workqueue: cond_resched() after processing each work item
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50
51 #include "workqueue_internal.h"
52
53 enum {
54 /*
55 * worker_pool flags
56 *
57 * A bound pool is either associated or disassociated with its CPU.
58 * While associated (!DISASSOCIATED), all workers are bound to the
59 * CPU and none has %WORKER_UNBOUND set and concurrency management
60 * is in effect.
61 *
62 * While DISASSOCIATED, the cpu may be offline and all workers have
63 * %WORKER_UNBOUND set and concurrency management disabled, and may
64 * be executing on any CPU. The pool behaves as an unbound one.
65 *
66 * Note that DISASSOCIATED should be flipped only while holding
67 * manager_mutex to avoid changing binding state while
68 * create_worker() is in progress.
69 */
70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
72 POOL_FREEZING = 1 << 3, /* freeze in progress */
73
74 /* worker flags */
75 WORKER_STARTED = 1 << 0, /* started */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
78 WORKER_PREP = 1 << 3, /* preparing to run works */
79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
82
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
85
86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
87
88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
90
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give -20.
103 */
104 RESCUER_NICE_LEVEL = -20,
105 HIGHPRI_NICE_LEVEL = -20,
106
107 WQ_NAME_LEN = 24,
108 };
109
110 /*
111 * Structure fields follow one of the following exclusion rules.
112 *
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
115 *
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
119 * L: pool->lock protected. Access with pool->lock held.
120 *
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
125 *
126 * MG: pool->manager_mutex and pool->lock protected. Writes require both
127 * locks. Reads can happen under either lock.
128 *
129 * PL: wq_pool_mutex protected.
130 *
131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
132 *
133 * WQ: wq->mutex protected.
134 *
135 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
136 *
137 * MD: wq_mayday_lock protected.
138 */
139
140 /* struct worker is defined in workqueue_internal.h */
141
142 struct worker_pool {
143 spinlock_t lock; /* the pool lock */
144 int cpu; /* I: the associated cpu */
145 int node; /* I: the associated node ID */
146 int id; /* I: pool ID */
147 unsigned int flags; /* X: flags */
148
149 struct list_head worklist; /* L: list of pending works */
150 int nr_workers; /* L: total number of workers */
151
152 /* nr_idle includes the ones off idle_list for rebinding */
153 int nr_idle; /* L: currently idle ones */
154
155 struct list_head idle_list; /* X: list of idle workers */
156 struct timer_list idle_timer; /* L: worker idle timeout */
157 struct timer_list mayday_timer; /* L: SOS timer for workers */
158
159 /* a workers is either on busy_hash or idle_list, or the manager */
160 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
161 /* L: hash of busy workers */
162
163 /* see manage_workers() for details on the two manager mutexes */
164 struct mutex manager_arb; /* manager arbitration */
165 struct mutex manager_mutex; /* manager exclusion */
166 struct idr worker_idr; /* MG: worker IDs and iteration */
167
168 struct workqueue_attrs *attrs; /* I: worker attributes */
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
171
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
184 } ____cacheline_aligned_in_smp;
185
186 /*
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
191 */
192 struct pool_workqueue {
193 struct worker_pool *pool; /* I: the associated pool */
194 struct workqueue_struct *wq; /* I: the owning workqueue */
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
197 int refcnt; /* L: reference count */
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
200 int nr_active; /* L: nr of active works */
201 int max_active; /* L: max active works */
202 struct list_head delayed_works; /* L: delayed works */
203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
204 struct list_head mayday_node; /* MD: node on wq->maydays */
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
210 * determined without grabbing wq->mutex.
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215
216 /*
217 * Structure used to wait for workqueue flush.
218 */
219 struct wq_flusher {
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
222 struct completion done; /* flush completion */
223 };
224
225 struct wq_device;
226
227 /*
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
230 */
231 struct workqueue_struct {
232 struct list_head pwqs; /* WR: all pwqs of this wq */
233 struct list_head list; /* PL: list of all workqueues */
234
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
238 atomic_t nr_pwqs_to_flush; /* flush in progress */
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
242
243 struct list_head maydays; /* MD: pwqs requesting rescue */
244 struct worker *rescuer; /* I: rescue worker */
245
246 int nr_drainers; /* WQ: drain in progress */
247 int saved_max_active; /* WQ: saved pwq max_active */
248
249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
251
252 #ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256 struct lockdep_map lockdep_map;
257 #endif
258 char name[WQ_NAME_LEN]; /* I: workqueue name */
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265
266 static struct kmem_cache *pwq_cache;
267
268 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269 static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
272 static bool wq_disable_numa;
273 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
275 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
276
277 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
278 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
279
280 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
281 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
282
283 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
284 static bool workqueue_freezing; /* PL: have wqs started freezing? */
285
286 /* the per-cpu worker pools */
287 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
288 cpu_worker_pools);
289
290 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
291
292 /* PL: hash of all unbound pools keyed by pool->attrs */
293 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
294
295 /* I: attributes used when instantiating standard unbound pools on demand */
296 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
297
298 struct workqueue_struct *system_wq __read_mostly;
299 EXPORT_SYMBOL(system_wq);
300 struct workqueue_struct *system_highpri_wq __read_mostly;
301 EXPORT_SYMBOL_GPL(system_highpri_wq);
302 struct workqueue_struct *system_long_wq __read_mostly;
303 EXPORT_SYMBOL_GPL(system_long_wq);
304 struct workqueue_struct *system_unbound_wq __read_mostly;
305 EXPORT_SYMBOL_GPL(system_unbound_wq);
306 struct workqueue_struct *system_freezable_wq __read_mostly;
307 EXPORT_SYMBOL_GPL(system_freezable_wq);
308
309 static int worker_thread(void *__worker);
310 static void copy_workqueue_attrs(struct workqueue_attrs *to,
311 const struct workqueue_attrs *from);
312
313 #define CREATE_TRACE_POINTS
314 #include <trace/events/workqueue.h>
315
316 #define assert_rcu_or_pool_mutex() \
317 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
318 lockdep_is_held(&wq_pool_mutex), \
319 "sched RCU or wq_pool_mutex should be held")
320
321 #define assert_rcu_or_wq_mutex(wq) \
322 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
323 lockdep_is_held(&wq->mutex), \
324 "sched RCU or wq->mutex should be held")
325
326 #ifdef CONFIG_LOCKDEP
327 #define assert_manager_or_pool_lock(pool) \
328 WARN_ONCE(debug_locks && \
329 !lockdep_is_held(&(pool)->manager_mutex) && \
330 !lockdep_is_held(&(pool)->lock), \
331 "pool->manager_mutex or ->lock should be held")
332 #else
333 #define assert_manager_or_pool_lock(pool) do { } while (0)
334 #endif
335
336 #define for_each_cpu_worker_pool(pool, cpu) \
337 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
338 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
339 (pool)++)
340
341 /**
342 * for_each_pool - iterate through all worker_pools in the system
343 * @pool: iteration cursor
344 * @pi: integer used for iteration
345 *
346 * This must be called either with wq_pool_mutex held or sched RCU read
347 * locked. If the pool needs to be used beyond the locking in effect, the
348 * caller is responsible for guaranteeing that the pool stays online.
349 *
350 * The if/else clause exists only for the lockdep assertion and can be
351 * ignored.
352 */
353 #define for_each_pool(pool, pi) \
354 idr_for_each_entry(&worker_pool_idr, pool, pi) \
355 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
356 else
357
358 /**
359 * for_each_pool_worker - iterate through all workers of a worker_pool
360 * @worker: iteration cursor
361 * @wi: integer used for iteration
362 * @pool: worker_pool to iterate workers of
363 *
364 * This must be called with either @pool->manager_mutex or ->lock held.
365 *
366 * The if/else clause exists only for the lockdep assertion and can be
367 * ignored.
368 */
369 #define for_each_pool_worker(worker, wi, pool) \
370 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
371 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
372 else
373
374 /**
375 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
376 * @pwq: iteration cursor
377 * @wq: the target workqueue
378 *
379 * This must be called either with wq->mutex held or sched RCU read locked.
380 * If the pwq needs to be used beyond the locking in effect, the caller is
381 * responsible for guaranteeing that the pwq stays online.
382 *
383 * The if/else clause exists only for the lockdep assertion and can be
384 * ignored.
385 */
386 #define for_each_pwq(pwq, wq) \
387 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
388 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
389 else
390
391 #ifdef CONFIG_DEBUG_OBJECTS_WORK
392
393 static struct debug_obj_descr work_debug_descr;
394
395 static void *work_debug_hint(void *addr)
396 {
397 return ((struct work_struct *) addr)->func;
398 }
399
400 /*
401 * fixup_init is called when:
402 * - an active object is initialized
403 */
404 static int work_fixup_init(void *addr, enum debug_obj_state state)
405 {
406 struct work_struct *work = addr;
407
408 switch (state) {
409 case ODEBUG_STATE_ACTIVE:
410 cancel_work_sync(work);
411 debug_object_init(work, &work_debug_descr);
412 return 1;
413 default:
414 return 0;
415 }
416 }
417
418 /*
419 * fixup_activate is called when:
420 * - an active object is activated
421 * - an unknown object is activated (might be a statically initialized object)
422 */
423 static int work_fixup_activate(void *addr, enum debug_obj_state state)
424 {
425 struct work_struct *work = addr;
426
427 switch (state) {
428
429 case ODEBUG_STATE_NOTAVAILABLE:
430 /*
431 * This is not really a fixup. The work struct was
432 * statically initialized. We just make sure that it
433 * is tracked in the object tracker.
434 */
435 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
436 debug_object_init(work, &work_debug_descr);
437 debug_object_activate(work, &work_debug_descr);
438 return 0;
439 }
440 WARN_ON_ONCE(1);
441 return 0;
442
443 case ODEBUG_STATE_ACTIVE:
444 WARN_ON(1);
445
446 default:
447 return 0;
448 }
449 }
450
451 /*
452 * fixup_free is called when:
453 * - an active object is freed
454 */
455 static int work_fixup_free(void *addr, enum debug_obj_state state)
456 {
457 struct work_struct *work = addr;
458
459 switch (state) {
460 case ODEBUG_STATE_ACTIVE:
461 cancel_work_sync(work);
462 debug_object_free(work, &work_debug_descr);
463 return 1;
464 default:
465 return 0;
466 }
467 }
468
469 static struct debug_obj_descr work_debug_descr = {
470 .name = "work_struct",
471 .debug_hint = work_debug_hint,
472 .fixup_init = work_fixup_init,
473 .fixup_activate = work_fixup_activate,
474 .fixup_free = work_fixup_free,
475 };
476
477 static inline void debug_work_activate(struct work_struct *work)
478 {
479 debug_object_activate(work, &work_debug_descr);
480 }
481
482 static inline void debug_work_deactivate(struct work_struct *work)
483 {
484 debug_object_deactivate(work, &work_debug_descr);
485 }
486
487 void __init_work(struct work_struct *work, int onstack)
488 {
489 if (onstack)
490 debug_object_init_on_stack(work, &work_debug_descr);
491 else
492 debug_object_init(work, &work_debug_descr);
493 }
494 EXPORT_SYMBOL_GPL(__init_work);
495
496 void destroy_work_on_stack(struct work_struct *work)
497 {
498 debug_object_free(work, &work_debug_descr);
499 }
500 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
501
502 #else
503 static inline void debug_work_activate(struct work_struct *work) { }
504 static inline void debug_work_deactivate(struct work_struct *work) { }
505 #endif
506
507 /* allocate ID and assign it to @pool */
508 static int worker_pool_assign_id(struct worker_pool *pool)
509 {
510 int ret;
511
512 lockdep_assert_held(&wq_pool_mutex);
513
514 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
515 if (ret >= 0) {
516 pool->id = ret;
517 return 0;
518 }
519 return ret;
520 }
521
522 /**
523 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
524 * @wq: the target workqueue
525 * @node: the node ID
526 *
527 * This must be called either with pwq_lock held or sched RCU read locked.
528 * If the pwq needs to be used beyond the locking in effect, the caller is
529 * responsible for guaranteeing that the pwq stays online.
530 */
531 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
532 int node)
533 {
534 assert_rcu_or_wq_mutex(wq);
535 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
536 }
537
538 static unsigned int work_color_to_flags(int color)
539 {
540 return color << WORK_STRUCT_COLOR_SHIFT;
541 }
542
543 static int get_work_color(struct work_struct *work)
544 {
545 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
546 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
547 }
548
549 static int work_next_color(int color)
550 {
551 return (color + 1) % WORK_NR_COLORS;
552 }
553
554 /*
555 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
556 * contain the pointer to the queued pwq. Once execution starts, the flag
557 * is cleared and the high bits contain OFFQ flags and pool ID.
558 *
559 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
560 * and clear_work_data() can be used to set the pwq, pool or clear
561 * work->data. These functions should only be called while the work is
562 * owned - ie. while the PENDING bit is set.
563 *
564 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
565 * corresponding to a work. Pool is available once the work has been
566 * queued anywhere after initialization until it is sync canceled. pwq is
567 * available only while the work item is queued.
568 *
569 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
570 * canceled. While being canceled, a work item may have its PENDING set
571 * but stay off timer and worklist for arbitrarily long and nobody should
572 * try to steal the PENDING bit.
573 */
574 static inline void set_work_data(struct work_struct *work, unsigned long data,
575 unsigned long flags)
576 {
577 WARN_ON_ONCE(!work_pending(work));
578 atomic_long_set(&work->data, data | flags | work_static(work));
579 }
580
581 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
582 unsigned long extra_flags)
583 {
584 set_work_data(work, (unsigned long)pwq,
585 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
586 }
587
588 static void set_work_pool_and_keep_pending(struct work_struct *work,
589 int pool_id)
590 {
591 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
592 WORK_STRUCT_PENDING);
593 }
594
595 static void set_work_pool_and_clear_pending(struct work_struct *work,
596 int pool_id)
597 {
598 /*
599 * The following wmb is paired with the implied mb in
600 * test_and_set_bit(PENDING) and ensures all updates to @work made
601 * here are visible to and precede any updates by the next PENDING
602 * owner.
603 */
604 smp_wmb();
605 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
606 }
607
608 static void clear_work_data(struct work_struct *work)
609 {
610 smp_wmb(); /* see set_work_pool_and_clear_pending() */
611 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
612 }
613
614 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
615 {
616 unsigned long data = atomic_long_read(&work->data);
617
618 if (data & WORK_STRUCT_PWQ)
619 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
620 else
621 return NULL;
622 }
623
624 /**
625 * get_work_pool - return the worker_pool a given work was associated with
626 * @work: the work item of interest
627 *
628 * Return the worker_pool @work was last associated with. %NULL if none.
629 *
630 * Pools are created and destroyed under wq_pool_mutex, and allows read
631 * access under sched-RCU read lock. As such, this function should be
632 * called under wq_pool_mutex or with preemption disabled.
633 *
634 * All fields of the returned pool are accessible as long as the above
635 * mentioned locking is in effect. If the returned pool needs to be used
636 * beyond the critical section, the caller is responsible for ensuring the
637 * returned pool is and stays online.
638 */
639 static struct worker_pool *get_work_pool(struct work_struct *work)
640 {
641 unsigned long data = atomic_long_read(&work->data);
642 int pool_id;
643
644 assert_rcu_or_pool_mutex();
645
646 if (data & WORK_STRUCT_PWQ)
647 return ((struct pool_workqueue *)
648 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
649
650 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
651 if (pool_id == WORK_OFFQ_POOL_NONE)
652 return NULL;
653
654 return idr_find(&worker_pool_idr, pool_id);
655 }
656
657 /**
658 * get_work_pool_id - return the worker pool ID a given work is associated with
659 * @work: the work item of interest
660 *
661 * Return the worker_pool ID @work was last associated with.
662 * %WORK_OFFQ_POOL_NONE if none.
663 */
664 static int get_work_pool_id(struct work_struct *work)
665 {
666 unsigned long data = atomic_long_read(&work->data);
667
668 if (data & WORK_STRUCT_PWQ)
669 return ((struct pool_workqueue *)
670 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
671
672 return data >> WORK_OFFQ_POOL_SHIFT;
673 }
674
675 static void mark_work_canceling(struct work_struct *work)
676 {
677 unsigned long pool_id = get_work_pool_id(work);
678
679 pool_id <<= WORK_OFFQ_POOL_SHIFT;
680 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
681 }
682
683 static bool work_is_canceling(struct work_struct *work)
684 {
685 unsigned long data = atomic_long_read(&work->data);
686
687 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
688 }
689
690 /*
691 * Policy functions. These define the policies on how the global worker
692 * pools are managed. Unless noted otherwise, these functions assume that
693 * they're being called with pool->lock held.
694 */
695
696 static bool __need_more_worker(struct worker_pool *pool)
697 {
698 return !atomic_read(&pool->nr_running);
699 }
700
701 /*
702 * Need to wake up a worker? Called from anything but currently
703 * running workers.
704 *
705 * Note that, because unbound workers never contribute to nr_running, this
706 * function will always return %true for unbound pools as long as the
707 * worklist isn't empty.
708 */
709 static bool need_more_worker(struct worker_pool *pool)
710 {
711 return !list_empty(&pool->worklist) && __need_more_worker(pool);
712 }
713
714 /* Can I start working? Called from busy but !running workers. */
715 static bool may_start_working(struct worker_pool *pool)
716 {
717 return pool->nr_idle;
718 }
719
720 /* Do I need to keep working? Called from currently running workers. */
721 static bool keep_working(struct worker_pool *pool)
722 {
723 return !list_empty(&pool->worklist) &&
724 atomic_read(&pool->nr_running) <= 1;
725 }
726
727 /* Do we need a new worker? Called from manager. */
728 static bool need_to_create_worker(struct worker_pool *pool)
729 {
730 return need_more_worker(pool) && !may_start_working(pool);
731 }
732
733 /* Do I need to be the manager? */
734 static bool need_to_manage_workers(struct worker_pool *pool)
735 {
736 return need_to_create_worker(pool) ||
737 (pool->flags & POOL_MANAGE_WORKERS);
738 }
739
740 /* Do we have too many workers and should some go away? */
741 static bool too_many_workers(struct worker_pool *pool)
742 {
743 bool managing = mutex_is_locked(&pool->manager_arb);
744 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
745 int nr_busy = pool->nr_workers - nr_idle;
746
747 /*
748 * nr_idle and idle_list may disagree if idle rebinding is in
749 * progress. Never return %true if idle_list is empty.
750 */
751 if (list_empty(&pool->idle_list))
752 return false;
753
754 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
755 }
756
757 /*
758 * Wake up functions.
759 */
760
761 /* Return the first worker. Safe with preemption disabled */
762 static struct worker *first_worker(struct worker_pool *pool)
763 {
764 if (unlikely(list_empty(&pool->idle_list)))
765 return NULL;
766
767 return list_first_entry(&pool->idle_list, struct worker, entry);
768 }
769
770 /**
771 * wake_up_worker - wake up an idle worker
772 * @pool: worker pool to wake worker from
773 *
774 * Wake up the first idle worker of @pool.
775 *
776 * CONTEXT:
777 * spin_lock_irq(pool->lock).
778 */
779 static void wake_up_worker(struct worker_pool *pool)
780 {
781 struct worker *worker = first_worker(pool);
782
783 if (likely(worker))
784 wake_up_process(worker->task);
785 }
786
787 /**
788 * wq_worker_waking_up - a worker is waking up
789 * @task: task waking up
790 * @cpu: CPU @task is waking up to
791 *
792 * This function is called during try_to_wake_up() when a worker is
793 * being awoken.
794 *
795 * CONTEXT:
796 * spin_lock_irq(rq->lock)
797 */
798 void wq_worker_waking_up(struct task_struct *task, int cpu)
799 {
800 struct worker *worker = kthread_data(task);
801
802 if (!(worker->flags & WORKER_NOT_RUNNING)) {
803 WARN_ON_ONCE(worker->pool->cpu != cpu);
804 atomic_inc(&worker->pool->nr_running);
805 }
806 }
807
808 /**
809 * wq_worker_sleeping - a worker is going to sleep
810 * @task: task going to sleep
811 * @cpu: CPU in question, must be the current CPU number
812 *
813 * This function is called during schedule() when a busy worker is
814 * going to sleep. Worker on the same cpu can be woken up by
815 * returning pointer to its task.
816 *
817 * CONTEXT:
818 * spin_lock_irq(rq->lock)
819 *
820 * RETURNS:
821 * Worker task on @cpu to wake up, %NULL if none.
822 */
823 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
824 {
825 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
826 struct worker_pool *pool;
827
828 /*
829 * Rescuers, which may not have all the fields set up like normal
830 * workers, also reach here, let's not access anything before
831 * checking NOT_RUNNING.
832 */
833 if (worker->flags & WORKER_NOT_RUNNING)
834 return NULL;
835
836 pool = worker->pool;
837
838 /* this can only happen on the local cpu */
839 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
840 return NULL;
841
842 /*
843 * The counterpart of the following dec_and_test, implied mb,
844 * worklist not empty test sequence is in insert_work().
845 * Please read comment there.
846 *
847 * NOT_RUNNING is clear. This means that we're bound to and
848 * running on the local cpu w/ rq lock held and preemption
849 * disabled, which in turn means that none else could be
850 * manipulating idle_list, so dereferencing idle_list without pool
851 * lock is safe.
852 */
853 if (atomic_dec_and_test(&pool->nr_running) &&
854 !list_empty(&pool->worklist))
855 to_wakeup = first_worker(pool);
856 return to_wakeup ? to_wakeup->task : NULL;
857 }
858
859 /**
860 * worker_set_flags - set worker flags and adjust nr_running accordingly
861 * @worker: self
862 * @flags: flags to set
863 * @wakeup: wakeup an idle worker if necessary
864 *
865 * Set @flags in @worker->flags and adjust nr_running accordingly. If
866 * nr_running becomes zero and @wakeup is %true, an idle worker is
867 * woken up.
868 *
869 * CONTEXT:
870 * spin_lock_irq(pool->lock)
871 */
872 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
873 bool wakeup)
874 {
875 struct worker_pool *pool = worker->pool;
876
877 WARN_ON_ONCE(worker->task != current);
878
879 /*
880 * If transitioning into NOT_RUNNING, adjust nr_running and
881 * wake up an idle worker as necessary if requested by
882 * @wakeup.
883 */
884 if ((flags & WORKER_NOT_RUNNING) &&
885 !(worker->flags & WORKER_NOT_RUNNING)) {
886 if (wakeup) {
887 if (atomic_dec_and_test(&pool->nr_running) &&
888 !list_empty(&pool->worklist))
889 wake_up_worker(pool);
890 } else
891 atomic_dec(&pool->nr_running);
892 }
893
894 worker->flags |= flags;
895 }
896
897 /**
898 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
899 * @worker: self
900 * @flags: flags to clear
901 *
902 * Clear @flags in @worker->flags and adjust nr_running accordingly.
903 *
904 * CONTEXT:
905 * spin_lock_irq(pool->lock)
906 */
907 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
908 {
909 struct worker_pool *pool = worker->pool;
910 unsigned int oflags = worker->flags;
911
912 WARN_ON_ONCE(worker->task != current);
913
914 worker->flags &= ~flags;
915
916 /*
917 * If transitioning out of NOT_RUNNING, increment nr_running. Note
918 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
919 * of multiple flags, not a single flag.
920 */
921 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
922 if (!(worker->flags & WORKER_NOT_RUNNING))
923 atomic_inc(&pool->nr_running);
924 }
925
926 /**
927 * find_worker_executing_work - find worker which is executing a work
928 * @pool: pool of interest
929 * @work: work to find worker for
930 *
931 * Find a worker which is executing @work on @pool by searching
932 * @pool->busy_hash which is keyed by the address of @work. For a worker
933 * to match, its current execution should match the address of @work and
934 * its work function. This is to avoid unwanted dependency between
935 * unrelated work executions through a work item being recycled while still
936 * being executed.
937 *
938 * This is a bit tricky. A work item may be freed once its execution
939 * starts and nothing prevents the freed area from being recycled for
940 * another work item. If the same work item address ends up being reused
941 * before the original execution finishes, workqueue will identify the
942 * recycled work item as currently executing and make it wait until the
943 * current execution finishes, introducing an unwanted dependency.
944 *
945 * This function checks the work item address and work function to avoid
946 * false positives. Note that this isn't complete as one may construct a
947 * work function which can introduce dependency onto itself through a
948 * recycled work item. Well, if somebody wants to shoot oneself in the
949 * foot that badly, there's only so much we can do, and if such deadlock
950 * actually occurs, it should be easy to locate the culprit work function.
951 *
952 * CONTEXT:
953 * spin_lock_irq(pool->lock).
954 *
955 * RETURNS:
956 * Pointer to worker which is executing @work if found, NULL
957 * otherwise.
958 */
959 static struct worker *find_worker_executing_work(struct worker_pool *pool,
960 struct work_struct *work)
961 {
962 struct worker *worker;
963
964 hash_for_each_possible(pool->busy_hash, worker, hentry,
965 (unsigned long)work)
966 if (worker->current_work == work &&
967 worker->current_func == work->func)
968 return worker;
969
970 return NULL;
971 }
972
973 /**
974 * move_linked_works - move linked works to a list
975 * @work: start of series of works to be scheduled
976 * @head: target list to append @work to
977 * @nextp: out paramter for nested worklist walking
978 *
979 * Schedule linked works starting from @work to @head. Work series to
980 * be scheduled starts at @work and includes any consecutive work with
981 * WORK_STRUCT_LINKED set in its predecessor.
982 *
983 * If @nextp is not NULL, it's updated to point to the next work of
984 * the last scheduled work. This allows move_linked_works() to be
985 * nested inside outer list_for_each_entry_safe().
986 *
987 * CONTEXT:
988 * spin_lock_irq(pool->lock).
989 */
990 static void move_linked_works(struct work_struct *work, struct list_head *head,
991 struct work_struct **nextp)
992 {
993 struct work_struct *n;
994
995 /*
996 * Linked worklist will always end before the end of the list,
997 * use NULL for list head.
998 */
999 list_for_each_entry_safe_from(work, n, NULL, entry) {
1000 list_move_tail(&work->entry, head);
1001 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1002 break;
1003 }
1004
1005 /*
1006 * If we're already inside safe list traversal and have moved
1007 * multiple works to the scheduled queue, the next position
1008 * needs to be updated.
1009 */
1010 if (nextp)
1011 *nextp = n;
1012 }
1013
1014 /**
1015 * get_pwq - get an extra reference on the specified pool_workqueue
1016 * @pwq: pool_workqueue to get
1017 *
1018 * Obtain an extra reference on @pwq. The caller should guarantee that
1019 * @pwq has positive refcnt and be holding the matching pool->lock.
1020 */
1021 static void get_pwq(struct pool_workqueue *pwq)
1022 {
1023 lockdep_assert_held(&pwq->pool->lock);
1024 WARN_ON_ONCE(pwq->refcnt <= 0);
1025 pwq->refcnt++;
1026 }
1027
1028 /**
1029 * put_pwq - put a pool_workqueue reference
1030 * @pwq: pool_workqueue to put
1031 *
1032 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1033 * destruction. The caller should be holding the matching pool->lock.
1034 */
1035 static void put_pwq(struct pool_workqueue *pwq)
1036 {
1037 lockdep_assert_held(&pwq->pool->lock);
1038 if (likely(--pwq->refcnt))
1039 return;
1040 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1041 return;
1042 /*
1043 * @pwq can't be released under pool->lock, bounce to
1044 * pwq_unbound_release_workfn(). This never recurses on the same
1045 * pool->lock as this path is taken only for unbound workqueues and
1046 * the release work item is scheduled on a per-cpu workqueue. To
1047 * avoid lockdep warning, unbound pool->locks are given lockdep
1048 * subclass of 1 in get_unbound_pool().
1049 */
1050 schedule_work(&pwq->unbound_release_work);
1051 }
1052
1053 /**
1054 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1055 * @pwq: pool_workqueue to put (can be %NULL)
1056 *
1057 * put_pwq() with locking. This function also allows %NULL @pwq.
1058 */
1059 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1060 {
1061 if (pwq) {
1062 /*
1063 * As both pwqs and pools are sched-RCU protected, the
1064 * following lock operations are safe.
1065 */
1066 spin_lock_irq(&pwq->pool->lock);
1067 put_pwq(pwq);
1068 spin_unlock_irq(&pwq->pool->lock);
1069 }
1070 }
1071
1072 static void pwq_activate_delayed_work(struct work_struct *work)
1073 {
1074 struct pool_workqueue *pwq = get_work_pwq(work);
1075
1076 trace_workqueue_activate_work(work);
1077 move_linked_works(work, &pwq->pool->worklist, NULL);
1078 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1079 pwq->nr_active++;
1080 }
1081
1082 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1083 {
1084 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1085 struct work_struct, entry);
1086
1087 pwq_activate_delayed_work(work);
1088 }
1089
1090 /**
1091 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1092 * @pwq: pwq of interest
1093 * @color: color of work which left the queue
1094 *
1095 * A work either has completed or is removed from pending queue,
1096 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1097 *
1098 * CONTEXT:
1099 * spin_lock_irq(pool->lock).
1100 */
1101 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1102 {
1103 /* uncolored work items don't participate in flushing or nr_active */
1104 if (color == WORK_NO_COLOR)
1105 goto out_put;
1106
1107 pwq->nr_in_flight[color]--;
1108
1109 pwq->nr_active--;
1110 if (!list_empty(&pwq->delayed_works)) {
1111 /* one down, submit a delayed one */
1112 if (pwq->nr_active < pwq->max_active)
1113 pwq_activate_first_delayed(pwq);
1114 }
1115
1116 /* is flush in progress and are we at the flushing tip? */
1117 if (likely(pwq->flush_color != color))
1118 goto out_put;
1119
1120 /* are there still in-flight works? */
1121 if (pwq->nr_in_flight[color])
1122 goto out_put;
1123
1124 /* this pwq is done, clear flush_color */
1125 pwq->flush_color = -1;
1126
1127 /*
1128 * If this was the last pwq, wake up the first flusher. It
1129 * will handle the rest.
1130 */
1131 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1132 complete(&pwq->wq->first_flusher->done);
1133 out_put:
1134 put_pwq(pwq);
1135 }
1136
1137 /**
1138 * try_to_grab_pending - steal work item from worklist and disable irq
1139 * @work: work item to steal
1140 * @is_dwork: @work is a delayed_work
1141 * @flags: place to store irq state
1142 *
1143 * Try to grab PENDING bit of @work. This function can handle @work in any
1144 * stable state - idle, on timer or on worklist. Return values are
1145 *
1146 * 1 if @work was pending and we successfully stole PENDING
1147 * 0 if @work was idle and we claimed PENDING
1148 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1149 * -ENOENT if someone else is canceling @work, this state may persist
1150 * for arbitrarily long
1151 *
1152 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1153 * interrupted while holding PENDING and @work off queue, irq must be
1154 * disabled on entry. This, combined with delayed_work->timer being
1155 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1156 *
1157 * On successful return, >= 0, irq is disabled and the caller is
1158 * responsible for releasing it using local_irq_restore(*@flags).
1159 *
1160 * This function is safe to call from any context including IRQ handler.
1161 */
1162 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1163 unsigned long *flags)
1164 {
1165 struct worker_pool *pool;
1166 struct pool_workqueue *pwq;
1167
1168 local_irq_save(*flags);
1169
1170 /* try to steal the timer if it exists */
1171 if (is_dwork) {
1172 struct delayed_work *dwork = to_delayed_work(work);
1173
1174 /*
1175 * dwork->timer is irqsafe. If del_timer() fails, it's
1176 * guaranteed that the timer is not queued anywhere and not
1177 * running on the local CPU.
1178 */
1179 if (likely(del_timer(&dwork->timer)))
1180 return 1;
1181 }
1182
1183 /* try to claim PENDING the normal way */
1184 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1185 return 0;
1186
1187 /*
1188 * The queueing is in progress, or it is already queued. Try to
1189 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1190 */
1191 pool = get_work_pool(work);
1192 if (!pool)
1193 goto fail;
1194
1195 spin_lock(&pool->lock);
1196 /*
1197 * work->data is guaranteed to point to pwq only while the work
1198 * item is queued on pwq->wq, and both updating work->data to point
1199 * to pwq on queueing and to pool on dequeueing are done under
1200 * pwq->pool->lock. This in turn guarantees that, if work->data
1201 * points to pwq which is associated with a locked pool, the work
1202 * item is currently queued on that pool.
1203 */
1204 pwq = get_work_pwq(work);
1205 if (pwq && pwq->pool == pool) {
1206 debug_work_deactivate(work);
1207
1208 /*
1209 * A delayed work item cannot be grabbed directly because
1210 * it might have linked NO_COLOR work items which, if left
1211 * on the delayed_list, will confuse pwq->nr_active
1212 * management later on and cause stall. Make sure the work
1213 * item is activated before grabbing.
1214 */
1215 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1216 pwq_activate_delayed_work(work);
1217
1218 list_del_init(&work->entry);
1219 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1220
1221 /* work->data points to pwq iff queued, point to pool */
1222 set_work_pool_and_keep_pending(work, pool->id);
1223
1224 spin_unlock(&pool->lock);
1225 return 1;
1226 }
1227 spin_unlock(&pool->lock);
1228 fail:
1229 local_irq_restore(*flags);
1230 if (work_is_canceling(work))
1231 return -ENOENT;
1232 cpu_relax();
1233 return -EAGAIN;
1234 }
1235
1236 /**
1237 * insert_work - insert a work into a pool
1238 * @pwq: pwq @work belongs to
1239 * @work: work to insert
1240 * @head: insertion point
1241 * @extra_flags: extra WORK_STRUCT_* flags to set
1242 *
1243 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1244 * work_struct flags.
1245 *
1246 * CONTEXT:
1247 * spin_lock_irq(pool->lock).
1248 */
1249 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1250 struct list_head *head, unsigned int extra_flags)
1251 {
1252 struct worker_pool *pool = pwq->pool;
1253
1254 /* we own @work, set data and link */
1255 set_work_pwq(work, pwq, extra_flags);
1256 list_add_tail(&work->entry, head);
1257 get_pwq(pwq);
1258
1259 /*
1260 * Ensure either wq_worker_sleeping() sees the above
1261 * list_add_tail() or we see zero nr_running to avoid workers lying
1262 * around lazily while there are works to be processed.
1263 */
1264 smp_mb();
1265
1266 if (__need_more_worker(pool))
1267 wake_up_worker(pool);
1268 }
1269
1270 /*
1271 * Test whether @work is being queued from another work executing on the
1272 * same workqueue.
1273 */
1274 static bool is_chained_work(struct workqueue_struct *wq)
1275 {
1276 struct worker *worker;
1277
1278 worker = current_wq_worker();
1279 /*
1280 * Return %true iff I'm a worker execuing a work item on @wq. If
1281 * I'm @worker, it's safe to dereference it without locking.
1282 */
1283 return worker && worker->current_pwq->wq == wq;
1284 }
1285
1286 static void __queue_work(int cpu, struct workqueue_struct *wq,
1287 struct work_struct *work)
1288 {
1289 struct pool_workqueue *pwq;
1290 struct worker_pool *last_pool;
1291 struct list_head *worklist;
1292 unsigned int work_flags;
1293 unsigned int req_cpu = cpu;
1294
1295 /*
1296 * While a work item is PENDING && off queue, a task trying to
1297 * steal the PENDING will busy-loop waiting for it to either get
1298 * queued or lose PENDING. Grabbing PENDING and queueing should
1299 * happen with IRQ disabled.
1300 */
1301 WARN_ON_ONCE(!irqs_disabled());
1302
1303 debug_work_activate(work);
1304
1305 /* if dying, only works from the same workqueue are allowed */
1306 if (unlikely(wq->flags & __WQ_DRAINING) &&
1307 WARN_ON_ONCE(!is_chained_work(wq)))
1308 return;
1309 retry:
1310 if (req_cpu == WORK_CPU_UNBOUND)
1311 cpu = raw_smp_processor_id();
1312
1313 /* pwq which will be used unless @work is executing elsewhere */
1314 if (!(wq->flags & WQ_UNBOUND))
1315 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1316 else
1317 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1318
1319 /*
1320 * If @work was previously on a different pool, it might still be
1321 * running there, in which case the work needs to be queued on that
1322 * pool to guarantee non-reentrancy.
1323 */
1324 last_pool = get_work_pool(work);
1325 if (last_pool && last_pool != pwq->pool) {
1326 struct worker *worker;
1327
1328 spin_lock(&last_pool->lock);
1329
1330 worker = find_worker_executing_work(last_pool, work);
1331
1332 if (worker && worker->current_pwq->wq == wq) {
1333 pwq = worker->current_pwq;
1334 } else {
1335 /* meh... not running there, queue here */
1336 spin_unlock(&last_pool->lock);
1337 spin_lock(&pwq->pool->lock);
1338 }
1339 } else {
1340 spin_lock(&pwq->pool->lock);
1341 }
1342
1343 /*
1344 * pwq is determined and locked. For unbound pools, we could have
1345 * raced with pwq release and it could already be dead. If its
1346 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1347 * without another pwq replacing it in the numa_pwq_tbl or while
1348 * work items are executing on it, so the retrying is guaranteed to
1349 * make forward-progress.
1350 */
1351 if (unlikely(!pwq->refcnt)) {
1352 if (wq->flags & WQ_UNBOUND) {
1353 spin_unlock(&pwq->pool->lock);
1354 cpu_relax();
1355 goto retry;
1356 }
1357 /* oops */
1358 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1359 wq->name, cpu);
1360 }
1361
1362 /* pwq determined, queue */
1363 trace_workqueue_queue_work(req_cpu, pwq, work);
1364
1365 if (WARN_ON(!list_empty(&work->entry))) {
1366 spin_unlock(&pwq->pool->lock);
1367 return;
1368 }
1369
1370 pwq->nr_in_flight[pwq->work_color]++;
1371 work_flags = work_color_to_flags(pwq->work_color);
1372
1373 if (likely(pwq->nr_active < pwq->max_active)) {
1374 trace_workqueue_activate_work(work);
1375 pwq->nr_active++;
1376 worklist = &pwq->pool->worklist;
1377 } else {
1378 work_flags |= WORK_STRUCT_DELAYED;
1379 worklist = &pwq->delayed_works;
1380 }
1381
1382 insert_work(pwq, work, worklist, work_flags);
1383
1384 spin_unlock(&pwq->pool->lock);
1385 }
1386
1387 /**
1388 * queue_work_on - queue work on specific cpu
1389 * @cpu: CPU number to execute work on
1390 * @wq: workqueue to use
1391 * @work: work to queue
1392 *
1393 * Returns %false if @work was already on a queue, %true otherwise.
1394 *
1395 * We queue the work to a specific CPU, the caller must ensure it
1396 * can't go away.
1397 */
1398 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1399 struct work_struct *work)
1400 {
1401 bool ret = false;
1402 unsigned long flags;
1403
1404 local_irq_save(flags);
1405
1406 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1407 __queue_work(cpu, wq, work);
1408 ret = true;
1409 }
1410
1411 local_irq_restore(flags);
1412 return ret;
1413 }
1414 EXPORT_SYMBOL(queue_work_on);
1415
1416 void delayed_work_timer_fn(unsigned long __data)
1417 {
1418 struct delayed_work *dwork = (struct delayed_work *)__data;
1419
1420 /* should have been called from irqsafe timer with irq already off */
1421 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1422 }
1423 EXPORT_SYMBOL(delayed_work_timer_fn);
1424
1425 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1426 struct delayed_work *dwork, unsigned long delay)
1427 {
1428 struct timer_list *timer = &dwork->timer;
1429 struct work_struct *work = &dwork->work;
1430
1431 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1432 timer->data != (unsigned long)dwork);
1433 WARN_ON_ONCE(timer_pending(timer));
1434 WARN_ON_ONCE(!list_empty(&work->entry));
1435
1436 /*
1437 * If @delay is 0, queue @dwork->work immediately. This is for
1438 * both optimization and correctness. The earliest @timer can
1439 * expire is on the closest next tick and delayed_work users depend
1440 * on that there's no such delay when @delay is 0.
1441 */
1442 if (!delay) {
1443 __queue_work(cpu, wq, &dwork->work);
1444 return;
1445 }
1446
1447 timer_stats_timer_set_start_info(&dwork->timer);
1448
1449 dwork->wq = wq;
1450 dwork->cpu = cpu;
1451 timer->expires = jiffies + delay;
1452
1453 if (unlikely(cpu != WORK_CPU_UNBOUND))
1454 add_timer_on(timer, cpu);
1455 else
1456 add_timer(timer);
1457 }
1458
1459 /**
1460 * queue_delayed_work_on - queue work on specific CPU after delay
1461 * @cpu: CPU number to execute work on
1462 * @wq: workqueue to use
1463 * @dwork: work to queue
1464 * @delay: number of jiffies to wait before queueing
1465 *
1466 * Returns %false if @work was already on a queue, %true otherwise. If
1467 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1468 * execution.
1469 */
1470 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1471 struct delayed_work *dwork, unsigned long delay)
1472 {
1473 struct work_struct *work = &dwork->work;
1474 bool ret = false;
1475 unsigned long flags;
1476
1477 /* read the comment in __queue_work() */
1478 local_irq_save(flags);
1479
1480 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1481 __queue_delayed_work(cpu, wq, dwork, delay);
1482 ret = true;
1483 }
1484
1485 local_irq_restore(flags);
1486 return ret;
1487 }
1488 EXPORT_SYMBOL(queue_delayed_work_on);
1489
1490 /**
1491 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1492 * @cpu: CPU number to execute work on
1493 * @wq: workqueue to use
1494 * @dwork: work to queue
1495 * @delay: number of jiffies to wait before queueing
1496 *
1497 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1498 * modify @dwork's timer so that it expires after @delay. If @delay is
1499 * zero, @work is guaranteed to be scheduled immediately regardless of its
1500 * current state.
1501 *
1502 * Returns %false if @dwork was idle and queued, %true if @dwork was
1503 * pending and its timer was modified.
1504 *
1505 * This function is safe to call from any context including IRQ handler.
1506 * See try_to_grab_pending() for details.
1507 */
1508 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1509 struct delayed_work *dwork, unsigned long delay)
1510 {
1511 unsigned long flags;
1512 int ret;
1513
1514 do {
1515 ret = try_to_grab_pending(&dwork->work, true, &flags);
1516 } while (unlikely(ret == -EAGAIN));
1517
1518 if (likely(ret >= 0)) {
1519 __queue_delayed_work(cpu, wq, dwork, delay);
1520 local_irq_restore(flags);
1521 }
1522
1523 /* -ENOENT from try_to_grab_pending() becomes %true */
1524 return ret;
1525 }
1526 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1527
1528 /**
1529 * worker_enter_idle - enter idle state
1530 * @worker: worker which is entering idle state
1531 *
1532 * @worker is entering idle state. Update stats and idle timer if
1533 * necessary.
1534 *
1535 * LOCKING:
1536 * spin_lock_irq(pool->lock).
1537 */
1538 static void worker_enter_idle(struct worker *worker)
1539 {
1540 struct worker_pool *pool = worker->pool;
1541
1542 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1543 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1544 (worker->hentry.next || worker->hentry.pprev)))
1545 return;
1546
1547 /* can't use worker_set_flags(), also called from start_worker() */
1548 worker->flags |= WORKER_IDLE;
1549 pool->nr_idle++;
1550 worker->last_active = jiffies;
1551
1552 /* idle_list is LIFO */
1553 list_add(&worker->entry, &pool->idle_list);
1554
1555 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1556 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1557
1558 /*
1559 * Sanity check nr_running. Because wq_unbind_fn() releases
1560 * pool->lock between setting %WORKER_UNBOUND and zapping
1561 * nr_running, the warning may trigger spuriously. Check iff
1562 * unbind is not in progress.
1563 */
1564 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1565 pool->nr_workers == pool->nr_idle &&
1566 atomic_read(&pool->nr_running));
1567 }
1568
1569 /**
1570 * worker_leave_idle - leave idle state
1571 * @worker: worker which is leaving idle state
1572 *
1573 * @worker is leaving idle state. Update stats.
1574 *
1575 * LOCKING:
1576 * spin_lock_irq(pool->lock).
1577 */
1578 static void worker_leave_idle(struct worker *worker)
1579 {
1580 struct worker_pool *pool = worker->pool;
1581
1582 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1583 return;
1584 worker_clr_flags(worker, WORKER_IDLE);
1585 pool->nr_idle--;
1586 list_del_init(&worker->entry);
1587 }
1588
1589 /**
1590 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1591 * @pool: target worker_pool
1592 *
1593 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1594 *
1595 * Works which are scheduled while the cpu is online must at least be
1596 * scheduled to a worker which is bound to the cpu so that if they are
1597 * flushed from cpu callbacks while cpu is going down, they are
1598 * guaranteed to execute on the cpu.
1599 *
1600 * This function is to be used by unbound workers and rescuers to bind
1601 * themselves to the target cpu and may race with cpu going down or
1602 * coming online. kthread_bind() can't be used because it may put the
1603 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1604 * verbatim as it's best effort and blocking and pool may be
1605 * [dis]associated in the meantime.
1606 *
1607 * This function tries set_cpus_allowed() and locks pool and verifies the
1608 * binding against %POOL_DISASSOCIATED which is set during
1609 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1610 * enters idle state or fetches works without dropping lock, it can
1611 * guarantee the scheduling requirement described in the first paragraph.
1612 *
1613 * CONTEXT:
1614 * Might sleep. Called without any lock but returns with pool->lock
1615 * held.
1616 *
1617 * RETURNS:
1618 * %true if the associated pool is online (@worker is successfully
1619 * bound), %false if offline.
1620 */
1621 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1622 __acquires(&pool->lock)
1623 {
1624 while (true) {
1625 /*
1626 * The following call may fail, succeed or succeed
1627 * without actually migrating the task to the cpu if
1628 * it races with cpu hotunplug operation. Verify
1629 * against POOL_DISASSOCIATED.
1630 */
1631 if (!(pool->flags & POOL_DISASSOCIATED))
1632 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1633
1634 spin_lock_irq(&pool->lock);
1635 if (pool->flags & POOL_DISASSOCIATED)
1636 return false;
1637 if (task_cpu(current) == pool->cpu &&
1638 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1639 return true;
1640 spin_unlock_irq(&pool->lock);
1641
1642 /*
1643 * We've raced with CPU hot[un]plug. Give it a breather
1644 * and retry migration. cond_resched() is required here;
1645 * otherwise, we might deadlock against cpu_stop trying to
1646 * bring down the CPU on non-preemptive kernel.
1647 */
1648 cpu_relax();
1649 cond_resched();
1650 }
1651 }
1652
1653 static struct worker *alloc_worker(void)
1654 {
1655 struct worker *worker;
1656
1657 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1658 if (worker) {
1659 INIT_LIST_HEAD(&worker->entry);
1660 INIT_LIST_HEAD(&worker->scheduled);
1661 /* on creation a worker is in !idle && prep state */
1662 worker->flags = WORKER_PREP;
1663 }
1664 return worker;
1665 }
1666
1667 /**
1668 * create_worker - create a new workqueue worker
1669 * @pool: pool the new worker will belong to
1670 *
1671 * Create a new worker which is bound to @pool. The returned worker
1672 * can be started by calling start_worker() or destroyed using
1673 * destroy_worker().
1674 *
1675 * CONTEXT:
1676 * Might sleep. Does GFP_KERNEL allocations.
1677 *
1678 * RETURNS:
1679 * Pointer to the newly created worker.
1680 */
1681 static struct worker *create_worker(struct worker_pool *pool)
1682 {
1683 struct worker *worker = NULL;
1684 int id = -1;
1685 char id_buf[16];
1686
1687 lockdep_assert_held(&pool->manager_mutex);
1688
1689 /*
1690 * ID is needed to determine kthread name. Allocate ID first
1691 * without installing the pointer.
1692 */
1693 idr_preload(GFP_KERNEL);
1694 spin_lock_irq(&pool->lock);
1695
1696 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1697
1698 spin_unlock_irq(&pool->lock);
1699 idr_preload_end();
1700 if (id < 0)
1701 goto fail;
1702
1703 worker = alloc_worker();
1704 if (!worker)
1705 goto fail;
1706
1707 worker->pool = pool;
1708 worker->id = id;
1709
1710 if (pool->cpu >= 0)
1711 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1712 pool->attrs->nice < 0 ? "H" : "");
1713 else
1714 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1715
1716 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1717 "kworker/%s", id_buf);
1718 if (IS_ERR(worker->task))
1719 goto fail;
1720
1721 /*
1722 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1723 * online CPUs. It'll be re-applied when any of the CPUs come up.
1724 */
1725 set_user_nice(worker->task, pool->attrs->nice);
1726 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1727
1728 /* prevent userland from meddling with cpumask of workqueue workers */
1729 worker->task->flags |= PF_NO_SETAFFINITY;
1730
1731 /*
1732 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1733 * remains stable across this function. See the comments above the
1734 * flag definition for details.
1735 */
1736 if (pool->flags & POOL_DISASSOCIATED)
1737 worker->flags |= WORKER_UNBOUND;
1738
1739 /* successful, commit the pointer to idr */
1740 spin_lock_irq(&pool->lock);
1741 idr_replace(&pool->worker_idr, worker, worker->id);
1742 spin_unlock_irq(&pool->lock);
1743
1744 return worker;
1745
1746 fail:
1747 if (id >= 0) {
1748 spin_lock_irq(&pool->lock);
1749 idr_remove(&pool->worker_idr, id);
1750 spin_unlock_irq(&pool->lock);
1751 }
1752 kfree(worker);
1753 return NULL;
1754 }
1755
1756 /**
1757 * start_worker - start a newly created worker
1758 * @worker: worker to start
1759 *
1760 * Make the pool aware of @worker and start it.
1761 *
1762 * CONTEXT:
1763 * spin_lock_irq(pool->lock).
1764 */
1765 static void start_worker(struct worker *worker)
1766 {
1767 worker->flags |= WORKER_STARTED;
1768 worker->pool->nr_workers++;
1769 worker_enter_idle(worker);
1770 wake_up_process(worker->task);
1771 }
1772
1773 /**
1774 * create_and_start_worker - create and start a worker for a pool
1775 * @pool: the target pool
1776 *
1777 * Grab the managership of @pool and create and start a new worker for it.
1778 */
1779 static int create_and_start_worker(struct worker_pool *pool)
1780 {
1781 struct worker *worker;
1782
1783 mutex_lock(&pool->manager_mutex);
1784
1785 worker = create_worker(pool);
1786 if (worker) {
1787 spin_lock_irq(&pool->lock);
1788 start_worker(worker);
1789 spin_unlock_irq(&pool->lock);
1790 }
1791
1792 mutex_unlock(&pool->manager_mutex);
1793
1794 return worker ? 0 : -ENOMEM;
1795 }
1796
1797 /**
1798 * destroy_worker - destroy a workqueue worker
1799 * @worker: worker to be destroyed
1800 *
1801 * Destroy @worker and adjust @pool stats accordingly.
1802 *
1803 * CONTEXT:
1804 * spin_lock_irq(pool->lock) which is released and regrabbed.
1805 */
1806 static void destroy_worker(struct worker *worker)
1807 {
1808 struct worker_pool *pool = worker->pool;
1809
1810 lockdep_assert_held(&pool->manager_mutex);
1811 lockdep_assert_held(&pool->lock);
1812
1813 /* sanity check frenzy */
1814 if (WARN_ON(worker->current_work) ||
1815 WARN_ON(!list_empty(&worker->scheduled)))
1816 return;
1817
1818 if (worker->flags & WORKER_STARTED)
1819 pool->nr_workers--;
1820 if (worker->flags & WORKER_IDLE)
1821 pool->nr_idle--;
1822
1823 list_del_init(&worker->entry);
1824 worker->flags |= WORKER_DIE;
1825
1826 idr_remove(&pool->worker_idr, worker->id);
1827
1828 spin_unlock_irq(&pool->lock);
1829
1830 kthread_stop(worker->task);
1831 kfree(worker);
1832
1833 spin_lock_irq(&pool->lock);
1834 }
1835
1836 static void idle_worker_timeout(unsigned long __pool)
1837 {
1838 struct worker_pool *pool = (void *)__pool;
1839
1840 spin_lock_irq(&pool->lock);
1841
1842 if (too_many_workers(pool)) {
1843 struct worker *worker;
1844 unsigned long expires;
1845
1846 /* idle_list is kept in LIFO order, check the last one */
1847 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1848 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1849
1850 if (time_before(jiffies, expires))
1851 mod_timer(&pool->idle_timer, expires);
1852 else {
1853 /* it's been idle for too long, wake up manager */
1854 pool->flags |= POOL_MANAGE_WORKERS;
1855 wake_up_worker(pool);
1856 }
1857 }
1858
1859 spin_unlock_irq(&pool->lock);
1860 }
1861
1862 static void send_mayday(struct work_struct *work)
1863 {
1864 struct pool_workqueue *pwq = get_work_pwq(work);
1865 struct workqueue_struct *wq = pwq->wq;
1866
1867 lockdep_assert_held(&wq_mayday_lock);
1868
1869 if (!wq->rescuer)
1870 return;
1871
1872 /* mayday mayday mayday */
1873 if (list_empty(&pwq->mayday_node)) {
1874 list_add_tail(&pwq->mayday_node, &wq->maydays);
1875 wake_up_process(wq->rescuer->task);
1876 }
1877 }
1878
1879 static void pool_mayday_timeout(unsigned long __pool)
1880 {
1881 struct worker_pool *pool = (void *)__pool;
1882 struct work_struct *work;
1883
1884 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1885 spin_lock(&pool->lock);
1886
1887 if (need_to_create_worker(pool)) {
1888 /*
1889 * We've been trying to create a new worker but
1890 * haven't been successful. We might be hitting an
1891 * allocation deadlock. Send distress signals to
1892 * rescuers.
1893 */
1894 list_for_each_entry(work, &pool->worklist, entry)
1895 send_mayday(work);
1896 }
1897
1898 spin_unlock(&pool->lock);
1899 spin_unlock_irq(&wq_mayday_lock);
1900
1901 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1902 }
1903
1904 /**
1905 * maybe_create_worker - create a new worker if necessary
1906 * @pool: pool to create a new worker for
1907 *
1908 * Create a new worker for @pool if necessary. @pool is guaranteed to
1909 * have at least one idle worker on return from this function. If
1910 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1911 * sent to all rescuers with works scheduled on @pool to resolve
1912 * possible allocation deadlock.
1913 *
1914 * On return, need_to_create_worker() is guaranteed to be %false and
1915 * may_start_working() %true.
1916 *
1917 * LOCKING:
1918 * spin_lock_irq(pool->lock) which may be released and regrabbed
1919 * multiple times. Does GFP_KERNEL allocations. Called only from
1920 * manager.
1921 *
1922 * RETURNS:
1923 * %false if no action was taken and pool->lock stayed locked, %true
1924 * otherwise.
1925 */
1926 static bool maybe_create_worker(struct worker_pool *pool)
1927 __releases(&pool->lock)
1928 __acquires(&pool->lock)
1929 {
1930 if (!need_to_create_worker(pool))
1931 return false;
1932 restart:
1933 spin_unlock_irq(&pool->lock);
1934
1935 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1936 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1937
1938 while (true) {
1939 struct worker *worker;
1940
1941 worker = create_worker(pool);
1942 if (worker) {
1943 del_timer_sync(&pool->mayday_timer);
1944 spin_lock_irq(&pool->lock);
1945 start_worker(worker);
1946 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1947 goto restart;
1948 return true;
1949 }
1950
1951 if (!need_to_create_worker(pool))
1952 break;
1953
1954 __set_current_state(TASK_INTERRUPTIBLE);
1955 schedule_timeout(CREATE_COOLDOWN);
1956
1957 if (!need_to_create_worker(pool))
1958 break;
1959 }
1960
1961 del_timer_sync(&pool->mayday_timer);
1962 spin_lock_irq(&pool->lock);
1963 if (need_to_create_worker(pool))
1964 goto restart;
1965 return true;
1966 }
1967
1968 /**
1969 * maybe_destroy_worker - destroy workers which have been idle for a while
1970 * @pool: pool to destroy workers for
1971 *
1972 * Destroy @pool workers which have been idle for longer than
1973 * IDLE_WORKER_TIMEOUT.
1974 *
1975 * LOCKING:
1976 * spin_lock_irq(pool->lock) which may be released and regrabbed
1977 * multiple times. Called only from manager.
1978 *
1979 * RETURNS:
1980 * %false if no action was taken and pool->lock stayed locked, %true
1981 * otherwise.
1982 */
1983 static bool maybe_destroy_workers(struct worker_pool *pool)
1984 {
1985 bool ret = false;
1986
1987 while (too_many_workers(pool)) {
1988 struct worker *worker;
1989 unsigned long expires;
1990
1991 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1992 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1993
1994 if (time_before(jiffies, expires)) {
1995 mod_timer(&pool->idle_timer, expires);
1996 break;
1997 }
1998
1999 destroy_worker(worker);
2000 ret = true;
2001 }
2002
2003 return ret;
2004 }
2005
2006 /**
2007 * manage_workers - manage worker pool
2008 * @worker: self
2009 *
2010 * Assume the manager role and manage the worker pool @worker belongs
2011 * to. At any given time, there can be only zero or one manager per
2012 * pool. The exclusion is handled automatically by this function.
2013 *
2014 * The caller can safely start processing works on false return. On
2015 * true return, it's guaranteed that need_to_create_worker() is false
2016 * and may_start_working() is true.
2017 *
2018 * CONTEXT:
2019 * spin_lock_irq(pool->lock) which may be released and regrabbed
2020 * multiple times. Does GFP_KERNEL allocations.
2021 *
2022 * RETURNS:
2023 * spin_lock_irq(pool->lock) which may be released and regrabbed
2024 * multiple times. Does GFP_KERNEL allocations.
2025 */
2026 static bool manage_workers(struct worker *worker)
2027 {
2028 struct worker_pool *pool = worker->pool;
2029 bool ret = false;
2030
2031 /*
2032 * Managership is governed by two mutexes - manager_arb and
2033 * manager_mutex. manager_arb handles arbitration of manager role.
2034 * Anyone who successfully grabs manager_arb wins the arbitration
2035 * and becomes the manager. mutex_trylock() on pool->manager_arb
2036 * failure while holding pool->lock reliably indicates that someone
2037 * else is managing the pool and the worker which failed trylock
2038 * can proceed to executing work items. This means that anyone
2039 * grabbing manager_arb is responsible for actually performing
2040 * manager duties. If manager_arb is grabbed and released without
2041 * actual management, the pool may stall indefinitely.
2042 *
2043 * manager_mutex is used for exclusion of actual management
2044 * operations. The holder of manager_mutex can be sure that none
2045 * of management operations, including creation and destruction of
2046 * workers, won't take place until the mutex is released. Because
2047 * manager_mutex doesn't interfere with manager role arbitration,
2048 * it is guaranteed that the pool's management, while may be
2049 * delayed, won't be disturbed by someone else grabbing
2050 * manager_mutex.
2051 */
2052 if (!mutex_trylock(&pool->manager_arb))
2053 return ret;
2054
2055 /*
2056 * With manager arbitration won, manager_mutex would be free in
2057 * most cases. trylock first without dropping @pool->lock.
2058 */
2059 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2060 spin_unlock_irq(&pool->lock);
2061 mutex_lock(&pool->manager_mutex);
2062 spin_lock_irq(&pool->lock);
2063 ret = true;
2064 }
2065
2066 pool->flags &= ~POOL_MANAGE_WORKERS;
2067
2068 /*
2069 * Destroy and then create so that may_start_working() is true
2070 * on return.
2071 */
2072 ret |= maybe_destroy_workers(pool);
2073 ret |= maybe_create_worker(pool);
2074
2075 mutex_unlock(&pool->manager_mutex);
2076 mutex_unlock(&pool->manager_arb);
2077 return ret;
2078 }
2079
2080 /**
2081 * process_one_work - process single work
2082 * @worker: self
2083 * @work: work to process
2084 *
2085 * Process @work. This function contains all the logics necessary to
2086 * process a single work including synchronization against and
2087 * interaction with other workers on the same cpu, queueing and
2088 * flushing. As long as context requirement is met, any worker can
2089 * call this function to process a work.
2090 *
2091 * CONTEXT:
2092 * spin_lock_irq(pool->lock) which is released and regrabbed.
2093 */
2094 static void process_one_work(struct worker *worker, struct work_struct *work)
2095 __releases(&pool->lock)
2096 __acquires(&pool->lock)
2097 {
2098 struct pool_workqueue *pwq = get_work_pwq(work);
2099 struct worker_pool *pool = worker->pool;
2100 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2101 int work_color;
2102 struct worker *collision;
2103 #ifdef CONFIG_LOCKDEP
2104 /*
2105 * It is permissible to free the struct work_struct from
2106 * inside the function that is called from it, this we need to
2107 * take into account for lockdep too. To avoid bogus "held
2108 * lock freed" warnings as well as problems when looking into
2109 * work->lockdep_map, make a copy and use that here.
2110 */
2111 struct lockdep_map lockdep_map;
2112
2113 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2114 #endif
2115 /*
2116 * Ensure we're on the correct CPU. DISASSOCIATED test is
2117 * necessary to avoid spurious warnings from rescuers servicing the
2118 * unbound or a disassociated pool.
2119 */
2120 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2121 !(pool->flags & POOL_DISASSOCIATED) &&
2122 raw_smp_processor_id() != pool->cpu);
2123
2124 /*
2125 * A single work shouldn't be executed concurrently by
2126 * multiple workers on a single cpu. Check whether anyone is
2127 * already processing the work. If so, defer the work to the
2128 * currently executing one.
2129 */
2130 collision = find_worker_executing_work(pool, work);
2131 if (unlikely(collision)) {
2132 move_linked_works(work, &collision->scheduled, NULL);
2133 return;
2134 }
2135
2136 /* claim and dequeue */
2137 debug_work_deactivate(work);
2138 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2139 worker->current_work = work;
2140 worker->current_func = work->func;
2141 worker->current_pwq = pwq;
2142 work_color = get_work_color(work);
2143
2144 list_del_init(&work->entry);
2145
2146 /*
2147 * CPU intensive works don't participate in concurrency
2148 * management. They're the scheduler's responsibility.
2149 */
2150 if (unlikely(cpu_intensive))
2151 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2152
2153 /*
2154 * Unbound pool isn't concurrency managed and work items should be
2155 * executed ASAP. Wake up another worker if necessary.
2156 */
2157 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2158 wake_up_worker(pool);
2159
2160 /*
2161 * Record the last pool and clear PENDING which should be the last
2162 * update to @work. Also, do this inside @pool->lock so that
2163 * PENDING and queued state changes happen together while IRQ is
2164 * disabled.
2165 */
2166 set_work_pool_and_clear_pending(work, pool->id);
2167
2168 spin_unlock_irq(&pool->lock);
2169
2170 lock_map_acquire_read(&pwq->wq->lockdep_map);
2171 lock_map_acquire(&lockdep_map);
2172 trace_workqueue_execute_start(work);
2173 worker->current_func(work);
2174 /*
2175 * While we must be careful to not use "work" after this, the trace
2176 * point will only record its address.
2177 */
2178 trace_workqueue_execute_end(work);
2179 lock_map_release(&lockdep_map);
2180 lock_map_release(&pwq->wq->lockdep_map);
2181
2182 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2183 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2184 " last function: %pf\n",
2185 current->comm, preempt_count(), task_pid_nr(current),
2186 worker->current_func);
2187 debug_show_held_locks(current);
2188 dump_stack();
2189 }
2190
2191 /*
2192 * The following prevents a kworker from hogging CPU on !PREEMPT
2193 * kernels, where a requeueing work item waiting for something to
2194 * happen could deadlock with stop_machine as such work item could
2195 * indefinitely requeue itself while all other CPUs are trapped in
2196 * stop_machine.
2197 */
2198 cond_resched();
2199
2200 spin_lock_irq(&pool->lock);
2201
2202 /* clear cpu intensive status */
2203 if (unlikely(cpu_intensive))
2204 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2205
2206 /* we're done with it, release */
2207 hash_del(&worker->hentry);
2208 worker->current_work = NULL;
2209 worker->current_func = NULL;
2210 worker->current_pwq = NULL;
2211 worker->desc_valid = false;
2212 pwq_dec_nr_in_flight(pwq, work_color);
2213 }
2214
2215 /**
2216 * process_scheduled_works - process scheduled works
2217 * @worker: self
2218 *
2219 * Process all scheduled works. Please note that the scheduled list
2220 * may change while processing a work, so this function repeatedly
2221 * fetches a work from the top and executes it.
2222 *
2223 * CONTEXT:
2224 * spin_lock_irq(pool->lock) which may be released and regrabbed
2225 * multiple times.
2226 */
2227 static void process_scheduled_works(struct worker *worker)
2228 {
2229 while (!list_empty(&worker->scheduled)) {
2230 struct work_struct *work = list_first_entry(&worker->scheduled,
2231 struct work_struct, entry);
2232 process_one_work(worker, work);
2233 }
2234 }
2235
2236 /**
2237 * worker_thread - the worker thread function
2238 * @__worker: self
2239 *
2240 * The worker thread function. All workers belong to a worker_pool -
2241 * either a per-cpu one or dynamic unbound one. These workers process all
2242 * work items regardless of their specific target workqueue. The only
2243 * exception is work items which belong to workqueues with a rescuer which
2244 * will be explained in rescuer_thread().
2245 */
2246 static int worker_thread(void *__worker)
2247 {
2248 struct worker *worker = __worker;
2249 struct worker_pool *pool = worker->pool;
2250
2251 /* tell the scheduler that this is a workqueue worker */
2252 worker->task->flags |= PF_WQ_WORKER;
2253 woke_up:
2254 spin_lock_irq(&pool->lock);
2255
2256 /* am I supposed to die? */
2257 if (unlikely(worker->flags & WORKER_DIE)) {
2258 spin_unlock_irq(&pool->lock);
2259 WARN_ON_ONCE(!list_empty(&worker->entry));
2260 worker->task->flags &= ~PF_WQ_WORKER;
2261 return 0;
2262 }
2263
2264 worker_leave_idle(worker);
2265 recheck:
2266 /* no more worker necessary? */
2267 if (!need_more_worker(pool))
2268 goto sleep;
2269
2270 /* do we need to manage? */
2271 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2272 goto recheck;
2273
2274 /*
2275 * ->scheduled list can only be filled while a worker is
2276 * preparing to process a work or actually processing it.
2277 * Make sure nobody diddled with it while I was sleeping.
2278 */
2279 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2280
2281 /*
2282 * Finish PREP stage. We're guaranteed to have at least one idle
2283 * worker or that someone else has already assumed the manager
2284 * role. This is where @worker starts participating in concurrency
2285 * management if applicable and concurrency management is restored
2286 * after being rebound. See rebind_workers() for details.
2287 */
2288 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2289
2290 do {
2291 struct work_struct *work =
2292 list_first_entry(&pool->worklist,
2293 struct work_struct, entry);
2294
2295 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2296 /* optimization path, not strictly necessary */
2297 process_one_work(worker, work);
2298 if (unlikely(!list_empty(&worker->scheduled)))
2299 process_scheduled_works(worker);
2300 } else {
2301 move_linked_works(work, &worker->scheduled, NULL);
2302 process_scheduled_works(worker);
2303 }
2304 } while (keep_working(pool));
2305
2306 worker_set_flags(worker, WORKER_PREP, false);
2307 sleep:
2308 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2309 goto recheck;
2310
2311 /*
2312 * pool->lock is held and there's no work to process and no need to
2313 * manage, sleep. Workers are woken up only while holding
2314 * pool->lock or from local cpu, so setting the current state
2315 * before releasing pool->lock is enough to prevent losing any
2316 * event.
2317 */
2318 worker_enter_idle(worker);
2319 __set_current_state(TASK_INTERRUPTIBLE);
2320 spin_unlock_irq(&pool->lock);
2321 schedule();
2322 goto woke_up;
2323 }
2324
2325 /**
2326 * rescuer_thread - the rescuer thread function
2327 * @__rescuer: self
2328 *
2329 * Workqueue rescuer thread function. There's one rescuer for each
2330 * workqueue which has WQ_MEM_RECLAIM set.
2331 *
2332 * Regular work processing on a pool may block trying to create a new
2333 * worker which uses GFP_KERNEL allocation which has slight chance of
2334 * developing into deadlock if some works currently on the same queue
2335 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2336 * the problem rescuer solves.
2337 *
2338 * When such condition is possible, the pool summons rescuers of all
2339 * workqueues which have works queued on the pool and let them process
2340 * those works so that forward progress can be guaranteed.
2341 *
2342 * This should happen rarely.
2343 */
2344 static int rescuer_thread(void *__rescuer)
2345 {
2346 struct worker *rescuer = __rescuer;
2347 struct workqueue_struct *wq = rescuer->rescue_wq;
2348 struct list_head *scheduled = &rescuer->scheduled;
2349
2350 set_user_nice(current, RESCUER_NICE_LEVEL);
2351
2352 /*
2353 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2354 * doesn't participate in concurrency management.
2355 */
2356 rescuer->task->flags |= PF_WQ_WORKER;
2357 repeat:
2358 set_current_state(TASK_INTERRUPTIBLE);
2359
2360 if (kthread_should_stop()) {
2361 __set_current_state(TASK_RUNNING);
2362 rescuer->task->flags &= ~PF_WQ_WORKER;
2363 return 0;
2364 }
2365
2366 /* see whether any pwq is asking for help */
2367 spin_lock_irq(&wq_mayday_lock);
2368
2369 while (!list_empty(&wq->maydays)) {
2370 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2371 struct pool_workqueue, mayday_node);
2372 struct worker_pool *pool = pwq->pool;
2373 struct work_struct *work, *n;
2374
2375 __set_current_state(TASK_RUNNING);
2376 list_del_init(&pwq->mayday_node);
2377
2378 spin_unlock_irq(&wq_mayday_lock);
2379
2380 /* migrate to the target cpu if possible */
2381 worker_maybe_bind_and_lock(pool);
2382 rescuer->pool = pool;
2383
2384 /*
2385 * Slurp in all works issued via this workqueue and
2386 * process'em.
2387 */
2388 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2389 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2390 if (get_work_pwq(work) == pwq)
2391 move_linked_works(work, scheduled, &n);
2392
2393 process_scheduled_works(rescuer);
2394
2395 /*
2396 * Leave this pool. If keep_working() is %true, notify a
2397 * regular worker; otherwise, we end up with 0 concurrency
2398 * and stalling the execution.
2399 */
2400 if (keep_working(pool))
2401 wake_up_worker(pool);
2402
2403 rescuer->pool = NULL;
2404 spin_unlock(&pool->lock);
2405 spin_lock(&wq_mayday_lock);
2406 }
2407
2408 spin_unlock_irq(&wq_mayday_lock);
2409
2410 /* rescuers should never participate in concurrency management */
2411 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2412 schedule();
2413 goto repeat;
2414 }
2415
2416 struct wq_barrier {
2417 struct work_struct work;
2418 struct completion done;
2419 };
2420
2421 static void wq_barrier_func(struct work_struct *work)
2422 {
2423 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2424 complete(&barr->done);
2425 }
2426
2427 /**
2428 * insert_wq_barrier - insert a barrier work
2429 * @pwq: pwq to insert barrier into
2430 * @barr: wq_barrier to insert
2431 * @target: target work to attach @barr to
2432 * @worker: worker currently executing @target, NULL if @target is not executing
2433 *
2434 * @barr is linked to @target such that @barr is completed only after
2435 * @target finishes execution. Please note that the ordering
2436 * guarantee is observed only with respect to @target and on the local
2437 * cpu.
2438 *
2439 * Currently, a queued barrier can't be canceled. This is because
2440 * try_to_grab_pending() can't determine whether the work to be
2441 * grabbed is at the head of the queue and thus can't clear LINKED
2442 * flag of the previous work while there must be a valid next work
2443 * after a work with LINKED flag set.
2444 *
2445 * Note that when @worker is non-NULL, @target may be modified
2446 * underneath us, so we can't reliably determine pwq from @target.
2447 *
2448 * CONTEXT:
2449 * spin_lock_irq(pool->lock).
2450 */
2451 static void insert_wq_barrier(struct pool_workqueue *pwq,
2452 struct wq_barrier *barr,
2453 struct work_struct *target, struct worker *worker)
2454 {
2455 struct list_head *head;
2456 unsigned int linked = 0;
2457
2458 /*
2459 * debugobject calls are safe here even with pool->lock locked
2460 * as we know for sure that this will not trigger any of the
2461 * checks and call back into the fixup functions where we
2462 * might deadlock.
2463 */
2464 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2465 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2466 init_completion(&barr->done);
2467
2468 /*
2469 * If @target is currently being executed, schedule the
2470 * barrier to the worker; otherwise, put it after @target.
2471 */
2472 if (worker)
2473 head = worker->scheduled.next;
2474 else {
2475 unsigned long *bits = work_data_bits(target);
2476
2477 head = target->entry.next;
2478 /* there can already be other linked works, inherit and set */
2479 linked = *bits & WORK_STRUCT_LINKED;
2480 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2481 }
2482
2483 debug_work_activate(&barr->work);
2484 insert_work(pwq, &barr->work, head,
2485 work_color_to_flags(WORK_NO_COLOR) | linked);
2486 }
2487
2488 /**
2489 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2490 * @wq: workqueue being flushed
2491 * @flush_color: new flush color, < 0 for no-op
2492 * @work_color: new work color, < 0 for no-op
2493 *
2494 * Prepare pwqs for workqueue flushing.
2495 *
2496 * If @flush_color is non-negative, flush_color on all pwqs should be
2497 * -1. If no pwq has in-flight commands at the specified color, all
2498 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2499 * has in flight commands, its pwq->flush_color is set to
2500 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2501 * wakeup logic is armed and %true is returned.
2502 *
2503 * The caller should have initialized @wq->first_flusher prior to
2504 * calling this function with non-negative @flush_color. If
2505 * @flush_color is negative, no flush color update is done and %false
2506 * is returned.
2507 *
2508 * If @work_color is non-negative, all pwqs should have the same
2509 * work_color which is previous to @work_color and all will be
2510 * advanced to @work_color.
2511 *
2512 * CONTEXT:
2513 * mutex_lock(wq->mutex).
2514 *
2515 * RETURNS:
2516 * %true if @flush_color >= 0 and there's something to flush. %false
2517 * otherwise.
2518 */
2519 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2520 int flush_color, int work_color)
2521 {
2522 bool wait = false;
2523 struct pool_workqueue *pwq;
2524
2525 if (flush_color >= 0) {
2526 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2527 atomic_set(&wq->nr_pwqs_to_flush, 1);
2528 }
2529
2530 for_each_pwq(pwq, wq) {
2531 struct worker_pool *pool = pwq->pool;
2532
2533 spin_lock_irq(&pool->lock);
2534
2535 if (flush_color >= 0) {
2536 WARN_ON_ONCE(pwq->flush_color != -1);
2537
2538 if (pwq->nr_in_flight[flush_color]) {
2539 pwq->flush_color = flush_color;
2540 atomic_inc(&wq->nr_pwqs_to_flush);
2541 wait = true;
2542 }
2543 }
2544
2545 if (work_color >= 0) {
2546 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2547 pwq->work_color = work_color;
2548 }
2549
2550 spin_unlock_irq(&pool->lock);
2551 }
2552
2553 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2554 complete(&wq->first_flusher->done);
2555
2556 return wait;
2557 }
2558
2559 /**
2560 * flush_workqueue - ensure that any scheduled work has run to completion.
2561 * @wq: workqueue to flush
2562 *
2563 * This function sleeps until all work items which were queued on entry
2564 * have finished execution, but it is not livelocked by new incoming ones.
2565 */
2566 void flush_workqueue(struct workqueue_struct *wq)
2567 {
2568 struct wq_flusher this_flusher = {
2569 .list = LIST_HEAD_INIT(this_flusher.list),
2570 .flush_color = -1,
2571 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2572 };
2573 int next_color;
2574
2575 lock_map_acquire(&wq->lockdep_map);
2576 lock_map_release(&wq->lockdep_map);
2577
2578 mutex_lock(&wq->mutex);
2579
2580 /*
2581 * Start-to-wait phase
2582 */
2583 next_color = work_next_color(wq->work_color);
2584
2585 if (next_color != wq->flush_color) {
2586 /*
2587 * Color space is not full. The current work_color
2588 * becomes our flush_color and work_color is advanced
2589 * by one.
2590 */
2591 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2592 this_flusher.flush_color = wq->work_color;
2593 wq->work_color = next_color;
2594
2595 if (!wq->first_flusher) {
2596 /* no flush in progress, become the first flusher */
2597 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2598
2599 wq->first_flusher = &this_flusher;
2600
2601 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2602 wq->work_color)) {
2603 /* nothing to flush, done */
2604 wq->flush_color = next_color;
2605 wq->first_flusher = NULL;
2606 goto out_unlock;
2607 }
2608 } else {
2609 /* wait in queue */
2610 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2611 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2612 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2613 }
2614 } else {
2615 /*
2616 * Oops, color space is full, wait on overflow queue.
2617 * The next flush completion will assign us
2618 * flush_color and transfer to flusher_queue.
2619 */
2620 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2621 }
2622
2623 mutex_unlock(&wq->mutex);
2624
2625 wait_for_completion(&this_flusher.done);
2626
2627 /*
2628 * Wake-up-and-cascade phase
2629 *
2630 * First flushers are responsible for cascading flushes and
2631 * handling overflow. Non-first flushers can simply return.
2632 */
2633 if (wq->first_flusher != &this_flusher)
2634 return;
2635
2636 mutex_lock(&wq->mutex);
2637
2638 /* we might have raced, check again with mutex held */
2639 if (wq->first_flusher != &this_flusher)
2640 goto out_unlock;
2641
2642 wq->first_flusher = NULL;
2643
2644 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2645 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2646
2647 while (true) {
2648 struct wq_flusher *next, *tmp;
2649
2650 /* complete all the flushers sharing the current flush color */
2651 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2652 if (next->flush_color != wq->flush_color)
2653 break;
2654 list_del_init(&next->list);
2655 complete(&next->done);
2656 }
2657
2658 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2659 wq->flush_color != work_next_color(wq->work_color));
2660
2661 /* this flush_color is finished, advance by one */
2662 wq->flush_color = work_next_color(wq->flush_color);
2663
2664 /* one color has been freed, handle overflow queue */
2665 if (!list_empty(&wq->flusher_overflow)) {
2666 /*
2667 * Assign the same color to all overflowed
2668 * flushers, advance work_color and append to
2669 * flusher_queue. This is the start-to-wait
2670 * phase for these overflowed flushers.
2671 */
2672 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2673 tmp->flush_color = wq->work_color;
2674
2675 wq->work_color = work_next_color(wq->work_color);
2676
2677 list_splice_tail_init(&wq->flusher_overflow,
2678 &wq->flusher_queue);
2679 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2680 }
2681
2682 if (list_empty(&wq->flusher_queue)) {
2683 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2684 break;
2685 }
2686
2687 /*
2688 * Need to flush more colors. Make the next flusher
2689 * the new first flusher and arm pwqs.
2690 */
2691 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2692 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2693
2694 list_del_init(&next->list);
2695 wq->first_flusher = next;
2696
2697 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2698 break;
2699
2700 /*
2701 * Meh... this color is already done, clear first
2702 * flusher and repeat cascading.
2703 */
2704 wq->first_flusher = NULL;
2705 }
2706
2707 out_unlock:
2708 mutex_unlock(&wq->mutex);
2709 }
2710 EXPORT_SYMBOL_GPL(flush_workqueue);
2711
2712 /**
2713 * drain_workqueue - drain a workqueue
2714 * @wq: workqueue to drain
2715 *
2716 * Wait until the workqueue becomes empty. While draining is in progress,
2717 * only chain queueing is allowed. IOW, only currently pending or running
2718 * work items on @wq can queue further work items on it. @wq is flushed
2719 * repeatedly until it becomes empty. The number of flushing is detemined
2720 * by the depth of chaining and should be relatively short. Whine if it
2721 * takes too long.
2722 */
2723 void drain_workqueue(struct workqueue_struct *wq)
2724 {
2725 unsigned int flush_cnt = 0;
2726 struct pool_workqueue *pwq;
2727
2728 /*
2729 * __queue_work() needs to test whether there are drainers, is much
2730 * hotter than drain_workqueue() and already looks at @wq->flags.
2731 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2732 */
2733 mutex_lock(&wq->mutex);
2734 if (!wq->nr_drainers++)
2735 wq->flags |= __WQ_DRAINING;
2736 mutex_unlock(&wq->mutex);
2737 reflush:
2738 flush_workqueue(wq);
2739
2740 mutex_lock(&wq->mutex);
2741
2742 for_each_pwq(pwq, wq) {
2743 bool drained;
2744
2745 spin_lock_irq(&pwq->pool->lock);
2746 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2747 spin_unlock_irq(&pwq->pool->lock);
2748
2749 if (drained)
2750 continue;
2751
2752 if (++flush_cnt == 10 ||
2753 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2754 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2755 wq->name, flush_cnt);
2756
2757 mutex_unlock(&wq->mutex);
2758 goto reflush;
2759 }
2760
2761 if (!--wq->nr_drainers)
2762 wq->flags &= ~__WQ_DRAINING;
2763 mutex_unlock(&wq->mutex);
2764 }
2765 EXPORT_SYMBOL_GPL(drain_workqueue);
2766
2767 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2768 {
2769 struct worker *worker = NULL;
2770 struct worker_pool *pool;
2771 struct pool_workqueue *pwq;
2772
2773 might_sleep();
2774
2775 local_irq_disable();
2776 pool = get_work_pool(work);
2777 if (!pool) {
2778 local_irq_enable();
2779 return false;
2780 }
2781
2782 spin_lock(&pool->lock);
2783 /* see the comment in try_to_grab_pending() with the same code */
2784 pwq = get_work_pwq(work);
2785 if (pwq) {
2786 if (unlikely(pwq->pool != pool))
2787 goto already_gone;
2788 } else {
2789 worker = find_worker_executing_work(pool, work);
2790 if (!worker)
2791 goto already_gone;
2792 pwq = worker->current_pwq;
2793 }
2794
2795 insert_wq_barrier(pwq, barr, work, worker);
2796 spin_unlock_irq(&pool->lock);
2797
2798 /*
2799 * If @max_active is 1 or rescuer is in use, flushing another work
2800 * item on the same workqueue may lead to deadlock. Make sure the
2801 * flusher is not running on the same workqueue by verifying write
2802 * access.
2803 */
2804 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2805 lock_map_acquire(&pwq->wq->lockdep_map);
2806 else
2807 lock_map_acquire_read(&pwq->wq->lockdep_map);
2808 lock_map_release(&pwq->wq->lockdep_map);
2809
2810 return true;
2811 already_gone:
2812 spin_unlock_irq(&pool->lock);
2813 return false;
2814 }
2815
2816 /**
2817 * flush_work - wait for a work to finish executing the last queueing instance
2818 * @work: the work to flush
2819 *
2820 * Wait until @work has finished execution. @work is guaranteed to be idle
2821 * on return if it hasn't been requeued since flush started.
2822 *
2823 * RETURNS:
2824 * %true if flush_work() waited for the work to finish execution,
2825 * %false if it was already idle.
2826 */
2827 bool flush_work(struct work_struct *work)
2828 {
2829 struct wq_barrier barr;
2830
2831 lock_map_acquire(&work->lockdep_map);
2832 lock_map_release(&work->lockdep_map);
2833
2834 if (start_flush_work(work, &barr)) {
2835 wait_for_completion(&barr.done);
2836 destroy_work_on_stack(&barr.work);
2837 return true;
2838 } else {
2839 return false;
2840 }
2841 }
2842 EXPORT_SYMBOL_GPL(flush_work);
2843
2844 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2845 {
2846 unsigned long flags;
2847 int ret;
2848
2849 do {
2850 ret = try_to_grab_pending(work, is_dwork, &flags);
2851 /*
2852 * If someone else is canceling, wait for the same event it
2853 * would be waiting for before retrying.
2854 */
2855 if (unlikely(ret == -ENOENT))
2856 flush_work(work);
2857 } while (unlikely(ret < 0));
2858
2859 /* tell other tasks trying to grab @work to back off */
2860 mark_work_canceling(work);
2861 local_irq_restore(flags);
2862
2863 flush_work(work);
2864 clear_work_data(work);
2865 return ret;
2866 }
2867
2868 /**
2869 * cancel_work_sync - cancel a work and wait for it to finish
2870 * @work: the work to cancel
2871 *
2872 * Cancel @work and wait for its execution to finish. This function
2873 * can be used even if the work re-queues itself or migrates to
2874 * another workqueue. On return from this function, @work is
2875 * guaranteed to be not pending or executing on any CPU.
2876 *
2877 * cancel_work_sync(&delayed_work->work) must not be used for
2878 * delayed_work's. Use cancel_delayed_work_sync() instead.
2879 *
2880 * The caller must ensure that the workqueue on which @work was last
2881 * queued can't be destroyed before this function returns.
2882 *
2883 * RETURNS:
2884 * %true if @work was pending, %false otherwise.
2885 */
2886 bool cancel_work_sync(struct work_struct *work)
2887 {
2888 return __cancel_work_timer(work, false);
2889 }
2890 EXPORT_SYMBOL_GPL(cancel_work_sync);
2891
2892 /**
2893 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2894 * @dwork: the delayed work to flush
2895 *
2896 * Delayed timer is cancelled and the pending work is queued for
2897 * immediate execution. Like flush_work(), this function only
2898 * considers the last queueing instance of @dwork.
2899 *
2900 * RETURNS:
2901 * %true if flush_work() waited for the work to finish execution,
2902 * %false if it was already idle.
2903 */
2904 bool flush_delayed_work(struct delayed_work *dwork)
2905 {
2906 local_irq_disable();
2907 if (del_timer_sync(&dwork->timer))
2908 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2909 local_irq_enable();
2910 return flush_work(&dwork->work);
2911 }
2912 EXPORT_SYMBOL(flush_delayed_work);
2913
2914 /**
2915 * cancel_delayed_work - cancel a delayed work
2916 * @dwork: delayed_work to cancel
2917 *
2918 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2919 * and canceled; %false if wasn't pending. Note that the work callback
2920 * function may still be running on return, unless it returns %true and the
2921 * work doesn't re-arm itself. Explicitly flush or use
2922 * cancel_delayed_work_sync() to wait on it.
2923 *
2924 * This function is safe to call from any context including IRQ handler.
2925 */
2926 bool cancel_delayed_work(struct delayed_work *dwork)
2927 {
2928 unsigned long flags;
2929 int ret;
2930
2931 do {
2932 ret = try_to_grab_pending(&dwork->work, true, &flags);
2933 } while (unlikely(ret == -EAGAIN));
2934
2935 if (unlikely(ret < 0))
2936 return false;
2937
2938 set_work_pool_and_clear_pending(&dwork->work,
2939 get_work_pool_id(&dwork->work));
2940 local_irq_restore(flags);
2941 return ret;
2942 }
2943 EXPORT_SYMBOL(cancel_delayed_work);
2944
2945 /**
2946 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2947 * @dwork: the delayed work cancel
2948 *
2949 * This is cancel_work_sync() for delayed works.
2950 *
2951 * RETURNS:
2952 * %true if @dwork was pending, %false otherwise.
2953 */
2954 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2955 {
2956 return __cancel_work_timer(&dwork->work, true);
2957 }
2958 EXPORT_SYMBOL(cancel_delayed_work_sync);
2959
2960 /**
2961 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2962 * @func: the function to call
2963 *
2964 * schedule_on_each_cpu() executes @func on each online CPU using the
2965 * system workqueue and blocks until all CPUs have completed.
2966 * schedule_on_each_cpu() is very slow.
2967 *
2968 * RETURNS:
2969 * 0 on success, -errno on failure.
2970 */
2971 int schedule_on_each_cpu(work_func_t func)
2972 {
2973 int cpu;
2974 struct work_struct __percpu *works;
2975
2976 works = alloc_percpu(struct work_struct);
2977 if (!works)
2978 return -ENOMEM;
2979
2980 get_online_cpus();
2981
2982 for_each_online_cpu(cpu) {
2983 struct work_struct *work = per_cpu_ptr(works, cpu);
2984
2985 INIT_WORK(work, func);
2986 schedule_work_on(cpu, work);
2987 }
2988
2989 for_each_online_cpu(cpu)
2990 flush_work(per_cpu_ptr(works, cpu));
2991
2992 put_online_cpus();
2993 free_percpu(works);
2994 return 0;
2995 }
2996
2997 /**
2998 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2999 *
3000 * Forces execution of the kernel-global workqueue and blocks until its
3001 * completion.
3002 *
3003 * Think twice before calling this function! It's very easy to get into
3004 * trouble if you don't take great care. Either of the following situations
3005 * will lead to deadlock:
3006 *
3007 * One of the work items currently on the workqueue needs to acquire
3008 * a lock held by your code or its caller.
3009 *
3010 * Your code is running in the context of a work routine.
3011 *
3012 * They will be detected by lockdep when they occur, but the first might not
3013 * occur very often. It depends on what work items are on the workqueue and
3014 * what locks they need, which you have no control over.
3015 *
3016 * In most situations flushing the entire workqueue is overkill; you merely
3017 * need to know that a particular work item isn't queued and isn't running.
3018 * In such cases you should use cancel_delayed_work_sync() or
3019 * cancel_work_sync() instead.
3020 */
3021 void flush_scheduled_work(void)
3022 {
3023 flush_workqueue(system_wq);
3024 }
3025 EXPORT_SYMBOL(flush_scheduled_work);
3026
3027 /**
3028 * execute_in_process_context - reliably execute the routine with user context
3029 * @fn: the function to execute
3030 * @ew: guaranteed storage for the execute work structure (must
3031 * be available when the work executes)
3032 *
3033 * Executes the function immediately if process context is available,
3034 * otherwise schedules the function for delayed execution.
3035 *
3036 * Returns: 0 - function was executed
3037 * 1 - function was scheduled for execution
3038 */
3039 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3040 {
3041 if (!in_interrupt()) {
3042 fn(&ew->work);
3043 return 0;
3044 }
3045
3046 INIT_WORK(&ew->work, fn);
3047 schedule_work(&ew->work);
3048
3049 return 1;
3050 }
3051 EXPORT_SYMBOL_GPL(execute_in_process_context);
3052
3053 #ifdef CONFIG_SYSFS
3054 /*
3055 * Workqueues with WQ_SYSFS flag set is visible to userland via
3056 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3057 * following attributes.
3058 *
3059 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3060 * max_active RW int : maximum number of in-flight work items
3061 *
3062 * Unbound workqueues have the following extra attributes.
3063 *
3064 * id RO int : the associated pool ID
3065 * nice RW int : nice value of the workers
3066 * cpumask RW mask : bitmask of allowed CPUs for the workers
3067 */
3068 struct wq_device {
3069 struct workqueue_struct *wq;
3070 struct device dev;
3071 };
3072
3073 static struct workqueue_struct *dev_to_wq(struct device *dev)
3074 {
3075 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3076
3077 return wq_dev->wq;
3078 }
3079
3080 static ssize_t wq_per_cpu_show(struct device *dev,
3081 struct device_attribute *attr, char *buf)
3082 {
3083 struct workqueue_struct *wq = dev_to_wq(dev);
3084
3085 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3086 }
3087
3088 static ssize_t wq_max_active_show(struct device *dev,
3089 struct device_attribute *attr, char *buf)
3090 {
3091 struct workqueue_struct *wq = dev_to_wq(dev);
3092
3093 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3094 }
3095
3096 static ssize_t wq_max_active_store(struct device *dev,
3097 struct device_attribute *attr,
3098 const char *buf, size_t count)
3099 {
3100 struct workqueue_struct *wq = dev_to_wq(dev);
3101 int val;
3102
3103 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3104 return -EINVAL;
3105
3106 workqueue_set_max_active(wq, val);
3107 return count;
3108 }
3109
3110 static struct device_attribute wq_sysfs_attrs[] = {
3111 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3112 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3113 __ATTR_NULL,
3114 };
3115
3116 static ssize_t wq_pool_ids_show(struct device *dev,
3117 struct device_attribute *attr, char *buf)
3118 {
3119 struct workqueue_struct *wq = dev_to_wq(dev);
3120 const char *delim = "";
3121 int node, written = 0;
3122
3123 rcu_read_lock_sched();
3124 for_each_node(node) {
3125 written += scnprintf(buf + written, PAGE_SIZE - written,
3126 "%s%d:%d", delim, node,
3127 unbound_pwq_by_node(wq, node)->pool->id);
3128 delim = " ";
3129 }
3130 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3131 rcu_read_unlock_sched();
3132
3133 return written;
3134 }
3135
3136 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3137 char *buf)
3138 {
3139 struct workqueue_struct *wq = dev_to_wq(dev);
3140 int written;
3141
3142 mutex_lock(&wq->mutex);
3143 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3144 mutex_unlock(&wq->mutex);
3145
3146 return written;
3147 }
3148
3149 /* prepare workqueue_attrs for sysfs store operations */
3150 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3151 {
3152 struct workqueue_attrs *attrs;
3153
3154 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3155 if (!attrs)
3156 return NULL;
3157
3158 mutex_lock(&wq->mutex);
3159 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3160 mutex_unlock(&wq->mutex);
3161 return attrs;
3162 }
3163
3164 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3165 const char *buf, size_t count)
3166 {
3167 struct workqueue_struct *wq = dev_to_wq(dev);
3168 struct workqueue_attrs *attrs;
3169 int ret;
3170
3171 attrs = wq_sysfs_prep_attrs(wq);
3172 if (!attrs)
3173 return -ENOMEM;
3174
3175 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3176 attrs->nice >= -20 && attrs->nice <= 19)
3177 ret = apply_workqueue_attrs(wq, attrs);
3178 else
3179 ret = -EINVAL;
3180
3181 free_workqueue_attrs(attrs);
3182 return ret ?: count;
3183 }
3184
3185 static ssize_t wq_cpumask_show(struct device *dev,
3186 struct device_attribute *attr, char *buf)
3187 {
3188 struct workqueue_struct *wq = dev_to_wq(dev);
3189 int written;
3190
3191 mutex_lock(&wq->mutex);
3192 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3193 mutex_unlock(&wq->mutex);
3194
3195 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3196 return written;
3197 }
3198
3199 static ssize_t wq_cpumask_store(struct device *dev,
3200 struct device_attribute *attr,
3201 const char *buf, size_t count)
3202 {
3203 struct workqueue_struct *wq = dev_to_wq(dev);
3204 struct workqueue_attrs *attrs;
3205 int ret;
3206
3207 attrs = wq_sysfs_prep_attrs(wq);
3208 if (!attrs)
3209 return -ENOMEM;
3210
3211 ret = cpumask_parse(buf, attrs->cpumask);
3212 if (!ret)
3213 ret = apply_workqueue_attrs(wq, attrs);
3214
3215 free_workqueue_attrs(attrs);
3216 return ret ?: count;
3217 }
3218
3219 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3220 char *buf)
3221 {
3222 struct workqueue_struct *wq = dev_to_wq(dev);
3223 int written;
3224
3225 mutex_lock(&wq->mutex);
3226 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3227 !wq->unbound_attrs->no_numa);
3228 mutex_unlock(&wq->mutex);
3229
3230 return written;
3231 }
3232
3233 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3234 const char *buf, size_t count)
3235 {
3236 struct workqueue_struct *wq = dev_to_wq(dev);
3237 struct workqueue_attrs *attrs;
3238 int v, ret;
3239
3240 attrs = wq_sysfs_prep_attrs(wq);
3241 if (!attrs)
3242 return -ENOMEM;
3243
3244 ret = -EINVAL;
3245 if (sscanf(buf, "%d", &v) == 1) {
3246 attrs->no_numa = !v;
3247 ret = apply_workqueue_attrs(wq, attrs);
3248 }
3249
3250 free_workqueue_attrs(attrs);
3251 return ret ?: count;
3252 }
3253
3254 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3255 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3256 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3257 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3258 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3259 __ATTR_NULL,
3260 };
3261
3262 static struct bus_type wq_subsys = {
3263 .name = "workqueue",
3264 .dev_attrs = wq_sysfs_attrs,
3265 };
3266
3267 static int __init wq_sysfs_init(void)
3268 {
3269 return subsys_virtual_register(&wq_subsys, NULL);
3270 }
3271 core_initcall(wq_sysfs_init);
3272
3273 static void wq_device_release(struct device *dev)
3274 {
3275 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3276
3277 kfree(wq_dev);
3278 }
3279
3280 /**
3281 * workqueue_sysfs_register - make a workqueue visible in sysfs
3282 * @wq: the workqueue to register
3283 *
3284 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3285 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3286 * which is the preferred method.
3287 *
3288 * Workqueue user should use this function directly iff it wants to apply
3289 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3290 * apply_workqueue_attrs() may race against userland updating the
3291 * attributes.
3292 *
3293 * Returns 0 on success, -errno on failure.
3294 */
3295 int workqueue_sysfs_register(struct workqueue_struct *wq)
3296 {
3297 struct wq_device *wq_dev;
3298 int ret;
3299
3300 /*
3301 * Adjusting max_active or creating new pwqs by applyting
3302 * attributes breaks ordering guarantee. Disallow exposing ordered
3303 * workqueues.
3304 */
3305 if (WARN_ON(wq->flags & __WQ_ORDERED))
3306 return -EINVAL;
3307
3308 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3309 if (!wq_dev)
3310 return -ENOMEM;
3311
3312 wq_dev->wq = wq;
3313 wq_dev->dev.bus = &wq_subsys;
3314 wq_dev->dev.init_name = wq->name;
3315 wq_dev->dev.release = wq_device_release;
3316
3317 /*
3318 * unbound_attrs are created separately. Suppress uevent until
3319 * everything is ready.
3320 */
3321 dev_set_uevent_suppress(&wq_dev->dev, true);
3322
3323 ret = device_register(&wq_dev->dev);
3324 if (ret) {
3325 kfree(wq_dev);
3326 wq->wq_dev = NULL;
3327 return ret;
3328 }
3329
3330 if (wq->flags & WQ_UNBOUND) {
3331 struct device_attribute *attr;
3332
3333 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3334 ret = device_create_file(&wq_dev->dev, attr);
3335 if (ret) {
3336 device_unregister(&wq_dev->dev);
3337 wq->wq_dev = NULL;
3338 return ret;
3339 }
3340 }
3341 }
3342
3343 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3344 return 0;
3345 }
3346
3347 /**
3348 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3349 * @wq: the workqueue to unregister
3350 *
3351 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3352 */
3353 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3354 {
3355 struct wq_device *wq_dev = wq->wq_dev;
3356
3357 if (!wq->wq_dev)
3358 return;
3359
3360 wq->wq_dev = NULL;
3361 device_unregister(&wq_dev->dev);
3362 }
3363 #else /* CONFIG_SYSFS */
3364 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3365 #endif /* CONFIG_SYSFS */
3366
3367 /**
3368 * free_workqueue_attrs - free a workqueue_attrs
3369 * @attrs: workqueue_attrs to free
3370 *
3371 * Undo alloc_workqueue_attrs().
3372 */
3373 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3374 {
3375 if (attrs) {
3376 free_cpumask_var(attrs->cpumask);
3377 kfree(attrs);
3378 }
3379 }
3380
3381 /**
3382 * alloc_workqueue_attrs - allocate a workqueue_attrs
3383 * @gfp_mask: allocation mask to use
3384 *
3385 * Allocate a new workqueue_attrs, initialize with default settings and
3386 * return it. Returns NULL on failure.
3387 */
3388 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3389 {
3390 struct workqueue_attrs *attrs;
3391
3392 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3393 if (!attrs)
3394 goto fail;
3395 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3396 goto fail;
3397
3398 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3399 return attrs;
3400 fail:
3401 free_workqueue_attrs(attrs);
3402 return NULL;
3403 }
3404
3405 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3406 const struct workqueue_attrs *from)
3407 {
3408 to->nice = from->nice;
3409 cpumask_copy(to->cpumask, from->cpumask);
3410 /*
3411 * Unlike hash and equality test, this function doesn't ignore
3412 * ->no_numa as it is used for both pool and wq attrs. Instead,
3413 * get_unbound_pool() explicitly clears ->no_numa after copying.
3414 */
3415 to->no_numa = from->no_numa;
3416 }
3417
3418 /* hash value of the content of @attr */
3419 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3420 {
3421 u32 hash = 0;
3422
3423 hash = jhash_1word(attrs->nice, hash);
3424 hash = jhash(cpumask_bits(attrs->cpumask),
3425 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3426 return hash;
3427 }
3428
3429 /* content equality test */
3430 static bool wqattrs_equal(const struct workqueue_attrs *a,
3431 const struct workqueue_attrs *b)
3432 {
3433 if (a->nice != b->nice)
3434 return false;
3435 if (!cpumask_equal(a->cpumask, b->cpumask))
3436 return false;
3437 return true;
3438 }
3439
3440 /**
3441 * init_worker_pool - initialize a newly zalloc'd worker_pool
3442 * @pool: worker_pool to initialize
3443 *
3444 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3445 * Returns 0 on success, -errno on failure. Even on failure, all fields
3446 * inside @pool proper are initialized and put_unbound_pool() can be called
3447 * on @pool safely to release it.
3448 */
3449 static int init_worker_pool(struct worker_pool *pool)
3450 {
3451 spin_lock_init(&pool->lock);
3452 pool->id = -1;
3453 pool->cpu = -1;
3454 pool->node = NUMA_NO_NODE;
3455 pool->flags |= POOL_DISASSOCIATED;
3456 INIT_LIST_HEAD(&pool->worklist);
3457 INIT_LIST_HEAD(&pool->idle_list);
3458 hash_init(pool->busy_hash);
3459
3460 init_timer_deferrable(&pool->idle_timer);
3461 pool->idle_timer.function = idle_worker_timeout;
3462 pool->idle_timer.data = (unsigned long)pool;
3463
3464 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3465 (unsigned long)pool);
3466
3467 mutex_init(&pool->manager_arb);
3468 mutex_init(&pool->manager_mutex);
3469 idr_init(&pool->worker_idr);
3470
3471 INIT_HLIST_NODE(&pool->hash_node);
3472 pool->refcnt = 1;
3473
3474 /* shouldn't fail above this point */
3475 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3476 if (!pool->attrs)
3477 return -ENOMEM;
3478 return 0;
3479 }
3480
3481 static void rcu_free_pool(struct rcu_head *rcu)
3482 {
3483 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3484
3485 idr_destroy(&pool->worker_idr);
3486 free_workqueue_attrs(pool->attrs);
3487 kfree(pool);
3488 }
3489
3490 /**
3491 * put_unbound_pool - put a worker_pool
3492 * @pool: worker_pool to put
3493 *
3494 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3495 * safe manner. get_unbound_pool() calls this function on its failure path
3496 * and this function should be able to release pools which went through,
3497 * successfully or not, init_worker_pool().
3498 *
3499 * Should be called with wq_pool_mutex held.
3500 */
3501 static void put_unbound_pool(struct worker_pool *pool)
3502 {
3503 struct worker *worker;
3504
3505 lockdep_assert_held(&wq_pool_mutex);
3506
3507 if (--pool->refcnt)
3508 return;
3509
3510 /* sanity checks */
3511 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3512 WARN_ON(!list_empty(&pool->worklist)))
3513 return;
3514
3515 /* release id and unhash */
3516 if (pool->id >= 0)
3517 idr_remove(&worker_pool_idr, pool->id);
3518 hash_del(&pool->hash_node);
3519
3520 /*
3521 * Become the manager and destroy all workers. Grabbing
3522 * manager_arb prevents @pool's workers from blocking on
3523 * manager_mutex.
3524 */
3525 mutex_lock(&pool->manager_arb);
3526 mutex_lock(&pool->manager_mutex);
3527 spin_lock_irq(&pool->lock);
3528
3529 while ((worker = first_worker(pool)))
3530 destroy_worker(worker);
3531 WARN_ON(pool->nr_workers || pool->nr_idle);
3532
3533 spin_unlock_irq(&pool->lock);
3534 mutex_unlock(&pool->manager_mutex);
3535 mutex_unlock(&pool->manager_arb);
3536
3537 /* shut down the timers */
3538 del_timer_sync(&pool->idle_timer);
3539 del_timer_sync(&pool->mayday_timer);
3540
3541 /* sched-RCU protected to allow dereferences from get_work_pool() */
3542 call_rcu_sched(&pool->rcu, rcu_free_pool);
3543 }
3544
3545 /**
3546 * get_unbound_pool - get a worker_pool with the specified attributes
3547 * @attrs: the attributes of the worker_pool to get
3548 *
3549 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3550 * reference count and return it. If there already is a matching
3551 * worker_pool, it will be used; otherwise, this function attempts to
3552 * create a new one. On failure, returns NULL.
3553 *
3554 * Should be called with wq_pool_mutex held.
3555 */
3556 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3557 {
3558 u32 hash = wqattrs_hash(attrs);
3559 struct worker_pool *pool;
3560 int node;
3561
3562 lockdep_assert_held(&wq_pool_mutex);
3563
3564 /* do we already have a matching pool? */
3565 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3566 if (wqattrs_equal(pool->attrs, attrs)) {
3567 pool->refcnt++;
3568 goto out_unlock;
3569 }
3570 }
3571
3572 /* nope, create a new one */
3573 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3574 if (!pool || init_worker_pool(pool) < 0)
3575 goto fail;
3576
3577 if (workqueue_freezing)
3578 pool->flags |= POOL_FREEZING;
3579
3580 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3581 copy_workqueue_attrs(pool->attrs, attrs);
3582
3583 /*
3584 * no_numa isn't a worker_pool attribute, always clear it. See
3585 * 'struct workqueue_attrs' comments for detail.
3586 */
3587 pool->attrs->no_numa = false;
3588
3589 /* if cpumask is contained inside a NUMA node, we belong to that node */
3590 if (wq_numa_enabled) {
3591 for_each_node(node) {
3592 if (cpumask_subset(pool->attrs->cpumask,
3593 wq_numa_possible_cpumask[node])) {
3594 pool->node = node;
3595 break;
3596 }
3597 }
3598 }
3599
3600 if (worker_pool_assign_id(pool) < 0)
3601 goto fail;
3602
3603 /* create and start the initial worker */
3604 if (create_and_start_worker(pool) < 0)
3605 goto fail;
3606
3607 /* install */
3608 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3609 out_unlock:
3610 return pool;
3611 fail:
3612 if (pool)
3613 put_unbound_pool(pool);
3614 return NULL;
3615 }
3616
3617 static void rcu_free_pwq(struct rcu_head *rcu)
3618 {
3619 kmem_cache_free(pwq_cache,
3620 container_of(rcu, struct pool_workqueue, rcu));
3621 }
3622
3623 /*
3624 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3625 * and needs to be destroyed.
3626 */
3627 static void pwq_unbound_release_workfn(struct work_struct *work)
3628 {
3629 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3630 unbound_release_work);
3631 struct workqueue_struct *wq = pwq->wq;
3632 struct worker_pool *pool = pwq->pool;
3633 bool is_last;
3634
3635 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3636 return;
3637
3638 /*
3639 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
3640 * necessary on release but do it anyway. It's easier to verify
3641 * and consistent with the linking path.
3642 */
3643 mutex_lock(&wq->mutex);
3644 list_del_rcu(&pwq->pwqs_node);
3645 is_last = list_empty(&wq->pwqs);
3646 mutex_unlock(&wq->mutex);
3647
3648 mutex_lock(&wq_pool_mutex);
3649 put_unbound_pool(pool);
3650 mutex_unlock(&wq_pool_mutex);
3651
3652 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3653
3654 /*
3655 * If we're the last pwq going away, @wq is already dead and no one
3656 * is gonna access it anymore. Free it.
3657 */
3658 if (is_last) {
3659 free_workqueue_attrs(wq->unbound_attrs);
3660 kfree(wq);
3661 }
3662 }
3663
3664 /**
3665 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3666 * @pwq: target pool_workqueue
3667 *
3668 * If @pwq isn't freezing, set @pwq->max_active to the associated
3669 * workqueue's saved_max_active and activate delayed work items
3670 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3671 */
3672 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3673 {
3674 struct workqueue_struct *wq = pwq->wq;
3675 bool freezable = wq->flags & WQ_FREEZABLE;
3676
3677 /* for @wq->saved_max_active */
3678 lockdep_assert_held(&wq->mutex);
3679
3680 /* fast exit for non-freezable wqs */
3681 if (!freezable && pwq->max_active == wq->saved_max_active)
3682 return;
3683
3684 spin_lock_irq(&pwq->pool->lock);
3685
3686 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3687 pwq->max_active = wq->saved_max_active;
3688
3689 while (!list_empty(&pwq->delayed_works) &&
3690 pwq->nr_active < pwq->max_active)
3691 pwq_activate_first_delayed(pwq);
3692
3693 /*
3694 * Need to kick a worker after thawed or an unbound wq's
3695 * max_active is bumped. It's a slow path. Do it always.
3696 */
3697 wake_up_worker(pwq->pool);
3698 } else {
3699 pwq->max_active = 0;
3700 }
3701
3702 spin_unlock_irq(&pwq->pool->lock);
3703 }
3704
3705 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3706 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3707 struct worker_pool *pool)
3708 {
3709 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3710
3711 memset(pwq, 0, sizeof(*pwq));
3712
3713 pwq->pool = pool;
3714 pwq->wq = wq;
3715 pwq->flush_color = -1;
3716 pwq->refcnt = 1;
3717 INIT_LIST_HEAD(&pwq->delayed_works);
3718 INIT_LIST_HEAD(&pwq->pwqs_node);
3719 INIT_LIST_HEAD(&pwq->mayday_node);
3720 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3721 }
3722
3723 /* sync @pwq with the current state of its associated wq and link it */
3724 static void link_pwq(struct pool_workqueue *pwq)
3725 {
3726 struct workqueue_struct *wq = pwq->wq;
3727
3728 lockdep_assert_held(&wq->mutex);
3729
3730 /* may be called multiple times, ignore if already linked */
3731 if (!list_empty(&pwq->pwqs_node))
3732 return;
3733
3734 /*
3735 * Set the matching work_color. This is synchronized with
3736 * wq->mutex to avoid confusing flush_workqueue().
3737 */
3738 pwq->work_color = wq->work_color;
3739
3740 /* sync max_active to the current setting */
3741 pwq_adjust_max_active(pwq);
3742
3743 /* link in @pwq */
3744 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3745 }
3746
3747 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3748 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3749 const struct workqueue_attrs *attrs)
3750 {
3751 struct worker_pool *pool;
3752 struct pool_workqueue *pwq;
3753
3754 lockdep_assert_held(&wq_pool_mutex);
3755
3756 pool = get_unbound_pool(attrs);
3757 if (!pool)
3758 return NULL;
3759
3760 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3761 if (!pwq) {
3762 put_unbound_pool(pool);
3763 return NULL;
3764 }
3765
3766 init_pwq(pwq, wq, pool);
3767 return pwq;
3768 }
3769
3770 /* undo alloc_unbound_pwq(), used only in the error path */
3771 static void free_unbound_pwq(struct pool_workqueue *pwq)
3772 {
3773 lockdep_assert_held(&wq_pool_mutex);
3774
3775 if (pwq) {
3776 put_unbound_pool(pwq->pool);
3777 kmem_cache_free(pwq_cache, pwq);
3778 }
3779 }
3780
3781 /**
3782 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3783 * @attrs: the wq_attrs of interest
3784 * @node: the target NUMA node
3785 * @cpu_going_down: if >= 0, the CPU to consider as offline
3786 * @cpumask: outarg, the resulting cpumask
3787 *
3788 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3789 * @cpu_going_down is >= 0, that cpu is considered offline during
3790 * calculation. The result is stored in @cpumask. This function returns
3791 * %true if the resulting @cpumask is different from @attrs->cpumask,
3792 * %false if equal.
3793 *
3794 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3795 * enabled and @node has online CPUs requested by @attrs, the returned
3796 * cpumask is the intersection of the possible CPUs of @node and
3797 * @attrs->cpumask.
3798 *
3799 * The caller is responsible for ensuring that the cpumask of @node stays
3800 * stable.
3801 */
3802 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3803 int cpu_going_down, cpumask_t *cpumask)
3804 {
3805 if (!wq_numa_enabled || attrs->no_numa)
3806 goto use_dfl;
3807
3808 /* does @node have any online CPUs @attrs wants? */
3809 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3810 if (cpu_going_down >= 0)
3811 cpumask_clear_cpu(cpu_going_down, cpumask);
3812
3813 if (cpumask_empty(cpumask))
3814 goto use_dfl;
3815
3816 /* yeap, return possible CPUs in @node that @attrs wants */
3817 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3818 return !cpumask_equal(cpumask, attrs->cpumask);
3819
3820 use_dfl:
3821 cpumask_copy(cpumask, attrs->cpumask);
3822 return false;
3823 }
3824
3825 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3826 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3827 int node,
3828 struct pool_workqueue *pwq)
3829 {
3830 struct pool_workqueue *old_pwq;
3831
3832 lockdep_assert_held(&wq->mutex);
3833
3834 /* link_pwq() can handle duplicate calls */
3835 link_pwq(pwq);
3836
3837 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3838 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3839 return old_pwq;
3840 }
3841
3842 /**
3843 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3844 * @wq: the target workqueue
3845 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3846 *
3847 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3848 * machines, this function maps a separate pwq to each NUMA node with
3849 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3850 * NUMA node it was issued on. Older pwqs are released as in-flight work
3851 * items finish. Note that a work item which repeatedly requeues itself
3852 * back-to-back will stay on its current pwq.
3853 *
3854 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3855 * failure.
3856 */
3857 int apply_workqueue_attrs(struct workqueue_struct *wq,
3858 const struct workqueue_attrs *attrs)
3859 {
3860 struct workqueue_attrs *new_attrs, *tmp_attrs;
3861 struct pool_workqueue **pwq_tbl, *dfl_pwq;
3862 int node, ret;
3863
3864 /* only unbound workqueues can change attributes */
3865 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3866 return -EINVAL;
3867
3868 /* creating multiple pwqs breaks ordering guarantee */
3869 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3870 return -EINVAL;
3871
3872 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3873 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3874 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3875 if (!pwq_tbl || !new_attrs || !tmp_attrs)
3876 goto enomem;
3877
3878 /* make a copy of @attrs and sanitize it */
3879 copy_workqueue_attrs(new_attrs, attrs);
3880 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3881
3882 /*
3883 * We may create multiple pwqs with differing cpumasks. Make a
3884 * copy of @new_attrs which will be modified and used to obtain
3885 * pools.
3886 */
3887 copy_workqueue_attrs(tmp_attrs, new_attrs);
3888
3889 /*
3890 * CPUs should stay stable across pwq creations and installations.
3891 * Pin CPUs, determine the target cpumask for each node and create
3892 * pwqs accordingly.
3893 */
3894 get_online_cpus();
3895
3896 mutex_lock(&wq_pool_mutex);
3897
3898 /*
3899 * If something goes wrong during CPU up/down, we'll fall back to
3900 * the default pwq covering whole @attrs->cpumask. Always create
3901 * it even if we don't use it immediately.
3902 */
3903 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3904 if (!dfl_pwq)
3905 goto enomem_pwq;
3906
3907 for_each_node(node) {
3908 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3909 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3910 if (!pwq_tbl[node])
3911 goto enomem_pwq;
3912 } else {
3913 dfl_pwq->refcnt++;
3914 pwq_tbl[node] = dfl_pwq;
3915 }
3916 }
3917
3918 mutex_unlock(&wq_pool_mutex);
3919
3920 /* all pwqs have been created successfully, let's install'em */
3921 mutex_lock(&wq->mutex);
3922
3923 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3924
3925 /* save the previous pwq and install the new one */
3926 for_each_node(node)
3927 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3928
3929 /* @dfl_pwq might not have been used, ensure it's linked */
3930 link_pwq(dfl_pwq);
3931 swap(wq->dfl_pwq, dfl_pwq);
3932
3933 mutex_unlock(&wq->mutex);
3934
3935 /* put the old pwqs */
3936 for_each_node(node)
3937 put_pwq_unlocked(pwq_tbl[node]);
3938 put_pwq_unlocked(dfl_pwq);
3939
3940 put_online_cpus();
3941 ret = 0;
3942 /* fall through */
3943 out_free:
3944 free_workqueue_attrs(tmp_attrs);
3945 free_workqueue_attrs(new_attrs);
3946 kfree(pwq_tbl);
3947 return ret;
3948
3949 enomem_pwq:
3950 free_unbound_pwq(dfl_pwq);
3951 for_each_node(node)
3952 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3953 free_unbound_pwq(pwq_tbl[node]);
3954 mutex_unlock(&wq_pool_mutex);
3955 put_online_cpus();
3956 enomem:
3957 ret = -ENOMEM;
3958 goto out_free;
3959 }
3960
3961 /**
3962 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3963 * @wq: the target workqueue
3964 * @cpu: the CPU coming up or going down
3965 * @online: whether @cpu is coming up or going down
3966 *
3967 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3968 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3969 * @wq accordingly.
3970 *
3971 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3972 * falls back to @wq->dfl_pwq which may not be optimal but is always
3973 * correct.
3974 *
3975 * Note that when the last allowed CPU of a NUMA node goes offline for a
3976 * workqueue with a cpumask spanning multiple nodes, the workers which were
3977 * already executing the work items for the workqueue will lose their CPU
3978 * affinity and may execute on any CPU. This is similar to how per-cpu
3979 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3980 * affinity, it's the user's responsibility to flush the work item from
3981 * CPU_DOWN_PREPARE.
3982 */
3983 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3984 bool online)
3985 {
3986 int node = cpu_to_node(cpu);
3987 int cpu_off = online ? -1 : cpu;
3988 struct pool_workqueue *old_pwq = NULL, *pwq;
3989 struct workqueue_attrs *target_attrs;
3990 cpumask_t *cpumask;
3991
3992 lockdep_assert_held(&wq_pool_mutex);
3993
3994 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3995 return;
3996
3997 /*
3998 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3999 * Let's use a preallocated one. The following buf is protected by
4000 * CPU hotplug exclusion.
4001 */
4002 target_attrs = wq_update_unbound_numa_attrs_buf;
4003 cpumask = target_attrs->cpumask;
4004
4005 mutex_lock(&wq->mutex);
4006 if (wq->unbound_attrs->no_numa)
4007 goto out_unlock;
4008
4009 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4010 pwq = unbound_pwq_by_node(wq, node);
4011
4012 /*
4013 * Let's determine what needs to be done. If the target cpumask is
4014 * different from wq's, we need to compare it to @pwq's and create
4015 * a new one if they don't match. If the target cpumask equals
4016 * wq's, the default pwq should be used. If @pwq is already the
4017 * default one, nothing to do; otherwise, install the default one.
4018 */
4019 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4020 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4021 goto out_unlock;
4022 } else {
4023 if (pwq == wq->dfl_pwq)
4024 goto out_unlock;
4025 else
4026 goto use_dfl_pwq;
4027 }
4028
4029 mutex_unlock(&wq->mutex);
4030
4031 /* create a new pwq */
4032 pwq = alloc_unbound_pwq(wq, target_attrs);
4033 if (!pwq) {
4034 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4035 wq->name);
4036 goto out_unlock;
4037 }
4038
4039 /*
4040 * Install the new pwq. As this function is called only from CPU
4041 * hotplug callbacks and applying a new attrs is wrapped with
4042 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4043 * inbetween.
4044 */
4045 mutex_lock(&wq->mutex);
4046 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4047 goto out_unlock;
4048
4049 use_dfl_pwq:
4050 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4051 get_pwq(wq->dfl_pwq);
4052 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4053 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4054 out_unlock:
4055 mutex_unlock(&wq->mutex);
4056 put_pwq_unlocked(old_pwq);
4057 }
4058
4059 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4060 {
4061 bool highpri = wq->flags & WQ_HIGHPRI;
4062 int cpu;
4063
4064 if (!(wq->flags & WQ_UNBOUND)) {
4065 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4066 if (!wq->cpu_pwqs)
4067 return -ENOMEM;
4068
4069 for_each_possible_cpu(cpu) {
4070 struct pool_workqueue *pwq =
4071 per_cpu_ptr(wq->cpu_pwqs, cpu);
4072 struct worker_pool *cpu_pools =
4073 per_cpu(cpu_worker_pools, cpu);
4074
4075 init_pwq(pwq, wq, &cpu_pools[highpri]);
4076
4077 mutex_lock(&wq->mutex);
4078 link_pwq(pwq);
4079 mutex_unlock(&wq->mutex);
4080 }
4081 return 0;
4082 } else {
4083 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4084 }
4085 }
4086
4087 static int wq_clamp_max_active(int max_active, unsigned int flags,
4088 const char *name)
4089 {
4090 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4091
4092 if (max_active < 1 || max_active > lim)
4093 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4094 max_active, name, 1, lim);
4095
4096 return clamp_val(max_active, 1, lim);
4097 }
4098
4099 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4100 unsigned int flags,
4101 int max_active,
4102 struct lock_class_key *key,
4103 const char *lock_name, ...)
4104 {
4105 size_t tbl_size = 0;
4106 va_list args;
4107 struct workqueue_struct *wq;
4108 struct pool_workqueue *pwq;
4109
4110 /* allocate wq and format name */
4111 if (flags & WQ_UNBOUND)
4112 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4113
4114 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4115 if (!wq)
4116 return NULL;
4117
4118 if (flags & WQ_UNBOUND) {
4119 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4120 if (!wq->unbound_attrs)
4121 goto err_free_wq;
4122 }
4123
4124 va_start(args, lock_name);
4125 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4126 va_end(args);
4127
4128 max_active = max_active ?: WQ_DFL_ACTIVE;
4129 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4130
4131 /* init wq */
4132 wq->flags = flags;
4133 wq->saved_max_active = max_active;
4134 mutex_init(&wq->mutex);
4135 atomic_set(&wq->nr_pwqs_to_flush, 0);
4136 INIT_LIST_HEAD(&wq->pwqs);
4137 INIT_LIST_HEAD(&wq->flusher_queue);
4138 INIT_LIST_HEAD(&wq->flusher_overflow);
4139 INIT_LIST_HEAD(&wq->maydays);
4140
4141 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4142 INIT_LIST_HEAD(&wq->list);
4143
4144 if (alloc_and_link_pwqs(wq) < 0)
4145 goto err_free_wq;
4146
4147 /*
4148 * Workqueues which may be used during memory reclaim should
4149 * have a rescuer to guarantee forward progress.
4150 */
4151 if (flags & WQ_MEM_RECLAIM) {
4152 struct worker *rescuer;
4153
4154 rescuer = alloc_worker();
4155 if (!rescuer)
4156 goto err_destroy;
4157
4158 rescuer->rescue_wq = wq;
4159 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4160 wq->name);
4161 if (IS_ERR(rescuer->task)) {
4162 kfree(rescuer);
4163 goto err_destroy;
4164 }
4165
4166 wq->rescuer = rescuer;
4167 rescuer->task->flags |= PF_NO_SETAFFINITY;
4168 wake_up_process(rescuer->task);
4169 }
4170
4171 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4172 goto err_destroy;
4173
4174 /*
4175 * wq_pool_mutex protects global freeze state and workqueues list.
4176 * Grab it, adjust max_active and add the new @wq to workqueues
4177 * list.
4178 */
4179 mutex_lock(&wq_pool_mutex);
4180
4181 mutex_lock(&wq->mutex);
4182 for_each_pwq(pwq, wq)
4183 pwq_adjust_max_active(pwq);
4184 mutex_unlock(&wq->mutex);
4185
4186 list_add(&wq->list, &workqueues);
4187
4188 mutex_unlock(&wq_pool_mutex);
4189
4190 return wq;
4191
4192 err_free_wq:
4193 free_workqueue_attrs(wq->unbound_attrs);
4194 kfree(wq);
4195 return NULL;
4196 err_destroy:
4197 destroy_workqueue(wq);
4198 return NULL;
4199 }
4200 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4201
4202 /**
4203 * destroy_workqueue - safely terminate a workqueue
4204 * @wq: target workqueue
4205 *
4206 * Safely destroy a workqueue. All work currently pending will be done first.
4207 */
4208 void destroy_workqueue(struct workqueue_struct *wq)
4209 {
4210 struct pool_workqueue *pwq;
4211 int node;
4212
4213 /* drain it before proceeding with destruction */
4214 drain_workqueue(wq);
4215
4216 /* sanity checks */
4217 mutex_lock(&wq->mutex);
4218 for_each_pwq(pwq, wq) {
4219 int i;
4220
4221 for (i = 0; i < WORK_NR_COLORS; i++) {
4222 if (WARN_ON(pwq->nr_in_flight[i])) {
4223 mutex_unlock(&wq->mutex);
4224 return;
4225 }
4226 }
4227
4228 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4229 WARN_ON(pwq->nr_active) ||
4230 WARN_ON(!list_empty(&pwq->delayed_works))) {
4231 mutex_unlock(&wq->mutex);
4232 return;
4233 }
4234 }
4235 mutex_unlock(&wq->mutex);
4236
4237 /*
4238 * wq list is used to freeze wq, remove from list after
4239 * flushing is complete in case freeze races us.
4240 */
4241 mutex_lock(&wq_pool_mutex);
4242 list_del_init(&wq->list);
4243 mutex_unlock(&wq_pool_mutex);
4244
4245 workqueue_sysfs_unregister(wq);
4246
4247 if (wq->rescuer) {
4248 kthread_stop(wq->rescuer->task);
4249 kfree(wq->rescuer);
4250 wq->rescuer = NULL;
4251 }
4252
4253 if (!(wq->flags & WQ_UNBOUND)) {
4254 /*
4255 * The base ref is never dropped on per-cpu pwqs. Directly
4256 * free the pwqs and wq.
4257 */
4258 free_percpu(wq->cpu_pwqs);
4259 kfree(wq);
4260 } else {
4261 /*
4262 * We're the sole accessor of @wq at this point. Directly
4263 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4264 * @wq will be freed when the last pwq is released.
4265 */
4266 for_each_node(node) {
4267 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4268 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4269 put_pwq_unlocked(pwq);
4270 }
4271
4272 /*
4273 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4274 * put. Don't access it afterwards.
4275 */
4276 pwq = wq->dfl_pwq;
4277 wq->dfl_pwq = NULL;
4278 put_pwq_unlocked(pwq);
4279 }
4280 }
4281 EXPORT_SYMBOL_GPL(destroy_workqueue);
4282
4283 /**
4284 * workqueue_set_max_active - adjust max_active of a workqueue
4285 * @wq: target workqueue
4286 * @max_active: new max_active value.
4287 *
4288 * Set max_active of @wq to @max_active.
4289 *
4290 * CONTEXT:
4291 * Don't call from IRQ context.
4292 */
4293 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4294 {
4295 struct pool_workqueue *pwq;
4296
4297 /* disallow meddling with max_active for ordered workqueues */
4298 if (WARN_ON(wq->flags & __WQ_ORDERED))
4299 return;
4300
4301 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4302
4303 mutex_lock(&wq->mutex);
4304
4305 wq->saved_max_active = max_active;
4306
4307 for_each_pwq(pwq, wq)
4308 pwq_adjust_max_active(pwq);
4309
4310 mutex_unlock(&wq->mutex);
4311 }
4312 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4313
4314 /**
4315 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4316 *
4317 * Determine whether %current is a workqueue rescuer. Can be used from
4318 * work functions to determine whether it's being run off the rescuer task.
4319 */
4320 bool current_is_workqueue_rescuer(void)
4321 {
4322 struct worker *worker = current_wq_worker();
4323
4324 return worker && worker->rescue_wq;
4325 }
4326
4327 /**
4328 * workqueue_congested - test whether a workqueue is congested
4329 * @cpu: CPU in question
4330 * @wq: target workqueue
4331 *
4332 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4333 * no synchronization around this function and the test result is
4334 * unreliable and only useful as advisory hints or for debugging.
4335 *
4336 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4337 * Note that both per-cpu and unbound workqueues may be associated with
4338 * multiple pool_workqueues which have separate congested states. A
4339 * workqueue being congested on one CPU doesn't mean the workqueue is also
4340 * contested on other CPUs / NUMA nodes.
4341 *
4342 * RETURNS:
4343 * %true if congested, %false otherwise.
4344 */
4345 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4346 {
4347 struct pool_workqueue *pwq;
4348 bool ret;
4349
4350 rcu_read_lock_sched();
4351
4352 if (cpu == WORK_CPU_UNBOUND)
4353 cpu = smp_processor_id();
4354
4355 if (!(wq->flags & WQ_UNBOUND))
4356 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4357 else
4358 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4359
4360 ret = !list_empty(&pwq->delayed_works);
4361 rcu_read_unlock_sched();
4362
4363 return ret;
4364 }
4365 EXPORT_SYMBOL_GPL(workqueue_congested);
4366
4367 /**
4368 * work_busy - test whether a work is currently pending or running
4369 * @work: the work to be tested
4370 *
4371 * Test whether @work is currently pending or running. There is no
4372 * synchronization around this function and the test result is
4373 * unreliable and only useful as advisory hints or for debugging.
4374 *
4375 * RETURNS:
4376 * OR'd bitmask of WORK_BUSY_* bits.
4377 */
4378 unsigned int work_busy(struct work_struct *work)
4379 {
4380 struct worker_pool *pool;
4381 unsigned long flags;
4382 unsigned int ret = 0;
4383
4384 if (work_pending(work))
4385 ret |= WORK_BUSY_PENDING;
4386
4387 local_irq_save(flags);
4388 pool = get_work_pool(work);
4389 if (pool) {
4390 spin_lock(&pool->lock);
4391 if (find_worker_executing_work(pool, work))
4392 ret |= WORK_BUSY_RUNNING;
4393 spin_unlock(&pool->lock);
4394 }
4395 local_irq_restore(flags);
4396
4397 return ret;
4398 }
4399 EXPORT_SYMBOL_GPL(work_busy);
4400
4401 /**
4402 * set_worker_desc - set description for the current work item
4403 * @fmt: printf-style format string
4404 * @...: arguments for the format string
4405 *
4406 * This function can be called by a running work function to describe what
4407 * the work item is about. If the worker task gets dumped, this
4408 * information will be printed out together to help debugging. The
4409 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4410 */
4411 void set_worker_desc(const char *fmt, ...)
4412 {
4413 struct worker *worker = current_wq_worker();
4414 va_list args;
4415
4416 if (worker) {
4417 va_start(args, fmt);
4418 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4419 va_end(args);
4420 worker->desc_valid = true;
4421 }
4422 }
4423
4424 /**
4425 * print_worker_info - print out worker information and description
4426 * @log_lvl: the log level to use when printing
4427 * @task: target task
4428 *
4429 * If @task is a worker and currently executing a work item, print out the
4430 * name of the workqueue being serviced and worker description set with
4431 * set_worker_desc() by the currently executing work item.
4432 *
4433 * This function can be safely called on any task as long as the
4434 * task_struct itself is accessible. While safe, this function isn't
4435 * synchronized and may print out mixups or garbages of limited length.
4436 */
4437 void print_worker_info(const char *log_lvl, struct task_struct *task)
4438 {
4439 work_func_t *fn = NULL;
4440 char name[WQ_NAME_LEN] = { };
4441 char desc[WORKER_DESC_LEN] = { };
4442 struct pool_workqueue *pwq = NULL;
4443 struct workqueue_struct *wq = NULL;
4444 bool desc_valid = false;
4445 struct worker *worker;
4446
4447 if (!(task->flags & PF_WQ_WORKER))
4448 return;
4449
4450 /*
4451 * This function is called without any synchronization and @task
4452 * could be in any state. Be careful with dereferences.
4453 */
4454 worker = probe_kthread_data(task);
4455
4456 /*
4457 * Carefully copy the associated workqueue's workfn and name. Keep
4458 * the original last '\0' in case the original contains garbage.
4459 */
4460 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4461 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4462 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4463 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4464
4465 /* copy worker description */
4466 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4467 if (desc_valid)
4468 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4469
4470 if (fn || name[0] || desc[0]) {
4471 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4472 if (desc[0])
4473 pr_cont(" (%s)", desc);
4474 pr_cont("\n");
4475 }
4476 }
4477
4478 /*
4479 * CPU hotplug.
4480 *
4481 * There are two challenges in supporting CPU hotplug. Firstly, there
4482 * are a lot of assumptions on strong associations among work, pwq and
4483 * pool which make migrating pending and scheduled works very
4484 * difficult to implement without impacting hot paths. Secondly,
4485 * worker pools serve mix of short, long and very long running works making
4486 * blocked draining impractical.
4487 *
4488 * This is solved by allowing the pools to be disassociated from the CPU
4489 * running as an unbound one and allowing it to be reattached later if the
4490 * cpu comes back online.
4491 */
4492
4493 static void wq_unbind_fn(struct work_struct *work)
4494 {
4495 int cpu = smp_processor_id();
4496 struct worker_pool *pool;
4497 struct worker *worker;
4498 int wi;
4499
4500 for_each_cpu_worker_pool(pool, cpu) {
4501 WARN_ON_ONCE(cpu != smp_processor_id());
4502
4503 mutex_lock(&pool->manager_mutex);
4504 spin_lock_irq(&pool->lock);
4505
4506 /*
4507 * We've blocked all manager operations. Make all workers
4508 * unbound and set DISASSOCIATED. Before this, all workers
4509 * except for the ones which are still executing works from
4510 * before the last CPU down must be on the cpu. After
4511 * this, they may become diasporas.
4512 */
4513 for_each_pool_worker(worker, wi, pool)
4514 worker->flags |= WORKER_UNBOUND;
4515
4516 pool->flags |= POOL_DISASSOCIATED;
4517
4518 spin_unlock_irq(&pool->lock);
4519 mutex_unlock(&pool->manager_mutex);
4520
4521 /*
4522 * Call schedule() so that we cross rq->lock and thus can
4523 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4524 * This is necessary as scheduler callbacks may be invoked
4525 * from other cpus.
4526 */
4527 schedule();
4528
4529 /*
4530 * Sched callbacks are disabled now. Zap nr_running.
4531 * After this, nr_running stays zero and need_more_worker()
4532 * and keep_working() are always true as long as the
4533 * worklist is not empty. This pool now behaves as an
4534 * unbound (in terms of concurrency management) pool which
4535 * are served by workers tied to the pool.
4536 */
4537 atomic_set(&pool->nr_running, 0);
4538
4539 /*
4540 * With concurrency management just turned off, a busy
4541 * worker blocking could lead to lengthy stalls. Kick off
4542 * unbound chain execution of currently pending work items.
4543 */
4544 spin_lock_irq(&pool->lock);
4545 wake_up_worker(pool);
4546 spin_unlock_irq(&pool->lock);
4547 }
4548 }
4549
4550 /**
4551 * rebind_workers - rebind all workers of a pool to the associated CPU
4552 * @pool: pool of interest
4553 *
4554 * @pool->cpu is coming online. Rebind all workers to the CPU.
4555 */
4556 static void rebind_workers(struct worker_pool *pool)
4557 {
4558 struct worker *worker;
4559 int wi;
4560
4561 lockdep_assert_held(&pool->manager_mutex);
4562
4563 /*
4564 * Restore CPU affinity of all workers. As all idle workers should
4565 * be on the run-queue of the associated CPU before any local
4566 * wake-ups for concurrency management happen, restore CPU affinty
4567 * of all workers first and then clear UNBOUND. As we're called
4568 * from CPU_ONLINE, the following shouldn't fail.
4569 */
4570 for_each_pool_worker(worker, wi, pool)
4571 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4572 pool->attrs->cpumask) < 0);
4573
4574 spin_lock_irq(&pool->lock);
4575
4576 for_each_pool_worker(worker, wi, pool) {
4577 unsigned int worker_flags = worker->flags;
4578
4579 /*
4580 * A bound idle worker should actually be on the runqueue
4581 * of the associated CPU for local wake-ups targeting it to
4582 * work. Kick all idle workers so that they migrate to the
4583 * associated CPU. Doing this in the same loop as
4584 * replacing UNBOUND with REBOUND is safe as no worker will
4585 * be bound before @pool->lock is released.
4586 */
4587 if (worker_flags & WORKER_IDLE)
4588 wake_up_process(worker->task);
4589
4590 /*
4591 * We want to clear UNBOUND but can't directly call
4592 * worker_clr_flags() or adjust nr_running. Atomically
4593 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4594 * @worker will clear REBOUND using worker_clr_flags() when
4595 * it initiates the next execution cycle thus restoring
4596 * concurrency management. Note that when or whether
4597 * @worker clears REBOUND doesn't affect correctness.
4598 *
4599 * ACCESS_ONCE() is necessary because @worker->flags may be
4600 * tested without holding any lock in
4601 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4602 * fail incorrectly leading to premature concurrency
4603 * management operations.
4604 */
4605 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4606 worker_flags |= WORKER_REBOUND;
4607 worker_flags &= ~WORKER_UNBOUND;
4608 ACCESS_ONCE(worker->flags) = worker_flags;
4609 }
4610
4611 spin_unlock_irq(&pool->lock);
4612 }
4613
4614 /**
4615 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4616 * @pool: unbound pool of interest
4617 * @cpu: the CPU which is coming up
4618 *
4619 * An unbound pool may end up with a cpumask which doesn't have any online
4620 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4621 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4622 * online CPU before, cpus_allowed of all its workers should be restored.
4623 */
4624 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4625 {
4626 static cpumask_t cpumask;
4627 struct worker *worker;
4628 int wi;
4629
4630 lockdep_assert_held(&pool->manager_mutex);
4631
4632 /* is @cpu allowed for @pool? */
4633 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4634 return;
4635
4636 /* is @cpu the only online CPU? */
4637 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4638 if (cpumask_weight(&cpumask) != 1)
4639 return;
4640
4641 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4642 for_each_pool_worker(worker, wi, pool)
4643 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4644 pool->attrs->cpumask) < 0);
4645 }
4646
4647 /*
4648 * Workqueues should be brought up before normal priority CPU notifiers.
4649 * This will be registered high priority CPU notifier.
4650 */
4651 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
4652 unsigned long action,
4653 void *hcpu)
4654 {
4655 int cpu = (unsigned long)hcpu;
4656 struct worker_pool *pool;
4657 struct workqueue_struct *wq;
4658 int pi;
4659
4660 switch (action & ~CPU_TASKS_FROZEN) {
4661 case CPU_UP_PREPARE:
4662 for_each_cpu_worker_pool(pool, cpu) {
4663 if (pool->nr_workers)
4664 continue;
4665 if (create_and_start_worker(pool) < 0)
4666 return NOTIFY_BAD;
4667 }
4668 break;
4669
4670 case CPU_DOWN_FAILED:
4671 case CPU_ONLINE:
4672 mutex_lock(&wq_pool_mutex);
4673
4674 for_each_pool(pool, pi) {
4675 mutex_lock(&pool->manager_mutex);
4676
4677 if (pool->cpu == cpu) {
4678 spin_lock_irq(&pool->lock);
4679 pool->flags &= ~POOL_DISASSOCIATED;
4680 spin_unlock_irq(&pool->lock);
4681
4682 rebind_workers(pool);
4683 } else if (pool->cpu < 0) {
4684 restore_unbound_workers_cpumask(pool, cpu);
4685 }
4686
4687 mutex_unlock(&pool->manager_mutex);
4688 }
4689
4690 /* update NUMA affinity of unbound workqueues */
4691 list_for_each_entry(wq, &workqueues, list)
4692 wq_update_unbound_numa(wq, cpu, true);
4693
4694 mutex_unlock(&wq_pool_mutex);
4695 break;
4696 }
4697 return NOTIFY_OK;
4698 }
4699
4700 /*
4701 * Workqueues should be brought down after normal priority CPU notifiers.
4702 * This will be registered as low priority CPU notifier.
4703 */
4704 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4705 unsigned long action,
4706 void *hcpu)
4707 {
4708 int cpu = (unsigned long)hcpu;
4709 struct work_struct unbind_work;
4710 struct workqueue_struct *wq;
4711
4712 switch (action & ~CPU_TASKS_FROZEN) {
4713 case CPU_DOWN_PREPARE:
4714 /* unbinding per-cpu workers should happen on the local CPU */
4715 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4716 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4717
4718 /* update NUMA affinity of unbound workqueues */
4719 mutex_lock(&wq_pool_mutex);
4720 list_for_each_entry(wq, &workqueues, list)
4721 wq_update_unbound_numa(wq, cpu, false);
4722 mutex_unlock(&wq_pool_mutex);
4723
4724 /* wait for per-cpu unbinding to finish */
4725 flush_work(&unbind_work);
4726 break;
4727 }
4728 return NOTIFY_OK;
4729 }
4730
4731 #ifdef CONFIG_SMP
4732
4733 struct work_for_cpu {
4734 struct work_struct work;
4735 long (*fn)(void *);
4736 void *arg;
4737 long ret;
4738 };
4739
4740 static void work_for_cpu_fn(struct work_struct *work)
4741 {
4742 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4743
4744 wfc->ret = wfc->fn(wfc->arg);
4745 }
4746
4747 /**
4748 * work_on_cpu - run a function in user context on a particular cpu
4749 * @cpu: the cpu to run on
4750 * @fn: the function to run
4751 * @arg: the function arg
4752 *
4753 * This will return the value @fn returns.
4754 * It is up to the caller to ensure that the cpu doesn't go offline.
4755 * The caller must not hold any locks which would prevent @fn from completing.
4756 */
4757 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4758 {
4759 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4760
4761 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4762 schedule_work_on(cpu, &wfc.work);
4763 flush_work(&wfc.work);
4764 return wfc.ret;
4765 }
4766 EXPORT_SYMBOL_GPL(work_on_cpu);
4767 #endif /* CONFIG_SMP */
4768
4769 #ifdef CONFIG_FREEZER
4770
4771 /**
4772 * freeze_workqueues_begin - begin freezing workqueues
4773 *
4774 * Start freezing workqueues. After this function returns, all freezable
4775 * workqueues will queue new works to their delayed_works list instead of
4776 * pool->worklist.
4777 *
4778 * CONTEXT:
4779 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4780 */
4781 void freeze_workqueues_begin(void)
4782 {
4783 struct worker_pool *pool;
4784 struct workqueue_struct *wq;
4785 struct pool_workqueue *pwq;
4786 int pi;
4787
4788 mutex_lock(&wq_pool_mutex);
4789
4790 WARN_ON_ONCE(workqueue_freezing);
4791 workqueue_freezing = true;
4792
4793 /* set FREEZING */
4794 for_each_pool(pool, pi) {
4795 spin_lock_irq(&pool->lock);
4796 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4797 pool->flags |= POOL_FREEZING;
4798 spin_unlock_irq(&pool->lock);
4799 }
4800
4801 list_for_each_entry(wq, &workqueues, list) {
4802 mutex_lock(&wq->mutex);
4803 for_each_pwq(pwq, wq)
4804 pwq_adjust_max_active(pwq);
4805 mutex_unlock(&wq->mutex);
4806 }
4807
4808 mutex_unlock(&wq_pool_mutex);
4809 }
4810
4811 /**
4812 * freeze_workqueues_busy - are freezable workqueues still busy?
4813 *
4814 * Check whether freezing is complete. This function must be called
4815 * between freeze_workqueues_begin() and thaw_workqueues().
4816 *
4817 * CONTEXT:
4818 * Grabs and releases wq_pool_mutex.
4819 *
4820 * RETURNS:
4821 * %true if some freezable workqueues are still busy. %false if freezing
4822 * is complete.
4823 */
4824 bool freeze_workqueues_busy(void)
4825 {
4826 bool busy = false;
4827 struct workqueue_struct *wq;
4828 struct pool_workqueue *pwq;
4829
4830 mutex_lock(&wq_pool_mutex);
4831
4832 WARN_ON_ONCE(!workqueue_freezing);
4833
4834 list_for_each_entry(wq, &workqueues, list) {
4835 if (!(wq->flags & WQ_FREEZABLE))
4836 continue;
4837 /*
4838 * nr_active is monotonically decreasing. It's safe
4839 * to peek without lock.
4840 */
4841 rcu_read_lock_sched();
4842 for_each_pwq(pwq, wq) {
4843 WARN_ON_ONCE(pwq->nr_active < 0);
4844 if (pwq->nr_active) {
4845 busy = true;
4846 rcu_read_unlock_sched();
4847 goto out_unlock;
4848 }
4849 }
4850 rcu_read_unlock_sched();
4851 }
4852 out_unlock:
4853 mutex_unlock(&wq_pool_mutex);
4854 return busy;
4855 }
4856
4857 /**
4858 * thaw_workqueues - thaw workqueues
4859 *
4860 * Thaw workqueues. Normal queueing is restored and all collected
4861 * frozen works are transferred to their respective pool worklists.
4862 *
4863 * CONTEXT:
4864 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4865 */
4866 void thaw_workqueues(void)
4867 {
4868 struct workqueue_struct *wq;
4869 struct pool_workqueue *pwq;
4870 struct worker_pool *pool;
4871 int pi;
4872
4873 mutex_lock(&wq_pool_mutex);
4874
4875 if (!workqueue_freezing)
4876 goto out_unlock;
4877
4878 /* clear FREEZING */
4879 for_each_pool(pool, pi) {
4880 spin_lock_irq(&pool->lock);
4881 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4882 pool->flags &= ~POOL_FREEZING;
4883 spin_unlock_irq(&pool->lock);
4884 }
4885
4886 /* restore max_active and repopulate worklist */
4887 list_for_each_entry(wq, &workqueues, list) {
4888 mutex_lock(&wq->mutex);
4889 for_each_pwq(pwq, wq)
4890 pwq_adjust_max_active(pwq);
4891 mutex_unlock(&wq->mutex);
4892 }
4893
4894 workqueue_freezing = false;
4895 out_unlock:
4896 mutex_unlock(&wq_pool_mutex);
4897 }
4898 #endif /* CONFIG_FREEZER */
4899
4900 static void __init wq_numa_init(void)
4901 {
4902 cpumask_var_t *tbl;
4903 int node, cpu;
4904
4905 /* determine NUMA pwq table len - highest node id + 1 */
4906 for_each_node(node)
4907 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4908
4909 if (num_possible_nodes() <= 1)
4910 return;
4911
4912 if (wq_disable_numa) {
4913 pr_info("workqueue: NUMA affinity support disabled\n");
4914 return;
4915 }
4916
4917 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4918 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4919
4920 /*
4921 * We want masks of possible CPUs of each node which isn't readily
4922 * available. Build one from cpu_to_node() which should have been
4923 * fully initialized by now.
4924 */
4925 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4926 BUG_ON(!tbl);
4927
4928 for_each_node(node)
4929 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4930 node_online(node) ? node : NUMA_NO_NODE));
4931
4932 for_each_possible_cpu(cpu) {
4933 node = cpu_to_node(cpu);
4934 if (WARN_ON(node == NUMA_NO_NODE)) {
4935 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4936 /* happens iff arch is bonkers, let's just proceed */
4937 return;
4938 }
4939 cpumask_set_cpu(cpu, tbl[node]);
4940 }
4941
4942 wq_numa_possible_cpumask = tbl;
4943 wq_numa_enabled = true;
4944 }
4945
4946 static int __init init_workqueues(void)
4947 {
4948 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4949 int i, cpu;
4950
4951 /* make sure we have enough bits for OFFQ pool ID */
4952 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4953 WORK_CPU_END * NR_STD_WORKER_POOLS);
4954
4955 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4956
4957 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4958
4959 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4960 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4961
4962 wq_numa_init();
4963
4964 /* initialize CPU pools */
4965 for_each_possible_cpu(cpu) {
4966 struct worker_pool *pool;
4967
4968 i = 0;
4969 for_each_cpu_worker_pool(pool, cpu) {
4970 BUG_ON(init_worker_pool(pool));
4971 pool->cpu = cpu;
4972 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4973 pool->attrs->nice = std_nice[i++];
4974 pool->node = cpu_to_node(cpu);
4975
4976 /* alloc pool ID */
4977 mutex_lock(&wq_pool_mutex);
4978 BUG_ON(worker_pool_assign_id(pool));
4979 mutex_unlock(&wq_pool_mutex);
4980 }
4981 }
4982
4983 /* create the initial worker */
4984 for_each_online_cpu(cpu) {
4985 struct worker_pool *pool;
4986
4987 for_each_cpu_worker_pool(pool, cpu) {
4988 pool->flags &= ~POOL_DISASSOCIATED;
4989 BUG_ON(create_and_start_worker(pool) < 0);
4990 }
4991 }
4992
4993 /* create default unbound wq attrs */
4994 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4995 struct workqueue_attrs *attrs;
4996
4997 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4998 attrs->nice = std_nice[i];
4999 unbound_std_wq_attrs[i] = attrs;
5000 }
5001
5002 system_wq = alloc_workqueue("events", 0, 0);
5003 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5004 system_long_wq = alloc_workqueue("events_long", 0, 0);
5005 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5006 WQ_UNBOUND_MAX_ACTIVE);
5007 system_freezable_wq = alloc_workqueue("events_freezable",
5008 WQ_FREEZABLE, 0);
5009 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5010 !system_unbound_wq || !system_freezable_wq);
5011 return 0;
5012 }
5013 early_initcall(init_workqueues);