then
895 * @dst will end up empty. In situations where the possibility
896 * of such an empty result is not desired, one way to avoid it is
897 * to use the bitmap_fold() operator, below, to first fold the
898 * @orig bitmap over itself so that all its set bits x are in the
899 * range 0 <= x < W. The bitmap_fold() operator does this by
900 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
901 *
902 * Example [1] for bitmap_onto():
903 * Let's say @relmap has bits 30-39 set, and @orig has bits
904 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
905 * @dst will have bits 31, 33, 35, 37 and 39 set.
906 *
907 * When bit 0 is set in @orig, it means turn on the bit in
908 * @dst corresponding to whatever is the first bit (if any)
909 * that is turned on in @relmap. Since bit 0 was off in the
910 * above example, we leave off that bit (bit 30) in @dst.
911 *
912 * When bit 1 is set in @orig (as in the above example), it
913 * means turn on the bit in @dst corresponding to whatever
914 * is the second bit that is turned on in @relmap. The second
915 * bit in @relmap that was turned on in the above example was
916 * bit 31, so we turned on bit 31 in @dst.
917 *
918 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
919 * because they were the 4th, 6th, 8th and 10th set bits
920 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
921 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
922 *
923 * When bit 11 is set in @orig, it means turn on the bit in
924 * @dst corresponding to whatever is the twelfth bit that is
925 * turned on in @relmap. In the above example, there were
926 * only ten bits turned on in @relmap (30..39), so that bit
927 * 11 was set in @orig had no affect on @dst.
928 *
929 * Example [2] for bitmap_fold() + bitmap_onto():
930 * Let's say @relmap has these ten bits set:
931 * 40 41 42 43 45 48 53 61 74 95
932 * (for the curious, that's 40 plus the first ten terms of the
933 * Fibonacci sequence.)
934 *
935 * Further lets say we use the following code, invoking
936 * bitmap_fold() then bitmap_onto, as suggested above to
937 * avoid the possitility of an empty @dst result:
938 *
939 * unsigned long *tmp; // a temporary bitmap's bits
940 *
941 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
942 * bitmap_onto(dst, tmp, relmap, bits);
943 *
944 * Then this table shows what various values of @dst would be, for
945 * various @orig's. I list the zero-based positions of each set bit.
946 * The tmp column shows the intermediate result, as computed by
947 * using bitmap_fold() to fold the @orig bitmap modulo ten
948 * (the weight of @relmap).
949 *
950 * @orig tmp @dst
951 * 0 0 40
952 * 1 1 41
953 * 9 9 95
954 * 10 0 40 (*)
955 * 1 3 5 7 1 3 5 7 41 43 48 61
956 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
957 * 0 9 18 27 0 9 8 7 40 61 74 95
958 * 0 10 20 30 0 40
959 * 0 11 22 33 0 1 2 3 40 41 42 43
960 * 0 12 24 36 0 2 4 6 40 42 45 53
961 * 78 102 211 1 2 8 41 42 74 (*)
962 *
963 * (*) For these marked lines, if we hadn't first done bitmap_fold()
964 * into tmp, then the @dst result would have been empty.
965 *
966 * If either of @orig or @relmap is empty (no set bits), then @dst
967 * will be returned empty.
968 *
969 * If (as explained above) the only set bits in @orig are in positions
970 * m where m >= W, (where W is the weight of @relmap) then @dst will
971 * once again be returned empty.
972 *
973 * All bits in @dst not set by the above rule are cleared.
974 */
975 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
976 const unsigned long *relmap, int bits)
977 {
978 int n, m; /* same meaning as in above comment */
979
980 if (dst == orig) /* following doesn't handle inplace mappings */
981 return;
982 bitmap_zero(dst, bits);
983
984 /*
985 * The following code is a more efficient, but less
986 * obvious, equivalent to the loop:
987 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
988 * n = bitmap_ord_to_pos(orig, m, bits);
989 * if (test_bit(m, orig))
990 * set_bit(n, dst);
991 * }
992 */
993
994 m = 0;
995 for_each_set_bit(n, relmap, bits) {
996 /* m == bitmap_pos_to_ord(relmap, n, bits) */
997 if (test_bit(m, orig))
998 set_bit(n, dst);
999 m++;
1000 }
1001 }
1002 EXPORT_SYMBOL(bitmap_onto);
1003
1004 /**
1005 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1006 * @dst: resulting smaller bitmap
1007 * @orig: original larger bitmap
1008 * @sz: specified size
1009 * @bits: number of bits in each of these bitmaps
1010 *
1011 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1012 * Clear all other bits in @dst. See further the comment and
1013 * Example [2] for bitmap_onto() for why and how to use this.
1014 */
1015 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1016 int sz, int bits)
1017 {
1018 int oldbit;
1019
1020 if (dst == orig) /* following doesn't handle inplace mappings */
1021 return;
1022 bitmap_zero(dst, bits);
1023
1024 for_each_set_bit(oldbit, orig, bits)
1025 set_bit(oldbit % sz, dst);
1026 }
1027 EXPORT_SYMBOL(bitmap_fold);
1028
1029 /*
1030 * Common code for bitmap_*_region() routines.
1031 * bitmap: array of unsigned longs corresponding to the bitmap
1032 * pos: the beginning of the region
1033 * order: region size (log base 2 of number of bits)
1034 * reg_op: operation(s) to perform on that region of bitmap
1035 *
1036 * Can set, verify and/or release a region of bits in a bitmap,
1037 * depending on which combination of REG_OP_* flag bits is set.
1038 *
1039 * A region of a bitmap is a sequence of bits in the bitmap, of
1040 * some size '1 << order' (a power of two), aligned to that same
1041 * '1 << order' power of two.
1042 *
1043 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1044 * Returns 0 in all other cases and reg_ops.
1045 */
1046
1047 enum {
1048 REG_OP_ISFREE, /* true if region is all zero bits */
1049 REG_OP_ALLOC, /* set all bits in region */
1050 REG_OP_RELEASE, /* clear all bits in region */
1051 };
1052
1053 static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
1054 {
1055 int nbits_reg; /* number of bits in region */
1056 int index; /* index first long of region in bitmap */
1057 int offset; /* bit offset region in bitmap[index] */
1058 int nlongs_reg; /* num longs spanned by region in bitmap */
1059 int nbitsinlong; /* num bits of region in each spanned long */
1060 unsigned long mask; /* bitmask for one long of region */
1061 int i; /* scans bitmap by longs */
1062 int ret = 0; /* return value */
1063
1064 /*
1065 * Either nlongs_reg == 1 (for small orders that fit in one long)
1066 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1067 */
1068 nbits_reg = 1 << order;
1069 index = pos / BITS_PER_LONG;
1070 offset = pos - (index * BITS_PER_LONG);
1071 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1072 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1073
1074 /*
1075 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1076 * overflows if nbitsinlong == BITS_PER_LONG.
1077 */
1078 mask = (1UL << (nbitsinlong - 1));
1079 mask += mask - 1;
1080 mask <<= offset;
1081
1082 switch (reg_op) {
1083 case REG_OP_ISFREE:
1084 for (i = 0; i < nlongs_reg; i++) {
1085 if (bitmap[index + i] & mask)
1086 goto done;
1087 }
1088 ret = 1; /* all bits in region free (zero) */
1089 break;
1090
1091 case REG_OP_ALLOC:
1092 for (i = 0; i < nlongs_reg; i++)
1093 bitmap[index + i] |= mask;
1094 break;
1095
1096 case REG_OP_RELEASE:
1097 for (i = 0; i < nlongs_reg; i++)
1098 bitmap[index + i] &= ~mask;
1099 break;
1100 }
1101 done:
1102 return ret;
1103 }
1104
1105 /**
1106 * bitmap_find_free_region - find a contiguous aligned mem region
1107 * @bitmap: array of unsigned longs corresponding to the bitmap
1108 * @bits: number of bits in the bitmap
1109 * @order: region size (log base 2 of number of bits) to find
1110 *
1111 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1112 * allocate them (set them to one). Only consider regions of length
1113 * a power (@order) of two, aligned to that power of two, which
1114 * makes the search algorithm much faster.
1115 *
1116 * Return the bit offset in bitmap of the allocated region,
1117 * or -errno on failure.
1118 */
1119 int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
1120 {
1121 int pos, end; /* scans bitmap by regions of size order */
1122
1123 for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
1124 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1125 continue;
1126 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1127 return pos;
1128 }
1129 return -ENOMEM;
1130 }
1131 EXPORT_SYMBOL(bitmap_find_free_region);
1132
1133 /**
1134 * bitmap_release_region - release allocated bitmap region
1135 * @bitmap: array of unsigned longs corresponding to the bitmap
1136 * @pos: beginning of bit region to release
1137 * @order: region size (log base 2 of number of bits) to release
1138 *
1139 * This is the complement to __bitmap_find_free_region() and releases
1140 * the found region (by clearing it in the bitmap).
1141 *
1142 * No return value.
1143 */
1144 void bitmap_release_region(unsigned long *bitmap, int pos, int order)
1145 {
1146 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1147 }
1148 EXPORT_SYMBOL(bitmap_release_region);
1149
1150 /**
1151 * bitmap_allocate_region - allocate bitmap region
1152 * @bitmap: array of unsigned longs corresponding to the bitmap
1153 * @pos: beginning of bit region to allocate
1154 * @order: region size (log base 2 of number of bits) to allocate
1155 *
1156 * Allocate (set bits in) a specified region of a bitmap.
1157 *
1158 * Return 0 on success, or %-EBUSY if specified region wasn't
1159 * free (not all bits were zero).
1160 */
1161 int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
1162 {
1163 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1164 return -EBUSY;
1165 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1166 return 0;
1167 }
1168 EXPORT_SYMBOL(bitmap_allocate_region);
1169
1170 /**
1171 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1172 * @dst: destination buffer
1173 * @src: bitmap to copy
1174 * @nbits: number of bits in the bitmap
1175 *
1176 * Require nbits % BITS_PER_LONG == 0.
1177 */
1178 void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1179 {
1180 unsigned long *d = dst;
1181 int i;
1182
1183 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1184 if (BITS_PER_LONG == 64)
1185 d[i] = cpu_to_le64(src[i]);
1186 else
1187 d[i] = cpu_to_le32(src[i]);
1188 }
1189 }
1190 EXPORT_SYMBOL(bitmap_copy_le);