Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50
51 #include "workqueue_internal.h"
52
53 enum {
54 /*
55 * worker_pool flags
56 *
57 * A bound pool is either associated or disassociated with its CPU.
58 * While associated (!DISASSOCIATED), all workers are bound to the
59 * CPU and none has %WORKER_UNBOUND set and concurrency management
60 * is in effect.
61 *
62 * While DISASSOCIATED, the cpu may be offline and all workers have
63 * %WORKER_UNBOUND set and concurrency management disabled, and may
64 * be executing on any CPU. The pool behaves as an unbound one.
65 *
66 * Note that DISASSOCIATED should be flipped only while holding
67 * manager_mutex to avoid changing binding state while
68 * create_worker() is in progress.
69 */
70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
72 POOL_FREEZING = 1 << 3, /* freeze in progress */
73
74 /* worker flags */
75 WORKER_STARTED = 1 << 0, /* started */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
78 WORKER_PREP = 1 << 3, /* preparing to run works */
79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
82
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
85
86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
87
88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
90
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give -20.
103 */
104 RESCUER_NICE_LEVEL = -20,
105 HIGHPRI_NICE_LEVEL = -20,
106
107 WQ_NAME_LEN = 24,
108 };
109
110 /*
111 * Structure fields follow one of the following exclusion rules.
112 *
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
115 *
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
119 * L: pool->lock protected. Access with pool->lock held.
120 *
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
125 *
126 * MG: pool->manager_mutex and pool->lock protected. Writes require both
127 * locks. Reads can happen under either lock.
128 *
129 * PL: wq_pool_mutex protected.
130 *
131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
132 *
133 * WQ: wq->mutex protected.
134 *
135 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
136 *
137 * MD: wq_mayday_lock protected.
138 */
139
140 /* struct worker is defined in workqueue_internal.h */
141
142 struct worker_pool {
143 spinlock_t lock; /* the pool lock */
144 int cpu; /* I: the associated cpu */
145 int node; /* I: the associated node ID */
146 int id; /* I: pool ID */
147 unsigned int flags; /* X: flags */
148
149 struct list_head worklist; /* L: list of pending works */
150 int nr_workers; /* L: total number of workers */
151
152 /* nr_idle includes the ones off idle_list for rebinding */
153 int nr_idle; /* L: currently idle ones */
154
155 struct list_head idle_list; /* X: list of idle workers */
156 struct timer_list idle_timer; /* L: worker idle timeout */
157 struct timer_list mayday_timer; /* L: SOS timer for workers */
158
159 /* a workers is either on busy_hash or idle_list, or the manager */
160 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
161 /* L: hash of busy workers */
162
163 /* see manage_workers() for details on the two manager mutexes */
164 struct mutex manager_arb; /* manager arbitration */
165 struct mutex manager_mutex; /* manager exclusion */
166 struct idr worker_idr; /* MG: worker IDs and iteration */
167
168 struct workqueue_attrs *attrs; /* I: worker attributes */
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
171
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
184 } ____cacheline_aligned_in_smp;
185
186 /*
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
191 */
192 struct pool_workqueue {
193 struct worker_pool *pool; /* I: the associated pool */
194 struct workqueue_struct *wq; /* I: the owning workqueue */
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
197 int refcnt; /* L: reference count */
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
200 int nr_active; /* L: nr of active works */
201 int max_active; /* L: max active works */
202 struct list_head delayed_works; /* L: delayed works */
203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
204 struct list_head mayday_node; /* MD: node on wq->maydays */
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
210 * determined without grabbing wq->mutex.
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215
216 /*
217 * Structure used to wait for workqueue flush.
218 */
219 struct wq_flusher {
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
222 struct completion done; /* flush completion */
223 };
224
225 struct wq_device;
226
227 /*
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
230 */
231 struct workqueue_struct {
232 struct list_head pwqs; /* WR: all pwqs of this wq */
233 struct list_head list; /* PL: list of all workqueues */
234
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
238 atomic_t nr_pwqs_to_flush; /* flush in progress */
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
242
243 struct list_head maydays; /* MD: pwqs requesting rescue */
244 struct worker *rescuer; /* I: rescue worker */
245
246 int nr_drainers; /* WQ: drain in progress */
247 int saved_max_active; /* WQ: saved pwq max_active */
248
249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
251
252 #ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256 struct lockdep_map lockdep_map;
257 #endif
258 char name[WQ_NAME_LEN]; /* I: workqueue name */
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265
266 static struct kmem_cache *pwq_cache;
267
268 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269 static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
272 static bool wq_disable_numa;
273 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
275 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
276
277 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
278 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
279
280 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
281 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
282
283 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
284 static bool workqueue_freezing; /* PL: have wqs started freezing? */
285
286 /* the per-cpu worker pools */
287 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
288 cpu_worker_pools);
289
290 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
291
292 /* PL: hash of all unbound pools keyed by pool->attrs */
293 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
294
295 /* I: attributes used when instantiating standard unbound pools on demand */
296 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
297
298 struct workqueue_struct *system_wq __read_mostly;
299 EXPORT_SYMBOL(system_wq);
300 struct workqueue_struct *system_highpri_wq __read_mostly;
301 EXPORT_SYMBOL_GPL(system_highpri_wq);
302 struct workqueue_struct *system_long_wq __read_mostly;
303 EXPORT_SYMBOL_GPL(system_long_wq);
304 struct workqueue_struct *system_unbound_wq __read_mostly;
305 EXPORT_SYMBOL_GPL(system_unbound_wq);
306 struct workqueue_struct *system_freezable_wq __read_mostly;
307 EXPORT_SYMBOL_GPL(system_freezable_wq);
308
309 static int worker_thread(void *__worker);
310 static void copy_workqueue_attrs(struct workqueue_attrs *to,
311 const struct workqueue_attrs *from);
312
313 #define CREATE_TRACE_POINTS
314 #include <trace/events/workqueue.h>
315
316 #define assert_rcu_or_pool_mutex() \
317 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
318 lockdep_is_held(&wq_pool_mutex), \
319 "sched RCU or wq_pool_mutex should be held")
320
321 #define assert_rcu_or_wq_mutex(wq) \
322 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
323 lockdep_is_held(&wq->mutex), \
324 "sched RCU or wq->mutex should be held")
325
326 #ifdef CONFIG_LOCKDEP
327 #define assert_manager_or_pool_lock(pool) \
328 WARN_ONCE(debug_locks && \
329 !lockdep_is_held(&(pool)->manager_mutex) && \
330 !lockdep_is_held(&(pool)->lock), \
331 "pool->manager_mutex or ->lock should be held")
332 #else
333 #define assert_manager_or_pool_lock(pool) do { } while (0)
334 #endif
335
336 #define for_each_cpu_worker_pool(pool, cpu) \
337 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
338 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
339 (pool)++)
340
341 /**
342 * for_each_pool - iterate through all worker_pools in the system
343 * @pool: iteration cursor
344 * @pi: integer used for iteration
345 *
346 * This must be called either with wq_pool_mutex held or sched RCU read
347 * locked. If the pool needs to be used beyond the locking in effect, the
348 * caller is responsible for guaranteeing that the pool stays online.
349 *
350 * The if/else clause exists only for the lockdep assertion and can be
351 * ignored.
352 */
353 #define for_each_pool(pool, pi) \
354 idr_for_each_entry(&worker_pool_idr, pool, pi) \
355 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
356 else
357
358 /**
359 * for_each_pool_worker - iterate through all workers of a worker_pool
360 * @worker: iteration cursor
361 * @wi: integer used for iteration
362 * @pool: worker_pool to iterate workers of
363 *
364 * This must be called with either @pool->manager_mutex or ->lock held.
365 *
366 * The if/else clause exists only for the lockdep assertion and can be
367 * ignored.
368 */
369 #define for_each_pool_worker(worker, wi, pool) \
370 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
371 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
372 else
373
374 /**
375 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
376 * @pwq: iteration cursor
377 * @wq: the target workqueue
378 *
379 * This must be called either with wq->mutex held or sched RCU read locked.
380 * If the pwq needs to be used beyond the locking in effect, the caller is
381 * responsible for guaranteeing that the pwq stays online.
382 *
383 * The if/else clause exists only for the lockdep assertion and can be
384 * ignored.
385 */
386 #define for_each_pwq(pwq, wq) \
387 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
388 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
389 else
390
391 #ifdef CONFIG_DEBUG_OBJECTS_WORK
392
393 static struct debug_obj_descr work_debug_descr;
394
395 static void *work_debug_hint(void *addr)
396 {
397 return ((struct work_struct *) addr)->func;
398 }
399
400 /*
401 * fixup_init is called when:
402 * - an active object is initialized
403 */
404 static int work_fixup_init(void *addr, enum debug_obj_state state)
405 {
406 struct work_struct *work = addr;
407
408 switch (state) {
409 case ODEBUG_STATE_ACTIVE:
410 cancel_work_sync(work);
411 debug_object_init(work, &work_debug_descr);
412 return 1;
413 default:
414 return 0;
415 }
416 }
417
418 /*
419 * fixup_activate is called when:
420 * - an active object is activated
421 * - an unknown object is activated (might be a statically initialized object)
422 */
423 static int work_fixup_activate(void *addr, enum debug_obj_state state)
424 {
425 struct work_struct *work = addr;
426
427 switch (state) {
428
429 case ODEBUG_STATE_NOTAVAILABLE:
430 /*
431 * This is not really a fixup. The work struct was
432 * statically initialized. We just make sure that it
433 * is tracked in the object tracker.
434 */
435 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
436 debug_object_init(work, &work_debug_descr);
437 debug_object_activate(work, &work_debug_descr);
438 return 0;
439 }
440 WARN_ON_ONCE(1);
441 return 0;
442
443 case ODEBUG_STATE_ACTIVE:
444 WARN_ON(1);
445
446 default:
447 return 0;
448 }
449 }
450
451 /*
452 * fixup_free is called when:
453 * - an active object is freed
454 */
455 static int work_fixup_free(void *addr, enum debug_obj_state state)
456 {
457 struct work_struct *work = addr;
458
459 switch (state) {
460 case ODEBUG_STATE_ACTIVE:
461 cancel_work_sync(work);
462 debug_object_free(work, &work_debug_descr);
463 return 1;
464 default:
465 return 0;
466 }
467 }
468
469 static struct debug_obj_descr work_debug_descr = {
470 .name = "work_struct",
471 .debug_hint = work_debug_hint,
472 .fixup_init = work_fixup_init,
473 .fixup_activate = work_fixup_activate,
474 .fixup_free = work_fixup_free,
475 };
476
477 static inline void debug_work_activate(struct work_struct *work)
478 {
479 debug_object_activate(work, &work_debug_descr);
480 }
481
482 static inline void debug_work_deactivate(struct work_struct *work)
483 {
484 debug_object_deactivate(work, &work_debug_descr);
485 }
486
487 void __init_work(struct work_struct *work, int onstack)
488 {
489 if (onstack)
490 debug_object_init_on_stack(work, &work_debug_descr);
491 else
492 debug_object_init(work, &work_debug_descr);
493 }
494 EXPORT_SYMBOL_GPL(__init_work);
495
496 void destroy_work_on_stack(struct work_struct *work)
497 {
498 debug_object_free(work, &work_debug_descr);
499 }
500 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
501
502 #else
503 static inline void debug_work_activate(struct work_struct *work) { }
504 static inline void debug_work_deactivate(struct work_struct *work) { }
505 #endif
506
507 /* allocate ID and assign it to @pool */
508 static int worker_pool_assign_id(struct worker_pool *pool)
509 {
510 int ret;
511
512 lockdep_assert_held(&wq_pool_mutex);
513
514 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
515 if (ret >= 0) {
516 pool->id = ret;
517 return 0;
518 }
519 return ret;
520 }
521
522 /**
523 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
524 * @wq: the target workqueue
525 * @node: the node ID
526 *
527 * This must be called either with pwq_lock held or sched RCU read locked.
528 * If the pwq needs to be used beyond the locking in effect, the caller is
529 * responsible for guaranteeing that the pwq stays online.
530 */
531 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
532 int node)
533 {
534 assert_rcu_or_wq_mutex(wq);
535 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
536 }
537
538 static unsigned int work_color_to_flags(int color)
539 {
540 return color << WORK_STRUCT_COLOR_SHIFT;
541 }
542
543 static int get_work_color(struct work_struct *work)
544 {
545 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
546 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
547 }
548
549 static int work_next_color(int color)
550 {
551 return (color + 1) % WORK_NR_COLORS;
552 }
553
554 /*
555 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
556 * contain the pointer to the queued pwq. Once execution starts, the flag
557 * is cleared and the high bits contain OFFQ flags and pool ID.
558 *
559 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
560 * and clear_work_data() can be used to set the pwq, pool or clear
561 * work->data. These functions should only be called while the work is
562 * owned - ie. while the PENDING bit is set.
563 *
564 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
565 * corresponding to a work. Pool is available once the work has been
566 * queued anywhere after initialization until it is sync canceled. pwq is
567 * available only while the work item is queued.
568 *
569 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
570 * canceled. While being canceled, a work item may have its PENDING set
571 * but stay off timer and worklist for arbitrarily long and nobody should
572 * try to steal the PENDING bit.
573 */
574 static inline void set_work_data(struct work_struct *work, unsigned long data,
575 unsigned long flags)
576 {
577 WARN_ON_ONCE(!work_pending(work));
578 atomic_long_set(&work->data, data | flags | work_static(work));
579 }
580
581 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
582 unsigned long extra_flags)
583 {
584 set_work_data(work, (unsigned long)pwq,
585 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
586 }
587
588 static void set_work_pool_and_keep_pending(struct work_struct *work,
589 int pool_id)
590 {
591 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
592 WORK_STRUCT_PENDING);
593 }
594
595 static void set_work_pool_and_clear_pending(struct work_struct *work,
596 int pool_id)
597 {
598 /*
599 * The following wmb is paired with the implied mb in
600 * test_and_set_bit(PENDING) and ensures all updates to @work made
601 * here are visible to and precede any updates by the next PENDING
602 * owner.
603 */
604 smp_wmb();
605 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
606 }
607
608 static void clear_work_data(struct work_struct *work)
609 {
610 smp_wmb(); /* see set_work_pool_and_clear_pending() */
611 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
612 }
613
614 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
615 {
616 unsigned long data = atomic_long_read(&work->data);
617
618 if (data & WORK_STRUCT_PWQ)
619 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
620 else
621 return NULL;
622 }
623
624 /**
625 * get_work_pool - return the worker_pool a given work was associated with
626 * @work: the work item of interest
627 *
628 * Return the worker_pool @work was last associated with. %NULL if none.
629 *
630 * Pools are created and destroyed under wq_pool_mutex, and allows read
631 * access under sched-RCU read lock. As such, this function should be
632 * called under wq_pool_mutex or with preemption disabled.
633 *
634 * All fields of the returned pool are accessible as long as the above
635 * mentioned locking is in effect. If the returned pool needs to be used
636 * beyond the critical section, the caller is responsible for ensuring the
637 * returned pool is and stays online.
638 */
639 static struct worker_pool *get_work_pool(struct work_struct *work)
640 {
641 unsigned long data = atomic_long_read(&work->data);
642 int pool_id;
643
644 assert_rcu_or_pool_mutex();
645
646 if (data & WORK_STRUCT_PWQ)
647 return ((struct pool_workqueue *)
648 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
649
650 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
651 if (pool_id == WORK_OFFQ_POOL_NONE)
652 return NULL;
653
654 return idr_find(&worker_pool_idr, pool_id);
655 }
656
657 /**
658 * get_work_pool_id - return the worker pool ID a given work is associated with
659 * @work: the work item of interest
660 *
661 * Return the worker_pool ID @work was last associated with.
662 * %WORK_OFFQ_POOL_NONE if none.
663 */
664 static int get_work_pool_id(struct work_struct *work)
665 {
666 unsigned long data = atomic_long_read(&work->data);
667
668 if (data & WORK_STRUCT_PWQ)
669 return ((struct pool_workqueue *)
670 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
671
672 return data >> WORK_OFFQ_POOL_SHIFT;
673 }
674
675 static void mark_work_canceling(struct work_struct *work)
676 {
677 unsigned long pool_id = get_work_pool_id(work);
678
679 pool_id <<= WORK_OFFQ_POOL_SHIFT;
680 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
681 }
682
683 static bool work_is_canceling(struct work_struct *work)
684 {
685 unsigned long data = atomic_long_read(&work->data);
686
687 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
688 }
689
690 /*
691 * Policy functions. These define the policies on how the global worker
692 * pools are managed. Unless noted otherwise, these functions assume that
693 * they're being called with pool->lock held.
694 */
695
696 static bool __need_more_worker(struct worker_pool *pool)
697 {
698 return !atomic_read(&pool->nr_running);
699 }
700
701 /*
702 * Need to wake up a worker? Called from anything but currently
703 * running workers.
704 *
705 * Note that, because unbound workers never contribute to nr_running, this
706 * function will always return %true for unbound pools as long as the
707 * worklist isn't empty.
708 */
709 static bool need_more_worker(struct worker_pool *pool)
710 {
711 return !list_empty(&pool->worklist) && __need_more_worker(pool);
712 }
713
714 /* Can I start working? Called from busy but !running workers. */
715 static bool may_start_working(struct worker_pool *pool)
716 {
717 return pool->nr_idle;
718 }
719
720 /* Do I need to keep working? Called from currently running workers. */
721 static bool keep_working(struct worker_pool *pool)
722 {
723 return !list_empty(&pool->worklist) &&
724 atomic_read(&pool->nr_running) <= 1;
725 }
726
727 /* Do we need a new worker? Called from manager. */
728 static bool need_to_create_worker(struct worker_pool *pool)
729 {
730 return need_more_worker(pool) && !may_start_working(pool);
731 }
732
733 /* Do I need to be the manager? */
734 static bool need_to_manage_workers(struct worker_pool *pool)
735 {
736 return need_to_create_worker(pool) ||
737 (pool->flags & POOL_MANAGE_WORKERS);
738 }
739
740 /* Do we have too many workers and should some go away? */
741 static bool too_many_workers(struct worker_pool *pool)
742 {
743 bool managing = mutex_is_locked(&pool->manager_arb);
744 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
745 int nr_busy = pool->nr_workers - nr_idle;
746
747 /*
748 * nr_idle and idle_list may disagree if idle rebinding is in
749 * progress. Never return %true if idle_list is empty.
750 */
751 if (list_empty(&pool->idle_list))
752 return false;
753
754 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
755 }
756
757 /*
758 * Wake up functions.
759 */
760
761 /* Return the first worker. Safe with preemption disabled */
762 static struct worker *first_worker(struct worker_pool *pool)
763 {
764 if (unlikely(list_empty(&pool->idle_list)))
765 return NULL;
766
767 return list_first_entry(&pool->idle_list, struct worker, entry);
768 }
769
770 /**
771 * wake_up_worker - wake up an idle worker
772 * @pool: worker pool to wake worker from
773 *
774 * Wake up the first idle worker of @pool.
775 *
776 * CONTEXT:
777 * spin_lock_irq(pool->lock).
778 */
779 static void wake_up_worker(struct worker_pool *pool)
780 {
781 struct worker *worker = first_worker(pool);
782
783 if (likely(worker))
784 wake_up_process(worker->task);
785 }
786
787 /**
788 * wq_worker_waking_up - a worker is waking up
789 * @task: task waking up
790 * @cpu: CPU @task is waking up to
791 *
792 * This function is called during try_to_wake_up() when a worker is
793 * being awoken.
794 *
795 * CONTEXT:
796 * spin_lock_irq(rq->lock)
797 */
798 void wq_worker_waking_up(struct task_struct *task, int cpu)
799 {
800 struct worker *worker = kthread_data(task);
801
802 if (!(worker->flags & WORKER_NOT_RUNNING)) {
803 WARN_ON_ONCE(worker->pool->cpu != cpu);
804 atomic_inc(&worker->pool->nr_running);
805 }
806 }
807
808 /**
809 * wq_worker_sleeping - a worker is going to sleep
810 * @task: task going to sleep
811 * @cpu: CPU in question, must be the current CPU number
812 *
813 * This function is called during schedule() when a busy worker is
814 * going to sleep. Worker on the same cpu can be woken up by
815 * returning pointer to its task.
816 *
817 * CONTEXT:
818 * spin_lock_irq(rq->lock)
819 *
820 * RETURNS:
821 * Worker task on @cpu to wake up, %NULL if none.
822 */
823 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
824 {
825 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
826 struct worker_pool *pool;
827
828 /*
829 * Rescuers, which may not have all the fields set up like normal
830 * workers, also reach here, let's not access anything before
831 * checking NOT_RUNNING.
832 */
833 if (worker->flags & WORKER_NOT_RUNNING)
834 return NULL;
835
836 pool = worker->pool;
837
838 /* this can only happen on the local cpu */
839 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
840 return NULL;
841
842 /*
843 * The counterpart of the following dec_and_test, implied mb,
844 * worklist not empty test sequence is in insert_work().
845 * Please read comment there.
846 *
847 * NOT_RUNNING is clear. This means that we're bound to and
848 * running on the local cpu w/ rq lock held and preemption
849 * disabled, which in turn means that none else could be
850 * manipulating idle_list, so dereferencing idle_list without pool
851 * lock is safe.
852 */
853 if (atomic_dec_and_test(&pool->nr_running) &&
854 !list_empty(&pool->worklist))
855 to_wakeup = first_worker(pool);
856 return to_wakeup ? to_wakeup->task : NULL;
857 }
858
859 /**
860 * worker_set_flags - set worker flags and adjust nr_running accordingly
861 * @worker: self
862 * @flags: flags to set
863 * @wakeup: wakeup an idle worker if necessary
864 *
865 * Set @flags in @worker->flags and adjust nr_running accordingly. If
866 * nr_running becomes zero and @wakeup is %true, an idle worker is
867 * woken up.
868 *
869 * CONTEXT:
870 * spin_lock_irq(pool->lock)
871 */
872 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
873 bool wakeup)
874 {
875 struct worker_pool *pool = worker->pool;
876
877 WARN_ON_ONCE(worker->task != current);
878
879 /*
880 * If transitioning into NOT_RUNNING, adjust nr_running and
881 * wake up an idle worker as necessary if requested by
882 * @wakeup.
883 */
884 if ((flags & WORKER_NOT_RUNNING) &&
885 !(worker->flags & WORKER_NOT_RUNNING)) {
886 if (wakeup) {
887 if (atomic_dec_and_test(&pool->nr_running) &&
888 !list_empty(&pool->worklist))
889 wake_up_worker(pool);
890 } else
891 atomic_dec(&pool->nr_running);
892 }
893
894 worker->flags |= flags;
895 }
896
897 /**
898 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
899 * @worker: self
900 * @flags: flags to clear
901 *
902 * Clear @flags in @worker->flags and adjust nr_running accordingly.
903 *
904 * CONTEXT:
905 * spin_lock_irq(pool->lock)
906 */
907 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
908 {
909 struct worker_pool *pool = worker->pool;
910 unsigned int oflags = worker->flags;
911
912 WARN_ON_ONCE(worker->task != current);
913
914 worker->flags &= ~flags;
915
916 /*
917 * If transitioning out of NOT_RUNNING, increment nr_running. Note
918 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
919 * of multiple flags, not a single flag.
920 */
921 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
922 if (!(worker->flags & WORKER_NOT_RUNNING))
923 atomic_inc(&pool->nr_running);
924 }
925
926 /**
927 * find_worker_executing_work - find worker which is executing a work
928 * @pool: pool of interest
929 * @work: work to find worker for
930 *
931 * Find a worker which is executing @work on @pool by searching
932 * @pool->busy_hash which is keyed by the address of @work. For a worker
933 * to match, its current execution should match the address of @work and
934 * its work function. This is to avoid unwanted dependency between
935 * unrelated work executions through a work item being recycled while still
936 * being executed.
937 *
938 * This is a bit tricky. A work item may be freed once its execution
939 * starts and nothing prevents the freed area from being recycled for
940 * another work item. If the same work item address ends up being reused
941 * before the original execution finishes, workqueue will identify the
942 * recycled work item as currently executing and make it wait until the
943 * current execution finishes, introducing an unwanted dependency.
944 *
945 * This function checks the work item address and work function to avoid
946 * false positives. Note that this isn't complete as one may construct a
947 * work function which can introduce dependency onto itself through a
948 * recycled work item. Well, if somebody wants to shoot oneself in the
949 * foot that badly, there's only so much we can do, and if such deadlock
950 * actually occurs, it should be easy to locate the culprit work function.
951 *
952 * CONTEXT:
953 * spin_lock_irq(pool->lock).
954 *
955 * RETURNS:
956 * Pointer to worker which is executing @work if found, NULL
957 * otherwise.
958 */
959 static struct worker *find_worker_executing_work(struct worker_pool *pool,
960 struct work_struct *work)
961 {
962 struct worker *worker;
963
964 hash_for_each_possible(pool->busy_hash, worker, hentry,
965 (unsigned long)work)
966 if (worker->current_work == work &&
967 worker->current_func == work->func)
968 return worker;
969
970 return NULL;
971 }
972
973 /**
974 * move_linked_works - move linked works to a list
975 * @work: start of series of works to be scheduled
976 * @head: target list to append @work to
977 * @nextp: out paramter for nested worklist walking
978 *
979 * Schedule linked works starting from @work to @head. Work series to
980 * be scheduled starts at @work and includes any consecutive work with
981 * WORK_STRUCT_LINKED set in its predecessor.
982 *
983 * If @nextp is not NULL, it's updated to point to the next work of
984 * the last scheduled work. This allows move_linked_works() to be
985 * nested inside outer list_for_each_entry_safe().
986 *
987 * CONTEXT:
988 * spin_lock_irq(pool->lock).
989 */
990 static void move_linked_works(struct work_struct *work, struct list_head *head,
991 struct work_struct **nextp)
992 {
993 struct work_struct *n;
994
995 /*
996 * Linked worklist will always end before the end of the list,
997 * use NULL for list head.
998 */
999 list_for_each_entry_safe_from(work, n, NULL, entry) {
1000 list_move_tail(&work->entry, head);
1001 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1002 break;
1003 }
1004
1005 /*
1006 * If we're already inside safe list traversal and have moved
1007 * multiple works to the scheduled queue, the next position
1008 * needs to be updated.
1009 */
1010 if (nextp)
1011 *nextp = n;
1012 }
1013
1014 /**
1015 * get_pwq - get an extra reference on the specified pool_workqueue
1016 * @pwq: pool_workqueue to get
1017 *
1018 * Obtain an extra reference on @pwq. The caller should guarantee that
1019 * @pwq has positive refcnt and be holding the matching pool->lock.
1020 */
1021 static void get_pwq(struct pool_workqueue *pwq)
1022 {
1023 lockdep_assert_held(&pwq->pool->lock);
1024 WARN_ON_ONCE(pwq->refcnt <= 0);
1025 pwq->refcnt++;
1026 }
1027
1028 /**
1029 * put_pwq - put a pool_workqueue reference
1030 * @pwq: pool_workqueue to put
1031 *
1032 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1033 * destruction. The caller should be holding the matching pool->lock.
1034 */
1035 static void put_pwq(struct pool_workqueue *pwq)
1036 {
1037 lockdep_assert_held(&pwq->pool->lock);
1038 if (likely(--pwq->refcnt))
1039 return;
1040 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1041 return;
1042 /*
1043 * @pwq can't be released under pool->lock, bounce to
1044 * pwq_unbound_release_workfn(). This never recurses on the same
1045 * pool->lock as this path is taken only for unbound workqueues and
1046 * the release work item is scheduled on a per-cpu workqueue. To
1047 * avoid lockdep warning, unbound pool->locks are given lockdep
1048 * subclass of 1 in get_unbound_pool().
1049 */
1050 schedule_work(&pwq->unbound_release_work);
1051 }
1052
1053 /**
1054 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1055 * @pwq: pool_workqueue to put (can be %NULL)
1056 *
1057 * put_pwq() with locking. This function also allows %NULL @pwq.
1058 */
1059 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1060 {
1061 if (pwq) {
1062 /*
1063 * As both pwqs and pools are sched-RCU protected, the
1064 * following lock operations are safe.
1065 */
1066 spin_lock_irq(&pwq->pool->lock);
1067 put_pwq(pwq);
1068 spin_unlock_irq(&pwq->pool->lock);
1069 }
1070 }
1071
1072 static void pwq_activate_delayed_work(struct work_struct *work)
1073 {
1074 struct pool_workqueue *pwq = get_work_pwq(work);
1075
1076 trace_workqueue_activate_work(work);
1077 move_linked_works(work, &pwq->pool->worklist, NULL);
1078 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1079 pwq->nr_active++;
1080 }
1081
1082 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1083 {
1084 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1085 struct work_struct, entry);
1086
1087 pwq_activate_delayed_work(work);
1088 }
1089
1090 /**
1091 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1092 * @pwq: pwq of interest
1093 * @color: color of work which left the queue
1094 *
1095 * A work either has completed or is removed from pending queue,
1096 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1097 *
1098 * CONTEXT:
1099 * spin_lock_irq(pool->lock).
1100 */
1101 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1102 {
1103 /* uncolored work items don't participate in flushing or nr_active */
1104 if (color == WORK_NO_COLOR)
1105 goto out_put;
1106
1107 pwq->nr_in_flight[color]--;
1108
1109 pwq->nr_active--;
1110 if (!list_empty(&pwq->delayed_works)) {
1111 /* one down, submit a delayed one */
1112 if (pwq->nr_active < pwq->max_active)
1113 pwq_activate_first_delayed(pwq);
1114 }
1115
1116 /* is flush in progress and are we at the flushing tip? */
1117 if (likely(pwq->flush_color != color))
1118 goto out_put;
1119
1120 /* are there still in-flight works? */
1121 if (pwq->nr_in_flight[color])
1122 goto out_put;
1123
1124 /* this pwq is done, clear flush_color */
1125 pwq->flush_color = -1;
1126
1127 /*
1128 * If this was the last pwq, wake up the first flusher. It
1129 * will handle the rest.
1130 */
1131 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1132 complete(&pwq->wq->first_flusher->done);
1133 out_put:
1134 put_pwq(pwq);
1135 }
1136
1137 /**
1138 * try_to_grab_pending - steal work item from worklist and disable irq
1139 * @work: work item to steal
1140 * @is_dwork: @work is a delayed_work
1141 * @flags: place to store irq state
1142 *
1143 * Try to grab PENDING bit of @work. This function can handle @work in any
1144 * stable state - idle, on timer or on worklist. Return values are
1145 *
1146 * 1 if @work was pending and we successfully stole PENDING
1147 * 0 if @work was idle and we claimed PENDING
1148 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1149 * -ENOENT if someone else is canceling @work, this state may persist
1150 * for arbitrarily long
1151 *
1152 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1153 * interrupted while holding PENDING and @work off queue, irq must be
1154 * disabled on entry. This, combined with delayed_work->timer being
1155 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1156 *
1157 * On successful return, >= 0, irq is disabled and the caller is
1158 * responsible for releasing it using local_irq_restore(*@flags).
1159 *
1160 * This function is safe to call from any context including IRQ handler.
1161 */
1162 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1163 unsigned long *flags)
1164 {
1165 struct worker_pool *pool;
1166 struct pool_workqueue *pwq;
1167
1168 local_irq_save(*flags);
1169
1170 /* try to steal the timer if it exists */
1171 if (is_dwork) {
1172 struct delayed_work *dwork = to_delayed_work(work);
1173
1174 /*
1175 * dwork->timer is irqsafe. If del_timer() fails, it's
1176 * guaranteed that the timer is not queued anywhere and not
1177 * running on the local CPU.
1178 */
1179 if (likely(del_timer(&dwork->timer)))
1180 return 1;
1181 }
1182
1183 /* try to claim PENDING the normal way */
1184 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1185 return 0;
1186
1187 /*
1188 * The queueing is in progress, or it is already queued. Try to
1189 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1190 */
1191 pool = get_work_pool(work);
1192 if (!pool)
1193 goto fail;
1194
1195 spin_lock(&pool->lock);
1196 /*
1197 * work->data is guaranteed to point to pwq only while the work
1198 * item is queued on pwq->wq, and both updating work->data to point
1199 * to pwq on queueing and to pool on dequeueing are done under
1200 * pwq->pool->lock. This in turn guarantees that, if work->data
1201 * points to pwq which is associated with a locked pool, the work
1202 * item is currently queued on that pool.
1203 */
1204 pwq = get_work_pwq(work);
1205 if (pwq && pwq->pool == pool) {
1206 debug_work_deactivate(work);
1207
1208 /*
1209 * A delayed work item cannot be grabbed directly because
1210 * it might have linked NO_COLOR work items which, if left
1211 * on the delayed_list, will confuse pwq->nr_active
1212 * management later on and cause stall. Make sure the work
1213 * item is activated before grabbing.
1214 */
1215 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1216 pwq_activate_delayed_work(work);
1217
1218 list_del_init(&work->entry);
1219 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1220
1221 /* work->data points to pwq iff queued, point to pool */
1222 set_work_pool_and_keep_pending(work, pool->id);
1223
1224 spin_unlock(&pool->lock);
1225 return 1;
1226 }
1227 spin_unlock(&pool->lock);
1228 fail:
1229 local_irq_restore(*flags);
1230 if (work_is_canceling(work))
1231 return -ENOENT;
1232 cpu_relax();
1233 return -EAGAIN;
1234 }
1235
1236 /**
1237 * insert_work - insert a work into a pool
1238 * @pwq: pwq @work belongs to
1239 * @work: work to insert
1240 * @head: insertion point
1241 * @extra_flags: extra WORK_STRUCT_* flags to set
1242 *
1243 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1244 * work_struct flags.
1245 *
1246 * CONTEXT:
1247 * spin_lock_irq(pool->lock).
1248 */
1249 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1250 struct list_head *head, unsigned int extra_flags)
1251 {
1252 struct worker_pool *pool = pwq->pool;
1253
1254 /* we own @work, set data and link */
1255 set_work_pwq(work, pwq, extra_flags);
1256 list_add_tail(&work->entry, head);
1257 get_pwq(pwq);
1258
1259 /*
1260 * Ensure either wq_worker_sleeping() sees the above
1261 * list_add_tail() or we see zero nr_running to avoid workers lying
1262 * around lazily while there are works to be processed.
1263 */
1264 smp_mb();
1265
1266 if (__need_more_worker(pool))
1267 wake_up_worker(pool);
1268 }
1269
1270 /*
1271 * Test whether @work is being queued from another work executing on the
1272 * same workqueue.
1273 */
1274 static bool is_chained_work(struct workqueue_struct *wq)
1275 {
1276 struct worker *worker;
1277
1278 worker = current_wq_worker();
1279 /*
1280 * Return %true iff I'm a worker execuing a work item on @wq. If
1281 * I'm @worker, it's safe to dereference it without locking.
1282 */
1283 return worker && worker->current_pwq->wq == wq;
1284 }
1285
1286 static void __queue_work(int cpu, struct workqueue_struct *wq,
1287 struct work_struct *work)
1288 {
1289 struct pool_workqueue *pwq;
1290 struct worker_pool *last_pool;
1291 struct list_head *worklist;
1292 unsigned int work_flags;
1293 unsigned int req_cpu = cpu;
1294
1295 /*
1296 * While a work item is PENDING && off queue, a task trying to
1297 * steal the PENDING will busy-loop waiting for it to either get
1298 * queued or lose PENDING. Grabbing PENDING and queueing should
1299 * happen with IRQ disabled.
1300 */
1301 WARN_ON_ONCE(!irqs_disabled());
1302
1303 debug_work_activate(work);
1304
1305 /* if dying, only works from the same workqueue are allowed */
1306 if (unlikely(wq->flags & __WQ_DRAINING) &&
1307 WARN_ON_ONCE(!is_chained_work(wq)))
1308 return;
1309 retry:
1310 if (req_cpu == WORK_CPU_UNBOUND)
1311 cpu = raw_smp_processor_id();
1312
1313 /* pwq which will be used unless @work is executing elsewhere */
1314 if (!(wq->flags & WQ_UNBOUND))
1315 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1316 else
1317 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1318
1319 /*
1320 * If @work was previously on a different pool, it might still be
1321 * running there, in which case the work needs to be queued on that
1322 * pool to guarantee non-reentrancy.
1323 */
1324 last_pool = get_work_pool(work);
1325 if (last_pool && last_pool != pwq->pool) {
1326 struct worker *worker;
1327
1328 spin_lock(&last_pool->lock);
1329
1330 worker = find_worker_executing_work(last_pool, work);
1331
1332 if (worker && worker->current_pwq->wq == wq) {
1333 pwq = worker->current_pwq;
1334 } else {
1335 /* meh... not running there, queue here */
1336 spin_unlock(&last_pool->lock);
1337 spin_lock(&pwq->pool->lock);
1338 }
1339 } else {
1340 spin_lock(&pwq->pool->lock);
1341 }
1342
1343 /*
1344 * pwq is determined and locked. For unbound pools, we could have
1345 * raced with pwq release and it could already be dead. If its
1346 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1347 * without another pwq replacing it in the numa_pwq_tbl or while
1348 * work items are executing on it, so the retrying is guaranteed to
1349 * make forward-progress.
1350 */
1351 if (unlikely(!pwq->refcnt)) {
1352 if (wq->flags & WQ_UNBOUND) {
1353 spin_unlock(&pwq->pool->lock);
1354 cpu_relax();
1355 goto retry;
1356 }
1357 /* oops */
1358 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1359 wq->name, cpu);
1360 }
1361
1362 /* pwq determined, queue */
1363 trace_workqueue_queue_work(req_cpu, pwq, work);
1364
1365 if (WARN_ON(!list_empty(&work->entry))) {
1366 spin_unlock(&pwq->pool->lock);
1367 return;
1368 }
1369
1370 pwq->nr_in_flight[pwq->work_color]++;
1371 work_flags = work_color_to_flags(pwq->work_color);
1372
1373 if (likely(pwq->nr_active < pwq->max_active)) {
1374 trace_workqueue_activate_work(work);
1375 pwq->nr_active++;
1376 worklist = &pwq->pool->worklist;
1377 } else {
1378 work_flags |= WORK_STRUCT_DELAYED;
1379 worklist = &pwq->delayed_works;
1380 }
1381
1382 insert_work(pwq, work, worklist, work_flags);
1383
1384 spin_unlock(&pwq->pool->lock);
1385 }
1386
1387 /**
1388 * queue_work_on - queue work on specific cpu
1389 * @cpu: CPU number to execute work on
1390 * @wq: workqueue to use
1391 * @work: work to queue
1392 *
1393 * Returns %false if @work was already on a queue, %true otherwise.
1394 *
1395 * We queue the work to a specific CPU, the caller must ensure it
1396 * can't go away.
1397 */
1398 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1399 struct work_struct *work)
1400 {
1401 bool ret = false;
1402 unsigned long flags;
1403
1404 local_irq_save(flags);
1405
1406 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1407 __queue_work(cpu, wq, work);
1408 ret = true;
1409 }
1410
1411 local_irq_restore(flags);
1412 return ret;
1413 }
1414 EXPORT_SYMBOL(queue_work_on);
1415
1416 void delayed_work_timer_fn(unsigned long __data)
1417 {
1418 struct delayed_work *dwork = (struct delayed_work *)__data;
1419
1420 /* should have been called from irqsafe timer with irq already off */
1421 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1422 }
1423 EXPORT_SYMBOL(delayed_work_timer_fn);
1424
1425 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1426 struct delayed_work *dwork, unsigned long delay)
1427 {
1428 struct timer_list *timer = &dwork->timer;
1429 struct work_struct *work = &dwork->work;
1430
1431 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1432 timer->data != (unsigned long)dwork);
1433 WARN_ON_ONCE(timer_pending(timer));
1434 WARN_ON_ONCE(!list_empty(&work->entry));
1435
1436 /*
1437 * If @delay is 0, queue @dwork->work immediately. This is for
1438 * both optimization and correctness. The earliest @timer can
1439 * expire is on the closest next tick and delayed_work users depend
1440 * on that there's no such delay when @delay is 0.
1441 */
1442 if (!delay) {
1443 __queue_work(cpu, wq, &dwork->work);
1444 return;
1445 }
1446
1447 timer_stats_timer_set_start_info(&dwork->timer);
1448
1449 dwork->wq = wq;
1450 dwork->cpu = cpu;
1451 timer->expires = jiffies + delay;
1452
1453 if (unlikely(cpu != WORK_CPU_UNBOUND))
1454 add_timer_on(timer, cpu);
1455 else
1456 add_timer(timer);
1457 }
1458
1459 /**
1460 * queue_delayed_work_on - queue work on specific CPU after delay
1461 * @cpu: CPU number to execute work on
1462 * @wq: workqueue to use
1463 * @dwork: work to queue
1464 * @delay: number of jiffies to wait before queueing
1465 *
1466 * Returns %false if @work was already on a queue, %true otherwise. If
1467 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1468 * execution.
1469 */
1470 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1471 struct delayed_work *dwork, unsigned long delay)
1472 {
1473 struct work_struct *work = &dwork->work;
1474 bool ret = false;
1475 unsigned long flags;
1476
1477 /* read the comment in __queue_work() */
1478 local_irq_save(flags);
1479
1480 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1481 __queue_delayed_work(cpu, wq, dwork, delay);
1482 ret = true;
1483 }
1484
1485 local_irq_restore(flags);
1486 return ret;
1487 }
1488 EXPORT_SYMBOL(queue_delayed_work_on);
1489
1490 /**
1491 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1492 * @cpu: CPU number to execute work on
1493 * @wq: workqueue to use
1494 * @dwork: work to queue
1495 * @delay: number of jiffies to wait before queueing
1496 *
1497 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1498 * modify @dwork's timer so that it expires after @delay. If @delay is
1499 * zero, @work is guaranteed to be scheduled immediately regardless of its
1500 * current state.
1501 *
1502 * Returns %false if @dwork was idle and queued, %true if @dwork was
1503 * pending and its timer was modified.
1504 *
1505 * This function is safe to call from any context including IRQ handler.
1506 * See try_to_grab_pending() for details.
1507 */
1508 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1509 struct delayed_work *dwork, unsigned long delay)
1510 {
1511 unsigned long flags;
1512 int ret;
1513
1514 do {
1515 ret = try_to_grab_pending(&dwork->work, true, &flags);
1516 } while (unlikely(ret == -EAGAIN));
1517
1518 if (likely(ret >= 0)) {
1519 __queue_delayed_work(cpu, wq, dwork, delay);
1520 local_irq_restore(flags);
1521 }
1522
1523 /* -ENOENT from try_to_grab_pending() becomes %true */
1524 return ret;
1525 }
1526 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1527
1528 /**
1529 * worker_enter_idle - enter idle state
1530 * @worker: worker which is entering idle state
1531 *
1532 * @worker is entering idle state. Update stats and idle timer if
1533 * necessary.
1534 *
1535 * LOCKING:
1536 * spin_lock_irq(pool->lock).
1537 */
1538 static void worker_enter_idle(struct worker *worker)
1539 {
1540 struct worker_pool *pool = worker->pool;
1541
1542 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1543 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1544 (worker->hentry.next || worker->hentry.pprev)))
1545 return;
1546
1547 /* can't use worker_set_flags(), also called from start_worker() */
1548 worker->flags |= WORKER_IDLE;
1549 pool->nr_idle++;
1550 worker->last_active = jiffies;
1551
1552 /* idle_list is LIFO */
1553 list_add(&worker->entry, &pool->idle_list);
1554
1555 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1556 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1557
1558 /*
1559 * Sanity check nr_running. Because wq_unbind_fn() releases
1560 * pool->lock between setting %WORKER_UNBOUND and zapping
1561 * nr_running, the warning may trigger spuriously. Check iff
1562 * unbind is not in progress.
1563 */
1564 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1565 pool->nr_workers == pool->nr_idle &&
1566 atomic_read(&pool->nr_running));
1567 }
1568
1569 /**
1570 * worker_leave_idle - leave idle state
1571 * @worker: worker which is leaving idle state
1572 *
1573 * @worker is leaving idle state. Update stats.
1574 *
1575 * LOCKING:
1576 * spin_lock_irq(pool->lock).
1577 */
1578 static void worker_leave_idle(struct worker *worker)
1579 {
1580 struct worker_pool *pool = worker->pool;
1581
1582 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1583 return;
1584 worker_clr_flags(worker, WORKER_IDLE);
1585 pool->nr_idle--;
1586 list_del_init(&worker->entry);
1587 }
1588
1589 /**
1590 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1591 * @pool: target worker_pool
1592 *
1593 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1594 *
1595 * Works which are scheduled while the cpu is online must at least be
1596 * scheduled to a worker which is bound to the cpu so that if they are
1597 * flushed from cpu callbacks while cpu is going down, they are
1598 * guaranteed to execute on the cpu.
1599 *
1600 * This function is to be used by unbound workers and rescuers to bind
1601 * themselves to the target cpu and may race with cpu going down or
1602 * coming online. kthread_bind() can't be used because it may put the
1603 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1604 * verbatim as it's best effort and blocking and pool may be
1605 * [dis]associated in the meantime.
1606 *
1607 * This function tries set_cpus_allowed() and locks pool and verifies the
1608 * binding against %POOL_DISASSOCIATED which is set during
1609 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1610 * enters idle state or fetches works without dropping lock, it can
1611 * guarantee the scheduling requirement described in the first paragraph.
1612 *
1613 * CONTEXT:
1614 * Might sleep. Called without any lock but returns with pool->lock
1615 * held.
1616 *
1617 * RETURNS:
1618 * %true if the associated pool is online (@worker is successfully
1619 * bound), %false if offline.
1620 */
1621 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1622 __acquires(&pool->lock)
1623 {
1624 while (true) {
1625 /*
1626 * The following call may fail, succeed or succeed
1627 * without actually migrating the task to the cpu if
1628 * it races with cpu hotunplug operation. Verify
1629 * against POOL_DISASSOCIATED.
1630 */
1631 if (!(pool->flags & POOL_DISASSOCIATED))
1632 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1633
1634 spin_lock_irq(&pool->lock);
1635 if (pool->flags & POOL_DISASSOCIATED)
1636 return false;
1637 if (task_cpu(current) == pool->cpu &&
1638 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1639 return true;
1640 spin_unlock_irq(&pool->lock);
1641
1642 /*
1643 * We've raced with CPU hot[un]plug. Give it a breather
1644 * and retry migration. cond_resched() is required here;
1645 * otherwise, we might deadlock against cpu_stop trying to
1646 * bring down the CPU on non-preemptive kernel.
1647 */
1648 cpu_relax();
1649 cond_resched();
1650 }
1651 }
1652
1653 static struct worker *alloc_worker(void)
1654 {
1655 struct worker *worker;
1656
1657 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1658 if (worker) {
1659 INIT_LIST_HEAD(&worker->entry);
1660 INIT_LIST_HEAD(&worker->scheduled);
1661 /* on creation a worker is in !idle && prep state */
1662 worker->flags = WORKER_PREP;
1663 }
1664 return worker;
1665 }
1666
1667 /**
1668 * create_worker - create a new workqueue worker
1669 * @pool: pool the new worker will belong to
1670 *
1671 * Create a new worker which is bound to @pool. The returned worker
1672 * can be started by calling start_worker() or destroyed using
1673 * destroy_worker().
1674 *
1675 * CONTEXT:
1676 * Might sleep. Does GFP_KERNEL allocations.
1677 *
1678 * RETURNS:
1679 * Pointer to the newly created worker.
1680 */
1681 static struct worker *create_worker(struct worker_pool *pool)
1682 {
1683 struct worker *worker = NULL;
1684 int id = -1;
1685 char id_buf[16];
1686
1687 lockdep_assert_held(&pool->manager_mutex);
1688
1689 /*
1690 * ID is needed to determine kthread name. Allocate ID first
1691 * without installing the pointer.
1692 */
1693 idr_preload(GFP_KERNEL);
1694 spin_lock_irq(&pool->lock);
1695
1696 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1697
1698 spin_unlock_irq(&pool->lock);
1699 idr_preload_end();
1700 if (id < 0)
1701 goto fail;
1702
1703 worker = alloc_worker();
1704 if (!worker)
1705 goto fail;
1706
1707 worker->pool = pool;
1708 worker->id = id;
1709
1710 if (pool->cpu >= 0)
1711 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1712 pool->attrs->nice < 0 ? "H" : "");
1713 else
1714 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1715
1716 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1717 "kworker/%s", id_buf);
1718 if (IS_ERR(worker->task))
1719 goto fail;
1720
1721 /*
1722 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1723 * online CPUs. It'll be re-applied when any of the CPUs come up.
1724 */
1725 set_user_nice(worker->task, pool->attrs->nice);
1726 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1727
1728 /* prevent userland from meddling with cpumask of workqueue workers */
1729 worker->task->flags |= PF_NO_SETAFFINITY;
1730
1731 /*
1732 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1733 * remains stable across this function. See the comments above the
1734 * flag definition for details.
1735 */
1736 if (pool->flags & POOL_DISASSOCIATED)
1737 worker->flags |= WORKER_UNBOUND;
1738
1739 /* successful, commit the pointer to idr */
1740 spin_lock_irq(&pool->lock);
1741 idr_replace(&pool->worker_idr, worker, worker->id);
1742 spin_unlock_irq(&pool->lock);
1743
1744 return worker;
1745
1746 fail:
1747 if (id >= 0) {
1748 spin_lock_irq(&pool->lock);
1749 idr_remove(&pool->worker_idr, id);
1750 spin_unlock_irq(&pool->lock);
1751 }
1752 kfree(worker);
1753 return NULL;
1754 }
1755
1756 /**
1757 * start_worker - start a newly created worker
1758 * @worker: worker to start
1759 *
1760 * Make the pool aware of @worker and start it.
1761 *
1762 * CONTEXT:
1763 * spin_lock_irq(pool->lock).
1764 */
1765 static void start_worker(struct worker *worker)
1766 {
1767 worker->flags |= WORKER_STARTED;
1768 worker->pool->nr_workers++;
1769 worker_enter_idle(worker);
1770 wake_up_process(worker->task);
1771 }
1772
1773 /**
1774 * create_and_start_worker - create and start a worker for a pool
1775 * @pool: the target pool
1776 *
1777 * Grab the managership of @pool and create and start a new worker for it.
1778 */
1779 static int create_and_start_worker(struct worker_pool *pool)
1780 {
1781 struct worker *worker;
1782
1783 mutex_lock(&pool->manager_mutex);
1784
1785 worker = create_worker(pool);
1786 if (worker) {
1787 spin_lock_irq(&pool->lock);
1788 start_worker(worker);
1789 spin_unlock_irq(&pool->lock);
1790 }
1791
1792 mutex_unlock(&pool->manager_mutex);
1793
1794 return worker ? 0 : -ENOMEM;
1795 }
1796
1797 /**
1798 * destroy_worker - destroy a workqueue worker
1799 * @worker: worker to be destroyed
1800 *
1801 * Destroy @worker and adjust @pool stats accordingly.
1802 *
1803 * CONTEXT:
1804 * spin_lock_irq(pool->lock) which is released and regrabbed.
1805 */
1806 static void destroy_worker(struct worker *worker)
1807 {
1808 struct worker_pool *pool = worker->pool;
1809
1810 lockdep_assert_held(&pool->manager_mutex);
1811 lockdep_assert_held(&pool->lock);
1812
1813 /* sanity check frenzy */
1814 if (WARN_ON(worker->current_work) ||
1815 WARN_ON(!list_empty(&worker->scheduled)))
1816 return;
1817
1818 if (worker->flags & WORKER_STARTED)
1819 pool->nr_workers--;
1820 if (worker->flags & WORKER_IDLE)
1821 pool->nr_idle--;
1822
1823 list_del_init(&worker->entry);
1824 worker->flags |= WORKER_DIE;
1825
1826 idr_remove(&pool->worker_idr, worker->id);
1827
1828 spin_unlock_irq(&pool->lock);
1829
1830 kthread_stop(worker->task);
1831 kfree(worker);
1832
1833 spin_lock_irq(&pool->lock);
1834 }
1835
1836 static void idle_worker_timeout(unsigned long __pool)
1837 {
1838 struct worker_pool *pool = (void *)__pool;
1839
1840 spin_lock_irq(&pool->lock);
1841
1842 if (too_many_workers(pool)) {
1843 struct worker *worker;
1844 unsigned long expires;
1845
1846 /* idle_list is kept in LIFO order, check the last one */
1847 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1848 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1849
1850 if (time_before(jiffies, expires))
1851 mod_timer(&pool->idle_timer, expires);
1852 else {
1853 /* it's been idle for too long, wake up manager */
1854 pool->flags |= POOL_MANAGE_WORKERS;
1855 wake_up_worker(pool);
1856 }
1857 }
1858
1859 spin_unlock_irq(&pool->lock);
1860 }
1861
1862 static void send_mayday(struct work_struct *work)
1863 {
1864 struct pool_workqueue *pwq = get_work_pwq(work);
1865 struct workqueue_struct *wq = pwq->wq;
1866
1867 lockdep_assert_held(&wq_mayday_lock);
1868
1869 if (!wq->rescuer)
1870 return;
1871
1872 /* mayday mayday mayday */
1873 if (list_empty(&pwq->mayday_node)) {
1874 list_add_tail(&pwq->mayday_node, &wq->maydays);
1875 wake_up_process(wq->rescuer->task);
1876 }
1877 }
1878
1879 static void pool_mayday_timeout(unsigned long __pool)
1880 {
1881 struct worker_pool *pool = (void *)__pool;
1882 struct work_struct *work;
1883
1884 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1885 spin_lock(&pool->lock);
1886
1887 if (need_to_create_worker(pool)) {
1888 /*
1889 * We've been trying to create a new worker but
1890 * haven't been successful. We might be hitting an
1891 * allocation deadlock. Send distress signals to
1892 * rescuers.
1893 */
1894 list_for_each_entry(work, &pool->worklist, entry)
1895 send_mayday(work);
1896 }
1897
1898 spin_unlock(&pool->lock);
1899 spin_unlock_irq(&wq_mayday_lock);
1900
1901 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1902 }
1903
1904 /**
1905 * maybe_create_worker - create a new worker if necessary
1906 * @pool: pool to create a new worker for
1907 *
1908 * Create a new worker for @pool if necessary. @pool is guaranteed to
1909 * have at least one idle worker on return from this function. If
1910 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1911 * sent to all rescuers with works scheduled on @pool to resolve
1912 * possible allocation deadlock.
1913 *
1914 * On return, need_to_create_worker() is guaranteed to be %false and
1915 * may_start_working() %true.
1916 *
1917 * LOCKING:
1918 * spin_lock_irq(pool->lock) which may be released and regrabbed
1919 * multiple times. Does GFP_KERNEL allocations. Called only from
1920 * manager.
1921 *
1922 * RETURNS:
1923 * %false if no action was taken and pool->lock stayed locked, %true
1924 * otherwise.
1925 */
1926 static bool maybe_create_worker(struct worker_pool *pool)
1927 __releases(&pool->lock)
1928 __acquires(&pool->lock)
1929 {
1930 if (!need_to_create_worker(pool))
1931 return false;
1932 restart:
1933 spin_unlock_irq(&pool->lock);
1934
1935 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1936 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1937
1938 while (true) {
1939 struct worker *worker;
1940
1941 worker = create_worker(pool);
1942 if (worker) {
1943 del_timer_sync(&pool->mayday_timer);
1944 spin_lock_irq(&pool->lock);
1945 start_worker(worker);
1946 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1947 goto restart;
1948 return true;
1949 }
1950
1951 if (!need_to_create_worker(pool))
1952 break;
1953
1954 __set_current_state(TASK_INTERRUPTIBLE);
1955 schedule_timeout(CREATE_COOLDOWN);
1956
1957 if (!need_to_create_worker(pool))
1958 break;
1959 }
1960
1961 del_timer_sync(&pool->mayday_timer);
1962 spin_lock_irq(&pool->lock);
1963 if (need_to_create_worker(pool))
1964 goto restart;
1965 return true;
1966 }
1967
1968 /**
1969 * maybe_destroy_worker - destroy workers which have been idle for a while
1970 * @pool: pool to destroy workers for
1971 *
1972 * Destroy @pool workers which have been idle for longer than
1973 * IDLE_WORKER_TIMEOUT.
1974 *
1975 * LOCKING:
1976 * spin_lock_irq(pool->lock) which may be released and regrabbed
1977 * multiple times. Called only from manager.
1978 *
1979 * RETURNS:
1980 * %false if no action was taken and pool->lock stayed locked, %true
1981 * otherwise.
1982 */
1983 static bool maybe_destroy_workers(struct worker_pool *pool)
1984 {
1985 bool ret = false;
1986
1987 while (too_many_workers(pool)) {
1988 struct worker *worker;
1989 unsigned long expires;
1990
1991 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1992 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1993
1994 if (time_before(jiffies, expires)) {
1995 mod_timer(&pool->idle_timer, expires);
1996 break;
1997 }
1998
1999 destroy_worker(worker);
2000 ret = true;
2001 }
2002
2003 return ret;
2004 }
2005
2006 /**
2007 * manage_workers - manage worker pool
2008 * @worker: self
2009 *
2010 * Assume the manager role and manage the worker pool @worker belongs
2011 * to. At any given time, there can be only zero or one manager per
2012 * pool. The exclusion is handled automatically by this function.
2013 *
2014 * The caller can safely start processing works on false return. On
2015 * true return, it's guaranteed that need_to_create_worker() is false
2016 * and may_start_working() is true.
2017 *
2018 * CONTEXT:
2019 * spin_lock_irq(pool->lock) which may be released and regrabbed
2020 * multiple times. Does GFP_KERNEL allocations.
2021 *
2022 * RETURNS:
2023 * spin_lock_irq(pool->lock) which may be released and regrabbed
2024 * multiple times. Does GFP_KERNEL allocations.
2025 */
2026 static bool manage_workers(struct worker *worker)
2027 {
2028 struct worker_pool *pool = worker->pool;
2029 bool ret = false;
2030
2031 /*
2032 * Managership is governed by two mutexes - manager_arb and
2033 * manager_mutex. manager_arb handles arbitration of manager role.
2034 * Anyone who successfully grabs manager_arb wins the arbitration
2035 * and becomes the manager. mutex_trylock() on pool->manager_arb
2036 * failure while holding pool->lock reliably indicates that someone
2037 * else is managing the pool and the worker which failed trylock
2038 * can proceed to executing work items. This means that anyone
2039 * grabbing manager_arb is responsible for actually performing
2040 * manager duties. If manager_arb is grabbed and released without
2041 * actual management, the pool may stall indefinitely.
2042 *
2043 * manager_mutex is used for exclusion of actual management
2044 * operations. The holder of manager_mutex can be sure that none
2045 * of management operations, including creation and destruction of
2046 * workers, won't take place until the mutex is released. Because
2047 * manager_mutex doesn't interfere with manager role arbitration,
2048 * it is guaranteed that the pool's management, while may be
2049 * delayed, won't be disturbed by someone else grabbing
2050 * manager_mutex.
2051 */
2052 if (!mutex_trylock(&pool->manager_arb))
2053 return ret;
2054
2055 /*
2056 * With manager arbitration won, manager_mutex would be free in
2057 * most cases. trylock first without dropping @pool->lock.
2058 */
2059 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2060 spin_unlock_irq(&pool->lock);
2061 mutex_lock(&pool->manager_mutex);
2062 spin_lock_irq(&pool->lock);
2063 ret = true;
2064 }
2065
2066 pool->flags &= ~POOL_MANAGE_WORKERS;
2067
2068 /*
2069 * Destroy and then create so that may_start_working() is true
2070 * on return.
2071 */
2072 ret |= maybe_destroy_workers(pool);
2073 ret |= maybe_create_worker(pool);
2074
2075 mutex_unlock(&pool->manager_mutex);
2076 mutex_unlock(&pool->manager_arb);
2077 return ret;
2078 }
2079
2080 /**
2081 * process_one_work - process single work
2082 * @worker: self
2083 * @work: work to process
2084 *
2085 * Process @work. This function contains all the logics necessary to
2086 * process a single work including synchronization against and
2087 * interaction with other workers on the same cpu, queueing and
2088 * flushing. As long as context requirement is met, any worker can
2089 * call this function to process a work.
2090 *
2091 * CONTEXT:
2092 * spin_lock_irq(pool->lock) which is released and regrabbed.
2093 */
2094 static void process_one_work(struct worker *worker, struct work_struct *work)
2095 __releases(&pool->lock)
2096 __acquires(&pool->lock)
2097 {
2098 struct pool_workqueue *pwq = get_work_pwq(work);
2099 struct worker_pool *pool = worker->pool;
2100 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2101 int work_color;
2102 struct worker *collision;
2103 #ifdef CONFIG_LOCKDEP
2104 /*
2105 * It is permissible to free the struct work_struct from
2106 * inside the function that is called from it, this we need to
2107 * take into account for lockdep too. To avoid bogus "held
2108 * lock freed" warnings as well as problems when looking into
2109 * work->lockdep_map, make a copy and use that here.
2110 */
2111 struct lockdep_map lockdep_map;
2112
2113 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2114 #endif
2115 /*
2116 * Ensure we're on the correct CPU. DISASSOCIATED test is
2117 * necessary to avoid spurious warnings from rescuers servicing the
2118 * unbound or a disassociated pool.
2119 */
2120 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2121 !(pool->flags & POOL_DISASSOCIATED) &&
2122 raw_smp_processor_id() != pool->cpu);
2123
2124 /*
2125 * A single work shouldn't be executed concurrently by
2126 * multiple workers on a single cpu. Check whether anyone is
2127 * already processing the work. If so, defer the work to the
2128 * currently executing one.
2129 */
2130 collision = find_worker_executing_work(pool, work);
2131 if (unlikely(collision)) {
2132 move_linked_works(work, &collision->scheduled, NULL);
2133 return;
2134 }
2135
2136 /* claim and dequeue */
2137 debug_work_deactivate(work);
2138 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2139 worker->current_work = work;
2140 worker->current_func = work->func;
2141 worker->current_pwq = pwq;
2142 work_color = get_work_color(work);
2143
2144 list_del_init(&work->entry);
2145
2146 /*
2147 * CPU intensive works don't participate in concurrency
2148 * management. They're the scheduler's responsibility.
2149 */
2150 if (unlikely(cpu_intensive))
2151 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2152
2153 /*
2154 * Unbound pool isn't concurrency managed and work items should be
2155 * executed ASAP. Wake up another worker if necessary.
2156 */
2157 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2158 wake_up_worker(pool);
2159
2160 /*
2161 * Record the last pool and clear PENDING which should be the last
2162 * update to @work. Also, do this inside @pool->lock so that
2163 * PENDING and queued state changes happen together while IRQ is
2164 * disabled.
2165 */
2166 set_work_pool_and_clear_pending(work, pool->id);
2167
2168 spin_unlock_irq(&pool->lock);
2169
2170 lock_map_acquire_read(&pwq->wq->lockdep_map);
2171 lock_map_acquire(&lockdep_map);
2172 trace_workqueue_execute_start(work);
2173 worker->current_func(work);
2174 /*
2175 * While we must be careful to not use "work" after this, the trace
2176 * point will only record its address.
2177 */
2178 trace_workqueue_execute_end(work);
2179 lock_map_release(&lockdep_map);
2180 lock_map_release(&pwq->wq->lockdep_map);
2181
2182 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2183 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2184 " last function: %pf\n",
2185 current->comm, preempt_count(), task_pid_nr(current),
2186 worker->current_func);
2187 debug_show_held_locks(current);
2188 dump_stack();
2189 }
2190
2191 spin_lock_irq(&pool->lock);
2192
2193 /* clear cpu intensive status */
2194 if (unlikely(cpu_intensive))
2195 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2196
2197 /* we're done with it, release */
2198 hash_del(&worker->hentry);
2199 worker->current_work = NULL;
2200 worker->current_func = NULL;
2201 worker->current_pwq = NULL;
2202 worker->desc_valid = false;
2203 pwq_dec_nr_in_flight(pwq, work_color);
2204 }
2205
2206 /**
2207 * process_scheduled_works - process scheduled works
2208 * @worker: self
2209 *
2210 * Process all scheduled works. Please note that the scheduled list
2211 * may change while processing a work, so this function repeatedly
2212 * fetches a work from the top and executes it.
2213 *
2214 * CONTEXT:
2215 * spin_lock_irq(pool->lock) which may be released and regrabbed
2216 * multiple times.
2217 */
2218 static void process_scheduled_works(struct worker *worker)
2219 {
2220 while (!list_empty(&worker->scheduled)) {
2221 struct work_struct *work = list_first_entry(&worker->scheduled,
2222 struct work_struct, entry);
2223 process_one_work(worker, work);
2224 }
2225 }
2226
2227 /**
2228 * worker_thread - the worker thread function
2229 * @__worker: self
2230 *
2231 * The worker thread function. All workers belong to a worker_pool -
2232 * either a per-cpu one or dynamic unbound one. These workers process all
2233 * work items regardless of their specific target workqueue. The only
2234 * exception is work items which belong to workqueues with a rescuer which
2235 * will be explained in rescuer_thread().
2236 */
2237 static int worker_thread(void *__worker)
2238 {
2239 struct worker *worker = __worker;
2240 struct worker_pool *pool = worker->pool;
2241
2242 /* tell the scheduler that this is a workqueue worker */
2243 worker->task->flags |= PF_WQ_WORKER;
2244 woke_up:
2245 spin_lock_irq(&pool->lock);
2246
2247 /* am I supposed to die? */
2248 if (unlikely(worker->flags & WORKER_DIE)) {
2249 spin_unlock_irq(&pool->lock);
2250 WARN_ON_ONCE(!list_empty(&worker->entry));
2251 worker->task->flags &= ~PF_WQ_WORKER;
2252 return 0;
2253 }
2254
2255 worker_leave_idle(worker);
2256 recheck:
2257 /* no more worker necessary? */
2258 if (!need_more_worker(pool))
2259 goto sleep;
2260
2261 /* do we need to manage? */
2262 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2263 goto recheck;
2264
2265 /*
2266 * ->scheduled list can only be filled while a worker is
2267 * preparing to process a work or actually processing it.
2268 * Make sure nobody diddled with it while I was sleeping.
2269 */
2270 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2271
2272 /*
2273 * Finish PREP stage. We're guaranteed to have at least one idle
2274 * worker or that someone else has already assumed the manager
2275 * role. This is where @worker starts participating in concurrency
2276 * management if applicable and concurrency management is restored
2277 * after being rebound. See rebind_workers() for details.
2278 */
2279 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2280
2281 do {
2282 struct work_struct *work =
2283 list_first_entry(&pool->worklist,
2284 struct work_struct, entry);
2285
2286 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2287 /* optimization path, not strictly necessary */
2288 process_one_work(worker, work);
2289 if (unlikely(!list_empty(&worker->scheduled)))
2290 process_scheduled_works(worker);
2291 } else {
2292 move_linked_works(work, &worker->scheduled, NULL);
2293 process_scheduled_works(worker);
2294 }
2295 } while (keep_working(pool));
2296
2297 worker_set_flags(worker, WORKER_PREP, false);
2298 sleep:
2299 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2300 goto recheck;
2301
2302 /*
2303 * pool->lock is held and there's no work to process and no need to
2304 * manage, sleep. Workers are woken up only while holding
2305 * pool->lock or from local cpu, so setting the current state
2306 * before releasing pool->lock is enough to prevent losing any
2307 * event.
2308 */
2309 worker_enter_idle(worker);
2310 __set_current_state(TASK_INTERRUPTIBLE);
2311 spin_unlock_irq(&pool->lock);
2312 schedule();
2313 goto woke_up;
2314 }
2315
2316 /**
2317 * rescuer_thread - the rescuer thread function
2318 * @__rescuer: self
2319 *
2320 * Workqueue rescuer thread function. There's one rescuer for each
2321 * workqueue which has WQ_MEM_RECLAIM set.
2322 *
2323 * Regular work processing on a pool may block trying to create a new
2324 * worker which uses GFP_KERNEL allocation which has slight chance of
2325 * developing into deadlock if some works currently on the same queue
2326 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2327 * the problem rescuer solves.
2328 *
2329 * When such condition is possible, the pool summons rescuers of all
2330 * workqueues which have works queued on the pool and let them process
2331 * those works so that forward progress can be guaranteed.
2332 *
2333 * This should happen rarely.
2334 */
2335 static int rescuer_thread(void *__rescuer)
2336 {
2337 struct worker *rescuer = __rescuer;
2338 struct workqueue_struct *wq = rescuer->rescue_wq;
2339 struct list_head *scheduled = &rescuer->scheduled;
2340
2341 set_user_nice(current, RESCUER_NICE_LEVEL);
2342
2343 /*
2344 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2345 * doesn't participate in concurrency management.
2346 */
2347 rescuer->task->flags |= PF_WQ_WORKER;
2348 repeat:
2349 set_current_state(TASK_INTERRUPTIBLE);
2350
2351 if (kthread_should_stop()) {
2352 __set_current_state(TASK_RUNNING);
2353 rescuer->task->flags &= ~PF_WQ_WORKER;
2354 return 0;
2355 }
2356
2357 /* see whether any pwq is asking for help */
2358 spin_lock_irq(&wq_mayday_lock);
2359
2360 while (!list_empty(&wq->maydays)) {
2361 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2362 struct pool_workqueue, mayday_node);
2363 struct worker_pool *pool = pwq->pool;
2364 struct work_struct *work, *n;
2365
2366 __set_current_state(TASK_RUNNING);
2367 list_del_init(&pwq->mayday_node);
2368
2369 spin_unlock_irq(&wq_mayday_lock);
2370
2371 /* migrate to the target cpu if possible */
2372 worker_maybe_bind_and_lock(pool);
2373 rescuer->pool = pool;
2374
2375 /*
2376 * Slurp in all works issued via this workqueue and
2377 * process'em.
2378 */
2379 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2380 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2381 if (get_work_pwq(work) == pwq)
2382 move_linked_works(work, scheduled, &n);
2383
2384 process_scheduled_works(rescuer);
2385
2386 /*
2387 * Leave this pool. If keep_working() is %true, notify a
2388 * regular worker; otherwise, we end up with 0 concurrency
2389 * and stalling the execution.
2390 */
2391 if (keep_working(pool))
2392 wake_up_worker(pool);
2393
2394 rescuer->pool = NULL;
2395 spin_unlock(&pool->lock);
2396 spin_lock(&wq_mayday_lock);
2397 }
2398
2399 spin_unlock_irq(&wq_mayday_lock);
2400
2401 /* rescuers should never participate in concurrency management */
2402 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2403 schedule();
2404 goto repeat;
2405 }
2406
2407 struct wq_barrier {
2408 struct work_struct work;
2409 struct completion done;
2410 };
2411
2412 static void wq_barrier_func(struct work_struct *work)
2413 {
2414 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2415 complete(&barr->done);
2416 }
2417
2418 /**
2419 * insert_wq_barrier - insert a barrier work
2420 * @pwq: pwq to insert barrier into
2421 * @barr: wq_barrier to insert
2422 * @target: target work to attach @barr to
2423 * @worker: worker currently executing @target, NULL if @target is not executing
2424 *
2425 * @barr is linked to @target such that @barr is completed only after
2426 * @target finishes execution. Please note that the ordering
2427 * guarantee is observed only with respect to @target and on the local
2428 * cpu.
2429 *
2430 * Currently, a queued barrier can't be canceled. This is because
2431 * try_to_grab_pending() can't determine whether the work to be
2432 * grabbed is at the head of the queue and thus can't clear LINKED
2433 * flag of the previous work while there must be a valid next work
2434 * after a work with LINKED flag set.
2435 *
2436 * Note that when @worker is non-NULL, @target may be modified
2437 * underneath us, so we can't reliably determine pwq from @target.
2438 *
2439 * CONTEXT:
2440 * spin_lock_irq(pool->lock).
2441 */
2442 static void insert_wq_barrier(struct pool_workqueue *pwq,
2443 struct wq_barrier *barr,
2444 struct work_struct *target, struct worker *worker)
2445 {
2446 struct list_head *head;
2447 unsigned int linked = 0;
2448
2449 /*
2450 * debugobject calls are safe here even with pool->lock locked
2451 * as we know for sure that this will not trigger any of the
2452 * checks and call back into the fixup functions where we
2453 * might deadlock.
2454 */
2455 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2456 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2457 init_completion(&barr->done);
2458
2459 /*
2460 * If @target is currently being executed, schedule the
2461 * barrier to the worker; otherwise, put it after @target.
2462 */
2463 if (worker)
2464 head = worker->scheduled.next;
2465 else {
2466 unsigned long *bits = work_data_bits(target);
2467
2468 head = target->entry.next;
2469 /* there can already be other linked works, inherit and set */
2470 linked = *bits & WORK_STRUCT_LINKED;
2471 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2472 }
2473
2474 debug_work_activate(&barr->work);
2475 insert_work(pwq, &barr->work, head,
2476 work_color_to_flags(WORK_NO_COLOR) | linked);
2477 }
2478
2479 /**
2480 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2481 * @wq: workqueue being flushed
2482 * @flush_color: new flush color, < 0 for no-op
2483 * @work_color: new work color, < 0 for no-op
2484 *
2485 * Prepare pwqs for workqueue flushing.
2486 *
2487 * If @flush_color is non-negative, flush_color on all pwqs should be
2488 * -1. If no pwq has in-flight commands at the specified color, all
2489 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2490 * has in flight commands, its pwq->flush_color is set to
2491 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2492 * wakeup logic is armed and %true is returned.
2493 *
2494 * The caller should have initialized @wq->first_flusher prior to
2495 * calling this function with non-negative @flush_color. If
2496 * @flush_color is negative, no flush color update is done and %false
2497 * is returned.
2498 *
2499 * If @work_color is non-negative, all pwqs should have the same
2500 * work_color which is previous to @work_color and all will be
2501 * advanced to @work_color.
2502 *
2503 * CONTEXT:
2504 * mutex_lock(wq->mutex).
2505 *
2506 * RETURNS:
2507 * %true if @flush_color >= 0 and there's something to flush. %false
2508 * otherwise.
2509 */
2510 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2511 int flush_color, int work_color)
2512 {
2513 bool wait = false;
2514 struct pool_workqueue *pwq;
2515
2516 if (flush_color >= 0) {
2517 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2518 atomic_set(&wq->nr_pwqs_to_flush, 1);
2519 }
2520
2521 for_each_pwq(pwq, wq) {
2522 struct worker_pool *pool = pwq->pool;
2523
2524 spin_lock_irq(&pool->lock);
2525
2526 if (flush_color >= 0) {
2527 WARN_ON_ONCE(pwq->flush_color != -1);
2528
2529 if (pwq->nr_in_flight[flush_color]) {
2530 pwq->flush_color = flush_color;
2531 atomic_inc(&wq->nr_pwqs_to_flush);
2532 wait = true;
2533 }
2534 }
2535
2536 if (work_color >= 0) {
2537 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2538 pwq->work_color = work_color;
2539 }
2540
2541 spin_unlock_irq(&pool->lock);
2542 }
2543
2544 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2545 complete(&wq->first_flusher->done);
2546
2547 return wait;
2548 }
2549
2550 /**
2551 * flush_workqueue - ensure that any scheduled work has run to completion.
2552 * @wq: workqueue to flush
2553 *
2554 * This function sleeps until all work items which were queued on entry
2555 * have finished execution, but it is not livelocked by new incoming ones.
2556 */
2557 void flush_workqueue(struct workqueue_struct *wq)
2558 {
2559 struct wq_flusher this_flusher = {
2560 .list = LIST_HEAD_INIT(this_flusher.list),
2561 .flush_color = -1,
2562 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2563 };
2564 int next_color;
2565
2566 lock_map_acquire(&wq->lockdep_map);
2567 lock_map_release(&wq->lockdep_map);
2568
2569 mutex_lock(&wq->mutex);
2570
2571 /*
2572 * Start-to-wait phase
2573 */
2574 next_color = work_next_color(wq->work_color);
2575
2576 if (next_color != wq->flush_color) {
2577 /*
2578 * Color space is not full. The current work_color
2579 * becomes our flush_color and work_color is advanced
2580 * by one.
2581 */
2582 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2583 this_flusher.flush_color = wq->work_color;
2584 wq->work_color = next_color;
2585
2586 if (!wq->first_flusher) {
2587 /* no flush in progress, become the first flusher */
2588 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2589
2590 wq->first_flusher = &this_flusher;
2591
2592 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2593 wq->work_color)) {
2594 /* nothing to flush, done */
2595 wq->flush_color = next_color;
2596 wq->first_flusher = NULL;
2597 goto out_unlock;
2598 }
2599 } else {
2600 /* wait in queue */
2601 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2602 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2603 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2604 }
2605 } else {
2606 /*
2607 * Oops, color space is full, wait on overflow queue.
2608 * The next flush completion will assign us
2609 * flush_color and transfer to flusher_queue.
2610 */
2611 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2612 }
2613
2614 mutex_unlock(&wq->mutex);
2615
2616 wait_for_completion(&this_flusher.done);
2617
2618 /*
2619 * Wake-up-and-cascade phase
2620 *
2621 * First flushers are responsible for cascading flushes and
2622 * handling overflow. Non-first flushers can simply return.
2623 */
2624 if (wq->first_flusher != &this_flusher)
2625 return;
2626
2627 mutex_lock(&wq->mutex);
2628
2629 /* we might have raced, check again with mutex held */
2630 if (wq->first_flusher != &this_flusher)
2631 goto out_unlock;
2632
2633 wq->first_flusher = NULL;
2634
2635 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2636 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2637
2638 while (true) {
2639 struct wq_flusher *next, *tmp;
2640
2641 /* complete all the flushers sharing the current flush color */
2642 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2643 if (next->flush_color != wq->flush_color)
2644 break;
2645 list_del_init(&next->list);
2646 complete(&next->done);
2647 }
2648
2649 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2650 wq->flush_color != work_next_color(wq->work_color));
2651
2652 /* this flush_color is finished, advance by one */
2653 wq->flush_color = work_next_color(wq->flush_color);
2654
2655 /* one color has been freed, handle overflow queue */
2656 if (!list_empty(&wq->flusher_overflow)) {
2657 /*
2658 * Assign the same color to all overflowed
2659 * flushers, advance work_color and append to
2660 * flusher_queue. This is the start-to-wait
2661 * phase for these overflowed flushers.
2662 */
2663 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2664 tmp->flush_color = wq->work_color;
2665
2666 wq->work_color = work_next_color(wq->work_color);
2667
2668 list_splice_tail_init(&wq->flusher_overflow,
2669 &wq->flusher_queue);
2670 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2671 }
2672
2673 if (list_empty(&wq->flusher_queue)) {
2674 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2675 break;
2676 }
2677
2678 /*
2679 * Need to flush more colors. Make the next flusher
2680 * the new first flusher and arm pwqs.
2681 */
2682 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2683 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2684
2685 list_del_init(&next->list);
2686 wq->first_flusher = next;
2687
2688 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2689 break;
2690
2691 /*
2692 * Meh... this color is already done, clear first
2693 * flusher and repeat cascading.
2694 */
2695 wq->first_flusher = NULL;
2696 }
2697
2698 out_unlock:
2699 mutex_unlock(&wq->mutex);
2700 }
2701 EXPORT_SYMBOL_GPL(flush_workqueue);
2702
2703 /**
2704 * drain_workqueue - drain a workqueue
2705 * @wq: workqueue to drain
2706 *
2707 * Wait until the workqueue becomes empty. While draining is in progress,
2708 * only chain queueing is allowed. IOW, only currently pending or running
2709 * work items on @wq can queue further work items on it. @wq is flushed
2710 * repeatedly until it becomes empty. The number of flushing is detemined
2711 * by the depth of chaining and should be relatively short. Whine if it
2712 * takes too long.
2713 */
2714 void drain_workqueue(struct workqueue_struct *wq)
2715 {
2716 unsigned int flush_cnt = 0;
2717 struct pool_workqueue *pwq;
2718
2719 /*
2720 * __queue_work() needs to test whether there are drainers, is much
2721 * hotter than drain_workqueue() and already looks at @wq->flags.
2722 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2723 */
2724 mutex_lock(&wq->mutex);
2725 if (!wq->nr_drainers++)
2726 wq->flags |= __WQ_DRAINING;
2727 mutex_unlock(&wq->mutex);
2728 reflush:
2729 flush_workqueue(wq);
2730
2731 mutex_lock(&wq->mutex);
2732
2733 for_each_pwq(pwq, wq) {
2734 bool drained;
2735
2736 spin_lock_irq(&pwq->pool->lock);
2737 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2738 spin_unlock_irq(&pwq->pool->lock);
2739
2740 if (drained)
2741 continue;
2742
2743 if (++flush_cnt == 10 ||
2744 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2745 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2746 wq->name, flush_cnt);
2747
2748 mutex_unlock(&wq->mutex);
2749 goto reflush;
2750 }
2751
2752 if (!--wq->nr_drainers)
2753 wq->flags &= ~__WQ_DRAINING;
2754 mutex_unlock(&wq->mutex);
2755 }
2756 EXPORT_SYMBOL_GPL(drain_workqueue);
2757
2758 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2759 {
2760 struct worker *worker = NULL;
2761 struct worker_pool *pool;
2762 struct pool_workqueue *pwq;
2763
2764 might_sleep();
2765
2766 local_irq_disable();
2767 pool = get_work_pool(work);
2768 if (!pool) {
2769 local_irq_enable();
2770 return false;
2771 }
2772
2773 spin_lock(&pool->lock);
2774 /* see the comment in try_to_grab_pending() with the same code */
2775 pwq = get_work_pwq(work);
2776 if (pwq) {
2777 if (unlikely(pwq->pool != pool))
2778 goto already_gone;
2779 } else {
2780 worker = find_worker_executing_work(pool, work);
2781 if (!worker)
2782 goto already_gone;
2783 pwq = worker->current_pwq;
2784 }
2785
2786 insert_wq_barrier(pwq, barr, work, worker);
2787 spin_unlock_irq(&pool->lock);
2788
2789 /*
2790 * If @max_active is 1 or rescuer is in use, flushing another work
2791 * item on the same workqueue may lead to deadlock. Make sure the
2792 * flusher is not running on the same workqueue by verifying write
2793 * access.
2794 */
2795 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2796 lock_map_acquire(&pwq->wq->lockdep_map);
2797 else
2798 lock_map_acquire_read(&pwq->wq->lockdep_map);
2799 lock_map_release(&pwq->wq->lockdep_map);
2800
2801 return true;
2802 already_gone:
2803 spin_unlock_irq(&pool->lock);
2804 return false;
2805 }
2806
2807 /**
2808 * flush_work - wait for a work to finish executing the last queueing instance
2809 * @work: the work to flush
2810 *
2811 * Wait until @work has finished execution. @work is guaranteed to be idle
2812 * on return if it hasn't been requeued since flush started.
2813 *
2814 * RETURNS:
2815 * %true if flush_work() waited for the work to finish execution,
2816 * %false if it was already idle.
2817 */
2818 bool flush_work(struct work_struct *work)
2819 {
2820 struct wq_barrier barr;
2821
2822 lock_map_acquire(&work->lockdep_map);
2823 lock_map_release(&work->lockdep_map);
2824
2825 if (start_flush_work(work, &barr)) {
2826 wait_for_completion(&barr.done);
2827 destroy_work_on_stack(&barr.work);
2828 return true;
2829 } else {
2830 return false;
2831 }
2832 }
2833 EXPORT_SYMBOL_GPL(flush_work);
2834
2835 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2836 {
2837 unsigned long flags;
2838 int ret;
2839
2840 do {
2841 ret = try_to_grab_pending(work, is_dwork, &flags);
2842 /*
2843 * If someone else is canceling, wait for the same event it
2844 * would be waiting for before retrying.
2845 */
2846 if (unlikely(ret == -ENOENT))
2847 flush_work(work);
2848 } while (unlikely(ret < 0));
2849
2850 /* tell other tasks trying to grab @work to back off */
2851 mark_work_canceling(work);
2852 local_irq_restore(flags);
2853
2854 flush_work(work);
2855 clear_work_data(work);
2856 return ret;
2857 }
2858
2859 /**
2860 * cancel_work_sync - cancel a work and wait for it to finish
2861 * @work: the work to cancel
2862 *
2863 * Cancel @work and wait for its execution to finish. This function
2864 * can be used even if the work re-queues itself or migrates to
2865 * another workqueue. On return from this function, @work is
2866 * guaranteed to be not pending or executing on any CPU.
2867 *
2868 * cancel_work_sync(&delayed_work->work) must not be used for
2869 * delayed_work's. Use cancel_delayed_work_sync() instead.
2870 *
2871 * The caller must ensure that the workqueue on which @work was last
2872 * queued can't be destroyed before this function returns.
2873 *
2874 * RETURNS:
2875 * %true if @work was pending, %false otherwise.
2876 */
2877 bool cancel_work_sync(struct work_struct *work)
2878 {
2879 return __cancel_work_timer(work, false);
2880 }
2881 EXPORT_SYMBOL_GPL(cancel_work_sync);
2882
2883 /**
2884 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2885 * @dwork: the delayed work to flush
2886 *
2887 * Delayed timer is cancelled and the pending work is queued for
2888 * immediate execution. Like flush_work(), this function only
2889 * considers the last queueing instance of @dwork.
2890 *
2891 * RETURNS:
2892 * %true if flush_work() waited for the work to finish execution,
2893 * %false if it was already idle.
2894 */
2895 bool flush_delayed_work(struct delayed_work *dwork)
2896 {
2897 local_irq_disable();
2898 if (del_timer_sync(&dwork->timer))
2899 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2900 local_irq_enable();
2901 return flush_work(&dwork->work);
2902 }
2903 EXPORT_SYMBOL(flush_delayed_work);
2904
2905 /**
2906 * cancel_delayed_work - cancel a delayed work
2907 * @dwork: delayed_work to cancel
2908 *
2909 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2910 * and canceled; %false if wasn't pending. Note that the work callback
2911 * function may still be running on return, unless it returns %true and the
2912 * work doesn't re-arm itself. Explicitly flush or use
2913 * cancel_delayed_work_sync() to wait on it.
2914 *
2915 * This function is safe to call from any context including IRQ handler.
2916 */
2917 bool cancel_delayed_work(struct delayed_work *dwork)
2918 {
2919 unsigned long flags;
2920 int ret;
2921
2922 do {
2923 ret = try_to_grab_pending(&dwork->work, true, &flags);
2924 } while (unlikely(ret == -EAGAIN));
2925
2926 if (unlikely(ret < 0))
2927 return false;
2928
2929 set_work_pool_and_clear_pending(&dwork->work,
2930 get_work_pool_id(&dwork->work));
2931 local_irq_restore(flags);
2932 return ret;
2933 }
2934 EXPORT_SYMBOL(cancel_delayed_work);
2935
2936 /**
2937 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2938 * @dwork: the delayed work cancel
2939 *
2940 * This is cancel_work_sync() for delayed works.
2941 *
2942 * RETURNS:
2943 * %true if @dwork was pending, %false otherwise.
2944 */
2945 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2946 {
2947 return __cancel_work_timer(&dwork->work, true);
2948 }
2949 EXPORT_SYMBOL(cancel_delayed_work_sync);
2950
2951 /**
2952 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2953 * @func: the function to call
2954 *
2955 * schedule_on_each_cpu() executes @func on each online CPU using the
2956 * system workqueue and blocks until all CPUs have completed.
2957 * schedule_on_each_cpu() is very slow.
2958 *
2959 * RETURNS:
2960 * 0 on success, -errno on failure.
2961 */
2962 int schedule_on_each_cpu(work_func_t func)
2963 {
2964 int cpu;
2965 struct work_struct __percpu *works;
2966
2967 works = alloc_percpu(struct work_struct);
2968 if (!works)
2969 return -ENOMEM;
2970
2971 get_online_cpus();
2972
2973 for_each_online_cpu(cpu) {
2974 struct work_struct *work = per_cpu_ptr(works, cpu);
2975
2976 INIT_WORK(work, func);
2977 schedule_work_on(cpu, work);
2978 }
2979
2980 for_each_online_cpu(cpu)
2981 flush_work(per_cpu_ptr(works, cpu));
2982
2983 put_online_cpus();
2984 free_percpu(works);
2985 return 0;
2986 }
2987
2988 /**
2989 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2990 *
2991 * Forces execution of the kernel-global workqueue and blocks until its
2992 * completion.
2993 *
2994 * Think twice before calling this function! It's very easy to get into
2995 * trouble if you don't take great care. Either of the following situations
2996 * will lead to deadlock:
2997 *
2998 * One of the work items currently on the workqueue needs to acquire
2999 * a lock held by your code or its caller.
3000 *
3001 * Your code is running in the context of a work routine.
3002 *
3003 * They will be detected by lockdep when they occur, but the first might not
3004 * occur very often. It depends on what work items are on the workqueue and
3005 * what locks they need, which you have no control over.
3006 *
3007 * In most situations flushing the entire workqueue is overkill; you merely
3008 * need to know that a particular work item isn't queued and isn't running.
3009 * In such cases you should use cancel_delayed_work_sync() or
3010 * cancel_work_sync() instead.
3011 */
3012 void flush_scheduled_work(void)
3013 {
3014 flush_workqueue(system_wq);
3015 }
3016 EXPORT_SYMBOL(flush_scheduled_work);
3017
3018 /**
3019 * execute_in_process_context - reliably execute the routine with user context
3020 * @fn: the function to execute
3021 * @ew: guaranteed storage for the execute work structure (must
3022 * be available when the work executes)
3023 *
3024 * Executes the function immediately if process context is available,
3025 * otherwise schedules the function for delayed execution.
3026 *
3027 * Returns: 0 - function was executed
3028 * 1 - function was scheduled for execution
3029 */
3030 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3031 {
3032 if (!in_interrupt()) {
3033 fn(&ew->work);
3034 return 0;
3035 }
3036
3037 INIT_WORK(&ew->work, fn);
3038 schedule_work(&ew->work);
3039
3040 return 1;
3041 }
3042 EXPORT_SYMBOL_GPL(execute_in_process_context);
3043
3044 #ifdef CONFIG_SYSFS
3045 /*
3046 * Workqueues with WQ_SYSFS flag set is visible to userland via
3047 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3048 * following attributes.
3049 *
3050 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3051 * max_active RW int : maximum number of in-flight work items
3052 *
3053 * Unbound workqueues have the following extra attributes.
3054 *
3055 * id RO int : the associated pool ID
3056 * nice RW int : nice value of the workers
3057 * cpumask RW mask : bitmask of allowed CPUs for the workers
3058 */
3059 struct wq_device {
3060 struct workqueue_struct *wq;
3061 struct device dev;
3062 };
3063
3064 static struct workqueue_struct *dev_to_wq(struct device *dev)
3065 {
3066 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3067
3068 return wq_dev->wq;
3069 }
3070
3071 static ssize_t wq_per_cpu_show(struct device *dev,
3072 struct device_attribute *attr, char *buf)
3073 {
3074 struct workqueue_struct *wq = dev_to_wq(dev);
3075
3076 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3077 }
3078
3079 static ssize_t wq_max_active_show(struct device *dev,
3080 struct device_attribute *attr, char *buf)
3081 {
3082 struct workqueue_struct *wq = dev_to_wq(dev);
3083
3084 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3085 }
3086
3087 static ssize_t wq_max_active_store(struct device *dev,
3088 struct device_attribute *attr,
3089 const char *buf, size_t count)
3090 {
3091 struct workqueue_struct *wq = dev_to_wq(dev);
3092 int val;
3093
3094 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3095 return -EINVAL;
3096
3097 workqueue_set_max_active(wq, val);
3098 return count;
3099 }
3100
3101 static struct device_attribute wq_sysfs_attrs[] = {
3102 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3103 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3104 __ATTR_NULL,
3105 };
3106
3107 static ssize_t wq_pool_ids_show(struct device *dev,
3108 struct device_attribute *attr, char *buf)
3109 {
3110 struct workqueue_struct *wq = dev_to_wq(dev);
3111 const char *delim = "";
3112 int node, written = 0;
3113
3114 rcu_read_lock_sched();
3115 for_each_node(node) {
3116 written += scnprintf(buf + written, PAGE_SIZE - written,
3117 "%s%d:%d", delim, node,
3118 unbound_pwq_by_node(wq, node)->pool->id);
3119 delim = " ";
3120 }
3121 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3122 rcu_read_unlock_sched();
3123
3124 return written;
3125 }
3126
3127 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3128 char *buf)
3129 {
3130 struct workqueue_struct *wq = dev_to_wq(dev);
3131 int written;
3132
3133 mutex_lock(&wq->mutex);
3134 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3135 mutex_unlock(&wq->mutex);
3136
3137 return written;
3138 }
3139
3140 /* prepare workqueue_attrs for sysfs store operations */
3141 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3142 {
3143 struct workqueue_attrs *attrs;
3144
3145 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3146 if (!attrs)
3147 return NULL;
3148
3149 mutex_lock(&wq->mutex);
3150 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3151 mutex_unlock(&wq->mutex);
3152 return attrs;
3153 }
3154
3155 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3156 const char *buf, size_t count)
3157 {
3158 struct workqueue_struct *wq = dev_to_wq(dev);
3159 struct workqueue_attrs *attrs;
3160 int ret;
3161
3162 attrs = wq_sysfs_prep_attrs(wq);
3163 if (!attrs)
3164 return -ENOMEM;
3165
3166 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3167 attrs->nice >= -20 && attrs->nice <= 19)
3168 ret = apply_workqueue_attrs(wq, attrs);
3169 else
3170 ret = -EINVAL;
3171
3172 free_workqueue_attrs(attrs);
3173 return ret ?: count;
3174 }
3175
3176 static ssize_t wq_cpumask_show(struct device *dev,
3177 struct device_attribute *attr, char *buf)
3178 {
3179 struct workqueue_struct *wq = dev_to_wq(dev);
3180 int written;
3181
3182 mutex_lock(&wq->mutex);
3183 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3184 mutex_unlock(&wq->mutex);
3185
3186 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3187 return written;
3188 }
3189
3190 static ssize_t wq_cpumask_store(struct device *dev,
3191 struct device_attribute *attr,
3192 const char *buf, size_t count)
3193 {
3194 struct workqueue_struct *wq = dev_to_wq(dev);
3195 struct workqueue_attrs *attrs;
3196 int ret;
3197
3198 attrs = wq_sysfs_prep_attrs(wq);
3199 if (!attrs)
3200 return -ENOMEM;
3201
3202 ret = cpumask_parse(buf, attrs->cpumask);
3203 if (!ret)
3204 ret = apply_workqueue_attrs(wq, attrs);
3205
3206 free_workqueue_attrs(attrs);
3207 return ret ?: count;
3208 }
3209
3210 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3211 char *buf)
3212 {
3213 struct workqueue_struct *wq = dev_to_wq(dev);
3214 int written;
3215
3216 mutex_lock(&wq->mutex);
3217 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3218 !wq->unbound_attrs->no_numa);
3219 mutex_unlock(&wq->mutex);
3220
3221 return written;
3222 }
3223
3224 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3225 const char *buf, size_t count)
3226 {
3227 struct workqueue_struct *wq = dev_to_wq(dev);
3228 struct workqueue_attrs *attrs;
3229 int v, ret;
3230
3231 attrs = wq_sysfs_prep_attrs(wq);
3232 if (!attrs)
3233 return -ENOMEM;
3234
3235 ret = -EINVAL;
3236 if (sscanf(buf, "%d", &v) == 1) {
3237 attrs->no_numa = !v;
3238 ret = apply_workqueue_attrs(wq, attrs);
3239 }
3240
3241 free_workqueue_attrs(attrs);
3242 return ret ?: count;
3243 }
3244
3245 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3246 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3247 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3248 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3249 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3250 __ATTR_NULL,
3251 };
3252
3253 static struct bus_type wq_subsys = {
3254 .name = "workqueue",
3255 .dev_attrs = wq_sysfs_attrs,
3256 };
3257
3258 static int __init wq_sysfs_init(void)
3259 {
3260 return subsys_virtual_register(&wq_subsys, NULL);
3261 }
3262 core_initcall(wq_sysfs_init);
3263
3264 static void wq_device_release(struct device *dev)
3265 {
3266 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3267
3268 kfree(wq_dev);
3269 }
3270
3271 /**
3272 * workqueue_sysfs_register - make a workqueue visible in sysfs
3273 * @wq: the workqueue to register
3274 *
3275 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3276 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3277 * which is the preferred method.
3278 *
3279 * Workqueue user should use this function directly iff it wants to apply
3280 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3281 * apply_workqueue_attrs() may race against userland updating the
3282 * attributes.
3283 *
3284 * Returns 0 on success, -errno on failure.
3285 */
3286 int workqueue_sysfs_register(struct workqueue_struct *wq)
3287 {
3288 struct wq_device *wq_dev;
3289 int ret;
3290
3291 /*
3292 * Adjusting max_active or creating new pwqs by applyting
3293 * attributes breaks ordering guarantee. Disallow exposing ordered
3294 * workqueues.
3295 */
3296 if (WARN_ON(wq->flags & __WQ_ORDERED))
3297 return -EINVAL;
3298
3299 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3300 if (!wq_dev)
3301 return -ENOMEM;
3302
3303 wq_dev->wq = wq;
3304 wq_dev->dev.bus = &wq_subsys;
3305 wq_dev->dev.init_name = wq->name;
3306 wq_dev->dev.release = wq_device_release;
3307
3308 /*
3309 * unbound_attrs are created separately. Suppress uevent until
3310 * everything is ready.
3311 */
3312 dev_set_uevent_suppress(&wq_dev->dev, true);
3313
3314 ret = device_register(&wq_dev->dev);
3315 if (ret) {
3316 kfree(wq_dev);
3317 wq->wq_dev = NULL;
3318 return ret;
3319 }
3320
3321 if (wq->flags & WQ_UNBOUND) {
3322 struct device_attribute *attr;
3323
3324 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3325 ret = device_create_file(&wq_dev->dev, attr);
3326 if (ret) {
3327 device_unregister(&wq_dev->dev);
3328 wq->wq_dev = NULL;
3329 return ret;
3330 }
3331 }
3332 }
3333
3334 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3335 return 0;
3336 }
3337
3338 /**
3339 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3340 * @wq: the workqueue to unregister
3341 *
3342 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3343 */
3344 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3345 {
3346 struct wq_device *wq_dev = wq->wq_dev;
3347
3348 if (!wq->wq_dev)
3349 return;
3350
3351 wq->wq_dev = NULL;
3352 device_unregister(&wq_dev->dev);
3353 }
3354 #else /* CONFIG_SYSFS */
3355 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3356 #endif /* CONFIG_SYSFS */
3357
3358 /**
3359 * free_workqueue_attrs - free a workqueue_attrs
3360 * @attrs: workqueue_attrs to free
3361 *
3362 * Undo alloc_workqueue_attrs().
3363 */
3364 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3365 {
3366 if (attrs) {
3367 free_cpumask_var(attrs->cpumask);
3368 kfree(attrs);
3369 }
3370 }
3371
3372 /**
3373 * alloc_workqueue_attrs - allocate a workqueue_attrs
3374 * @gfp_mask: allocation mask to use
3375 *
3376 * Allocate a new workqueue_attrs, initialize with default settings and
3377 * return it. Returns NULL on failure.
3378 */
3379 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3380 {
3381 struct workqueue_attrs *attrs;
3382
3383 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3384 if (!attrs)
3385 goto fail;
3386 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3387 goto fail;
3388
3389 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3390 return attrs;
3391 fail:
3392 free_workqueue_attrs(attrs);
3393 return NULL;
3394 }
3395
3396 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3397 const struct workqueue_attrs *from)
3398 {
3399 to->nice = from->nice;
3400 cpumask_copy(to->cpumask, from->cpumask);
3401 }
3402
3403 /* hash value of the content of @attr */
3404 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3405 {
3406 u32 hash = 0;
3407
3408 hash = jhash_1word(attrs->nice, hash);
3409 hash = jhash(cpumask_bits(attrs->cpumask),
3410 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3411 return hash;
3412 }
3413
3414 /* content equality test */
3415 static bool wqattrs_equal(const struct workqueue_attrs *a,
3416 const struct workqueue_attrs *b)
3417 {
3418 if (a->nice != b->nice)
3419 return false;
3420 if (!cpumask_equal(a->cpumask, b->cpumask))
3421 return false;
3422 return true;
3423 }
3424
3425 /**
3426 * init_worker_pool - initialize a newly zalloc'd worker_pool
3427 * @pool: worker_pool to initialize
3428 *
3429 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3430 * Returns 0 on success, -errno on failure. Even on failure, all fields
3431 * inside @pool proper are initialized and put_unbound_pool() can be called
3432 * on @pool safely to release it.
3433 */
3434 static int init_worker_pool(struct worker_pool *pool)
3435 {
3436 spin_lock_init(&pool->lock);
3437 pool->id = -1;
3438 pool->cpu = -1;
3439 pool->node = NUMA_NO_NODE;
3440 pool->flags |= POOL_DISASSOCIATED;
3441 INIT_LIST_HEAD(&pool->worklist);
3442 INIT_LIST_HEAD(&pool->idle_list);
3443 hash_init(pool->busy_hash);
3444
3445 init_timer_deferrable(&pool->idle_timer);
3446 pool->idle_timer.function = idle_worker_timeout;
3447 pool->idle_timer.data = (unsigned long)pool;
3448
3449 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3450 (unsigned long)pool);
3451
3452 mutex_init(&pool->manager_arb);
3453 mutex_init(&pool->manager_mutex);
3454 idr_init(&pool->worker_idr);
3455
3456 INIT_HLIST_NODE(&pool->hash_node);
3457 pool->refcnt = 1;
3458
3459 /* shouldn't fail above this point */
3460 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3461 if (!pool->attrs)
3462 return -ENOMEM;
3463 return 0;
3464 }
3465
3466 static void rcu_free_pool(struct rcu_head *rcu)
3467 {
3468 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3469
3470 idr_destroy(&pool->worker_idr);
3471 free_workqueue_attrs(pool->attrs);
3472 kfree(pool);
3473 }
3474
3475 /**
3476 * put_unbound_pool - put a worker_pool
3477 * @pool: worker_pool to put
3478 *
3479 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3480 * safe manner. get_unbound_pool() calls this function on its failure path
3481 * and this function should be able to release pools which went through,
3482 * successfully or not, init_worker_pool().
3483 *
3484 * Should be called with wq_pool_mutex held.
3485 */
3486 static void put_unbound_pool(struct worker_pool *pool)
3487 {
3488 struct worker *worker;
3489
3490 lockdep_assert_held(&wq_pool_mutex);
3491
3492 if (--pool->refcnt)
3493 return;
3494
3495 /* sanity checks */
3496 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3497 WARN_ON(!list_empty(&pool->worklist)))
3498 return;
3499
3500 /* release id and unhash */
3501 if (pool->id >= 0)
3502 idr_remove(&worker_pool_idr, pool->id);
3503 hash_del(&pool->hash_node);
3504
3505 /*
3506 * Become the manager and destroy all workers. Grabbing
3507 * manager_arb prevents @pool's workers from blocking on
3508 * manager_mutex.
3509 */
3510 mutex_lock(&pool->manager_arb);
3511 mutex_lock(&pool->manager_mutex);
3512 spin_lock_irq(&pool->lock);
3513
3514 while ((worker = first_worker(pool)))
3515 destroy_worker(worker);
3516 WARN_ON(pool->nr_workers || pool->nr_idle);
3517
3518 spin_unlock_irq(&pool->lock);
3519 mutex_unlock(&pool->manager_mutex);
3520 mutex_unlock(&pool->manager_arb);
3521
3522 /* shut down the timers */
3523 del_timer_sync(&pool->idle_timer);
3524 del_timer_sync(&pool->mayday_timer);
3525
3526 /* sched-RCU protected to allow dereferences from get_work_pool() */
3527 call_rcu_sched(&pool->rcu, rcu_free_pool);
3528 }
3529
3530 /**
3531 * get_unbound_pool - get a worker_pool with the specified attributes
3532 * @attrs: the attributes of the worker_pool to get
3533 *
3534 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3535 * reference count and return it. If there already is a matching
3536 * worker_pool, it will be used; otherwise, this function attempts to
3537 * create a new one. On failure, returns NULL.
3538 *
3539 * Should be called with wq_pool_mutex held.
3540 */
3541 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3542 {
3543 u32 hash = wqattrs_hash(attrs);
3544 struct worker_pool *pool;
3545 int node;
3546
3547 lockdep_assert_held(&wq_pool_mutex);
3548
3549 /* do we already have a matching pool? */
3550 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3551 if (wqattrs_equal(pool->attrs, attrs)) {
3552 pool->refcnt++;
3553 goto out_unlock;
3554 }
3555 }
3556
3557 /* nope, create a new one */
3558 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3559 if (!pool || init_worker_pool(pool) < 0)
3560 goto fail;
3561
3562 if (workqueue_freezing)
3563 pool->flags |= POOL_FREEZING;
3564
3565 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3566 copy_workqueue_attrs(pool->attrs, attrs);
3567
3568 /* if cpumask is contained inside a NUMA node, we belong to that node */
3569 if (wq_numa_enabled) {
3570 for_each_node(node) {
3571 if (cpumask_subset(pool->attrs->cpumask,
3572 wq_numa_possible_cpumask[node])) {
3573 pool->node = node;
3574 break;
3575 }
3576 }
3577 }
3578
3579 if (worker_pool_assign_id(pool) < 0)
3580 goto fail;
3581
3582 /* create and start the initial worker */
3583 if (create_and_start_worker(pool) < 0)
3584 goto fail;
3585
3586 /* install */
3587 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3588 out_unlock:
3589 return pool;
3590 fail:
3591 if (pool)
3592 put_unbound_pool(pool);
3593 return NULL;
3594 }
3595
3596 static void rcu_free_pwq(struct rcu_head *rcu)
3597 {
3598 kmem_cache_free(pwq_cache,
3599 container_of(rcu, struct pool_workqueue, rcu));
3600 }
3601
3602 /*
3603 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3604 * and needs to be destroyed.
3605 */
3606 static void pwq_unbound_release_workfn(struct work_struct *work)
3607 {
3608 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3609 unbound_release_work);
3610 struct workqueue_struct *wq = pwq->wq;
3611 struct worker_pool *pool = pwq->pool;
3612 bool is_last;
3613
3614 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3615 return;
3616
3617 /*
3618 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
3619 * necessary on release but do it anyway. It's easier to verify
3620 * and consistent with the linking path.
3621 */
3622 mutex_lock(&wq->mutex);
3623 list_del_rcu(&pwq->pwqs_node);
3624 is_last = list_empty(&wq->pwqs);
3625 mutex_unlock(&wq->mutex);
3626
3627 mutex_lock(&wq_pool_mutex);
3628 put_unbound_pool(pool);
3629 mutex_unlock(&wq_pool_mutex);
3630
3631 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3632
3633 /*
3634 * If we're the last pwq going away, @wq is already dead and no one
3635 * is gonna access it anymore. Free it.
3636 */
3637 if (is_last) {
3638 free_workqueue_attrs(wq->unbound_attrs);
3639 kfree(wq);
3640 }
3641 }
3642
3643 /**
3644 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3645 * @pwq: target pool_workqueue
3646 *
3647 * If @pwq isn't freezing, set @pwq->max_active to the associated
3648 * workqueue's saved_max_active and activate delayed work items
3649 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3650 */
3651 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3652 {
3653 struct workqueue_struct *wq = pwq->wq;
3654 bool freezable = wq->flags & WQ_FREEZABLE;
3655
3656 /* for @wq->saved_max_active */
3657 lockdep_assert_held(&wq->mutex);
3658
3659 /* fast exit for non-freezable wqs */
3660 if (!freezable && pwq->max_active == wq->saved_max_active)
3661 return;
3662
3663 spin_lock_irq(&pwq->pool->lock);
3664
3665 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3666 pwq->max_active = wq->saved_max_active;
3667
3668 while (!list_empty(&pwq->delayed_works) &&
3669 pwq->nr_active < pwq->max_active)
3670 pwq_activate_first_delayed(pwq);
3671
3672 /*
3673 * Need to kick a worker after thawed or an unbound wq's
3674 * max_active is bumped. It's a slow path. Do it always.
3675 */
3676 wake_up_worker(pwq->pool);
3677 } else {
3678 pwq->max_active = 0;
3679 }
3680
3681 spin_unlock_irq(&pwq->pool->lock);
3682 }
3683
3684 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3685 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3686 struct worker_pool *pool)
3687 {
3688 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3689
3690 memset(pwq, 0, sizeof(*pwq));
3691
3692 pwq->pool = pool;
3693 pwq->wq = wq;
3694 pwq->flush_color = -1;
3695 pwq->refcnt = 1;
3696 INIT_LIST_HEAD(&pwq->delayed_works);
3697 INIT_LIST_HEAD(&pwq->pwqs_node);
3698 INIT_LIST_HEAD(&pwq->mayday_node);
3699 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3700 }
3701
3702 /* sync @pwq with the current state of its associated wq and link it */
3703 static void link_pwq(struct pool_workqueue *pwq)
3704 {
3705 struct workqueue_struct *wq = pwq->wq;
3706
3707 lockdep_assert_held(&wq->mutex);
3708
3709 /* may be called multiple times, ignore if already linked */
3710 if (!list_empty(&pwq->pwqs_node))
3711 return;
3712
3713 /*
3714 * Set the matching work_color. This is synchronized with
3715 * wq->mutex to avoid confusing flush_workqueue().
3716 */
3717 pwq->work_color = wq->work_color;
3718
3719 /* sync max_active to the current setting */
3720 pwq_adjust_max_active(pwq);
3721
3722 /* link in @pwq */
3723 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3724 }
3725
3726 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3727 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3728 const struct workqueue_attrs *attrs)
3729 {
3730 struct worker_pool *pool;
3731 struct pool_workqueue *pwq;
3732
3733 lockdep_assert_held(&wq_pool_mutex);
3734
3735 pool = get_unbound_pool(attrs);
3736 if (!pool)
3737 return NULL;
3738
3739 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3740 if (!pwq) {
3741 put_unbound_pool(pool);
3742 return NULL;
3743 }
3744
3745 init_pwq(pwq, wq, pool);
3746 return pwq;
3747 }
3748
3749 /* undo alloc_unbound_pwq(), used only in the error path */
3750 static void free_unbound_pwq(struct pool_workqueue *pwq)
3751 {
3752 lockdep_assert_held(&wq_pool_mutex);
3753
3754 if (pwq) {
3755 put_unbound_pool(pwq->pool);
3756 kmem_cache_free(pwq_cache, pwq);
3757 }
3758 }
3759
3760 /**
3761 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3762 * @attrs: the wq_attrs of interest
3763 * @node: the target NUMA node
3764 * @cpu_going_down: if >= 0, the CPU to consider as offline
3765 * @cpumask: outarg, the resulting cpumask
3766 *
3767 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3768 * @cpu_going_down is >= 0, that cpu is considered offline during
3769 * calculation. The result is stored in @cpumask. This function returns
3770 * %true if the resulting @cpumask is different from @attrs->cpumask,
3771 * %false if equal.
3772 *
3773 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3774 * enabled and @node has online CPUs requested by @attrs, the returned
3775 * cpumask is the intersection of the possible CPUs of @node and
3776 * @attrs->cpumask.
3777 *
3778 * The caller is responsible for ensuring that the cpumask of @node stays
3779 * stable.
3780 */
3781 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3782 int cpu_going_down, cpumask_t *cpumask)
3783 {
3784 if (!wq_numa_enabled || attrs->no_numa)
3785 goto use_dfl;
3786
3787 /* does @node have any online CPUs @attrs wants? */
3788 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3789 if (cpu_going_down >= 0)
3790 cpumask_clear_cpu(cpu_going_down, cpumask);
3791
3792 if (cpumask_empty(cpumask))
3793 goto use_dfl;
3794
3795 /* yeap, return possible CPUs in @node that @attrs wants */
3796 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3797 return !cpumask_equal(cpumask, attrs->cpumask);
3798
3799 use_dfl:
3800 cpumask_copy(cpumask, attrs->cpumask);
3801 return false;
3802 }
3803
3804 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3805 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3806 int node,
3807 struct pool_workqueue *pwq)
3808 {
3809 struct pool_workqueue *old_pwq;
3810
3811 lockdep_assert_held(&wq->mutex);
3812
3813 /* link_pwq() can handle duplicate calls */
3814 link_pwq(pwq);
3815
3816 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3817 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3818 return old_pwq;
3819 }
3820
3821 /**
3822 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3823 * @wq: the target workqueue
3824 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3825 *
3826 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3827 * machines, this function maps a separate pwq to each NUMA node with
3828 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3829 * NUMA node it was issued on. Older pwqs are released as in-flight work
3830 * items finish. Note that a work item which repeatedly requeues itself
3831 * back-to-back will stay on its current pwq.
3832 *
3833 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3834 * failure.
3835 */
3836 int apply_workqueue_attrs(struct workqueue_struct *wq,
3837 const struct workqueue_attrs *attrs)
3838 {
3839 struct workqueue_attrs *new_attrs, *tmp_attrs;
3840 struct pool_workqueue **pwq_tbl, *dfl_pwq;
3841 int node, ret;
3842
3843 /* only unbound workqueues can change attributes */
3844 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3845 return -EINVAL;
3846
3847 /* creating multiple pwqs breaks ordering guarantee */
3848 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3849 return -EINVAL;
3850
3851 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3852 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3853 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3854 if (!pwq_tbl || !new_attrs || !tmp_attrs)
3855 goto enomem;
3856
3857 /* make a copy of @attrs and sanitize it */
3858 copy_workqueue_attrs(new_attrs, attrs);
3859 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3860
3861 /*
3862 * We may create multiple pwqs with differing cpumasks. Make a
3863 * copy of @new_attrs which will be modified and used to obtain
3864 * pools.
3865 */
3866 copy_workqueue_attrs(tmp_attrs, new_attrs);
3867
3868 /*
3869 * CPUs should stay stable across pwq creations and installations.
3870 * Pin CPUs, determine the target cpumask for each node and create
3871 * pwqs accordingly.
3872 */
3873 get_online_cpus();
3874
3875 mutex_lock(&wq_pool_mutex);
3876
3877 /*
3878 * If something goes wrong during CPU up/down, we'll fall back to
3879 * the default pwq covering whole @attrs->cpumask. Always create
3880 * it even if we don't use it immediately.
3881 */
3882 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3883 if (!dfl_pwq)
3884 goto enomem_pwq;
3885
3886 for_each_node(node) {
3887 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3888 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3889 if (!pwq_tbl[node])
3890 goto enomem_pwq;
3891 } else {
3892 dfl_pwq->refcnt++;
3893 pwq_tbl[node] = dfl_pwq;
3894 }
3895 }
3896
3897 mutex_unlock(&wq_pool_mutex);
3898
3899 /* all pwqs have been created successfully, let's install'em */
3900 mutex_lock(&wq->mutex);
3901
3902 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3903
3904 /* save the previous pwq and install the new one */
3905 for_each_node(node)
3906 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3907
3908 /* @dfl_pwq might not have been used, ensure it's linked */
3909 link_pwq(dfl_pwq);
3910 swap(wq->dfl_pwq, dfl_pwq);
3911
3912 mutex_unlock(&wq->mutex);
3913
3914 /* put the old pwqs */
3915 for_each_node(node)
3916 put_pwq_unlocked(pwq_tbl[node]);
3917 put_pwq_unlocked(dfl_pwq);
3918
3919 put_online_cpus();
3920 ret = 0;
3921 /* fall through */
3922 out_free:
3923 free_workqueue_attrs(tmp_attrs);
3924 free_workqueue_attrs(new_attrs);
3925 kfree(pwq_tbl);
3926 return ret;
3927
3928 enomem_pwq:
3929 free_unbound_pwq(dfl_pwq);
3930 for_each_node(node)
3931 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3932 free_unbound_pwq(pwq_tbl[node]);
3933 mutex_unlock(&wq_pool_mutex);
3934 put_online_cpus();
3935 enomem:
3936 ret = -ENOMEM;
3937 goto out_free;
3938 }
3939
3940 /**
3941 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3942 * @wq: the target workqueue
3943 * @cpu: the CPU coming up or going down
3944 * @online: whether @cpu is coming up or going down
3945 *
3946 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3947 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3948 * @wq accordingly.
3949 *
3950 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3951 * falls back to @wq->dfl_pwq which may not be optimal but is always
3952 * correct.
3953 *
3954 * Note that when the last allowed CPU of a NUMA node goes offline for a
3955 * workqueue with a cpumask spanning multiple nodes, the workers which were
3956 * already executing the work items for the workqueue will lose their CPU
3957 * affinity and may execute on any CPU. This is similar to how per-cpu
3958 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3959 * affinity, it's the user's responsibility to flush the work item from
3960 * CPU_DOWN_PREPARE.
3961 */
3962 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3963 bool online)
3964 {
3965 int node = cpu_to_node(cpu);
3966 int cpu_off = online ? -1 : cpu;
3967 struct pool_workqueue *old_pwq = NULL, *pwq;
3968 struct workqueue_attrs *target_attrs;
3969 cpumask_t *cpumask;
3970
3971 lockdep_assert_held(&wq_pool_mutex);
3972
3973 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3974 return;
3975
3976 /*
3977 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3978 * Let's use a preallocated one. The following buf is protected by
3979 * CPU hotplug exclusion.
3980 */
3981 target_attrs = wq_update_unbound_numa_attrs_buf;
3982 cpumask = target_attrs->cpumask;
3983
3984 mutex_lock(&wq->mutex);
3985 if (wq->unbound_attrs->no_numa)
3986 goto out_unlock;
3987
3988 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3989 pwq = unbound_pwq_by_node(wq, node);
3990
3991 /*
3992 * Let's determine what needs to be done. If the target cpumask is
3993 * different from wq's, we need to compare it to @pwq's and create
3994 * a new one if they don't match. If the target cpumask equals
3995 * wq's, the default pwq should be used. If @pwq is already the
3996 * default one, nothing to do; otherwise, install the default one.
3997 */
3998 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3999 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4000 goto out_unlock;
4001 } else {
4002 if (pwq == wq->dfl_pwq)
4003 goto out_unlock;
4004 else
4005 goto use_dfl_pwq;
4006 }
4007
4008 mutex_unlock(&wq->mutex);
4009
4010 /* create a new pwq */
4011 pwq = alloc_unbound_pwq(wq, target_attrs);
4012 if (!pwq) {
4013 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4014 wq->name);
4015 goto out_unlock;
4016 }
4017
4018 /*
4019 * Install the new pwq. As this function is called only from CPU
4020 * hotplug callbacks and applying a new attrs is wrapped with
4021 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4022 * inbetween.
4023 */
4024 mutex_lock(&wq->mutex);
4025 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4026 goto out_unlock;
4027
4028 use_dfl_pwq:
4029 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4030 get_pwq(wq->dfl_pwq);
4031 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4032 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4033 out_unlock:
4034 mutex_unlock(&wq->mutex);
4035 put_pwq_unlocked(old_pwq);
4036 }
4037
4038 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4039 {
4040 bool highpri = wq->flags & WQ_HIGHPRI;
4041 int cpu;
4042
4043 if (!(wq->flags & WQ_UNBOUND)) {
4044 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4045 if (!wq->cpu_pwqs)
4046 return -ENOMEM;
4047
4048 for_each_possible_cpu(cpu) {
4049 struct pool_workqueue *pwq =
4050 per_cpu_ptr(wq->cpu_pwqs, cpu);
4051 struct worker_pool *cpu_pools =
4052 per_cpu(cpu_worker_pools, cpu);
4053
4054 init_pwq(pwq, wq, &cpu_pools[highpri]);
4055
4056 mutex_lock(&wq->mutex);
4057 link_pwq(pwq);
4058 mutex_unlock(&wq->mutex);
4059 }
4060 return 0;
4061 } else {
4062 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4063 }
4064 }
4065
4066 static int wq_clamp_max_active(int max_active, unsigned int flags,
4067 const char *name)
4068 {
4069 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4070
4071 if (max_active < 1 || max_active > lim)
4072 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4073 max_active, name, 1, lim);
4074
4075 return clamp_val(max_active, 1, lim);
4076 }
4077
4078 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4079 unsigned int flags,
4080 int max_active,
4081 struct lock_class_key *key,
4082 const char *lock_name, ...)
4083 {
4084 size_t tbl_size = 0;
4085 va_list args;
4086 struct workqueue_struct *wq;
4087 struct pool_workqueue *pwq;
4088
4089 /* allocate wq and format name */
4090 if (flags & WQ_UNBOUND)
4091 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4092
4093 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4094 if (!wq)
4095 return NULL;
4096
4097 if (flags & WQ_UNBOUND) {
4098 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4099 if (!wq->unbound_attrs)
4100 goto err_free_wq;
4101 }
4102
4103 va_start(args, lock_name);
4104 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4105 va_end(args);
4106
4107 max_active = max_active ?: WQ_DFL_ACTIVE;
4108 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4109
4110 /* init wq */
4111 wq->flags = flags;
4112 wq->saved_max_active = max_active;
4113 mutex_init(&wq->mutex);
4114 atomic_set(&wq->nr_pwqs_to_flush, 0);
4115 INIT_LIST_HEAD(&wq->pwqs);
4116 INIT_LIST_HEAD(&wq->flusher_queue);
4117 INIT_LIST_HEAD(&wq->flusher_overflow);
4118 INIT_LIST_HEAD(&wq->maydays);
4119
4120 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4121 INIT_LIST_HEAD(&wq->list);
4122
4123 if (alloc_and_link_pwqs(wq) < 0)
4124 goto err_free_wq;
4125
4126 /*
4127 * Workqueues which may be used during memory reclaim should
4128 * have a rescuer to guarantee forward progress.
4129 */
4130 if (flags & WQ_MEM_RECLAIM) {
4131 struct worker *rescuer;
4132
4133 rescuer = alloc_worker();
4134 if (!rescuer)
4135 goto err_destroy;
4136
4137 rescuer->rescue_wq = wq;
4138 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4139 wq->name);
4140 if (IS_ERR(rescuer->task)) {
4141 kfree(rescuer);
4142 goto err_destroy;
4143 }
4144
4145 wq->rescuer = rescuer;
4146 rescuer->task->flags |= PF_NO_SETAFFINITY;
4147 wake_up_process(rescuer->task);
4148 }
4149
4150 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4151 goto err_destroy;
4152
4153 /*
4154 * wq_pool_mutex protects global freeze state and workqueues list.
4155 * Grab it, adjust max_active and add the new @wq to workqueues
4156 * list.
4157 */
4158 mutex_lock(&wq_pool_mutex);
4159
4160 mutex_lock(&wq->mutex);
4161 for_each_pwq(pwq, wq)
4162 pwq_adjust_max_active(pwq);
4163 mutex_unlock(&wq->mutex);
4164
4165 list_add(&wq->list, &workqueues);
4166
4167 mutex_unlock(&wq_pool_mutex);
4168
4169 return wq;
4170
4171 err_free_wq:
4172 free_workqueue_attrs(wq->unbound_attrs);
4173 kfree(wq);
4174 return NULL;
4175 err_destroy:
4176 destroy_workqueue(wq);
4177 return NULL;
4178 }
4179 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4180
4181 /**
4182 * destroy_workqueue - safely terminate a workqueue
4183 * @wq: target workqueue
4184 *
4185 * Safely destroy a workqueue. All work currently pending will be done first.
4186 */
4187 void destroy_workqueue(struct workqueue_struct *wq)
4188 {
4189 struct pool_workqueue *pwq;
4190 int node;
4191
4192 /* drain it before proceeding with destruction */
4193 drain_workqueue(wq);
4194
4195 /* sanity checks */
4196 mutex_lock(&wq->mutex);
4197 for_each_pwq(pwq, wq) {
4198 int i;
4199
4200 for (i = 0; i < WORK_NR_COLORS; i++) {
4201 if (WARN_ON(pwq->nr_in_flight[i])) {
4202 mutex_unlock(&wq->mutex);
4203 return;
4204 }
4205 }
4206
4207 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4208 WARN_ON(pwq->nr_active) ||
4209 WARN_ON(!list_empty(&pwq->delayed_works))) {
4210 mutex_unlock(&wq->mutex);
4211 return;
4212 }
4213 }
4214 mutex_unlock(&wq->mutex);
4215
4216 /*
4217 * wq list is used to freeze wq, remove from list after
4218 * flushing is complete in case freeze races us.
4219 */
4220 mutex_lock(&wq_pool_mutex);
4221 list_del_init(&wq->list);
4222 mutex_unlock(&wq_pool_mutex);
4223
4224 workqueue_sysfs_unregister(wq);
4225
4226 if (wq->rescuer) {
4227 kthread_stop(wq->rescuer->task);
4228 kfree(wq->rescuer);
4229 wq->rescuer = NULL;
4230 }
4231
4232 if (!(wq->flags & WQ_UNBOUND)) {
4233 /*
4234 * The base ref is never dropped on per-cpu pwqs. Directly
4235 * free the pwqs and wq.
4236 */
4237 free_percpu(wq->cpu_pwqs);
4238 kfree(wq);
4239 } else {
4240 /*
4241 * We're the sole accessor of @wq at this point. Directly
4242 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4243 * @wq will be freed when the last pwq is released.
4244 */
4245 for_each_node(node) {
4246 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4247 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4248 put_pwq_unlocked(pwq);
4249 }
4250
4251 /*
4252 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4253 * put. Don't access it afterwards.
4254 */
4255 pwq = wq->dfl_pwq;
4256 wq->dfl_pwq = NULL;
4257 put_pwq_unlocked(pwq);
4258 }
4259 }
4260 EXPORT_SYMBOL_GPL(destroy_workqueue);
4261
4262 /**
4263 * workqueue_set_max_active - adjust max_active of a workqueue
4264 * @wq: target workqueue
4265 * @max_active: new max_active value.
4266 *
4267 * Set max_active of @wq to @max_active.
4268 *
4269 * CONTEXT:
4270 * Don't call from IRQ context.
4271 */
4272 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4273 {
4274 struct pool_workqueue *pwq;
4275
4276 /* disallow meddling with max_active for ordered workqueues */
4277 if (WARN_ON(wq->flags & __WQ_ORDERED))
4278 return;
4279
4280 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4281
4282 mutex_lock(&wq->mutex);
4283
4284 wq->saved_max_active = max_active;
4285
4286 for_each_pwq(pwq, wq)
4287 pwq_adjust_max_active(pwq);
4288
4289 mutex_unlock(&wq->mutex);
4290 }
4291 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4292
4293 /**
4294 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4295 *
4296 * Determine whether %current is a workqueue rescuer. Can be used from
4297 * work functions to determine whether it's being run off the rescuer task.
4298 */
4299 bool current_is_workqueue_rescuer(void)
4300 {
4301 struct worker *worker = current_wq_worker();
4302
4303 return worker && worker->rescue_wq;
4304 }
4305
4306 /**
4307 * workqueue_congested - test whether a workqueue is congested
4308 * @cpu: CPU in question
4309 * @wq: target workqueue
4310 *
4311 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4312 * no synchronization around this function and the test result is
4313 * unreliable and only useful as advisory hints or for debugging.
4314 *
4315 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4316 * Note that both per-cpu and unbound workqueues may be associated with
4317 * multiple pool_workqueues which have separate congested states. A
4318 * workqueue being congested on one CPU doesn't mean the workqueue is also
4319 * contested on other CPUs / NUMA nodes.
4320 *
4321 * RETURNS:
4322 * %true if congested, %false otherwise.
4323 */
4324 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4325 {
4326 struct pool_workqueue *pwq;
4327 bool ret;
4328
4329 rcu_read_lock_sched();
4330
4331 if (cpu == WORK_CPU_UNBOUND)
4332 cpu = smp_processor_id();
4333
4334 if (!(wq->flags & WQ_UNBOUND))
4335 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4336 else
4337 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4338
4339 ret = !list_empty(&pwq->delayed_works);
4340 rcu_read_unlock_sched();
4341
4342 return ret;
4343 }
4344 EXPORT_SYMBOL_GPL(workqueue_congested);
4345
4346 /**
4347 * work_busy - test whether a work is currently pending or running
4348 * @work: the work to be tested
4349 *
4350 * Test whether @work is currently pending or running. There is no
4351 * synchronization around this function and the test result is
4352 * unreliable and only useful as advisory hints or for debugging.
4353 *
4354 * RETURNS:
4355 * OR'd bitmask of WORK_BUSY_* bits.
4356 */
4357 unsigned int work_busy(struct work_struct *work)
4358 {
4359 struct worker_pool *pool;
4360 unsigned long flags;
4361 unsigned int ret = 0;
4362
4363 if (work_pending(work))
4364 ret |= WORK_BUSY_PENDING;
4365
4366 local_irq_save(flags);
4367 pool = get_work_pool(work);
4368 if (pool) {
4369 spin_lock(&pool->lock);
4370 if (find_worker_executing_work(pool, work))
4371 ret |= WORK_BUSY_RUNNING;
4372 spin_unlock(&pool->lock);
4373 }
4374 local_irq_restore(flags);
4375
4376 return ret;
4377 }
4378 EXPORT_SYMBOL_GPL(work_busy);
4379
4380 /**
4381 * set_worker_desc - set description for the current work item
4382 * @fmt: printf-style format string
4383 * @...: arguments for the format string
4384 *
4385 * This function can be called by a running work function to describe what
4386 * the work item is about. If the worker task gets dumped, this
4387 * information will be printed out together to help debugging. The
4388 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4389 */
4390 void set_worker_desc(const char *fmt, ...)
4391 {
4392 struct worker *worker = current_wq_worker();
4393 va_list args;
4394
4395 if (worker) {
4396 va_start(args, fmt);
4397 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4398 va_end(args);
4399 worker->desc_valid = true;
4400 }
4401 }
4402
4403 /**
4404 * print_worker_info - print out worker information and description
4405 * @log_lvl: the log level to use when printing
4406 * @task: target task
4407 *
4408 * If @task is a worker and currently executing a work item, print out the
4409 * name of the workqueue being serviced and worker description set with
4410 * set_worker_desc() by the currently executing work item.
4411 *
4412 * This function can be safely called on any task as long as the
4413 * task_struct itself is accessible. While safe, this function isn't
4414 * synchronized and may print out mixups or garbages of limited length.
4415 */
4416 void print_worker_info(const char *log_lvl, struct task_struct *task)
4417 {
4418 work_func_t *fn = NULL;
4419 char name[WQ_NAME_LEN] = { };
4420 char desc[WORKER_DESC_LEN] = { };
4421 struct pool_workqueue *pwq = NULL;
4422 struct workqueue_struct *wq = NULL;
4423 bool desc_valid = false;
4424 struct worker *worker;
4425
4426 if (!(task->flags & PF_WQ_WORKER))
4427 return;
4428
4429 /*
4430 * This function is called without any synchronization and @task
4431 * could be in any state. Be careful with dereferences.
4432 */
4433 worker = probe_kthread_data(task);
4434
4435 /*
4436 * Carefully copy the associated workqueue's workfn and name. Keep
4437 * the original last '\0' in case the original contains garbage.
4438 */
4439 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4440 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4441 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4442 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4443
4444 /* copy worker description */
4445 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4446 if (desc_valid)
4447 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4448
4449 if (fn || name[0] || desc[0]) {
4450 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4451 if (desc[0])
4452 pr_cont(" (%s)", desc);
4453 pr_cont("\n");
4454 }
4455 }
4456
4457 /*
4458 * CPU hotplug.
4459 *
4460 * There are two challenges in supporting CPU hotplug. Firstly, there
4461 * are a lot of assumptions on strong associations among work, pwq and
4462 * pool which make migrating pending and scheduled works very
4463 * difficult to implement without impacting hot paths. Secondly,
4464 * worker pools serve mix of short, long and very long running works making
4465 * blocked draining impractical.
4466 *
4467 * This is solved by allowing the pools to be disassociated from the CPU
4468 * running as an unbound one and allowing it to be reattached later if the
4469 * cpu comes back online.
4470 */
4471
4472 static void wq_unbind_fn(struct work_struct *work)
4473 {
4474 int cpu = smp_processor_id();
4475 struct worker_pool *pool;
4476 struct worker *worker;
4477 int wi;
4478
4479 for_each_cpu_worker_pool(pool, cpu) {
4480 WARN_ON_ONCE(cpu != smp_processor_id());
4481
4482 mutex_lock(&pool->manager_mutex);
4483 spin_lock_irq(&pool->lock);
4484
4485 /*
4486 * We've blocked all manager operations. Make all workers
4487 * unbound and set DISASSOCIATED. Before this, all workers
4488 * except for the ones which are still executing works from
4489 * before the last CPU down must be on the cpu. After
4490 * this, they may become diasporas.
4491 */
4492 for_each_pool_worker(worker, wi, pool)
4493 worker->flags |= WORKER_UNBOUND;
4494
4495 pool->flags |= POOL_DISASSOCIATED;
4496
4497 spin_unlock_irq(&pool->lock);
4498 mutex_unlock(&pool->manager_mutex);
4499
4500 /*
4501 * Call schedule() so that we cross rq->lock and thus can
4502 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4503 * This is necessary as scheduler callbacks may be invoked
4504 * from other cpus.
4505 */
4506 schedule();
4507
4508 /*
4509 * Sched callbacks are disabled now. Zap nr_running.
4510 * After this, nr_running stays zero and need_more_worker()
4511 * and keep_working() are always true as long as the
4512 * worklist is not empty. This pool now behaves as an
4513 * unbound (in terms of concurrency management) pool which
4514 * are served by workers tied to the pool.
4515 */
4516 atomic_set(&pool->nr_running, 0);
4517
4518 /*
4519 * With concurrency management just turned off, a busy
4520 * worker blocking could lead to lengthy stalls. Kick off
4521 * unbound chain execution of currently pending work items.
4522 */
4523 spin_lock_irq(&pool->lock);
4524 wake_up_worker(pool);
4525 spin_unlock_irq(&pool->lock);
4526 }
4527 }
4528
4529 /**
4530 * rebind_workers - rebind all workers of a pool to the associated CPU
4531 * @pool: pool of interest
4532 *
4533 * @pool->cpu is coming online. Rebind all workers to the CPU.
4534 */
4535 static void rebind_workers(struct worker_pool *pool)
4536 {
4537 struct worker *worker;
4538 int wi;
4539
4540 lockdep_assert_held(&pool->manager_mutex);
4541
4542 /*
4543 * Restore CPU affinity of all workers. As all idle workers should
4544 * be on the run-queue of the associated CPU before any local
4545 * wake-ups for concurrency management happen, restore CPU affinty
4546 * of all workers first and then clear UNBOUND. As we're called
4547 * from CPU_ONLINE, the following shouldn't fail.
4548 */
4549 for_each_pool_worker(worker, wi, pool)
4550 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4551 pool->attrs->cpumask) < 0);
4552
4553 spin_lock_irq(&pool->lock);
4554
4555 for_each_pool_worker(worker, wi, pool) {
4556 unsigned int worker_flags = worker->flags;
4557
4558 /*
4559 * A bound idle worker should actually be on the runqueue
4560 * of the associated CPU for local wake-ups targeting it to
4561 * work. Kick all idle workers so that they migrate to the
4562 * associated CPU. Doing this in the same loop as
4563 * replacing UNBOUND with REBOUND is safe as no worker will
4564 * be bound before @pool->lock is released.
4565 */
4566 if (worker_flags & WORKER_IDLE)
4567 wake_up_process(worker->task);
4568
4569 /*
4570 * We want to clear UNBOUND but can't directly call
4571 * worker_clr_flags() or adjust nr_running. Atomically
4572 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4573 * @worker will clear REBOUND using worker_clr_flags() when
4574 * it initiates the next execution cycle thus restoring
4575 * concurrency management. Note that when or whether
4576 * @worker clears REBOUND doesn't affect correctness.
4577 *
4578 * ACCESS_ONCE() is necessary because @worker->flags may be
4579 * tested without holding any lock in
4580 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4581 * fail incorrectly leading to premature concurrency
4582 * management operations.
4583 */
4584 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4585 worker_flags |= WORKER_REBOUND;
4586 worker_flags &= ~WORKER_UNBOUND;
4587 ACCESS_ONCE(worker->flags) = worker_flags;
4588 }
4589
4590 spin_unlock_irq(&pool->lock);
4591 }
4592
4593 /**
4594 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4595 * @pool: unbound pool of interest
4596 * @cpu: the CPU which is coming up
4597 *
4598 * An unbound pool may end up with a cpumask which doesn't have any online
4599 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4600 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4601 * online CPU before, cpus_allowed of all its workers should be restored.
4602 */
4603 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4604 {
4605 static cpumask_t cpumask;
4606 struct worker *worker;
4607 int wi;
4608
4609 lockdep_assert_held(&pool->manager_mutex);
4610
4611 /* is @cpu allowed for @pool? */
4612 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4613 return;
4614
4615 /* is @cpu the only online CPU? */
4616 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4617 if (cpumask_weight(&cpumask) != 1)
4618 return;
4619
4620 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4621 for_each_pool_worker(worker, wi, pool)
4622 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4623 pool->attrs->cpumask) < 0);
4624 }
4625
4626 /*
4627 * Workqueues should be brought up before normal priority CPU notifiers.
4628 * This will be registered high priority CPU notifier.
4629 */
4630 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
4631 unsigned long action,
4632 void *hcpu)
4633 {
4634 int cpu = (unsigned long)hcpu;
4635 struct worker_pool *pool;
4636 struct workqueue_struct *wq;
4637 int pi;
4638
4639 switch (action & ~CPU_TASKS_FROZEN) {
4640 case CPU_UP_PREPARE:
4641 for_each_cpu_worker_pool(pool, cpu) {
4642 if (pool->nr_workers)
4643 continue;
4644 if (create_and_start_worker(pool) < 0)
4645 return NOTIFY_BAD;
4646 }
4647 break;
4648
4649 case CPU_DOWN_FAILED:
4650 case CPU_ONLINE:
4651 mutex_lock(&wq_pool_mutex);
4652
4653 for_each_pool(pool, pi) {
4654 mutex_lock(&pool->manager_mutex);
4655
4656 if (pool->cpu == cpu) {
4657 spin_lock_irq(&pool->lock);
4658 pool->flags &= ~POOL_DISASSOCIATED;
4659 spin_unlock_irq(&pool->lock);
4660
4661 rebind_workers(pool);
4662 } else if (pool->cpu < 0) {
4663 restore_unbound_workers_cpumask(pool, cpu);
4664 }
4665
4666 mutex_unlock(&pool->manager_mutex);
4667 }
4668
4669 /* update NUMA affinity of unbound workqueues */
4670 list_for_each_entry(wq, &workqueues, list)
4671 wq_update_unbound_numa(wq, cpu, true);
4672
4673 mutex_unlock(&wq_pool_mutex);
4674 break;
4675 }
4676 return NOTIFY_OK;
4677 }
4678
4679 /*
4680 * Workqueues should be brought down after normal priority CPU notifiers.
4681 * This will be registered as low priority CPU notifier.
4682 */
4683 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4684 unsigned long action,
4685 void *hcpu)
4686 {
4687 int cpu = (unsigned long)hcpu;
4688 struct work_struct unbind_work;
4689 struct workqueue_struct *wq;
4690
4691 switch (action & ~CPU_TASKS_FROZEN) {
4692 case CPU_DOWN_PREPARE:
4693 /* unbinding per-cpu workers should happen on the local CPU */
4694 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4695 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4696
4697 /* update NUMA affinity of unbound workqueues */
4698 mutex_lock(&wq_pool_mutex);
4699 list_for_each_entry(wq, &workqueues, list)
4700 wq_update_unbound_numa(wq, cpu, false);
4701 mutex_unlock(&wq_pool_mutex);
4702
4703 /* wait for per-cpu unbinding to finish */
4704 flush_work(&unbind_work);
4705 break;
4706 }
4707 return NOTIFY_OK;
4708 }
4709
4710 #ifdef CONFIG_SMP
4711
4712 struct work_for_cpu {
4713 struct work_struct work;
4714 long (*fn)(void *);
4715 void *arg;
4716 long ret;
4717 };
4718
4719 static void work_for_cpu_fn(struct work_struct *work)
4720 {
4721 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4722
4723 wfc->ret = wfc->fn(wfc->arg);
4724 }
4725
4726 /**
4727 * work_on_cpu - run a function in user context on a particular cpu
4728 * @cpu: the cpu to run on
4729 * @fn: the function to run
4730 * @arg: the function arg
4731 *
4732 * This will return the value @fn returns.
4733 * It is up to the caller to ensure that the cpu doesn't go offline.
4734 * The caller must not hold any locks which would prevent @fn from completing.
4735 */
4736 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4737 {
4738 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4739
4740 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4741 schedule_work_on(cpu, &wfc.work);
4742 flush_work(&wfc.work);
4743 return wfc.ret;
4744 }
4745 EXPORT_SYMBOL_GPL(work_on_cpu);
4746 #endif /* CONFIG_SMP */
4747
4748 #ifdef CONFIG_FREEZER
4749
4750 /**
4751 * freeze_workqueues_begin - begin freezing workqueues
4752 *
4753 * Start freezing workqueues. After this function returns, all freezable
4754 * workqueues will queue new works to their delayed_works list instead of
4755 * pool->worklist.
4756 *
4757 * CONTEXT:
4758 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4759 */
4760 void freeze_workqueues_begin(void)
4761 {
4762 struct worker_pool *pool;
4763 struct workqueue_struct *wq;
4764 struct pool_workqueue *pwq;
4765 int pi;
4766
4767 mutex_lock(&wq_pool_mutex);
4768
4769 WARN_ON_ONCE(workqueue_freezing);
4770 workqueue_freezing = true;
4771
4772 /* set FREEZING */
4773 for_each_pool(pool, pi) {
4774 spin_lock_irq(&pool->lock);
4775 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4776 pool->flags |= POOL_FREEZING;
4777 spin_unlock_irq(&pool->lock);
4778 }
4779
4780 list_for_each_entry(wq, &workqueues, list) {
4781 mutex_lock(&wq->mutex);
4782 for_each_pwq(pwq, wq)
4783 pwq_adjust_max_active(pwq);
4784 mutex_unlock(&wq->mutex);
4785 }
4786
4787 mutex_unlock(&wq_pool_mutex);
4788 }
4789
4790 /**
4791 * freeze_workqueues_busy - are freezable workqueues still busy?
4792 *
4793 * Check whether freezing is complete. This function must be called
4794 * between freeze_workqueues_begin() and thaw_workqueues().
4795 *
4796 * CONTEXT:
4797 * Grabs and releases wq_pool_mutex.
4798 *
4799 * RETURNS:
4800 * %true if some freezable workqueues are still busy. %false if freezing
4801 * is complete.
4802 */
4803 bool freeze_workqueues_busy(void)
4804 {
4805 bool busy = false;
4806 struct workqueue_struct *wq;
4807 struct pool_workqueue *pwq;
4808
4809 mutex_lock(&wq_pool_mutex);
4810
4811 WARN_ON_ONCE(!workqueue_freezing);
4812
4813 list_for_each_entry(wq, &workqueues, list) {
4814 if (!(wq->flags & WQ_FREEZABLE))
4815 continue;
4816 /*
4817 * nr_active is monotonically decreasing. It's safe
4818 * to peek without lock.
4819 */
4820 rcu_read_lock_sched();
4821 for_each_pwq(pwq, wq) {
4822 WARN_ON_ONCE(pwq->nr_active < 0);
4823 if (pwq->nr_active) {
4824 busy = true;
4825 rcu_read_unlock_sched();
4826 goto out_unlock;
4827 }
4828 }
4829 rcu_read_unlock_sched();
4830 }
4831 out_unlock:
4832 mutex_unlock(&wq_pool_mutex);
4833 return busy;
4834 }
4835
4836 /**
4837 * thaw_workqueues - thaw workqueues
4838 *
4839 * Thaw workqueues. Normal queueing is restored and all collected
4840 * frozen works are transferred to their respective pool worklists.
4841 *
4842 * CONTEXT:
4843 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4844 */
4845 void thaw_workqueues(void)
4846 {
4847 struct workqueue_struct *wq;
4848 struct pool_workqueue *pwq;
4849 struct worker_pool *pool;
4850 int pi;
4851
4852 mutex_lock(&wq_pool_mutex);
4853
4854 if (!workqueue_freezing)
4855 goto out_unlock;
4856
4857 /* clear FREEZING */
4858 for_each_pool(pool, pi) {
4859 spin_lock_irq(&pool->lock);
4860 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4861 pool->flags &= ~POOL_FREEZING;
4862 spin_unlock_irq(&pool->lock);
4863 }
4864
4865 /* restore max_active and repopulate worklist */
4866 list_for_each_entry(wq, &workqueues, list) {
4867 mutex_lock(&wq->mutex);
4868 for_each_pwq(pwq, wq)
4869 pwq_adjust_max_active(pwq);
4870 mutex_unlock(&wq->mutex);
4871 }
4872
4873 workqueue_freezing = false;
4874 out_unlock:
4875 mutex_unlock(&wq_pool_mutex);
4876 }
4877 #endif /* CONFIG_FREEZER */
4878
4879 static void __init wq_numa_init(void)
4880 {
4881 cpumask_var_t *tbl;
4882 int node, cpu;
4883
4884 /* determine NUMA pwq table len - highest node id + 1 */
4885 for_each_node(node)
4886 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4887
4888 if (num_possible_nodes() <= 1)
4889 return;
4890
4891 if (wq_disable_numa) {
4892 pr_info("workqueue: NUMA affinity support disabled\n");
4893 return;
4894 }
4895
4896 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4897 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4898
4899 /*
4900 * We want masks of possible CPUs of each node which isn't readily
4901 * available. Build one from cpu_to_node() which should have been
4902 * fully initialized by now.
4903 */
4904 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4905 BUG_ON(!tbl);
4906
4907 for_each_node(node)
4908 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4909 node_online(node) ? node : NUMA_NO_NODE));
4910
4911 for_each_possible_cpu(cpu) {
4912 node = cpu_to_node(cpu);
4913 if (WARN_ON(node == NUMA_NO_NODE)) {
4914 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4915 /* happens iff arch is bonkers, let's just proceed */
4916 return;
4917 }
4918 cpumask_set_cpu(cpu, tbl[node]);
4919 }
4920
4921 wq_numa_possible_cpumask = tbl;
4922 wq_numa_enabled = true;
4923 }
4924
4925 static int __init init_workqueues(void)
4926 {
4927 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4928 int i, cpu;
4929
4930 /* make sure we have enough bits for OFFQ pool ID */
4931 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4932 WORK_CPU_END * NR_STD_WORKER_POOLS);
4933
4934 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4935
4936 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4937
4938 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4939 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4940
4941 wq_numa_init();
4942
4943 /* initialize CPU pools */
4944 for_each_possible_cpu(cpu) {
4945 struct worker_pool *pool;
4946
4947 i = 0;
4948 for_each_cpu_worker_pool(pool, cpu) {
4949 BUG_ON(init_worker_pool(pool));
4950 pool->cpu = cpu;
4951 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4952 pool->attrs->nice = std_nice[i++];
4953 pool->node = cpu_to_node(cpu);
4954
4955 /* alloc pool ID */
4956 mutex_lock(&wq_pool_mutex);
4957 BUG_ON(worker_pool_assign_id(pool));
4958 mutex_unlock(&wq_pool_mutex);
4959 }
4960 }
4961
4962 /* create the initial worker */
4963 for_each_online_cpu(cpu) {
4964 struct worker_pool *pool;
4965
4966 for_each_cpu_worker_pool(pool, cpu) {
4967 pool->flags &= ~POOL_DISASSOCIATED;
4968 BUG_ON(create_and_start_worker(pool) < 0);
4969 }
4970 }
4971
4972 /* create default unbound wq attrs */
4973 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4974 struct workqueue_attrs *attrs;
4975
4976 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4977 attrs->nice = std_nice[i];
4978 unbound_std_wq_attrs[i] = attrs;
4979 }
4980
4981 system_wq = alloc_workqueue("events", 0, 0);
4982 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4983 system_long_wq = alloc_workqueue("events_long", 0, 0);
4984 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4985 WQ_UNBOUND_MAX_ACTIVE);
4986 system_freezable_wq = alloc_workqueue("events_freezable",
4987 WQ_FREEZABLE, 0);
4988 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4989 !system_unbound_wq || !system_freezable_wq);
4990 return 0;
4991 }
4992 early_initcall(init_workqueues);