workqueue: make rescuer_thread() empty wq->maydays list before exiting
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50
51 #include "workqueue_internal.h"
52
53 enum {
54 /*
55 * worker_pool flags
56 *
57 * A bound pool is either associated or disassociated with its CPU.
58 * While associated (!DISASSOCIATED), all workers are bound to the
59 * CPU and none has %WORKER_UNBOUND set and concurrency management
60 * is in effect.
61 *
62 * While DISASSOCIATED, the cpu may be offline and all workers have
63 * %WORKER_UNBOUND set and concurrency management disabled, and may
64 * be executing on any CPU. The pool behaves as an unbound one.
65 *
66 * Note that DISASSOCIATED should be flipped only while holding
67 * manager_mutex to avoid changing binding state while
68 * create_worker() is in progress.
69 */
70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
72 POOL_FREEZING = 1 << 3, /* freeze in progress */
73
74 /* worker flags */
75 WORKER_STARTED = 1 << 0, /* started */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
78 WORKER_PREP = 1 << 3, /* preparing to run works */
79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
82
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
85
86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
87
88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
90
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give -20.
103 */
104 RESCUER_NICE_LEVEL = -20,
105 HIGHPRI_NICE_LEVEL = -20,
106
107 WQ_NAME_LEN = 24,
108 };
109
110 /*
111 * Structure fields follow one of the following exclusion rules.
112 *
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
115 *
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
119 * L: pool->lock protected. Access with pool->lock held.
120 *
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
125 *
126 * MG: pool->manager_mutex and pool->lock protected. Writes require both
127 * locks. Reads can happen under either lock.
128 *
129 * PL: wq_pool_mutex protected.
130 *
131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
132 *
133 * WQ: wq->mutex protected.
134 *
135 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
136 *
137 * MD: wq_mayday_lock protected.
138 */
139
140 /* struct worker is defined in workqueue_internal.h */
141
142 struct worker_pool {
143 spinlock_t lock; /* the pool lock */
144 int cpu; /* I: the associated cpu */
145 int node; /* I: the associated node ID */
146 int id; /* I: pool ID */
147 unsigned int flags; /* X: flags */
148
149 struct list_head worklist; /* L: list of pending works */
150 int nr_workers; /* L: total number of workers */
151
152 /* nr_idle includes the ones off idle_list for rebinding */
153 int nr_idle; /* L: currently idle ones */
154
155 struct list_head idle_list; /* X: list of idle workers */
156 struct timer_list idle_timer; /* L: worker idle timeout */
157 struct timer_list mayday_timer; /* L: SOS timer for workers */
158
159 /* a workers is either on busy_hash or idle_list, or the manager */
160 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
161 /* L: hash of busy workers */
162
163 /* see manage_workers() for details on the two manager mutexes */
164 struct mutex manager_arb; /* manager arbitration */
165 struct mutex manager_mutex; /* manager exclusion */
166 struct idr worker_idr; /* MG: worker IDs and iteration */
167
168 struct workqueue_attrs *attrs; /* I: worker attributes */
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
171
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
184 } ____cacheline_aligned_in_smp;
185
186 /*
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
191 */
192 struct pool_workqueue {
193 struct worker_pool *pool; /* I: the associated pool */
194 struct workqueue_struct *wq; /* I: the owning workqueue */
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
197 int refcnt; /* L: reference count */
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
200 int nr_active; /* L: nr of active works */
201 int max_active; /* L: max active works */
202 struct list_head delayed_works; /* L: delayed works */
203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
204 struct list_head mayday_node; /* MD: node on wq->maydays */
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
210 * determined without grabbing wq->mutex.
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215
216 /*
217 * Structure used to wait for workqueue flush.
218 */
219 struct wq_flusher {
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
222 struct completion done; /* flush completion */
223 };
224
225 struct wq_device;
226
227 /*
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
230 */
231 struct workqueue_struct {
232 struct list_head pwqs; /* WR: all pwqs of this wq */
233 struct list_head list; /* PL: list of all workqueues */
234
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
238 atomic_t nr_pwqs_to_flush; /* flush in progress */
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
242
243 struct list_head maydays; /* MD: pwqs requesting rescue */
244 struct worker *rescuer; /* I: rescue worker */
245
246 int nr_drainers; /* WQ: drain in progress */
247 int saved_max_active; /* WQ: saved pwq max_active */
248
249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
251
252 #ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256 struct lockdep_map lockdep_map;
257 #endif
258 char name[WQ_NAME_LEN]; /* I: workqueue name */
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265
266 static struct kmem_cache *pwq_cache;
267
268 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269 static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
272 static bool wq_disable_numa;
273 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
275 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
276
277 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
278 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
279
280 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
281 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
282
283 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
284 static bool workqueue_freezing; /* PL: have wqs started freezing? */
285
286 /* the per-cpu worker pools */
287 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
288 cpu_worker_pools);
289
290 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
291
292 /* PL: hash of all unbound pools keyed by pool->attrs */
293 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
294
295 /* I: attributes used when instantiating standard unbound pools on demand */
296 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
297
298 /* I: attributes used when instantiating ordered pools on demand */
299 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
300
301 struct workqueue_struct *system_wq __read_mostly;
302 EXPORT_SYMBOL(system_wq);
303 struct workqueue_struct *system_highpri_wq __read_mostly;
304 EXPORT_SYMBOL_GPL(system_highpri_wq);
305 struct workqueue_struct *system_long_wq __read_mostly;
306 EXPORT_SYMBOL_GPL(system_long_wq);
307 struct workqueue_struct *system_unbound_wq __read_mostly;
308 EXPORT_SYMBOL_GPL(system_unbound_wq);
309 struct workqueue_struct *system_freezable_wq __read_mostly;
310 EXPORT_SYMBOL_GPL(system_freezable_wq);
311
312 static int worker_thread(void *__worker);
313 static void copy_workqueue_attrs(struct workqueue_attrs *to,
314 const struct workqueue_attrs *from);
315
316 #define CREATE_TRACE_POINTS
317 #include <trace/events/workqueue.h>
318
319 #define assert_rcu_or_pool_mutex() \
320 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
321 lockdep_is_held(&wq_pool_mutex), \
322 "sched RCU or wq_pool_mutex should be held")
323
324 #define assert_rcu_or_wq_mutex(wq) \
325 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
326 lockdep_is_held(&wq->mutex), \
327 "sched RCU or wq->mutex should be held")
328
329 #ifdef CONFIG_LOCKDEP
330 #define assert_manager_or_pool_lock(pool) \
331 WARN_ONCE(debug_locks && \
332 !lockdep_is_held(&(pool)->manager_mutex) && \
333 !lockdep_is_held(&(pool)->lock), \
334 "pool->manager_mutex or ->lock should be held")
335 #else
336 #define assert_manager_or_pool_lock(pool) do { } while (0)
337 #endif
338
339 #define for_each_cpu_worker_pool(pool, cpu) \
340 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
341 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
342 (pool)++)
343
344 /**
345 * for_each_pool - iterate through all worker_pools in the system
346 * @pool: iteration cursor
347 * @pi: integer used for iteration
348 *
349 * This must be called either with wq_pool_mutex held or sched RCU read
350 * locked. If the pool needs to be used beyond the locking in effect, the
351 * caller is responsible for guaranteeing that the pool stays online.
352 *
353 * The if/else clause exists only for the lockdep assertion and can be
354 * ignored.
355 */
356 #define for_each_pool(pool, pi) \
357 idr_for_each_entry(&worker_pool_idr, pool, pi) \
358 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
359 else
360
361 /**
362 * for_each_pool_worker - iterate through all workers of a worker_pool
363 * @worker: iteration cursor
364 * @wi: integer used for iteration
365 * @pool: worker_pool to iterate workers of
366 *
367 * This must be called with either @pool->manager_mutex or ->lock held.
368 *
369 * The if/else clause exists only for the lockdep assertion and can be
370 * ignored.
371 */
372 #define for_each_pool_worker(worker, wi, pool) \
373 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
374 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
375 else
376
377 /**
378 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
379 * @pwq: iteration cursor
380 * @wq: the target workqueue
381 *
382 * This must be called either with wq->mutex held or sched RCU read locked.
383 * If the pwq needs to be used beyond the locking in effect, the caller is
384 * responsible for guaranteeing that the pwq stays online.
385 *
386 * The if/else clause exists only for the lockdep assertion and can be
387 * ignored.
388 */
389 #define for_each_pwq(pwq, wq) \
390 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
391 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
392 else
393
394 #ifdef CONFIG_DEBUG_OBJECTS_WORK
395
396 static struct debug_obj_descr work_debug_descr;
397
398 static void *work_debug_hint(void *addr)
399 {
400 return ((struct work_struct *) addr)->func;
401 }
402
403 /*
404 * fixup_init is called when:
405 * - an active object is initialized
406 */
407 static int work_fixup_init(void *addr, enum debug_obj_state state)
408 {
409 struct work_struct *work = addr;
410
411 switch (state) {
412 case ODEBUG_STATE_ACTIVE:
413 cancel_work_sync(work);
414 debug_object_init(work, &work_debug_descr);
415 return 1;
416 default:
417 return 0;
418 }
419 }
420
421 /*
422 * fixup_activate is called when:
423 * - an active object is activated
424 * - an unknown object is activated (might be a statically initialized object)
425 */
426 static int work_fixup_activate(void *addr, enum debug_obj_state state)
427 {
428 struct work_struct *work = addr;
429
430 switch (state) {
431
432 case ODEBUG_STATE_NOTAVAILABLE:
433 /*
434 * This is not really a fixup. The work struct was
435 * statically initialized. We just make sure that it
436 * is tracked in the object tracker.
437 */
438 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
439 debug_object_init(work, &work_debug_descr);
440 debug_object_activate(work, &work_debug_descr);
441 return 0;
442 }
443 WARN_ON_ONCE(1);
444 return 0;
445
446 case ODEBUG_STATE_ACTIVE:
447 WARN_ON(1);
448
449 default:
450 return 0;
451 }
452 }
453
454 /*
455 * fixup_free is called when:
456 * - an active object is freed
457 */
458 static int work_fixup_free(void *addr, enum debug_obj_state state)
459 {
460 struct work_struct *work = addr;
461
462 switch (state) {
463 case ODEBUG_STATE_ACTIVE:
464 cancel_work_sync(work);
465 debug_object_free(work, &work_debug_descr);
466 return 1;
467 default:
468 return 0;
469 }
470 }
471
472 static struct debug_obj_descr work_debug_descr = {
473 .name = "work_struct",
474 .debug_hint = work_debug_hint,
475 .fixup_init = work_fixup_init,
476 .fixup_activate = work_fixup_activate,
477 .fixup_free = work_fixup_free,
478 };
479
480 static inline void debug_work_activate(struct work_struct *work)
481 {
482 debug_object_activate(work, &work_debug_descr);
483 }
484
485 static inline void debug_work_deactivate(struct work_struct *work)
486 {
487 debug_object_deactivate(work, &work_debug_descr);
488 }
489
490 void __init_work(struct work_struct *work, int onstack)
491 {
492 if (onstack)
493 debug_object_init_on_stack(work, &work_debug_descr);
494 else
495 debug_object_init(work, &work_debug_descr);
496 }
497 EXPORT_SYMBOL_GPL(__init_work);
498
499 void destroy_work_on_stack(struct work_struct *work)
500 {
501 debug_object_free(work, &work_debug_descr);
502 }
503 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
504
505 #else
506 static inline void debug_work_activate(struct work_struct *work) { }
507 static inline void debug_work_deactivate(struct work_struct *work) { }
508 #endif
509
510 /* allocate ID and assign it to @pool */
511 static int worker_pool_assign_id(struct worker_pool *pool)
512 {
513 int ret;
514
515 lockdep_assert_held(&wq_pool_mutex);
516
517 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
518 if (ret >= 0) {
519 pool->id = ret;
520 return 0;
521 }
522 return ret;
523 }
524
525 /**
526 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
527 * @wq: the target workqueue
528 * @node: the node ID
529 *
530 * This must be called either with pwq_lock held or sched RCU read locked.
531 * If the pwq needs to be used beyond the locking in effect, the caller is
532 * responsible for guaranteeing that the pwq stays online.
533 */
534 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
535 int node)
536 {
537 assert_rcu_or_wq_mutex(wq);
538 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
539 }
540
541 static unsigned int work_color_to_flags(int color)
542 {
543 return color << WORK_STRUCT_COLOR_SHIFT;
544 }
545
546 static int get_work_color(struct work_struct *work)
547 {
548 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
549 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
550 }
551
552 static int work_next_color(int color)
553 {
554 return (color + 1) % WORK_NR_COLORS;
555 }
556
557 /*
558 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
559 * contain the pointer to the queued pwq. Once execution starts, the flag
560 * is cleared and the high bits contain OFFQ flags and pool ID.
561 *
562 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
563 * and clear_work_data() can be used to set the pwq, pool or clear
564 * work->data. These functions should only be called while the work is
565 * owned - ie. while the PENDING bit is set.
566 *
567 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
568 * corresponding to a work. Pool is available once the work has been
569 * queued anywhere after initialization until it is sync canceled. pwq is
570 * available only while the work item is queued.
571 *
572 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
573 * canceled. While being canceled, a work item may have its PENDING set
574 * but stay off timer and worklist for arbitrarily long and nobody should
575 * try to steal the PENDING bit.
576 */
577 static inline void set_work_data(struct work_struct *work, unsigned long data,
578 unsigned long flags)
579 {
580 WARN_ON_ONCE(!work_pending(work));
581 atomic_long_set(&work->data, data | flags | work_static(work));
582 }
583
584 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
585 unsigned long extra_flags)
586 {
587 set_work_data(work, (unsigned long)pwq,
588 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
589 }
590
591 static void set_work_pool_and_keep_pending(struct work_struct *work,
592 int pool_id)
593 {
594 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
595 WORK_STRUCT_PENDING);
596 }
597
598 static void set_work_pool_and_clear_pending(struct work_struct *work,
599 int pool_id)
600 {
601 /*
602 * The following wmb is paired with the implied mb in
603 * test_and_set_bit(PENDING) and ensures all updates to @work made
604 * here are visible to and precede any updates by the next PENDING
605 * owner.
606 */
607 smp_wmb();
608 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
609 }
610
611 static void clear_work_data(struct work_struct *work)
612 {
613 smp_wmb(); /* see set_work_pool_and_clear_pending() */
614 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
615 }
616
617 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
618 {
619 unsigned long data = atomic_long_read(&work->data);
620
621 if (data & WORK_STRUCT_PWQ)
622 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
623 else
624 return NULL;
625 }
626
627 /**
628 * get_work_pool - return the worker_pool a given work was associated with
629 * @work: the work item of interest
630 *
631 * Return the worker_pool @work was last associated with. %NULL if none.
632 *
633 * Pools are created and destroyed under wq_pool_mutex, and allows read
634 * access under sched-RCU read lock. As such, this function should be
635 * called under wq_pool_mutex or with preemption disabled.
636 *
637 * All fields of the returned pool are accessible as long as the above
638 * mentioned locking is in effect. If the returned pool needs to be used
639 * beyond the critical section, the caller is responsible for ensuring the
640 * returned pool is and stays online.
641 */
642 static struct worker_pool *get_work_pool(struct work_struct *work)
643 {
644 unsigned long data = atomic_long_read(&work->data);
645 int pool_id;
646
647 assert_rcu_or_pool_mutex();
648
649 if (data & WORK_STRUCT_PWQ)
650 return ((struct pool_workqueue *)
651 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
652
653 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
654 if (pool_id == WORK_OFFQ_POOL_NONE)
655 return NULL;
656
657 return idr_find(&worker_pool_idr, pool_id);
658 }
659
660 /**
661 * get_work_pool_id - return the worker pool ID a given work is associated with
662 * @work: the work item of interest
663 *
664 * Return the worker_pool ID @work was last associated with.
665 * %WORK_OFFQ_POOL_NONE if none.
666 */
667 static int get_work_pool_id(struct work_struct *work)
668 {
669 unsigned long data = atomic_long_read(&work->data);
670
671 if (data & WORK_STRUCT_PWQ)
672 return ((struct pool_workqueue *)
673 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
674
675 return data >> WORK_OFFQ_POOL_SHIFT;
676 }
677
678 static void mark_work_canceling(struct work_struct *work)
679 {
680 unsigned long pool_id = get_work_pool_id(work);
681
682 pool_id <<= WORK_OFFQ_POOL_SHIFT;
683 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
684 }
685
686 static bool work_is_canceling(struct work_struct *work)
687 {
688 unsigned long data = atomic_long_read(&work->data);
689
690 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
691 }
692
693 /*
694 * Policy functions. These define the policies on how the global worker
695 * pools are managed. Unless noted otherwise, these functions assume that
696 * they're being called with pool->lock held.
697 */
698
699 static bool __need_more_worker(struct worker_pool *pool)
700 {
701 return !atomic_read(&pool->nr_running);
702 }
703
704 /*
705 * Need to wake up a worker? Called from anything but currently
706 * running workers.
707 *
708 * Note that, because unbound workers never contribute to nr_running, this
709 * function will always return %true for unbound pools as long as the
710 * worklist isn't empty.
711 */
712 static bool need_more_worker(struct worker_pool *pool)
713 {
714 return !list_empty(&pool->worklist) && __need_more_worker(pool);
715 }
716
717 /* Can I start working? Called from busy but !running workers. */
718 static bool may_start_working(struct worker_pool *pool)
719 {
720 return pool->nr_idle;
721 }
722
723 /* Do I need to keep working? Called from currently running workers. */
724 static bool keep_working(struct worker_pool *pool)
725 {
726 return !list_empty(&pool->worklist) &&
727 atomic_read(&pool->nr_running) <= 1;
728 }
729
730 /* Do we need a new worker? Called from manager. */
731 static bool need_to_create_worker(struct worker_pool *pool)
732 {
733 return need_more_worker(pool) && !may_start_working(pool);
734 }
735
736 /* Do I need to be the manager? */
737 static bool need_to_manage_workers(struct worker_pool *pool)
738 {
739 return need_to_create_worker(pool) ||
740 (pool->flags & POOL_MANAGE_WORKERS);
741 }
742
743 /* Do we have too many workers and should some go away? */
744 static bool too_many_workers(struct worker_pool *pool)
745 {
746 bool managing = mutex_is_locked(&pool->manager_arb);
747 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
748 int nr_busy = pool->nr_workers - nr_idle;
749
750 /*
751 * nr_idle and idle_list may disagree if idle rebinding is in
752 * progress. Never return %true if idle_list is empty.
753 */
754 if (list_empty(&pool->idle_list))
755 return false;
756
757 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
758 }
759
760 /*
761 * Wake up functions.
762 */
763
764 /* Return the first worker. Safe with preemption disabled */
765 static struct worker *first_worker(struct worker_pool *pool)
766 {
767 if (unlikely(list_empty(&pool->idle_list)))
768 return NULL;
769
770 return list_first_entry(&pool->idle_list, struct worker, entry);
771 }
772
773 /**
774 * wake_up_worker - wake up an idle worker
775 * @pool: worker pool to wake worker from
776 *
777 * Wake up the first idle worker of @pool.
778 *
779 * CONTEXT:
780 * spin_lock_irq(pool->lock).
781 */
782 static void wake_up_worker(struct worker_pool *pool)
783 {
784 struct worker *worker = first_worker(pool);
785
786 if (likely(worker))
787 wake_up_process(worker->task);
788 }
789
790 /**
791 * wq_worker_waking_up - a worker is waking up
792 * @task: task waking up
793 * @cpu: CPU @task is waking up to
794 *
795 * This function is called during try_to_wake_up() when a worker is
796 * being awoken.
797 *
798 * CONTEXT:
799 * spin_lock_irq(rq->lock)
800 */
801 void wq_worker_waking_up(struct task_struct *task, int cpu)
802 {
803 struct worker *worker = kthread_data(task);
804
805 if (!(worker->flags & WORKER_NOT_RUNNING)) {
806 WARN_ON_ONCE(worker->pool->cpu != cpu);
807 atomic_inc(&worker->pool->nr_running);
808 }
809 }
810
811 /**
812 * wq_worker_sleeping - a worker is going to sleep
813 * @task: task going to sleep
814 * @cpu: CPU in question, must be the current CPU number
815 *
816 * This function is called during schedule() when a busy worker is
817 * going to sleep. Worker on the same cpu can be woken up by
818 * returning pointer to its task.
819 *
820 * CONTEXT:
821 * spin_lock_irq(rq->lock)
822 *
823 * RETURNS:
824 * Worker task on @cpu to wake up, %NULL if none.
825 */
826 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
827 {
828 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
829 struct worker_pool *pool;
830
831 /*
832 * Rescuers, which may not have all the fields set up like normal
833 * workers, also reach here, let's not access anything before
834 * checking NOT_RUNNING.
835 */
836 if (worker->flags & WORKER_NOT_RUNNING)
837 return NULL;
838
839 pool = worker->pool;
840
841 /* this can only happen on the local cpu */
842 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
843 return NULL;
844
845 /*
846 * The counterpart of the following dec_and_test, implied mb,
847 * worklist not empty test sequence is in insert_work().
848 * Please read comment there.
849 *
850 * NOT_RUNNING is clear. This means that we're bound to and
851 * running on the local cpu w/ rq lock held and preemption
852 * disabled, which in turn means that none else could be
853 * manipulating idle_list, so dereferencing idle_list without pool
854 * lock is safe.
855 */
856 if (atomic_dec_and_test(&pool->nr_running) &&
857 !list_empty(&pool->worklist))
858 to_wakeup = first_worker(pool);
859 return to_wakeup ? to_wakeup->task : NULL;
860 }
861
862 /**
863 * worker_set_flags - set worker flags and adjust nr_running accordingly
864 * @worker: self
865 * @flags: flags to set
866 * @wakeup: wakeup an idle worker if necessary
867 *
868 * Set @flags in @worker->flags and adjust nr_running accordingly. If
869 * nr_running becomes zero and @wakeup is %true, an idle worker is
870 * woken up.
871 *
872 * CONTEXT:
873 * spin_lock_irq(pool->lock)
874 */
875 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
876 bool wakeup)
877 {
878 struct worker_pool *pool = worker->pool;
879
880 WARN_ON_ONCE(worker->task != current);
881
882 /*
883 * If transitioning into NOT_RUNNING, adjust nr_running and
884 * wake up an idle worker as necessary if requested by
885 * @wakeup.
886 */
887 if ((flags & WORKER_NOT_RUNNING) &&
888 !(worker->flags & WORKER_NOT_RUNNING)) {
889 if (wakeup) {
890 if (atomic_dec_and_test(&pool->nr_running) &&
891 !list_empty(&pool->worklist))
892 wake_up_worker(pool);
893 } else
894 atomic_dec(&pool->nr_running);
895 }
896
897 worker->flags |= flags;
898 }
899
900 /**
901 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
902 * @worker: self
903 * @flags: flags to clear
904 *
905 * Clear @flags in @worker->flags and adjust nr_running accordingly.
906 *
907 * CONTEXT:
908 * spin_lock_irq(pool->lock)
909 */
910 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
911 {
912 struct worker_pool *pool = worker->pool;
913 unsigned int oflags = worker->flags;
914
915 WARN_ON_ONCE(worker->task != current);
916
917 worker->flags &= ~flags;
918
919 /*
920 * If transitioning out of NOT_RUNNING, increment nr_running. Note
921 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
922 * of multiple flags, not a single flag.
923 */
924 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
925 if (!(worker->flags & WORKER_NOT_RUNNING))
926 atomic_inc(&pool->nr_running);
927 }
928
929 /**
930 * find_worker_executing_work - find worker which is executing a work
931 * @pool: pool of interest
932 * @work: work to find worker for
933 *
934 * Find a worker which is executing @work on @pool by searching
935 * @pool->busy_hash which is keyed by the address of @work. For a worker
936 * to match, its current execution should match the address of @work and
937 * its work function. This is to avoid unwanted dependency between
938 * unrelated work executions through a work item being recycled while still
939 * being executed.
940 *
941 * This is a bit tricky. A work item may be freed once its execution
942 * starts and nothing prevents the freed area from being recycled for
943 * another work item. If the same work item address ends up being reused
944 * before the original execution finishes, workqueue will identify the
945 * recycled work item as currently executing and make it wait until the
946 * current execution finishes, introducing an unwanted dependency.
947 *
948 * This function checks the work item address and work function to avoid
949 * false positives. Note that this isn't complete as one may construct a
950 * work function which can introduce dependency onto itself through a
951 * recycled work item. Well, if somebody wants to shoot oneself in the
952 * foot that badly, there's only so much we can do, and if such deadlock
953 * actually occurs, it should be easy to locate the culprit work function.
954 *
955 * CONTEXT:
956 * spin_lock_irq(pool->lock).
957 *
958 * RETURNS:
959 * Pointer to worker which is executing @work if found, NULL
960 * otherwise.
961 */
962 static struct worker *find_worker_executing_work(struct worker_pool *pool,
963 struct work_struct *work)
964 {
965 struct worker *worker;
966
967 hash_for_each_possible(pool->busy_hash, worker, hentry,
968 (unsigned long)work)
969 if (worker->current_work == work &&
970 worker->current_func == work->func)
971 return worker;
972
973 return NULL;
974 }
975
976 /**
977 * move_linked_works - move linked works to a list
978 * @work: start of series of works to be scheduled
979 * @head: target list to append @work to
980 * @nextp: out paramter for nested worklist walking
981 *
982 * Schedule linked works starting from @work to @head. Work series to
983 * be scheduled starts at @work and includes any consecutive work with
984 * WORK_STRUCT_LINKED set in its predecessor.
985 *
986 * If @nextp is not NULL, it's updated to point to the next work of
987 * the last scheduled work. This allows move_linked_works() to be
988 * nested inside outer list_for_each_entry_safe().
989 *
990 * CONTEXT:
991 * spin_lock_irq(pool->lock).
992 */
993 static void move_linked_works(struct work_struct *work, struct list_head *head,
994 struct work_struct **nextp)
995 {
996 struct work_struct *n;
997
998 /*
999 * Linked worklist will always end before the end of the list,
1000 * use NULL for list head.
1001 */
1002 list_for_each_entry_safe_from(work, n, NULL, entry) {
1003 list_move_tail(&work->entry, head);
1004 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1005 break;
1006 }
1007
1008 /*
1009 * If we're already inside safe list traversal and have moved
1010 * multiple works to the scheduled queue, the next position
1011 * needs to be updated.
1012 */
1013 if (nextp)
1014 *nextp = n;
1015 }
1016
1017 /**
1018 * get_pwq - get an extra reference on the specified pool_workqueue
1019 * @pwq: pool_workqueue to get
1020 *
1021 * Obtain an extra reference on @pwq. The caller should guarantee that
1022 * @pwq has positive refcnt and be holding the matching pool->lock.
1023 */
1024 static void get_pwq(struct pool_workqueue *pwq)
1025 {
1026 lockdep_assert_held(&pwq->pool->lock);
1027 WARN_ON_ONCE(pwq->refcnt <= 0);
1028 pwq->refcnt++;
1029 }
1030
1031 /**
1032 * put_pwq - put a pool_workqueue reference
1033 * @pwq: pool_workqueue to put
1034 *
1035 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1036 * destruction. The caller should be holding the matching pool->lock.
1037 */
1038 static void put_pwq(struct pool_workqueue *pwq)
1039 {
1040 lockdep_assert_held(&pwq->pool->lock);
1041 if (likely(--pwq->refcnt))
1042 return;
1043 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1044 return;
1045 /*
1046 * @pwq can't be released under pool->lock, bounce to
1047 * pwq_unbound_release_workfn(). This never recurses on the same
1048 * pool->lock as this path is taken only for unbound workqueues and
1049 * the release work item is scheduled on a per-cpu workqueue. To
1050 * avoid lockdep warning, unbound pool->locks are given lockdep
1051 * subclass of 1 in get_unbound_pool().
1052 */
1053 schedule_work(&pwq->unbound_release_work);
1054 }
1055
1056 /**
1057 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1058 * @pwq: pool_workqueue to put (can be %NULL)
1059 *
1060 * put_pwq() with locking. This function also allows %NULL @pwq.
1061 */
1062 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1063 {
1064 if (pwq) {
1065 /*
1066 * As both pwqs and pools are sched-RCU protected, the
1067 * following lock operations are safe.
1068 */
1069 spin_lock_irq(&pwq->pool->lock);
1070 put_pwq(pwq);
1071 spin_unlock_irq(&pwq->pool->lock);
1072 }
1073 }
1074
1075 static void pwq_activate_delayed_work(struct work_struct *work)
1076 {
1077 struct pool_workqueue *pwq = get_work_pwq(work);
1078
1079 trace_workqueue_activate_work(work);
1080 move_linked_works(work, &pwq->pool->worklist, NULL);
1081 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1082 pwq->nr_active++;
1083 }
1084
1085 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1086 {
1087 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1088 struct work_struct, entry);
1089
1090 pwq_activate_delayed_work(work);
1091 }
1092
1093 /**
1094 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1095 * @pwq: pwq of interest
1096 * @color: color of work which left the queue
1097 *
1098 * A work either has completed or is removed from pending queue,
1099 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1100 *
1101 * CONTEXT:
1102 * spin_lock_irq(pool->lock).
1103 */
1104 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1105 {
1106 /* uncolored work items don't participate in flushing or nr_active */
1107 if (color == WORK_NO_COLOR)
1108 goto out_put;
1109
1110 pwq->nr_in_flight[color]--;
1111
1112 pwq->nr_active--;
1113 if (!list_empty(&pwq->delayed_works)) {
1114 /* one down, submit a delayed one */
1115 if (pwq->nr_active < pwq->max_active)
1116 pwq_activate_first_delayed(pwq);
1117 }
1118
1119 /* is flush in progress and are we at the flushing tip? */
1120 if (likely(pwq->flush_color != color))
1121 goto out_put;
1122
1123 /* are there still in-flight works? */
1124 if (pwq->nr_in_flight[color])
1125 goto out_put;
1126
1127 /* this pwq is done, clear flush_color */
1128 pwq->flush_color = -1;
1129
1130 /*
1131 * If this was the last pwq, wake up the first flusher. It
1132 * will handle the rest.
1133 */
1134 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1135 complete(&pwq->wq->first_flusher->done);
1136 out_put:
1137 put_pwq(pwq);
1138 }
1139
1140 /**
1141 * try_to_grab_pending - steal work item from worklist and disable irq
1142 * @work: work item to steal
1143 * @is_dwork: @work is a delayed_work
1144 * @flags: place to store irq state
1145 *
1146 * Try to grab PENDING bit of @work. This function can handle @work in any
1147 * stable state - idle, on timer or on worklist. Return values are
1148 *
1149 * 1 if @work was pending and we successfully stole PENDING
1150 * 0 if @work was idle and we claimed PENDING
1151 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1152 * -ENOENT if someone else is canceling @work, this state may persist
1153 * for arbitrarily long
1154 *
1155 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1156 * interrupted while holding PENDING and @work off queue, irq must be
1157 * disabled on entry. This, combined with delayed_work->timer being
1158 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1159 *
1160 * On successful return, >= 0, irq is disabled and the caller is
1161 * responsible for releasing it using local_irq_restore(*@flags).
1162 *
1163 * This function is safe to call from any context including IRQ handler.
1164 */
1165 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1166 unsigned long *flags)
1167 {
1168 struct worker_pool *pool;
1169 struct pool_workqueue *pwq;
1170
1171 local_irq_save(*flags);
1172
1173 /* try to steal the timer if it exists */
1174 if (is_dwork) {
1175 struct delayed_work *dwork = to_delayed_work(work);
1176
1177 /*
1178 * dwork->timer is irqsafe. If del_timer() fails, it's
1179 * guaranteed that the timer is not queued anywhere and not
1180 * running on the local CPU.
1181 */
1182 if (likely(del_timer(&dwork->timer)))
1183 return 1;
1184 }
1185
1186 /* try to claim PENDING the normal way */
1187 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1188 return 0;
1189
1190 /*
1191 * The queueing is in progress, or it is already queued. Try to
1192 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1193 */
1194 pool = get_work_pool(work);
1195 if (!pool)
1196 goto fail;
1197
1198 spin_lock(&pool->lock);
1199 /*
1200 * work->data is guaranteed to point to pwq only while the work
1201 * item is queued on pwq->wq, and both updating work->data to point
1202 * to pwq on queueing and to pool on dequeueing are done under
1203 * pwq->pool->lock. This in turn guarantees that, if work->data
1204 * points to pwq which is associated with a locked pool, the work
1205 * item is currently queued on that pool.
1206 */
1207 pwq = get_work_pwq(work);
1208 if (pwq && pwq->pool == pool) {
1209 debug_work_deactivate(work);
1210
1211 /*
1212 * A delayed work item cannot be grabbed directly because
1213 * it might have linked NO_COLOR work items which, if left
1214 * on the delayed_list, will confuse pwq->nr_active
1215 * management later on and cause stall. Make sure the work
1216 * item is activated before grabbing.
1217 */
1218 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1219 pwq_activate_delayed_work(work);
1220
1221 list_del_init(&work->entry);
1222 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1223
1224 /* work->data points to pwq iff queued, point to pool */
1225 set_work_pool_and_keep_pending(work, pool->id);
1226
1227 spin_unlock(&pool->lock);
1228 return 1;
1229 }
1230 spin_unlock(&pool->lock);
1231 fail:
1232 local_irq_restore(*flags);
1233 if (work_is_canceling(work))
1234 return -ENOENT;
1235 cpu_relax();
1236 return -EAGAIN;
1237 }
1238
1239 /**
1240 * insert_work - insert a work into a pool
1241 * @pwq: pwq @work belongs to
1242 * @work: work to insert
1243 * @head: insertion point
1244 * @extra_flags: extra WORK_STRUCT_* flags to set
1245 *
1246 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1247 * work_struct flags.
1248 *
1249 * CONTEXT:
1250 * spin_lock_irq(pool->lock).
1251 */
1252 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1253 struct list_head *head, unsigned int extra_flags)
1254 {
1255 struct worker_pool *pool = pwq->pool;
1256
1257 /* we own @work, set data and link */
1258 set_work_pwq(work, pwq, extra_flags);
1259 list_add_tail(&work->entry, head);
1260 get_pwq(pwq);
1261
1262 /*
1263 * Ensure either wq_worker_sleeping() sees the above
1264 * list_add_tail() or we see zero nr_running to avoid workers lying
1265 * around lazily while there are works to be processed.
1266 */
1267 smp_mb();
1268
1269 if (__need_more_worker(pool))
1270 wake_up_worker(pool);
1271 }
1272
1273 /*
1274 * Test whether @work is being queued from another work executing on the
1275 * same workqueue.
1276 */
1277 static bool is_chained_work(struct workqueue_struct *wq)
1278 {
1279 struct worker *worker;
1280
1281 worker = current_wq_worker();
1282 /*
1283 * Return %true iff I'm a worker execuing a work item on @wq. If
1284 * I'm @worker, it's safe to dereference it without locking.
1285 */
1286 return worker && worker->current_pwq->wq == wq;
1287 }
1288
1289 static void __queue_work(int cpu, struct workqueue_struct *wq,
1290 struct work_struct *work)
1291 {
1292 struct pool_workqueue *pwq;
1293 struct worker_pool *last_pool;
1294 struct list_head *worklist;
1295 unsigned int work_flags;
1296 unsigned int req_cpu = cpu;
1297
1298 /*
1299 * While a work item is PENDING && off queue, a task trying to
1300 * steal the PENDING will busy-loop waiting for it to either get
1301 * queued or lose PENDING. Grabbing PENDING and queueing should
1302 * happen with IRQ disabled.
1303 */
1304 WARN_ON_ONCE(!irqs_disabled());
1305
1306 debug_work_activate(work);
1307
1308 /* if dying, only works from the same workqueue are allowed */
1309 if (unlikely(wq->flags & __WQ_DRAINING) &&
1310 WARN_ON_ONCE(!is_chained_work(wq)))
1311 return;
1312 retry:
1313 if (req_cpu == WORK_CPU_UNBOUND)
1314 cpu = raw_smp_processor_id();
1315
1316 /* pwq which will be used unless @work is executing elsewhere */
1317 if (!(wq->flags & WQ_UNBOUND))
1318 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1319 else
1320 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1321
1322 /*
1323 * If @work was previously on a different pool, it might still be
1324 * running there, in which case the work needs to be queued on that
1325 * pool to guarantee non-reentrancy.
1326 */
1327 last_pool = get_work_pool(work);
1328 if (last_pool && last_pool != pwq->pool) {
1329 struct worker *worker;
1330
1331 spin_lock(&last_pool->lock);
1332
1333 worker = find_worker_executing_work(last_pool, work);
1334
1335 if (worker && worker->current_pwq->wq == wq) {
1336 pwq = worker->current_pwq;
1337 } else {
1338 /* meh... not running there, queue here */
1339 spin_unlock(&last_pool->lock);
1340 spin_lock(&pwq->pool->lock);
1341 }
1342 } else {
1343 spin_lock(&pwq->pool->lock);
1344 }
1345
1346 /*
1347 * pwq is determined and locked. For unbound pools, we could have
1348 * raced with pwq release and it could already be dead. If its
1349 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1350 * without another pwq replacing it in the numa_pwq_tbl or while
1351 * work items are executing on it, so the retrying is guaranteed to
1352 * make forward-progress.
1353 */
1354 if (unlikely(!pwq->refcnt)) {
1355 if (wq->flags & WQ_UNBOUND) {
1356 spin_unlock(&pwq->pool->lock);
1357 cpu_relax();
1358 goto retry;
1359 }
1360 /* oops */
1361 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1362 wq->name, cpu);
1363 }
1364
1365 /* pwq determined, queue */
1366 trace_workqueue_queue_work(req_cpu, pwq, work);
1367
1368 if (WARN_ON(!list_empty(&work->entry))) {
1369 spin_unlock(&pwq->pool->lock);
1370 return;
1371 }
1372
1373 pwq->nr_in_flight[pwq->work_color]++;
1374 work_flags = work_color_to_flags(pwq->work_color);
1375
1376 if (likely(pwq->nr_active < pwq->max_active)) {
1377 trace_workqueue_activate_work(work);
1378 pwq->nr_active++;
1379 worklist = &pwq->pool->worklist;
1380 } else {
1381 work_flags |= WORK_STRUCT_DELAYED;
1382 worklist = &pwq->delayed_works;
1383 }
1384
1385 insert_work(pwq, work, worklist, work_flags);
1386
1387 spin_unlock(&pwq->pool->lock);
1388 }
1389
1390 /**
1391 * queue_work_on - queue work on specific cpu
1392 * @cpu: CPU number to execute work on
1393 * @wq: workqueue to use
1394 * @work: work to queue
1395 *
1396 * Returns %false if @work was already on a queue, %true otherwise.
1397 *
1398 * We queue the work to a specific CPU, the caller must ensure it
1399 * can't go away.
1400 */
1401 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1402 struct work_struct *work)
1403 {
1404 bool ret = false;
1405 unsigned long flags;
1406
1407 local_irq_save(flags);
1408
1409 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1410 __queue_work(cpu, wq, work);
1411 ret = true;
1412 }
1413
1414 local_irq_restore(flags);
1415 return ret;
1416 }
1417 EXPORT_SYMBOL(queue_work_on);
1418
1419 void delayed_work_timer_fn(unsigned long __data)
1420 {
1421 struct delayed_work *dwork = (struct delayed_work *)__data;
1422
1423 /* should have been called from irqsafe timer with irq already off */
1424 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1425 }
1426 EXPORT_SYMBOL(delayed_work_timer_fn);
1427
1428 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1429 struct delayed_work *dwork, unsigned long delay)
1430 {
1431 struct timer_list *timer = &dwork->timer;
1432 struct work_struct *work = &dwork->work;
1433
1434 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1435 timer->data != (unsigned long)dwork);
1436 WARN_ON_ONCE(timer_pending(timer));
1437 WARN_ON_ONCE(!list_empty(&work->entry));
1438
1439 /*
1440 * If @delay is 0, queue @dwork->work immediately. This is for
1441 * both optimization and correctness. The earliest @timer can
1442 * expire is on the closest next tick and delayed_work users depend
1443 * on that there's no such delay when @delay is 0.
1444 */
1445 if (!delay) {
1446 __queue_work(cpu, wq, &dwork->work);
1447 return;
1448 }
1449
1450 timer_stats_timer_set_start_info(&dwork->timer);
1451
1452 dwork->wq = wq;
1453 dwork->cpu = cpu;
1454 timer->expires = jiffies + delay;
1455
1456 if (unlikely(cpu != WORK_CPU_UNBOUND))
1457 add_timer_on(timer, cpu);
1458 else
1459 add_timer(timer);
1460 }
1461
1462 /**
1463 * queue_delayed_work_on - queue work on specific CPU after delay
1464 * @cpu: CPU number to execute work on
1465 * @wq: workqueue to use
1466 * @dwork: work to queue
1467 * @delay: number of jiffies to wait before queueing
1468 *
1469 * Returns %false if @work was already on a queue, %true otherwise. If
1470 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1471 * execution.
1472 */
1473 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1474 struct delayed_work *dwork, unsigned long delay)
1475 {
1476 struct work_struct *work = &dwork->work;
1477 bool ret = false;
1478 unsigned long flags;
1479
1480 /* read the comment in __queue_work() */
1481 local_irq_save(flags);
1482
1483 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1484 __queue_delayed_work(cpu, wq, dwork, delay);
1485 ret = true;
1486 }
1487
1488 local_irq_restore(flags);
1489 return ret;
1490 }
1491 EXPORT_SYMBOL(queue_delayed_work_on);
1492
1493 /**
1494 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1495 * @cpu: CPU number to execute work on
1496 * @wq: workqueue to use
1497 * @dwork: work to queue
1498 * @delay: number of jiffies to wait before queueing
1499 *
1500 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1501 * modify @dwork's timer so that it expires after @delay. If @delay is
1502 * zero, @work is guaranteed to be scheduled immediately regardless of its
1503 * current state.
1504 *
1505 * Returns %false if @dwork was idle and queued, %true if @dwork was
1506 * pending and its timer was modified.
1507 *
1508 * This function is safe to call from any context including IRQ handler.
1509 * See try_to_grab_pending() for details.
1510 */
1511 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1512 struct delayed_work *dwork, unsigned long delay)
1513 {
1514 unsigned long flags;
1515 int ret;
1516
1517 do {
1518 ret = try_to_grab_pending(&dwork->work, true, &flags);
1519 } while (unlikely(ret == -EAGAIN));
1520
1521 if (likely(ret >= 0)) {
1522 __queue_delayed_work(cpu, wq, dwork, delay);
1523 local_irq_restore(flags);
1524 }
1525
1526 /* -ENOENT from try_to_grab_pending() becomes %true */
1527 return ret;
1528 }
1529 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1530
1531 /**
1532 * worker_enter_idle - enter idle state
1533 * @worker: worker which is entering idle state
1534 *
1535 * @worker is entering idle state. Update stats and idle timer if
1536 * necessary.
1537 *
1538 * LOCKING:
1539 * spin_lock_irq(pool->lock).
1540 */
1541 static void worker_enter_idle(struct worker *worker)
1542 {
1543 struct worker_pool *pool = worker->pool;
1544
1545 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1546 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1547 (worker->hentry.next || worker->hentry.pprev)))
1548 return;
1549
1550 /* can't use worker_set_flags(), also called from start_worker() */
1551 worker->flags |= WORKER_IDLE;
1552 pool->nr_idle++;
1553 worker->last_active = jiffies;
1554
1555 /* idle_list is LIFO */
1556 list_add(&worker->entry, &pool->idle_list);
1557
1558 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1559 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1560
1561 /*
1562 * Sanity check nr_running. Because wq_unbind_fn() releases
1563 * pool->lock between setting %WORKER_UNBOUND and zapping
1564 * nr_running, the warning may trigger spuriously. Check iff
1565 * unbind is not in progress.
1566 */
1567 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1568 pool->nr_workers == pool->nr_idle &&
1569 atomic_read(&pool->nr_running));
1570 }
1571
1572 /**
1573 * worker_leave_idle - leave idle state
1574 * @worker: worker which is leaving idle state
1575 *
1576 * @worker is leaving idle state. Update stats.
1577 *
1578 * LOCKING:
1579 * spin_lock_irq(pool->lock).
1580 */
1581 static void worker_leave_idle(struct worker *worker)
1582 {
1583 struct worker_pool *pool = worker->pool;
1584
1585 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1586 return;
1587 worker_clr_flags(worker, WORKER_IDLE);
1588 pool->nr_idle--;
1589 list_del_init(&worker->entry);
1590 }
1591
1592 /**
1593 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1594 * @pool: target worker_pool
1595 *
1596 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1597 *
1598 * Works which are scheduled while the cpu is online must at least be
1599 * scheduled to a worker which is bound to the cpu so that if they are
1600 * flushed from cpu callbacks while cpu is going down, they are
1601 * guaranteed to execute on the cpu.
1602 *
1603 * This function is to be used by unbound workers and rescuers to bind
1604 * themselves to the target cpu and may race with cpu going down or
1605 * coming online. kthread_bind() can't be used because it may put the
1606 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1607 * verbatim as it's best effort and blocking and pool may be
1608 * [dis]associated in the meantime.
1609 *
1610 * This function tries set_cpus_allowed() and locks pool and verifies the
1611 * binding against %POOL_DISASSOCIATED which is set during
1612 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1613 * enters idle state or fetches works without dropping lock, it can
1614 * guarantee the scheduling requirement described in the first paragraph.
1615 *
1616 * CONTEXT:
1617 * Might sleep. Called without any lock but returns with pool->lock
1618 * held.
1619 *
1620 * RETURNS:
1621 * %true if the associated pool is online (@worker is successfully
1622 * bound), %false if offline.
1623 */
1624 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1625 __acquires(&pool->lock)
1626 {
1627 while (true) {
1628 /*
1629 * The following call may fail, succeed or succeed
1630 * without actually migrating the task to the cpu if
1631 * it races with cpu hotunplug operation. Verify
1632 * against POOL_DISASSOCIATED.
1633 */
1634 if (!(pool->flags & POOL_DISASSOCIATED))
1635 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1636
1637 spin_lock_irq(&pool->lock);
1638 if (pool->flags & POOL_DISASSOCIATED)
1639 return false;
1640 if (task_cpu(current) == pool->cpu &&
1641 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1642 return true;
1643 spin_unlock_irq(&pool->lock);
1644
1645 /*
1646 * We've raced with CPU hot[un]plug. Give it a breather
1647 * and retry migration. cond_resched() is required here;
1648 * otherwise, we might deadlock against cpu_stop trying to
1649 * bring down the CPU on non-preemptive kernel.
1650 */
1651 cpu_relax();
1652 cond_resched();
1653 }
1654 }
1655
1656 static struct worker *alloc_worker(void)
1657 {
1658 struct worker *worker;
1659
1660 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1661 if (worker) {
1662 INIT_LIST_HEAD(&worker->entry);
1663 INIT_LIST_HEAD(&worker->scheduled);
1664 /* on creation a worker is in !idle && prep state */
1665 worker->flags = WORKER_PREP;
1666 }
1667 return worker;
1668 }
1669
1670 /**
1671 * create_worker - create a new workqueue worker
1672 * @pool: pool the new worker will belong to
1673 *
1674 * Create a new worker which is bound to @pool. The returned worker
1675 * can be started by calling start_worker() or destroyed using
1676 * destroy_worker().
1677 *
1678 * CONTEXT:
1679 * Might sleep. Does GFP_KERNEL allocations.
1680 *
1681 * RETURNS:
1682 * Pointer to the newly created worker.
1683 */
1684 static struct worker *create_worker(struct worker_pool *pool)
1685 {
1686 struct worker *worker = NULL;
1687 int id = -1;
1688 char id_buf[16];
1689
1690 lockdep_assert_held(&pool->manager_mutex);
1691
1692 /*
1693 * ID is needed to determine kthread name. Allocate ID first
1694 * without installing the pointer.
1695 */
1696 idr_preload(GFP_KERNEL);
1697 spin_lock_irq(&pool->lock);
1698
1699 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1700
1701 spin_unlock_irq(&pool->lock);
1702 idr_preload_end();
1703 if (id < 0)
1704 goto fail;
1705
1706 worker = alloc_worker();
1707 if (!worker)
1708 goto fail;
1709
1710 worker->pool = pool;
1711 worker->id = id;
1712
1713 if (pool->cpu >= 0)
1714 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1715 pool->attrs->nice < 0 ? "H" : "");
1716 else
1717 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1718
1719 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1720 "kworker/%s", id_buf);
1721 if (IS_ERR(worker->task))
1722 goto fail;
1723
1724 /*
1725 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1726 * online CPUs. It'll be re-applied when any of the CPUs come up.
1727 */
1728 set_user_nice(worker->task, pool->attrs->nice);
1729 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1730
1731 /* prevent userland from meddling with cpumask of workqueue workers */
1732 worker->task->flags |= PF_NO_SETAFFINITY;
1733
1734 /*
1735 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1736 * remains stable across this function. See the comments above the
1737 * flag definition for details.
1738 */
1739 if (pool->flags & POOL_DISASSOCIATED)
1740 worker->flags |= WORKER_UNBOUND;
1741
1742 /* successful, commit the pointer to idr */
1743 spin_lock_irq(&pool->lock);
1744 idr_replace(&pool->worker_idr, worker, worker->id);
1745 spin_unlock_irq(&pool->lock);
1746
1747 return worker;
1748
1749 fail:
1750 if (id >= 0) {
1751 spin_lock_irq(&pool->lock);
1752 idr_remove(&pool->worker_idr, id);
1753 spin_unlock_irq(&pool->lock);
1754 }
1755 kfree(worker);
1756 return NULL;
1757 }
1758
1759 /**
1760 * start_worker - start a newly created worker
1761 * @worker: worker to start
1762 *
1763 * Make the pool aware of @worker and start it.
1764 *
1765 * CONTEXT:
1766 * spin_lock_irq(pool->lock).
1767 */
1768 static void start_worker(struct worker *worker)
1769 {
1770 worker->flags |= WORKER_STARTED;
1771 worker->pool->nr_workers++;
1772 worker_enter_idle(worker);
1773 wake_up_process(worker->task);
1774 }
1775
1776 /**
1777 * create_and_start_worker - create and start a worker for a pool
1778 * @pool: the target pool
1779 *
1780 * Grab the managership of @pool and create and start a new worker for it.
1781 */
1782 static int create_and_start_worker(struct worker_pool *pool)
1783 {
1784 struct worker *worker;
1785
1786 mutex_lock(&pool->manager_mutex);
1787
1788 worker = create_worker(pool);
1789 if (worker) {
1790 spin_lock_irq(&pool->lock);
1791 start_worker(worker);
1792 spin_unlock_irq(&pool->lock);
1793 }
1794
1795 mutex_unlock(&pool->manager_mutex);
1796
1797 return worker ? 0 : -ENOMEM;
1798 }
1799
1800 /**
1801 * destroy_worker - destroy a workqueue worker
1802 * @worker: worker to be destroyed
1803 *
1804 * Destroy @worker and adjust @pool stats accordingly.
1805 *
1806 * CONTEXT:
1807 * spin_lock_irq(pool->lock) which is released and regrabbed.
1808 */
1809 static void destroy_worker(struct worker *worker)
1810 {
1811 struct worker_pool *pool = worker->pool;
1812
1813 lockdep_assert_held(&pool->manager_mutex);
1814 lockdep_assert_held(&pool->lock);
1815
1816 /* sanity check frenzy */
1817 if (WARN_ON(worker->current_work) ||
1818 WARN_ON(!list_empty(&worker->scheduled)))
1819 return;
1820
1821 if (worker->flags & WORKER_STARTED)
1822 pool->nr_workers--;
1823 if (worker->flags & WORKER_IDLE)
1824 pool->nr_idle--;
1825
1826 /*
1827 * Once WORKER_DIE is set, the kworker may destroy itself at any
1828 * point. Pin to ensure the task stays until we're done with it.
1829 */
1830 get_task_struct(worker->task);
1831
1832 list_del_init(&worker->entry);
1833 worker->flags |= WORKER_DIE;
1834
1835 idr_remove(&pool->worker_idr, worker->id);
1836
1837 spin_unlock_irq(&pool->lock);
1838
1839 kthread_stop(worker->task);
1840 put_task_struct(worker->task);
1841 kfree(worker);
1842
1843 spin_lock_irq(&pool->lock);
1844 }
1845
1846 static void idle_worker_timeout(unsigned long __pool)
1847 {
1848 struct worker_pool *pool = (void *)__pool;
1849
1850 spin_lock_irq(&pool->lock);
1851
1852 if (too_many_workers(pool)) {
1853 struct worker *worker;
1854 unsigned long expires;
1855
1856 /* idle_list is kept in LIFO order, check the last one */
1857 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1858 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1859
1860 if (time_before(jiffies, expires))
1861 mod_timer(&pool->idle_timer, expires);
1862 else {
1863 /* it's been idle for too long, wake up manager */
1864 pool->flags |= POOL_MANAGE_WORKERS;
1865 wake_up_worker(pool);
1866 }
1867 }
1868
1869 spin_unlock_irq(&pool->lock);
1870 }
1871
1872 static void send_mayday(struct work_struct *work)
1873 {
1874 struct pool_workqueue *pwq = get_work_pwq(work);
1875 struct workqueue_struct *wq = pwq->wq;
1876
1877 lockdep_assert_held(&wq_mayday_lock);
1878
1879 if (!wq->rescuer)
1880 return;
1881
1882 /* mayday mayday mayday */
1883 if (list_empty(&pwq->mayday_node)) {
1884 /*
1885 * If @pwq is for an unbound wq, its base ref may be put at
1886 * any time due to an attribute change. Pin @pwq until the
1887 * rescuer is done with it.
1888 */
1889 get_pwq(pwq);
1890 list_add_tail(&pwq->mayday_node, &wq->maydays);
1891 wake_up_process(wq->rescuer->task);
1892 }
1893 }
1894
1895 static void pool_mayday_timeout(unsigned long __pool)
1896 {
1897 struct worker_pool *pool = (void *)__pool;
1898 struct work_struct *work;
1899
1900 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1901 spin_lock(&pool->lock);
1902
1903 if (need_to_create_worker(pool)) {
1904 /*
1905 * We've been trying to create a new worker but
1906 * haven't been successful. We might be hitting an
1907 * allocation deadlock. Send distress signals to
1908 * rescuers.
1909 */
1910 list_for_each_entry(work, &pool->worklist, entry)
1911 send_mayday(work);
1912 }
1913
1914 spin_unlock(&pool->lock);
1915 spin_unlock_irq(&wq_mayday_lock);
1916
1917 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1918 }
1919
1920 /**
1921 * maybe_create_worker - create a new worker if necessary
1922 * @pool: pool to create a new worker for
1923 *
1924 * Create a new worker for @pool if necessary. @pool is guaranteed to
1925 * have at least one idle worker on return from this function. If
1926 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1927 * sent to all rescuers with works scheduled on @pool to resolve
1928 * possible allocation deadlock.
1929 *
1930 * On return, need_to_create_worker() is guaranteed to be %false and
1931 * may_start_working() %true.
1932 *
1933 * LOCKING:
1934 * spin_lock_irq(pool->lock) which may be released and regrabbed
1935 * multiple times. Does GFP_KERNEL allocations. Called only from
1936 * manager.
1937 *
1938 * RETURNS:
1939 * %false if no action was taken and pool->lock stayed locked, %true
1940 * otherwise.
1941 */
1942 static bool maybe_create_worker(struct worker_pool *pool)
1943 __releases(&pool->lock)
1944 __acquires(&pool->lock)
1945 {
1946 if (!need_to_create_worker(pool))
1947 return false;
1948 restart:
1949 spin_unlock_irq(&pool->lock);
1950
1951 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1952 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1953
1954 while (true) {
1955 struct worker *worker;
1956
1957 worker = create_worker(pool);
1958 if (worker) {
1959 del_timer_sync(&pool->mayday_timer);
1960 spin_lock_irq(&pool->lock);
1961 start_worker(worker);
1962 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1963 goto restart;
1964 return true;
1965 }
1966
1967 if (!need_to_create_worker(pool))
1968 break;
1969
1970 __set_current_state(TASK_INTERRUPTIBLE);
1971 schedule_timeout(CREATE_COOLDOWN);
1972
1973 if (!need_to_create_worker(pool))
1974 break;
1975 }
1976
1977 del_timer_sync(&pool->mayday_timer);
1978 spin_lock_irq(&pool->lock);
1979 if (need_to_create_worker(pool))
1980 goto restart;
1981 return true;
1982 }
1983
1984 /**
1985 * maybe_destroy_worker - destroy workers which have been idle for a while
1986 * @pool: pool to destroy workers for
1987 *
1988 * Destroy @pool workers which have been idle for longer than
1989 * IDLE_WORKER_TIMEOUT.
1990 *
1991 * LOCKING:
1992 * spin_lock_irq(pool->lock) which may be released and regrabbed
1993 * multiple times. Called only from manager.
1994 *
1995 * RETURNS:
1996 * %false if no action was taken and pool->lock stayed locked, %true
1997 * otherwise.
1998 */
1999 static bool maybe_destroy_workers(struct worker_pool *pool)
2000 {
2001 bool ret = false;
2002
2003 while (too_many_workers(pool)) {
2004 struct worker *worker;
2005 unsigned long expires;
2006
2007 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2008 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2009
2010 if (time_before(jiffies, expires)) {
2011 mod_timer(&pool->idle_timer, expires);
2012 break;
2013 }
2014
2015 destroy_worker(worker);
2016 ret = true;
2017 }
2018
2019 return ret;
2020 }
2021
2022 /**
2023 * manage_workers - manage worker pool
2024 * @worker: self
2025 *
2026 * Assume the manager role and manage the worker pool @worker belongs
2027 * to. At any given time, there can be only zero or one manager per
2028 * pool. The exclusion is handled automatically by this function.
2029 *
2030 * The caller can safely start processing works on false return. On
2031 * true return, it's guaranteed that need_to_create_worker() is false
2032 * and may_start_working() is true.
2033 *
2034 * CONTEXT:
2035 * spin_lock_irq(pool->lock) which may be released and regrabbed
2036 * multiple times. Does GFP_KERNEL allocations.
2037 *
2038 * RETURNS:
2039 * spin_lock_irq(pool->lock) which may be released and regrabbed
2040 * multiple times. Does GFP_KERNEL allocations.
2041 */
2042 static bool manage_workers(struct worker *worker)
2043 {
2044 struct worker_pool *pool = worker->pool;
2045 bool ret = false;
2046
2047 /*
2048 * Managership is governed by two mutexes - manager_arb and
2049 * manager_mutex. manager_arb handles arbitration of manager role.
2050 * Anyone who successfully grabs manager_arb wins the arbitration
2051 * and becomes the manager. mutex_trylock() on pool->manager_arb
2052 * failure while holding pool->lock reliably indicates that someone
2053 * else is managing the pool and the worker which failed trylock
2054 * can proceed to executing work items. This means that anyone
2055 * grabbing manager_arb is responsible for actually performing
2056 * manager duties. If manager_arb is grabbed and released without
2057 * actual management, the pool may stall indefinitely.
2058 *
2059 * manager_mutex is used for exclusion of actual management
2060 * operations. The holder of manager_mutex can be sure that none
2061 * of management operations, including creation and destruction of
2062 * workers, won't take place until the mutex is released. Because
2063 * manager_mutex doesn't interfere with manager role arbitration,
2064 * it is guaranteed that the pool's management, while may be
2065 * delayed, won't be disturbed by someone else grabbing
2066 * manager_mutex.
2067 */
2068 if (!mutex_trylock(&pool->manager_arb))
2069 return ret;
2070
2071 /*
2072 * With manager arbitration won, manager_mutex would be free in
2073 * most cases. trylock first without dropping @pool->lock.
2074 */
2075 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2076 spin_unlock_irq(&pool->lock);
2077 mutex_lock(&pool->manager_mutex);
2078 spin_lock_irq(&pool->lock);
2079 ret = true;
2080 }
2081
2082 pool->flags &= ~POOL_MANAGE_WORKERS;
2083
2084 /*
2085 * Destroy and then create so that may_start_working() is true
2086 * on return.
2087 */
2088 ret |= maybe_destroy_workers(pool);
2089 ret |= maybe_create_worker(pool);
2090
2091 mutex_unlock(&pool->manager_mutex);
2092 mutex_unlock(&pool->manager_arb);
2093 return ret;
2094 }
2095
2096 /**
2097 * process_one_work - process single work
2098 * @worker: self
2099 * @work: work to process
2100 *
2101 * Process @work. This function contains all the logics necessary to
2102 * process a single work including synchronization against and
2103 * interaction with other workers on the same cpu, queueing and
2104 * flushing. As long as context requirement is met, any worker can
2105 * call this function to process a work.
2106 *
2107 * CONTEXT:
2108 * spin_lock_irq(pool->lock) which is released and regrabbed.
2109 */
2110 static void process_one_work(struct worker *worker, struct work_struct *work)
2111 __releases(&pool->lock)
2112 __acquires(&pool->lock)
2113 {
2114 struct pool_workqueue *pwq = get_work_pwq(work);
2115 struct worker_pool *pool = worker->pool;
2116 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2117 int work_color;
2118 struct worker *collision;
2119 #ifdef CONFIG_LOCKDEP
2120 /*
2121 * It is permissible to free the struct work_struct from
2122 * inside the function that is called from it, this we need to
2123 * take into account for lockdep too. To avoid bogus "held
2124 * lock freed" warnings as well as problems when looking into
2125 * work->lockdep_map, make a copy and use that here.
2126 */
2127 struct lockdep_map lockdep_map;
2128
2129 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2130 #endif
2131 /*
2132 * Ensure we're on the correct CPU. DISASSOCIATED test is
2133 * necessary to avoid spurious warnings from rescuers servicing the
2134 * unbound or a disassociated pool.
2135 */
2136 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2137 !(pool->flags & POOL_DISASSOCIATED) &&
2138 raw_smp_processor_id() != pool->cpu);
2139
2140 /*
2141 * A single work shouldn't be executed concurrently by
2142 * multiple workers on a single cpu. Check whether anyone is
2143 * already processing the work. If so, defer the work to the
2144 * currently executing one.
2145 */
2146 collision = find_worker_executing_work(pool, work);
2147 if (unlikely(collision)) {
2148 move_linked_works(work, &collision->scheduled, NULL);
2149 return;
2150 }
2151
2152 /* claim and dequeue */
2153 debug_work_deactivate(work);
2154 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2155 worker->current_work = work;
2156 worker->current_func = work->func;
2157 worker->current_pwq = pwq;
2158 work_color = get_work_color(work);
2159
2160 list_del_init(&work->entry);
2161
2162 /*
2163 * CPU intensive works don't participate in concurrency
2164 * management. They're the scheduler's responsibility.
2165 */
2166 if (unlikely(cpu_intensive))
2167 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2168
2169 /*
2170 * Unbound pool isn't concurrency managed and work items should be
2171 * executed ASAP. Wake up another worker if necessary.
2172 */
2173 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2174 wake_up_worker(pool);
2175
2176 /*
2177 * Record the last pool and clear PENDING which should be the last
2178 * update to @work. Also, do this inside @pool->lock so that
2179 * PENDING and queued state changes happen together while IRQ is
2180 * disabled.
2181 */
2182 set_work_pool_and_clear_pending(work, pool->id);
2183
2184 spin_unlock_irq(&pool->lock);
2185
2186 lock_map_acquire_read(&pwq->wq->lockdep_map);
2187 lock_map_acquire(&lockdep_map);
2188 trace_workqueue_execute_start(work);
2189 worker->current_func(work);
2190 /*
2191 * While we must be careful to not use "work" after this, the trace
2192 * point will only record its address.
2193 */
2194 trace_workqueue_execute_end(work);
2195 lock_map_release(&lockdep_map);
2196 lock_map_release(&pwq->wq->lockdep_map);
2197
2198 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2199 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2200 " last function: %pf\n",
2201 current->comm, preempt_count(), task_pid_nr(current),
2202 worker->current_func);
2203 debug_show_held_locks(current);
2204 dump_stack();
2205 }
2206
2207 /*
2208 * The following prevents a kworker from hogging CPU on !PREEMPT
2209 * kernels, where a requeueing work item waiting for something to
2210 * happen could deadlock with stop_machine as such work item could
2211 * indefinitely requeue itself while all other CPUs are trapped in
2212 * stop_machine.
2213 */
2214 cond_resched();
2215
2216 spin_lock_irq(&pool->lock);
2217
2218 /* clear cpu intensive status */
2219 if (unlikely(cpu_intensive))
2220 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2221
2222 /* we're done with it, release */
2223 hash_del(&worker->hentry);
2224 worker->current_work = NULL;
2225 worker->current_func = NULL;
2226 worker->current_pwq = NULL;
2227 worker->desc_valid = false;
2228 pwq_dec_nr_in_flight(pwq, work_color);
2229 }
2230
2231 /**
2232 * process_scheduled_works - process scheduled works
2233 * @worker: self
2234 *
2235 * Process all scheduled works. Please note that the scheduled list
2236 * may change while processing a work, so this function repeatedly
2237 * fetches a work from the top and executes it.
2238 *
2239 * CONTEXT:
2240 * spin_lock_irq(pool->lock) which may be released and regrabbed
2241 * multiple times.
2242 */
2243 static void process_scheduled_works(struct worker *worker)
2244 {
2245 while (!list_empty(&worker->scheduled)) {
2246 struct work_struct *work = list_first_entry(&worker->scheduled,
2247 struct work_struct, entry);
2248 process_one_work(worker, work);
2249 }
2250 }
2251
2252 /**
2253 * worker_thread - the worker thread function
2254 * @__worker: self
2255 *
2256 * The worker thread function. All workers belong to a worker_pool -
2257 * either a per-cpu one or dynamic unbound one. These workers process all
2258 * work items regardless of their specific target workqueue. The only
2259 * exception is work items which belong to workqueues with a rescuer which
2260 * will be explained in rescuer_thread().
2261 */
2262 static int worker_thread(void *__worker)
2263 {
2264 struct worker *worker = __worker;
2265 struct worker_pool *pool = worker->pool;
2266
2267 /* tell the scheduler that this is a workqueue worker */
2268 worker->task->flags |= PF_WQ_WORKER;
2269 woke_up:
2270 spin_lock_irq(&pool->lock);
2271
2272 /* am I supposed to die? */
2273 if (unlikely(worker->flags & WORKER_DIE)) {
2274 spin_unlock_irq(&pool->lock);
2275 WARN_ON_ONCE(!list_empty(&worker->entry));
2276 worker->task->flags &= ~PF_WQ_WORKER;
2277 return 0;
2278 }
2279
2280 worker_leave_idle(worker);
2281 recheck:
2282 /* no more worker necessary? */
2283 if (!need_more_worker(pool))
2284 goto sleep;
2285
2286 /* do we need to manage? */
2287 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2288 goto recheck;
2289
2290 /*
2291 * ->scheduled list can only be filled while a worker is
2292 * preparing to process a work or actually processing it.
2293 * Make sure nobody diddled with it while I was sleeping.
2294 */
2295 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2296
2297 /*
2298 * Finish PREP stage. We're guaranteed to have at least one idle
2299 * worker or that someone else has already assumed the manager
2300 * role. This is where @worker starts participating in concurrency
2301 * management if applicable and concurrency management is restored
2302 * after being rebound. See rebind_workers() for details.
2303 */
2304 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2305
2306 do {
2307 struct work_struct *work =
2308 list_first_entry(&pool->worklist,
2309 struct work_struct, entry);
2310
2311 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2312 /* optimization path, not strictly necessary */
2313 process_one_work(worker, work);
2314 if (unlikely(!list_empty(&worker->scheduled)))
2315 process_scheduled_works(worker);
2316 } else {
2317 move_linked_works(work, &worker->scheduled, NULL);
2318 process_scheduled_works(worker);
2319 }
2320 } while (keep_working(pool));
2321
2322 worker_set_flags(worker, WORKER_PREP, false);
2323 sleep:
2324 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2325 goto recheck;
2326
2327 /*
2328 * pool->lock is held and there's no work to process and no need to
2329 * manage, sleep. Workers are woken up only while holding
2330 * pool->lock or from local cpu, so setting the current state
2331 * before releasing pool->lock is enough to prevent losing any
2332 * event.
2333 */
2334 worker_enter_idle(worker);
2335 __set_current_state(TASK_INTERRUPTIBLE);
2336 spin_unlock_irq(&pool->lock);
2337 schedule();
2338 goto woke_up;
2339 }
2340
2341 /**
2342 * rescuer_thread - the rescuer thread function
2343 * @__rescuer: self
2344 *
2345 * Workqueue rescuer thread function. There's one rescuer for each
2346 * workqueue which has WQ_MEM_RECLAIM set.
2347 *
2348 * Regular work processing on a pool may block trying to create a new
2349 * worker which uses GFP_KERNEL allocation which has slight chance of
2350 * developing into deadlock if some works currently on the same queue
2351 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2352 * the problem rescuer solves.
2353 *
2354 * When such condition is possible, the pool summons rescuers of all
2355 * workqueues which have works queued on the pool and let them process
2356 * those works so that forward progress can be guaranteed.
2357 *
2358 * This should happen rarely.
2359 */
2360 static int rescuer_thread(void *__rescuer)
2361 {
2362 struct worker *rescuer = __rescuer;
2363 struct workqueue_struct *wq = rescuer->rescue_wq;
2364 struct list_head *scheduled = &rescuer->scheduled;
2365 bool should_stop;
2366
2367 set_user_nice(current, RESCUER_NICE_LEVEL);
2368
2369 /*
2370 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2371 * doesn't participate in concurrency management.
2372 */
2373 rescuer->task->flags |= PF_WQ_WORKER;
2374 repeat:
2375 set_current_state(TASK_INTERRUPTIBLE);
2376
2377 /*
2378 * By the time the rescuer is requested to stop, the workqueue
2379 * shouldn't have any work pending, but @wq->maydays may still have
2380 * pwq(s) queued. This can happen by non-rescuer workers consuming
2381 * all the work items before the rescuer got to them. Go through
2382 * @wq->maydays processing before acting on should_stop so that the
2383 * list is always empty on exit.
2384 */
2385 should_stop = kthread_should_stop();
2386
2387 /* see whether any pwq is asking for help */
2388 spin_lock_irq(&wq_mayday_lock);
2389
2390 while (!list_empty(&wq->maydays)) {
2391 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2392 struct pool_workqueue, mayday_node);
2393 struct worker_pool *pool = pwq->pool;
2394 struct work_struct *work, *n;
2395
2396 __set_current_state(TASK_RUNNING);
2397 list_del_init(&pwq->mayday_node);
2398
2399 spin_unlock_irq(&wq_mayday_lock);
2400
2401 /* migrate to the target cpu if possible */
2402 worker_maybe_bind_and_lock(pool);
2403 rescuer->pool = pool;
2404
2405 /*
2406 * Slurp in all works issued via this workqueue and
2407 * process'em.
2408 */
2409 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2410 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2411 if (get_work_pwq(work) == pwq)
2412 move_linked_works(work, scheduled, &n);
2413
2414 process_scheduled_works(rescuer);
2415
2416 /*
2417 * Put the reference grabbed by send_mayday(). @pool won't
2418 * go away while we're holding its lock.
2419 */
2420 put_pwq(pwq);
2421
2422 /*
2423 * Leave this pool. If keep_working() is %true, notify a
2424 * regular worker; otherwise, we end up with 0 concurrency
2425 * and stalling the execution.
2426 */
2427 if (keep_working(pool))
2428 wake_up_worker(pool);
2429
2430 rescuer->pool = NULL;
2431 spin_unlock(&pool->lock);
2432 spin_lock(&wq_mayday_lock);
2433 }
2434
2435 spin_unlock_irq(&wq_mayday_lock);
2436
2437 if (should_stop) {
2438 __set_current_state(TASK_RUNNING);
2439 rescuer->task->flags &= ~PF_WQ_WORKER;
2440 return 0;
2441 }
2442
2443 /* rescuers should never participate in concurrency management */
2444 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2445 schedule();
2446 goto repeat;
2447 }
2448
2449 struct wq_barrier {
2450 struct work_struct work;
2451 struct completion done;
2452 };
2453
2454 static void wq_barrier_func(struct work_struct *work)
2455 {
2456 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2457 complete(&barr->done);
2458 }
2459
2460 /**
2461 * insert_wq_barrier - insert a barrier work
2462 * @pwq: pwq to insert barrier into
2463 * @barr: wq_barrier to insert
2464 * @target: target work to attach @barr to
2465 * @worker: worker currently executing @target, NULL if @target is not executing
2466 *
2467 * @barr is linked to @target such that @barr is completed only after
2468 * @target finishes execution. Please note that the ordering
2469 * guarantee is observed only with respect to @target and on the local
2470 * cpu.
2471 *
2472 * Currently, a queued barrier can't be canceled. This is because
2473 * try_to_grab_pending() can't determine whether the work to be
2474 * grabbed is at the head of the queue and thus can't clear LINKED
2475 * flag of the previous work while there must be a valid next work
2476 * after a work with LINKED flag set.
2477 *
2478 * Note that when @worker is non-NULL, @target may be modified
2479 * underneath us, so we can't reliably determine pwq from @target.
2480 *
2481 * CONTEXT:
2482 * spin_lock_irq(pool->lock).
2483 */
2484 static void insert_wq_barrier(struct pool_workqueue *pwq,
2485 struct wq_barrier *barr,
2486 struct work_struct *target, struct worker *worker)
2487 {
2488 struct list_head *head;
2489 unsigned int linked = 0;
2490
2491 /*
2492 * debugobject calls are safe here even with pool->lock locked
2493 * as we know for sure that this will not trigger any of the
2494 * checks and call back into the fixup functions where we
2495 * might deadlock.
2496 */
2497 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2498 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2499 init_completion(&barr->done);
2500
2501 /*
2502 * If @target is currently being executed, schedule the
2503 * barrier to the worker; otherwise, put it after @target.
2504 */
2505 if (worker)
2506 head = worker->scheduled.next;
2507 else {
2508 unsigned long *bits = work_data_bits(target);
2509
2510 head = target->entry.next;
2511 /* there can already be other linked works, inherit and set */
2512 linked = *bits & WORK_STRUCT_LINKED;
2513 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2514 }
2515
2516 debug_work_activate(&barr->work);
2517 insert_work(pwq, &barr->work, head,
2518 work_color_to_flags(WORK_NO_COLOR) | linked);
2519 }
2520
2521 /**
2522 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2523 * @wq: workqueue being flushed
2524 * @flush_color: new flush color, < 0 for no-op
2525 * @work_color: new work color, < 0 for no-op
2526 *
2527 * Prepare pwqs for workqueue flushing.
2528 *
2529 * If @flush_color is non-negative, flush_color on all pwqs should be
2530 * -1. If no pwq has in-flight commands at the specified color, all
2531 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2532 * has in flight commands, its pwq->flush_color is set to
2533 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2534 * wakeup logic is armed and %true is returned.
2535 *
2536 * The caller should have initialized @wq->first_flusher prior to
2537 * calling this function with non-negative @flush_color. If
2538 * @flush_color is negative, no flush color update is done and %false
2539 * is returned.
2540 *
2541 * If @work_color is non-negative, all pwqs should have the same
2542 * work_color which is previous to @work_color and all will be
2543 * advanced to @work_color.
2544 *
2545 * CONTEXT:
2546 * mutex_lock(wq->mutex).
2547 *
2548 * RETURNS:
2549 * %true if @flush_color >= 0 and there's something to flush. %false
2550 * otherwise.
2551 */
2552 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2553 int flush_color, int work_color)
2554 {
2555 bool wait = false;
2556 struct pool_workqueue *pwq;
2557
2558 if (flush_color >= 0) {
2559 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2560 atomic_set(&wq->nr_pwqs_to_flush, 1);
2561 }
2562
2563 for_each_pwq(pwq, wq) {
2564 struct worker_pool *pool = pwq->pool;
2565
2566 spin_lock_irq(&pool->lock);
2567
2568 if (flush_color >= 0) {
2569 WARN_ON_ONCE(pwq->flush_color != -1);
2570
2571 if (pwq->nr_in_flight[flush_color]) {
2572 pwq->flush_color = flush_color;
2573 atomic_inc(&wq->nr_pwqs_to_flush);
2574 wait = true;
2575 }
2576 }
2577
2578 if (work_color >= 0) {
2579 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2580 pwq->work_color = work_color;
2581 }
2582
2583 spin_unlock_irq(&pool->lock);
2584 }
2585
2586 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2587 complete(&wq->first_flusher->done);
2588
2589 return wait;
2590 }
2591
2592 /**
2593 * flush_workqueue - ensure that any scheduled work has run to completion.
2594 * @wq: workqueue to flush
2595 *
2596 * This function sleeps until all work items which were queued on entry
2597 * have finished execution, but it is not livelocked by new incoming ones.
2598 */
2599 void flush_workqueue(struct workqueue_struct *wq)
2600 {
2601 struct wq_flusher this_flusher = {
2602 .list = LIST_HEAD_INIT(this_flusher.list),
2603 .flush_color = -1,
2604 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2605 };
2606 int next_color;
2607
2608 lock_map_acquire(&wq->lockdep_map);
2609 lock_map_release(&wq->lockdep_map);
2610
2611 mutex_lock(&wq->mutex);
2612
2613 /*
2614 * Start-to-wait phase
2615 */
2616 next_color = work_next_color(wq->work_color);
2617
2618 if (next_color != wq->flush_color) {
2619 /*
2620 * Color space is not full. The current work_color
2621 * becomes our flush_color and work_color is advanced
2622 * by one.
2623 */
2624 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2625 this_flusher.flush_color = wq->work_color;
2626 wq->work_color = next_color;
2627
2628 if (!wq->first_flusher) {
2629 /* no flush in progress, become the first flusher */
2630 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2631
2632 wq->first_flusher = &this_flusher;
2633
2634 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2635 wq->work_color)) {
2636 /* nothing to flush, done */
2637 wq->flush_color = next_color;
2638 wq->first_flusher = NULL;
2639 goto out_unlock;
2640 }
2641 } else {
2642 /* wait in queue */
2643 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2644 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2645 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2646 }
2647 } else {
2648 /*
2649 * Oops, color space is full, wait on overflow queue.
2650 * The next flush completion will assign us
2651 * flush_color and transfer to flusher_queue.
2652 */
2653 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2654 }
2655
2656 mutex_unlock(&wq->mutex);
2657
2658 wait_for_completion(&this_flusher.done);
2659
2660 /*
2661 * Wake-up-and-cascade phase
2662 *
2663 * First flushers are responsible for cascading flushes and
2664 * handling overflow. Non-first flushers can simply return.
2665 */
2666 if (wq->first_flusher != &this_flusher)
2667 return;
2668
2669 mutex_lock(&wq->mutex);
2670
2671 /* we might have raced, check again with mutex held */
2672 if (wq->first_flusher != &this_flusher)
2673 goto out_unlock;
2674
2675 wq->first_flusher = NULL;
2676
2677 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2678 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2679
2680 while (true) {
2681 struct wq_flusher *next, *tmp;
2682
2683 /* complete all the flushers sharing the current flush color */
2684 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2685 if (next->flush_color != wq->flush_color)
2686 break;
2687 list_del_init(&next->list);
2688 complete(&next->done);
2689 }
2690
2691 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2692 wq->flush_color != work_next_color(wq->work_color));
2693
2694 /* this flush_color is finished, advance by one */
2695 wq->flush_color = work_next_color(wq->flush_color);
2696
2697 /* one color has been freed, handle overflow queue */
2698 if (!list_empty(&wq->flusher_overflow)) {
2699 /*
2700 * Assign the same color to all overflowed
2701 * flushers, advance work_color and append to
2702 * flusher_queue. This is the start-to-wait
2703 * phase for these overflowed flushers.
2704 */
2705 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2706 tmp->flush_color = wq->work_color;
2707
2708 wq->work_color = work_next_color(wq->work_color);
2709
2710 list_splice_tail_init(&wq->flusher_overflow,
2711 &wq->flusher_queue);
2712 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2713 }
2714
2715 if (list_empty(&wq->flusher_queue)) {
2716 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2717 break;
2718 }
2719
2720 /*
2721 * Need to flush more colors. Make the next flusher
2722 * the new first flusher and arm pwqs.
2723 */
2724 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2725 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2726
2727 list_del_init(&next->list);
2728 wq->first_flusher = next;
2729
2730 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2731 break;
2732
2733 /*
2734 * Meh... this color is already done, clear first
2735 * flusher and repeat cascading.
2736 */
2737 wq->first_flusher = NULL;
2738 }
2739
2740 out_unlock:
2741 mutex_unlock(&wq->mutex);
2742 }
2743 EXPORT_SYMBOL_GPL(flush_workqueue);
2744
2745 /**
2746 * drain_workqueue - drain a workqueue
2747 * @wq: workqueue to drain
2748 *
2749 * Wait until the workqueue becomes empty. While draining is in progress,
2750 * only chain queueing is allowed. IOW, only currently pending or running
2751 * work items on @wq can queue further work items on it. @wq is flushed
2752 * repeatedly until it becomes empty. The number of flushing is detemined
2753 * by the depth of chaining and should be relatively short. Whine if it
2754 * takes too long.
2755 */
2756 void drain_workqueue(struct workqueue_struct *wq)
2757 {
2758 unsigned int flush_cnt = 0;
2759 struct pool_workqueue *pwq;
2760
2761 /*
2762 * __queue_work() needs to test whether there are drainers, is much
2763 * hotter than drain_workqueue() and already looks at @wq->flags.
2764 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2765 */
2766 mutex_lock(&wq->mutex);
2767 if (!wq->nr_drainers++)
2768 wq->flags |= __WQ_DRAINING;
2769 mutex_unlock(&wq->mutex);
2770 reflush:
2771 flush_workqueue(wq);
2772
2773 mutex_lock(&wq->mutex);
2774
2775 for_each_pwq(pwq, wq) {
2776 bool drained;
2777
2778 spin_lock_irq(&pwq->pool->lock);
2779 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2780 spin_unlock_irq(&pwq->pool->lock);
2781
2782 if (drained)
2783 continue;
2784
2785 if (++flush_cnt == 10 ||
2786 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2787 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2788 wq->name, flush_cnt);
2789
2790 mutex_unlock(&wq->mutex);
2791 goto reflush;
2792 }
2793
2794 if (!--wq->nr_drainers)
2795 wq->flags &= ~__WQ_DRAINING;
2796 mutex_unlock(&wq->mutex);
2797 }
2798 EXPORT_SYMBOL_GPL(drain_workqueue);
2799
2800 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2801 {
2802 struct worker *worker = NULL;
2803 struct worker_pool *pool;
2804 struct pool_workqueue *pwq;
2805
2806 might_sleep();
2807
2808 local_irq_disable();
2809 pool = get_work_pool(work);
2810 if (!pool) {
2811 local_irq_enable();
2812 return false;
2813 }
2814
2815 spin_lock(&pool->lock);
2816 /* see the comment in try_to_grab_pending() with the same code */
2817 pwq = get_work_pwq(work);
2818 if (pwq) {
2819 if (unlikely(pwq->pool != pool))
2820 goto already_gone;
2821 } else {
2822 worker = find_worker_executing_work(pool, work);
2823 if (!worker)
2824 goto already_gone;
2825 pwq = worker->current_pwq;
2826 }
2827
2828 insert_wq_barrier(pwq, barr, work, worker);
2829 spin_unlock_irq(&pool->lock);
2830
2831 /*
2832 * If @max_active is 1 or rescuer is in use, flushing another work
2833 * item on the same workqueue may lead to deadlock. Make sure the
2834 * flusher is not running on the same workqueue by verifying write
2835 * access.
2836 */
2837 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2838 lock_map_acquire(&pwq->wq->lockdep_map);
2839 else
2840 lock_map_acquire_read(&pwq->wq->lockdep_map);
2841 lock_map_release(&pwq->wq->lockdep_map);
2842
2843 return true;
2844 already_gone:
2845 spin_unlock_irq(&pool->lock);
2846 return false;
2847 }
2848
2849 /**
2850 * flush_work - wait for a work to finish executing the last queueing instance
2851 * @work: the work to flush
2852 *
2853 * Wait until @work has finished execution. @work is guaranteed to be idle
2854 * on return if it hasn't been requeued since flush started.
2855 *
2856 * RETURNS:
2857 * %true if flush_work() waited for the work to finish execution,
2858 * %false if it was already idle.
2859 */
2860 bool flush_work(struct work_struct *work)
2861 {
2862 struct wq_barrier barr;
2863
2864 lock_map_acquire(&work->lockdep_map);
2865 lock_map_release(&work->lockdep_map);
2866
2867 if (start_flush_work(work, &barr)) {
2868 wait_for_completion(&barr.done);
2869 destroy_work_on_stack(&barr.work);
2870 return true;
2871 } else {
2872 return false;
2873 }
2874 }
2875 EXPORT_SYMBOL_GPL(flush_work);
2876
2877 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2878 {
2879 unsigned long flags;
2880 int ret;
2881
2882 do {
2883 ret = try_to_grab_pending(work, is_dwork, &flags);
2884 /*
2885 * If someone else is canceling, wait for the same event it
2886 * would be waiting for before retrying.
2887 */
2888 if (unlikely(ret == -ENOENT))
2889 flush_work(work);
2890 } while (unlikely(ret < 0));
2891
2892 /* tell other tasks trying to grab @work to back off */
2893 mark_work_canceling(work);
2894 local_irq_restore(flags);
2895
2896 flush_work(work);
2897 clear_work_data(work);
2898 return ret;
2899 }
2900
2901 /**
2902 * cancel_work_sync - cancel a work and wait for it to finish
2903 * @work: the work to cancel
2904 *
2905 * Cancel @work and wait for its execution to finish. This function
2906 * can be used even if the work re-queues itself or migrates to
2907 * another workqueue. On return from this function, @work is
2908 * guaranteed to be not pending or executing on any CPU.
2909 *
2910 * cancel_work_sync(&delayed_work->work) must not be used for
2911 * delayed_work's. Use cancel_delayed_work_sync() instead.
2912 *
2913 * The caller must ensure that the workqueue on which @work was last
2914 * queued can't be destroyed before this function returns.
2915 *
2916 * RETURNS:
2917 * %true if @work was pending, %false otherwise.
2918 */
2919 bool cancel_work_sync(struct work_struct *work)
2920 {
2921 return __cancel_work_timer(work, false);
2922 }
2923 EXPORT_SYMBOL_GPL(cancel_work_sync);
2924
2925 /**
2926 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2927 * @dwork: the delayed work to flush
2928 *
2929 * Delayed timer is cancelled and the pending work is queued for
2930 * immediate execution. Like flush_work(), this function only
2931 * considers the last queueing instance of @dwork.
2932 *
2933 * RETURNS:
2934 * %true if flush_work() waited for the work to finish execution,
2935 * %false if it was already idle.
2936 */
2937 bool flush_delayed_work(struct delayed_work *dwork)
2938 {
2939 local_irq_disable();
2940 if (del_timer_sync(&dwork->timer))
2941 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2942 local_irq_enable();
2943 return flush_work(&dwork->work);
2944 }
2945 EXPORT_SYMBOL(flush_delayed_work);
2946
2947 /**
2948 * cancel_delayed_work - cancel a delayed work
2949 * @dwork: delayed_work to cancel
2950 *
2951 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2952 * and canceled; %false if wasn't pending. Note that the work callback
2953 * function may still be running on return, unless it returns %true and the
2954 * work doesn't re-arm itself. Explicitly flush or use
2955 * cancel_delayed_work_sync() to wait on it.
2956 *
2957 * This function is safe to call from any context including IRQ handler.
2958 */
2959 bool cancel_delayed_work(struct delayed_work *dwork)
2960 {
2961 unsigned long flags;
2962 int ret;
2963
2964 do {
2965 ret = try_to_grab_pending(&dwork->work, true, &flags);
2966 } while (unlikely(ret == -EAGAIN));
2967
2968 if (unlikely(ret < 0))
2969 return false;
2970
2971 set_work_pool_and_clear_pending(&dwork->work,
2972 get_work_pool_id(&dwork->work));
2973 local_irq_restore(flags);
2974 return ret;
2975 }
2976 EXPORT_SYMBOL(cancel_delayed_work);
2977
2978 /**
2979 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2980 * @dwork: the delayed work cancel
2981 *
2982 * This is cancel_work_sync() for delayed works.
2983 *
2984 * RETURNS:
2985 * %true if @dwork was pending, %false otherwise.
2986 */
2987 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2988 {
2989 return __cancel_work_timer(&dwork->work, true);
2990 }
2991 EXPORT_SYMBOL(cancel_delayed_work_sync);
2992
2993 /**
2994 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2995 * @func: the function to call
2996 *
2997 * schedule_on_each_cpu() executes @func on each online CPU using the
2998 * system workqueue and blocks until all CPUs have completed.
2999 * schedule_on_each_cpu() is very slow.
3000 *
3001 * RETURNS:
3002 * 0 on success, -errno on failure.
3003 */
3004 int schedule_on_each_cpu(work_func_t func)
3005 {
3006 int cpu;
3007 struct work_struct __percpu *works;
3008
3009 works = alloc_percpu(struct work_struct);
3010 if (!works)
3011 return -ENOMEM;
3012
3013 get_online_cpus();
3014
3015 for_each_online_cpu(cpu) {
3016 struct work_struct *work = per_cpu_ptr(works, cpu);
3017
3018 INIT_WORK(work, func);
3019 schedule_work_on(cpu, work);
3020 }
3021
3022 for_each_online_cpu(cpu)
3023 flush_work(per_cpu_ptr(works, cpu));
3024
3025 put_online_cpus();
3026 free_percpu(works);
3027 return 0;
3028 }
3029
3030 /**
3031 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3032 *
3033 * Forces execution of the kernel-global workqueue and blocks until its
3034 * completion.
3035 *
3036 * Think twice before calling this function! It's very easy to get into
3037 * trouble if you don't take great care. Either of the following situations
3038 * will lead to deadlock:
3039 *
3040 * One of the work items currently on the workqueue needs to acquire
3041 * a lock held by your code or its caller.
3042 *
3043 * Your code is running in the context of a work routine.
3044 *
3045 * They will be detected by lockdep when they occur, but the first might not
3046 * occur very often. It depends on what work items are on the workqueue and
3047 * what locks they need, which you have no control over.
3048 *
3049 * In most situations flushing the entire workqueue is overkill; you merely
3050 * need to know that a particular work item isn't queued and isn't running.
3051 * In such cases you should use cancel_delayed_work_sync() or
3052 * cancel_work_sync() instead.
3053 */
3054 void flush_scheduled_work(void)
3055 {
3056 flush_workqueue(system_wq);
3057 }
3058 EXPORT_SYMBOL(flush_scheduled_work);
3059
3060 /**
3061 * execute_in_process_context - reliably execute the routine with user context
3062 * @fn: the function to execute
3063 * @ew: guaranteed storage for the execute work structure (must
3064 * be available when the work executes)
3065 *
3066 * Executes the function immediately if process context is available,
3067 * otherwise schedules the function for delayed execution.
3068 *
3069 * Returns: 0 - function was executed
3070 * 1 - function was scheduled for execution
3071 */
3072 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3073 {
3074 if (!in_interrupt()) {
3075 fn(&ew->work);
3076 return 0;
3077 }
3078
3079 INIT_WORK(&ew->work, fn);
3080 schedule_work(&ew->work);
3081
3082 return 1;
3083 }
3084 EXPORT_SYMBOL_GPL(execute_in_process_context);
3085
3086 #ifdef CONFIG_SYSFS
3087 /*
3088 * Workqueues with WQ_SYSFS flag set is visible to userland via
3089 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3090 * following attributes.
3091 *
3092 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3093 * max_active RW int : maximum number of in-flight work items
3094 *
3095 * Unbound workqueues have the following extra attributes.
3096 *
3097 * id RO int : the associated pool ID
3098 * nice RW int : nice value of the workers
3099 * cpumask RW mask : bitmask of allowed CPUs for the workers
3100 */
3101 struct wq_device {
3102 struct workqueue_struct *wq;
3103 struct device dev;
3104 };
3105
3106 static struct workqueue_struct *dev_to_wq(struct device *dev)
3107 {
3108 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3109
3110 return wq_dev->wq;
3111 }
3112
3113 static ssize_t wq_per_cpu_show(struct device *dev,
3114 struct device_attribute *attr, char *buf)
3115 {
3116 struct workqueue_struct *wq = dev_to_wq(dev);
3117
3118 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3119 }
3120
3121 static ssize_t wq_max_active_show(struct device *dev,
3122 struct device_attribute *attr, char *buf)
3123 {
3124 struct workqueue_struct *wq = dev_to_wq(dev);
3125
3126 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3127 }
3128
3129 static ssize_t wq_max_active_store(struct device *dev,
3130 struct device_attribute *attr,
3131 const char *buf, size_t count)
3132 {
3133 struct workqueue_struct *wq = dev_to_wq(dev);
3134 int val;
3135
3136 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3137 return -EINVAL;
3138
3139 workqueue_set_max_active(wq, val);
3140 return count;
3141 }
3142
3143 static struct device_attribute wq_sysfs_attrs[] = {
3144 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3145 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3146 __ATTR_NULL,
3147 };
3148
3149 static ssize_t wq_pool_ids_show(struct device *dev,
3150 struct device_attribute *attr, char *buf)
3151 {
3152 struct workqueue_struct *wq = dev_to_wq(dev);
3153 const char *delim = "";
3154 int node, written = 0;
3155
3156 rcu_read_lock_sched();
3157 for_each_node(node) {
3158 written += scnprintf(buf + written, PAGE_SIZE - written,
3159 "%s%d:%d", delim, node,
3160 unbound_pwq_by_node(wq, node)->pool->id);
3161 delim = " ";
3162 }
3163 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3164 rcu_read_unlock_sched();
3165
3166 return written;
3167 }
3168
3169 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3170 char *buf)
3171 {
3172 struct workqueue_struct *wq = dev_to_wq(dev);
3173 int written;
3174
3175 mutex_lock(&wq->mutex);
3176 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3177 mutex_unlock(&wq->mutex);
3178
3179 return written;
3180 }
3181
3182 /* prepare workqueue_attrs for sysfs store operations */
3183 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3184 {
3185 struct workqueue_attrs *attrs;
3186
3187 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3188 if (!attrs)
3189 return NULL;
3190
3191 mutex_lock(&wq->mutex);
3192 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3193 mutex_unlock(&wq->mutex);
3194 return attrs;
3195 }
3196
3197 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3198 const char *buf, size_t count)
3199 {
3200 struct workqueue_struct *wq = dev_to_wq(dev);
3201 struct workqueue_attrs *attrs;
3202 int ret;
3203
3204 attrs = wq_sysfs_prep_attrs(wq);
3205 if (!attrs)
3206 return -ENOMEM;
3207
3208 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3209 attrs->nice >= -20 && attrs->nice <= 19)
3210 ret = apply_workqueue_attrs(wq, attrs);
3211 else
3212 ret = -EINVAL;
3213
3214 free_workqueue_attrs(attrs);
3215 return ret ?: count;
3216 }
3217
3218 static ssize_t wq_cpumask_show(struct device *dev,
3219 struct device_attribute *attr, char *buf)
3220 {
3221 struct workqueue_struct *wq = dev_to_wq(dev);
3222 int written;
3223
3224 mutex_lock(&wq->mutex);
3225 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3226 mutex_unlock(&wq->mutex);
3227
3228 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3229 return written;
3230 }
3231
3232 static ssize_t wq_cpumask_store(struct device *dev,
3233 struct device_attribute *attr,
3234 const char *buf, size_t count)
3235 {
3236 struct workqueue_struct *wq = dev_to_wq(dev);
3237 struct workqueue_attrs *attrs;
3238 int ret;
3239
3240 attrs = wq_sysfs_prep_attrs(wq);
3241 if (!attrs)
3242 return -ENOMEM;
3243
3244 ret = cpumask_parse(buf, attrs->cpumask);
3245 if (!ret)
3246 ret = apply_workqueue_attrs(wq, attrs);
3247
3248 free_workqueue_attrs(attrs);
3249 return ret ?: count;
3250 }
3251
3252 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3253 char *buf)
3254 {
3255 struct workqueue_struct *wq = dev_to_wq(dev);
3256 int written;
3257
3258 mutex_lock(&wq->mutex);
3259 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3260 !wq->unbound_attrs->no_numa);
3261 mutex_unlock(&wq->mutex);
3262
3263 return written;
3264 }
3265
3266 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3267 const char *buf, size_t count)
3268 {
3269 struct workqueue_struct *wq = dev_to_wq(dev);
3270 struct workqueue_attrs *attrs;
3271 int v, ret;
3272
3273 attrs = wq_sysfs_prep_attrs(wq);
3274 if (!attrs)
3275 return -ENOMEM;
3276
3277 ret = -EINVAL;
3278 if (sscanf(buf, "%d", &v) == 1) {
3279 attrs->no_numa = !v;
3280 ret = apply_workqueue_attrs(wq, attrs);
3281 }
3282
3283 free_workqueue_attrs(attrs);
3284 return ret ?: count;
3285 }
3286
3287 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3288 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3289 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3290 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3291 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3292 __ATTR_NULL,
3293 };
3294
3295 static struct bus_type wq_subsys = {
3296 .name = "workqueue",
3297 .dev_attrs = wq_sysfs_attrs,
3298 };
3299
3300 static int __init wq_sysfs_init(void)
3301 {
3302 return subsys_virtual_register(&wq_subsys, NULL);
3303 }
3304 core_initcall(wq_sysfs_init);
3305
3306 static void wq_device_release(struct device *dev)
3307 {
3308 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3309
3310 kfree(wq_dev);
3311 }
3312
3313 /**
3314 * workqueue_sysfs_register - make a workqueue visible in sysfs
3315 * @wq: the workqueue to register
3316 *
3317 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3318 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3319 * which is the preferred method.
3320 *
3321 * Workqueue user should use this function directly iff it wants to apply
3322 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3323 * apply_workqueue_attrs() may race against userland updating the
3324 * attributes.
3325 *
3326 * Returns 0 on success, -errno on failure.
3327 */
3328 int workqueue_sysfs_register(struct workqueue_struct *wq)
3329 {
3330 struct wq_device *wq_dev;
3331 int ret;
3332
3333 /*
3334 * Adjusting max_active or creating new pwqs by applyting
3335 * attributes breaks ordering guarantee. Disallow exposing ordered
3336 * workqueues.
3337 */
3338 if (WARN_ON(wq->flags & __WQ_ORDERED))
3339 return -EINVAL;
3340
3341 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3342 if (!wq_dev)
3343 return -ENOMEM;
3344
3345 wq_dev->wq = wq;
3346 wq_dev->dev.bus = &wq_subsys;
3347 wq_dev->dev.init_name = wq->name;
3348 wq_dev->dev.release = wq_device_release;
3349
3350 /*
3351 * unbound_attrs are created separately. Suppress uevent until
3352 * everything is ready.
3353 */
3354 dev_set_uevent_suppress(&wq_dev->dev, true);
3355
3356 ret = device_register(&wq_dev->dev);
3357 if (ret) {
3358 kfree(wq_dev);
3359 wq->wq_dev = NULL;
3360 return ret;
3361 }
3362
3363 if (wq->flags & WQ_UNBOUND) {
3364 struct device_attribute *attr;
3365
3366 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3367 ret = device_create_file(&wq_dev->dev, attr);
3368 if (ret) {
3369 device_unregister(&wq_dev->dev);
3370 wq->wq_dev = NULL;
3371 return ret;
3372 }
3373 }
3374 }
3375
3376 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3377 return 0;
3378 }
3379
3380 /**
3381 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3382 * @wq: the workqueue to unregister
3383 *
3384 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3385 */
3386 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3387 {
3388 struct wq_device *wq_dev = wq->wq_dev;
3389
3390 if (!wq->wq_dev)
3391 return;
3392
3393 wq->wq_dev = NULL;
3394 device_unregister(&wq_dev->dev);
3395 }
3396 #else /* CONFIG_SYSFS */
3397 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3398 #endif /* CONFIG_SYSFS */
3399
3400 /**
3401 * free_workqueue_attrs - free a workqueue_attrs
3402 * @attrs: workqueue_attrs to free
3403 *
3404 * Undo alloc_workqueue_attrs().
3405 */
3406 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3407 {
3408 if (attrs) {
3409 free_cpumask_var(attrs->cpumask);
3410 kfree(attrs);
3411 }
3412 }
3413
3414 /**
3415 * alloc_workqueue_attrs - allocate a workqueue_attrs
3416 * @gfp_mask: allocation mask to use
3417 *
3418 * Allocate a new workqueue_attrs, initialize with default settings and
3419 * return it. Returns NULL on failure.
3420 */
3421 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3422 {
3423 struct workqueue_attrs *attrs;
3424
3425 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3426 if (!attrs)
3427 goto fail;
3428 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3429 goto fail;
3430
3431 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3432 return attrs;
3433 fail:
3434 free_workqueue_attrs(attrs);
3435 return NULL;
3436 }
3437
3438 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3439 const struct workqueue_attrs *from)
3440 {
3441 to->nice = from->nice;
3442 cpumask_copy(to->cpumask, from->cpumask);
3443 /*
3444 * Unlike hash and equality test, this function doesn't ignore
3445 * ->no_numa as it is used for both pool and wq attrs. Instead,
3446 * get_unbound_pool() explicitly clears ->no_numa after copying.
3447 */
3448 to->no_numa = from->no_numa;
3449 }
3450
3451 /* hash value of the content of @attr */
3452 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3453 {
3454 u32 hash = 0;
3455
3456 hash = jhash_1word(attrs->nice, hash);
3457 hash = jhash(cpumask_bits(attrs->cpumask),
3458 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3459 return hash;
3460 }
3461
3462 /* content equality test */
3463 static bool wqattrs_equal(const struct workqueue_attrs *a,
3464 const struct workqueue_attrs *b)
3465 {
3466 if (a->nice != b->nice)
3467 return false;
3468 if (!cpumask_equal(a->cpumask, b->cpumask))
3469 return false;
3470 return true;
3471 }
3472
3473 /**
3474 * init_worker_pool - initialize a newly zalloc'd worker_pool
3475 * @pool: worker_pool to initialize
3476 *
3477 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3478 * Returns 0 on success, -errno on failure. Even on failure, all fields
3479 * inside @pool proper are initialized and put_unbound_pool() can be called
3480 * on @pool safely to release it.
3481 */
3482 static int init_worker_pool(struct worker_pool *pool)
3483 {
3484 spin_lock_init(&pool->lock);
3485 pool->id = -1;
3486 pool->cpu = -1;
3487 pool->node = NUMA_NO_NODE;
3488 pool->flags |= POOL_DISASSOCIATED;
3489 INIT_LIST_HEAD(&pool->worklist);
3490 INIT_LIST_HEAD(&pool->idle_list);
3491 hash_init(pool->busy_hash);
3492
3493 init_timer_deferrable(&pool->idle_timer);
3494 pool->idle_timer.function = idle_worker_timeout;
3495 pool->idle_timer.data = (unsigned long)pool;
3496
3497 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3498 (unsigned long)pool);
3499
3500 mutex_init(&pool->manager_arb);
3501 mutex_init(&pool->manager_mutex);
3502 idr_init(&pool->worker_idr);
3503
3504 INIT_HLIST_NODE(&pool->hash_node);
3505 pool->refcnt = 1;
3506
3507 /* shouldn't fail above this point */
3508 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3509 if (!pool->attrs)
3510 return -ENOMEM;
3511 return 0;
3512 }
3513
3514 static void rcu_free_pool(struct rcu_head *rcu)
3515 {
3516 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3517
3518 idr_destroy(&pool->worker_idr);
3519 free_workqueue_attrs(pool->attrs);
3520 kfree(pool);
3521 }
3522
3523 /**
3524 * put_unbound_pool - put a worker_pool
3525 * @pool: worker_pool to put
3526 *
3527 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3528 * safe manner. get_unbound_pool() calls this function on its failure path
3529 * and this function should be able to release pools which went through,
3530 * successfully or not, init_worker_pool().
3531 *
3532 * Should be called with wq_pool_mutex held.
3533 */
3534 static void put_unbound_pool(struct worker_pool *pool)
3535 {
3536 struct worker *worker;
3537
3538 lockdep_assert_held(&wq_pool_mutex);
3539
3540 if (--pool->refcnt)
3541 return;
3542
3543 /* sanity checks */
3544 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3545 WARN_ON(!list_empty(&pool->worklist)))
3546 return;
3547
3548 /* release id and unhash */
3549 if (pool->id >= 0)
3550 idr_remove(&worker_pool_idr, pool->id);
3551 hash_del(&pool->hash_node);
3552
3553 /*
3554 * Become the manager and destroy all workers. Grabbing
3555 * manager_arb prevents @pool's workers from blocking on
3556 * manager_mutex.
3557 */
3558 mutex_lock(&pool->manager_arb);
3559 mutex_lock(&pool->manager_mutex);
3560 spin_lock_irq(&pool->lock);
3561
3562 while ((worker = first_worker(pool)))
3563 destroy_worker(worker);
3564 WARN_ON(pool->nr_workers || pool->nr_idle);
3565
3566 spin_unlock_irq(&pool->lock);
3567 mutex_unlock(&pool->manager_mutex);
3568 mutex_unlock(&pool->manager_arb);
3569
3570 /* shut down the timers */
3571 del_timer_sync(&pool->idle_timer);
3572 del_timer_sync(&pool->mayday_timer);
3573
3574 /* sched-RCU protected to allow dereferences from get_work_pool() */
3575 call_rcu_sched(&pool->rcu, rcu_free_pool);
3576 }
3577
3578 /**
3579 * get_unbound_pool - get a worker_pool with the specified attributes
3580 * @attrs: the attributes of the worker_pool to get
3581 *
3582 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3583 * reference count and return it. If there already is a matching
3584 * worker_pool, it will be used; otherwise, this function attempts to
3585 * create a new one. On failure, returns NULL.
3586 *
3587 * Should be called with wq_pool_mutex held.
3588 */
3589 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3590 {
3591 u32 hash = wqattrs_hash(attrs);
3592 struct worker_pool *pool;
3593 int node;
3594
3595 lockdep_assert_held(&wq_pool_mutex);
3596
3597 /* do we already have a matching pool? */
3598 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3599 if (wqattrs_equal(pool->attrs, attrs)) {
3600 pool->refcnt++;
3601 goto out_unlock;
3602 }
3603 }
3604
3605 /* nope, create a new one */
3606 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3607 if (!pool || init_worker_pool(pool) < 0)
3608 goto fail;
3609
3610 if (workqueue_freezing)
3611 pool->flags |= POOL_FREEZING;
3612
3613 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3614 copy_workqueue_attrs(pool->attrs, attrs);
3615
3616 /*
3617 * no_numa isn't a worker_pool attribute, always clear it. See
3618 * 'struct workqueue_attrs' comments for detail.
3619 */
3620 pool->attrs->no_numa = false;
3621
3622 /* if cpumask is contained inside a NUMA node, we belong to that node */
3623 if (wq_numa_enabled) {
3624 for_each_node(node) {
3625 if (cpumask_subset(pool->attrs->cpumask,
3626 wq_numa_possible_cpumask[node])) {
3627 pool->node = node;
3628 break;
3629 }
3630 }
3631 }
3632
3633 if (worker_pool_assign_id(pool) < 0)
3634 goto fail;
3635
3636 /* create and start the initial worker */
3637 if (create_and_start_worker(pool) < 0)
3638 goto fail;
3639
3640 /* install */
3641 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3642 out_unlock:
3643 return pool;
3644 fail:
3645 if (pool)
3646 put_unbound_pool(pool);
3647 return NULL;
3648 }
3649
3650 static void rcu_free_pwq(struct rcu_head *rcu)
3651 {
3652 kmem_cache_free(pwq_cache,
3653 container_of(rcu, struct pool_workqueue, rcu));
3654 }
3655
3656 /*
3657 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3658 * and needs to be destroyed.
3659 */
3660 static void pwq_unbound_release_workfn(struct work_struct *work)
3661 {
3662 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3663 unbound_release_work);
3664 struct workqueue_struct *wq = pwq->wq;
3665 struct worker_pool *pool = pwq->pool;
3666 bool is_last;
3667
3668 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3669 return;
3670
3671 /*
3672 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
3673 * necessary on release but do it anyway. It's easier to verify
3674 * and consistent with the linking path.
3675 */
3676 mutex_lock(&wq->mutex);
3677 list_del_rcu(&pwq->pwqs_node);
3678 is_last = list_empty(&wq->pwqs);
3679 mutex_unlock(&wq->mutex);
3680
3681 mutex_lock(&wq_pool_mutex);
3682 put_unbound_pool(pool);
3683 mutex_unlock(&wq_pool_mutex);
3684
3685 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3686
3687 /*
3688 * If we're the last pwq going away, @wq is already dead and no one
3689 * is gonna access it anymore. Free it.
3690 */
3691 if (is_last) {
3692 free_workqueue_attrs(wq->unbound_attrs);
3693 kfree(wq);
3694 }
3695 }
3696
3697 /**
3698 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3699 * @pwq: target pool_workqueue
3700 *
3701 * If @pwq isn't freezing, set @pwq->max_active to the associated
3702 * workqueue's saved_max_active and activate delayed work items
3703 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3704 */
3705 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3706 {
3707 struct workqueue_struct *wq = pwq->wq;
3708 bool freezable = wq->flags & WQ_FREEZABLE;
3709
3710 /* for @wq->saved_max_active */
3711 lockdep_assert_held(&wq->mutex);
3712
3713 /* fast exit for non-freezable wqs */
3714 if (!freezable && pwq->max_active == wq->saved_max_active)
3715 return;
3716
3717 spin_lock_irq(&pwq->pool->lock);
3718
3719 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3720 pwq->max_active = wq->saved_max_active;
3721
3722 while (!list_empty(&pwq->delayed_works) &&
3723 pwq->nr_active < pwq->max_active)
3724 pwq_activate_first_delayed(pwq);
3725
3726 /*
3727 * Need to kick a worker after thawed or an unbound wq's
3728 * max_active is bumped. It's a slow path. Do it always.
3729 */
3730 wake_up_worker(pwq->pool);
3731 } else {
3732 pwq->max_active = 0;
3733 }
3734
3735 spin_unlock_irq(&pwq->pool->lock);
3736 }
3737
3738 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3739 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3740 struct worker_pool *pool)
3741 {
3742 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3743
3744 memset(pwq, 0, sizeof(*pwq));
3745
3746 pwq->pool = pool;
3747 pwq->wq = wq;
3748 pwq->flush_color = -1;
3749 pwq->refcnt = 1;
3750 INIT_LIST_HEAD(&pwq->delayed_works);
3751 INIT_LIST_HEAD(&pwq->pwqs_node);
3752 INIT_LIST_HEAD(&pwq->mayday_node);
3753 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3754 }
3755
3756 /* sync @pwq with the current state of its associated wq and link it */
3757 static void link_pwq(struct pool_workqueue *pwq)
3758 {
3759 struct workqueue_struct *wq = pwq->wq;
3760
3761 lockdep_assert_held(&wq->mutex);
3762
3763 /* may be called multiple times, ignore if already linked */
3764 if (!list_empty(&pwq->pwqs_node))
3765 return;
3766
3767 /*
3768 * Set the matching work_color. This is synchronized with
3769 * wq->mutex to avoid confusing flush_workqueue().
3770 */
3771 pwq->work_color = wq->work_color;
3772
3773 /* sync max_active to the current setting */
3774 pwq_adjust_max_active(pwq);
3775
3776 /* link in @pwq */
3777 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3778 }
3779
3780 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3781 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3782 const struct workqueue_attrs *attrs)
3783 {
3784 struct worker_pool *pool;
3785 struct pool_workqueue *pwq;
3786
3787 lockdep_assert_held(&wq_pool_mutex);
3788
3789 pool = get_unbound_pool(attrs);
3790 if (!pool)
3791 return NULL;
3792
3793 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3794 if (!pwq) {
3795 put_unbound_pool(pool);
3796 return NULL;
3797 }
3798
3799 init_pwq(pwq, wq, pool);
3800 return pwq;
3801 }
3802
3803 /* undo alloc_unbound_pwq(), used only in the error path */
3804 static void free_unbound_pwq(struct pool_workqueue *pwq)
3805 {
3806 lockdep_assert_held(&wq_pool_mutex);
3807
3808 if (pwq) {
3809 put_unbound_pool(pwq->pool);
3810 kmem_cache_free(pwq_cache, pwq);
3811 }
3812 }
3813
3814 /**
3815 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3816 * @attrs: the wq_attrs of interest
3817 * @node: the target NUMA node
3818 * @cpu_going_down: if >= 0, the CPU to consider as offline
3819 * @cpumask: outarg, the resulting cpumask
3820 *
3821 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3822 * @cpu_going_down is >= 0, that cpu is considered offline during
3823 * calculation. The result is stored in @cpumask. This function returns
3824 * %true if the resulting @cpumask is different from @attrs->cpumask,
3825 * %false if equal.
3826 *
3827 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3828 * enabled and @node has online CPUs requested by @attrs, the returned
3829 * cpumask is the intersection of the possible CPUs of @node and
3830 * @attrs->cpumask.
3831 *
3832 * The caller is responsible for ensuring that the cpumask of @node stays
3833 * stable.
3834 */
3835 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3836 int cpu_going_down, cpumask_t *cpumask)
3837 {
3838 if (!wq_numa_enabled || attrs->no_numa)
3839 goto use_dfl;
3840
3841 /* does @node have any online CPUs @attrs wants? */
3842 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3843 if (cpu_going_down >= 0)
3844 cpumask_clear_cpu(cpu_going_down, cpumask);
3845
3846 if (cpumask_empty(cpumask))
3847 goto use_dfl;
3848
3849 /* yeap, return possible CPUs in @node that @attrs wants */
3850 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3851 return !cpumask_equal(cpumask, attrs->cpumask);
3852
3853 use_dfl:
3854 cpumask_copy(cpumask, attrs->cpumask);
3855 return false;
3856 }
3857
3858 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3859 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3860 int node,
3861 struct pool_workqueue *pwq)
3862 {
3863 struct pool_workqueue *old_pwq;
3864
3865 lockdep_assert_held(&wq->mutex);
3866
3867 /* link_pwq() can handle duplicate calls */
3868 link_pwq(pwq);
3869
3870 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3871 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3872 return old_pwq;
3873 }
3874
3875 /**
3876 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3877 * @wq: the target workqueue
3878 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3879 *
3880 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3881 * machines, this function maps a separate pwq to each NUMA node with
3882 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3883 * NUMA node it was issued on. Older pwqs are released as in-flight work
3884 * items finish. Note that a work item which repeatedly requeues itself
3885 * back-to-back will stay on its current pwq.
3886 *
3887 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3888 * failure.
3889 */
3890 int apply_workqueue_attrs(struct workqueue_struct *wq,
3891 const struct workqueue_attrs *attrs)
3892 {
3893 struct workqueue_attrs *new_attrs, *tmp_attrs;
3894 struct pool_workqueue **pwq_tbl, *dfl_pwq;
3895 int node, ret;
3896
3897 /* only unbound workqueues can change attributes */
3898 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3899 return -EINVAL;
3900
3901 /* creating multiple pwqs breaks ordering guarantee */
3902 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3903 return -EINVAL;
3904
3905 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3906 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3907 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3908 if (!pwq_tbl || !new_attrs || !tmp_attrs)
3909 goto enomem;
3910
3911 /* make a copy of @attrs and sanitize it */
3912 copy_workqueue_attrs(new_attrs, attrs);
3913 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3914
3915 /*
3916 * We may create multiple pwqs with differing cpumasks. Make a
3917 * copy of @new_attrs which will be modified and used to obtain
3918 * pools.
3919 */
3920 copy_workqueue_attrs(tmp_attrs, new_attrs);
3921
3922 /*
3923 * CPUs should stay stable across pwq creations and installations.
3924 * Pin CPUs, determine the target cpumask for each node and create
3925 * pwqs accordingly.
3926 */
3927 get_online_cpus();
3928
3929 mutex_lock(&wq_pool_mutex);
3930
3931 /*
3932 * If something goes wrong during CPU up/down, we'll fall back to
3933 * the default pwq covering whole @attrs->cpumask. Always create
3934 * it even if we don't use it immediately.
3935 */
3936 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3937 if (!dfl_pwq)
3938 goto enomem_pwq;
3939
3940 for_each_node(node) {
3941 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3942 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3943 if (!pwq_tbl[node])
3944 goto enomem_pwq;
3945 } else {
3946 dfl_pwq->refcnt++;
3947 pwq_tbl[node] = dfl_pwq;
3948 }
3949 }
3950
3951 mutex_unlock(&wq_pool_mutex);
3952
3953 /* all pwqs have been created successfully, let's install'em */
3954 mutex_lock(&wq->mutex);
3955
3956 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3957
3958 /* save the previous pwq and install the new one */
3959 for_each_node(node)
3960 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3961
3962 /* @dfl_pwq might not have been used, ensure it's linked */
3963 link_pwq(dfl_pwq);
3964 swap(wq->dfl_pwq, dfl_pwq);
3965
3966 mutex_unlock(&wq->mutex);
3967
3968 /* put the old pwqs */
3969 for_each_node(node)
3970 put_pwq_unlocked(pwq_tbl[node]);
3971 put_pwq_unlocked(dfl_pwq);
3972
3973 put_online_cpus();
3974 ret = 0;
3975 /* fall through */
3976 out_free:
3977 free_workqueue_attrs(tmp_attrs);
3978 free_workqueue_attrs(new_attrs);
3979 kfree(pwq_tbl);
3980 return ret;
3981
3982 enomem_pwq:
3983 free_unbound_pwq(dfl_pwq);
3984 for_each_node(node)
3985 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3986 free_unbound_pwq(pwq_tbl[node]);
3987 mutex_unlock(&wq_pool_mutex);
3988 put_online_cpus();
3989 enomem:
3990 ret = -ENOMEM;
3991 goto out_free;
3992 }
3993
3994 /**
3995 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3996 * @wq: the target workqueue
3997 * @cpu: the CPU coming up or going down
3998 * @online: whether @cpu is coming up or going down
3999 *
4000 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4001 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4002 * @wq accordingly.
4003 *
4004 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4005 * falls back to @wq->dfl_pwq which may not be optimal but is always
4006 * correct.
4007 *
4008 * Note that when the last allowed CPU of a NUMA node goes offline for a
4009 * workqueue with a cpumask spanning multiple nodes, the workers which were
4010 * already executing the work items for the workqueue will lose their CPU
4011 * affinity and may execute on any CPU. This is similar to how per-cpu
4012 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4013 * affinity, it's the user's responsibility to flush the work item from
4014 * CPU_DOWN_PREPARE.
4015 */
4016 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4017 bool online)
4018 {
4019 int node = cpu_to_node(cpu);
4020 int cpu_off = online ? -1 : cpu;
4021 struct pool_workqueue *old_pwq = NULL, *pwq;
4022 struct workqueue_attrs *target_attrs;
4023 cpumask_t *cpumask;
4024
4025 lockdep_assert_held(&wq_pool_mutex);
4026
4027 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4028 return;
4029
4030 /*
4031 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4032 * Let's use a preallocated one. The following buf is protected by
4033 * CPU hotplug exclusion.
4034 */
4035 target_attrs = wq_update_unbound_numa_attrs_buf;
4036 cpumask = target_attrs->cpumask;
4037
4038 mutex_lock(&wq->mutex);
4039 if (wq->unbound_attrs->no_numa)
4040 goto out_unlock;
4041
4042 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4043 pwq = unbound_pwq_by_node(wq, node);
4044
4045 /*
4046 * Let's determine what needs to be done. If the target cpumask is
4047 * different from wq's, we need to compare it to @pwq's and create
4048 * a new one if they don't match. If the target cpumask equals
4049 * wq's, the default pwq should be used. If @pwq is already the
4050 * default one, nothing to do; otherwise, install the default one.
4051 */
4052 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4053 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4054 goto out_unlock;
4055 } else {
4056 if (pwq == wq->dfl_pwq)
4057 goto out_unlock;
4058 else
4059 goto use_dfl_pwq;
4060 }
4061
4062 mutex_unlock(&wq->mutex);
4063
4064 /* create a new pwq */
4065 pwq = alloc_unbound_pwq(wq, target_attrs);
4066 if (!pwq) {
4067 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4068 wq->name);
4069 mutex_lock(&wq->mutex);
4070 goto use_dfl_pwq;
4071 }
4072
4073 /*
4074 * Install the new pwq. As this function is called only from CPU
4075 * hotplug callbacks and applying a new attrs is wrapped with
4076 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4077 * inbetween.
4078 */
4079 mutex_lock(&wq->mutex);
4080 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4081 goto out_unlock;
4082
4083 use_dfl_pwq:
4084 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4085 get_pwq(wq->dfl_pwq);
4086 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4087 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4088 out_unlock:
4089 mutex_unlock(&wq->mutex);
4090 put_pwq_unlocked(old_pwq);
4091 }
4092
4093 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4094 {
4095 bool highpri = wq->flags & WQ_HIGHPRI;
4096 int cpu, ret;
4097
4098 if (!(wq->flags & WQ_UNBOUND)) {
4099 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4100 if (!wq->cpu_pwqs)
4101 return -ENOMEM;
4102
4103 for_each_possible_cpu(cpu) {
4104 struct pool_workqueue *pwq =
4105 per_cpu_ptr(wq->cpu_pwqs, cpu);
4106 struct worker_pool *cpu_pools =
4107 per_cpu(cpu_worker_pools, cpu);
4108
4109 init_pwq(pwq, wq, &cpu_pools[highpri]);
4110
4111 mutex_lock(&wq->mutex);
4112 link_pwq(pwq);
4113 mutex_unlock(&wq->mutex);
4114 }
4115 return 0;
4116 } else if (wq->flags & __WQ_ORDERED) {
4117 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4118 /* there should only be single pwq for ordering guarantee */
4119 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4120 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4121 "ordering guarantee broken for workqueue %s\n", wq->name);
4122 return ret;
4123 } else {
4124 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4125 }
4126 }
4127
4128 static int wq_clamp_max_active(int max_active, unsigned int flags,
4129 const char *name)
4130 {
4131 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4132
4133 if (max_active < 1 || max_active > lim)
4134 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4135 max_active, name, 1, lim);
4136
4137 return clamp_val(max_active, 1, lim);
4138 }
4139
4140 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4141 unsigned int flags,
4142 int max_active,
4143 struct lock_class_key *key,
4144 const char *lock_name, ...)
4145 {
4146 size_t tbl_size = 0;
4147 va_list args;
4148 struct workqueue_struct *wq;
4149 struct pool_workqueue *pwq;
4150
4151 /* allocate wq and format name */
4152 if (flags & WQ_UNBOUND)
4153 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4154
4155 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4156 if (!wq)
4157 return NULL;
4158
4159 if (flags & WQ_UNBOUND) {
4160 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4161 if (!wq->unbound_attrs)
4162 goto err_free_wq;
4163 }
4164
4165 va_start(args, lock_name);
4166 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4167 va_end(args);
4168
4169 max_active = max_active ?: WQ_DFL_ACTIVE;
4170 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4171
4172 /* init wq */
4173 wq->flags = flags;
4174 wq->saved_max_active = max_active;
4175 mutex_init(&wq->mutex);
4176 atomic_set(&wq->nr_pwqs_to_flush, 0);
4177 INIT_LIST_HEAD(&wq->pwqs);
4178 INIT_LIST_HEAD(&wq->flusher_queue);
4179 INIT_LIST_HEAD(&wq->flusher_overflow);
4180 INIT_LIST_HEAD(&wq->maydays);
4181
4182 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4183 INIT_LIST_HEAD(&wq->list);
4184
4185 if (alloc_and_link_pwqs(wq) < 0)
4186 goto err_free_wq;
4187
4188 /*
4189 * Workqueues which may be used during memory reclaim should
4190 * have a rescuer to guarantee forward progress.
4191 */
4192 if (flags & WQ_MEM_RECLAIM) {
4193 struct worker *rescuer;
4194
4195 rescuer = alloc_worker();
4196 if (!rescuer)
4197 goto err_destroy;
4198
4199 rescuer->rescue_wq = wq;
4200 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4201 wq->name);
4202 if (IS_ERR(rescuer->task)) {
4203 kfree(rescuer);
4204 goto err_destroy;
4205 }
4206
4207 wq->rescuer = rescuer;
4208 rescuer->task->flags |= PF_NO_SETAFFINITY;
4209 wake_up_process(rescuer->task);
4210 }
4211
4212 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4213 goto err_destroy;
4214
4215 /*
4216 * wq_pool_mutex protects global freeze state and workqueues list.
4217 * Grab it, adjust max_active and add the new @wq to workqueues
4218 * list.
4219 */
4220 mutex_lock(&wq_pool_mutex);
4221
4222 mutex_lock(&wq->mutex);
4223 for_each_pwq(pwq, wq)
4224 pwq_adjust_max_active(pwq);
4225 mutex_unlock(&wq->mutex);
4226
4227 list_add(&wq->list, &workqueues);
4228
4229 mutex_unlock(&wq_pool_mutex);
4230
4231 return wq;
4232
4233 err_free_wq:
4234 free_workqueue_attrs(wq->unbound_attrs);
4235 kfree(wq);
4236 return NULL;
4237 err_destroy:
4238 destroy_workqueue(wq);
4239 return NULL;
4240 }
4241 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4242
4243 /**
4244 * destroy_workqueue - safely terminate a workqueue
4245 * @wq: target workqueue
4246 *
4247 * Safely destroy a workqueue. All work currently pending will be done first.
4248 */
4249 void destroy_workqueue(struct workqueue_struct *wq)
4250 {
4251 struct pool_workqueue *pwq;
4252 int node;
4253
4254 /* drain it before proceeding with destruction */
4255 drain_workqueue(wq);
4256
4257 /* sanity checks */
4258 mutex_lock(&wq->mutex);
4259 for_each_pwq(pwq, wq) {
4260 int i;
4261
4262 for (i = 0; i < WORK_NR_COLORS; i++) {
4263 if (WARN_ON(pwq->nr_in_flight[i])) {
4264 mutex_unlock(&wq->mutex);
4265 return;
4266 }
4267 }
4268
4269 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4270 WARN_ON(pwq->nr_active) ||
4271 WARN_ON(!list_empty(&pwq->delayed_works))) {
4272 mutex_unlock(&wq->mutex);
4273 return;
4274 }
4275 }
4276 mutex_unlock(&wq->mutex);
4277
4278 /*
4279 * wq list is used to freeze wq, remove from list after
4280 * flushing is complete in case freeze races us.
4281 */
4282 mutex_lock(&wq_pool_mutex);
4283 list_del_init(&wq->list);
4284 mutex_unlock(&wq_pool_mutex);
4285
4286 workqueue_sysfs_unregister(wq);
4287
4288 if (wq->rescuer) {
4289 kthread_stop(wq->rescuer->task);
4290 kfree(wq->rescuer);
4291 wq->rescuer = NULL;
4292 }
4293
4294 if (!(wq->flags & WQ_UNBOUND)) {
4295 /*
4296 * The base ref is never dropped on per-cpu pwqs. Directly
4297 * free the pwqs and wq.
4298 */
4299 free_percpu(wq->cpu_pwqs);
4300 kfree(wq);
4301 } else {
4302 /*
4303 * We're the sole accessor of @wq at this point. Directly
4304 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4305 * @wq will be freed when the last pwq is released.
4306 */
4307 for_each_node(node) {
4308 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4309 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4310 put_pwq_unlocked(pwq);
4311 }
4312
4313 /*
4314 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4315 * put. Don't access it afterwards.
4316 */
4317 pwq = wq->dfl_pwq;
4318 wq->dfl_pwq = NULL;
4319 put_pwq_unlocked(pwq);
4320 }
4321 }
4322 EXPORT_SYMBOL_GPL(destroy_workqueue);
4323
4324 /**
4325 * workqueue_set_max_active - adjust max_active of a workqueue
4326 * @wq: target workqueue
4327 * @max_active: new max_active value.
4328 *
4329 * Set max_active of @wq to @max_active.
4330 *
4331 * CONTEXT:
4332 * Don't call from IRQ context.
4333 */
4334 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4335 {
4336 struct pool_workqueue *pwq;
4337
4338 /* disallow meddling with max_active for ordered workqueues */
4339 if (WARN_ON(wq->flags & __WQ_ORDERED))
4340 return;
4341
4342 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4343
4344 mutex_lock(&wq->mutex);
4345
4346 wq->saved_max_active = max_active;
4347
4348 for_each_pwq(pwq, wq)
4349 pwq_adjust_max_active(pwq);
4350
4351 mutex_unlock(&wq->mutex);
4352 }
4353 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4354
4355 /**
4356 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4357 *
4358 * Determine whether %current is a workqueue rescuer. Can be used from
4359 * work functions to determine whether it's being run off the rescuer task.
4360 */
4361 bool current_is_workqueue_rescuer(void)
4362 {
4363 struct worker *worker = current_wq_worker();
4364
4365 return worker && worker->rescue_wq;
4366 }
4367
4368 /**
4369 * workqueue_congested - test whether a workqueue is congested
4370 * @cpu: CPU in question
4371 * @wq: target workqueue
4372 *
4373 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4374 * no synchronization around this function and the test result is
4375 * unreliable and only useful as advisory hints or for debugging.
4376 *
4377 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4378 * Note that both per-cpu and unbound workqueues may be associated with
4379 * multiple pool_workqueues which have separate congested states. A
4380 * workqueue being congested on one CPU doesn't mean the workqueue is also
4381 * contested on other CPUs / NUMA nodes.
4382 *
4383 * RETURNS:
4384 * %true if congested, %false otherwise.
4385 */
4386 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4387 {
4388 struct pool_workqueue *pwq;
4389 bool ret;
4390
4391 rcu_read_lock_sched();
4392
4393 if (cpu == WORK_CPU_UNBOUND)
4394 cpu = smp_processor_id();
4395
4396 if (!(wq->flags & WQ_UNBOUND))
4397 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4398 else
4399 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4400
4401 ret = !list_empty(&pwq->delayed_works);
4402 rcu_read_unlock_sched();
4403
4404 return ret;
4405 }
4406 EXPORT_SYMBOL_GPL(workqueue_congested);
4407
4408 /**
4409 * work_busy - test whether a work is currently pending or running
4410 * @work: the work to be tested
4411 *
4412 * Test whether @work is currently pending or running. There is no
4413 * synchronization around this function and the test result is
4414 * unreliable and only useful as advisory hints or for debugging.
4415 *
4416 * RETURNS:
4417 * OR'd bitmask of WORK_BUSY_* bits.
4418 */
4419 unsigned int work_busy(struct work_struct *work)
4420 {
4421 struct worker_pool *pool;
4422 unsigned long flags;
4423 unsigned int ret = 0;
4424
4425 if (work_pending(work))
4426 ret |= WORK_BUSY_PENDING;
4427
4428 local_irq_save(flags);
4429 pool = get_work_pool(work);
4430 if (pool) {
4431 spin_lock(&pool->lock);
4432 if (find_worker_executing_work(pool, work))
4433 ret |= WORK_BUSY_RUNNING;
4434 spin_unlock(&pool->lock);
4435 }
4436 local_irq_restore(flags);
4437
4438 return ret;
4439 }
4440 EXPORT_SYMBOL_GPL(work_busy);
4441
4442 /**
4443 * set_worker_desc - set description for the current work item
4444 * @fmt: printf-style format string
4445 * @...: arguments for the format string
4446 *
4447 * This function can be called by a running work function to describe what
4448 * the work item is about. If the worker task gets dumped, this
4449 * information will be printed out together to help debugging. The
4450 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4451 */
4452 void set_worker_desc(const char *fmt, ...)
4453 {
4454 struct worker *worker = current_wq_worker();
4455 va_list args;
4456
4457 if (worker) {
4458 va_start(args, fmt);
4459 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4460 va_end(args);
4461 worker->desc_valid = true;
4462 }
4463 }
4464
4465 /**
4466 * print_worker_info - print out worker information and description
4467 * @log_lvl: the log level to use when printing
4468 * @task: target task
4469 *
4470 * If @task is a worker and currently executing a work item, print out the
4471 * name of the workqueue being serviced and worker description set with
4472 * set_worker_desc() by the currently executing work item.
4473 *
4474 * This function can be safely called on any task as long as the
4475 * task_struct itself is accessible. While safe, this function isn't
4476 * synchronized and may print out mixups or garbages of limited length.
4477 */
4478 void print_worker_info(const char *log_lvl, struct task_struct *task)
4479 {
4480 work_func_t *fn = NULL;
4481 char name[WQ_NAME_LEN] = { };
4482 char desc[WORKER_DESC_LEN] = { };
4483 struct pool_workqueue *pwq = NULL;
4484 struct workqueue_struct *wq = NULL;
4485 bool desc_valid = false;
4486 struct worker *worker;
4487
4488 if (!(task->flags & PF_WQ_WORKER))
4489 return;
4490
4491 /*
4492 * This function is called without any synchronization and @task
4493 * could be in any state. Be careful with dereferences.
4494 */
4495 worker = probe_kthread_data(task);
4496
4497 /*
4498 * Carefully copy the associated workqueue's workfn and name. Keep
4499 * the original last '\0' in case the original contains garbage.
4500 */
4501 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4502 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4503 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4504 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4505
4506 /* copy worker description */
4507 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4508 if (desc_valid)
4509 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4510
4511 if (fn || name[0] || desc[0]) {
4512 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4513 if (desc[0])
4514 pr_cont(" (%s)", desc);
4515 pr_cont("\n");
4516 }
4517 }
4518
4519 /*
4520 * CPU hotplug.
4521 *
4522 * There are two challenges in supporting CPU hotplug. Firstly, there
4523 * are a lot of assumptions on strong associations among work, pwq and
4524 * pool which make migrating pending and scheduled works very
4525 * difficult to implement without impacting hot paths. Secondly,
4526 * worker pools serve mix of short, long and very long running works making
4527 * blocked draining impractical.
4528 *
4529 * This is solved by allowing the pools to be disassociated from the CPU
4530 * running as an unbound one and allowing it to be reattached later if the
4531 * cpu comes back online.
4532 */
4533
4534 static void wq_unbind_fn(struct work_struct *work)
4535 {
4536 int cpu = smp_processor_id();
4537 struct worker_pool *pool;
4538 struct worker *worker;
4539 int wi;
4540
4541 for_each_cpu_worker_pool(pool, cpu) {
4542 WARN_ON_ONCE(cpu != smp_processor_id());
4543
4544 mutex_lock(&pool->manager_mutex);
4545 spin_lock_irq(&pool->lock);
4546
4547 /*
4548 * We've blocked all manager operations. Make all workers
4549 * unbound and set DISASSOCIATED. Before this, all workers
4550 * except for the ones which are still executing works from
4551 * before the last CPU down must be on the cpu. After
4552 * this, they may become diasporas.
4553 */
4554 for_each_pool_worker(worker, wi, pool)
4555 worker->flags |= WORKER_UNBOUND;
4556
4557 pool->flags |= POOL_DISASSOCIATED;
4558
4559 spin_unlock_irq(&pool->lock);
4560 mutex_unlock(&pool->manager_mutex);
4561
4562 /*
4563 * Call schedule() so that we cross rq->lock and thus can
4564 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4565 * This is necessary as scheduler callbacks may be invoked
4566 * from other cpus.
4567 */
4568 schedule();
4569
4570 /*
4571 * Sched callbacks are disabled now. Zap nr_running.
4572 * After this, nr_running stays zero and need_more_worker()
4573 * and keep_working() are always true as long as the
4574 * worklist is not empty. This pool now behaves as an
4575 * unbound (in terms of concurrency management) pool which
4576 * are served by workers tied to the pool.
4577 */
4578 atomic_set(&pool->nr_running, 0);
4579
4580 /*
4581 * With concurrency management just turned off, a busy
4582 * worker blocking could lead to lengthy stalls. Kick off
4583 * unbound chain execution of currently pending work items.
4584 */
4585 spin_lock_irq(&pool->lock);
4586 wake_up_worker(pool);
4587 spin_unlock_irq(&pool->lock);
4588 }
4589 }
4590
4591 /**
4592 * rebind_workers - rebind all workers of a pool to the associated CPU
4593 * @pool: pool of interest
4594 *
4595 * @pool->cpu is coming online. Rebind all workers to the CPU.
4596 */
4597 static void rebind_workers(struct worker_pool *pool)
4598 {
4599 struct worker *worker;
4600 int wi;
4601
4602 lockdep_assert_held(&pool->manager_mutex);
4603
4604 /*
4605 * Restore CPU affinity of all workers. As all idle workers should
4606 * be on the run-queue of the associated CPU before any local
4607 * wake-ups for concurrency management happen, restore CPU affinty
4608 * of all workers first and then clear UNBOUND. As we're called
4609 * from CPU_ONLINE, the following shouldn't fail.
4610 */
4611 for_each_pool_worker(worker, wi, pool)
4612 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4613 pool->attrs->cpumask) < 0);
4614
4615 spin_lock_irq(&pool->lock);
4616
4617 for_each_pool_worker(worker, wi, pool) {
4618 unsigned int worker_flags = worker->flags;
4619
4620 /*
4621 * A bound idle worker should actually be on the runqueue
4622 * of the associated CPU for local wake-ups targeting it to
4623 * work. Kick all idle workers so that they migrate to the
4624 * associated CPU. Doing this in the same loop as
4625 * replacing UNBOUND with REBOUND is safe as no worker will
4626 * be bound before @pool->lock is released.
4627 */
4628 if (worker_flags & WORKER_IDLE)
4629 wake_up_process(worker->task);
4630
4631 /*
4632 * We want to clear UNBOUND but can't directly call
4633 * worker_clr_flags() or adjust nr_running. Atomically
4634 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4635 * @worker will clear REBOUND using worker_clr_flags() when
4636 * it initiates the next execution cycle thus restoring
4637 * concurrency management. Note that when or whether
4638 * @worker clears REBOUND doesn't affect correctness.
4639 *
4640 * ACCESS_ONCE() is necessary because @worker->flags may be
4641 * tested without holding any lock in
4642 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4643 * fail incorrectly leading to premature concurrency
4644 * management operations.
4645 */
4646 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4647 worker_flags |= WORKER_REBOUND;
4648 worker_flags &= ~WORKER_UNBOUND;
4649 ACCESS_ONCE(worker->flags) = worker_flags;
4650 }
4651
4652 spin_unlock_irq(&pool->lock);
4653 }
4654
4655 /**
4656 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4657 * @pool: unbound pool of interest
4658 * @cpu: the CPU which is coming up
4659 *
4660 * An unbound pool may end up with a cpumask which doesn't have any online
4661 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4662 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4663 * online CPU before, cpus_allowed of all its workers should be restored.
4664 */
4665 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4666 {
4667 static cpumask_t cpumask;
4668 struct worker *worker;
4669 int wi;
4670
4671 lockdep_assert_held(&pool->manager_mutex);
4672
4673 /* is @cpu allowed for @pool? */
4674 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4675 return;
4676
4677 /* is @cpu the only online CPU? */
4678 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4679 if (cpumask_weight(&cpumask) != 1)
4680 return;
4681
4682 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4683 for_each_pool_worker(worker, wi, pool)
4684 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4685 pool->attrs->cpumask) < 0);
4686 }
4687
4688 /*
4689 * Workqueues should be brought up before normal priority CPU notifiers.
4690 * This will be registered high priority CPU notifier.
4691 */
4692 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
4693 unsigned long action,
4694 void *hcpu)
4695 {
4696 int cpu = (unsigned long)hcpu;
4697 struct worker_pool *pool;
4698 struct workqueue_struct *wq;
4699 int pi;
4700
4701 switch (action & ~CPU_TASKS_FROZEN) {
4702 case CPU_UP_PREPARE:
4703 for_each_cpu_worker_pool(pool, cpu) {
4704 if (pool->nr_workers)
4705 continue;
4706 if (create_and_start_worker(pool) < 0)
4707 return NOTIFY_BAD;
4708 }
4709 break;
4710
4711 case CPU_DOWN_FAILED:
4712 case CPU_ONLINE:
4713 mutex_lock(&wq_pool_mutex);
4714
4715 for_each_pool(pool, pi) {
4716 mutex_lock(&pool->manager_mutex);
4717
4718 if (pool->cpu == cpu) {
4719 spin_lock_irq(&pool->lock);
4720 pool->flags &= ~POOL_DISASSOCIATED;
4721 spin_unlock_irq(&pool->lock);
4722
4723 rebind_workers(pool);
4724 } else if (pool->cpu < 0) {
4725 restore_unbound_workers_cpumask(pool, cpu);
4726 }
4727
4728 mutex_unlock(&pool->manager_mutex);
4729 }
4730
4731 /* update NUMA affinity of unbound workqueues */
4732 list_for_each_entry(wq, &workqueues, list)
4733 wq_update_unbound_numa(wq, cpu, true);
4734
4735 mutex_unlock(&wq_pool_mutex);
4736 break;
4737 }
4738 return NOTIFY_OK;
4739 }
4740
4741 /*
4742 * Workqueues should be brought down after normal priority CPU notifiers.
4743 * This will be registered as low priority CPU notifier.
4744 */
4745 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4746 unsigned long action,
4747 void *hcpu)
4748 {
4749 int cpu = (unsigned long)hcpu;
4750 struct work_struct unbind_work;
4751 struct workqueue_struct *wq;
4752
4753 switch (action & ~CPU_TASKS_FROZEN) {
4754 case CPU_DOWN_PREPARE:
4755 /* unbinding per-cpu workers should happen on the local CPU */
4756 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4757 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4758
4759 /* update NUMA affinity of unbound workqueues */
4760 mutex_lock(&wq_pool_mutex);
4761 list_for_each_entry(wq, &workqueues, list)
4762 wq_update_unbound_numa(wq, cpu, false);
4763 mutex_unlock(&wq_pool_mutex);
4764
4765 /* wait for per-cpu unbinding to finish */
4766 flush_work(&unbind_work);
4767 break;
4768 }
4769 return NOTIFY_OK;
4770 }
4771
4772 #ifdef CONFIG_SMP
4773
4774 struct work_for_cpu {
4775 struct work_struct work;
4776 long (*fn)(void *);
4777 void *arg;
4778 long ret;
4779 };
4780
4781 static void work_for_cpu_fn(struct work_struct *work)
4782 {
4783 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4784
4785 wfc->ret = wfc->fn(wfc->arg);
4786 }
4787
4788 /**
4789 * work_on_cpu - run a function in user context on a particular cpu
4790 * @cpu: the cpu to run on
4791 * @fn: the function to run
4792 * @arg: the function arg
4793 *
4794 * This will return the value @fn returns.
4795 * It is up to the caller to ensure that the cpu doesn't go offline.
4796 * The caller must not hold any locks which would prevent @fn from completing.
4797 */
4798 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4799 {
4800 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4801
4802 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4803 schedule_work_on(cpu, &wfc.work);
4804 flush_work(&wfc.work);
4805 return wfc.ret;
4806 }
4807 EXPORT_SYMBOL_GPL(work_on_cpu);
4808 #endif /* CONFIG_SMP */
4809
4810 #ifdef CONFIG_FREEZER
4811
4812 /**
4813 * freeze_workqueues_begin - begin freezing workqueues
4814 *
4815 * Start freezing workqueues. After this function returns, all freezable
4816 * workqueues will queue new works to their delayed_works list instead of
4817 * pool->worklist.
4818 *
4819 * CONTEXT:
4820 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4821 */
4822 void freeze_workqueues_begin(void)
4823 {
4824 struct worker_pool *pool;
4825 struct workqueue_struct *wq;
4826 struct pool_workqueue *pwq;
4827 int pi;
4828
4829 mutex_lock(&wq_pool_mutex);
4830
4831 WARN_ON_ONCE(workqueue_freezing);
4832 workqueue_freezing = true;
4833
4834 /* set FREEZING */
4835 for_each_pool(pool, pi) {
4836 spin_lock_irq(&pool->lock);
4837 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4838 pool->flags |= POOL_FREEZING;
4839 spin_unlock_irq(&pool->lock);
4840 }
4841
4842 list_for_each_entry(wq, &workqueues, list) {
4843 mutex_lock(&wq->mutex);
4844 for_each_pwq(pwq, wq)
4845 pwq_adjust_max_active(pwq);
4846 mutex_unlock(&wq->mutex);
4847 }
4848
4849 mutex_unlock(&wq_pool_mutex);
4850 }
4851
4852 /**
4853 * freeze_workqueues_busy - are freezable workqueues still busy?
4854 *
4855 * Check whether freezing is complete. This function must be called
4856 * between freeze_workqueues_begin() and thaw_workqueues().
4857 *
4858 * CONTEXT:
4859 * Grabs and releases wq_pool_mutex.
4860 *
4861 * RETURNS:
4862 * %true if some freezable workqueues are still busy. %false if freezing
4863 * is complete.
4864 */
4865 bool freeze_workqueues_busy(void)
4866 {
4867 bool busy = false;
4868 struct workqueue_struct *wq;
4869 struct pool_workqueue *pwq;
4870
4871 mutex_lock(&wq_pool_mutex);
4872
4873 WARN_ON_ONCE(!workqueue_freezing);
4874
4875 list_for_each_entry(wq, &workqueues, list) {
4876 if (!(wq->flags & WQ_FREEZABLE))
4877 continue;
4878 /*
4879 * nr_active is monotonically decreasing. It's safe
4880 * to peek without lock.
4881 */
4882 rcu_read_lock_sched();
4883 for_each_pwq(pwq, wq) {
4884 WARN_ON_ONCE(pwq->nr_active < 0);
4885 if (pwq->nr_active) {
4886 busy = true;
4887 rcu_read_unlock_sched();
4888 goto out_unlock;
4889 }
4890 }
4891 rcu_read_unlock_sched();
4892 }
4893 out_unlock:
4894 mutex_unlock(&wq_pool_mutex);
4895 return busy;
4896 }
4897
4898 /**
4899 * thaw_workqueues - thaw workqueues
4900 *
4901 * Thaw workqueues. Normal queueing is restored and all collected
4902 * frozen works are transferred to their respective pool worklists.
4903 *
4904 * CONTEXT:
4905 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4906 */
4907 void thaw_workqueues(void)
4908 {
4909 struct workqueue_struct *wq;
4910 struct pool_workqueue *pwq;
4911 struct worker_pool *pool;
4912 int pi;
4913
4914 mutex_lock(&wq_pool_mutex);
4915
4916 if (!workqueue_freezing)
4917 goto out_unlock;
4918
4919 /* clear FREEZING */
4920 for_each_pool(pool, pi) {
4921 spin_lock_irq(&pool->lock);
4922 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4923 pool->flags &= ~POOL_FREEZING;
4924 spin_unlock_irq(&pool->lock);
4925 }
4926
4927 /* restore max_active and repopulate worklist */
4928 list_for_each_entry(wq, &workqueues, list) {
4929 mutex_lock(&wq->mutex);
4930 for_each_pwq(pwq, wq)
4931 pwq_adjust_max_active(pwq);
4932 mutex_unlock(&wq->mutex);
4933 }
4934
4935 workqueue_freezing = false;
4936 out_unlock:
4937 mutex_unlock(&wq_pool_mutex);
4938 }
4939 #endif /* CONFIG_FREEZER */
4940
4941 static void __init wq_numa_init(void)
4942 {
4943 cpumask_var_t *tbl;
4944 int node, cpu;
4945
4946 /* determine NUMA pwq table len - highest node id + 1 */
4947 for_each_node(node)
4948 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4949
4950 if (num_possible_nodes() <= 1)
4951 return;
4952
4953 if (wq_disable_numa) {
4954 pr_info("workqueue: NUMA affinity support disabled\n");
4955 return;
4956 }
4957
4958 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4959 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4960
4961 /*
4962 * We want masks of possible CPUs of each node which isn't readily
4963 * available. Build one from cpu_to_node() which should have been
4964 * fully initialized by now.
4965 */
4966 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4967 BUG_ON(!tbl);
4968
4969 for_each_node(node)
4970 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4971 node_online(node) ? node : NUMA_NO_NODE));
4972
4973 for_each_possible_cpu(cpu) {
4974 node = cpu_to_node(cpu);
4975 if (WARN_ON(node == NUMA_NO_NODE)) {
4976 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4977 /* happens iff arch is bonkers, let's just proceed */
4978 return;
4979 }
4980 cpumask_set_cpu(cpu, tbl[node]);
4981 }
4982
4983 wq_numa_possible_cpumask = tbl;
4984 wq_numa_enabled = true;
4985 }
4986
4987 static int __init init_workqueues(void)
4988 {
4989 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4990 int i, cpu;
4991
4992 /* make sure we have enough bits for OFFQ pool ID */
4993 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4994 WORK_CPU_END * NR_STD_WORKER_POOLS);
4995
4996 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4997
4998 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4999
5000 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5001 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5002
5003 wq_numa_init();
5004
5005 /* initialize CPU pools */
5006 for_each_possible_cpu(cpu) {
5007 struct worker_pool *pool;
5008
5009 i = 0;
5010 for_each_cpu_worker_pool(pool, cpu) {
5011 BUG_ON(init_worker_pool(pool));
5012 pool->cpu = cpu;
5013 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5014 pool->attrs->nice = std_nice[i++];
5015 pool->node = cpu_to_node(cpu);
5016
5017 /* alloc pool ID */
5018 mutex_lock(&wq_pool_mutex);
5019 BUG_ON(worker_pool_assign_id(pool));
5020 mutex_unlock(&wq_pool_mutex);
5021 }
5022 }
5023
5024 /* create the initial worker */
5025 for_each_online_cpu(cpu) {
5026 struct worker_pool *pool;
5027
5028 for_each_cpu_worker_pool(pool, cpu) {
5029 pool->flags &= ~POOL_DISASSOCIATED;
5030 BUG_ON(create_and_start_worker(pool) < 0);
5031 }
5032 }
5033
5034 /* create default unbound and ordered wq attrs */
5035 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5036 struct workqueue_attrs *attrs;
5037
5038 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5039 attrs->nice = std_nice[i];
5040 unbound_std_wq_attrs[i] = attrs;
5041
5042 /*
5043 * An ordered wq should have only one pwq as ordering is
5044 * guaranteed by max_active which is enforced by pwqs.
5045 * Turn off NUMA so that dfl_pwq is used for all nodes.
5046 */
5047 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5048 attrs->nice = std_nice[i];
5049 attrs->no_numa = true;
5050 ordered_wq_attrs[i] = attrs;
5051 }
5052
5053 system_wq = alloc_workqueue("events", 0, 0);
5054 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5055 system_long_wq = alloc_workqueue("events_long", 0, 0);
5056 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5057 WQ_UNBOUND_MAX_ACTIVE);
5058 system_freezable_wq = alloc_workqueue("events_freezable",
5059 WQ_FREEZABLE, 0);
5060 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5061 !system_unbound_wq || !system_freezable_wq);
5062 return 0;
5063 }
5064 early_initcall(init_workqueues);