Merge tag 'v3.10.100' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50
51 #include "workqueue_internal.h"
52
53 enum {
54 /*
55 * worker_pool flags
56 *
57 * A bound pool is either associated or disassociated with its CPU.
58 * While associated (!DISASSOCIATED), all workers are bound to the
59 * CPU and none has %WORKER_UNBOUND set and concurrency management
60 * is in effect.
61 *
62 * While DISASSOCIATED, the cpu may be offline and all workers have
63 * %WORKER_UNBOUND set and concurrency management disabled, and may
64 * be executing on any CPU. The pool behaves as an unbound one.
65 *
66 * Note that DISASSOCIATED should be flipped only while holding
67 * manager_mutex to avoid changing binding state while
68 * create_worker() is in progress.
69 */
70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
72 POOL_FREEZING = 1 << 3, /* freeze in progress */
73
74 /* worker flags */
75 WORKER_STARTED = 1 << 0, /* started */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
78 WORKER_PREP = 1 << 3, /* preparing to run works */
79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
82
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
85
86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
87
88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
90
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give -20.
103 */
104 RESCUER_NICE_LEVEL = -20,
105 HIGHPRI_NICE_LEVEL = -20,
106
107 WQ_NAME_LEN = 24,
108 };
109
110 /*
111 * Structure fields follow one of the following exclusion rules.
112 *
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
115 *
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
119 * L: pool->lock protected. Access with pool->lock held.
120 *
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
125 *
126 * MG: pool->manager_mutex and pool->lock protected. Writes require both
127 * locks. Reads can happen under either lock.
128 *
129 * PL: wq_pool_mutex protected.
130 *
131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
132 *
133 * WQ: wq->mutex protected.
134 *
135 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
136 *
137 * MD: wq_mayday_lock protected.
138 */
139
140 /* struct worker is defined in workqueue_internal.h */
141
142 struct worker_pool {
143 spinlock_t lock; /* the pool lock */
144 int cpu; /* I: the associated cpu */
145 int node; /* I: the associated node ID */
146 int id; /* I: pool ID */
147 unsigned int flags; /* X: flags */
148
149 struct list_head worklist; /* L: list of pending works */
150 int nr_workers; /* L: total number of workers */
151
152 /* nr_idle includes the ones off idle_list for rebinding */
153 int nr_idle; /* L: currently idle ones */
154
155 struct list_head idle_list; /* X: list of idle workers */
156 struct timer_list idle_timer; /* L: worker idle timeout */
157 struct timer_list mayday_timer; /* L: SOS timer for workers */
158
159 /* a workers is either on busy_hash or idle_list, or the manager */
160 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
161 /* L: hash of busy workers */
162
163 /* see manage_workers() for details on the two manager mutexes */
164 struct mutex manager_arb; /* manager arbitration */
165 struct mutex manager_mutex; /* manager exclusion */
166 struct idr worker_idr; /* MG: worker IDs and iteration */
167
168 struct workqueue_attrs *attrs; /* I: worker attributes */
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
171
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
184 } ____cacheline_aligned_in_smp;
185
186 /*
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
191 */
192 struct pool_workqueue {
193 struct worker_pool *pool; /* I: the associated pool */
194 struct workqueue_struct *wq; /* I: the owning workqueue */
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
197 int refcnt; /* L: reference count */
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
200 int nr_active; /* L: nr of active works */
201 int max_active; /* L: max active works */
202 struct list_head delayed_works; /* L: delayed works */
203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
204 struct list_head mayday_node; /* MD: node on wq->maydays */
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
210 * determined without grabbing wq->mutex.
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215
216 /*
217 * Structure used to wait for workqueue flush.
218 */
219 struct wq_flusher {
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
222 struct completion done; /* flush completion */
223 };
224
225 struct wq_device;
226
227 /*
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
230 */
231 struct workqueue_struct {
232 struct list_head pwqs; /* WR: all pwqs of this wq */
233 struct list_head list; /* PL: list of all workqueues */
234
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
238 atomic_t nr_pwqs_to_flush; /* flush in progress */
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
242
243 struct list_head maydays; /* MD: pwqs requesting rescue */
244 struct worker *rescuer; /* I: rescue worker */
245
246 int nr_drainers; /* WQ: drain in progress */
247 int saved_max_active; /* WQ: saved pwq max_active */
248
249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
251
252 #ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256 struct lockdep_map lockdep_map;
257 #endif
258 char name[WQ_NAME_LEN]; /* I: workqueue name */
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265
266 static struct kmem_cache *pwq_cache;
267
268 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269 static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
272 static bool wq_disable_numa;
273 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
275 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
276
277 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
278 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
279
280 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
281 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
282
283 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
284 static bool workqueue_freezing; /* PL: have wqs started freezing? */
285
286 /* the per-cpu worker pools */
287 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
288 cpu_worker_pools);
289
290 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
291
292 /* PL: hash of all unbound pools keyed by pool->attrs */
293 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
294
295 /* I: attributes used when instantiating standard unbound pools on demand */
296 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
297
298 /* I: attributes used when instantiating ordered pools on demand */
299 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
300
301 struct workqueue_struct *system_wq __read_mostly;
302 EXPORT_SYMBOL(system_wq);
303 struct workqueue_struct *system_highpri_wq __read_mostly;
304 EXPORT_SYMBOL_GPL(system_highpri_wq);
305 struct workqueue_struct *system_long_wq __read_mostly;
306 EXPORT_SYMBOL_GPL(system_long_wq);
307 struct workqueue_struct *system_unbound_wq __read_mostly;
308 EXPORT_SYMBOL_GPL(system_unbound_wq);
309 struct workqueue_struct *system_freezable_wq __read_mostly;
310 EXPORT_SYMBOL_GPL(system_freezable_wq);
311
312 static int worker_thread(void *__worker);
313 static void copy_workqueue_attrs(struct workqueue_attrs *to,
314 const struct workqueue_attrs *from);
315
316 #define CREATE_TRACE_POINTS
317 #include <trace/events/workqueue.h>
318
319 #define assert_rcu_or_pool_mutex() \
320 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
321 lockdep_is_held(&wq_pool_mutex), \
322 "sched RCU or wq_pool_mutex should be held")
323
324 #define assert_rcu_or_wq_mutex(wq) \
325 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
326 lockdep_is_held(&wq->mutex), \
327 "sched RCU or wq->mutex should be held")
328
329 #ifdef CONFIG_LOCKDEP
330 #define assert_manager_or_pool_lock(pool) \
331 WARN_ONCE(debug_locks && \
332 !lockdep_is_held(&(pool)->manager_mutex) && \
333 !lockdep_is_held(&(pool)->lock), \
334 "pool->manager_mutex or ->lock should be held")
335 #else
336 #define assert_manager_or_pool_lock(pool) do { } while (0)
337 #endif
338
339 #define for_each_cpu_worker_pool(pool, cpu) \
340 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
341 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
342 (pool)++)
343
344 /**
345 * for_each_pool - iterate through all worker_pools in the system
346 * @pool: iteration cursor
347 * @pi: integer used for iteration
348 *
349 * This must be called either with wq_pool_mutex held or sched RCU read
350 * locked. If the pool needs to be used beyond the locking in effect, the
351 * caller is responsible for guaranteeing that the pool stays online.
352 *
353 * The if/else clause exists only for the lockdep assertion and can be
354 * ignored.
355 */
356 #define for_each_pool(pool, pi) \
357 idr_for_each_entry(&worker_pool_idr, pool, pi) \
358 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
359 else
360
361 /**
362 * for_each_pool_worker - iterate through all workers of a worker_pool
363 * @worker: iteration cursor
364 * @wi: integer used for iteration
365 * @pool: worker_pool to iterate workers of
366 *
367 * This must be called with either @pool->manager_mutex or ->lock held.
368 *
369 * The if/else clause exists only for the lockdep assertion and can be
370 * ignored.
371 */
372 #define for_each_pool_worker(worker, wi, pool) \
373 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
374 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
375 else
376
377 /**
378 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
379 * @pwq: iteration cursor
380 * @wq: the target workqueue
381 *
382 * This must be called either with wq->mutex held or sched RCU read locked.
383 * If the pwq needs to be used beyond the locking in effect, the caller is
384 * responsible for guaranteeing that the pwq stays online.
385 *
386 * The if/else clause exists only for the lockdep assertion and can be
387 * ignored.
388 */
389 #define for_each_pwq(pwq, wq) \
390 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
391 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
392 else
393
394 #ifdef CONFIG_DEBUG_OBJECTS_WORK
395
396 static struct debug_obj_descr work_debug_descr;
397
398 static void *work_debug_hint(void *addr)
399 {
400 return ((struct work_struct *) addr)->func;
401 }
402
403 /*
404 * fixup_init is called when:
405 * - an active object is initialized
406 */
407 static int work_fixup_init(void *addr, enum debug_obj_state state)
408 {
409 struct work_struct *work = addr;
410
411 switch (state) {
412 case ODEBUG_STATE_ACTIVE:
413 cancel_work_sync(work);
414 debug_object_init(work, &work_debug_descr);
415 return 1;
416 default:
417 return 0;
418 }
419 }
420
421 /*
422 * fixup_activate is called when:
423 * - an active object is activated
424 * - an unknown object is activated (might be a statically initialized object)
425 */
426 static int work_fixup_activate(void *addr, enum debug_obj_state state)
427 {
428 struct work_struct *work = addr;
429
430 switch (state) {
431
432 case ODEBUG_STATE_NOTAVAILABLE:
433 /*
434 * This is not really a fixup. The work struct was
435 * statically initialized. We just make sure that it
436 * is tracked in the object tracker.
437 */
438 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
439 debug_object_init(work, &work_debug_descr);
440 debug_object_activate(work, &work_debug_descr);
441 return 0;
442 }
443 WARN_ON_ONCE(1);
444 return 0;
445
446 case ODEBUG_STATE_ACTIVE:
447 WARN_ON(1);
448
449 default:
450 return 0;
451 }
452 }
453
454 /*
455 * fixup_free is called when:
456 * - an active object is freed
457 */
458 static int work_fixup_free(void *addr, enum debug_obj_state state)
459 {
460 struct work_struct *work = addr;
461
462 switch (state) {
463 case ODEBUG_STATE_ACTIVE:
464 cancel_work_sync(work);
465 debug_object_free(work, &work_debug_descr);
466 return 1;
467 default:
468 return 0;
469 }
470 }
471
472 static struct debug_obj_descr work_debug_descr = {
473 .name = "work_struct",
474 .debug_hint = work_debug_hint,
475 .fixup_init = work_fixup_init,
476 .fixup_activate = work_fixup_activate,
477 .fixup_free = work_fixup_free,
478 };
479
480 static inline void debug_work_activate(struct work_struct *work)
481 {
482 debug_object_activate(work, &work_debug_descr);
483 }
484
485 static inline void debug_work_deactivate(struct work_struct *work)
486 {
487 debug_object_deactivate(work, &work_debug_descr);
488 }
489
490 void __init_work(struct work_struct *work, int onstack)
491 {
492 if (onstack)
493 debug_object_init_on_stack(work, &work_debug_descr);
494 else
495 debug_object_init(work, &work_debug_descr);
496 }
497 EXPORT_SYMBOL_GPL(__init_work);
498
499 void destroy_work_on_stack(struct work_struct *work)
500 {
501 debug_object_free(work, &work_debug_descr);
502 }
503 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
504
505 #else
506 static inline void debug_work_activate(struct work_struct *work) { }
507 static inline void debug_work_deactivate(struct work_struct *work) { }
508 #endif
509
510 #ifdef CONFIG_MTK_WQ_DEBUG
511 extern void mttrace_workqueue_execute_work(struct work_struct *work);
512 extern void mttrace_workqueue_activate_work(struct work_struct *work);
513 extern void mttrace_workqueue_queue_work(unsigned int req_cpu, struct work_struct *work);
514 extern void mttrace_workqueue_execute_end(struct work_struct *work);
515 #endif //CONFIG_MTK_WQ_DEBUG
516
517 /* allocate ID and assign it to @pool */
518 static int worker_pool_assign_id(struct worker_pool *pool)
519 {
520 int ret;
521
522 lockdep_assert_held(&wq_pool_mutex);
523
524 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
525 if (ret >= 0) {
526 pool->id = ret;
527 return 0;
528 }
529 return ret;
530 }
531
532 /**
533 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
534 * @wq: the target workqueue
535 * @node: the node ID
536 *
537 * This must be called either with pwq_lock held or sched RCU read locked.
538 * If the pwq needs to be used beyond the locking in effect, the caller is
539 * responsible for guaranteeing that the pwq stays online.
540 */
541 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
542 int node)
543 {
544 assert_rcu_or_wq_mutex(wq);
545 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
546 }
547
548 static unsigned int work_color_to_flags(int color)
549 {
550 return color << WORK_STRUCT_COLOR_SHIFT;
551 }
552
553 static int get_work_color(struct work_struct *work)
554 {
555 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
556 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
557 }
558
559 static int work_next_color(int color)
560 {
561 return (color + 1) % WORK_NR_COLORS;
562 }
563
564 /*
565 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
566 * contain the pointer to the queued pwq. Once execution starts, the flag
567 * is cleared and the high bits contain OFFQ flags and pool ID.
568 *
569 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
570 * and clear_work_data() can be used to set the pwq, pool or clear
571 * work->data. These functions should only be called while the work is
572 * owned - ie. while the PENDING bit is set.
573 *
574 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
575 * corresponding to a work. Pool is available once the work has been
576 * queued anywhere after initialization until it is sync canceled. pwq is
577 * available only while the work item is queued.
578 *
579 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
580 * canceled. While being canceled, a work item may have its PENDING set
581 * but stay off timer and worklist for arbitrarily long and nobody should
582 * try to steal the PENDING bit.
583 */
584 static inline void set_work_data(struct work_struct *work, unsigned long data,
585 unsigned long flags)
586 {
587 WARN_ON_ONCE(!work_pending(work));
588 atomic_long_set(&work->data, data | flags | work_static(work));
589 }
590
591 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
592 unsigned long extra_flags)
593 {
594 set_work_data(work, (unsigned long)pwq,
595 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
596 }
597
598 static void set_work_pool_and_keep_pending(struct work_struct *work,
599 int pool_id)
600 {
601 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
602 WORK_STRUCT_PENDING);
603 }
604
605 static void set_work_pool_and_clear_pending(struct work_struct *work,
606 int pool_id)
607 {
608 /*
609 * The following wmb is paired with the implied mb in
610 * test_and_set_bit(PENDING) and ensures all updates to @work made
611 * here are visible to and precede any updates by the next PENDING
612 * owner.
613 */
614 smp_wmb();
615 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
616 }
617
618 static void clear_work_data(struct work_struct *work)
619 {
620 smp_wmb(); /* see set_work_pool_and_clear_pending() */
621 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
622 }
623
624 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
625 {
626 unsigned long data = atomic_long_read(&work->data);
627
628 if (data & WORK_STRUCT_PWQ)
629 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
630 else
631 return NULL;
632 }
633
634 /**
635 * get_work_pool - return the worker_pool a given work was associated with
636 * @work: the work item of interest
637 *
638 * Return the worker_pool @work was last associated with. %NULL if none.
639 *
640 * Pools are created and destroyed under wq_pool_mutex, and allows read
641 * access under sched-RCU read lock. As such, this function should be
642 * called under wq_pool_mutex or with preemption disabled.
643 *
644 * All fields of the returned pool are accessible as long as the above
645 * mentioned locking is in effect. If the returned pool needs to be used
646 * beyond the critical section, the caller is responsible for ensuring the
647 * returned pool is and stays online.
648 */
649 static struct worker_pool *get_work_pool(struct work_struct *work)
650 {
651 unsigned long data = atomic_long_read(&work->data);
652 int pool_id;
653
654 assert_rcu_or_pool_mutex();
655
656 if (data & WORK_STRUCT_PWQ)
657 return ((struct pool_workqueue *)
658 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
659
660 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
661 if (pool_id == WORK_OFFQ_POOL_NONE)
662 return NULL;
663
664 return idr_find(&worker_pool_idr, pool_id);
665 }
666
667 /**
668 * get_work_pool_id - return the worker pool ID a given work is associated with
669 * @work: the work item of interest
670 *
671 * Return the worker_pool ID @work was last associated with.
672 * %WORK_OFFQ_POOL_NONE if none.
673 */
674 static int get_work_pool_id(struct work_struct *work)
675 {
676 unsigned long data = atomic_long_read(&work->data);
677
678 if (data & WORK_STRUCT_PWQ)
679 return ((struct pool_workqueue *)
680 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
681
682 return data >> WORK_OFFQ_POOL_SHIFT;
683 }
684
685 static void mark_work_canceling(struct work_struct *work)
686 {
687 unsigned long pool_id = get_work_pool_id(work);
688
689 pool_id <<= WORK_OFFQ_POOL_SHIFT;
690 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
691 }
692
693 static bool work_is_canceling(struct work_struct *work)
694 {
695 unsigned long data = atomic_long_read(&work->data);
696
697 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
698 }
699
700 /*
701 * Policy functions. These define the policies on how the global worker
702 * pools are managed. Unless noted otherwise, these functions assume that
703 * they're being called with pool->lock held.
704 */
705
706 static bool __need_more_worker(struct worker_pool *pool)
707 {
708 return !atomic_read(&pool->nr_running);
709 }
710
711 /*
712 * Need to wake up a worker? Called from anything but currently
713 * running workers.
714 *
715 * Note that, because unbound workers never contribute to nr_running, this
716 * function will always return %true for unbound pools as long as the
717 * worklist isn't empty.
718 */
719 static bool need_more_worker(struct worker_pool *pool)
720 {
721 return !list_empty(&pool->worklist) && __need_more_worker(pool);
722 }
723
724 /* Can I start working? Called from busy but !running workers. */
725 static bool may_start_working(struct worker_pool *pool)
726 {
727 return pool->nr_idle;
728 }
729
730 /* Do I need to keep working? Called from currently running workers. */
731 static bool keep_working(struct worker_pool *pool)
732 {
733 return !list_empty(&pool->worklist) &&
734 atomic_read(&pool->nr_running) <= 1;
735 }
736
737 /* Do we need a new worker? Called from manager. */
738 static bool need_to_create_worker(struct worker_pool *pool)
739 {
740 return need_more_worker(pool) && !may_start_working(pool);
741 }
742
743 /* Do I need to be the manager? */
744 static bool need_to_manage_workers(struct worker_pool *pool)
745 {
746 return need_to_create_worker(pool) ||
747 (pool->flags & POOL_MANAGE_WORKERS);
748 }
749
750 /* Do we have too many workers and should some go away? */
751 static bool too_many_workers(struct worker_pool *pool)
752 {
753 bool managing = mutex_is_locked(&pool->manager_arb);
754 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
755 int nr_busy = pool->nr_workers - nr_idle;
756
757 /*
758 * nr_idle and idle_list may disagree if idle rebinding is in
759 * progress. Never return %true if idle_list is empty.
760 */
761 if (list_empty(&pool->idle_list))
762 return false;
763
764 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
765 }
766
767 /*
768 * Wake up functions.
769 */
770
771 /* Return the first worker. Safe with preemption disabled */
772 static struct worker *first_worker(struct worker_pool *pool)
773 {
774 if (unlikely(list_empty(&pool->idle_list)))
775 return NULL;
776
777 return list_first_entry(&pool->idle_list, struct worker, entry);
778 }
779
780 /**
781 * wake_up_worker - wake up an idle worker
782 * @pool: worker pool to wake worker from
783 *
784 * Wake up the first idle worker of @pool.
785 *
786 * CONTEXT:
787 * spin_lock_irq(pool->lock).
788 */
789 static void wake_up_worker(struct worker_pool *pool)
790 {
791 struct worker *worker = first_worker(pool);
792
793 if (likely(worker))
794 wake_up_process(worker->task);
795 }
796
797 /**
798 * wq_worker_waking_up - a worker is waking up
799 * @task: task waking up
800 * @cpu: CPU @task is waking up to
801 *
802 * This function is called during try_to_wake_up() when a worker is
803 * being awoken.
804 *
805 * CONTEXT:
806 * spin_lock_irq(rq->lock)
807 */
808 void wq_worker_waking_up(struct task_struct *task, int cpu)
809 {
810 struct worker *worker = kthread_data(task);
811
812 if (!(worker->flags & WORKER_NOT_RUNNING)) {
813 WARN_ON_ONCE(worker->pool->cpu != cpu);
814 atomic_inc(&worker->pool->nr_running);
815 }
816 }
817
818 /**
819 * wq_worker_sleeping - a worker is going to sleep
820 * @task: task going to sleep
821 * @cpu: CPU in question, must be the current CPU number
822 *
823 * This function is called during schedule() when a busy worker is
824 * going to sleep. Worker on the same cpu can be woken up by
825 * returning pointer to its task.
826 *
827 * CONTEXT:
828 * spin_lock_irq(rq->lock)
829 *
830 * RETURNS:
831 * Worker task on @cpu to wake up, %NULL if none.
832 */
833 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
834 {
835 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
836 struct worker_pool *pool;
837
838 /*
839 * Rescuers, which may not have all the fields set up like normal
840 * workers, also reach here, let's not access anything before
841 * checking NOT_RUNNING.
842 */
843 if (worker->flags & WORKER_NOT_RUNNING)
844 return NULL;
845
846 pool = worker->pool;
847
848 /* this can only happen on the local cpu */
849 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
850 return NULL;
851
852 /*
853 * The counterpart of the following dec_and_test, implied mb,
854 * worklist not empty test sequence is in insert_work().
855 * Please read comment there.
856 *
857 * NOT_RUNNING is clear. This means that we're bound to and
858 * running on the local cpu w/ rq lock held and preemption
859 * disabled, which in turn means that none else could be
860 * manipulating idle_list, so dereferencing idle_list without pool
861 * lock is safe.
862 */
863 if (atomic_dec_and_test(&pool->nr_running) &&
864 !list_empty(&pool->worklist))
865 to_wakeup = first_worker(pool);
866 return to_wakeup ? to_wakeup->task : NULL;
867 }
868
869 /**
870 * worker_set_flags - set worker flags and adjust nr_running accordingly
871 * @worker: self
872 * @flags: flags to set
873 * @wakeup: wakeup an idle worker if necessary
874 *
875 * Set @flags in @worker->flags and adjust nr_running accordingly. If
876 * nr_running becomes zero and @wakeup is %true, an idle worker is
877 * woken up.
878 *
879 * CONTEXT:
880 * spin_lock_irq(pool->lock)
881 */
882 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
883 bool wakeup)
884 {
885 struct worker_pool *pool = worker->pool;
886
887 WARN_ON_ONCE(worker->task != current);
888
889 /*
890 * If transitioning into NOT_RUNNING, adjust nr_running and
891 * wake up an idle worker as necessary if requested by
892 * @wakeup.
893 */
894 if ((flags & WORKER_NOT_RUNNING) &&
895 !(worker->flags & WORKER_NOT_RUNNING)) {
896 if (wakeup) {
897 if (atomic_dec_and_test(&pool->nr_running) &&
898 !list_empty(&pool->worklist))
899 wake_up_worker(pool);
900 } else
901 atomic_dec(&pool->nr_running);
902 }
903
904 worker->flags |= flags;
905 }
906
907 /**
908 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
909 * @worker: self
910 * @flags: flags to clear
911 *
912 * Clear @flags in @worker->flags and adjust nr_running accordingly.
913 *
914 * CONTEXT:
915 * spin_lock_irq(pool->lock)
916 */
917 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
918 {
919 struct worker_pool *pool = worker->pool;
920 unsigned int oflags = worker->flags;
921
922 WARN_ON_ONCE(worker->task != current);
923
924 worker->flags &= ~flags;
925
926 /*
927 * If transitioning out of NOT_RUNNING, increment nr_running. Note
928 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
929 * of multiple flags, not a single flag.
930 */
931 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
932 if (!(worker->flags & WORKER_NOT_RUNNING))
933 atomic_inc(&pool->nr_running);
934 }
935
936 /**
937 * find_worker_executing_work - find worker which is executing a work
938 * @pool: pool of interest
939 * @work: work to find worker for
940 *
941 * Find a worker which is executing @work on @pool by searching
942 * @pool->busy_hash which is keyed by the address of @work. For a worker
943 * to match, its current execution should match the address of @work and
944 * its work function. This is to avoid unwanted dependency between
945 * unrelated work executions through a work item being recycled while still
946 * being executed.
947 *
948 * This is a bit tricky. A work item may be freed once its execution
949 * starts and nothing prevents the freed area from being recycled for
950 * another work item. If the same work item address ends up being reused
951 * before the original execution finishes, workqueue will identify the
952 * recycled work item as currently executing and make it wait until the
953 * current execution finishes, introducing an unwanted dependency.
954 *
955 * This function checks the work item address and work function to avoid
956 * false positives. Note that this isn't complete as one may construct a
957 * work function which can introduce dependency onto itself through a
958 * recycled work item. Well, if somebody wants to shoot oneself in the
959 * foot that badly, there's only so much we can do, and if such deadlock
960 * actually occurs, it should be easy to locate the culprit work function.
961 *
962 * CONTEXT:
963 * spin_lock_irq(pool->lock).
964 *
965 * RETURNS:
966 * Pointer to worker which is executing @work if found, NULL
967 * otherwise.
968 */
969 static struct worker *find_worker_executing_work(struct worker_pool *pool,
970 struct work_struct *work)
971 {
972 struct worker *worker;
973
974 hash_for_each_possible(pool->busy_hash, worker, hentry,
975 (unsigned long)work)
976 if (worker->current_work == work &&
977 worker->current_func == work->func)
978 return worker;
979
980 return NULL;
981 }
982
983 /**
984 * move_linked_works - move linked works to a list
985 * @work: start of series of works to be scheduled
986 * @head: target list to append @work to
987 * @nextp: out paramter for nested worklist walking
988 *
989 * Schedule linked works starting from @work to @head. Work series to
990 * be scheduled starts at @work and includes any consecutive work with
991 * WORK_STRUCT_LINKED set in its predecessor.
992 *
993 * If @nextp is not NULL, it's updated to point to the next work of
994 * the last scheduled work. This allows move_linked_works() to be
995 * nested inside outer list_for_each_entry_safe().
996 *
997 * CONTEXT:
998 * spin_lock_irq(pool->lock).
999 */
1000 static void move_linked_works(struct work_struct *work, struct list_head *head,
1001 struct work_struct **nextp)
1002 {
1003 struct work_struct *n;
1004
1005 /*
1006 * Linked worklist will always end before the end of the list,
1007 * use NULL for list head.
1008 */
1009 list_for_each_entry_safe_from(work, n, NULL, entry) {
1010 list_move_tail(&work->entry, head);
1011 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1012 break;
1013 }
1014
1015 /*
1016 * If we're already inside safe list traversal and have moved
1017 * multiple works to the scheduled queue, the next position
1018 * needs to be updated.
1019 */
1020 if (nextp)
1021 *nextp = n;
1022 }
1023
1024 /**
1025 * get_pwq - get an extra reference on the specified pool_workqueue
1026 * @pwq: pool_workqueue to get
1027 *
1028 * Obtain an extra reference on @pwq. The caller should guarantee that
1029 * @pwq has positive refcnt and be holding the matching pool->lock.
1030 */
1031 static void get_pwq(struct pool_workqueue *pwq)
1032 {
1033 lockdep_assert_held(&pwq->pool->lock);
1034 WARN_ON_ONCE(pwq->refcnt <= 0);
1035 pwq->refcnt++;
1036 }
1037
1038 /**
1039 * put_pwq - put a pool_workqueue reference
1040 * @pwq: pool_workqueue to put
1041 *
1042 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1043 * destruction. The caller should be holding the matching pool->lock.
1044 */
1045 static void put_pwq(struct pool_workqueue *pwq)
1046 {
1047 lockdep_assert_held(&pwq->pool->lock);
1048 if (likely(--pwq->refcnt))
1049 return;
1050 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1051 return;
1052 /*
1053 * @pwq can't be released under pool->lock, bounce to
1054 * pwq_unbound_release_workfn(). This never recurses on the same
1055 * pool->lock as this path is taken only for unbound workqueues and
1056 * the release work item is scheduled on a per-cpu workqueue. To
1057 * avoid lockdep warning, unbound pool->locks are given lockdep
1058 * subclass of 1 in get_unbound_pool().
1059 */
1060 schedule_work(&pwq->unbound_release_work);
1061 }
1062
1063 /**
1064 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1065 * @pwq: pool_workqueue to put (can be %NULL)
1066 *
1067 * put_pwq() with locking. This function also allows %NULL @pwq.
1068 */
1069 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1070 {
1071 if (pwq) {
1072 /*
1073 * As both pwqs and pools are sched-RCU protected, the
1074 * following lock operations are safe.
1075 */
1076 spin_lock_irq(&pwq->pool->lock);
1077 put_pwq(pwq);
1078 spin_unlock_irq(&pwq->pool->lock);
1079 }
1080 }
1081
1082 static void pwq_activate_delayed_work(struct work_struct *work)
1083 {
1084 struct pool_workqueue *pwq = get_work_pwq(work);
1085
1086 trace_workqueue_activate_work(work);
1087 #ifdef CONFIG_MTK_WQ_DEBUG
1088 mttrace_workqueue_activate_work(work);
1089 #endif //CONFIG_MTK_WQ_DEBUG
1090 move_linked_works(work, &pwq->pool->worklist, NULL);
1091 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1092 pwq->nr_active++;
1093 }
1094
1095 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1096 {
1097 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1098 struct work_struct, entry);
1099
1100 pwq_activate_delayed_work(work);
1101 }
1102
1103 /**
1104 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1105 * @pwq: pwq of interest
1106 * @color: color of work which left the queue
1107 *
1108 * A work either has completed or is removed from pending queue,
1109 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1110 *
1111 * CONTEXT:
1112 * spin_lock_irq(pool->lock).
1113 */
1114 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1115 {
1116 /* uncolored work items don't participate in flushing or nr_active */
1117 if (color == WORK_NO_COLOR)
1118 goto out_put;
1119
1120 pwq->nr_in_flight[color]--;
1121
1122 pwq->nr_active--;
1123 if (!list_empty(&pwq->delayed_works)) {
1124 /* one down, submit a delayed one */
1125 if (pwq->nr_active < pwq->max_active)
1126 pwq_activate_first_delayed(pwq);
1127 }
1128
1129 /* is flush in progress and are we at the flushing tip? */
1130 if (likely(pwq->flush_color != color))
1131 goto out_put;
1132
1133 /* are there still in-flight works? */
1134 if (pwq->nr_in_flight[color])
1135 goto out_put;
1136
1137 /* this pwq is done, clear flush_color */
1138 pwq->flush_color = -1;
1139
1140 /*
1141 * If this was the last pwq, wake up the first flusher. It
1142 * will handle the rest.
1143 */
1144 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1145 complete(&pwq->wq->first_flusher->done);
1146 out_put:
1147 put_pwq(pwq);
1148 }
1149
1150 /**
1151 * try_to_grab_pending - steal work item from worklist and disable irq
1152 * @work: work item to steal
1153 * @is_dwork: @work is a delayed_work
1154 * @flags: place to store irq state
1155 *
1156 * Try to grab PENDING bit of @work. This function can handle @work in any
1157 * stable state - idle, on timer or on worklist. Return values are
1158 *
1159 * 1 if @work was pending and we successfully stole PENDING
1160 * 0 if @work was idle and we claimed PENDING
1161 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1162 * -ENOENT if someone else is canceling @work, this state may persist
1163 * for arbitrarily long
1164 *
1165 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1166 * interrupted while holding PENDING and @work off queue, irq must be
1167 * disabled on entry. This, combined with delayed_work->timer being
1168 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1169 *
1170 * On successful return, >= 0, irq is disabled and the caller is
1171 * responsible for releasing it using local_irq_restore(*@flags).
1172 *
1173 * This function is safe to call from any context including IRQ handler.
1174 */
1175 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1176 unsigned long *flags)
1177 {
1178 struct worker_pool *pool;
1179 struct pool_workqueue *pwq;
1180
1181 local_irq_save(*flags);
1182
1183 /* try to steal the timer if it exists */
1184 if (is_dwork) {
1185 struct delayed_work *dwork = to_delayed_work(work);
1186
1187 /*
1188 * dwork->timer is irqsafe. If del_timer() fails, it's
1189 * guaranteed that the timer is not queued anywhere and not
1190 * running on the local CPU.
1191 */
1192 if (likely(del_timer(&dwork->timer)))
1193 return 1;
1194 }
1195
1196 /* try to claim PENDING the normal way */
1197 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1198 return 0;
1199
1200 /*
1201 * The queueing is in progress, or it is already queued. Try to
1202 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1203 */
1204 pool = get_work_pool(work);
1205 if (!pool)
1206 goto fail;
1207
1208 spin_lock(&pool->lock);
1209 /*
1210 * work->data is guaranteed to point to pwq only while the work
1211 * item is queued on pwq->wq, and both updating work->data to point
1212 * to pwq on queueing and to pool on dequeueing are done under
1213 * pwq->pool->lock. This in turn guarantees that, if work->data
1214 * points to pwq which is associated with a locked pool, the work
1215 * item is currently queued on that pool.
1216 */
1217 pwq = get_work_pwq(work);
1218 if (pwq && pwq->pool == pool) {
1219 debug_work_deactivate(work);
1220
1221 /*
1222 * A delayed work item cannot be grabbed directly because
1223 * it might have linked NO_COLOR work items which, if left
1224 * on the delayed_list, will confuse pwq->nr_active
1225 * management later on and cause stall. Make sure the work
1226 * item is activated before grabbing.
1227 */
1228 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1229 pwq_activate_delayed_work(work);
1230
1231 list_del_init(&work->entry);
1232 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1233
1234 /* work->data points to pwq iff queued, point to pool */
1235 set_work_pool_and_keep_pending(work, pool->id);
1236
1237 spin_unlock(&pool->lock);
1238 return 1;
1239 }
1240 spin_unlock(&pool->lock);
1241 fail:
1242 local_irq_restore(*flags);
1243 if (work_is_canceling(work))
1244 return -ENOENT;
1245 cpu_relax();
1246 return -EAGAIN;
1247 }
1248
1249 /**
1250 * insert_work - insert a work into a pool
1251 * @pwq: pwq @work belongs to
1252 * @work: work to insert
1253 * @head: insertion point
1254 * @extra_flags: extra WORK_STRUCT_* flags to set
1255 *
1256 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1257 * work_struct flags.
1258 *
1259 * CONTEXT:
1260 * spin_lock_irq(pool->lock).
1261 */
1262 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1263 struct list_head *head, unsigned int extra_flags)
1264 {
1265 struct worker_pool *pool = pwq->pool;
1266
1267 /* we own @work, set data and link */
1268 set_work_pwq(work, pwq, extra_flags);
1269 list_add_tail(&work->entry, head);
1270 get_pwq(pwq);
1271
1272 /*
1273 * Ensure either wq_worker_sleeping() sees the above
1274 * list_add_tail() or we see zero nr_running to avoid workers lying
1275 * around lazily while there are works to be processed.
1276 */
1277 smp_mb();
1278
1279 if (__need_more_worker(pool))
1280 wake_up_worker(pool);
1281 }
1282
1283 /*
1284 * Test whether @work is being queued from another work executing on the
1285 * same workqueue.
1286 */
1287 static bool is_chained_work(struct workqueue_struct *wq)
1288 {
1289 struct worker *worker;
1290
1291 worker = current_wq_worker();
1292 /*
1293 * Return %true iff I'm a worker execuing a work item on @wq. If
1294 * I'm @worker, it's safe to dereference it without locking.
1295 */
1296 return worker && worker->current_pwq->wq == wq;
1297 }
1298
1299 static void __queue_work(int cpu, struct workqueue_struct *wq,
1300 struct work_struct *work)
1301 {
1302 struct pool_workqueue *pwq;
1303 struct worker_pool *last_pool;
1304 struct list_head *worklist;
1305 unsigned int work_flags;
1306 unsigned int req_cpu = cpu;
1307
1308 /*
1309 * While a work item is PENDING && off queue, a task trying to
1310 * steal the PENDING will busy-loop waiting for it to either get
1311 * queued or lose PENDING. Grabbing PENDING and queueing should
1312 * happen with IRQ disabled.
1313 */
1314 WARN_ON_ONCE(!irqs_disabled());
1315
1316 debug_work_activate(work);
1317
1318 /* if dying, only works from the same workqueue are allowed */
1319 if (unlikely(wq->flags & __WQ_DRAINING) &&
1320 WARN_ON_ONCE(!is_chained_work(wq)))
1321 return;
1322 retry:
1323 if (req_cpu == WORK_CPU_UNBOUND)
1324 cpu = raw_smp_processor_id();
1325
1326 /* pwq which will be used unless @work is executing elsewhere */
1327 if (!(wq->flags & WQ_UNBOUND))
1328 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1329 else
1330 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1331
1332 /*
1333 * If @work was previously on a different pool, it might still be
1334 * running there, in which case the work needs to be queued on that
1335 * pool to guarantee non-reentrancy.
1336 */
1337 last_pool = get_work_pool(work);
1338 if (last_pool && last_pool != pwq->pool) {
1339 struct worker *worker;
1340
1341 spin_lock(&last_pool->lock);
1342
1343 worker = find_worker_executing_work(last_pool, work);
1344
1345 if (worker && worker->current_pwq->wq == wq) {
1346 pwq = worker->current_pwq;
1347 } else {
1348 /* meh... not running there, queue here */
1349 spin_unlock(&last_pool->lock);
1350 spin_lock(&pwq->pool->lock);
1351 }
1352 } else {
1353 spin_lock(&pwq->pool->lock);
1354 }
1355
1356 /*
1357 * pwq is determined and locked. For unbound pools, we could have
1358 * raced with pwq release and it could already be dead. If its
1359 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1360 * without another pwq replacing it in the numa_pwq_tbl or while
1361 * work items are executing on it, so the retrying is guaranteed to
1362 * make forward-progress.
1363 */
1364 if (unlikely(!pwq->refcnt)) {
1365 if (wq->flags & WQ_UNBOUND) {
1366 spin_unlock(&pwq->pool->lock);
1367 cpu_relax();
1368 goto retry;
1369 }
1370 /* oops */
1371 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1372 wq->name, cpu);
1373 }
1374
1375 /* pwq determined, queue */
1376 trace_workqueue_queue_work(req_cpu, pwq, work);
1377 #ifdef CONFIG_MTK_WQ_DEBUG
1378 mttrace_workqueue_queue_work(cpu, work);
1379 #endif //CONFIG_MTK_WQ_DEBUG
1380
1381 if (WARN_ON(!list_empty(&work->entry))) {
1382 spin_unlock(&pwq->pool->lock);
1383 return;
1384 }
1385
1386 pwq->nr_in_flight[pwq->work_color]++;
1387 work_flags = work_color_to_flags(pwq->work_color);
1388
1389 if (likely(pwq->nr_active < pwq->max_active)) {
1390 trace_workqueue_activate_work(work);
1391 #ifdef CONFIG_MTK_WQ_DEBUG
1392 mttrace_workqueue_activate_work(work);
1393 #endif //CONFIG_MTK_WQ_DEBUG
1394 pwq->nr_active++;
1395 worklist = &pwq->pool->worklist;
1396 } else {
1397 work_flags |= WORK_STRUCT_DELAYED;
1398 worklist = &pwq->delayed_works;
1399 }
1400
1401 insert_work(pwq, work, worklist, work_flags);
1402
1403 spin_unlock(&pwq->pool->lock);
1404 }
1405
1406 /**
1407 * queue_work_on - queue work on specific cpu
1408 * @cpu: CPU number to execute work on
1409 * @wq: workqueue to use
1410 * @work: work to queue
1411 *
1412 * Returns %false if @work was already on a queue, %true otherwise.
1413 *
1414 * We queue the work to a specific CPU, the caller must ensure it
1415 * can't go away.
1416 */
1417 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1418 struct work_struct *work)
1419 {
1420 bool ret = false;
1421 unsigned long flags;
1422
1423 local_irq_save(flags);
1424
1425 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1426 __queue_work(cpu, wq, work);
1427 ret = true;
1428 }
1429
1430 local_irq_restore(flags);
1431 return ret;
1432 }
1433 EXPORT_SYMBOL(queue_work_on);
1434
1435 void delayed_work_timer_fn(unsigned long __data)
1436 {
1437 struct delayed_work *dwork = (struct delayed_work *)__data;
1438
1439 /* should have been called from irqsafe timer with irq already off */
1440 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1441 }
1442 EXPORT_SYMBOL(delayed_work_timer_fn);
1443
1444 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1445 struct delayed_work *dwork, unsigned long delay)
1446 {
1447 struct timer_list *timer = &dwork->timer;
1448 struct work_struct *work = &dwork->work;
1449
1450 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1451 timer->data != (unsigned long)dwork);
1452 WARN_ON_ONCE(timer_pending(timer));
1453 WARN_ON_ONCE(!list_empty(&work->entry));
1454
1455 /*
1456 * If @delay is 0, queue @dwork->work immediately. This is for
1457 * both optimization and correctness. The earliest @timer can
1458 * expire is on the closest next tick and delayed_work users depend
1459 * on that there's no such delay when @delay is 0.
1460 */
1461 if (!delay) {
1462 __queue_work(cpu, wq, &dwork->work);
1463 return;
1464 }
1465
1466 timer_stats_timer_set_start_info(&dwork->timer);
1467
1468 dwork->wq = wq;
1469 dwork->cpu = cpu;
1470 timer->expires = jiffies + delay;
1471
1472 if (unlikely(cpu != WORK_CPU_UNBOUND))
1473 add_timer_on(timer, cpu);
1474 else
1475 add_timer(timer);
1476 }
1477
1478 /**
1479 * queue_delayed_work_on - queue work on specific CPU after delay
1480 * @cpu: CPU number to execute work on
1481 * @wq: workqueue to use
1482 * @dwork: work to queue
1483 * @delay: number of jiffies to wait before queueing
1484 *
1485 * Returns %false if @work was already on a queue, %true otherwise. If
1486 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1487 * execution.
1488 */
1489 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1490 struct delayed_work *dwork, unsigned long delay)
1491 {
1492 struct work_struct *work = &dwork->work;
1493 bool ret = false;
1494 unsigned long flags;
1495
1496 /* read the comment in __queue_work() */
1497 local_irq_save(flags);
1498
1499 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1500 __queue_delayed_work(cpu, wq, dwork, delay);
1501 ret = true;
1502 }
1503
1504 local_irq_restore(flags);
1505 return ret;
1506 }
1507 EXPORT_SYMBOL(queue_delayed_work_on);
1508
1509 /**
1510 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1511 * @cpu: CPU number to execute work on
1512 * @wq: workqueue to use
1513 * @dwork: work to queue
1514 * @delay: number of jiffies to wait before queueing
1515 *
1516 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1517 * modify @dwork's timer so that it expires after @delay. If @delay is
1518 * zero, @work is guaranteed to be scheduled immediately regardless of its
1519 * current state.
1520 *
1521 * Returns %false if @dwork was idle and queued, %true if @dwork was
1522 * pending and its timer was modified.
1523 *
1524 * This function is safe to call from any context including IRQ handler.
1525 * See try_to_grab_pending() for details.
1526 */
1527 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1528 struct delayed_work *dwork, unsigned long delay)
1529 {
1530 unsigned long flags;
1531 int ret;
1532
1533 do {
1534 ret = try_to_grab_pending(&dwork->work, true, &flags);
1535 } while (unlikely(ret == -EAGAIN));
1536
1537 if (likely(ret >= 0)) {
1538 __queue_delayed_work(cpu, wq, dwork, delay);
1539 local_irq_restore(flags);
1540 }
1541
1542 /* -ENOENT from try_to_grab_pending() becomes %true */
1543 return ret;
1544 }
1545 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1546
1547 /**
1548 * worker_enter_idle - enter idle state
1549 * @worker: worker which is entering idle state
1550 *
1551 * @worker is entering idle state. Update stats and idle timer if
1552 * necessary.
1553 *
1554 * LOCKING:
1555 * spin_lock_irq(pool->lock).
1556 */
1557 static void worker_enter_idle(struct worker *worker)
1558 {
1559 struct worker_pool *pool = worker->pool;
1560
1561 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1562 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1563 (worker->hentry.next || worker->hentry.pprev)))
1564 return;
1565
1566 /* can't use worker_set_flags(), also called from start_worker() */
1567 worker->flags |= WORKER_IDLE;
1568 pool->nr_idle++;
1569 worker->last_active = jiffies;
1570
1571 /* idle_list is LIFO */
1572 list_add(&worker->entry, &pool->idle_list);
1573
1574 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1575 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1576
1577 /*
1578 * Sanity check nr_running. Because wq_unbind_fn() releases
1579 * pool->lock between setting %WORKER_UNBOUND and zapping
1580 * nr_running, the warning may trigger spuriously. Check iff
1581 * unbind is not in progress.
1582 */
1583 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1584 pool->nr_workers == pool->nr_idle &&
1585 atomic_read(&pool->nr_running));
1586 }
1587
1588 /**
1589 * worker_leave_idle - leave idle state
1590 * @worker: worker which is leaving idle state
1591 *
1592 * @worker is leaving idle state. Update stats.
1593 *
1594 * LOCKING:
1595 * spin_lock_irq(pool->lock).
1596 */
1597 static void worker_leave_idle(struct worker *worker)
1598 {
1599 struct worker_pool *pool = worker->pool;
1600
1601 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1602 return;
1603 worker_clr_flags(worker, WORKER_IDLE);
1604 pool->nr_idle--;
1605 list_del_init(&worker->entry);
1606 }
1607
1608 /**
1609 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1610 * @pool: target worker_pool
1611 *
1612 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1613 *
1614 * Works which are scheduled while the cpu is online must at least be
1615 * scheduled to a worker which is bound to the cpu so that if they are
1616 * flushed from cpu callbacks while cpu is going down, they are
1617 * guaranteed to execute on the cpu.
1618 *
1619 * This function is to be used by unbound workers and rescuers to bind
1620 * themselves to the target cpu and may race with cpu going down or
1621 * coming online. kthread_bind() can't be used because it may put the
1622 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1623 * verbatim as it's best effort and blocking and pool may be
1624 * [dis]associated in the meantime.
1625 *
1626 * This function tries set_cpus_allowed() and locks pool and verifies the
1627 * binding against %POOL_DISASSOCIATED which is set during
1628 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1629 * enters idle state or fetches works without dropping lock, it can
1630 * guarantee the scheduling requirement described in the first paragraph.
1631 *
1632 * CONTEXT:
1633 * Might sleep. Called without any lock but returns with pool->lock
1634 * held.
1635 *
1636 * RETURNS:
1637 * %true if the associated pool is online (@worker is successfully
1638 * bound), %false if offline.
1639 */
1640 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1641 __acquires(&pool->lock)
1642 {
1643 while (true) {
1644 /*
1645 * The following call may fail, succeed or succeed
1646 * without actually migrating the task to the cpu if
1647 * it races with cpu hotunplug operation. Verify
1648 * against POOL_DISASSOCIATED.
1649 */
1650 if (!(pool->flags & POOL_DISASSOCIATED))
1651 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1652
1653 spin_lock_irq(&pool->lock);
1654 if (pool->flags & POOL_DISASSOCIATED)
1655 return false;
1656 if (task_cpu(current) == pool->cpu &&
1657 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1658 return true;
1659 spin_unlock_irq(&pool->lock);
1660
1661 /*
1662 * We've raced with CPU hot[un]plug. Give it a breather
1663 * and retry migration. cond_resched() is required here;
1664 * otherwise, we might deadlock against cpu_stop trying to
1665 * bring down the CPU on non-preemptive kernel.
1666 */
1667 cpu_relax();
1668 cond_resched();
1669 }
1670 }
1671
1672 static struct worker *alloc_worker(void)
1673 {
1674 struct worker *worker;
1675
1676 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1677 if (worker) {
1678 INIT_LIST_HEAD(&worker->entry);
1679 INIT_LIST_HEAD(&worker->scheduled);
1680 /* on creation a worker is in !idle && prep state */
1681 worker->flags = WORKER_PREP;
1682 }
1683 return worker;
1684 }
1685
1686 /**
1687 * create_worker - create a new workqueue worker
1688 * @pool: pool the new worker will belong to
1689 *
1690 * Create a new worker which is bound to @pool. The returned worker
1691 * can be started by calling start_worker() or destroyed using
1692 * destroy_worker().
1693 *
1694 * CONTEXT:
1695 * Might sleep. Does GFP_KERNEL allocations.
1696 *
1697 * RETURNS:
1698 * Pointer to the newly created worker.
1699 */
1700 static struct worker *create_worker(struct worker_pool *pool)
1701 {
1702 struct worker *worker = NULL;
1703 int id = -1;
1704 char id_buf[16];
1705
1706 lockdep_assert_held(&pool->manager_mutex);
1707
1708 /*
1709 * ID is needed to determine kthread name. Allocate ID first
1710 * without installing the pointer.
1711 */
1712 idr_preload(GFP_KERNEL);
1713 spin_lock_irq(&pool->lock);
1714
1715 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1716
1717 spin_unlock_irq(&pool->lock);
1718 idr_preload_end();
1719 if (id < 0)
1720 goto fail;
1721
1722 worker = alloc_worker();
1723 if (!worker)
1724 goto fail;
1725
1726 worker->pool = pool;
1727 worker->id = id;
1728
1729 if (pool->cpu >= 0)
1730 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1731 pool->attrs->nice < 0 ? "H" : "");
1732 else
1733 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1734
1735 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1736 "kworker/%s", id_buf);
1737 if (IS_ERR(worker->task))
1738 goto fail;
1739
1740 /*
1741 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1742 * online CPUs. It'll be re-applied when any of the CPUs come up.
1743 */
1744 set_user_nice(worker->task, pool->attrs->nice);
1745 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1746
1747 /* prevent userland from meddling with cpumask of workqueue workers */
1748 worker->task->flags |= PF_NO_SETAFFINITY;
1749
1750 /*
1751 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1752 * remains stable across this function. See the comments above the
1753 * flag definition for details.
1754 */
1755 if (pool->flags & POOL_DISASSOCIATED)
1756 worker->flags |= WORKER_UNBOUND;
1757
1758 /* successful, commit the pointer to idr */
1759 spin_lock_irq(&pool->lock);
1760 idr_replace(&pool->worker_idr, worker, worker->id);
1761 spin_unlock_irq(&pool->lock);
1762
1763 return worker;
1764
1765 fail:
1766 if (id >= 0) {
1767 spin_lock_irq(&pool->lock);
1768 idr_remove(&pool->worker_idr, id);
1769 spin_unlock_irq(&pool->lock);
1770 }
1771 kfree(worker);
1772 return NULL;
1773 }
1774
1775 /**
1776 * start_worker - start a newly created worker
1777 * @worker: worker to start
1778 *
1779 * Make the pool aware of @worker and start it.
1780 *
1781 * CONTEXT:
1782 * spin_lock_irq(pool->lock).
1783 */
1784 static void start_worker(struct worker *worker)
1785 {
1786 worker->flags |= WORKER_STARTED;
1787 worker->pool->nr_workers++;
1788 worker_enter_idle(worker);
1789 wake_up_process(worker->task);
1790 }
1791
1792 /**
1793 * create_and_start_worker - create and start a worker for a pool
1794 * @pool: the target pool
1795 *
1796 * Grab the managership of @pool and create and start a new worker for it.
1797 */
1798 static int create_and_start_worker(struct worker_pool *pool)
1799 {
1800 struct worker *worker;
1801
1802 mutex_lock(&pool->manager_mutex);
1803
1804 worker = create_worker(pool);
1805 if (worker) {
1806 spin_lock_irq(&pool->lock);
1807 start_worker(worker);
1808 spin_unlock_irq(&pool->lock);
1809 }
1810
1811 mutex_unlock(&pool->manager_mutex);
1812
1813 return worker ? 0 : -ENOMEM;
1814 }
1815
1816 /**
1817 * destroy_worker - destroy a workqueue worker
1818 * @worker: worker to be destroyed
1819 *
1820 * Destroy @worker and adjust @pool stats accordingly.
1821 *
1822 * CONTEXT:
1823 * spin_lock_irq(pool->lock) which is released and regrabbed.
1824 */
1825 static void destroy_worker(struct worker *worker)
1826 {
1827 struct worker_pool *pool = worker->pool;
1828
1829 lockdep_assert_held(&pool->manager_mutex);
1830 lockdep_assert_held(&pool->lock);
1831
1832 /* sanity check frenzy */
1833 if (WARN_ON(worker->current_work) ||
1834 WARN_ON(!list_empty(&worker->scheduled)))
1835 return;
1836
1837 if (worker->flags & WORKER_STARTED)
1838 pool->nr_workers--;
1839 if (worker->flags & WORKER_IDLE)
1840 pool->nr_idle--;
1841
1842 /*
1843 * Once WORKER_DIE is set, the kworker may destroy itself at any
1844 * point. Pin to ensure the task stays until we're done with it.
1845 */
1846 get_task_struct(worker->task);
1847
1848 list_del_init(&worker->entry);
1849 worker->flags |= WORKER_DIE;
1850
1851 idr_remove(&pool->worker_idr, worker->id);
1852
1853 spin_unlock_irq(&pool->lock);
1854
1855 kthread_stop(worker->task);
1856 put_task_struct(worker->task);
1857 kfree(worker);
1858
1859 spin_lock_irq(&pool->lock);
1860 }
1861
1862 static void idle_worker_timeout(unsigned long __pool)
1863 {
1864 struct worker_pool *pool = (void *)__pool;
1865
1866 spin_lock_irq(&pool->lock);
1867
1868 if (too_many_workers(pool)) {
1869 struct worker *worker;
1870 unsigned long expires;
1871
1872 /* idle_list is kept in LIFO order, check the last one */
1873 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1874 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1875
1876 if (time_before(jiffies, expires))
1877 mod_timer(&pool->idle_timer, expires);
1878 else {
1879 /* it's been idle for too long, wake up manager */
1880 pool->flags |= POOL_MANAGE_WORKERS;
1881 wake_up_worker(pool);
1882 }
1883 }
1884
1885 spin_unlock_irq(&pool->lock);
1886 }
1887
1888 static void send_mayday(struct work_struct *work)
1889 {
1890 struct pool_workqueue *pwq = get_work_pwq(work);
1891 struct workqueue_struct *wq = pwq->wq;
1892
1893 lockdep_assert_held(&wq_mayday_lock);
1894
1895 if (!wq->rescuer)
1896 return;
1897
1898 /* mayday mayday mayday */
1899 if (list_empty(&pwq->mayday_node)) {
1900 /*
1901 * If @pwq is for an unbound wq, its base ref may be put at
1902 * any time due to an attribute change. Pin @pwq until the
1903 * rescuer is done with it.
1904 */
1905 get_pwq(pwq);
1906 list_add_tail(&pwq->mayday_node, &wq->maydays);
1907 wake_up_process(wq->rescuer->task);
1908 }
1909 }
1910
1911 static void pool_mayday_timeout(unsigned long __pool)
1912 {
1913 struct worker_pool *pool = (void *)__pool;
1914 struct work_struct *work;
1915
1916 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1917 spin_lock(&pool->lock);
1918
1919 if (need_to_create_worker(pool)) {
1920 /*
1921 * We've been trying to create a new worker but
1922 * haven't been successful. We might be hitting an
1923 * allocation deadlock. Send distress signals to
1924 * rescuers.
1925 */
1926 list_for_each_entry(work, &pool->worklist, entry)
1927 send_mayday(work);
1928 }
1929
1930 spin_unlock(&pool->lock);
1931 spin_unlock_irq(&wq_mayday_lock);
1932
1933 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1934 }
1935
1936 /**
1937 * maybe_create_worker - create a new worker if necessary
1938 * @pool: pool to create a new worker for
1939 *
1940 * Create a new worker for @pool if necessary. @pool is guaranteed to
1941 * have at least one idle worker on return from this function. If
1942 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1943 * sent to all rescuers with works scheduled on @pool to resolve
1944 * possible allocation deadlock.
1945 *
1946 * On return, need_to_create_worker() is guaranteed to be %false and
1947 * may_start_working() %true.
1948 *
1949 * LOCKING:
1950 * spin_lock_irq(pool->lock) which may be released and regrabbed
1951 * multiple times. Does GFP_KERNEL allocations. Called only from
1952 * manager.
1953 */
1954 static void maybe_create_worker(struct worker_pool *pool)
1955 __releases(&pool->lock)
1956 __acquires(&pool->lock)
1957 {
1958 if (!need_to_create_worker(pool))
1959 return;
1960 restart:
1961 spin_unlock_irq(&pool->lock);
1962
1963 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1964 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1965
1966 while (true) {
1967 struct worker *worker;
1968
1969 worker = create_worker(pool);
1970 if (worker) {
1971 del_timer_sync(&pool->mayday_timer);
1972 spin_lock_irq(&pool->lock);
1973 start_worker(worker);
1974 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1975 goto restart;
1976 return;
1977 }
1978
1979 if (!need_to_create_worker(pool))
1980 break;
1981
1982 __set_current_state(TASK_INTERRUPTIBLE);
1983 schedule_timeout(CREATE_COOLDOWN);
1984
1985 if (!need_to_create_worker(pool))
1986 break;
1987 }
1988
1989 del_timer_sync(&pool->mayday_timer);
1990 spin_lock_irq(&pool->lock);
1991 if (need_to_create_worker(pool))
1992 goto restart;
1993 return;
1994 }
1995
1996 /**
1997 * maybe_destroy_worker - destroy workers which have been idle for a while
1998 * @pool: pool to destroy workers for
1999 *
2000 * Destroy @pool workers which have been idle for longer than
2001 * IDLE_WORKER_TIMEOUT.
2002 *
2003 * LOCKING:
2004 * spin_lock_irq(pool->lock) which may be released and regrabbed
2005 * multiple times. Called only from manager.
2006 */
2007 static void maybe_destroy_workers(struct worker_pool *pool)
2008 {
2009 while (too_many_workers(pool)) {
2010 struct worker *worker;
2011 unsigned long expires;
2012
2013 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2014 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2015
2016 if (time_before(jiffies, expires)) {
2017 mod_timer(&pool->idle_timer, expires);
2018 break;
2019 }
2020
2021 destroy_worker(worker);
2022 }
2023 }
2024
2025 /**
2026 * manage_workers - manage worker pool
2027 * @worker: self
2028 *
2029 * Assume the manager role and manage the worker pool @worker belongs
2030 * to. At any given time, there can be only zero or one manager per
2031 * pool. The exclusion is handled automatically by this function.
2032 *
2033 * The caller can safely start processing works on false return. On
2034 * true return, it's guaranteed that need_to_create_worker() is false
2035 * and may_start_working() is true.
2036 *
2037 * CONTEXT:
2038 * spin_lock_irq(pool->lock) which may be released and regrabbed
2039 * multiple times. Does GFP_KERNEL allocations.
2040 *
2041 * RETURNS:
2042 * %false if the pool doesn't need management and the caller can safely
2043 * start processing works, %true if management function was performed and
2044 * the conditions that the caller verified before calling the function may
2045 * no longer be true.
2046 */
2047 static bool manage_workers(struct worker *worker)
2048 {
2049 struct worker_pool *pool = worker->pool;
2050
2051 /*
2052 * Managership is governed by two mutexes - manager_arb and
2053 * manager_mutex. manager_arb handles arbitration of manager role.
2054 * Anyone who successfully grabs manager_arb wins the arbitration
2055 * and becomes the manager. mutex_trylock() on pool->manager_arb
2056 * failure while holding pool->lock reliably indicates that someone
2057 * else is managing the pool and the worker which failed trylock
2058 * can proceed to executing work items. This means that anyone
2059 * grabbing manager_arb is responsible for actually performing
2060 * manager duties. If manager_arb is grabbed and released without
2061 * actual management, the pool may stall indefinitely.
2062 *
2063 * manager_mutex is used for exclusion of actual management
2064 * operations. The holder of manager_mutex can be sure that none
2065 * of management operations, including creation and destruction of
2066 * workers, won't take place until the mutex is released. Because
2067 * manager_mutex doesn't interfere with manager role arbitration,
2068 * it is guaranteed that the pool's management, while may be
2069 * delayed, won't be disturbed by someone else grabbing
2070 * manager_mutex.
2071 */
2072 if (!mutex_trylock(&pool->manager_arb))
2073 return false;
2074
2075 /*
2076 * With manager arbitration won, manager_mutex would be free in
2077 * most cases. trylock first without dropping @pool->lock.
2078 */
2079 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2080 spin_unlock_irq(&pool->lock);
2081 mutex_lock(&pool->manager_mutex);
2082 spin_lock_irq(&pool->lock);
2083 }
2084
2085 pool->flags &= ~POOL_MANAGE_WORKERS;
2086
2087 /*
2088 * Destroy and then create so that may_start_working() is true
2089 * on return.
2090 */
2091 maybe_destroy_workers(pool);
2092 maybe_create_worker(pool);
2093
2094 mutex_unlock(&pool->manager_mutex);
2095 mutex_unlock(&pool->manager_arb);
2096 return true;
2097 }
2098
2099 /**
2100 * process_one_work - process single work
2101 * @worker: self
2102 * @work: work to process
2103 *
2104 * Process @work. This function contains all the logics necessary to
2105 * process a single work including synchronization against and
2106 * interaction with other workers on the same cpu, queueing and
2107 * flushing. As long as context requirement is met, any worker can
2108 * call this function to process a work.
2109 *
2110 * CONTEXT:
2111 * spin_lock_irq(pool->lock) which is released and regrabbed.
2112 */
2113 static void process_one_work(struct worker *worker, struct work_struct *work)
2114 __releases(&pool->lock)
2115 __acquires(&pool->lock)
2116 {
2117 struct pool_workqueue *pwq = get_work_pwq(work);
2118 struct worker_pool *pool = worker->pool;
2119 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2120 int work_color;
2121 struct worker *collision;
2122 unsigned long long exec_start;
2123 char func[128];
2124
2125 #ifdef CONFIG_LOCKDEP
2126 /*
2127 * It is permissible to free the struct work_struct from
2128 * inside the function that is called from it, this we need to
2129 * take into account for lockdep too. To avoid bogus "held
2130 * lock freed" warnings as well as problems when looking into
2131 * work->lockdep_map, make a copy and use that here.
2132 */
2133 struct lockdep_map lockdep_map;
2134
2135 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2136 #endif
2137 /*
2138 * Ensure we're on the correct CPU. DISASSOCIATED test is
2139 * necessary to avoid spurious warnings from rescuers servicing the
2140 * unbound or a disassociated pool.
2141 */
2142 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2143 !(pool->flags & POOL_DISASSOCIATED) &&
2144 raw_smp_processor_id() != pool->cpu);
2145
2146 /*
2147 * A single work shouldn't be executed concurrently by
2148 * multiple workers on a single cpu. Check whether anyone is
2149 * already processing the work. If so, defer the work to the
2150 * currently executing one.
2151 */
2152 collision = find_worker_executing_work(pool, work);
2153 if (unlikely(collision)) {
2154 move_linked_works(work, &collision->scheduled, NULL);
2155 return;
2156 }
2157
2158 /* claim and dequeue */
2159 debug_work_deactivate(work);
2160 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2161 worker->current_work = work;
2162 worker->current_func = work->func;
2163 worker->current_pwq = pwq;
2164 work_color = get_work_color(work);
2165
2166 list_del_init(&work->entry);
2167
2168 /*
2169 * CPU intensive works don't participate in concurrency
2170 * management. They're the scheduler's responsibility.
2171 */
2172 if (unlikely(cpu_intensive))
2173 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2174
2175 /*
2176 * Unbound pool isn't concurrency managed and work items should be
2177 * executed ASAP. Wake up another worker if necessary.
2178 */
2179 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2180 wake_up_worker(pool);
2181
2182 /*
2183 * Record the last pool and clear PENDING which should be the last
2184 * update to @work. Also, do this inside @pool->lock so that
2185 * PENDING and queued state changes happen together while IRQ is
2186 * disabled.
2187 */
2188 set_work_pool_and_clear_pending(work, pool->id);
2189
2190 spin_unlock_irq(&pool->lock);
2191
2192 lock_map_acquire_read(&pwq->wq->lockdep_map);
2193 lock_map_acquire(&lockdep_map);
2194
2195 exec_start = sched_clock();
2196 sprintf(func, "%pf", work->func);
2197
2198 trace_workqueue_execute_start(work);
2199 #ifdef CONFIG_MTK_WQ_DEBUG
2200 mttrace_workqueue_execute_work(work);
2201 #endif //CONFIG_MTK_WQ_DEBUG
2202
2203 worker->current_func(work);
2204
2205 /*
2206 * While we must be careful to not use "work" after this, the trace
2207 * point will only record its address.
2208 */
2209 trace_workqueue_execute_end(work);
2210 #ifdef CONFIG_MTK_WQ_DEBUG
2211 mttrace_workqueue_execute_end(work);
2212 #endif //CONFIG_MTK_WQ_DEBUG
2213
2214 if ((sched_clock() - exec_start)> 1000000000) // dump log if execute more than 1 sec
2215 pr_warning("WQ warning! work (%s, %p) execute more than 1 sec, time: %llu ns\n", func, work, sched_clock() - exec_start);
2216
2217 lock_map_release(&lockdep_map);
2218 lock_map_release(&pwq->wq->lockdep_map);
2219
2220 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2221 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2222 " last function: %pf\n",
2223 current->comm, preempt_count(), task_pid_nr(current),
2224 worker->current_func);
2225 debug_show_held_locks(current);
2226 dump_stack();
2227 }
2228
2229 /*
2230 * The following prevents a kworker from hogging CPU on !PREEMPT
2231 * kernels, where a requeueing work item waiting for something to
2232 * happen could deadlock with stop_machine as such work item could
2233 * indefinitely requeue itself while all other CPUs are trapped in
2234 * stop_machine.
2235 */
2236 cond_resched();
2237
2238 spin_lock_irq(&pool->lock);
2239
2240 /* clear cpu intensive status */
2241 if (unlikely(cpu_intensive))
2242 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2243
2244 /* we're done with it, release */
2245 hash_del(&worker->hentry);
2246 worker->current_work = NULL;
2247 worker->current_func = NULL;
2248 worker->current_pwq = NULL;
2249 worker->desc_valid = false;
2250 pwq_dec_nr_in_flight(pwq, work_color);
2251 }
2252
2253 /**
2254 * process_scheduled_works - process scheduled works
2255 * @worker: self
2256 *
2257 * Process all scheduled works. Please note that the scheduled list
2258 * may change while processing a work, so this function repeatedly
2259 * fetches a work from the top and executes it.
2260 *
2261 * CONTEXT:
2262 * spin_lock_irq(pool->lock) which may be released and regrabbed
2263 * multiple times.
2264 */
2265 static void process_scheduled_works(struct worker *worker)
2266 {
2267 while (!list_empty(&worker->scheduled)) {
2268 struct work_struct *work = list_first_entry(&worker->scheduled,
2269 struct work_struct, entry);
2270 process_one_work(worker, work);
2271 }
2272 }
2273
2274 /**
2275 * worker_thread - the worker thread function
2276 * @__worker: self
2277 *
2278 * The worker thread function. All workers belong to a worker_pool -
2279 * either a per-cpu one or dynamic unbound one. These workers process all
2280 * work items regardless of their specific target workqueue. The only
2281 * exception is work items which belong to workqueues with a rescuer which
2282 * will be explained in rescuer_thread().
2283 */
2284 static int worker_thread(void *__worker)
2285 {
2286 struct worker *worker = __worker;
2287 struct worker_pool *pool = worker->pool;
2288
2289 /* tell the scheduler that this is a workqueue worker */
2290 worker->task->flags |= PF_WQ_WORKER;
2291 woke_up:
2292 spin_lock_irq(&pool->lock);
2293
2294 /* am I supposed to die? */
2295 if (unlikely(worker->flags & WORKER_DIE)) {
2296 spin_unlock_irq(&pool->lock);
2297 WARN_ON_ONCE(!list_empty(&worker->entry));
2298 worker->task->flags &= ~PF_WQ_WORKER;
2299 return 0;
2300 }
2301
2302 worker_leave_idle(worker);
2303 recheck:
2304 /* no more worker necessary? */
2305 if (!need_more_worker(pool))
2306 goto sleep;
2307
2308 /* do we need to manage? */
2309 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2310 goto recheck;
2311
2312 /*
2313 * ->scheduled list can only be filled while a worker is
2314 * preparing to process a work or actually processing it.
2315 * Make sure nobody diddled with it while I was sleeping.
2316 */
2317 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2318
2319 /*
2320 * Finish PREP stage. We're guaranteed to have at least one idle
2321 * worker or that someone else has already assumed the manager
2322 * role. This is where @worker starts participating in concurrency
2323 * management if applicable and concurrency management is restored
2324 * after being rebound. See rebind_workers() for details.
2325 */
2326 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2327
2328 do {
2329 struct work_struct *work =
2330 list_first_entry(&pool->worklist,
2331 struct work_struct, entry);
2332
2333 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2334 /* optimization path, not strictly necessary */
2335 process_one_work(worker, work);
2336 if (unlikely(!list_empty(&worker->scheduled)))
2337 process_scheduled_works(worker);
2338 } else {
2339 move_linked_works(work, &worker->scheduled, NULL);
2340 process_scheduled_works(worker);
2341 }
2342 } while (keep_working(pool));
2343
2344 worker_set_flags(worker, WORKER_PREP, false);
2345 sleep:
2346 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2347 goto recheck;
2348
2349 /*
2350 * pool->lock is held and there's no work to process and no need to
2351 * manage, sleep. Workers are woken up only while holding
2352 * pool->lock or from local cpu, so setting the current state
2353 * before releasing pool->lock is enough to prevent losing any
2354 * event.
2355 */
2356 worker_enter_idle(worker);
2357 __set_current_state(TASK_INTERRUPTIBLE);
2358 spin_unlock_irq(&pool->lock);
2359 schedule();
2360 goto woke_up;
2361 }
2362
2363 /**
2364 * rescuer_thread - the rescuer thread function
2365 * @__rescuer: self
2366 *
2367 * Workqueue rescuer thread function. There's one rescuer for each
2368 * workqueue which has WQ_MEM_RECLAIM set.
2369 *
2370 * Regular work processing on a pool may block trying to create a new
2371 * worker which uses GFP_KERNEL allocation which has slight chance of
2372 * developing into deadlock if some works currently on the same queue
2373 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2374 * the problem rescuer solves.
2375 *
2376 * When such condition is possible, the pool summons rescuers of all
2377 * workqueues which have works queued on the pool and let them process
2378 * those works so that forward progress can be guaranteed.
2379 *
2380 * This should happen rarely.
2381 */
2382 static int rescuer_thread(void *__rescuer)
2383 {
2384 struct worker *rescuer = __rescuer;
2385 struct workqueue_struct *wq = rescuer->rescue_wq;
2386 struct list_head *scheduled = &rescuer->scheduled;
2387 bool should_stop;
2388
2389 set_user_nice(current, RESCUER_NICE_LEVEL);
2390
2391 /*
2392 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2393 * doesn't participate in concurrency management.
2394 */
2395 rescuer->task->flags |= PF_WQ_WORKER;
2396 repeat:
2397 set_current_state(TASK_INTERRUPTIBLE);
2398
2399 /*
2400 * By the time the rescuer is requested to stop, the workqueue
2401 * shouldn't have any work pending, but @wq->maydays may still have
2402 * pwq(s) queued. This can happen by non-rescuer workers consuming
2403 * all the work items before the rescuer got to them. Go through
2404 * @wq->maydays processing before acting on should_stop so that the
2405 * list is always empty on exit.
2406 */
2407 should_stop = kthread_should_stop();
2408
2409 /* see whether any pwq is asking for help */
2410 spin_lock_irq(&wq_mayday_lock);
2411
2412 while (!list_empty(&wq->maydays)) {
2413 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2414 struct pool_workqueue, mayday_node);
2415 struct worker_pool *pool = pwq->pool;
2416 struct work_struct *work, *n;
2417
2418 __set_current_state(TASK_RUNNING);
2419 list_del_init(&pwq->mayday_node);
2420
2421 spin_unlock_irq(&wq_mayday_lock);
2422
2423 /* migrate to the target cpu if possible */
2424 worker_maybe_bind_and_lock(pool);
2425 rescuer->pool = pool;
2426
2427 /*
2428 * Slurp in all works issued via this workqueue and
2429 * process'em.
2430 */
2431 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2432 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2433 if (get_work_pwq(work) == pwq)
2434 move_linked_works(work, scheduled, &n);
2435
2436 process_scheduled_works(rescuer);
2437
2438 /*
2439 * Put the reference grabbed by send_mayday(). @pool won't
2440 * go away while we're holding its lock.
2441 */
2442 put_pwq(pwq);
2443
2444 /*
2445 * Leave this pool. If keep_working() is %true, notify a
2446 * regular worker; otherwise, we end up with 0 concurrency
2447 * and stalling the execution.
2448 */
2449 if (keep_working(pool))
2450 wake_up_worker(pool);
2451
2452 rescuer->pool = NULL;
2453 spin_unlock(&pool->lock);
2454 spin_lock(&wq_mayday_lock);
2455 }
2456
2457 spin_unlock_irq(&wq_mayday_lock);
2458
2459 if (should_stop) {
2460 __set_current_state(TASK_RUNNING);
2461 rescuer->task->flags &= ~PF_WQ_WORKER;
2462 return 0;
2463 }
2464
2465 /* rescuers should never participate in concurrency management */
2466 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2467 schedule();
2468 goto repeat;
2469 }
2470
2471 struct wq_barrier {
2472 struct work_struct work;
2473 struct completion done;
2474 };
2475
2476 static void wq_barrier_func(struct work_struct *work)
2477 {
2478 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2479 complete(&barr->done);
2480 }
2481
2482 /**
2483 * insert_wq_barrier - insert a barrier work
2484 * @pwq: pwq to insert barrier into
2485 * @barr: wq_barrier to insert
2486 * @target: target work to attach @barr to
2487 * @worker: worker currently executing @target, NULL if @target is not executing
2488 *
2489 * @barr is linked to @target such that @barr is completed only after
2490 * @target finishes execution. Please note that the ordering
2491 * guarantee is observed only with respect to @target and on the local
2492 * cpu.
2493 *
2494 * Currently, a queued barrier can't be canceled. This is because
2495 * try_to_grab_pending() can't determine whether the work to be
2496 * grabbed is at the head of the queue and thus can't clear LINKED
2497 * flag of the previous work while there must be a valid next work
2498 * after a work with LINKED flag set.
2499 *
2500 * Note that when @worker is non-NULL, @target may be modified
2501 * underneath us, so we can't reliably determine pwq from @target.
2502 *
2503 * CONTEXT:
2504 * spin_lock_irq(pool->lock).
2505 */
2506 static void insert_wq_barrier(struct pool_workqueue *pwq,
2507 struct wq_barrier *barr,
2508 struct work_struct *target, struct worker *worker)
2509 {
2510 struct list_head *head;
2511 unsigned int linked = 0;
2512
2513 /*
2514 * debugobject calls are safe here even with pool->lock locked
2515 * as we know for sure that this will not trigger any of the
2516 * checks and call back into the fixup functions where we
2517 * might deadlock.
2518 */
2519 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2520 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2521 init_completion(&barr->done);
2522
2523 /*
2524 * If @target is currently being executed, schedule the
2525 * barrier to the worker; otherwise, put it after @target.
2526 */
2527 if (worker)
2528 head = worker->scheduled.next;
2529 else {
2530 unsigned long *bits = work_data_bits(target);
2531
2532 head = target->entry.next;
2533 /* there can already be other linked works, inherit and set */
2534 linked = *bits & WORK_STRUCT_LINKED;
2535 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2536 }
2537
2538 debug_work_activate(&barr->work);
2539 insert_work(pwq, &barr->work, head,
2540 work_color_to_flags(WORK_NO_COLOR) | linked);
2541 }
2542
2543 /**
2544 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2545 * @wq: workqueue being flushed
2546 * @flush_color: new flush color, < 0 for no-op
2547 * @work_color: new work color, < 0 for no-op
2548 *
2549 * Prepare pwqs for workqueue flushing.
2550 *
2551 * If @flush_color is non-negative, flush_color on all pwqs should be
2552 * -1. If no pwq has in-flight commands at the specified color, all
2553 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2554 * has in flight commands, its pwq->flush_color is set to
2555 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2556 * wakeup logic is armed and %true is returned.
2557 *
2558 * The caller should have initialized @wq->first_flusher prior to
2559 * calling this function with non-negative @flush_color. If
2560 * @flush_color is negative, no flush color update is done and %false
2561 * is returned.
2562 *
2563 * If @work_color is non-negative, all pwqs should have the same
2564 * work_color which is previous to @work_color and all will be
2565 * advanced to @work_color.
2566 *
2567 * CONTEXT:
2568 * mutex_lock(wq->mutex).
2569 *
2570 * RETURNS:
2571 * %true if @flush_color >= 0 and there's something to flush. %false
2572 * otherwise.
2573 */
2574 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2575 int flush_color, int work_color)
2576 {
2577 bool wait = false;
2578 struct pool_workqueue *pwq;
2579
2580 if (flush_color >= 0) {
2581 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2582 atomic_set(&wq->nr_pwqs_to_flush, 1);
2583 }
2584
2585 for_each_pwq(pwq, wq) {
2586 struct worker_pool *pool = pwq->pool;
2587
2588 spin_lock_irq(&pool->lock);
2589
2590 if (flush_color >= 0) {
2591 WARN_ON_ONCE(pwq->flush_color != -1);
2592
2593 if (pwq->nr_in_flight[flush_color]) {
2594 pwq->flush_color = flush_color;
2595 atomic_inc(&wq->nr_pwqs_to_flush);
2596 wait = true;
2597 }
2598 }
2599
2600 if (work_color >= 0) {
2601 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2602 pwq->work_color = work_color;
2603 }
2604
2605 spin_unlock_irq(&pool->lock);
2606 }
2607
2608 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2609 complete(&wq->first_flusher->done);
2610
2611 return wait;
2612 }
2613
2614 /**
2615 * flush_workqueue - ensure that any scheduled work has run to completion.
2616 * @wq: workqueue to flush
2617 *
2618 * This function sleeps until all work items which were queued on entry
2619 * have finished execution, but it is not livelocked by new incoming ones.
2620 */
2621 void flush_workqueue(struct workqueue_struct *wq)
2622 {
2623 struct wq_flusher this_flusher = {
2624 .list = LIST_HEAD_INIT(this_flusher.list),
2625 .flush_color = -1,
2626 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2627 };
2628 int next_color;
2629
2630 lock_map_acquire(&wq->lockdep_map);
2631 lock_map_release(&wq->lockdep_map);
2632
2633 mutex_lock(&wq->mutex);
2634
2635 /*
2636 * Start-to-wait phase
2637 */
2638 next_color = work_next_color(wq->work_color);
2639
2640 if (next_color != wq->flush_color) {
2641 /*
2642 * Color space is not full. The current work_color
2643 * becomes our flush_color and work_color is advanced
2644 * by one.
2645 */
2646 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2647 this_flusher.flush_color = wq->work_color;
2648 wq->work_color = next_color;
2649
2650 if (!wq->first_flusher) {
2651 /* no flush in progress, become the first flusher */
2652 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2653
2654 wq->first_flusher = &this_flusher;
2655
2656 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2657 wq->work_color)) {
2658 /* nothing to flush, done */
2659 wq->flush_color = next_color;
2660 wq->first_flusher = NULL;
2661 goto out_unlock;
2662 }
2663 } else {
2664 /* wait in queue */
2665 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2666 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2667 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2668 }
2669 } else {
2670 /*
2671 * Oops, color space is full, wait on overflow queue.
2672 * The next flush completion will assign us
2673 * flush_color and transfer to flusher_queue.
2674 */
2675 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2676 }
2677
2678 mutex_unlock(&wq->mutex);
2679
2680 wait_for_completion(&this_flusher.done);
2681
2682 /*
2683 * Wake-up-and-cascade phase
2684 *
2685 * First flushers are responsible for cascading flushes and
2686 * handling overflow. Non-first flushers can simply return.
2687 */
2688 if (wq->first_flusher != &this_flusher)
2689 return;
2690
2691 mutex_lock(&wq->mutex);
2692
2693 /* we might have raced, check again with mutex held */
2694 if (wq->first_flusher != &this_flusher)
2695 goto out_unlock;
2696
2697 wq->first_flusher = NULL;
2698
2699 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2700 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2701
2702 while (true) {
2703 struct wq_flusher *next, *tmp;
2704
2705 /* complete all the flushers sharing the current flush color */
2706 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2707 if (next->flush_color != wq->flush_color)
2708 break;
2709 list_del_init(&next->list);
2710 complete(&next->done);
2711 }
2712
2713 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2714 wq->flush_color != work_next_color(wq->work_color));
2715
2716 /* this flush_color is finished, advance by one */
2717 wq->flush_color = work_next_color(wq->flush_color);
2718
2719 /* one color has been freed, handle overflow queue */
2720 if (!list_empty(&wq->flusher_overflow)) {
2721 /*
2722 * Assign the same color to all overflowed
2723 * flushers, advance work_color and append to
2724 * flusher_queue. This is the start-to-wait
2725 * phase for these overflowed flushers.
2726 */
2727 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2728 tmp->flush_color = wq->work_color;
2729
2730 wq->work_color = work_next_color(wq->work_color);
2731
2732 list_splice_tail_init(&wq->flusher_overflow,
2733 &wq->flusher_queue);
2734 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2735 }
2736
2737 if (list_empty(&wq->flusher_queue)) {
2738 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2739 break;
2740 }
2741
2742 /*
2743 * Need to flush more colors. Make the next flusher
2744 * the new first flusher and arm pwqs.
2745 */
2746 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2747 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2748
2749 list_del_init(&next->list);
2750 wq->first_flusher = next;
2751
2752 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2753 break;
2754
2755 /*
2756 * Meh... this color is already done, clear first
2757 * flusher and repeat cascading.
2758 */
2759 wq->first_flusher = NULL;
2760 }
2761
2762 out_unlock:
2763 mutex_unlock(&wq->mutex);
2764 }
2765 EXPORT_SYMBOL_GPL(flush_workqueue);
2766
2767 /**
2768 * drain_workqueue - drain a workqueue
2769 * @wq: workqueue to drain
2770 *
2771 * Wait until the workqueue becomes empty. While draining is in progress,
2772 * only chain queueing is allowed. IOW, only currently pending or running
2773 * work items on @wq can queue further work items on it. @wq is flushed
2774 * repeatedly until it becomes empty. The number of flushing is detemined
2775 * by the depth of chaining and should be relatively short. Whine if it
2776 * takes too long.
2777 */
2778 void drain_workqueue(struct workqueue_struct *wq)
2779 {
2780 unsigned int flush_cnt = 0;
2781 struct pool_workqueue *pwq;
2782
2783 /*
2784 * __queue_work() needs to test whether there are drainers, is much
2785 * hotter than drain_workqueue() and already looks at @wq->flags.
2786 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2787 */
2788 mutex_lock(&wq->mutex);
2789 if (!wq->nr_drainers++)
2790 wq->flags |= __WQ_DRAINING;
2791 mutex_unlock(&wq->mutex);
2792 reflush:
2793 flush_workqueue(wq);
2794
2795 mutex_lock(&wq->mutex);
2796
2797 for_each_pwq(pwq, wq) {
2798 bool drained;
2799
2800 spin_lock_irq(&pwq->pool->lock);
2801 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2802 spin_unlock_irq(&pwq->pool->lock);
2803
2804 if (drained)
2805 continue;
2806
2807 if (++flush_cnt == 10 ||
2808 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2809 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2810 wq->name, flush_cnt);
2811
2812 mutex_unlock(&wq->mutex);
2813 goto reflush;
2814 }
2815
2816 if (!--wq->nr_drainers)
2817 wq->flags &= ~__WQ_DRAINING;
2818 mutex_unlock(&wq->mutex);
2819 }
2820 EXPORT_SYMBOL_GPL(drain_workqueue);
2821
2822 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2823 {
2824 struct worker *worker = NULL;
2825 struct worker_pool *pool;
2826 struct pool_workqueue *pwq;
2827
2828 might_sleep();
2829
2830 local_irq_disable();
2831 pool = get_work_pool(work);
2832 if (!pool) {
2833 local_irq_enable();
2834 return false;
2835 }
2836
2837 spin_lock(&pool->lock);
2838 /* see the comment in try_to_grab_pending() with the same code */
2839 pwq = get_work_pwq(work);
2840 if (pwq) {
2841 if (unlikely(pwq->pool != pool))
2842 goto already_gone;
2843 } else {
2844 worker = find_worker_executing_work(pool, work);
2845 if (!worker)
2846 goto already_gone;
2847 pwq = worker->current_pwq;
2848 }
2849
2850 insert_wq_barrier(pwq, barr, work, worker);
2851 spin_unlock_irq(&pool->lock);
2852
2853 /*
2854 * If @max_active is 1 or rescuer is in use, flushing another work
2855 * item on the same workqueue may lead to deadlock. Make sure the
2856 * flusher is not running on the same workqueue by verifying write
2857 * access.
2858 */
2859 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2860 lock_map_acquire(&pwq->wq->lockdep_map);
2861 else
2862 lock_map_acquire_read(&pwq->wq->lockdep_map);
2863 lock_map_release(&pwq->wq->lockdep_map);
2864
2865 return true;
2866 already_gone:
2867 spin_unlock_irq(&pool->lock);
2868 return false;
2869 }
2870
2871 /**
2872 * flush_work - wait for a work to finish executing the last queueing instance
2873 * @work: the work to flush
2874 *
2875 * Wait until @work has finished execution. @work is guaranteed to be idle
2876 * on return if it hasn't been requeued since flush started.
2877 *
2878 * RETURNS:
2879 * %true if flush_work() waited for the work to finish execution,
2880 * %false if it was already idle.
2881 */
2882 bool flush_work(struct work_struct *work)
2883 {
2884 struct wq_barrier barr;
2885
2886 lock_map_acquire(&work->lockdep_map);
2887 lock_map_release(&work->lockdep_map);
2888
2889 if (start_flush_work(work, &barr)) {
2890 wait_for_completion(&barr.done);
2891 destroy_work_on_stack(&barr.work);
2892 return true;
2893 } else {
2894 return false;
2895 }
2896 }
2897 EXPORT_SYMBOL_GPL(flush_work);
2898
2899 struct cwt_wait {
2900 wait_queue_t wait;
2901 struct work_struct *work;
2902 };
2903
2904 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2905 {
2906 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2907
2908 if (cwait->work != key)
2909 return 0;
2910 return autoremove_wake_function(wait, mode, sync, key);
2911 }
2912
2913 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2914 {
2915 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2916 unsigned long flags;
2917 int ret;
2918
2919 do {
2920 ret = try_to_grab_pending(work, is_dwork, &flags);
2921 /*
2922 * If someone else is already canceling, wait for it to
2923 * finish. flush_work() doesn't work for PREEMPT_NONE
2924 * because we may get scheduled between @work's completion
2925 * and the other canceling task resuming and clearing
2926 * CANCELING - flush_work() will return false immediately
2927 * as @work is no longer busy, try_to_grab_pending() will
2928 * return -ENOENT as @work is still being canceled and the
2929 * other canceling task won't be able to clear CANCELING as
2930 * we're hogging the CPU.
2931 *
2932 * Let's wait for completion using a waitqueue. As this
2933 * may lead to the thundering herd problem, use a custom
2934 * wake function which matches @work along with exclusive
2935 * wait and wakeup.
2936 */
2937 if (unlikely(ret == -ENOENT)) {
2938 struct cwt_wait cwait;
2939
2940 init_wait(&cwait.wait);
2941 cwait.wait.func = cwt_wakefn;
2942 cwait.work = work;
2943
2944 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2945 TASK_UNINTERRUPTIBLE);
2946 if (work_is_canceling(work))
2947 schedule();
2948 finish_wait(&cancel_waitq, &cwait.wait);
2949 }
2950 } while (unlikely(ret < 0));
2951
2952 /* tell other tasks trying to grab @work to back off */
2953 mark_work_canceling(work);
2954 local_irq_restore(flags);
2955
2956 flush_work(work);
2957 clear_work_data(work);
2958
2959 /*
2960 * Paired with prepare_to_wait() above so that either
2961 * waitqueue_active() is visible here or !work_is_canceling() is
2962 * visible there.
2963 */
2964 smp_mb();
2965 if (waitqueue_active(&cancel_waitq))
2966 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2967
2968 return ret;
2969 }
2970
2971 /**
2972 * cancel_work_sync - cancel a work and wait for it to finish
2973 * @work: the work to cancel
2974 *
2975 * Cancel @work and wait for its execution to finish. This function
2976 * can be used even if the work re-queues itself or migrates to
2977 * another workqueue. On return from this function, @work is
2978 * guaranteed to be not pending or executing on any CPU.
2979 *
2980 * cancel_work_sync(&delayed_work->work) must not be used for
2981 * delayed_work's. Use cancel_delayed_work_sync() instead.
2982 *
2983 * The caller must ensure that the workqueue on which @work was last
2984 * queued can't be destroyed before this function returns.
2985 *
2986 * RETURNS:
2987 * %true if @work was pending, %false otherwise.
2988 */
2989 bool cancel_work_sync(struct work_struct *work)
2990 {
2991 return __cancel_work_timer(work, false);
2992 }
2993 EXPORT_SYMBOL_GPL(cancel_work_sync);
2994
2995 /**
2996 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2997 * @dwork: the delayed work to flush
2998 *
2999 * Delayed timer is cancelled and the pending work is queued for
3000 * immediate execution. Like flush_work(), this function only
3001 * considers the last queueing instance of @dwork.
3002 *
3003 * RETURNS:
3004 * %true if flush_work() waited for the work to finish execution,
3005 * %false if it was already idle.
3006 */
3007 bool flush_delayed_work(struct delayed_work *dwork)
3008 {
3009 local_irq_disable();
3010 if (del_timer_sync(&dwork->timer))
3011 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3012 local_irq_enable();
3013 return flush_work(&dwork->work);
3014 }
3015 EXPORT_SYMBOL(flush_delayed_work);
3016
3017 /**
3018 * cancel_delayed_work - cancel a delayed work
3019 * @dwork: delayed_work to cancel
3020 *
3021 * Kill off a pending delayed_work. Returns %true if @dwork was pending
3022 * and canceled; %false if wasn't pending. Note that the work callback
3023 * function may still be running on return, unless it returns %true and the
3024 * work doesn't re-arm itself. Explicitly flush or use
3025 * cancel_delayed_work_sync() to wait on it.
3026 *
3027 * This function is safe to call from any context including IRQ handler.
3028 */
3029 bool cancel_delayed_work(struct delayed_work *dwork)
3030 {
3031 unsigned long flags;
3032 int ret;
3033
3034 do {
3035 ret = try_to_grab_pending(&dwork->work, true, &flags);
3036 } while (unlikely(ret == -EAGAIN));
3037
3038 if (unlikely(ret < 0))
3039 return false;
3040
3041 set_work_pool_and_clear_pending(&dwork->work,
3042 get_work_pool_id(&dwork->work));
3043 local_irq_restore(flags);
3044 return ret;
3045 }
3046 EXPORT_SYMBOL(cancel_delayed_work);
3047
3048 /**
3049 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3050 * @dwork: the delayed work cancel
3051 *
3052 * This is cancel_work_sync() for delayed works.
3053 *
3054 * RETURNS:
3055 * %true if @dwork was pending, %false otherwise.
3056 */
3057 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3058 {
3059 return __cancel_work_timer(&dwork->work, true);
3060 }
3061 EXPORT_SYMBOL(cancel_delayed_work_sync);
3062
3063 /**
3064 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3065 * @func: the function to call
3066 *
3067 * schedule_on_each_cpu() executes @func on each online CPU using the
3068 * system workqueue and blocks until all CPUs have completed.
3069 * schedule_on_each_cpu() is very slow.
3070 *
3071 * RETURNS:
3072 * 0 on success, -errno on failure.
3073 */
3074 int schedule_on_each_cpu(work_func_t func)
3075 {
3076 int cpu;
3077 struct work_struct __percpu *works;
3078
3079 works = alloc_percpu(struct work_struct);
3080 if (!works)
3081 return -ENOMEM;
3082
3083 get_online_cpus();
3084
3085 for_each_online_cpu(cpu) {
3086 struct work_struct *work = per_cpu_ptr(works, cpu);
3087
3088 INIT_WORK(work, func);
3089 schedule_work_on(cpu, work);
3090 }
3091
3092 for_each_online_cpu(cpu)
3093 flush_work(per_cpu_ptr(works, cpu));
3094
3095 put_online_cpus();
3096 free_percpu(works);
3097 return 0;
3098 }
3099
3100 /**
3101 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3102 *
3103 * Forces execution of the kernel-global workqueue and blocks until its
3104 * completion.
3105 *
3106 * Think twice before calling this function! It's very easy to get into
3107 * trouble if you don't take great care. Either of the following situations
3108 * will lead to deadlock:
3109 *
3110 * One of the work items currently on the workqueue needs to acquire
3111 * a lock held by your code or its caller.
3112 *
3113 * Your code is running in the context of a work routine.
3114 *
3115 * They will be detected by lockdep when they occur, but the first might not
3116 * occur very often. It depends on what work items are on the workqueue and
3117 * what locks they need, which you have no control over.
3118 *
3119 * In most situations flushing the entire workqueue is overkill; you merely
3120 * need to know that a particular work item isn't queued and isn't running.
3121 * In such cases you should use cancel_delayed_work_sync() or
3122 * cancel_work_sync() instead.
3123 */
3124 void flush_scheduled_work(void)
3125 {
3126 flush_workqueue(system_wq);
3127 }
3128 EXPORT_SYMBOL(flush_scheduled_work);
3129
3130 /**
3131 * execute_in_process_context - reliably execute the routine with user context
3132 * @fn: the function to execute
3133 * @ew: guaranteed storage for the execute work structure (must
3134 * be available when the work executes)
3135 *
3136 * Executes the function immediately if process context is available,
3137 * otherwise schedules the function for delayed execution.
3138 *
3139 * Returns: 0 - function was executed
3140 * 1 - function was scheduled for execution
3141 */
3142 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3143 {
3144 if (!in_interrupt()) {
3145 fn(&ew->work);
3146 return 0;
3147 }
3148
3149 INIT_WORK(&ew->work, fn);
3150 schedule_work(&ew->work);
3151
3152 return 1;
3153 }
3154 EXPORT_SYMBOL_GPL(execute_in_process_context);
3155
3156 #ifdef CONFIG_SYSFS
3157 /*
3158 * Workqueues with WQ_SYSFS flag set is visible to userland via
3159 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3160 * following attributes.
3161 *
3162 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3163 * max_active RW int : maximum number of in-flight work items
3164 *
3165 * Unbound workqueues have the following extra attributes.
3166 *
3167 * id RO int : the associated pool ID
3168 * nice RW int : nice value of the workers
3169 * cpumask RW mask : bitmask of allowed CPUs for the workers
3170 */
3171 struct wq_device {
3172 struct workqueue_struct *wq;
3173 struct device dev;
3174 };
3175
3176 static struct workqueue_struct *dev_to_wq(struct device *dev)
3177 {
3178 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3179
3180 return wq_dev->wq;
3181 }
3182
3183 static ssize_t wq_per_cpu_show(struct device *dev,
3184 struct device_attribute *attr, char *buf)
3185 {
3186 struct workqueue_struct *wq = dev_to_wq(dev);
3187
3188 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3189 }
3190
3191 static ssize_t wq_max_active_show(struct device *dev,
3192 struct device_attribute *attr, char *buf)
3193 {
3194 struct workqueue_struct *wq = dev_to_wq(dev);
3195
3196 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3197 }
3198
3199 static ssize_t wq_max_active_store(struct device *dev,
3200 struct device_attribute *attr,
3201 const char *buf, size_t count)
3202 {
3203 struct workqueue_struct *wq = dev_to_wq(dev);
3204 int val;
3205
3206 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3207 return -EINVAL;
3208
3209 workqueue_set_max_active(wq, val);
3210 return count;
3211 }
3212
3213 static struct device_attribute wq_sysfs_attrs[] = {
3214 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3215 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3216 __ATTR_NULL,
3217 };
3218
3219 static ssize_t wq_pool_ids_show(struct device *dev,
3220 struct device_attribute *attr, char *buf)
3221 {
3222 struct workqueue_struct *wq = dev_to_wq(dev);
3223 const char *delim = "";
3224 int node, written = 0;
3225
3226 rcu_read_lock_sched();
3227 for_each_node(node) {
3228 written += scnprintf(buf + written, PAGE_SIZE - written,
3229 "%s%d:%d", delim, node,
3230 unbound_pwq_by_node(wq, node)->pool->id);
3231 delim = " ";
3232 }
3233 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3234 rcu_read_unlock_sched();
3235
3236 return written;
3237 }
3238
3239 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3240 char *buf)
3241 {
3242 struct workqueue_struct *wq = dev_to_wq(dev);
3243 int written;
3244
3245 mutex_lock(&wq->mutex);
3246 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3247 mutex_unlock(&wq->mutex);
3248
3249 return written;
3250 }
3251
3252 /* prepare workqueue_attrs for sysfs store operations */
3253 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3254 {
3255 struct workqueue_attrs *attrs;
3256
3257 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3258 if (!attrs)
3259 return NULL;
3260
3261 mutex_lock(&wq->mutex);
3262 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3263 mutex_unlock(&wq->mutex);
3264 return attrs;
3265 }
3266
3267 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3268 const char *buf, size_t count)
3269 {
3270 struct workqueue_struct *wq = dev_to_wq(dev);
3271 struct workqueue_attrs *attrs;
3272 int ret;
3273
3274 attrs = wq_sysfs_prep_attrs(wq);
3275 if (!attrs)
3276 return -ENOMEM;
3277
3278 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3279 attrs->nice >= -20 && attrs->nice <= 19)
3280 ret = apply_workqueue_attrs(wq, attrs);
3281 else
3282 ret = -EINVAL;
3283
3284 free_workqueue_attrs(attrs);
3285 return ret ?: count;
3286 }
3287
3288 static ssize_t wq_cpumask_show(struct device *dev,
3289 struct device_attribute *attr, char *buf)
3290 {
3291 struct workqueue_struct *wq = dev_to_wq(dev);
3292 int written;
3293
3294 mutex_lock(&wq->mutex);
3295 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3296 mutex_unlock(&wq->mutex);
3297
3298 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3299 return written;
3300 }
3301
3302 static ssize_t wq_cpumask_store(struct device *dev,
3303 struct device_attribute *attr,
3304 const char *buf, size_t count)
3305 {
3306 struct workqueue_struct *wq = dev_to_wq(dev);
3307 struct workqueue_attrs *attrs;
3308 int ret;
3309
3310 attrs = wq_sysfs_prep_attrs(wq);
3311 if (!attrs)
3312 return -ENOMEM;
3313
3314 ret = cpumask_parse(buf, attrs->cpumask);
3315 if (!ret)
3316 ret = apply_workqueue_attrs(wq, attrs);
3317
3318 free_workqueue_attrs(attrs);
3319 return ret ?: count;
3320 }
3321
3322 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3323 char *buf)
3324 {
3325 struct workqueue_struct *wq = dev_to_wq(dev);
3326 int written;
3327
3328 mutex_lock(&wq->mutex);
3329 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3330 !wq->unbound_attrs->no_numa);
3331 mutex_unlock(&wq->mutex);
3332
3333 return written;
3334 }
3335
3336 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3337 const char *buf, size_t count)
3338 {
3339 struct workqueue_struct *wq = dev_to_wq(dev);
3340 struct workqueue_attrs *attrs;
3341 int v, ret;
3342
3343 attrs = wq_sysfs_prep_attrs(wq);
3344 if (!attrs)
3345 return -ENOMEM;
3346
3347 ret = -EINVAL;
3348 if (sscanf(buf, "%d", &v) == 1) {
3349 attrs->no_numa = !v;
3350 ret = apply_workqueue_attrs(wq, attrs);
3351 }
3352
3353 free_workqueue_attrs(attrs);
3354 return ret ?: count;
3355 }
3356
3357 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3358 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3359 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3360 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3361 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3362 __ATTR_NULL,
3363 };
3364
3365 static struct bus_type wq_subsys = {
3366 .name = "workqueue",
3367 .dev_attrs = wq_sysfs_attrs,
3368 };
3369
3370 static int __init wq_sysfs_init(void)
3371 {
3372 return subsys_virtual_register(&wq_subsys, NULL);
3373 }
3374 core_initcall(wq_sysfs_init);
3375
3376 static void wq_device_release(struct device *dev)
3377 {
3378 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3379
3380 kfree(wq_dev);
3381 }
3382
3383 /**
3384 * workqueue_sysfs_register - make a workqueue visible in sysfs
3385 * @wq: the workqueue to register
3386 *
3387 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3388 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3389 * which is the preferred method.
3390 *
3391 * Workqueue user should use this function directly iff it wants to apply
3392 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3393 * apply_workqueue_attrs() may race against userland updating the
3394 * attributes.
3395 *
3396 * Returns 0 on success, -errno on failure.
3397 */
3398 int workqueue_sysfs_register(struct workqueue_struct *wq)
3399 {
3400 struct wq_device *wq_dev;
3401 int ret;
3402
3403 /*
3404 * Adjusting max_active or creating new pwqs by applyting
3405 * attributes breaks ordering guarantee. Disallow exposing ordered
3406 * workqueues.
3407 */
3408 if (WARN_ON(wq->flags & __WQ_ORDERED))
3409 return -EINVAL;
3410
3411 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3412 if (!wq_dev)
3413 return -ENOMEM;
3414
3415 wq_dev->wq = wq;
3416 wq_dev->dev.bus = &wq_subsys;
3417 wq_dev->dev.init_name = wq->name;
3418 wq_dev->dev.release = wq_device_release;
3419
3420 /*
3421 * unbound_attrs are created separately. Suppress uevent until
3422 * everything is ready.
3423 */
3424 dev_set_uevent_suppress(&wq_dev->dev, true);
3425
3426 ret = device_register(&wq_dev->dev);
3427 if (ret) {
3428 kfree(wq_dev);
3429 wq->wq_dev = NULL;
3430 return ret;
3431 }
3432
3433 if (wq->flags & WQ_UNBOUND) {
3434 struct device_attribute *attr;
3435
3436 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3437 ret = device_create_file(&wq_dev->dev, attr);
3438 if (ret) {
3439 device_unregister(&wq_dev->dev);
3440 wq->wq_dev = NULL;
3441 return ret;
3442 }
3443 }
3444 }
3445
3446 dev_set_uevent_suppress(&wq_dev->dev, false);
3447 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3448 return 0;
3449 }
3450
3451 /**
3452 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3453 * @wq: the workqueue to unregister
3454 *
3455 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3456 */
3457 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3458 {
3459 struct wq_device *wq_dev = wq->wq_dev;
3460
3461 if (!wq->wq_dev)
3462 return;
3463
3464 wq->wq_dev = NULL;
3465 device_unregister(&wq_dev->dev);
3466 }
3467 #else /* CONFIG_SYSFS */
3468 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3469 #endif /* CONFIG_SYSFS */
3470
3471 /**
3472 * free_workqueue_attrs - free a workqueue_attrs
3473 * @attrs: workqueue_attrs to free
3474 *
3475 * Undo alloc_workqueue_attrs().
3476 */
3477 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3478 {
3479 if (attrs) {
3480 free_cpumask_var(attrs->cpumask);
3481 kfree(attrs);
3482 }
3483 }
3484
3485 /**
3486 * alloc_workqueue_attrs - allocate a workqueue_attrs
3487 * @gfp_mask: allocation mask to use
3488 *
3489 * Allocate a new workqueue_attrs, initialize with default settings and
3490 * return it. Returns NULL on failure.
3491 */
3492 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3493 {
3494 struct workqueue_attrs *attrs;
3495
3496 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3497 if (!attrs)
3498 goto fail;
3499 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3500 goto fail;
3501
3502 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3503 return attrs;
3504 fail:
3505 free_workqueue_attrs(attrs);
3506 return NULL;
3507 }
3508
3509 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3510 const struct workqueue_attrs *from)
3511 {
3512 to->nice = from->nice;
3513 cpumask_copy(to->cpumask, from->cpumask);
3514 /*
3515 * Unlike hash and equality test, this function doesn't ignore
3516 * ->no_numa as it is used for both pool and wq attrs. Instead,
3517 * get_unbound_pool() explicitly clears ->no_numa after copying.
3518 */
3519 to->no_numa = from->no_numa;
3520 }
3521
3522 /* hash value of the content of @attr */
3523 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3524 {
3525 u32 hash = 0;
3526
3527 hash = jhash_1word(attrs->nice, hash);
3528 hash = jhash(cpumask_bits(attrs->cpumask),
3529 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3530 return hash;
3531 }
3532
3533 /* content equality test */
3534 static bool wqattrs_equal(const struct workqueue_attrs *a,
3535 const struct workqueue_attrs *b)
3536 {
3537 if (a->nice != b->nice)
3538 return false;
3539 if (!cpumask_equal(a->cpumask, b->cpumask))
3540 return false;
3541 return true;
3542 }
3543
3544 /**
3545 * init_worker_pool - initialize a newly zalloc'd worker_pool
3546 * @pool: worker_pool to initialize
3547 *
3548 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3549 * Returns 0 on success, -errno on failure. Even on failure, all fields
3550 * inside @pool proper are initialized and put_unbound_pool() can be called
3551 * on @pool safely to release it.
3552 */
3553 static int init_worker_pool(struct worker_pool *pool)
3554 {
3555 spin_lock_init(&pool->lock);
3556 pool->id = -1;
3557 pool->cpu = -1;
3558 pool->node = NUMA_NO_NODE;
3559 pool->flags |= POOL_DISASSOCIATED;
3560 INIT_LIST_HEAD(&pool->worklist);
3561 INIT_LIST_HEAD(&pool->idle_list);
3562 hash_init(pool->busy_hash);
3563
3564 init_timer_deferrable(&pool->idle_timer);
3565 pool->idle_timer.function = idle_worker_timeout;
3566 pool->idle_timer.data = (unsigned long)pool;
3567
3568 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3569 (unsigned long)pool);
3570
3571 mutex_init(&pool->manager_arb);
3572 mutex_init(&pool->manager_mutex);
3573 idr_init(&pool->worker_idr);
3574
3575 INIT_HLIST_NODE(&pool->hash_node);
3576 pool->refcnt = 1;
3577
3578 /* shouldn't fail above this point */
3579 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3580 if (!pool->attrs)
3581 return -ENOMEM;
3582 return 0;
3583 }
3584
3585 static void rcu_free_pool(struct rcu_head *rcu)
3586 {
3587 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3588
3589 idr_destroy(&pool->worker_idr);
3590 free_workqueue_attrs(pool->attrs);
3591 kfree(pool);
3592 }
3593
3594 /**
3595 * put_unbound_pool - put a worker_pool
3596 * @pool: worker_pool to put
3597 *
3598 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3599 * safe manner. get_unbound_pool() calls this function on its failure path
3600 * and this function should be able to release pools which went through,
3601 * successfully or not, init_worker_pool().
3602 *
3603 * Should be called with wq_pool_mutex held.
3604 */
3605 static void put_unbound_pool(struct worker_pool *pool)
3606 {
3607 struct worker *worker;
3608
3609 lockdep_assert_held(&wq_pool_mutex);
3610
3611 if (--pool->refcnt)
3612 return;
3613
3614 /* sanity checks */
3615 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3616 WARN_ON(!list_empty(&pool->worklist)))
3617 return;
3618
3619 /* release id and unhash */
3620 if (pool->id >= 0)
3621 idr_remove(&worker_pool_idr, pool->id);
3622 hash_del(&pool->hash_node);
3623
3624 /*
3625 * Become the manager and destroy all workers. Grabbing
3626 * manager_arb prevents @pool's workers from blocking on
3627 * manager_mutex.
3628 */
3629 mutex_lock(&pool->manager_arb);
3630 mutex_lock(&pool->manager_mutex);
3631 spin_lock_irq(&pool->lock);
3632
3633 while ((worker = first_worker(pool)))
3634 destroy_worker(worker);
3635 WARN_ON(pool->nr_workers || pool->nr_idle);
3636
3637 spin_unlock_irq(&pool->lock);
3638 mutex_unlock(&pool->manager_mutex);
3639 mutex_unlock(&pool->manager_arb);
3640
3641 /* shut down the timers */
3642 del_timer_sync(&pool->idle_timer);
3643 del_timer_sync(&pool->mayday_timer);
3644
3645 /* sched-RCU protected to allow dereferences from get_work_pool() */
3646 call_rcu_sched(&pool->rcu, rcu_free_pool);
3647 }
3648
3649 /**
3650 * get_unbound_pool - get a worker_pool with the specified attributes
3651 * @attrs: the attributes of the worker_pool to get
3652 *
3653 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3654 * reference count and return it. If there already is a matching
3655 * worker_pool, it will be used; otherwise, this function attempts to
3656 * create a new one. On failure, returns NULL.
3657 *
3658 * Should be called with wq_pool_mutex held.
3659 */
3660 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3661 {
3662 u32 hash = wqattrs_hash(attrs);
3663 struct worker_pool *pool;
3664 int node;
3665
3666 lockdep_assert_held(&wq_pool_mutex);
3667
3668 /* do we already have a matching pool? */
3669 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3670 if (wqattrs_equal(pool->attrs, attrs)) {
3671 pool->refcnt++;
3672 goto out_unlock;
3673 }
3674 }
3675
3676 /* nope, create a new one */
3677 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3678 if (!pool || init_worker_pool(pool) < 0)
3679 goto fail;
3680
3681 if (workqueue_freezing)
3682 pool->flags |= POOL_FREEZING;
3683
3684 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3685 copy_workqueue_attrs(pool->attrs, attrs);
3686
3687 /*
3688 * no_numa isn't a worker_pool attribute, always clear it. See
3689 * 'struct workqueue_attrs' comments for detail.
3690 */
3691 pool->attrs->no_numa = false;
3692
3693 /* if cpumask is contained inside a NUMA node, we belong to that node */
3694 if (wq_numa_enabled) {
3695 for_each_node(node) {
3696 if (cpumask_subset(pool->attrs->cpumask,
3697 wq_numa_possible_cpumask[node])) {
3698 pool->node = node;
3699 break;
3700 }
3701 }
3702 }
3703
3704 if (worker_pool_assign_id(pool) < 0)
3705 goto fail;
3706
3707 /* create and start the initial worker */
3708 if (create_and_start_worker(pool) < 0)
3709 goto fail;
3710
3711 /* install */
3712 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3713 out_unlock:
3714 return pool;
3715 fail:
3716 if (pool)
3717 put_unbound_pool(pool);
3718 return NULL;
3719 }
3720
3721 static void rcu_free_pwq(struct rcu_head *rcu)
3722 {
3723 kmem_cache_free(pwq_cache,
3724 container_of(rcu, struct pool_workqueue, rcu));
3725 }
3726
3727 /*
3728 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3729 * and needs to be destroyed.
3730 */
3731 static void pwq_unbound_release_workfn(struct work_struct *work)
3732 {
3733 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3734 unbound_release_work);
3735 struct workqueue_struct *wq = pwq->wq;
3736 struct worker_pool *pool = pwq->pool;
3737 bool is_last;
3738
3739 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3740 return;
3741
3742 /*
3743 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
3744 * necessary on release but do it anyway. It's easier to verify
3745 * and consistent with the linking path.
3746 */
3747 mutex_lock(&wq->mutex);
3748 list_del_rcu(&pwq->pwqs_node);
3749 is_last = list_empty(&wq->pwqs);
3750 mutex_unlock(&wq->mutex);
3751
3752 mutex_lock(&wq_pool_mutex);
3753 put_unbound_pool(pool);
3754 mutex_unlock(&wq_pool_mutex);
3755
3756 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3757
3758 /*
3759 * If we're the last pwq going away, @wq is already dead and no one
3760 * is gonna access it anymore. Free it.
3761 */
3762 if (is_last) {
3763 free_workqueue_attrs(wq->unbound_attrs);
3764 kfree(wq);
3765 }
3766 }
3767
3768 /**
3769 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3770 * @pwq: target pool_workqueue
3771 *
3772 * If @pwq isn't freezing, set @pwq->max_active to the associated
3773 * workqueue's saved_max_active and activate delayed work items
3774 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3775 */
3776 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3777 {
3778 struct workqueue_struct *wq = pwq->wq;
3779 bool freezable = wq->flags & WQ_FREEZABLE;
3780
3781 /* for @wq->saved_max_active */
3782 lockdep_assert_held(&wq->mutex);
3783
3784 /* fast exit for non-freezable wqs */
3785 if (!freezable && pwq->max_active == wq->saved_max_active)
3786 return;
3787
3788 spin_lock_irq(&pwq->pool->lock);
3789
3790 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3791 pwq->max_active = wq->saved_max_active;
3792
3793 while (!list_empty(&pwq->delayed_works) &&
3794 pwq->nr_active < pwq->max_active)
3795 pwq_activate_first_delayed(pwq);
3796
3797 /*
3798 * Need to kick a worker after thawed or an unbound wq's
3799 * max_active is bumped. It's a slow path. Do it always.
3800 */
3801 wake_up_worker(pwq->pool);
3802 } else {
3803 pwq->max_active = 0;
3804 }
3805
3806 spin_unlock_irq(&pwq->pool->lock);
3807 }
3808
3809 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3810 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3811 struct worker_pool *pool)
3812 {
3813 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3814
3815 memset(pwq, 0, sizeof(*pwq));
3816
3817 pwq->pool = pool;
3818 pwq->wq = wq;
3819 pwq->flush_color = -1;
3820 pwq->refcnt = 1;
3821 INIT_LIST_HEAD(&pwq->delayed_works);
3822 INIT_LIST_HEAD(&pwq->pwqs_node);
3823 INIT_LIST_HEAD(&pwq->mayday_node);
3824 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3825 }
3826
3827 /* sync @pwq with the current state of its associated wq and link it */
3828 static void link_pwq(struct pool_workqueue *pwq)
3829 {
3830 struct workqueue_struct *wq = pwq->wq;
3831
3832 lockdep_assert_held(&wq->mutex);
3833
3834 /* may be called multiple times, ignore if already linked */
3835 if (!list_empty(&pwq->pwqs_node))
3836 return;
3837
3838 /*
3839 * Set the matching work_color. This is synchronized with
3840 * wq->mutex to avoid confusing flush_workqueue().
3841 */
3842 pwq->work_color = wq->work_color;
3843
3844 /* sync max_active to the current setting */
3845 pwq_adjust_max_active(pwq);
3846
3847 /* link in @pwq */
3848 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3849 }
3850
3851 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3852 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3853 const struct workqueue_attrs *attrs)
3854 {
3855 struct worker_pool *pool;
3856 struct pool_workqueue *pwq;
3857
3858 lockdep_assert_held(&wq_pool_mutex);
3859
3860 pool = get_unbound_pool(attrs);
3861 if (!pool)
3862 return NULL;
3863
3864 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3865 if (!pwq) {
3866 put_unbound_pool(pool);
3867 return NULL;
3868 }
3869
3870 init_pwq(pwq, wq, pool);
3871 return pwq;
3872 }
3873
3874 /* undo alloc_unbound_pwq(), used only in the error path */
3875 static void free_unbound_pwq(struct pool_workqueue *pwq)
3876 {
3877 lockdep_assert_held(&wq_pool_mutex);
3878
3879 if (pwq) {
3880 put_unbound_pool(pwq->pool);
3881 kmem_cache_free(pwq_cache, pwq);
3882 }
3883 }
3884
3885 /**
3886 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3887 * @attrs: the wq_attrs of interest
3888 * @node: the target NUMA node
3889 * @cpu_going_down: if >= 0, the CPU to consider as offline
3890 * @cpumask: outarg, the resulting cpumask
3891 *
3892 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3893 * @cpu_going_down is >= 0, that cpu is considered offline during
3894 * calculation. The result is stored in @cpumask. This function returns
3895 * %true if the resulting @cpumask is different from @attrs->cpumask,
3896 * %false if equal.
3897 *
3898 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3899 * enabled and @node has online CPUs requested by @attrs, the returned
3900 * cpumask is the intersection of the possible CPUs of @node and
3901 * @attrs->cpumask.
3902 *
3903 * The caller is responsible for ensuring that the cpumask of @node stays
3904 * stable.
3905 */
3906 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3907 int cpu_going_down, cpumask_t *cpumask)
3908 {
3909 if (!wq_numa_enabled || attrs->no_numa)
3910 goto use_dfl;
3911
3912 /* does @node have any online CPUs @attrs wants? */
3913 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3914 if (cpu_going_down >= 0)
3915 cpumask_clear_cpu(cpu_going_down, cpumask);
3916
3917 if (cpumask_empty(cpumask))
3918 goto use_dfl;
3919
3920 /* yeap, return possible CPUs in @node that @attrs wants */
3921 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3922 return !cpumask_equal(cpumask, attrs->cpumask);
3923
3924 use_dfl:
3925 cpumask_copy(cpumask, attrs->cpumask);
3926 return false;
3927 }
3928
3929 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3930 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3931 int node,
3932 struct pool_workqueue *pwq)
3933 {
3934 struct pool_workqueue *old_pwq;
3935
3936 lockdep_assert_held(&wq->mutex);
3937
3938 /* link_pwq() can handle duplicate calls */
3939 link_pwq(pwq);
3940
3941 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3942 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3943 return old_pwq;
3944 }
3945
3946 /**
3947 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3948 * @wq: the target workqueue
3949 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3950 *
3951 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3952 * machines, this function maps a separate pwq to each NUMA node with
3953 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3954 * NUMA node it was issued on. Older pwqs are released as in-flight work
3955 * items finish. Note that a work item which repeatedly requeues itself
3956 * back-to-back will stay on its current pwq.
3957 *
3958 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3959 * failure.
3960 */
3961 int apply_workqueue_attrs(struct workqueue_struct *wq,
3962 const struct workqueue_attrs *attrs)
3963 {
3964 struct workqueue_attrs *new_attrs, *tmp_attrs;
3965 struct pool_workqueue **pwq_tbl, *dfl_pwq;
3966 int node, ret;
3967
3968 /* only unbound workqueues can change attributes */
3969 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3970 return -EINVAL;
3971
3972 /* creating multiple pwqs breaks ordering guarantee */
3973 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3974 return -EINVAL;
3975
3976 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3977 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3978 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3979 if (!pwq_tbl || !new_attrs || !tmp_attrs)
3980 goto enomem;
3981
3982 /* make a copy of @attrs and sanitize it */
3983 copy_workqueue_attrs(new_attrs, attrs);
3984 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3985
3986 /*
3987 * We may create multiple pwqs with differing cpumasks. Make a
3988 * copy of @new_attrs which will be modified and used to obtain
3989 * pools.
3990 */
3991 copy_workqueue_attrs(tmp_attrs, new_attrs);
3992
3993 /*
3994 * CPUs should stay stable across pwq creations and installations.
3995 * Pin CPUs, determine the target cpumask for each node and create
3996 * pwqs accordingly.
3997 */
3998 get_online_cpus();
3999
4000 mutex_lock(&wq_pool_mutex);
4001
4002 /*
4003 * If something goes wrong during CPU up/down, we'll fall back to
4004 * the default pwq covering whole @attrs->cpumask. Always create
4005 * it even if we don't use it immediately.
4006 */
4007 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4008 if (!dfl_pwq)
4009 goto enomem_pwq;
4010
4011 for_each_node(node) {
4012 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
4013 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4014 if (!pwq_tbl[node])
4015 goto enomem_pwq;
4016 } else {
4017 dfl_pwq->refcnt++;
4018 pwq_tbl[node] = dfl_pwq;
4019 }
4020 }
4021
4022 mutex_unlock(&wq_pool_mutex);
4023
4024 /* all pwqs have been created successfully, let's install'em */
4025 mutex_lock(&wq->mutex);
4026
4027 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4028
4029 /* save the previous pwq and install the new one */
4030 for_each_node(node)
4031 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
4032
4033 /* @dfl_pwq might not have been used, ensure it's linked */
4034 link_pwq(dfl_pwq);
4035 swap(wq->dfl_pwq, dfl_pwq);
4036
4037 mutex_unlock(&wq->mutex);
4038
4039 /* put the old pwqs */
4040 for_each_node(node)
4041 put_pwq_unlocked(pwq_tbl[node]);
4042 put_pwq_unlocked(dfl_pwq);
4043
4044 put_online_cpus();
4045 ret = 0;
4046 /* fall through */
4047 out_free:
4048 free_workqueue_attrs(tmp_attrs);
4049 free_workqueue_attrs(new_attrs);
4050 kfree(pwq_tbl);
4051 return ret;
4052
4053 enomem_pwq:
4054 free_unbound_pwq(dfl_pwq);
4055 for_each_node(node)
4056 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4057 free_unbound_pwq(pwq_tbl[node]);
4058 mutex_unlock(&wq_pool_mutex);
4059 put_online_cpus();
4060 enomem:
4061 ret = -ENOMEM;
4062 goto out_free;
4063 }
4064
4065 /**
4066 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4067 * @wq: the target workqueue
4068 * @cpu: the CPU coming up or going down
4069 * @online: whether @cpu is coming up or going down
4070 *
4071 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4072 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4073 * @wq accordingly.
4074 *
4075 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4076 * falls back to @wq->dfl_pwq which may not be optimal but is always
4077 * correct.
4078 *
4079 * Note that when the last allowed CPU of a NUMA node goes offline for a
4080 * workqueue with a cpumask spanning multiple nodes, the workers which were
4081 * already executing the work items for the workqueue will lose their CPU
4082 * affinity and may execute on any CPU. This is similar to how per-cpu
4083 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4084 * affinity, it's the user's responsibility to flush the work item from
4085 * CPU_DOWN_PREPARE.
4086 */
4087 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4088 bool online)
4089 {
4090 int node = cpu_to_node(cpu);
4091 int cpu_off = online ? -1 : cpu;
4092 struct pool_workqueue *old_pwq = NULL, *pwq;
4093 struct workqueue_attrs *target_attrs;
4094 cpumask_t *cpumask;
4095
4096 lockdep_assert_held(&wq_pool_mutex);
4097
4098 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4099 return;
4100
4101 /*
4102 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4103 * Let's use a preallocated one. The following buf is protected by
4104 * CPU hotplug exclusion.
4105 */
4106 target_attrs = wq_update_unbound_numa_attrs_buf;
4107 cpumask = target_attrs->cpumask;
4108
4109 mutex_lock(&wq->mutex);
4110 if (wq->unbound_attrs->no_numa)
4111 goto out_unlock;
4112
4113 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4114 pwq = unbound_pwq_by_node(wq, node);
4115
4116 /*
4117 * Let's determine what needs to be done. If the target cpumask is
4118 * different from wq's, we need to compare it to @pwq's and create
4119 * a new one if they don't match. If the target cpumask equals
4120 * wq's, the default pwq should be used. If @pwq is already the
4121 * default one, nothing to do; otherwise, install the default one.
4122 */
4123 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4124 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4125 goto out_unlock;
4126 } else {
4127 if (pwq == wq->dfl_pwq)
4128 goto out_unlock;
4129 else
4130 goto use_dfl_pwq;
4131 }
4132
4133 mutex_unlock(&wq->mutex);
4134
4135 /* create a new pwq */
4136 pwq = alloc_unbound_pwq(wq, target_attrs);
4137 if (!pwq) {
4138 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4139 wq->name);
4140 mutex_lock(&wq->mutex);
4141 goto use_dfl_pwq;
4142 }
4143
4144 /*
4145 * Install the new pwq. As this function is called only from CPU
4146 * hotplug callbacks and applying a new attrs is wrapped with
4147 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4148 * inbetween.
4149 */
4150 mutex_lock(&wq->mutex);
4151 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4152 goto out_unlock;
4153
4154 use_dfl_pwq:
4155 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4156 get_pwq(wq->dfl_pwq);
4157 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4158 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4159 out_unlock:
4160 mutex_unlock(&wq->mutex);
4161 put_pwq_unlocked(old_pwq);
4162 }
4163
4164 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4165 {
4166 bool highpri = wq->flags & WQ_HIGHPRI;
4167 int cpu, ret;
4168
4169 if (!(wq->flags & WQ_UNBOUND)) {
4170 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4171 if (!wq->cpu_pwqs)
4172 return -ENOMEM;
4173
4174 for_each_possible_cpu(cpu) {
4175 struct pool_workqueue *pwq =
4176 per_cpu_ptr(wq->cpu_pwqs, cpu);
4177 struct worker_pool *cpu_pools =
4178 per_cpu(cpu_worker_pools, cpu);
4179
4180 init_pwq(pwq, wq, &cpu_pools[highpri]);
4181
4182 mutex_lock(&wq->mutex);
4183 link_pwq(pwq);
4184 mutex_unlock(&wq->mutex);
4185 }
4186 return 0;
4187 } else if (wq->flags & __WQ_ORDERED) {
4188 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4189 /* there should only be single pwq for ordering guarantee */
4190 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4191 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4192 "ordering guarantee broken for workqueue %s\n", wq->name);
4193 return ret;
4194 } else {
4195 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4196 }
4197 }
4198
4199 static int wq_clamp_max_active(int max_active, unsigned int flags,
4200 const char *name)
4201 {
4202 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4203
4204 if (max_active < 1 || max_active > lim)
4205 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4206 max_active, name, 1, lim);
4207
4208 return clamp_val(max_active, 1, lim);
4209 }
4210
4211 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4212 unsigned int flags,
4213 int max_active,
4214 struct lock_class_key *key,
4215 const char *lock_name, ...)
4216 {
4217 size_t tbl_size = 0;
4218 va_list args;
4219 struct workqueue_struct *wq;
4220 struct pool_workqueue *pwq;
4221
4222 /* allocate wq and format name */
4223 if (flags & WQ_UNBOUND)
4224 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4225
4226 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4227 if (!wq)
4228 return NULL;
4229
4230 if (flags & WQ_UNBOUND) {
4231 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4232 if (!wq->unbound_attrs)
4233 goto err_free_wq;
4234 }
4235
4236 va_start(args, lock_name);
4237 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4238 va_end(args);
4239
4240 max_active = max_active ?: WQ_DFL_ACTIVE;
4241 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4242
4243 /* init wq */
4244 wq->flags = flags;
4245 wq->saved_max_active = max_active;
4246 mutex_init(&wq->mutex);
4247 atomic_set(&wq->nr_pwqs_to_flush, 0);
4248 INIT_LIST_HEAD(&wq->pwqs);
4249 INIT_LIST_HEAD(&wq->flusher_queue);
4250 INIT_LIST_HEAD(&wq->flusher_overflow);
4251 INIT_LIST_HEAD(&wq->maydays);
4252
4253 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4254 INIT_LIST_HEAD(&wq->list);
4255
4256 if (alloc_and_link_pwqs(wq) < 0)
4257 goto err_free_wq;
4258
4259 /*
4260 * Workqueues which may be used during memory reclaim should
4261 * have a rescuer to guarantee forward progress.
4262 */
4263 if (flags & WQ_MEM_RECLAIM) {
4264 struct worker *rescuer;
4265
4266 rescuer = alloc_worker();
4267 if (!rescuer)
4268 goto err_destroy;
4269
4270 rescuer->rescue_wq = wq;
4271 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4272 wq->name);
4273 if (IS_ERR(rescuer->task)) {
4274 kfree(rescuer);
4275 goto err_destroy;
4276 }
4277
4278 wq->rescuer = rescuer;
4279 rescuer->task->flags |= PF_NO_SETAFFINITY;
4280 wake_up_process(rescuer->task);
4281 }
4282
4283 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4284 goto err_destroy;
4285
4286 /*
4287 * wq_pool_mutex protects global freeze state and workqueues list.
4288 * Grab it, adjust max_active and add the new @wq to workqueues
4289 * list.
4290 */
4291 mutex_lock(&wq_pool_mutex);
4292
4293 mutex_lock(&wq->mutex);
4294 for_each_pwq(pwq, wq)
4295 pwq_adjust_max_active(pwq);
4296 mutex_unlock(&wq->mutex);
4297
4298 list_add(&wq->list, &workqueues);
4299
4300 mutex_unlock(&wq_pool_mutex);
4301
4302 return wq;
4303
4304 err_free_wq:
4305 free_workqueue_attrs(wq->unbound_attrs);
4306 kfree(wq);
4307 return NULL;
4308 err_destroy:
4309 destroy_workqueue(wq);
4310 return NULL;
4311 }
4312 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4313
4314 /**
4315 * destroy_workqueue - safely terminate a workqueue
4316 * @wq: target workqueue
4317 *
4318 * Safely destroy a workqueue. All work currently pending will be done first.
4319 */
4320 void destroy_workqueue(struct workqueue_struct *wq)
4321 {
4322 struct pool_workqueue *pwq;
4323 int node;
4324
4325 /* drain it before proceeding with destruction */
4326 drain_workqueue(wq);
4327
4328 /* sanity checks */
4329 mutex_lock(&wq->mutex);
4330 for_each_pwq(pwq, wq) {
4331 int i;
4332
4333 for (i = 0; i < WORK_NR_COLORS; i++) {
4334 if (WARN_ON(pwq->nr_in_flight[i])) {
4335 mutex_unlock(&wq->mutex);
4336 return;
4337 }
4338 }
4339
4340 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4341 WARN_ON(pwq->nr_active) ||
4342 WARN_ON(!list_empty(&pwq->delayed_works))) {
4343 mutex_unlock(&wq->mutex);
4344 return;
4345 }
4346 }
4347 mutex_unlock(&wq->mutex);
4348
4349 /*
4350 * wq list is used to freeze wq, remove from list after
4351 * flushing is complete in case freeze races us.
4352 */
4353 mutex_lock(&wq_pool_mutex);
4354 list_del_init(&wq->list);
4355 mutex_unlock(&wq_pool_mutex);
4356
4357 workqueue_sysfs_unregister(wq);
4358
4359 if (wq->rescuer) {
4360 kthread_stop(wq->rescuer->task);
4361 kfree(wq->rescuer);
4362 wq->rescuer = NULL;
4363 }
4364
4365 if (!(wq->flags & WQ_UNBOUND)) {
4366 /*
4367 * The base ref is never dropped on per-cpu pwqs. Directly
4368 * free the pwqs and wq.
4369 */
4370 free_percpu(wq->cpu_pwqs);
4371 kfree(wq);
4372 } else {
4373 /*
4374 * We're the sole accessor of @wq at this point. Directly
4375 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4376 * @wq will be freed when the last pwq is released.
4377 */
4378 for_each_node(node) {
4379 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4380 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4381 put_pwq_unlocked(pwq);
4382 }
4383
4384 /*
4385 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4386 * put. Don't access it afterwards.
4387 */
4388 pwq = wq->dfl_pwq;
4389 wq->dfl_pwq = NULL;
4390 put_pwq_unlocked(pwq);
4391 }
4392 }
4393 EXPORT_SYMBOL_GPL(destroy_workqueue);
4394
4395 /**
4396 * workqueue_set_max_active - adjust max_active of a workqueue
4397 * @wq: target workqueue
4398 * @max_active: new max_active value.
4399 *
4400 * Set max_active of @wq to @max_active.
4401 *
4402 * CONTEXT:
4403 * Don't call from IRQ context.
4404 */
4405 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4406 {
4407 struct pool_workqueue *pwq;
4408
4409 /* disallow meddling with max_active for ordered workqueues */
4410 if (WARN_ON(wq->flags & __WQ_ORDERED))
4411 return;
4412
4413 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4414
4415 mutex_lock(&wq->mutex);
4416
4417 wq->saved_max_active = max_active;
4418
4419 for_each_pwq(pwq, wq)
4420 pwq_adjust_max_active(pwq);
4421
4422 mutex_unlock(&wq->mutex);
4423 }
4424 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4425
4426 /**
4427 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4428 *
4429 * Determine whether %current is a workqueue rescuer. Can be used from
4430 * work functions to determine whether it's being run off the rescuer task.
4431 */
4432 bool current_is_workqueue_rescuer(void)
4433 {
4434 struct worker *worker = current_wq_worker();
4435
4436 return worker && worker->rescue_wq;
4437 }
4438
4439 /**
4440 * workqueue_congested - test whether a workqueue is congested
4441 * @cpu: CPU in question
4442 * @wq: target workqueue
4443 *
4444 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4445 * no synchronization around this function and the test result is
4446 * unreliable and only useful as advisory hints or for debugging.
4447 *
4448 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4449 * Note that both per-cpu and unbound workqueues may be associated with
4450 * multiple pool_workqueues which have separate congested states. A
4451 * workqueue being congested on one CPU doesn't mean the workqueue is also
4452 * contested on other CPUs / NUMA nodes.
4453 *
4454 * RETURNS:
4455 * %true if congested, %false otherwise.
4456 */
4457 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4458 {
4459 struct pool_workqueue *pwq;
4460 bool ret;
4461
4462 rcu_read_lock_sched();
4463
4464 if (cpu == WORK_CPU_UNBOUND)
4465 cpu = smp_processor_id();
4466
4467 if (!(wq->flags & WQ_UNBOUND))
4468 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4469 else
4470 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4471
4472 ret = !list_empty(&pwq->delayed_works);
4473 rcu_read_unlock_sched();
4474
4475 return ret;
4476 }
4477 EXPORT_SYMBOL_GPL(workqueue_congested);
4478
4479 /**
4480 * work_busy - test whether a work is currently pending or running
4481 * @work: the work to be tested
4482 *
4483 * Test whether @work is currently pending or running. There is no
4484 * synchronization around this function and the test result is
4485 * unreliable and only useful as advisory hints or for debugging.
4486 *
4487 * RETURNS:
4488 * OR'd bitmask of WORK_BUSY_* bits.
4489 */
4490 unsigned int work_busy(struct work_struct *work)
4491 {
4492 struct worker_pool *pool;
4493 unsigned long flags;
4494 unsigned int ret = 0;
4495
4496 if (work_pending(work))
4497 ret |= WORK_BUSY_PENDING;
4498
4499 local_irq_save(flags);
4500 pool = get_work_pool(work);
4501 if (pool) {
4502 spin_lock(&pool->lock);
4503 if (find_worker_executing_work(pool, work))
4504 ret |= WORK_BUSY_RUNNING;
4505 spin_unlock(&pool->lock);
4506 }
4507 local_irq_restore(flags);
4508
4509 return ret;
4510 }
4511 EXPORT_SYMBOL_GPL(work_busy);
4512
4513 /**
4514 * set_worker_desc - set description for the current work item
4515 * @fmt: printf-style format string
4516 * @...: arguments for the format string
4517 *
4518 * This function can be called by a running work function to describe what
4519 * the work item is about. If the worker task gets dumped, this
4520 * information will be printed out together to help debugging. The
4521 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4522 */
4523 void set_worker_desc(const char *fmt, ...)
4524 {
4525 struct worker *worker = current_wq_worker();
4526 va_list args;
4527
4528 if (worker) {
4529 va_start(args, fmt);
4530 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4531 va_end(args);
4532 worker->desc_valid = true;
4533 }
4534 }
4535
4536 /**
4537 * print_worker_info - print out worker information and description
4538 * @log_lvl: the log level to use when printing
4539 * @task: target task
4540 *
4541 * If @task is a worker and currently executing a work item, print out the
4542 * name of the workqueue being serviced and worker description set with
4543 * set_worker_desc() by the currently executing work item.
4544 *
4545 * This function can be safely called on any task as long as the
4546 * task_struct itself is accessible. While safe, this function isn't
4547 * synchronized and may print out mixups or garbages of limited length.
4548 */
4549 void print_worker_info(const char *log_lvl, struct task_struct *task)
4550 {
4551 work_func_t *fn = NULL;
4552 char name[WQ_NAME_LEN] = { };
4553 char desc[WORKER_DESC_LEN] = { };
4554 struct pool_workqueue *pwq = NULL;
4555 struct workqueue_struct *wq = NULL;
4556 bool desc_valid = false;
4557 struct worker *worker;
4558
4559 if (!(task->flags & PF_WQ_WORKER))
4560 return;
4561
4562 /*
4563 * This function is called without any synchronization and @task
4564 * could be in any state. Be careful with dereferences.
4565 */
4566 worker = probe_kthread_data(task);
4567
4568 /*
4569 * Carefully copy the associated workqueue's workfn and name. Keep
4570 * the original last '\0' in case the original contains garbage.
4571 */
4572 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4573 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4574 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4575 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4576
4577 /* copy worker description */
4578 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4579 if (desc_valid)
4580 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4581
4582 if (fn || name[0] || desc[0]) {
4583 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4584 if (desc[0])
4585 pr_cont(" (%s)", desc);
4586 pr_cont("\n");
4587 }
4588 }
4589
4590 /*
4591 * CPU hotplug.
4592 *
4593 * There are two challenges in supporting CPU hotplug. Firstly, there
4594 * are a lot of assumptions on strong associations among work, pwq and
4595 * pool which make migrating pending and scheduled works very
4596 * difficult to implement without impacting hot paths. Secondly,
4597 * worker pools serve mix of short, long and very long running works making
4598 * blocked draining impractical.
4599 *
4600 * This is solved by allowing the pools to be disassociated from the CPU
4601 * running as an unbound one and allowing it to be reattached later if the
4602 * cpu comes back online.
4603 */
4604
4605 static void wq_unbind_fn(struct work_struct *work)
4606 {
4607 int cpu = smp_processor_id();
4608 struct worker_pool *pool;
4609 struct worker *worker;
4610 int wi;
4611
4612 for_each_cpu_worker_pool(pool, cpu) {
4613 WARN_ON_ONCE(cpu != smp_processor_id());
4614
4615 mutex_lock(&pool->manager_mutex);
4616 spin_lock_irq(&pool->lock);
4617
4618 /*
4619 * We've blocked all manager operations. Make all workers
4620 * unbound and set DISASSOCIATED. Before this, all workers
4621 * except for the ones which are still executing works from
4622 * before the last CPU down must be on the cpu. After
4623 * this, they may become diasporas.
4624 */
4625 for_each_pool_worker(worker, wi, pool)
4626 worker->flags |= WORKER_UNBOUND;
4627
4628 pool->flags |= POOL_DISASSOCIATED;
4629
4630 spin_unlock_irq(&pool->lock);
4631 mutex_unlock(&pool->manager_mutex);
4632
4633 /*
4634 * Call schedule() so that we cross rq->lock and thus can
4635 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4636 * This is necessary as scheduler callbacks may be invoked
4637 * from other cpus.
4638 */
4639 schedule();
4640
4641 /*
4642 * Sched callbacks are disabled now. Zap nr_running.
4643 * After this, nr_running stays zero and need_more_worker()
4644 * and keep_working() are always true as long as the
4645 * worklist is not empty. This pool now behaves as an
4646 * unbound (in terms of concurrency management) pool which
4647 * are served by workers tied to the pool.
4648 */
4649 atomic_set(&pool->nr_running, 0);
4650
4651 /*
4652 * With concurrency management just turned off, a busy
4653 * worker blocking could lead to lengthy stalls. Kick off
4654 * unbound chain execution of currently pending work items.
4655 */
4656 spin_lock_irq(&pool->lock);
4657 wake_up_worker(pool);
4658 spin_unlock_irq(&pool->lock);
4659 }
4660 }
4661
4662 /**
4663 * rebind_workers - rebind all workers of a pool to the associated CPU
4664 * @pool: pool of interest
4665 *
4666 * @pool->cpu is coming online. Rebind all workers to the CPU.
4667 */
4668 static void rebind_workers(struct worker_pool *pool)
4669 {
4670 struct worker *worker;
4671 int wi;
4672
4673 lockdep_assert_held(&pool->manager_mutex);
4674
4675 /*
4676 * Restore CPU affinity of all workers. As all idle workers should
4677 * be on the run-queue of the associated CPU before any local
4678 * wake-ups for concurrency management happen, restore CPU affinty
4679 * of all workers first and then clear UNBOUND. As we're called
4680 * from CPU_ONLINE, the following shouldn't fail.
4681 */
4682 for_each_pool_worker(worker, wi, pool)
4683 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4684 pool->attrs->cpumask) < 0);
4685
4686 spin_lock_irq(&pool->lock);
4687
4688 for_each_pool_worker(worker, wi, pool) {
4689 unsigned int worker_flags = worker->flags;
4690
4691 /*
4692 * A bound idle worker should actually be on the runqueue
4693 * of the associated CPU for local wake-ups targeting it to
4694 * work. Kick all idle workers so that they migrate to the
4695 * associated CPU. Doing this in the same loop as
4696 * replacing UNBOUND with REBOUND is safe as no worker will
4697 * be bound before @pool->lock is released.
4698 */
4699 if (worker_flags & WORKER_IDLE)
4700 wake_up_process(worker->task);
4701
4702 /*
4703 * We want to clear UNBOUND but can't directly call
4704 * worker_clr_flags() or adjust nr_running. Atomically
4705 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4706 * @worker will clear REBOUND using worker_clr_flags() when
4707 * it initiates the next execution cycle thus restoring
4708 * concurrency management. Note that when or whether
4709 * @worker clears REBOUND doesn't affect correctness.
4710 *
4711 * ACCESS_ONCE() is necessary because @worker->flags may be
4712 * tested without holding any lock in
4713 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4714 * fail incorrectly leading to premature concurrency
4715 * management operations.
4716 */
4717 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4718 worker_flags |= WORKER_REBOUND;
4719 worker_flags &= ~WORKER_UNBOUND;
4720 ACCESS_ONCE(worker->flags) = worker_flags;
4721 }
4722
4723 spin_unlock_irq(&pool->lock);
4724 }
4725
4726 /**
4727 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4728 * @pool: unbound pool of interest
4729 * @cpu: the CPU which is coming up
4730 *
4731 * An unbound pool may end up with a cpumask which doesn't have any online
4732 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4733 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4734 * online CPU before, cpus_allowed of all its workers should be restored.
4735 */
4736 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4737 {
4738 static cpumask_t cpumask;
4739 struct worker *worker;
4740 int wi;
4741
4742 lockdep_assert_held(&pool->manager_mutex);
4743
4744 /* is @cpu allowed for @pool? */
4745 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4746 return;
4747
4748 /* is @cpu the only online CPU? */
4749 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4750 if (cpumask_weight(&cpumask) != 1)
4751 return;
4752
4753 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4754 for_each_pool_worker(worker, wi, pool)
4755 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4756 pool->attrs->cpumask) < 0);
4757 }
4758
4759 /*
4760 * Workqueues should be brought up before normal priority CPU notifiers.
4761 * This will be registered high priority CPU notifier.
4762 */
4763 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
4764 unsigned long action,
4765 void *hcpu)
4766 {
4767 int cpu = (unsigned long)hcpu;
4768 struct worker_pool *pool;
4769 struct workqueue_struct *wq;
4770 int pi;
4771
4772 switch (action & ~CPU_TASKS_FROZEN) {
4773 case CPU_UP_PREPARE:
4774 for_each_cpu_worker_pool(pool, cpu) {
4775 if (pool->nr_workers)
4776 continue;
4777 if (create_and_start_worker(pool) < 0)
4778 return NOTIFY_BAD;
4779 }
4780 break;
4781
4782 case CPU_DOWN_FAILED:
4783 case CPU_ONLINE:
4784 mutex_lock(&wq_pool_mutex);
4785
4786 for_each_pool(pool, pi) {
4787 mutex_lock(&pool->manager_mutex);
4788
4789 if (pool->cpu == cpu) {
4790 spin_lock_irq(&pool->lock);
4791 pool->flags &= ~POOL_DISASSOCIATED;
4792 spin_unlock_irq(&pool->lock);
4793
4794 rebind_workers(pool);
4795 } else if (pool->cpu < 0) {
4796 restore_unbound_workers_cpumask(pool, cpu);
4797 }
4798
4799 mutex_unlock(&pool->manager_mutex);
4800 }
4801
4802 /* update NUMA affinity of unbound workqueues */
4803 list_for_each_entry(wq, &workqueues, list)
4804 wq_update_unbound_numa(wq, cpu, true);
4805
4806 mutex_unlock(&wq_pool_mutex);
4807 break;
4808 }
4809 return NOTIFY_OK;
4810 }
4811
4812 /*
4813 * Workqueues should be brought down after normal priority CPU notifiers.
4814 * This will be registered as low priority CPU notifier.
4815 */
4816 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4817 unsigned long action,
4818 void *hcpu)
4819 {
4820 int cpu = (unsigned long)hcpu;
4821 struct work_struct unbind_work;
4822 struct workqueue_struct *wq;
4823
4824 switch (action & ~CPU_TASKS_FROZEN) {
4825 case CPU_DOWN_PREPARE:
4826 /* unbinding per-cpu workers should happen on the local CPU */
4827 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4828 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4829
4830 /* update NUMA affinity of unbound workqueues */
4831 mutex_lock(&wq_pool_mutex);
4832 list_for_each_entry(wq, &workqueues, list)
4833 wq_update_unbound_numa(wq, cpu, false);
4834 mutex_unlock(&wq_pool_mutex);
4835
4836 /* wait for per-cpu unbinding to finish */
4837 flush_work(&unbind_work);
4838 break;
4839 }
4840 return NOTIFY_OK;
4841 }
4842
4843 #ifdef CONFIG_SMP
4844
4845 struct work_for_cpu {
4846 struct work_struct work;
4847 long (*fn)(void *);
4848 void *arg;
4849 long ret;
4850 };
4851
4852 static void work_for_cpu_fn(struct work_struct *work)
4853 {
4854 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4855
4856 wfc->ret = wfc->fn(wfc->arg);
4857 }
4858
4859 /**
4860 * work_on_cpu - run a function in user context on a particular cpu
4861 * @cpu: the cpu to run on
4862 * @fn: the function to run
4863 * @arg: the function arg
4864 *
4865 * This will return the value @fn returns.
4866 * It is up to the caller to ensure that the cpu doesn't go offline.
4867 * The caller must not hold any locks which would prevent @fn from completing.
4868 */
4869 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4870 {
4871 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4872
4873 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4874 schedule_work_on(cpu, &wfc.work);
4875 flush_work(&wfc.work);
4876 return wfc.ret;
4877 }
4878 EXPORT_SYMBOL_GPL(work_on_cpu);
4879 #endif /* CONFIG_SMP */
4880
4881 #ifdef CONFIG_FREEZER
4882
4883 /**
4884 * freeze_workqueues_begin - begin freezing workqueues
4885 *
4886 * Start freezing workqueues. After this function returns, all freezable
4887 * workqueues will queue new works to their delayed_works list instead of
4888 * pool->worklist.
4889 *
4890 * CONTEXT:
4891 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4892 */
4893 void freeze_workqueues_begin(void)
4894 {
4895 struct worker_pool *pool;
4896 struct workqueue_struct *wq;
4897 struct pool_workqueue *pwq;
4898 int pi;
4899
4900 mutex_lock(&wq_pool_mutex);
4901
4902 WARN_ON_ONCE(workqueue_freezing);
4903 workqueue_freezing = true;
4904
4905 /* set FREEZING */
4906 for_each_pool(pool, pi) {
4907 spin_lock_irq(&pool->lock);
4908 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4909 pool->flags |= POOL_FREEZING;
4910 spin_unlock_irq(&pool->lock);
4911 }
4912
4913 list_for_each_entry(wq, &workqueues, list) {
4914 mutex_lock(&wq->mutex);
4915 for_each_pwq(pwq, wq)
4916 pwq_adjust_max_active(pwq);
4917 mutex_unlock(&wq->mutex);
4918 }
4919
4920 mutex_unlock(&wq_pool_mutex);
4921 }
4922
4923 /**
4924 * freeze_workqueues_busy - are freezable workqueues still busy?
4925 *
4926 * Check whether freezing is complete. This function must be called
4927 * between freeze_workqueues_begin() and thaw_workqueues().
4928 *
4929 * CONTEXT:
4930 * Grabs and releases wq_pool_mutex.
4931 *
4932 * RETURNS:
4933 * %true if some freezable workqueues are still busy. %false if freezing
4934 * is complete.
4935 */
4936 bool freeze_workqueues_busy(void)
4937 {
4938 bool busy = false;
4939 struct workqueue_struct *wq;
4940 struct pool_workqueue *pwq;
4941
4942 mutex_lock(&wq_pool_mutex);
4943
4944 WARN_ON_ONCE(!workqueue_freezing);
4945
4946 list_for_each_entry(wq, &workqueues, list) {
4947 if (!(wq->flags & WQ_FREEZABLE))
4948 continue;
4949 /*
4950 * nr_active is monotonically decreasing. It's safe
4951 * to peek without lock.
4952 */
4953 rcu_read_lock_sched();
4954 for_each_pwq(pwq, wq) {
4955 WARN_ON_ONCE(pwq->nr_active < 0);
4956 if (pwq->nr_active) {
4957 busy = true;
4958 rcu_read_unlock_sched();
4959 goto out_unlock;
4960 }
4961 }
4962 rcu_read_unlock_sched();
4963 }
4964 out_unlock:
4965 mutex_unlock(&wq_pool_mutex);
4966 return busy;
4967 }
4968
4969 /**
4970 * thaw_workqueues - thaw workqueues
4971 *
4972 * Thaw workqueues. Normal queueing is restored and all collected
4973 * frozen works are transferred to their respective pool worklists.
4974 *
4975 * CONTEXT:
4976 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4977 */
4978 void thaw_workqueues(void)
4979 {
4980 struct workqueue_struct *wq;
4981 struct pool_workqueue *pwq;
4982 struct worker_pool *pool;
4983 int pi;
4984
4985 mutex_lock(&wq_pool_mutex);
4986
4987 if (!workqueue_freezing)
4988 goto out_unlock;
4989
4990 /* clear FREEZING */
4991 for_each_pool(pool, pi) {
4992 spin_lock_irq(&pool->lock);
4993 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4994 pool->flags &= ~POOL_FREEZING;
4995 spin_unlock_irq(&pool->lock);
4996 }
4997
4998 /* restore max_active and repopulate worklist */
4999 list_for_each_entry(wq, &workqueues, list) {
5000 mutex_lock(&wq->mutex);
5001 for_each_pwq(pwq, wq)
5002 pwq_adjust_max_active(pwq);
5003 mutex_unlock(&wq->mutex);
5004 }
5005
5006 workqueue_freezing = false;
5007 out_unlock:
5008 mutex_unlock(&wq_pool_mutex);
5009 }
5010 #endif /* CONFIG_FREEZER */
5011
5012 static void __init wq_numa_init(void)
5013 {
5014 cpumask_var_t *tbl;
5015 int node, cpu;
5016
5017 /* determine NUMA pwq table len - highest node id + 1 */
5018 for_each_node(node)
5019 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
5020
5021 if (num_possible_nodes() <= 1)
5022 return;
5023
5024 if (wq_disable_numa) {
5025 pr_info("workqueue: NUMA affinity support disabled\n");
5026 return;
5027 }
5028
5029 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5030 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5031
5032 /*
5033 * We want masks of possible CPUs of each node which isn't readily
5034 * available. Build one from cpu_to_node() which should have been
5035 * fully initialized by now.
5036 */
5037 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5038 BUG_ON(!tbl);
5039
5040 for_each_node(node)
5041 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5042 node_online(node) ? node : NUMA_NO_NODE));
5043
5044 for_each_possible_cpu(cpu) {
5045 node = cpu_to_node(cpu);
5046 if (WARN_ON(node == NUMA_NO_NODE)) {
5047 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5048 /* happens iff arch is bonkers, let's just proceed */
5049 return;
5050 }
5051 cpumask_set_cpu(cpu, tbl[node]);
5052 }
5053
5054 wq_numa_possible_cpumask = tbl;
5055 wq_numa_enabled = true;
5056 }
5057
5058 static int __init init_workqueues(void)
5059 {
5060 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5061 int i, cpu;
5062
5063 /* make sure we have enough bits for OFFQ pool ID */
5064 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
5065 WORK_CPU_END * NR_STD_WORKER_POOLS);
5066
5067 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5068
5069 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5070
5071 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5072 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5073
5074 wq_numa_init();
5075
5076 /* initialize CPU pools */
5077 for_each_possible_cpu(cpu) {
5078 struct worker_pool *pool;
5079
5080 i = 0;
5081 for_each_cpu_worker_pool(pool, cpu) {
5082 BUG_ON(init_worker_pool(pool));
5083 pool->cpu = cpu;
5084 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5085 pool->attrs->nice = std_nice[i++];
5086 pool->node = cpu_to_node(cpu);
5087
5088 /* alloc pool ID */
5089 mutex_lock(&wq_pool_mutex);
5090 BUG_ON(worker_pool_assign_id(pool));
5091 mutex_unlock(&wq_pool_mutex);
5092 }
5093 }
5094
5095 /* create the initial worker */
5096 for_each_online_cpu(cpu) {
5097 struct worker_pool *pool;
5098
5099 for_each_cpu_worker_pool(pool, cpu) {
5100 pool->flags &= ~POOL_DISASSOCIATED;
5101 BUG_ON(create_and_start_worker(pool) < 0);
5102 }
5103 }
5104
5105 /* create default unbound and ordered wq attrs */
5106 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5107 struct workqueue_attrs *attrs;
5108
5109 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5110 attrs->nice = std_nice[i];
5111 unbound_std_wq_attrs[i] = attrs;
5112
5113 /*
5114 * An ordered wq should have only one pwq as ordering is
5115 * guaranteed by max_active which is enforced by pwqs.
5116 * Turn off NUMA so that dfl_pwq is used for all nodes.
5117 */
5118 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5119 attrs->nice = std_nice[i];
5120 attrs->no_numa = true;
5121 ordered_wq_attrs[i] = attrs;
5122 }
5123
5124 system_wq = alloc_workqueue("events", 0, 0);
5125 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5126 system_long_wq = alloc_workqueue("events_long", 0, 0);
5127 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5128 WQ_UNBOUND_MAX_ACTIVE);
5129 system_freezable_wq = alloc_workqueue("events_freezable",
5130 WQ_FREEZABLE, 0);
5131 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5132 !system_unbound_wq || !system_freezable_wq);
5133 return 0;
5134 }
5135 early_initcall(init_workqueues);