fe7c4b91d2e73ab3227d6cdbf7d15a0a05621fb1
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50
51 #include "workqueue_internal.h"
52
53 enum {
54 /*
55 * worker_pool flags
56 *
57 * A bound pool is either associated or disassociated with its CPU.
58 * While associated (!DISASSOCIATED), all workers are bound to the
59 * CPU and none has %WORKER_UNBOUND set and concurrency management
60 * is in effect.
61 *
62 * While DISASSOCIATED, the cpu may be offline and all workers have
63 * %WORKER_UNBOUND set and concurrency management disabled, and may
64 * be executing on any CPU. The pool behaves as an unbound one.
65 *
66 * Note that DISASSOCIATED should be flipped only while holding
67 * manager_mutex to avoid changing binding state while
68 * create_worker() is in progress.
69 */
70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
72 POOL_FREEZING = 1 << 3, /* freeze in progress */
73
74 /* worker flags */
75 WORKER_STARTED = 1 << 0, /* started */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
78 WORKER_PREP = 1 << 3, /* preparing to run works */
79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
82
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
85
86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
87
88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
90
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give -20.
103 */
104 RESCUER_NICE_LEVEL = -20,
105 HIGHPRI_NICE_LEVEL = -20,
106
107 WQ_NAME_LEN = 24,
108 };
109
110 /*
111 * Structure fields follow one of the following exclusion rules.
112 *
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
115 *
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
119 * L: pool->lock protected. Access with pool->lock held.
120 *
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
125 *
126 * MG: pool->manager_mutex and pool->lock protected. Writes require both
127 * locks. Reads can happen under either lock.
128 *
129 * PL: wq_pool_mutex protected.
130 *
131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
132 *
133 * WQ: wq->mutex protected.
134 *
135 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
136 *
137 * MD: wq_mayday_lock protected.
138 */
139
140 /* struct worker is defined in workqueue_internal.h */
141
142 struct worker_pool {
143 spinlock_t lock; /* the pool lock */
144 int cpu; /* I: the associated cpu */
145 int node; /* I: the associated node ID */
146 int id; /* I: pool ID */
147 unsigned int flags; /* X: flags */
148
149 struct list_head worklist; /* L: list of pending works */
150 int nr_workers; /* L: total number of workers */
151
152 /* nr_idle includes the ones off idle_list for rebinding */
153 int nr_idle; /* L: currently idle ones */
154
155 struct list_head idle_list; /* X: list of idle workers */
156 struct timer_list idle_timer; /* L: worker idle timeout */
157 struct timer_list mayday_timer; /* L: SOS timer for workers */
158
159 /* a workers is either on busy_hash or idle_list, or the manager */
160 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
161 /* L: hash of busy workers */
162
163 /* see manage_workers() for details on the two manager mutexes */
164 struct mutex manager_arb; /* manager arbitration */
165 struct mutex manager_mutex; /* manager exclusion */
166 struct idr worker_idr; /* MG: worker IDs and iteration */
167
168 struct workqueue_attrs *attrs; /* I: worker attributes */
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
171
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
184 } ____cacheline_aligned_in_smp;
185
186 /*
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
191 */
192 struct pool_workqueue {
193 struct worker_pool *pool; /* I: the associated pool */
194 struct workqueue_struct *wq; /* I: the owning workqueue */
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
197 int refcnt; /* L: reference count */
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
200 int nr_active; /* L: nr of active works */
201 int max_active; /* L: max active works */
202 struct list_head delayed_works; /* L: delayed works */
203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
204 struct list_head mayday_node; /* MD: node on wq->maydays */
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
210 * determined without grabbing wq->mutex.
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215
216 /*
217 * Structure used to wait for workqueue flush.
218 */
219 struct wq_flusher {
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
222 struct completion done; /* flush completion */
223 };
224
225 struct wq_device;
226
227 /*
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
230 */
231 struct workqueue_struct {
232 struct list_head pwqs; /* WR: all pwqs of this wq */
233 struct list_head list; /* PL: list of all workqueues */
234
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
238 atomic_t nr_pwqs_to_flush; /* flush in progress */
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
242
243 struct list_head maydays; /* MD: pwqs requesting rescue */
244 struct worker *rescuer; /* I: rescue worker */
245
246 int nr_drainers; /* WQ: drain in progress */
247 int saved_max_active; /* WQ: saved pwq max_active */
248
249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
251
252 #ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256 struct lockdep_map lockdep_map;
257 #endif
258 char name[WQ_NAME_LEN]; /* I: workqueue name */
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265
266 static struct kmem_cache *pwq_cache;
267
268 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269 static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
272 static bool wq_disable_numa;
273 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
275 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
276
277 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
278 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
279
280 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
281 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
282
283 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
284 static bool workqueue_freezing; /* PL: have wqs started freezing? */
285
286 /* the per-cpu worker pools */
287 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
288 cpu_worker_pools);
289
290 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
291
292 /* PL: hash of all unbound pools keyed by pool->attrs */
293 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
294
295 /* I: attributes used when instantiating standard unbound pools on demand */
296 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
297
298 /* I: attributes used when instantiating ordered pools on demand */
299 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
300
301 struct workqueue_struct *system_wq __read_mostly;
302 EXPORT_SYMBOL(system_wq);
303 struct workqueue_struct *system_highpri_wq __read_mostly;
304 EXPORT_SYMBOL_GPL(system_highpri_wq);
305 struct workqueue_struct *system_long_wq __read_mostly;
306 EXPORT_SYMBOL_GPL(system_long_wq);
307 struct workqueue_struct *system_unbound_wq __read_mostly;
308 EXPORT_SYMBOL_GPL(system_unbound_wq);
309 struct workqueue_struct *system_freezable_wq __read_mostly;
310 EXPORT_SYMBOL_GPL(system_freezable_wq);
311
312 static int worker_thread(void *__worker);
313 static void copy_workqueue_attrs(struct workqueue_attrs *to,
314 const struct workqueue_attrs *from);
315
316 #define CREATE_TRACE_POINTS
317 #include <trace/events/workqueue.h>
318
319 #define assert_rcu_or_pool_mutex() \
320 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
321 lockdep_is_held(&wq_pool_mutex), \
322 "sched RCU or wq_pool_mutex should be held")
323
324 #define assert_rcu_or_wq_mutex(wq) \
325 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
326 lockdep_is_held(&wq->mutex), \
327 "sched RCU or wq->mutex should be held")
328
329 #ifdef CONFIG_LOCKDEP
330 #define assert_manager_or_pool_lock(pool) \
331 WARN_ONCE(debug_locks && \
332 !lockdep_is_held(&(pool)->manager_mutex) && \
333 !lockdep_is_held(&(pool)->lock), \
334 "pool->manager_mutex or ->lock should be held")
335 #else
336 #define assert_manager_or_pool_lock(pool) do { } while (0)
337 #endif
338
339 #define for_each_cpu_worker_pool(pool, cpu) \
340 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
341 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
342 (pool)++)
343
344 /**
345 * for_each_pool - iterate through all worker_pools in the system
346 * @pool: iteration cursor
347 * @pi: integer used for iteration
348 *
349 * This must be called either with wq_pool_mutex held or sched RCU read
350 * locked. If the pool needs to be used beyond the locking in effect, the
351 * caller is responsible for guaranteeing that the pool stays online.
352 *
353 * The if/else clause exists only for the lockdep assertion and can be
354 * ignored.
355 */
356 #define for_each_pool(pool, pi) \
357 idr_for_each_entry(&worker_pool_idr, pool, pi) \
358 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
359 else
360
361 /**
362 * for_each_pool_worker - iterate through all workers of a worker_pool
363 * @worker: iteration cursor
364 * @wi: integer used for iteration
365 * @pool: worker_pool to iterate workers of
366 *
367 * This must be called with either @pool->manager_mutex or ->lock held.
368 *
369 * The if/else clause exists only for the lockdep assertion and can be
370 * ignored.
371 */
372 #define for_each_pool_worker(worker, wi, pool) \
373 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
374 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
375 else
376
377 /**
378 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
379 * @pwq: iteration cursor
380 * @wq: the target workqueue
381 *
382 * This must be called either with wq->mutex held or sched RCU read locked.
383 * If the pwq needs to be used beyond the locking in effect, the caller is
384 * responsible for guaranteeing that the pwq stays online.
385 *
386 * The if/else clause exists only for the lockdep assertion and can be
387 * ignored.
388 */
389 #define for_each_pwq(pwq, wq) \
390 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
391 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
392 else
393
394 #ifdef CONFIG_DEBUG_OBJECTS_WORK
395
396 static struct debug_obj_descr work_debug_descr;
397
398 static void *work_debug_hint(void *addr)
399 {
400 return ((struct work_struct *) addr)->func;
401 }
402
403 /*
404 * fixup_init is called when:
405 * - an active object is initialized
406 */
407 static int work_fixup_init(void *addr, enum debug_obj_state state)
408 {
409 struct work_struct *work = addr;
410
411 switch (state) {
412 case ODEBUG_STATE_ACTIVE:
413 cancel_work_sync(work);
414 debug_object_init(work, &work_debug_descr);
415 return 1;
416 default:
417 return 0;
418 }
419 }
420
421 /*
422 * fixup_activate is called when:
423 * - an active object is activated
424 * - an unknown object is activated (might be a statically initialized object)
425 */
426 static int work_fixup_activate(void *addr, enum debug_obj_state state)
427 {
428 struct work_struct *work = addr;
429
430 switch (state) {
431
432 case ODEBUG_STATE_NOTAVAILABLE:
433 /*
434 * This is not really a fixup. The work struct was
435 * statically initialized. We just make sure that it
436 * is tracked in the object tracker.
437 */
438 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
439 debug_object_init(work, &work_debug_descr);
440 debug_object_activate(work, &work_debug_descr);
441 return 0;
442 }
443 WARN_ON_ONCE(1);
444 return 0;
445
446 case ODEBUG_STATE_ACTIVE:
447 WARN_ON(1);
448
449 default:
450 return 0;
451 }
452 }
453
454 /*
455 * fixup_free is called when:
456 * - an active object is freed
457 */
458 static int work_fixup_free(void *addr, enum debug_obj_state state)
459 {
460 struct work_struct *work = addr;
461
462 switch (state) {
463 case ODEBUG_STATE_ACTIVE:
464 cancel_work_sync(work);
465 debug_object_free(work, &work_debug_descr);
466 return 1;
467 default:
468 return 0;
469 }
470 }
471
472 static struct debug_obj_descr work_debug_descr = {
473 .name = "work_struct",
474 .debug_hint = work_debug_hint,
475 .fixup_init = work_fixup_init,
476 .fixup_activate = work_fixup_activate,
477 .fixup_free = work_fixup_free,
478 };
479
480 static inline void debug_work_activate(struct work_struct *work)
481 {
482 debug_object_activate(work, &work_debug_descr);
483 }
484
485 static inline void debug_work_deactivate(struct work_struct *work)
486 {
487 debug_object_deactivate(work, &work_debug_descr);
488 }
489
490 void __init_work(struct work_struct *work, int onstack)
491 {
492 if (onstack)
493 debug_object_init_on_stack(work, &work_debug_descr);
494 else
495 debug_object_init(work, &work_debug_descr);
496 }
497 EXPORT_SYMBOL_GPL(__init_work);
498
499 void destroy_work_on_stack(struct work_struct *work)
500 {
501 debug_object_free(work, &work_debug_descr);
502 }
503 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
504
505 #else
506 static inline void debug_work_activate(struct work_struct *work) { }
507 static inline void debug_work_deactivate(struct work_struct *work) { }
508 #endif
509
510 /* allocate ID and assign it to @pool */
511 static int worker_pool_assign_id(struct worker_pool *pool)
512 {
513 int ret;
514
515 lockdep_assert_held(&wq_pool_mutex);
516
517 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
518 if (ret >= 0) {
519 pool->id = ret;
520 return 0;
521 }
522 return ret;
523 }
524
525 /**
526 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
527 * @wq: the target workqueue
528 * @node: the node ID
529 *
530 * This must be called either with pwq_lock held or sched RCU read locked.
531 * If the pwq needs to be used beyond the locking in effect, the caller is
532 * responsible for guaranteeing that the pwq stays online.
533 */
534 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
535 int node)
536 {
537 assert_rcu_or_wq_mutex(wq);
538 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
539 }
540
541 static unsigned int work_color_to_flags(int color)
542 {
543 return color << WORK_STRUCT_COLOR_SHIFT;
544 }
545
546 static int get_work_color(struct work_struct *work)
547 {
548 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
549 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
550 }
551
552 static int work_next_color(int color)
553 {
554 return (color + 1) % WORK_NR_COLORS;
555 }
556
557 /*
558 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
559 * contain the pointer to the queued pwq. Once execution starts, the flag
560 * is cleared and the high bits contain OFFQ flags and pool ID.
561 *
562 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
563 * and clear_work_data() can be used to set the pwq, pool or clear
564 * work->data. These functions should only be called while the work is
565 * owned - ie. while the PENDING bit is set.
566 *
567 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
568 * corresponding to a work. Pool is available once the work has been
569 * queued anywhere after initialization until it is sync canceled. pwq is
570 * available only while the work item is queued.
571 *
572 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
573 * canceled. While being canceled, a work item may have its PENDING set
574 * but stay off timer and worklist for arbitrarily long and nobody should
575 * try to steal the PENDING bit.
576 */
577 static inline void set_work_data(struct work_struct *work, unsigned long data,
578 unsigned long flags)
579 {
580 WARN_ON_ONCE(!work_pending(work));
581 atomic_long_set(&work->data, data | flags | work_static(work));
582 }
583
584 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
585 unsigned long extra_flags)
586 {
587 set_work_data(work, (unsigned long)pwq,
588 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
589 }
590
591 static void set_work_pool_and_keep_pending(struct work_struct *work,
592 int pool_id)
593 {
594 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
595 WORK_STRUCT_PENDING);
596 }
597
598 static void set_work_pool_and_clear_pending(struct work_struct *work,
599 int pool_id)
600 {
601 /*
602 * The following wmb is paired with the implied mb in
603 * test_and_set_bit(PENDING) and ensures all updates to @work made
604 * here are visible to and precede any updates by the next PENDING
605 * owner.
606 */
607 smp_wmb();
608 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
609 }
610
611 static void clear_work_data(struct work_struct *work)
612 {
613 smp_wmb(); /* see set_work_pool_and_clear_pending() */
614 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
615 }
616
617 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
618 {
619 unsigned long data = atomic_long_read(&work->data);
620
621 if (data & WORK_STRUCT_PWQ)
622 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
623 else
624 return NULL;
625 }
626
627 /**
628 * get_work_pool - return the worker_pool a given work was associated with
629 * @work: the work item of interest
630 *
631 * Return the worker_pool @work was last associated with. %NULL if none.
632 *
633 * Pools are created and destroyed under wq_pool_mutex, and allows read
634 * access under sched-RCU read lock. As such, this function should be
635 * called under wq_pool_mutex or with preemption disabled.
636 *
637 * All fields of the returned pool are accessible as long as the above
638 * mentioned locking is in effect. If the returned pool needs to be used
639 * beyond the critical section, the caller is responsible for ensuring the
640 * returned pool is and stays online.
641 */
642 static struct worker_pool *get_work_pool(struct work_struct *work)
643 {
644 unsigned long data = atomic_long_read(&work->data);
645 int pool_id;
646
647 assert_rcu_or_pool_mutex();
648
649 if (data & WORK_STRUCT_PWQ)
650 return ((struct pool_workqueue *)
651 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
652
653 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
654 if (pool_id == WORK_OFFQ_POOL_NONE)
655 return NULL;
656
657 return idr_find(&worker_pool_idr, pool_id);
658 }
659
660 /**
661 * get_work_pool_id - return the worker pool ID a given work is associated with
662 * @work: the work item of interest
663 *
664 * Return the worker_pool ID @work was last associated with.
665 * %WORK_OFFQ_POOL_NONE if none.
666 */
667 static int get_work_pool_id(struct work_struct *work)
668 {
669 unsigned long data = atomic_long_read(&work->data);
670
671 if (data & WORK_STRUCT_PWQ)
672 return ((struct pool_workqueue *)
673 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
674
675 return data >> WORK_OFFQ_POOL_SHIFT;
676 }
677
678 static void mark_work_canceling(struct work_struct *work)
679 {
680 unsigned long pool_id = get_work_pool_id(work);
681
682 pool_id <<= WORK_OFFQ_POOL_SHIFT;
683 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
684 }
685
686 static bool work_is_canceling(struct work_struct *work)
687 {
688 unsigned long data = atomic_long_read(&work->data);
689
690 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
691 }
692
693 /*
694 * Policy functions. These define the policies on how the global worker
695 * pools are managed. Unless noted otherwise, these functions assume that
696 * they're being called with pool->lock held.
697 */
698
699 static bool __need_more_worker(struct worker_pool *pool)
700 {
701 return !atomic_read(&pool->nr_running);
702 }
703
704 /*
705 * Need to wake up a worker? Called from anything but currently
706 * running workers.
707 *
708 * Note that, because unbound workers never contribute to nr_running, this
709 * function will always return %true for unbound pools as long as the
710 * worklist isn't empty.
711 */
712 static bool need_more_worker(struct worker_pool *pool)
713 {
714 return !list_empty(&pool->worklist) && __need_more_worker(pool);
715 }
716
717 /* Can I start working? Called from busy but !running workers. */
718 static bool may_start_working(struct worker_pool *pool)
719 {
720 return pool->nr_idle;
721 }
722
723 /* Do I need to keep working? Called from currently running workers. */
724 static bool keep_working(struct worker_pool *pool)
725 {
726 return !list_empty(&pool->worklist) &&
727 atomic_read(&pool->nr_running) <= 1;
728 }
729
730 /* Do we need a new worker? Called from manager. */
731 static bool need_to_create_worker(struct worker_pool *pool)
732 {
733 return need_more_worker(pool) && !may_start_working(pool);
734 }
735
736 /* Do I need to be the manager? */
737 static bool need_to_manage_workers(struct worker_pool *pool)
738 {
739 return need_to_create_worker(pool) ||
740 (pool->flags & POOL_MANAGE_WORKERS);
741 }
742
743 /* Do we have too many workers and should some go away? */
744 static bool too_many_workers(struct worker_pool *pool)
745 {
746 bool managing = mutex_is_locked(&pool->manager_arb);
747 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
748 int nr_busy = pool->nr_workers - nr_idle;
749
750 /*
751 * nr_idle and idle_list may disagree if idle rebinding is in
752 * progress. Never return %true if idle_list is empty.
753 */
754 if (list_empty(&pool->idle_list))
755 return false;
756
757 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
758 }
759
760 /*
761 * Wake up functions.
762 */
763
764 /* Return the first worker. Safe with preemption disabled */
765 static struct worker *first_worker(struct worker_pool *pool)
766 {
767 if (unlikely(list_empty(&pool->idle_list)))
768 return NULL;
769
770 return list_first_entry(&pool->idle_list, struct worker, entry);
771 }
772
773 /**
774 * wake_up_worker - wake up an idle worker
775 * @pool: worker pool to wake worker from
776 *
777 * Wake up the first idle worker of @pool.
778 *
779 * CONTEXT:
780 * spin_lock_irq(pool->lock).
781 */
782 static void wake_up_worker(struct worker_pool *pool)
783 {
784 struct worker *worker = first_worker(pool);
785
786 if (likely(worker))
787 wake_up_process(worker->task);
788 }
789
790 /**
791 * wq_worker_waking_up - a worker is waking up
792 * @task: task waking up
793 * @cpu: CPU @task is waking up to
794 *
795 * This function is called during try_to_wake_up() when a worker is
796 * being awoken.
797 *
798 * CONTEXT:
799 * spin_lock_irq(rq->lock)
800 */
801 void wq_worker_waking_up(struct task_struct *task, int cpu)
802 {
803 struct worker *worker = kthread_data(task);
804
805 if (!(worker->flags & WORKER_NOT_RUNNING)) {
806 WARN_ON_ONCE(worker->pool->cpu != cpu);
807 atomic_inc(&worker->pool->nr_running);
808 }
809 }
810
811 /**
812 * wq_worker_sleeping - a worker is going to sleep
813 * @task: task going to sleep
814 * @cpu: CPU in question, must be the current CPU number
815 *
816 * This function is called during schedule() when a busy worker is
817 * going to sleep. Worker on the same cpu can be woken up by
818 * returning pointer to its task.
819 *
820 * CONTEXT:
821 * spin_lock_irq(rq->lock)
822 *
823 * RETURNS:
824 * Worker task on @cpu to wake up, %NULL if none.
825 */
826 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
827 {
828 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
829 struct worker_pool *pool;
830
831 /*
832 * Rescuers, which may not have all the fields set up like normal
833 * workers, also reach here, let's not access anything before
834 * checking NOT_RUNNING.
835 */
836 if (worker->flags & WORKER_NOT_RUNNING)
837 return NULL;
838
839 pool = worker->pool;
840
841 /* this can only happen on the local cpu */
842 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
843 return NULL;
844
845 /*
846 * The counterpart of the following dec_and_test, implied mb,
847 * worklist not empty test sequence is in insert_work().
848 * Please read comment there.
849 *
850 * NOT_RUNNING is clear. This means that we're bound to and
851 * running on the local cpu w/ rq lock held and preemption
852 * disabled, which in turn means that none else could be
853 * manipulating idle_list, so dereferencing idle_list without pool
854 * lock is safe.
855 */
856 if (atomic_dec_and_test(&pool->nr_running) &&
857 !list_empty(&pool->worklist))
858 to_wakeup = first_worker(pool);
859 return to_wakeup ? to_wakeup->task : NULL;
860 }
861
862 /**
863 * worker_set_flags - set worker flags and adjust nr_running accordingly
864 * @worker: self
865 * @flags: flags to set
866 * @wakeup: wakeup an idle worker if necessary
867 *
868 * Set @flags in @worker->flags and adjust nr_running accordingly. If
869 * nr_running becomes zero and @wakeup is %true, an idle worker is
870 * woken up.
871 *
872 * CONTEXT:
873 * spin_lock_irq(pool->lock)
874 */
875 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
876 bool wakeup)
877 {
878 struct worker_pool *pool = worker->pool;
879
880 WARN_ON_ONCE(worker->task != current);
881
882 /*
883 * If transitioning into NOT_RUNNING, adjust nr_running and
884 * wake up an idle worker as necessary if requested by
885 * @wakeup.
886 */
887 if ((flags & WORKER_NOT_RUNNING) &&
888 !(worker->flags & WORKER_NOT_RUNNING)) {
889 if (wakeup) {
890 if (atomic_dec_and_test(&pool->nr_running) &&
891 !list_empty(&pool->worklist))
892 wake_up_worker(pool);
893 } else
894 atomic_dec(&pool->nr_running);
895 }
896
897 worker->flags |= flags;
898 }
899
900 /**
901 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
902 * @worker: self
903 * @flags: flags to clear
904 *
905 * Clear @flags in @worker->flags and adjust nr_running accordingly.
906 *
907 * CONTEXT:
908 * spin_lock_irq(pool->lock)
909 */
910 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
911 {
912 struct worker_pool *pool = worker->pool;
913 unsigned int oflags = worker->flags;
914
915 WARN_ON_ONCE(worker->task != current);
916
917 worker->flags &= ~flags;
918
919 /*
920 * If transitioning out of NOT_RUNNING, increment nr_running. Note
921 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
922 * of multiple flags, not a single flag.
923 */
924 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
925 if (!(worker->flags & WORKER_NOT_RUNNING))
926 atomic_inc(&pool->nr_running);
927 }
928
929 /**
930 * find_worker_executing_work - find worker which is executing a work
931 * @pool: pool of interest
932 * @work: work to find worker for
933 *
934 * Find a worker which is executing @work on @pool by searching
935 * @pool->busy_hash which is keyed by the address of @work. For a worker
936 * to match, its current execution should match the address of @work and
937 * its work function. This is to avoid unwanted dependency between
938 * unrelated work executions through a work item being recycled while still
939 * being executed.
940 *
941 * This is a bit tricky. A work item may be freed once its execution
942 * starts and nothing prevents the freed area from being recycled for
943 * another work item. If the same work item address ends up being reused
944 * before the original execution finishes, workqueue will identify the
945 * recycled work item as currently executing and make it wait until the
946 * current execution finishes, introducing an unwanted dependency.
947 *
948 * This function checks the work item address and work function to avoid
949 * false positives. Note that this isn't complete as one may construct a
950 * work function which can introduce dependency onto itself through a
951 * recycled work item. Well, if somebody wants to shoot oneself in the
952 * foot that badly, there's only so much we can do, and if such deadlock
953 * actually occurs, it should be easy to locate the culprit work function.
954 *
955 * CONTEXT:
956 * spin_lock_irq(pool->lock).
957 *
958 * RETURNS:
959 * Pointer to worker which is executing @work if found, NULL
960 * otherwise.
961 */
962 static struct worker *find_worker_executing_work(struct worker_pool *pool,
963 struct work_struct *work)
964 {
965 struct worker *worker;
966
967 hash_for_each_possible(pool->busy_hash, worker, hentry,
968 (unsigned long)work)
969 if (worker->current_work == work &&
970 worker->current_func == work->func)
971 return worker;
972
973 return NULL;
974 }
975
976 /**
977 * move_linked_works - move linked works to a list
978 * @work: start of series of works to be scheduled
979 * @head: target list to append @work to
980 * @nextp: out paramter for nested worklist walking
981 *
982 * Schedule linked works starting from @work to @head. Work series to
983 * be scheduled starts at @work and includes any consecutive work with
984 * WORK_STRUCT_LINKED set in its predecessor.
985 *
986 * If @nextp is not NULL, it's updated to point to the next work of
987 * the last scheduled work. This allows move_linked_works() to be
988 * nested inside outer list_for_each_entry_safe().
989 *
990 * CONTEXT:
991 * spin_lock_irq(pool->lock).
992 */
993 static void move_linked_works(struct work_struct *work, struct list_head *head,
994 struct work_struct **nextp)
995 {
996 struct work_struct *n;
997
998 /*
999 * Linked worklist will always end before the end of the list,
1000 * use NULL for list head.
1001 */
1002 list_for_each_entry_safe_from(work, n, NULL, entry) {
1003 list_move_tail(&work->entry, head);
1004 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1005 break;
1006 }
1007
1008 /*
1009 * If we're already inside safe list traversal and have moved
1010 * multiple works to the scheduled queue, the next position
1011 * needs to be updated.
1012 */
1013 if (nextp)
1014 *nextp = n;
1015 }
1016
1017 /**
1018 * get_pwq - get an extra reference on the specified pool_workqueue
1019 * @pwq: pool_workqueue to get
1020 *
1021 * Obtain an extra reference on @pwq. The caller should guarantee that
1022 * @pwq has positive refcnt and be holding the matching pool->lock.
1023 */
1024 static void get_pwq(struct pool_workqueue *pwq)
1025 {
1026 lockdep_assert_held(&pwq->pool->lock);
1027 WARN_ON_ONCE(pwq->refcnt <= 0);
1028 pwq->refcnt++;
1029 }
1030
1031 /**
1032 * put_pwq - put a pool_workqueue reference
1033 * @pwq: pool_workqueue to put
1034 *
1035 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1036 * destruction. The caller should be holding the matching pool->lock.
1037 */
1038 static void put_pwq(struct pool_workqueue *pwq)
1039 {
1040 lockdep_assert_held(&pwq->pool->lock);
1041 if (likely(--pwq->refcnt))
1042 return;
1043 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1044 return;
1045 /*
1046 * @pwq can't be released under pool->lock, bounce to
1047 * pwq_unbound_release_workfn(). This never recurses on the same
1048 * pool->lock as this path is taken only for unbound workqueues and
1049 * the release work item is scheduled on a per-cpu workqueue. To
1050 * avoid lockdep warning, unbound pool->locks are given lockdep
1051 * subclass of 1 in get_unbound_pool().
1052 */
1053 schedule_work(&pwq->unbound_release_work);
1054 }
1055
1056 /**
1057 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1058 * @pwq: pool_workqueue to put (can be %NULL)
1059 *
1060 * put_pwq() with locking. This function also allows %NULL @pwq.
1061 */
1062 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1063 {
1064 if (pwq) {
1065 /*
1066 * As both pwqs and pools are sched-RCU protected, the
1067 * following lock operations are safe.
1068 */
1069 spin_lock_irq(&pwq->pool->lock);
1070 put_pwq(pwq);
1071 spin_unlock_irq(&pwq->pool->lock);
1072 }
1073 }
1074
1075 static void pwq_activate_delayed_work(struct work_struct *work)
1076 {
1077 struct pool_workqueue *pwq = get_work_pwq(work);
1078
1079 trace_workqueue_activate_work(work);
1080 move_linked_works(work, &pwq->pool->worklist, NULL);
1081 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1082 pwq->nr_active++;
1083 }
1084
1085 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1086 {
1087 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1088 struct work_struct, entry);
1089
1090 pwq_activate_delayed_work(work);
1091 }
1092
1093 /**
1094 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1095 * @pwq: pwq of interest
1096 * @color: color of work which left the queue
1097 *
1098 * A work either has completed or is removed from pending queue,
1099 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1100 *
1101 * CONTEXT:
1102 * spin_lock_irq(pool->lock).
1103 */
1104 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1105 {
1106 /* uncolored work items don't participate in flushing or nr_active */
1107 if (color == WORK_NO_COLOR)
1108 goto out_put;
1109
1110 pwq->nr_in_flight[color]--;
1111
1112 pwq->nr_active--;
1113 if (!list_empty(&pwq->delayed_works)) {
1114 /* one down, submit a delayed one */
1115 if (pwq->nr_active < pwq->max_active)
1116 pwq_activate_first_delayed(pwq);
1117 }
1118
1119 /* is flush in progress and are we at the flushing tip? */
1120 if (likely(pwq->flush_color != color))
1121 goto out_put;
1122
1123 /* are there still in-flight works? */
1124 if (pwq->nr_in_flight[color])
1125 goto out_put;
1126
1127 /* this pwq is done, clear flush_color */
1128 pwq->flush_color = -1;
1129
1130 /*
1131 * If this was the last pwq, wake up the first flusher. It
1132 * will handle the rest.
1133 */
1134 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1135 complete(&pwq->wq->first_flusher->done);
1136 out_put:
1137 put_pwq(pwq);
1138 }
1139
1140 /**
1141 * try_to_grab_pending - steal work item from worklist and disable irq
1142 * @work: work item to steal
1143 * @is_dwork: @work is a delayed_work
1144 * @flags: place to store irq state
1145 *
1146 * Try to grab PENDING bit of @work. This function can handle @work in any
1147 * stable state - idle, on timer or on worklist. Return values are
1148 *
1149 * 1 if @work was pending and we successfully stole PENDING
1150 * 0 if @work was idle and we claimed PENDING
1151 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1152 * -ENOENT if someone else is canceling @work, this state may persist
1153 * for arbitrarily long
1154 *
1155 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1156 * interrupted while holding PENDING and @work off queue, irq must be
1157 * disabled on entry. This, combined with delayed_work->timer being
1158 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1159 *
1160 * On successful return, >= 0, irq is disabled and the caller is
1161 * responsible for releasing it using local_irq_restore(*@flags).
1162 *
1163 * This function is safe to call from any context including IRQ handler.
1164 */
1165 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1166 unsigned long *flags)
1167 {
1168 struct worker_pool *pool;
1169 struct pool_workqueue *pwq;
1170
1171 local_irq_save(*flags);
1172
1173 /* try to steal the timer if it exists */
1174 if (is_dwork) {
1175 struct delayed_work *dwork = to_delayed_work(work);
1176
1177 /*
1178 * dwork->timer is irqsafe. If del_timer() fails, it's
1179 * guaranteed that the timer is not queued anywhere and not
1180 * running on the local CPU.
1181 */
1182 if (likely(del_timer(&dwork->timer)))
1183 return 1;
1184 }
1185
1186 /* try to claim PENDING the normal way */
1187 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1188 return 0;
1189
1190 /*
1191 * The queueing is in progress, or it is already queued. Try to
1192 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1193 */
1194 pool = get_work_pool(work);
1195 if (!pool)
1196 goto fail;
1197
1198 spin_lock(&pool->lock);
1199 /*
1200 * work->data is guaranteed to point to pwq only while the work
1201 * item is queued on pwq->wq, and both updating work->data to point
1202 * to pwq on queueing and to pool on dequeueing are done under
1203 * pwq->pool->lock. This in turn guarantees that, if work->data
1204 * points to pwq which is associated with a locked pool, the work
1205 * item is currently queued on that pool.
1206 */
1207 pwq = get_work_pwq(work);
1208 if (pwq && pwq->pool == pool) {
1209 debug_work_deactivate(work);
1210
1211 /*
1212 * A delayed work item cannot be grabbed directly because
1213 * it might have linked NO_COLOR work items which, if left
1214 * on the delayed_list, will confuse pwq->nr_active
1215 * management later on and cause stall. Make sure the work
1216 * item is activated before grabbing.
1217 */
1218 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1219 pwq_activate_delayed_work(work);
1220
1221 list_del_init(&work->entry);
1222 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1223
1224 /* work->data points to pwq iff queued, point to pool */
1225 set_work_pool_and_keep_pending(work, pool->id);
1226
1227 spin_unlock(&pool->lock);
1228 return 1;
1229 }
1230 spin_unlock(&pool->lock);
1231 fail:
1232 local_irq_restore(*flags);
1233 if (work_is_canceling(work))
1234 return -ENOENT;
1235 cpu_relax();
1236 return -EAGAIN;
1237 }
1238
1239 /**
1240 * insert_work - insert a work into a pool
1241 * @pwq: pwq @work belongs to
1242 * @work: work to insert
1243 * @head: insertion point
1244 * @extra_flags: extra WORK_STRUCT_* flags to set
1245 *
1246 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1247 * work_struct flags.
1248 *
1249 * CONTEXT:
1250 * spin_lock_irq(pool->lock).
1251 */
1252 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1253 struct list_head *head, unsigned int extra_flags)
1254 {
1255 struct worker_pool *pool = pwq->pool;
1256
1257 /* we own @work, set data and link */
1258 set_work_pwq(work, pwq, extra_flags);
1259 list_add_tail(&work->entry, head);
1260 get_pwq(pwq);
1261
1262 /*
1263 * Ensure either wq_worker_sleeping() sees the above
1264 * list_add_tail() or we see zero nr_running to avoid workers lying
1265 * around lazily while there are works to be processed.
1266 */
1267 smp_mb();
1268
1269 if (__need_more_worker(pool))
1270 wake_up_worker(pool);
1271 }
1272
1273 /*
1274 * Test whether @work is being queued from another work executing on the
1275 * same workqueue.
1276 */
1277 static bool is_chained_work(struct workqueue_struct *wq)
1278 {
1279 struct worker *worker;
1280
1281 worker = current_wq_worker();
1282 /*
1283 * Return %true iff I'm a worker execuing a work item on @wq. If
1284 * I'm @worker, it's safe to dereference it without locking.
1285 */
1286 return worker && worker->current_pwq->wq == wq;
1287 }
1288
1289 static void __queue_work(int cpu, struct workqueue_struct *wq,
1290 struct work_struct *work)
1291 {
1292 struct pool_workqueue *pwq;
1293 struct worker_pool *last_pool;
1294 struct list_head *worklist;
1295 unsigned int work_flags;
1296 unsigned int req_cpu = cpu;
1297
1298 /*
1299 * While a work item is PENDING && off queue, a task trying to
1300 * steal the PENDING will busy-loop waiting for it to either get
1301 * queued or lose PENDING. Grabbing PENDING and queueing should
1302 * happen with IRQ disabled.
1303 */
1304 WARN_ON_ONCE(!irqs_disabled());
1305
1306 debug_work_activate(work);
1307
1308 /* if dying, only works from the same workqueue are allowed */
1309 if (unlikely(wq->flags & __WQ_DRAINING) &&
1310 WARN_ON_ONCE(!is_chained_work(wq)))
1311 return;
1312 retry:
1313 if (req_cpu == WORK_CPU_UNBOUND)
1314 cpu = raw_smp_processor_id();
1315
1316 /* pwq which will be used unless @work is executing elsewhere */
1317 if (!(wq->flags & WQ_UNBOUND))
1318 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1319 else
1320 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1321
1322 /*
1323 * If @work was previously on a different pool, it might still be
1324 * running there, in which case the work needs to be queued on that
1325 * pool to guarantee non-reentrancy.
1326 */
1327 last_pool = get_work_pool(work);
1328 if (last_pool && last_pool != pwq->pool) {
1329 struct worker *worker;
1330
1331 spin_lock(&last_pool->lock);
1332
1333 worker = find_worker_executing_work(last_pool, work);
1334
1335 if (worker && worker->current_pwq->wq == wq) {
1336 pwq = worker->current_pwq;
1337 } else {
1338 /* meh... not running there, queue here */
1339 spin_unlock(&last_pool->lock);
1340 spin_lock(&pwq->pool->lock);
1341 }
1342 } else {
1343 spin_lock(&pwq->pool->lock);
1344 }
1345
1346 /*
1347 * pwq is determined and locked. For unbound pools, we could have
1348 * raced with pwq release and it could already be dead. If its
1349 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1350 * without another pwq replacing it in the numa_pwq_tbl or while
1351 * work items are executing on it, so the retrying is guaranteed to
1352 * make forward-progress.
1353 */
1354 if (unlikely(!pwq->refcnt)) {
1355 if (wq->flags & WQ_UNBOUND) {
1356 spin_unlock(&pwq->pool->lock);
1357 cpu_relax();
1358 goto retry;
1359 }
1360 /* oops */
1361 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1362 wq->name, cpu);
1363 }
1364
1365 /* pwq determined, queue */
1366 trace_workqueue_queue_work(req_cpu, pwq, work);
1367
1368 if (WARN_ON(!list_empty(&work->entry))) {
1369 spin_unlock(&pwq->pool->lock);
1370 return;
1371 }
1372
1373 pwq->nr_in_flight[pwq->work_color]++;
1374 work_flags = work_color_to_flags(pwq->work_color);
1375
1376 if (likely(pwq->nr_active < pwq->max_active)) {
1377 trace_workqueue_activate_work(work);
1378 pwq->nr_active++;
1379 worklist = &pwq->pool->worklist;
1380 } else {
1381 work_flags |= WORK_STRUCT_DELAYED;
1382 worklist = &pwq->delayed_works;
1383 }
1384
1385 insert_work(pwq, work, worklist, work_flags);
1386
1387 spin_unlock(&pwq->pool->lock);
1388 }
1389
1390 /**
1391 * queue_work_on - queue work on specific cpu
1392 * @cpu: CPU number to execute work on
1393 * @wq: workqueue to use
1394 * @work: work to queue
1395 *
1396 * Returns %false if @work was already on a queue, %true otherwise.
1397 *
1398 * We queue the work to a specific CPU, the caller must ensure it
1399 * can't go away.
1400 */
1401 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1402 struct work_struct *work)
1403 {
1404 bool ret = false;
1405 unsigned long flags;
1406
1407 local_irq_save(flags);
1408
1409 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1410 __queue_work(cpu, wq, work);
1411 ret = true;
1412 }
1413
1414 local_irq_restore(flags);
1415 return ret;
1416 }
1417 EXPORT_SYMBOL(queue_work_on);
1418
1419 void delayed_work_timer_fn(unsigned long __data)
1420 {
1421 struct delayed_work *dwork = (struct delayed_work *)__data;
1422
1423 /* should have been called from irqsafe timer with irq already off */
1424 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1425 }
1426 EXPORT_SYMBOL(delayed_work_timer_fn);
1427
1428 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1429 struct delayed_work *dwork, unsigned long delay)
1430 {
1431 struct timer_list *timer = &dwork->timer;
1432 struct work_struct *work = &dwork->work;
1433
1434 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1435 timer->data != (unsigned long)dwork);
1436 WARN_ON_ONCE(timer_pending(timer));
1437 WARN_ON_ONCE(!list_empty(&work->entry));
1438
1439 /*
1440 * If @delay is 0, queue @dwork->work immediately. This is for
1441 * both optimization and correctness. The earliest @timer can
1442 * expire is on the closest next tick and delayed_work users depend
1443 * on that there's no such delay when @delay is 0.
1444 */
1445 if (!delay) {
1446 __queue_work(cpu, wq, &dwork->work);
1447 return;
1448 }
1449
1450 timer_stats_timer_set_start_info(&dwork->timer);
1451
1452 dwork->wq = wq;
1453 dwork->cpu = cpu;
1454 timer->expires = jiffies + delay;
1455
1456 if (unlikely(cpu != WORK_CPU_UNBOUND))
1457 add_timer_on(timer, cpu);
1458 else
1459 add_timer(timer);
1460 }
1461
1462 /**
1463 * queue_delayed_work_on - queue work on specific CPU after delay
1464 * @cpu: CPU number to execute work on
1465 * @wq: workqueue to use
1466 * @dwork: work to queue
1467 * @delay: number of jiffies to wait before queueing
1468 *
1469 * Returns %false if @work was already on a queue, %true otherwise. If
1470 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1471 * execution.
1472 */
1473 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1474 struct delayed_work *dwork, unsigned long delay)
1475 {
1476 struct work_struct *work = &dwork->work;
1477 bool ret = false;
1478 unsigned long flags;
1479
1480 /* read the comment in __queue_work() */
1481 local_irq_save(flags);
1482
1483 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1484 __queue_delayed_work(cpu, wq, dwork, delay);
1485 ret = true;
1486 }
1487
1488 local_irq_restore(flags);
1489 return ret;
1490 }
1491 EXPORT_SYMBOL(queue_delayed_work_on);
1492
1493 /**
1494 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1495 * @cpu: CPU number to execute work on
1496 * @wq: workqueue to use
1497 * @dwork: work to queue
1498 * @delay: number of jiffies to wait before queueing
1499 *
1500 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1501 * modify @dwork's timer so that it expires after @delay. If @delay is
1502 * zero, @work is guaranteed to be scheduled immediately regardless of its
1503 * current state.
1504 *
1505 * Returns %false if @dwork was idle and queued, %true if @dwork was
1506 * pending and its timer was modified.
1507 *
1508 * This function is safe to call from any context including IRQ handler.
1509 * See try_to_grab_pending() for details.
1510 */
1511 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1512 struct delayed_work *dwork, unsigned long delay)
1513 {
1514 unsigned long flags;
1515 int ret;
1516
1517 do {
1518 ret = try_to_grab_pending(&dwork->work, true, &flags);
1519 } while (unlikely(ret == -EAGAIN));
1520
1521 if (likely(ret >= 0)) {
1522 __queue_delayed_work(cpu, wq, dwork, delay);
1523 local_irq_restore(flags);
1524 }
1525
1526 /* -ENOENT from try_to_grab_pending() becomes %true */
1527 return ret;
1528 }
1529 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1530
1531 /**
1532 * worker_enter_idle - enter idle state
1533 * @worker: worker which is entering idle state
1534 *
1535 * @worker is entering idle state. Update stats and idle timer if
1536 * necessary.
1537 *
1538 * LOCKING:
1539 * spin_lock_irq(pool->lock).
1540 */
1541 static void worker_enter_idle(struct worker *worker)
1542 {
1543 struct worker_pool *pool = worker->pool;
1544
1545 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1546 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1547 (worker->hentry.next || worker->hentry.pprev)))
1548 return;
1549
1550 /* can't use worker_set_flags(), also called from start_worker() */
1551 worker->flags |= WORKER_IDLE;
1552 pool->nr_idle++;
1553 worker->last_active = jiffies;
1554
1555 /* idle_list is LIFO */
1556 list_add(&worker->entry, &pool->idle_list);
1557
1558 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1559 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1560
1561 /*
1562 * Sanity check nr_running. Because wq_unbind_fn() releases
1563 * pool->lock between setting %WORKER_UNBOUND and zapping
1564 * nr_running, the warning may trigger spuriously. Check iff
1565 * unbind is not in progress.
1566 */
1567 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1568 pool->nr_workers == pool->nr_idle &&
1569 atomic_read(&pool->nr_running));
1570 }
1571
1572 /**
1573 * worker_leave_idle - leave idle state
1574 * @worker: worker which is leaving idle state
1575 *
1576 * @worker is leaving idle state. Update stats.
1577 *
1578 * LOCKING:
1579 * spin_lock_irq(pool->lock).
1580 */
1581 static void worker_leave_idle(struct worker *worker)
1582 {
1583 struct worker_pool *pool = worker->pool;
1584
1585 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1586 return;
1587 worker_clr_flags(worker, WORKER_IDLE);
1588 pool->nr_idle--;
1589 list_del_init(&worker->entry);
1590 }
1591
1592 /**
1593 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1594 * @pool: target worker_pool
1595 *
1596 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1597 *
1598 * Works which are scheduled while the cpu is online must at least be
1599 * scheduled to a worker which is bound to the cpu so that if they are
1600 * flushed from cpu callbacks while cpu is going down, they are
1601 * guaranteed to execute on the cpu.
1602 *
1603 * This function is to be used by unbound workers and rescuers to bind
1604 * themselves to the target cpu and may race with cpu going down or
1605 * coming online. kthread_bind() can't be used because it may put the
1606 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1607 * verbatim as it's best effort and blocking and pool may be
1608 * [dis]associated in the meantime.
1609 *
1610 * This function tries set_cpus_allowed() and locks pool and verifies the
1611 * binding against %POOL_DISASSOCIATED which is set during
1612 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1613 * enters idle state or fetches works without dropping lock, it can
1614 * guarantee the scheduling requirement described in the first paragraph.
1615 *
1616 * CONTEXT:
1617 * Might sleep. Called without any lock but returns with pool->lock
1618 * held.
1619 *
1620 * RETURNS:
1621 * %true if the associated pool is online (@worker is successfully
1622 * bound), %false if offline.
1623 */
1624 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1625 __acquires(&pool->lock)
1626 {
1627 while (true) {
1628 /*
1629 * The following call may fail, succeed or succeed
1630 * without actually migrating the task to the cpu if
1631 * it races with cpu hotunplug operation. Verify
1632 * against POOL_DISASSOCIATED.
1633 */
1634 if (!(pool->flags & POOL_DISASSOCIATED))
1635 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1636
1637 spin_lock_irq(&pool->lock);
1638 if (pool->flags & POOL_DISASSOCIATED)
1639 return false;
1640 if (task_cpu(current) == pool->cpu &&
1641 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1642 return true;
1643 spin_unlock_irq(&pool->lock);
1644
1645 /*
1646 * We've raced with CPU hot[un]plug. Give it a breather
1647 * and retry migration. cond_resched() is required here;
1648 * otherwise, we might deadlock against cpu_stop trying to
1649 * bring down the CPU on non-preemptive kernel.
1650 */
1651 cpu_relax();
1652 cond_resched();
1653 }
1654 }
1655
1656 static struct worker *alloc_worker(void)
1657 {
1658 struct worker *worker;
1659
1660 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1661 if (worker) {
1662 INIT_LIST_HEAD(&worker->entry);
1663 INIT_LIST_HEAD(&worker->scheduled);
1664 /* on creation a worker is in !idle && prep state */
1665 worker->flags = WORKER_PREP;
1666 }
1667 return worker;
1668 }
1669
1670 /**
1671 * create_worker - create a new workqueue worker
1672 * @pool: pool the new worker will belong to
1673 *
1674 * Create a new worker which is bound to @pool. The returned worker
1675 * can be started by calling start_worker() or destroyed using
1676 * destroy_worker().
1677 *
1678 * CONTEXT:
1679 * Might sleep. Does GFP_KERNEL allocations.
1680 *
1681 * RETURNS:
1682 * Pointer to the newly created worker.
1683 */
1684 static struct worker *create_worker(struct worker_pool *pool)
1685 {
1686 struct worker *worker = NULL;
1687 int id = -1;
1688 char id_buf[16];
1689
1690 lockdep_assert_held(&pool->manager_mutex);
1691
1692 /*
1693 * ID is needed to determine kthread name. Allocate ID first
1694 * without installing the pointer.
1695 */
1696 idr_preload(GFP_KERNEL);
1697 spin_lock_irq(&pool->lock);
1698
1699 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1700
1701 spin_unlock_irq(&pool->lock);
1702 idr_preload_end();
1703 if (id < 0)
1704 goto fail;
1705
1706 worker = alloc_worker();
1707 if (!worker)
1708 goto fail;
1709
1710 worker->pool = pool;
1711 worker->id = id;
1712
1713 if (pool->cpu >= 0)
1714 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1715 pool->attrs->nice < 0 ? "H" : "");
1716 else
1717 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1718
1719 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1720 "kworker/%s", id_buf);
1721 if (IS_ERR(worker->task))
1722 goto fail;
1723
1724 /*
1725 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1726 * online CPUs. It'll be re-applied when any of the CPUs come up.
1727 */
1728 set_user_nice(worker->task, pool->attrs->nice);
1729 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1730
1731 /* prevent userland from meddling with cpumask of workqueue workers */
1732 worker->task->flags |= PF_NO_SETAFFINITY;
1733
1734 /*
1735 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1736 * remains stable across this function. See the comments above the
1737 * flag definition for details.
1738 */
1739 if (pool->flags & POOL_DISASSOCIATED)
1740 worker->flags |= WORKER_UNBOUND;
1741
1742 /* successful, commit the pointer to idr */
1743 spin_lock_irq(&pool->lock);
1744 idr_replace(&pool->worker_idr, worker, worker->id);
1745 spin_unlock_irq(&pool->lock);
1746
1747 return worker;
1748
1749 fail:
1750 if (id >= 0) {
1751 spin_lock_irq(&pool->lock);
1752 idr_remove(&pool->worker_idr, id);
1753 spin_unlock_irq(&pool->lock);
1754 }
1755 kfree(worker);
1756 return NULL;
1757 }
1758
1759 /**
1760 * start_worker - start a newly created worker
1761 * @worker: worker to start
1762 *
1763 * Make the pool aware of @worker and start it.
1764 *
1765 * CONTEXT:
1766 * spin_lock_irq(pool->lock).
1767 */
1768 static void start_worker(struct worker *worker)
1769 {
1770 worker->flags |= WORKER_STARTED;
1771 worker->pool->nr_workers++;
1772 worker_enter_idle(worker);
1773 wake_up_process(worker->task);
1774 }
1775
1776 /**
1777 * create_and_start_worker - create and start a worker for a pool
1778 * @pool: the target pool
1779 *
1780 * Grab the managership of @pool and create and start a new worker for it.
1781 */
1782 static int create_and_start_worker(struct worker_pool *pool)
1783 {
1784 struct worker *worker;
1785
1786 mutex_lock(&pool->manager_mutex);
1787
1788 worker = create_worker(pool);
1789 if (worker) {
1790 spin_lock_irq(&pool->lock);
1791 start_worker(worker);
1792 spin_unlock_irq(&pool->lock);
1793 }
1794
1795 mutex_unlock(&pool->manager_mutex);
1796
1797 return worker ? 0 : -ENOMEM;
1798 }
1799
1800 /**
1801 * destroy_worker - destroy a workqueue worker
1802 * @worker: worker to be destroyed
1803 *
1804 * Destroy @worker and adjust @pool stats accordingly.
1805 *
1806 * CONTEXT:
1807 * spin_lock_irq(pool->lock) which is released and regrabbed.
1808 */
1809 static void destroy_worker(struct worker *worker)
1810 {
1811 struct worker_pool *pool = worker->pool;
1812
1813 lockdep_assert_held(&pool->manager_mutex);
1814 lockdep_assert_held(&pool->lock);
1815
1816 /* sanity check frenzy */
1817 if (WARN_ON(worker->current_work) ||
1818 WARN_ON(!list_empty(&worker->scheduled)))
1819 return;
1820
1821 if (worker->flags & WORKER_STARTED)
1822 pool->nr_workers--;
1823 if (worker->flags & WORKER_IDLE)
1824 pool->nr_idle--;
1825
1826 /*
1827 * Once WORKER_DIE is set, the kworker may destroy itself at any
1828 * point. Pin to ensure the task stays until we're done with it.
1829 */
1830 get_task_struct(worker->task);
1831
1832 list_del_init(&worker->entry);
1833 worker->flags |= WORKER_DIE;
1834
1835 idr_remove(&pool->worker_idr, worker->id);
1836
1837 spin_unlock_irq(&pool->lock);
1838
1839 kthread_stop(worker->task);
1840 put_task_struct(worker->task);
1841 kfree(worker);
1842
1843 spin_lock_irq(&pool->lock);
1844 }
1845
1846 static void idle_worker_timeout(unsigned long __pool)
1847 {
1848 struct worker_pool *pool = (void *)__pool;
1849
1850 spin_lock_irq(&pool->lock);
1851
1852 if (too_many_workers(pool)) {
1853 struct worker *worker;
1854 unsigned long expires;
1855
1856 /* idle_list is kept in LIFO order, check the last one */
1857 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1858 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1859
1860 if (time_before(jiffies, expires))
1861 mod_timer(&pool->idle_timer, expires);
1862 else {
1863 /* it's been idle for too long, wake up manager */
1864 pool->flags |= POOL_MANAGE_WORKERS;
1865 wake_up_worker(pool);
1866 }
1867 }
1868
1869 spin_unlock_irq(&pool->lock);
1870 }
1871
1872 static void send_mayday(struct work_struct *work)
1873 {
1874 struct pool_workqueue *pwq = get_work_pwq(work);
1875 struct workqueue_struct *wq = pwq->wq;
1876
1877 lockdep_assert_held(&wq_mayday_lock);
1878
1879 if (!wq->rescuer)
1880 return;
1881
1882 /* mayday mayday mayday */
1883 if (list_empty(&pwq->mayday_node)) {
1884 /*
1885 * If @pwq is for an unbound wq, its base ref may be put at
1886 * any time due to an attribute change. Pin @pwq until the
1887 * rescuer is done with it.
1888 */
1889 get_pwq(pwq);
1890 list_add_tail(&pwq->mayday_node, &wq->maydays);
1891 wake_up_process(wq->rescuer->task);
1892 }
1893 }
1894
1895 static void pool_mayday_timeout(unsigned long __pool)
1896 {
1897 struct worker_pool *pool = (void *)__pool;
1898 struct work_struct *work;
1899
1900 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1901 spin_lock(&pool->lock);
1902
1903 if (need_to_create_worker(pool)) {
1904 /*
1905 * We've been trying to create a new worker but
1906 * haven't been successful. We might be hitting an
1907 * allocation deadlock. Send distress signals to
1908 * rescuers.
1909 */
1910 list_for_each_entry(work, &pool->worklist, entry)
1911 send_mayday(work);
1912 }
1913
1914 spin_unlock(&pool->lock);
1915 spin_unlock_irq(&wq_mayday_lock);
1916
1917 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1918 }
1919
1920 /**
1921 * maybe_create_worker - create a new worker if necessary
1922 * @pool: pool to create a new worker for
1923 *
1924 * Create a new worker for @pool if necessary. @pool is guaranteed to
1925 * have at least one idle worker on return from this function. If
1926 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1927 * sent to all rescuers with works scheduled on @pool to resolve
1928 * possible allocation deadlock.
1929 *
1930 * On return, need_to_create_worker() is guaranteed to be %false and
1931 * may_start_working() %true.
1932 *
1933 * LOCKING:
1934 * spin_lock_irq(pool->lock) which may be released and regrabbed
1935 * multiple times. Does GFP_KERNEL allocations. Called only from
1936 * manager.
1937 */
1938 static void maybe_create_worker(struct worker_pool *pool)
1939 __releases(&pool->lock)
1940 __acquires(&pool->lock)
1941 {
1942 if (!need_to_create_worker(pool))
1943 return;
1944 restart:
1945 spin_unlock_irq(&pool->lock);
1946
1947 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1948 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1949
1950 while (true) {
1951 struct worker *worker;
1952
1953 worker = create_worker(pool);
1954 if (worker) {
1955 del_timer_sync(&pool->mayday_timer);
1956 spin_lock_irq(&pool->lock);
1957 start_worker(worker);
1958 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1959 goto restart;
1960 return;
1961 }
1962
1963 if (!need_to_create_worker(pool))
1964 break;
1965
1966 __set_current_state(TASK_INTERRUPTIBLE);
1967 schedule_timeout(CREATE_COOLDOWN);
1968
1969 if (!need_to_create_worker(pool))
1970 break;
1971 }
1972
1973 del_timer_sync(&pool->mayday_timer);
1974 spin_lock_irq(&pool->lock);
1975 if (need_to_create_worker(pool))
1976 goto restart;
1977 return;
1978 }
1979
1980 /**
1981 * maybe_destroy_worker - destroy workers which have been idle for a while
1982 * @pool: pool to destroy workers for
1983 *
1984 * Destroy @pool workers which have been idle for longer than
1985 * IDLE_WORKER_TIMEOUT.
1986 *
1987 * LOCKING:
1988 * spin_lock_irq(pool->lock) which may be released and regrabbed
1989 * multiple times. Called only from manager.
1990 */
1991 static void maybe_destroy_workers(struct worker_pool *pool)
1992 {
1993 while (too_many_workers(pool)) {
1994 struct worker *worker;
1995 unsigned long expires;
1996
1997 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1998 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1999
2000 if (time_before(jiffies, expires)) {
2001 mod_timer(&pool->idle_timer, expires);
2002 break;
2003 }
2004
2005 destroy_worker(worker);
2006 }
2007 }
2008
2009 /**
2010 * manage_workers - manage worker pool
2011 * @worker: self
2012 *
2013 * Assume the manager role and manage the worker pool @worker belongs
2014 * to. At any given time, there can be only zero or one manager per
2015 * pool. The exclusion is handled automatically by this function.
2016 *
2017 * The caller can safely start processing works on false return. On
2018 * true return, it's guaranteed that need_to_create_worker() is false
2019 * and may_start_working() is true.
2020 *
2021 * CONTEXT:
2022 * spin_lock_irq(pool->lock) which may be released and regrabbed
2023 * multiple times. Does GFP_KERNEL allocations.
2024 *
2025 * RETURNS:
2026 * %false if the pool doesn't need management and the caller can safely
2027 * start processing works, %true if management function was performed and
2028 * the conditions that the caller verified before calling the function may
2029 * no longer be true.
2030 */
2031 static bool manage_workers(struct worker *worker)
2032 {
2033 struct worker_pool *pool = worker->pool;
2034
2035 /*
2036 * Managership is governed by two mutexes - manager_arb and
2037 * manager_mutex. manager_arb handles arbitration of manager role.
2038 * Anyone who successfully grabs manager_arb wins the arbitration
2039 * and becomes the manager. mutex_trylock() on pool->manager_arb
2040 * failure while holding pool->lock reliably indicates that someone
2041 * else is managing the pool and the worker which failed trylock
2042 * can proceed to executing work items. This means that anyone
2043 * grabbing manager_arb is responsible for actually performing
2044 * manager duties. If manager_arb is grabbed and released without
2045 * actual management, the pool may stall indefinitely.
2046 *
2047 * manager_mutex is used for exclusion of actual management
2048 * operations. The holder of manager_mutex can be sure that none
2049 * of management operations, including creation and destruction of
2050 * workers, won't take place until the mutex is released. Because
2051 * manager_mutex doesn't interfere with manager role arbitration,
2052 * it is guaranteed that the pool's management, while may be
2053 * delayed, won't be disturbed by someone else grabbing
2054 * manager_mutex.
2055 */
2056 if (!mutex_trylock(&pool->manager_arb))
2057 return false;
2058
2059 /*
2060 * With manager arbitration won, manager_mutex would be free in
2061 * most cases. trylock first without dropping @pool->lock.
2062 */
2063 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2064 spin_unlock_irq(&pool->lock);
2065 mutex_lock(&pool->manager_mutex);
2066 spin_lock_irq(&pool->lock);
2067 }
2068
2069 pool->flags &= ~POOL_MANAGE_WORKERS;
2070
2071 /*
2072 * Destroy and then create so that may_start_working() is true
2073 * on return.
2074 */
2075 maybe_destroy_workers(pool);
2076 maybe_create_worker(pool);
2077
2078 mutex_unlock(&pool->manager_mutex);
2079 mutex_unlock(&pool->manager_arb);
2080 return true;
2081 }
2082
2083 /**
2084 * process_one_work - process single work
2085 * @worker: self
2086 * @work: work to process
2087 *
2088 * Process @work. This function contains all the logics necessary to
2089 * process a single work including synchronization against and
2090 * interaction with other workers on the same cpu, queueing and
2091 * flushing. As long as context requirement is met, any worker can
2092 * call this function to process a work.
2093 *
2094 * CONTEXT:
2095 * spin_lock_irq(pool->lock) which is released and regrabbed.
2096 */
2097 static void process_one_work(struct worker *worker, struct work_struct *work)
2098 __releases(&pool->lock)
2099 __acquires(&pool->lock)
2100 {
2101 struct pool_workqueue *pwq = get_work_pwq(work);
2102 struct worker_pool *pool = worker->pool;
2103 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2104 int work_color;
2105 struct worker *collision;
2106 #ifdef CONFIG_LOCKDEP
2107 /*
2108 * It is permissible to free the struct work_struct from
2109 * inside the function that is called from it, this we need to
2110 * take into account for lockdep too. To avoid bogus "held
2111 * lock freed" warnings as well as problems when looking into
2112 * work->lockdep_map, make a copy and use that here.
2113 */
2114 struct lockdep_map lockdep_map;
2115
2116 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2117 #endif
2118 /*
2119 * Ensure we're on the correct CPU. DISASSOCIATED test is
2120 * necessary to avoid spurious warnings from rescuers servicing the
2121 * unbound or a disassociated pool.
2122 */
2123 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2124 !(pool->flags & POOL_DISASSOCIATED) &&
2125 raw_smp_processor_id() != pool->cpu);
2126
2127 /*
2128 * A single work shouldn't be executed concurrently by
2129 * multiple workers on a single cpu. Check whether anyone is
2130 * already processing the work. If so, defer the work to the
2131 * currently executing one.
2132 */
2133 collision = find_worker_executing_work(pool, work);
2134 if (unlikely(collision)) {
2135 move_linked_works(work, &collision->scheduled, NULL);
2136 return;
2137 }
2138
2139 /* claim and dequeue */
2140 debug_work_deactivate(work);
2141 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2142 worker->current_work = work;
2143 worker->current_func = work->func;
2144 worker->current_pwq = pwq;
2145 work_color = get_work_color(work);
2146
2147 list_del_init(&work->entry);
2148
2149 /*
2150 * CPU intensive works don't participate in concurrency
2151 * management. They're the scheduler's responsibility.
2152 */
2153 if (unlikely(cpu_intensive))
2154 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2155
2156 /*
2157 * Unbound pool isn't concurrency managed and work items should be
2158 * executed ASAP. Wake up another worker if necessary.
2159 */
2160 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2161 wake_up_worker(pool);
2162
2163 /*
2164 * Record the last pool and clear PENDING which should be the last
2165 * update to @work. Also, do this inside @pool->lock so that
2166 * PENDING and queued state changes happen together while IRQ is
2167 * disabled.
2168 */
2169 set_work_pool_and_clear_pending(work, pool->id);
2170
2171 spin_unlock_irq(&pool->lock);
2172
2173 lock_map_acquire_read(&pwq->wq->lockdep_map);
2174 lock_map_acquire(&lockdep_map);
2175 trace_workqueue_execute_start(work);
2176 worker->current_func(work);
2177 /*
2178 * While we must be careful to not use "work" after this, the trace
2179 * point will only record its address.
2180 */
2181 trace_workqueue_execute_end(work);
2182 lock_map_release(&lockdep_map);
2183 lock_map_release(&pwq->wq->lockdep_map);
2184
2185 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2186 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2187 " last function: %pf\n",
2188 current->comm, preempt_count(), task_pid_nr(current),
2189 worker->current_func);
2190 debug_show_held_locks(current);
2191 dump_stack();
2192 }
2193
2194 /*
2195 * The following prevents a kworker from hogging CPU on !PREEMPT
2196 * kernels, where a requeueing work item waiting for something to
2197 * happen could deadlock with stop_machine as such work item could
2198 * indefinitely requeue itself while all other CPUs are trapped in
2199 * stop_machine.
2200 */
2201 cond_resched();
2202
2203 spin_lock_irq(&pool->lock);
2204
2205 /* clear cpu intensive status */
2206 if (unlikely(cpu_intensive))
2207 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2208
2209 /* we're done with it, release */
2210 hash_del(&worker->hentry);
2211 worker->current_work = NULL;
2212 worker->current_func = NULL;
2213 worker->current_pwq = NULL;
2214 worker->desc_valid = false;
2215 pwq_dec_nr_in_flight(pwq, work_color);
2216 }
2217
2218 /**
2219 * process_scheduled_works - process scheduled works
2220 * @worker: self
2221 *
2222 * Process all scheduled works. Please note that the scheduled list
2223 * may change while processing a work, so this function repeatedly
2224 * fetches a work from the top and executes it.
2225 *
2226 * CONTEXT:
2227 * spin_lock_irq(pool->lock) which may be released and regrabbed
2228 * multiple times.
2229 */
2230 static void process_scheduled_works(struct worker *worker)
2231 {
2232 while (!list_empty(&worker->scheduled)) {
2233 struct work_struct *work = list_first_entry(&worker->scheduled,
2234 struct work_struct, entry);
2235 process_one_work(worker, work);
2236 }
2237 }
2238
2239 /**
2240 * worker_thread - the worker thread function
2241 * @__worker: self
2242 *
2243 * The worker thread function. All workers belong to a worker_pool -
2244 * either a per-cpu one or dynamic unbound one. These workers process all
2245 * work items regardless of their specific target workqueue. The only
2246 * exception is work items which belong to workqueues with a rescuer which
2247 * will be explained in rescuer_thread().
2248 */
2249 static int worker_thread(void *__worker)
2250 {
2251 struct worker *worker = __worker;
2252 struct worker_pool *pool = worker->pool;
2253
2254 /* tell the scheduler that this is a workqueue worker */
2255 worker->task->flags |= PF_WQ_WORKER;
2256 woke_up:
2257 spin_lock_irq(&pool->lock);
2258
2259 /* am I supposed to die? */
2260 if (unlikely(worker->flags & WORKER_DIE)) {
2261 spin_unlock_irq(&pool->lock);
2262 WARN_ON_ONCE(!list_empty(&worker->entry));
2263 worker->task->flags &= ~PF_WQ_WORKER;
2264 return 0;
2265 }
2266
2267 worker_leave_idle(worker);
2268 recheck:
2269 /* no more worker necessary? */
2270 if (!need_more_worker(pool))
2271 goto sleep;
2272
2273 /* do we need to manage? */
2274 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2275 goto recheck;
2276
2277 /*
2278 * ->scheduled list can only be filled while a worker is
2279 * preparing to process a work or actually processing it.
2280 * Make sure nobody diddled with it while I was sleeping.
2281 */
2282 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2283
2284 /*
2285 * Finish PREP stage. We're guaranteed to have at least one idle
2286 * worker or that someone else has already assumed the manager
2287 * role. This is where @worker starts participating in concurrency
2288 * management if applicable and concurrency management is restored
2289 * after being rebound. See rebind_workers() for details.
2290 */
2291 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2292
2293 do {
2294 struct work_struct *work =
2295 list_first_entry(&pool->worklist,
2296 struct work_struct, entry);
2297
2298 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2299 /* optimization path, not strictly necessary */
2300 process_one_work(worker, work);
2301 if (unlikely(!list_empty(&worker->scheduled)))
2302 process_scheduled_works(worker);
2303 } else {
2304 move_linked_works(work, &worker->scheduled, NULL);
2305 process_scheduled_works(worker);
2306 }
2307 } while (keep_working(pool));
2308
2309 worker_set_flags(worker, WORKER_PREP, false);
2310 sleep:
2311 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2312 goto recheck;
2313
2314 /*
2315 * pool->lock is held and there's no work to process and no need to
2316 * manage, sleep. Workers are woken up only while holding
2317 * pool->lock or from local cpu, so setting the current state
2318 * before releasing pool->lock is enough to prevent losing any
2319 * event.
2320 */
2321 worker_enter_idle(worker);
2322 __set_current_state(TASK_INTERRUPTIBLE);
2323 spin_unlock_irq(&pool->lock);
2324 schedule();
2325 goto woke_up;
2326 }
2327
2328 /**
2329 * rescuer_thread - the rescuer thread function
2330 * @__rescuer: self
2331 *
2332 * Workqueue rescuer thread function. There's one rescuer for each
2333 * workqueue which has WQ_MEM_RECLAIM set.
2334 *
2335 * Regular work processing on a pool may block trying to create a new
2336 * worker which uses GFP_KERNEL allocation which has slight chance of
2337 * developing into deadlock if some works currently on the same queue
2338 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2339 * the problem rescuer solves.
2340 *
2341 * When such condition is possible, the pool summons rescuers of all
2342 * workqueues which have works queued on the pool and let them process
2343 * those works so that forward progress can be guaranteed.
2344 *
2345 * This should happen rarely.
2346 */
2347 static int rescuer_thread(void *__rescuer)
2348 {
2349 struct worker *rescuer = __rescuer;
2350 struct workqueue_struct *wq = rescuer->rescue_wq;
2351 struct list_head *scheduled = &rescuer->scheduled;
2352 bool should_stop;
2353
2354 set_user_nice(current, RESCUER_NICE_LEVEL);
2355
2356 /*
2357 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2358 * doesn't participate in concurrency management.
2359 */
2360 rescuer->task->flags |= PF_WQ_WORKER;
2361 repeat:
2362 set_current_state(TASK_INTERRUPTIBLE);
2363
2364 /*
2365 * By the time the rescuer is requested to stop, the workqueue
2366 * shouldn't have any work pending, but @wq->maydays may still have
2367 * pwq(s) queued. This can happen by non-rescuer workers consuming
2368 * all the work items before the rescuer got to them. Go through
2369 * @wq->maydays processing before acting on should_stop so that the
2370 * list is always empty on exit.
2371 */
2372 should_stop = kthread_should_stop();
2373
2374 /* see whether any pwq is asking for help */
2375 spin_lock_irq(&wq_mayday_lock);
2376
2377 while (!list_empty(&wq->maydays)) {
2378 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2379 struct pool_workqueue, mayday_node);
2380 struct worker_pool *pool = pwq->pool;
2381 struct work_struct *work, *n;
2382
2383 __set_current_state(TASK_RUNNING);
2384 list_del_init(&pwq->mayday_node);
2385
2386 spin_unlock_irq(&wq_mayday_lock);
2387
2388 /* migrate to the target cpu if possible */
2389 worker_maybe_bind_and_lock(pool);
2390 rescuer->pool = pool;
2391
2392 /*
2393 * Slurp in all works issued via this workqueue and
2394 * process'em.
2395 */
2396 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2397 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2398 if (get_work_pwq(work) == pwq)
2399 move_linked_works(work, scheduled, &n);
2400
2401 process_scheduled_works(rescuer);
2402
2403 /*
2404 * Put the reference grabbed by send_mayday(). @pool won't
2405 * go away while we're holding its lock.
2406 */
2407 put_pwq(pwq);
2408
2409 /*
2410 * Leave this pool. If keep_working() is %true, notify a
2411 * regular worker; otherwise, we end up with 0 concurrency
2412 * and stalling the execution.
2413 */
2414 if (keep_working(pool))
2415 wake_up_worker(pool);
2416
2417 rescuer->pool = NULL;
2418 spin_unlock(&pool->lock);
2419 spin_lock(&wq_mayday_lock);
2420 }
2421
2422 spin_unlock_irq(&wq_mayday_lock);
2423
2424 if (should_stop) {
2425 __set_current_state(TASK_RUNNING);
2426 rescuer->task->flags &= ~PF_WQ_WORKER;
2427 return 0;
2428 }
2429
2430 /* rescuers should never participate in concurrency management */
2431 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2432 schedule();
2433 goto repeat;
2434 }
2435
2436 struct wq_barrier {
2437 struct work_struct work;
2438 struct completion done;
2439 };
2440
2441 static void wq_barrier_func(struct work_struct *work)
2442 {
2443 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2444 complete(&barr->done);
2445 }
2446
2447 /**
2448 * insert_wq_barrier - insert a barrier work
2449 * @pwq: pwq to insert barrier into
2450 * @barr: wq_barrier to insert
2451 * @target: target work to attach @barr to
2452 * @worker: worker currently executing @target, NULL if @target is not executing
2453 *
2454 * @barr is linked to @target such that @barr is completed only after
2455 * @target finishes execution. Please note that the ordering
2456 * guarantee is observed only with respect to @target and on the local
2457 * cpu.
2458 *
2459 * Currently, a queued barrier can't be canceled. This is because
2460 * try_to_grab_pending() can't determine whether the work to be
2461 * grabbed is at the head of the queue and thus can't clear LINKED
2462 * flag of the previous work while there must be a valid next work
2463 * after a work with LINKED flag set.
2464 *
2465 * Note that when @worker is non-NULL, @target may be modified
2466 * underneath us, so we can't reliably determine pwq from @target.
2467 *
2468 * CONTEXT:
2469 * spin_lock_irq(pool->lock).
2470 */
2471 static void insert_wq_barrier(struct pool_workqueue *pwq,
2472 struct wq_barrier *barr,
2473 struct work_struct *target, struct worker *worker)
2474 {
2475 struct list_head *head;
2476 unsigned int linked = 0;
2477
2478 /*
2479 * debugobject calls are safe here even with pool->lock locked
2480 * as we know for sure that this will not trigger any of the
2481 * checks and call back into the fixup functions where we
2482 * might deadlock.
2483 */
2484 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2485 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2486 init_completion(&barr->done);
2487
2488 /*
2489 * If @target is currently being executed, schedule the
2490 * barrier to the worker; otherwise, put it after @target.
2491 */
2492 if (worker)
2493 head = worker->scheduled.next;
2494 else {
2495 unsigned long *bits = work_data_bits(target);
2496
2497 head = target->entry.next;
2498 /* there can already be other linked works, inherit and set */
2499 linked = *bits & WORK_STRUCT_LINKED;
2500 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2501 }
2502
2503 debug_work_activate(&barr->work);
2504 insert_work(pwq, &barr->work, head,
2505 work_color_to_flags(WORK_NO_COLOR) | linked);
2506 }
2507
2508 /**
2509 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2510 * @wq: workqueue being flushed
2511 * @flush_color: new flush color, < 0 for no-op
2512 * @work_color: new work color, < 0 for no-op
2513 *
2514 * Prepare pwqs for workqueue flushing.
2515 *
2516 * If @flush_color is non-negative, flush_color on all pwqs should be
2517 * -1. If no pwq has in-flight commands at the specified color, all
2518 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2519 * has in flight commands, its pwq->flush_color is set to
2520 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2521 * wakeup logic is armed and %true is returned.
2522 *
2523 * The caller should have initialized @wq->first_flusher prior to
2524 * calling this function with non-negative @flush_color. If
2525 * @flush_color is negative, no flush color update is done and %false
2526 * is returned.
2527 *
2528 * If @work_color is non-negative, all pwqs should have the same
2529 * work_color which is previous to @work_color and all will be
2530 * advanced to @work_color.
2531 *
2532 * CONTEXT:
2533 * mutex_lock(wq->mutex).
2534 *
2535 * RETURNS:
2536 * %true if @flush_color >= 0 and there's something to flush. %false
2537 * otherwise.
2538 */
2539 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2540 int flush_color, int work_color)
2541 {
2542 bool wait = false;
2543 struct pool_workqueue *pwq;
2544
2545 if (flush_color >= 0) {
2546 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2547 atomic_set(&wq->nr_pwqs_to_flush, 1);
2548 }
2549
2550 for_each_pwq(pwq, wq) {
2551 struct worker_pool *pool = pwq->pool;
2552
2553 spin_lock_irq(&pool->lock);
2554
2555 if (flush_color >= 0) {
2556 WARN_ON_ONCE(pwq->flush_color != -1);
2557
2558 if (pwq->nr_in_flight[flush_color]) {
2559 pwq->flush_color = flush_color;
2560 atomic_inc(&wq->nr_pwqs_to_flush);
2561 wait = true;
2562 }
2563 }
2564
2565 if (work_color >= 0) {
2566 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2567 pwq->work_color = work_color;
2568 }
2569
2570 spin_unlock_irq(&pool->lock);
2571 }
2572
2573 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2574 complete(&wq->first_flusher->done);
2575
2576 return wait;
2577 }
2578
2579 /**
2580 * flush_workqueue - ensure that any scheduled work has run to completion.
2581 * @wq: workqueue to flush
2582 *
2583 * This function sleeps until all work items which were queued on entry
2584 * have finished execution, but it is not livelocked by new incoming ones.
2585 */
2586 void flush_workqueue(struct workqueue_struct *wq)
2587 {
2588 struct wq_flusher this_flusher = {
2589 .list = LIST_HEAD_INIT(this_flusher.list),
2590 .flush_color = -1,
2591 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2592 };
2593 int next_color;
2594
2595 lock_map_acquire(&wq->lockdep_map);
2596 lock_map_release(&wq->lockdep_map);
2597
2598 mutex_lock(&wq->mutex);
2599
2600 /*
2601 * Start-to-wait phase
2602 */
2603 next_color = work_next_color(wq->work_color);
2604
2605 if (next_color != wq->flush_color) {
2606 /*
2607 * Color space is not full. The current work_color
2608 * becomes our flush_color and work_color is advanced
2609 * by one.
2610 */
2611 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2612 this_flusher.flush_color = wq->work_color;
2613 wq->work_color = next_color;
2614
2615 if (!wq->first_flusher) {
2616 /* no flush in progress, become the first flusher */
2617 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2618
2619 wq->first_flusher = &this_flusher;
2620
2621 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2622 wq->work_color)) {
2623 /* nothing to flush, done */
2624 wq->flush_color = next_color;
2625 wq->first_flusher = NULL;
2626 goto out_unlock;
2627 }
2628 } else {
2629 /* wait in queue */
2630 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2631 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2632 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2633 }
2634 } else {
2635 /*
2636 * Oops, color space is full, wait on overflow queue.
2637 * The next flush completion will assign us
2638 * flush_color and transfer to flusher_queue.
2639 */
2640 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2641 }
2642
2643 mutex_unlock(&wq->mutex);
2644
2645 wait_for_completion(&this_flusher.done);
2646
2647 /*
2648 * Wake-up-and-cascade phase
2649 *
2650 * First flushers are responsible for cascading flushes and
2651 * handling overflow. Non-first flushers can simply return.
2652 */
2653 if (wq->first_flusher != &this_flusher)
2654 return;
2655
2656 mutex_lock(&wq->mutex);
2657
2658 /* we might have raced, check again with mutex held */
2659 if (wq->first_flusher != &this_flusher)
2660 goto out_unlock;
2661
2662 wq->first_flusher = NULL;
2663
2664 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2665 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2666
2667 while (true) {
2668 struct wq_flusher *next, *tmp;
2669
2670 /* complete all the flushers sharing the current flush color */
2671 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2672 if (next->flush_color != wq->flush_color)
2673 break;
2674 list_del_init(&next->list);
2675 complete(&next->done);
2676 }
2677
2678 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2679 wq->flush_color != work_next_color(wq->work_color));
2680
2681 /* this flush_color is finished, advance by one */
2682 wq->flush_color = work_next_color(wq->flush_color);
2683
2684 /* one color has been freed, handle overflow queue */
2685 if (!list_empty(&wq->flusher_overflow)) {
2686 /*
2687 * Assign the same color to all overflowed
2688 * flushers, advance work_color and append to
2689 * flusher_queue. This is the start-to-wait
2690 * phase for these overflowed flushers.
2691 */
2692 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2693 tmp->flush_color = wq->work_color;
2694
2695 wq->work_color = work_next_color(wq->work_color);
2696
2697 list_splice_tail_init(&wq->flusher_overflow,
2698 &wq->flusher_queue);
2699 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2700 }
2701
2702 if (list_empty(&wq->flusher_queue)) {
2703 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2704 break;
2705 }
2706
2707 /*
2708 * Need to flush more colors. Make the next flusher
2709 * the new first flusher and arm pwqs.
2710 */
2711 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2712 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2713
2714 list_del_init(&next->list);
2715 wq->first_flusher = next;
2716
2717 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2718 break;
2719
2720 /*
2721 * Meh... this color is already done, clear first
2722 * flusher and repeat cascading.
2723 */
2724 wq->first_flusher = NULL;
2725 }
2726
2727 out_unlock:
2728 mutex_unlock(&wq->mutex);
2729 }
2730 EXPORT_SYMBOL_GPL(flush_workqueue);
2731
2732 /**
2733 * drain_workqueue - drain a workqueue
2734 * @wq: workqueue to drain
2735 *
2736 * Wait until the workqueue becomes empty. While draining is in progress,
2737 * only chain queueing is allowed. IOW, only currently pending or running
2738 * work items on @wq can queue further work items on it. @wq is flushed
2739 * repeatedly until it becomes empty. The number of flushing is detemined
2740 * by the depth of chaining and should be relatively short. Whine if it
2741 * takes too long.
2742 */
2743 void drain_workqueue(struct workqueue_struct *wq)
2744 {
2745 unsigned int flush_cnt = 0;
2746 struct pool_workqueue *pwq;
2747
2748 /*
2749 * __queue_work() needs to test whether there are drainers, is much
2750 * hotter than drain_workqueue() and already looks at @wq->flags.
2751 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2752 */
2753 mutex_lock(&wq->mutex);
2754 if (!wq->nr_drainers++)
2755 wq->flags |= __WQ_DRAINING;
2756 mutex_unlock(&wq->mutex);
2757 reflush:
2758 flush_workqueue(wq);
2759
2760 mutex_lock(&wq->mutex);
2761
2762 for_each_pwq(pwq, wq) {
2763 bool drained;
2764
2765 spin_lock_irq(&pwq->pool->lock);
2766 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2767 spin_unlock_irq(&pwq->pool->lock);
2768
2769 if (drained)
2770 continue;
2771
2772 if (++flush_cnt == 10 ||
2773 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2774 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2775 wq->name, flush_cnt);
2776
2777 mutex_unlock(&wq->mutex);
2778 goto reflush;
2779 }
2780
2781 if (!--wq->nr_drainers)
2782 wq->flags &= ~__WQ_DRAINING;
2783 mutex_unlock(&wq->mutex);
2784 }
2785 EXPORT_SYMBOL_GPL(drain_workqueue);
2786
2787 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2788 {
2789 struct worker *worker = NULL;
2790 struct worker_pool *pool;
2791 struct pool_workqueue *pwq;
2792
2793 might_sleep();
2794
2795 local_irq_disable();
2796 pool = get_work_pool(work);
2797 if (!pool) {
2798 local_irq_enable();
2799 return false;
2800 }
2801
2802 spin_lock(&pool->lock);
2803 /* see the comment in try_to_grab_pending() with the same code */
2804 pwq = get_work_pwq(work);
2805 if (pwq) {
2806 if (unlikely(pwq->pool != pool))
2807 goto already_gone;
2808 } else {
2809 worker = find_worker_executing_work(pool, work);
2810 if (!worker)
2811 goto already_gone;
2812 pwq = worker->current_pwq;
2813 }
2814
2815 insert_wq_barrier(pwq, barr, work, worker);
2816 spin_unlock_irq(&pool->lock);
2817
2818 /*
2819 * If @max_active is 1 or rescuer is in use, flushing another work
2820 * item on the same workqueue may lead to deadlock. Make sure the
2821 * flusher is not running on the same workqueue by verifying write
2822 * access.
2823 */
2824 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2825 lock_map_acquire(&pwq->wq->lockdep_map);
2826 else
2827 lock_map_acquire_read(&pwq->wq->lockdep_map);
2828 lock_map_release(&pwq->wq->lockdep_map);
2829
2830 return true;
2831 already_gone:
2832 spin_unlock_irq(&pool->lock);
2833 return false;
2834 }
2835
2836 /**
2837 * flush_work - wait for a work to finish executing the last queueing instance
2838 * @work: the work to flush
2839 *
2840 * Wait until @work has finished execution. @work is guaranteed to be idle
2841 * on return if it hasn't been requeued since flush started.
2842 *
2843 * RETURNS:
2844 * %true if flush_work() waited for the work to finish execution,
2845 * %false if it was already idle.
2846 */
2847 bool flush_work(struct work_struct *work)
2848 {
2849 struct wq_barrier barr;
2850
2851 lock_map_acquire(&work->lockdep_map);
2852 lock_map_release(&work->lockdep_map);
2853
2854 if (start_flush_work(work, &barr)) {
2855 wait_for_completion(&barr.done);
2856 destroy_work_on_stack(&barr.work);
2857 return true;
2858 } else {
2859 return false;
2860 }
2861 }
2862 EXPORT_SYMBOL_GPL(flush_work);
2863
2864 struct cwt_wait {
2865 wait_queue_t wait;
2866 struct work_struct *work;
2867 };
2868
2869 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2870 {
2871 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2872
2873 if (cwait->work != key)
2874 return 0;
2875 return autoremove_wake_function(wait, mode, sync, key);
2876 }
2877
2878 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2879 {
2880 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2881 unsigned long flags;
2882 int ret;
2883
2884 do {
2885 ret = try_to_grab_pending(work, is_dwork, &flags);
2886 /*
2887 * If someone else is already canceling, wait for it to
2888 * finish. flush_work() doesn't work for PREEMPT_NONE
2889 * because we may get scheduled between @work's completion
2890 * and the other canceling task resuming and clearing
2891 * CANCELING - flush_work() will return false immediately
2892 * as @work is no longer busy, try_to_grab_pending() will
2893 * return -ENOENT as @work is still being canceled and the
2894 * other canceling task won't be able to clear CANCELING as
2895 * we're hogging the CPU.
2896 *
2897 * Let's wait for completion using a waitqueue. As this
2898 * may lead to the thundering herd problem, use a custom
2899 * wake function which matches @work along with exclusive
2900 * wait and wakeup.
2901 */
2902 if (unlikely(ret == -ENOENT)) {
2903 struct cwt_wait cwait;
2904
2905 init_wait(&cwait.wait);
2906 cwait.wait.func = cwt_wakefn;
2907 cwait.work = work;
2908
2909 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2910 TASK_UNINTERRUPTIBLE);
2911 if (work_is_canceling(work))
2912 schedule();
2913 finish_wait(&cancel_waitq, &cwait.wait);
2914 }
2915 } while (unlikely(ret < 0));
2916
2917 /* tell other tasks trying to grab @work to back off */
2918 mark_work_canceling(work);
2919 local_irq_restore(flags);
2920
2921 flush_work(work);
2922 clear_work_data(work);
2923
2924 /*
2925 * Paired with prepare_to_wait() above so that either
2926 * waitqueue_active() is visible here or !work_is_canceling() is
2927 * visible there.
2928 */
2929 smp_mb();
2930 if (waitqueue_active(&cancel_waitq))
2931 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2932
2933 return ret;
2934 }
2935
2936 /**
2937 * cancel_work_sync - cancel a work and wait for it to finish
2938 * @work: the work to cancel
2939 *
2940 * Cancel @work and wait for its execution to finish. This function
2941 * can be used even if the work re-queues itself or migrates to
2942 * another workqueue. On return from this function, @work is
2943 * guaranteed to be not pending or executing on any CPU.
2944 *
2945 * cancel_work_sync(&delayed_work->work) must not be used for
2946 * delayed_work's. Use cancel_delayed_work_sync() instead.
2947 *
2948 * The caller must ensure that the workqueue on which @work was last
2949 * queued can't be destroyed before this function returns.
2950 *
2951 * RETURNS:
2952 * %true if @work was pending, %false otherwise.
2953 */
2954 bool cancel_work_sync(struct work_struct *work)
2955 {
2956 return __cancel_work_timer(work, false);
2957 }
2958 EXPORT_SYMBOL_GPL(cancel_work_sync);
2959
2960 /**
2961 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2962 * @dwork: the delayed work to flush
2963 *
2964 * Delayed timer is cancelled and the pending work is queued for
2965 * immediate execution. Like flush_work(), this function only
2966 * considers the last queueing instance of @dwork.
2967 *
2968 * RETURNS:
2969 * %true if flush_work() waited for the work to finish execution,
2970 * %false if it was already idle.
2971 */
2972 bool flush_delayed_work(struct delayed_work *dwork)
2973 {
2974 local_irq_disable();
2975 if (del_timer_sync(&dwork->timer))
2976 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2977 local_irq_enable();
2978 return flush_work(&dwork->work);
2979 }
2980 EXPORT_SYMBOL(flush_delayed_work);
2981
2982 /**
2983 * cancel_delayed_work - cancel a delayed work
2984 * @dwork: delayed_work to cancel
2985 *
2986 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2987 * and canceled; %false if wasn't pending. Note that the work callback
2988 * function may still be running on return, unless it returns %true and the
2989 * work doesn't re-arm itself. Explicitly flush or use
2990 * cancel_delayed_work_sync() to wait on it.
2991 *
2992 * This function is safe to call from any context including IRQ handler.
2993 */
2994 bool cancel_delayed_work(struct delayed_work *dwork)
2995 {
2996 unsigned long flags;
2997 int ret;
2998
2999 do {
3000 ret = try_to_grab_pending(&dwork->work, true, &flags);
3001 } while (unlikely(ret == -EAGAIN));
3002
3003 if (unlikely(ret < 0))
3004 return false;
3005
3006 set_work_pool_and_clear_pending(&dwork->work,
3007 get_work_pool_id(&dwork->work));
3008 local_irq_restore(flags);
3009 return ret;
3010 }
3011 EXPORT_SYMBOL(cancel_delayed_work);
3012
3013 /**
3014 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3015 * @dwork: the delayed work cancel
3016 *
3017 * This is cancel_work_sync() for delayed works.
3018 *
3019 * RETURNS:
3020 * %true if @dwork was pending, %false otherwise.
3021 */
3022 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3023 {
3024 return __cancel_work_timer(&dwork->work, true);
3025 }
3026 EXPORT_SYMBOL(cancel_delayed_work_sync);
3027
3028 /**
3029 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3030 * @func: the function to call
3031 *
3032 * schedule_on_each_cpu() executes @func on each online CPU using the
3033 * system workqueue and blocks until all CPUs have completed.
3034 * schedule_on_each_cpu() is very slow.
3035 *
3036 * RETURNS:
3037 * 0 on success, -errno on failure.
3038 */
3039 int schedule_on_each_cpu(work_func_t func)
3040 {
3041 int cpu;
3042 struct work_struct __percpu *works;
3043
3044 works = alloc_percpu(struct work_struct);
3045 if (!works)
3046 return -ENOMEM;
3047
3048 get_online_cpus();
3049
3050 for_each_online_cpu(cpu) {
3051 struct work_struct *work = per_cpu_ptr(works, cpu);
3052
3053 INIT_WORK(work, func);
3054 schedule_work_on(cpu, work);
3055 }
3056
3057 for_each_online_cpu(cpu)
3058 flush_work(per_cpu_ptr(works, cpu));
3059
3060 put_online_cpus();
3061 free_percpu(works);
3062 return 0;
3063 }
3064
3065 /**
3066 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3067 *
3068 * Forces execution of the kernel-global workqueue and blocks until its
3069 * completion.
3070 *
3071 * Think twice before calling this function! It's very easy to get into
3072 * trouble if you don't take great care. Either of the following situations
3073 * will lead to deadlock:
3074 *
3075 * One of the work items currently on the workqueue needs to acquire
3076 * a lock held by your code or its caller.
3077 *
3078 * Your code is running in the context of a work routine.
3079 *
3080 * They will be detected by lockdep when they occur, but the first might not
3081 * occur very often. It depends on what work items are on the workqueue and
3082 * what locks they need, which you have no control over.
3083 *
3084 * In most situations flushing the entire workqueue is overkill; you merely
3085 * need to know that a particular work item isn't queued and isn't running.
3086 * In such cases you should use cancel_delayed_work_sync() or
3087 * cancel_work_sync() instead.
3088 */
3089 void flush_scheduled_work(void)
3090 {
3091 flush_workqueue(system_wq);
3092 }
3093 EXPORT_SYMBOL(flush_scheduled_work);
3094
3095 /**
3096 * execute_in_process_context - reliably execute the routine with user context
3097 * @fn: the function to execute
3098 * @ew: guaranteed storage for the execute work structure (must
3099 * be available when the work executes)
3100 *
3101 * Executes the function immediately if process context is available,
3102 * otherwise schedules the function for delayed execution.
3103 *
3104 * Returns: 0 - function was executed
3105 * 1 - function was scheduled for execution
3106 */
3107 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3108 {
3109 if (!in_interrupt()) {
3110 fn(&ew->work);
3111 return 0;
3112 }
3113
3114 INIT_WORK(&ew->work, fn);
3115 schedule_work(&ew->work);
3116
3117 return 1;
3118 }
3119 EXPORT_SYMBOL_GPL(execute_in_process_context);
3120
3121 #ifdef CONFIG_SYSFS
3122 /*
3123 * Workqueues with WQ_SYSFS flag set is visible to userland via
3124 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3125 * following attributes.
3126 *
3127 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3128 * max_active RW int : maximum number of in-flight work items
3129 *
3130 * Unbound workqueues have the following extra attributes.
3131 *
3132 * id RO int : the associated pool ID
3133 * nice RW int : nice value of the workers
3134 * cpumask RW mask : bitmask of allowed CPUs for the workers
3135 */
3136 struct wq_device {
3137 struct workqueue_struct *wq;
3138 struct device dev;
3139 };
3140
3141 static struct workqueue_struct *dev_to_wq(struct device *dev)
3142 {
3143 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3144
3145 return wq_dev->wq;
3146 }
3147
3148 static ssize_t wq_per_cpu_show(struct device *dev,
3149 struct device_attribute *attr, char *buf)
3150 {
3151 struct workqueue_struct *wq = dev_to_wq(dev);
3152
3153 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3154 }
3155
3156 static ssize_t wq_max_active_show(struct device *dev,
3157 struct device_attribute *attr, char *buf)
3158 {
3159 struct workqueue_struct *wq = dev_to_wq(dev);
3160
3161 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3162 }
3163
3164 static ssize_t wq_max_active_store(struct device *dev,
3165 struct device_attribute *attr,
3166 const char *buf, size_t count)
3167 {
3168 struct workqueue_struct *wq = dev_to_wq(dev);
3169 int val;
3170
3171 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3172 return -EINVAL;
3173
3174 workqueue_set_max_active(wq, val);
3175 return count;
3176 }
3177
3178 static struct device_attribute wq_sysfs_attrs[] = {
3179 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3180 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3181 __ATTR_NULL,
3182 };
3183
3184 static ssize_t wq_pool_ids_show(struct device *dev,
3185 struct device_attribute *attr, char *buf)
3186 {
3187 struct workqueue_struct *wq = dev_to_wq(dev);
3188 const char *delim = "";
3189 int node, written = 0;
3190
3191 rcu_read_lock_sched();
3192 for_each_node(node) {
3193 written += scnprintf(buf + written, PAGE_SIZE - written,
3194 "%s%d:%d", delim, node,
3195 unbound_pwq_by_node(wq, node)->pool->id);
3196 delim = " ";
3197 }
3198 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3199 rcu_read_unlock_sched();
3200
3201 return written;
3202 }
3203
3204 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3205 char *buf)
3206 {
3207 struct workqueue_struct *wq = dev_to_wq(dev);
3208 int written;
3209
3210 mutex_lock(&wq->mutex);
3211 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3212 mutex_unlock(&wq->mutex);
3213
3214 return written;
3215 }
3216
3217 /* prepare workqueue_attrs for sysfs store operations */
3218 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3219 {
3220 struct workqueue_attrs *attrs;
3221
3222 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3223 if (!attrs)
3224 return NULL;
3225
3226 mutex_lock(&wq->mutex);
3227 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3228 mutex_unlock(&wq->mutex);
3229 return attrs;
3230 }
3231
3232 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3233 const char *buf, size_t count)
3234 {
3235 struct workqueue_struct *wq = dev_to_wq(dev);
3236 struct workqueue_attrs *attrs;
3237 int ret;
3238
3239 attrs = wq_sysfs_prep_attrs(wq);
3240 if (!attrs)
3241 return -ENOMEM;
3242
3243 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3244 attrs->nice >= -20 && attrs->nice <= 19)
3245 ret = apply_workqueue_attrs(wq, attrs);
3246 else
3247 ret = -EINVAL;
3248
3249 free_workqueue_attrs(attrs);
3250 return ret ?: count;
3251 }
3252
3253 static ssize_t wq_cpumask_show(struct device *dev,
3254 struct device_attribute *attr, char *buf)
3255 {
3256 struct workqueue_struct *wq = dev_to_wq(dev);
3257 int written;
3258
3259 mutex_lock(&wq->mutex);
3260 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3261 mutex_unlock(&wq->mutex);
3262
3263 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3264 return written;
3265 }
3266
3267 static ssize_t wq_cpumask_store(struct device *dev,
3268 struct device_attribute *attr,
3269 const char *buf, size_t count)
3270 {
3271 struct workqueue_struct *wq = dev_to_wq(dev);
3272 struct workqueue_attrs *attrs;
3273 int ret;
3274
3275 attrs = wq_sysfs_prep_attrs(wq);
3276 if (!attrs)
3277 return -ENOMEM;
3278
3279 ret = cpumask_parse(buf, attrs->cpumask);
3280 if (!ret)
3281 ret = apply_workqueue_attrs(wq, attrs);
3282
3283 free_workqueue_attrs(attrs);
3284 return ret ?: count;
3285 }
3286
3287 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3288 char *buf)
3289 {
3290 struct workqueue_struct *wq = dev_to_wq(dev);
3291 int written;
3292
3293 mutex_lock(&wq->mutex);
3294 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3295 !wq->unbound_attrs->no_numa);
3296 mutex_unlock(&wq->mutex);
3297
3298 return written;
3299 }
3300
3301 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3302 const char *buf, size_t count)
3303 {
3304 struct workqueue_struct *wq = dev_to_wq(dev);
3305 struct workqueue_attrs *attrs;
3306 int v, ret;
3307
3308 attrs = wq_sysfs_prep_attrs(wq);
3309 if (!attrs)
3310 return -ENOMEM;
3311
3312 ret = -EINVAL;
3313 if (sscanf(buf, "%d", &v) == 1) {
3314 attrs->no_numa = !v;
3315 ret = apply_workqueue_attrs(wq, attrs);
3316 }
3317
3318 free_workqueue_attrs(attrs);
3319 return ret ?: count;
3320 }
3321
3322 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3323 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3324 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3325 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3326 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3327 __ATTR_NULL,
3328 };
3329
3330 static struct bus_type wq_subsys = {
3331 .name = "workqueue",
3332 .dev_attrs = wq_sysfs_attrs,
3333 };
3334
3335 static int __init wq_sysfs_init(void)
3336 {
3337 return subsys_virtual_register(&wq_subsys, NULL);
3338 }
3339 core_initcall(wq_sysfs_init);
3340
3341 static void wq_device_release(struct device *dev)
3342 {
3343 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3344
3345 kfree(wq_dev);
3346 }
3347
3348 /**
3349 * workqueue_sysfs_register - make a workqueue visible in sysfs
3350 * @wq: the workqueue to register
3351 *
3352 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3353 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3354 * which is the preferred method.
3355 *
3356 * Workqueue user should use this function directly iff it wants to apply
3357 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3358 * apply_workqueue_attrs() may race against userland updating the
3359 * attributes.
3360 *
3361 * Returns 0 on success, -errno on failure.
3362 */
3363 int workqueue_sysfs_register(struct workqueue_struct *wq)
3364 {
3365 struct wq_device *wq_dev;
3366 int ret;
3367
3368 /*
3369 * Adjusting max_active or creating new pwqs by applyting
3370 * attributes breaks ordering guarantee. Disallow exposing ordered
3371 * workqueues.
3372 */
3373 if (WARN_ON(wq->flags & __WQ_ORDERED))
3374 return -EINVAL;
3375
3376 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3377 if (!wq_dev)
3378 return -ENOMEM;
3379
3380 wq_dev->wq = wq;
3381 wq_dev->dev.bus = &wq_subsys;
3382 wq_dev->dev.init_name = wq->name;
3383 wq_dev->dev.release = wq_device_release;
3384
3385 /*
3386 * unbound_attrs are created separately. Suppress uevent until
3387 * everything is ready.
3388 */
3389 dev_set_uevent_suppress(&wq_dev->dev, true);
3390
3391 ret = device_register(&wq_dev->dev);
3392 if (ret) {
3393 kfree(wq_dev);
3394 wq->wq_dev = NULL;
3395 return ret;
3396 }
3397
3398 if (wq->flags & WQ_UNBOUND) {
3399 struct device_attribute *attr;
3400
3401 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3402 ret = device_create_file(&wq_dev->dev, attr);
3403 if (ret) {
3404 device_unregister(&wq_dev->dev);
3405 wq->wq_dev = NULL;
3406 return ret;
3407 }
3408 }
3409 }
3410
3411 dev_set_uevent_suppress(&wq_dev->dev, false);
3412 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3413 return 0;
3414 }
3415
3416 /**
3417 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3418 * @wq: the workqueue to unregister
3419 *
3420 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3421 */
3422 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3423 {
3424 struct wq_device *wq_dev = wq->wq_dev;
3425
3426 if (!wq->wq_dev)
3427 return;
3428
3429 wq->wq_dev = NULL;
3430 device_unregister(&wq_dev->dev);
3431 }
3432 #else /* CONFIG_SYSFS */
3433 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3434 #endif /* CONFIG_SYSFS */
3435
3436 /**
3437 * free_workqueue_attrs - free a workqueue_attrs
3438 * @attrs: workqueue_attrs to free
3439 *
3440 * Undo alloc_workqueue_attrs().
3441 */
3442 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3443 {
3444 if (attrs) {
3445 free_cpumask_var(attrs->cpumask);
3446 kfree(attrs);
3447 }
3448 }
3449
3450 /**
3451 * alloc_workqueue_attrs - allocate a workqueue_attrs
3452 * @gfp_mask: allocation mask to use
3453 *
3454 * Allocate a new workqueue_attrs, initialize with default settings and
3455 * return it. Returns NULL on failure.
3456 */
3457 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3458 {
3459 struct workqueue_attrs *attrs;
3460
3461 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3462 if (!attrs)
3463 goto fail;
3464 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3465 goto fail;
3466
3467 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3468 return attrs;
3469 fail:
3470 free_workqueue_attrs(attrs);
3471 return NULL;
3472 }
3473
3474 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3475 const struct workqueue_attrs *from)
3476 {
3477 to->nice = from->nice;
3478 cpumask_copy(to->cpumask, from->cpumask);
3479 /*
3480 * Unlike hash and equality test, this function doesn't ignore
3481 * ->no_numa as it is used for both pool and wq attrs. Instead,
3482 * get_unbound_pool() explicitly clears ->no_numa after copying.
3483 */
3484 to->no_numa = from->no_numa;
3485 }
3486
3487 /* hash value of the content of @attr */
3488 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3489 {
3490 u32 hash = 0;
3491
3492 hash = jhash_1word(attrs->nice, hash);
3493 hash = jhash(cpumask_bits(attrs->cpumask),
3494 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3495 return hash;
3496 }
3497
3498 /* content equality test */
3499 static bool wqattrs_equal(const struct workqueue_attrs *a,
3500 const struct workqueue_attrs *b)
3501 {
3502 if (a->nice != b->nice)
3503 return false;
3504 if (!cpumask_equal(a->cpumask, b->cpumask))
3505 return false;
3506 return true;
3507 }
3508
3509 /**
3510 * init_worker_pool - initialize a newly zalloc'd worker_pool
3511 * @pool: worker_pool to initialize
3512 *
3513 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3514 * Returns 0 on success, -errno on failure. Even on failure, all fields
3515 * inside @pool proper are initialized and put_unbound_pool() can be called
3516 * on @pool safely to release it.
3517 */
3518 static int init_worker_pool(struct worker_pool *pool)
3519 {
3520 spin_lock_init(&pool->lock);
3521 pool->id = -1;
3522 pool->cpu = -1;
3523 pool->node = NUMA_NO_NODE;
3524 pool->flags |= POOL_DISASSOCIATED;
3525 INIT_LIST_HEAD(&pool->worklist);
3526 INIT_LIST_HEAD(&pool->idle_list);
3527 hash_init(pool->busy_hash);
3528
3529 init_timer_deferrable(&pool->idle_timer);
3530 pool->idle_timer.function = idle_worker_timeout;
3531 pool->idle_timer.data = (unsigned long)pool;
3532
3533 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3534 (unsigned long)pool);
3535
3536 mutex_init(&pool->manager_arb);
3537 mutex_init(&pool->manager_mutex);
3538 idr_init(&pool->worker_idr);
3539
3540 INIT_HLIST_NODE(&pool->hash_node);
3541 pool->refcnt = 1;
3542
3543 /* shouldn't fail above this point */
3544 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3545 if (!pool->attrs)
3546 return -ENOMEM;
3547 return 0;
3548 }
3549
3550 static void rcu_free_pool(struct rcu_head *rcu)
3551 {
3552 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3553
3554 idr_destroy(&pool->worker_idr);
3555 free_workqueue_attrs(pool->attrs);
3556 kfree(pool);
3557 }
3558
3559 /**
3560 * put_unbound_pool - put a worker_pool
3561 * @pool: worker_pool to put
3562 *
3563 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3564 * safe manner. get_unbound_pool() calls this function on its failure path
3565 * and this function should be able to release pools which went through,
3566 * successfully or not, init_worker_pool().
3567 *
3568 * Should be called with wq_pool_mutex held.
3569 */
3570 static void put_unbound_pool(struct worker_pool *pool)
3571 {
3572 struct worker *worker;
3573
3574 lockdep_assert_held(&wq_pool_mutex);
3575
3576 if (--pool->refcnt)
3577 return;
3578
3579 /* sanity checks */
3580 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3581 WARN_ON(!list_empty(&pool->worklist)))
3582 return;
3583
3584 /* release id and unhash */
3585 if (pool->id >= 0)
3586 idr_remove(&worker_pool_idr, pool->id);
3587 hash_del(&pool->hash_node);
3588
3589 /*
3590 * Become the manager and destroy all workers. Grabbing
3591 * manager_arb prevents @pool's workers from blocking on
3592 * manager_mutex.
3593 */
3594 mutex_lock(&pool->manager_arb);
3595 mutex_lock(&pool->manager_mutex);
3596 spin_lock_irq(&pool->lock);
3597
3598 while ((worker = first_worker(pool)))
3599 destroy_worker(worker);
3600 WARN_ON(pool->nr_workers || pool->nr_idle);
3601
3602 spin_unlock_irq(&pool->lock);
3603 mutex_unlock(&pool->manager_mutex);
3604 mutex_unlock(&pool->manager_arb);
3605
3606 /* shut down the timers */
3607 del_timer_sync(&pool->idle_timer);
3608 del_timer_sync(&pool->mayday_timer);
3609
3610 /* sched-RCU protected to allow dereferences from get_work_pool() */
3611 call_rcu_sched(&pool->rcu, rcu_free_pool);
3612 }
3613
3614 /**
3615 * get_unbound_pool - get a worker_pool with the specified attributes
3616 * @attrs: the attributes of the worker_pool to get
3617 *
3618 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3619 * reference count and return it. If there already is a matching
3620 * worker_pool, it will be used; otherwise, this function attempts to
3621 * create a new one. On failure, returns NULL.
3622 *
3623 * Should be called with wq_pool_mutex held.
3624 */
3625 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3626 {
3627 u32 hash = wqattrs_hash(attrs);
3628 struct worker_pool *pool;
3629 int node;
3630
3631 lockdep_assert_held(&wq_pool_mutex);
3632
3633 /* do we already have a matching pool? */
3634 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3635 if (wqattrs_equal(pool->attrs, attrs)) {
3636 pool->refcnt++;
3637 goto out_unlock;
3638 }
3639 }
3640
3641 /* nope, create a new one */
3642 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3643 if (!pool || init_worker_pool(pool) < 0)
3644 goto fail;
3645
3646 if (workqueue_freezing)
3647 pool->flags |= POOL_FREEZING;
3648
3649 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3650 copy_workqueue_attrs(pool->attrs, attrs);
3651
3652 /*
3653 * no_numa isn't a worker_pool attribute, always clear it. See
3654 * 'struct workqueue_attrs' comments for detail.
3655 */
3656 pool->attrs->no_numa = false;
3657
3658 /* if cpumask is contained inside a NUMA node, we belong to that node */
3659 if (wq_numa_enabled) {
3660 for_each_node(node) {
3661 if (cpumask_subset(pool->attrs->cpumask,
3662 wq_numa_possible_cpumask[node])) {
3663 pool->node = node;
3664 break;
3665 }
3666 }
3667 }
3668
3669 if (worker_pool_assign_id(pool) < 0)
3670 goto fail;
3671
3672 /* create and start the initial worker */
3673 if (create_and_start_worker(pool) < 0)
3674 goto fail;
3675
3676 /* install */
3677 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3678 out_unlock:
3679 return pool;
3680 fail:
3681 if (pool)
3682 put_unbound_pool(pool);
3683 return NULL;
3684 }
3685
3686 static void rcu_free_pwq(struct rcu_head *rcu)
3687 {
3688 kmem_cache_free(pwq_cache,
3689 container_of(rcu, struct pool_workqueue, rcu));
3690 }
3691
3692 /*
3693 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3694 * and needs to be destroyed.
3695 */
3696 static void pwq_unbound_release_workfn(struct work_struct *work)
3697 {
3698 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3699 unbound_release_work);
3700 struct workqueue_struct *wq = pwq->wq;
3701 struct worker_pool *pool = pwq->pool;
3702 bool is_last;
3703
3704 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3705 return;
3706
3707 /*
3708 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
3709 * necessary on release but do it anyway. It's easier to verify
3710 * and consistent with the linking path.
3711 */
3712 mutex_lock(&wq->mutex);
3713 list_del_rcu(&pwq->pwqs_node);
3714 is_last = list_empty(&wq->pwqs);
3715 mutex_unlock(&wq->mutex);
3716
3717 mutex_lock(&wq_pool_mutex);
3718 put_unbound_pool(pool);
3719 mutex_unlock(&wq_pool_mutex);
3720
3721 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3722
3723 /*
3724 * If we're the last pwq going away, @wq is already dead and no one
3725 * is gonna access it anymore. Free it.
3726 */
3727 if (is_last) {
3728 free_workqueue_attrs(wq->unbound_attrs);
3729 kfree(wq);
3730 }
3731 }
3732
3733 /**
3734 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3735 * @pwq: target pool_workqueue
3736 *
3737 * If @pwq isn't freezing, set @pwq->max_active to the associated
3738 * workqueue's saved_max_active and activate delayed work items
3739 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3740 */
3741 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3742 {
3743 struct workqueue_struct *wq = pwq->wq;
3744 bool freezable = wq->flags & WQ_FREEZABLE;
3745
3746 /* for @wq->saved_max_active */
3747 lockdep_assert_held(&wq->mutex);
3748
3749 /* fast exit for non-freezable wqs */
3750 if (!freezable && pwq->max_active == wq->saved_max_active)
3751 return;
3752
3753 spin_lock_irq(&pwq->pool->lock);
3754
3755 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3756 pwq->max_active = wq->saved_max_active;
3757
3758 while (!list_empty(&pwq->delayed_works) &&
3759 pwq->nr_active < pwq->max_active)
3760 pwq_activate_first_delayed(pwq);
3761
3762 /*
3763 * Need to kick a worker after thawed or an unbound wq's
3764 * max_active is bumped. It's a slow path. Do it always.
3765 */
3766 wake_up_worker(pwq->pool);
3767 } else {
3768 pwq->max_active = 0;
3769 }
3770
3771 spin_unlock_irq(&pwq->pool->lock);
3772 }
3773
3774 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3775 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3776 struct worker_pool *pool)
3777 {
3778 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3779
3780 memset(pwq, 0, sizeof(*pwq));
3781
3782 pwq->pool = pool;
3783 pwq->wq = wq;
3784 pwq->flush_color = -1;
3785 pwq->refcnt = 1;
3786 INIT_LIST_HEAD(&pwq->delayed_works);
3787 INIT_LIST_HEAD(&pwq->pwqs_node);
3788 INIT_LIST_HEAD(&pwq->mayday_node);
3789 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3790 }
3791
3792 /* sync @pwq with the current state of its associated wq and link it */
3793 static void link_pwq(struct pool_workqueue *pwq)
3794 {
3795 struct workqueue_struct *wq = pwq->wq;
3796
3797 lockdep_assert_held(&wq->mutex);
3798
3799 /* may be called multiple times, ignore if already linked */
3800 if (!list_empty(&pwq->pwqs_node))
3801 return;
3802
3803 /*
3804 * Set the matching work_color. This is synchronized with
3805 * wq->mutex to avoid confusing flush_workqueue().
3806 */
3807 pwq->work_color = wq->work_color;
3808
3809 /* sync max_active to the current setting */
3810 pwq_adjust_max_active(pwq);
3811
3812 /* link in @pwq */
3813 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3814 }
3815
3816 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3817 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3818 const struct workqueue_attrs *attrs)
3819 {
3820 struct worker_pool *pool;
3821 struct pool_workqueue *pwq;
3822
3823 lockdep_assert_held(&wq_pool_mutex);
3824
3825 pool = get_unbound_pool(attrs);
3826 if (!pool)
3827 return NULL;
3828
3829 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3830 if (!pwq) {
3831 put_unbound_pool(pool);
3832 return NULL;
3833 }
3834
3835 init_pwq(pwq, wq, pool);
3836 return pwq;
3837 }
3838
3839 /* undo alloc_unbound_pwq(), used only in the error path */
3840 static void free_unbound_pwq(struct pool_workqueue *pwq)
3841 {
3842 lockdep_assert_held(&wq_pool_mutex);
3843
3844 if (pwq) {
3845 put_unbound_pool(pwq->pool);
3846 kmem_cache_free(pwq_cache, pwq);
3847 }
3848 }
3849
3850 /**
3851 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3852 * @attrs: the wq_attrs of interest
3853 * @node: the target NUMA node
3854 * @cpu_going_down: if >= 0, the CPU to consider as offline
3855 * @cpumask: outarg, the resulting cpumask
3856 *
3857 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3858 * @cpu_going_down is >= 0, that cpu is considered offline during
3859 * calculation. The result is stored in @cpumask. This function returns
3860 * %true if the resulting @cpumask is different from @attrs->cpumask,
3861 * %false if equal.
3862 *
3863 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3864 * enabled and @node has online CPUs requested by @attrs, the returned
3865 * cpumask is the intersection of the possible CPUs of @node and
3866 * @attrs->cpumask.
3867 *
3868 * The caller is responsible for ensuring that the cpumask of @node stays
3869 * stable.
3870 */
3871 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3872 int cpu_going_down, cpumask_t *cpumask)
3873 {
3874 if (!wq_numa_enabled || attrs->no_numa)
3875 goto use_dfl;
3876
3877 /* does @node have any online CPUs @attrs wants? */
3878 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3879 if (cpu_going_down >= 0)
3880 cpumask_clear_cpu(cpu_going_down, cpumask);
3881
3882 if (cpumask_empty(cpumask))
3883 goto use_dfl;
3884
3885 /* yeap, return possible CPUs in @node that @attrs wants */
3886 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3887 return !cpumask_equal(cpumask, attrs->cpumask);
3888
3889 use_dfl:
3890 cpumask_copy(cpumask, attrs->cpumask);
3891 return false;
3892 }
3893
3894 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3895 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3896 int node,
3897 struct pool_workqueue *pwq)
3898 {
3899 struct pool_workqueue *old_pwq;
3900
3901 lockdep_assert_held(&wq->mutex);
3902
3903 /* link_pwq() can handle duplicate calls */
3904 link_pwq(pwq);
3905
3906 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3907 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3908 return old_pwq;
3909 }
3910
3911 /**
3912 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3913 * @wq: the target workqueue
3914 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3915 *
3916 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3917 * machines, this function maps a separate pwq to each NUMA node with
3918 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3919 * NUMA node it was issued on. Older pwqs are released as in-flight work
3920 * items finish. Note that a work item which repeatedly requeues itself
3921 * back-to-back will stay on its current pwq.
3922 *
3923 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3924 * failure.
3925 */
3926 int apply_workqueue_attrs(struct workqueue_struct *wq,
3927 const struct workqueue_attrs *attrs)
3928 {
3929 struct workqueue_attrs *new_attrs, *tmp_attrs;
3930 struct pool_workqueue **pwq_tbl, *dfl_pwq;
3931 int node, ret;
3932
3933 /* only unbound workqueues can change attributes */
3934 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3935 return -EINVAL;
3936
3937 /* creating multiple pwqs breaks ordering guarantee */
3938 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3939 return -EINVAL;
3940
3941 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3942 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3943 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3944 if (!pwq_tbl || !new_attrs || !tmp_attrs)
3945 goto enomem;
3946
3947 /* make a copy of @attrs and sanitize it */
3948 copy_workqueue_attrs(new_attrs, attrs);
3949 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3950
3951 /*
3952 * We may create multiple pwqs with differing cpumasks. Make a
3953 * copy of @new_attrs which will be modified and used to obtain
3954 * pools.
3955 */
3956 copy_workqueue_attrs(tmp_attrs, new_attrs);
3957
3958 /*
3959 * CPUs should stay stable across pwq creations and installations.
3960 * Pin CPUs, determine the target cpumask for each node and create
3961 * pwqs accordingly.
3962 */
3963 get_online_cpus();
3964
3965 mutex_lock(&wq_pool_mutex);
3966
3967 /*
3968 * If something goes wrong during CPU up/down, we'll fall back to
3969 * the default pwq covering whole @attrs->cpumask. Always create
3970 * it even if we don't use it immediately.
3971 */
3972 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3973 if (!dfl_pwq)
3974 goto enomem_pwq;
3975
3976 for_each_node(node) {
3977 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3978 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3979 if (!pwq_tbl[node])
3980 goto enomem_pwq;
3981 } else {
3982 dfl_pwq->refcnt++;
3983 pwq_tbl[node] = dfl_pwq;
3984 }
3985 }
3986
3987 mutex_unlock(&wq_pool_mutex);
3988
3989 /* all pwqs have been created successfully, let's install'em */
3990 mutex_lock(&wq->mutex);
3991
3992 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3993
3994 /* save the previous pwq and install the new one */
3995 for_each_node(node)
3996 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3997
3998 /* @dfl_pwq might not have been used, ensure it's linked */
3999 link_pwq(dfl_pwq);
4000 swap(wq->dfl_pwq, dfl_pwq);
4001
4002 mutex_unlock(&wq->mutex);
4003
4004 /* put the old pwqs */
4005 for_each_node(node)
4006 put_pwq_unlocked(pwq_tbl[node]);
4007 put_pwq_unlocked(dfl_pwq);
4008
4009 put_online_cpus();
4010 ret = 0;
4011 /* fall through */
4012 out_free:
4013 free_workqueue_attrs(tmp_attrs);
4014 free_workqueue_attrs(new_attrs);
4015 kfree(pwq_tbl);
4016 return ret;
4017
4018 enomem_pwq:
4019 free_unbound_pwq(dfl_pwq);
4020 for_each_node(node)
4021 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4022 free_unbound_pwq(pwq_tbl[node]);
4023 mutex_unlock(&wq_pool_mutex);
4024 put_online_cpus();
4025 enomem:
4026 ret = -ENOMEM;
4027 goto out_free;
4028 }
4029
4030 /**
4031 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4032 * @wq: the target workqueue
4033 * @cpu: the CPU coming up or going down
4034 * @online: whether @cpu is coming up or going down
4035 *
4036 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4037 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4038 * @wq accordingly.
4039 *
4040 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4041 * falls back to @wq->dfl_pwq which may not be optimal but is always
4042 * correct.
4043 *
4044 * Note that when the last allowed CPU of a NUMA node goes offline for a
4045 * workqueue with a cpumask spanning multiple nodes, the workers which were
4046 * already executing the work items for the workqueue will lose their CPU
4047 * affinity and may execute on any CPU. This is similar to how per-cpu
4048 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4049 * affinity, it's the user's responsibility to flush the work item from
4050 * CPU_DOWN_PREPARE.
4051 */
4052 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4053 bool online)
4054 {
4055 int node = cpu_to_node(cpu);
4056 int cpu_off = online ? -1 : cpu;
4057 struct pool_workqueue *old_pwq = NULL, *pwq;
4058 struct workqueue_attrs *target_attrs;
4059 cpumask_t *cpumask;
4060
4061 lockdep_assert_held(&wq_pool_mutex);
4062
4063 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4064 return;
4065
4066 /*
4067 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4068 * Let's use a preallocated one. The following buf is protected by
4069 * CPU hotplug exclusion.
4070 */
4071 target_attrs = wq_update_unbound_numa_attrs_buf;
4072 cpumask = target_attrs->cpumask;
4073
4074 mutex_lock(&wq->mutex);
4075 if (wq->unbound_attrs->no_numa)
4076 goto out_unlock;
4077
4078 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4079 pwq = unbound_pwq_by_node(wq, node);
4080
4081 /*
4082 * Let's determine what needs to be done. If the target cpumask is
4083 * different from wq's, we need to compare it to @pwq's and create
4084 * a new one if they don't match. If the target cpumask equals
4085 * wq's, the default pwq should be used. If @pwq is already the
4086 * default one, nothing to do; otherwise, install the default one.
4087 */
4088 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4089 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4090 goto out_unlock;
4091 } else {
4092 if (pwq == wq->dfl_pwq)
4093 goto out_unlock;
4094 else
4095 goto use_dfl_pwq;
4096 }
4097
4098 mutex_unlock(&wq->mutex);
4099
4100 /* create a new pwq */
4101 pwq = alloc_unbound_pwq(wq, target_attrs);
4102 if (!pwq) {
4103 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4104 wq->name);
4105 mutex_lock(&wq->mutex);
4106 goto use_dfl_pwq;
4107 }
4108
4109 /*
4110 * Install the new pwq. As this function is called only from CPU
4111 * hotplug callbacks and applying a new attrs is wrapped with
4112 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4113 * inbetween.
4114 */
4115 mutex_lock(&wq->mutex);
4116 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4117 goto out_unlock;
4118
4119 use_dfl_pwq:
4120 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4121 get_pwq(wq->dfl_pwq);
4122 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4123 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4124 out_unlock:
4125 mutex_unlock(&wq->mutex);
4126 put_pwq_unlocked(old_pwq);
4127 }
4128
4129 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4130 {
4131 bool highpri = wq->flags & WQ_HIGHPRI;
4132 int cpu, ret;
4133
4134 if (!(wq->flags & WQ_UNBOUND)) {
4135 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4136 if (!wq->cpu_pwqs)
4137 return -ENOMEM;
4138
4139 for_each_possible_cpu(cpu) {
4140 struct pool_workqueue *pwq =
4141 per_cpu_ptr(wq->cpu_pwqs, cpu);
4142 struct worker_pool *cpu_pools =
4143 per_cpu(cpu_worker_pools, cpu);
4144
4145 init_pwq(pwq, wq, &cpu_pools[highpri]);
4146
4147 mutex_lock(&wq->mutex);
4148 link_pwq(pwq);
4149 mutex_unlock(&wq->mutex);
4150 }
4151 return 0;
4152 } else if (wq->flags & __WQ_ORDERED) {
4153 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4154 /* there should only be single pwq for ordering guarantee */
4155 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4156 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4157 "ordering guarantee broken for workqueue %s\n", wq->name);
4158 return ret;
4159 } else {
4160 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4161 }
4162 }
4163
4164 static int wq_clamp_max_active(int max_active, unsigned int flags,
4165 const char *name)
4166 {
4167 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4168
4169 if (max_active < 1 || max_active > lim)
4170 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4171 max_active, name, 1, lim);
4172
4173 return clamp_val(max_active, 1, lim);
4174 }
4175
4176 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4177 unsigned int flags,
4178 int max_active,
4179 struct lock_class_key *key,
4180 const char *lock_name, ...)
4181 {
4182 size_t tbl_size = 0;
4183 va_list args;
4184 struct workqueue_struct *wq;
4185 struct pool_workqueue *pwq;
4186
4187 /* allocate wq and format name */
4188 if (flags & WQ_UNBOUND)
4189 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4190
4191 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4192 if (!wq)
4193 return NULL;
4194
4195 if (flags & WQ_UNBOUND) {
4196 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4197 if (!wq->unbound_attrs)
4198 goto err_free_wq;
4199 }
4200
4201 va_start(args, lock_name);
4202 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4203 va_end(args);
4204
4205 max_active = max_active ?: WQ_DFL_ACTIVE;
4206 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4207
4208 /* init wq */
4209 wq->flags = flags;
4210 wq->saved_max_active = max_active;
4211 mutex_init(&wq->mutex);
4212 atomic_set(&wq->nr_pwqs_to_flush, 0);
4213 INIT_LIST_HEAD(&wq->pwqs);
4214 INIT_LIST_HEAD(&wq->flusher_queue);
4215 INIT_LIST_HEAD(&wq->flusher_overflow);
4216 INIT_LIST_HEAD(&wq->maydays);
4217
4218 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4219 INIT_LIST_HEAD(&wq->list);
4220
4221 if (alloc_and_link_pwqs(wq) < 0)
4222 goto err_free_wq;
4223
4224 /*
4225 * Workqueues which may be used during memory reclaim should
4226 * have a rescuer to guarantee forward progress.
4227 */
4228 if (flags & WQ_MEM_RECLAIM) {
4229 struct worker *rescuer;
4230
4231 rescuer = alloc_worker();
4232 if (!rescuer)
4233 goto err_destroy;
4234
4235 rescuer->rescue_wq = wq;
4236 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4237 wq->name);
4238 if (IS_ERR(rescuer->task)) {
4239 kfree(rescuer);
4240 goto err_destroy;
4241 }
4242
4243 wq->rescuer = rescuer;
4244 rescuer->task->flags |= PF_NO_SETAFFINITY;
4245 wake_up_process(rescuer->task);
4246 }
4247
4248 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4249 goto err_destroy;
4250
4251 /*
4252 * wq_pool_mutex protects global freeze state and workqueues list.
4253 * Grab it, adjust max_active and add the new @wq to workqueues
4254 * list.
4255 */
4256 mutex_lock(&wq_pool_mutex);
4257
4258 mutex_lock(&wq->mutex);
4259 for_each_pwq(pwq, wq)
4260 pwq_adjust_max_active(pwq);
4261 mutex_unlock(&wq->mutex);
4262
4263 list_add(&wq->list, &workqueues);
4264
4265 mutex_unlock(&wq_pool_mutex);
4266
4267 return wq;
4268
4269 err_free_wq:
4270 free_workqueue_attrs(wq->unbound_attrs);
4271 kfree(wq);
4272 return NULL;
4273 err_destroy:
4274 destroy_workqueue(wq);
4275 return NULL;
4276 }
4277 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4278
4279 /**
4280 * destroy_workqueue - safely terminate a workqueue
4281 * @wq: target workqueue
4282 *
4283 * Safely destroy a workqueue. All work currently pending will be done first.
4284 */
4285 void destroy_workqueue(struct workqueue_struct *wq)
4286 {
4287 struct pool_workqueue *pwq;
4288 int node;
4289
4290 /* drain it before proceeding with destruction */
4291 drain_workqueue(wq);
4292
4293 /* sanity checks */
4294 mutex_lock(&wq->mutex);
4295 for_each_pwq(pwq, wq) {
4296 int i;
4297
4298 for (i = 0; i < WORK_NR_COLORS; i++) {
4299 if (WARN_ON(pwq->nr_in_flight[i])) {
4300 mutex_unlock(&wq->mutex);
4301 return;
4302 }
4303 }
4304
4305 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4306 WARN_ON(pwq->nr_active) ||
4307 WARN_ON(!list_empty(&pwq->delayed_works))) {
4308 mutex_unlock(&wq->mutex);
4309 return;
4310 }
4311 }
4312 mutex_unlock(&wq->mutex);
4313
4314 /*
4315 * wq list is used to freeze wq, remove from list after
4316 * flushing is complete in case freeze races us.
4317 */
4318 mutex_lock(&wq_pool_mutex);
4319 list_del_init(&wq->list);
4320 mutex_unlock(&wq_pool_mutex);
4321
4322 workqueue_sysfs_unregister(wq);
4323
4324 if (wq->rescuer) {
4325 kthread_stop(wq->rescuer->task);
4326 kfree(wq->rescuer);
4327 wq->rescuer = NULL;
4328 }
4329
4330 if (!(wq->flags & WQ_UNBOUND)) {
4331 /*
4332 * The base ref is never dropped on per-cpu pwqs. Directly
4333 * free the pwqs and wq.
4334 */
4335 free_percpu(wq->cpu_pwqs);
4336 kfree(wq);
4337 } else {
4338 /*
4339 * We're the sole accessor of @wq at this point. Directly
4340 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4341 * @wq will be freed when the last pwq is released.
4342 */
4343 for_each_node(node) {
4344 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4345 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4346 put_pwq_unlocked(pwq);
4347 }
4348
4349 /*
4350 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4351 * put. Don't access it afterwards.
4352 */
4353 pwq = wq->dfl_pwq;
4354 wq->dfl_pwq = NULL;
4355 put_pwq_unlocked(pwq);
4356 }
4357 }
4358 EXPORT_SYMBOL_GPL(destroy_workqueue);
4359
4360 /**
4361 * workqueue_set_max_active - adjust max_active of a workqueue
4362 * @wq: target workqueue
4363 * @max_active: new max_active value.
4364 *
4365 * Set max_active of @wq to @max_active.
4366 *
4367 * CONTEXT:
4368 * Don't call from IRQ context.
4369 */
4370 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4371 {
4372 struct pool_workqueue *pwq;
4373
4374 /* disallow meddling with max_active for ordered workqueues */
4375 if (WARN_ON(wq->flags & __WQ_ORDERED))
4376 return;
4377
4378 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4379
4380 mutex_lock(&wq->mutex);
4381
4382 wq->saved_max_active = max_active;
4383
4384 for_each_pwq(pwq, wq)
4385 pwq_adjust_max_active(pwq);
4386
4387 mutex_unlock(&wq->mutex);
4388 }
4389 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4390
4391 /**
4392 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4393 *
4394 * Determine whether %current is a workqueue rescuer. Can be used from
4395 * work functions to determine whether it's being run off the rescuer task.
4396 */
4397 bool current_is_workqueue_rescuer(void)
4398 {
4399 struct worker *worker = current_wq_worker();
4400
4401 return worker && worker->rescue_wq;
4402 }
4403
4404 /**
4405 * workqueue_congested - test whether a workqueue is congested
4406 * @cpu: CPU in question
4407 * @wq: target workqueue
4408 *
4409 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4410 * no synchronization around this function and the test result is
4411 * unreliable and only useful as advisory hints or for debugging.
4412 *
4413 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4414 * Note that both per-cpu and unbound workqueues may be associated with
4415 * multiple pool_workqueues which have separate congested states. A
4416 * workqueue being congested on one CPU doesn't mean the workqueue is also
4417 * contested on other CPUs / NUMA nodes.
4418 *
4419 * RETURNS:
4420 * %true if congested, %false otherwise.
4421 */
4422 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4423 {
4424 struct pool_workqueue *pwq;
4425 bool ret;
4426
4427 rcu_read_lock_sched();
4428
4429 if (cpu == WORK_CPU_UNBOUND)
4430 cpu = smp_processor_id();
4431
4432 if (!(wq->flags & WQ_UNBOUND))
4433 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4434 else
4435 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4436
4437 ret = !list_empty(&pwq->delayed_works);
4438 rcu_read_unlock_sched();
4439
4440 return ret;
4441 }
4442 EXPORT_SYMBOL_GPL(workqueue_congested);
4443
4444 /**
4445 * work_busy - test whether a work is currently pending or running
4446 * @work: the work to be tested
4447 *
4448 * Test whether @work is currently pending or running. There is no
4449 * synchronization around this function and the test result is
4450 * unreliable and only useful as advisory hints or for debugging.
4451 *
4452 * RETURNS:
4453 * OR'd bitmask of WORK_BUSY_* bits.
4454 */
4455 unsigned int work_busy(struct work_struct *work)
4456 {
4457 struct worker_pool *pool;
4458 unsigned long flags;
4459 unsigned int ret = 0;
4460
4461 if (work_pending(work))
4462 ret |= WORK_BUSY_PENDING;
4463
4464 local_irq_save(flags);
4465 pool = get_work_pool(work);
4466 if (pool) {
4467 spin_lock(&pool->lock);
4468 if (find_worker_executing_work(pool, work))
4469 ret |= WORK_BUSY_RUNNING;
4470 spin_unlock(&pool->lock);
4471 }
4472 local_irq_restore(flags);
4473
4474 return ret;
4475 }
4476 EXPORT_SYMBOL_GPL(work_busy);
4477
4478 /**
4479 * set_worker_desc - set description for the current work item
4480 * @fmt: printf-style format string
4481 * @...: arguments for the format string
4482 *
4483 * This function can be called by a running work function to describe what
4484 * the work item is about. If the worker task gets dumped, this
4485 * information will be printed out together to help debugging. The
4486 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4487 */
4488 void set_worker_desc(const char *fmt, ...)
4489 {
4490 struct worker *worker = current_wq_worker();
4491 va_list args;
4492
4493 if (worker) {
4494 va_start(args, fmt);
4495 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4496 va_end(args);
4497 worker->desc_valid = true;
4498 }
4499 }
4500
4501 /**
4502 * print_worker_info - print out worker information and description
4503 * @log_lvl: the log level to use when printing
4504 * @task: target task
4505 *
4506 * If @task is a worker and currently executing a work item, print out the
4507 * name of the workqueue being serviced and worker description set with
4508 * set_worker_desc() by the currently executing work item.
4509 *
4510 * This function can be safely called on any task as long as the
4511 * task_struct itself is accessible. While safe, this function isn't
4512 * synchronized and may print out mixups or garbages of limited length.
4513 */
4514 void print_worker_info(const char *log_lvl, struct task_struct *task)
4515 {
4516 work_func_t *fn = NULL;
4517 char name[WQ_NAME_LEN] = { };
4518 char desc[WORKER_DESC_LEN] = { };
4519 struct pool_workqueue *pwq = NULL;
4520 struct workqueue_struct *wq = NULL;
4521 bool desc_valid = false;
4522 struct worker *worker;
4523
4524 if (!(task->flags & PF_WQ_WORKER))
4525 return;
4526
4527 /*
4528 * This function is called without any synchronization and @task
4529 * could be in any state. Be careful with dereferences.
4530 */
4531 worker = probe_kthread_data(task);
4532
4533 /*
4534 * Carefully copy the associated workqueue's workfn and name. Keep
4535 * the original last '\0' in case the original contains garbage.
4536 */
4537 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4538 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4539 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4540 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4541
4542 /* copy worker description */
4543 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4544 if (desc_valid)
4545 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4546
4547 if (fn || name[0] || desc[0]) {
4548 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4549 if (desc[0])
4550 pr_cont(" (%s)", desc);
4551 pr_cont("\n");
4552 }
4553 }
4554
4555 /*
4556 * CPU hotplug.
4557 *
4558 * There are two challenges in supporting CPU hotplug. Firstly, there
4559 * are a lot of assumptions on strong associations among work, pwq and
4560 * pool which make migrating pending and scheduled works very
4561 * difficult to implement without impacting hot paths. Secondly,
4562 * worker pools serve mix of short, long and very long running works making
4563 * blocked draining impractical.
4564 *
4565 * This is solved by allowing the pools to be disassociated from the CPU
4566 * running as an unbound one and allowing it to be reattached later if the
4567 * cpu comes back online.
4568 */
4569
4570 static void wq_unbind_fn(struct work_struct *work)
4571 {
4572 int cpu = smp_processor_id();
4573 struct worker_pool *pool;
4574 struct worker *worker;
4575 int wi;
4576
4577 for_each_cpu_worker_pool(pool, cpu) {
4578 WARN_ON_ONCE(cpu != smp_processor_id());
4579
4580 mutex_lock(&pool->manager_mutex);
4581 spin_lock_irq(&pool->lock);
4582
4583 /*
4584 * We've blocked all manager operations. Make all workers
4585 * unbound and set DISASSOCIATED. Before this, all workers
4586 * except for the ones which are still executing works from
4587 * before the last CPU down must be on the cpu. After
4588 * this, they may become diasporas.
4589 */
4590 for_each_pool_worker(worker, wi, pool)
4591 worker->flags |= WORKER_UNBOUND;
4592
4593 pool->flags |= POOL_DISASSOCIATED;
4594
4595 spin_unlock_irq(&pool->lock);
4596 mutex_unlock(&pool->manager_mutex);
4597
4598 /*
4599 * Call schedule() so that we cross rq->lock and thus can
4600 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4601 * This is necessary as scheduler callbacks may be invoked
4602 * from other cpus.
4603 */
4604 schedule();
4605
4606 /*
4607 * Sched callbacks are disabled now. Zap nr_running.
4608 * After this, nr_running stays zero and need_more_worker()
4609 * and keep_working() are always true as long as the
4610 * worklist is not empty. This pool now behaves as an
4611 * unbound (in terms of concurrency management) pool which
4612 * are served by workers tied to the pool.
4613 */
4614 atomic_set(&pool->nr_running, 0);
4615
4616 /*
4617 * With concurrency management just turned off, a busy
4618 * worker blocking could lead to lengthy stalls. Kick off
4619 * unbound chain execution of currently pending work items.
4620 */
4621 spin_lock_irq(&pool->lock);
4622 wake_up_worker(pool);
4623 spin_unlock_irq(&pool->lock);
4624 }
4625 }
4626
4627 /**
4628 * rebind_workers - rebind all workers of a pool to the associated CPU
4629 * @pool: pool of interest
4630 *
4631 * @pool->cpu is coming online. Rebind all workers to the CPU.
4632 */
4633 static void rebind_workers(struct worker_pool *pool)
4634 {
4635 struct worker *worker;
4636 int wi;
4637
4638 lockdep_assert_held(&pool->manager_mutex);
4639
4640 /*
4641 * Restore CPU affinity of all workers. As all idle workers should
4642 * be on the run-queue of the associated CPU before any local
4643 * wake-ups for concurrency management happen, restore CPU affinty
4644 * of all workers first and then clear UNBOUND. As we're called
4645 * from CPU_ONLINE, the following shouldn't fail.
4646 */
4647 for_each_pool_worker(worker, wi, pool)
4648 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4649 pool->attrs->cpumask) < 0);
4650
4651 spin_lock_irq(&pool->lock);
4652
4653 for_each_pool_worker(worker, wi, pool) {
4654 unsigned int worker_flags = worker->flags;
4655
4656 /*
4657 * A bound idle worker should actually be on the runqueue
4658 * of the associated CPU for local wake-ups targeting it to
4659 * work. Kick all idle workers so that they migrate to the
4660 * associated CPU. Doing this in the same loop as
4661 * replacing UNBOUND with REBOUND is safe as no worker will
4662 * be bound before @pool->lock is released.
4663 */
4664 if (worker_flags & WORKER_IDLE)
4665 wake_up_process(worker->task);
4666
4667 /*
4668 * We want to clear UNBOUND but can't directly call
4669 * worker_clr_flags() or adjust nr_running. Atomically
4670 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4671 * @worker will clear REBOUND using worker_clr_flags() when
4672 * it initiates the next execution cycle thus restoring
4673 * concurrency management. Note that when or whether
4674 * @worker clears REBOUND doesn't affect correctness.
4675 *
4676 * ACCESS_ONCE() is necessary because @worker->flags may be
4677 * tested without holding any lock in
4678 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4679 * fail incorrectly leading to premature concurrency
4680 * management operations.
4681 */
4682 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4683 worker_flags |= WORKER_REBOUND;
4684 worker_flags &= ~WORKER_UNBOUND;
4685 ACCESS_ONCE(worker->flags) = worker_flags;
4686 }
4687
4688 spin_unlock_irq(&pool->lock);
4689 }
4690
4691 /**
4692 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4693 * @pool: unbound pool of interest
4694 * @cpu: the CPU which is coming up
4695 *
4696 * An unbound pool may end up with a cpumask which doesn't have any online
4697 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4698 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4699 * online CPU before, cpus_allowed of all its workers should be restored.
4700 */
4701 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4702 {
4703 static cpumask_t cpumask;
4704 struct worker *worker;
4705 int wi;
4706
4707 lockdep_assert_held(&pool->manager_mutex);
4708
4709 /* is @cpu allowed for @pool? */
4710 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4711 return;
4712
4713 /* is @cpu the only online CPU? */
4714 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4715 if (cpumask_weight(&cpumask) != 1)
4716 return;
4717
4718 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4719 for_each_pool_worker(worker, wi, pool)
4720 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4721 pool->attrs->cpumask) < 0);
4722 }
4723
4724 /*
4725 * Workqueues should be brought up before normal priority CPU notifiers.
4726 * This will be registered high priority CPU notifier.
4727 */
4728 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
4729 unsigned long action,
4730 void *hcpu)
4731 {
4732 int cpu = (unsigned long)hcpu;
4733 struct worker_pool *pool;
4734 struct workqueue_struct *wq;
4735 int pi;
4736
4737 switch (action & ~CPU_TASKS_FROZEN) {
4738 case CPU_UP_PREPARE:
4739 for_each_cpu_worker_pool(pool, cpu) {
4740 if (pool->nr_workers)
4741 continue;
4742 if (create_and_start_worker(pool) < 0)
4743 return NOTIFY_BAD;
4744 }
4745 break;
4746
4747 case CPU_DOWN_FAILED:
4748 case CPU_ONLINE:
4749 mutex_lock(&wq_pool_mutex);
4750
4751 for_each_pool(pool, pi) {
4752 mutex_lock(&pool->manager_mutex);
4753
4754 if (pool->cpu == cpu) {
4755 spin_lock_irq(&pool->lock);
4756 pool->flags &= ~POOL_DISASSOCIATED;
4757 spin_unlock_irq(&pool->lock);
4758
4759 rebind_workers(pool);
4760 } else if (pool->cpu < 0) {
4761 restore_unbound_workers_cpumask(pool, cpu);
4762 }
4763
4764 mutex_unlock(&pool->manager_mutex);
4765 }
4766
4767 /* update NUMA affinity of unbound workqueues */
4768 list_for_each_entry(wq, &workqueues, list)
4769 wq_update_unbound_numa(wq, cpu, true);
4770
4771 mutex_unlock(&wq_pool_mutex);
4772 break;
4773 }
4774 return NOTIFY_OK;
4775 }
4776
4777 /*
4778 * Workqueues should be brought down after normal priority CPU notifiers.
4779 * This will be registered as low priority CPU notifier.
4780 */
4781 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4782 unsigned long action,
4783 void *hcpu)
4784 {
4785 int cpu = (unsigned long)hcpu;
4786 struct work_struct unbind_work;
4787 struct workqueue_struct *wq;
4788
4789 switch (action & ~CPU_TASKS_FROZEN) {
4790 case CPU_DOWN_PREPARE:
4791 /* unbinding per-cpu workers should happen on the local CPU */
4792 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4793 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4794
4795 /* update NUMA affinity of unbound workqueues */
4796 mutex_lock(&wq_pool_mutex);
4797 list_for_each_entry(wq, &workqueues, list)
4798 wq_update_unbound_numa(wq, cpu, false);
4799 mutex_unlock(&wq_pool_mutex);
4800
4801 /* wait for per-cpu unbinding to finish */
4802 flush_work(&unbind_work);
4803 break;
4804 }
4805 return NOTIFY_OK;
4806 }
4807
4808 #ifdef CONFIG_SMP
4809
4810 struct work_for_cpu {
4811 struct work_struct work;
4812 long (*fn)(void *);
4813 void *arg;
4814 long ret;
4815 };
4816
4817 static void work_for_cpu_fn(struct work_struct *work)
4818 {
4819 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4820
4821 wfc->ret = wfc->fn(wfc->arg);
4822 }
4823
4824 /**
4825 * work_on_cpu - run a function in user context on a particular cpu
4826 * @cpu: the cpu to run on
4827 * @fn: the function to run
4828 * @arg: the function arg
4829 *
4830 * This will return the value @fn returns.
4831 * It is up to the caller to ensure that the cpu doesn't go offline.
4832 * The caller must not hold any locks which would prevent @fn from completing.
4833 */
4834 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4835 {
4836 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4837
4838 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4839 schedule_work_on(cpu, &wfc.work);
4840 flush_work(&wfc.work);
4841 return wfc.ret;
4842 }
4843 EXPORT_SYMBOL_GPL(work_on_cpu);
4844 #endif /* CONFIG_SMP */
4845
4846 #ifdef CONFIG_FREEZER
4847
4848 /**
4849 * freeze_workqueues_begin - begin freezing workqueues
4850 *
4851 * Start freezing workqueues. After this function returns, all freezable
4852 * workqueues will queue new works to their delayed_works list instead of
4853 * pool->worklist.
4854 *
4855 * CONTEXT:
4856 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4857 */
4858 void freeze_workqueues_begin(void)
4859 {
4860 struct worker_pool *pool;
4861 struct workqueue_struct *wq;
4862 struct pool_workqueue *pwq;
4863 int pi;
4864
4865 mutex_lock(&wq_pool_mutex);
4866
4867 WARN_ON_ONCE(workqueue_freezing);
4868 workqueue_freezing = true;
4869
4870 /* set FREEZING */
4871 for_each_pool(pool, pi) {
4872 spin_lock_irq(&pool->lock);
4873 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4874 pool->flags |= POOL_FREEZING;
4875 spin_unlock_irq(&pool->lock);
4876 }
4877
4878 list_for_each_entry(wq, &workqueues, list) {
4879 mutex_lock(&wq->mutex);
4880 for_each_pwq(pwq, wq)
4881 pwq_adjust_max_active(pwq);
4882 mutex_unlock(&wq->mutex);
4883 }
4884
4885 mutex_unlock(&wq_pool_mutex);
4886 }
4887
4888 /**
4889 * freeze_workqueues_busy - are freezable workqueues still busy?
4890 *
4891 * Check whether freezing is complete. This function must be called
4892 * between freeze_workqueues_begin() and thaw_workqueues().
4893 *
4894 * CONTEXT:
4895 * Grabs and releases wq_pool_mutex.
4896 *
4897 * RETURNS:
4898 * %true if some freezable workqueues are still busy. %false if freezing
4899 * is complete.
4900 */
4901 bool freeze_workqueues_busy(void)
4902 {
4903 bool busy = false;
4904 struct workqueue_struct *wq;
4905 struct pool_workqueue *pwq;
4906
4907 mutex_lock(&wq_pool_mutex);
4908
4909 WARN_ON_ONCE(!workqueue_freezing);
4910
4911 list_for_each_entry(wq, &workqueues, list) {
4912 if (!(wq->flags & WQ_FREEZABLE))
4913 continue;
4914 /*
4915 * nr_active is monotonically decreasing. It's safe
4916 * to peek without lock.
4917 */
4918 rcu_read_lock_sched();
4919 for_each_pwq(pwq, wq) {
4920 WARN_ON_ONCE(pwq->nr_active < 0);
4921 if (pwq->nr_active) {
4922 busy = true;
4923 rcu_read_unlock_sched();
4924 goto out_unlock;
4925 }
4926 }
4927 rcu_read_unlock_sched();
4928 }
4929 out_unlock:
4930 mutex_unlock(&wq_pool_mutex);
4931 return busy;
4932 }
4933
4934 /**
4935 * thaw_workqueues - thaw workqueues
4936 *
4937 * Thaw workqueues. Normal queueing is restored and all collected
4938 * frozen works are transferred to their respective pool worklists.
4939 *
4940 * CONTEXT:
4941 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4942 */
4943 void thaw_workqueues(void)
4944 {
4945 struct workqueue_struct *wq;
4946 struct pool_workqueue *pwq;
4947 struct worker_pool *pool;
4948 int pi;
4949
4950 mutex_lock(&wq_pool_mutex);
4951
4952 if (!workqueue_freezing)
4953 goto out_unlock;
4954
4955 /* clear FREEZING */
4956 for_each_pool(pool, pi) {
4957 spin_lock_irq(&pool->lock);
4958 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4959 pool->flags &= ~POOL_FREEZING;
4960 spin_unlock_irq(&pool->lock);
4961 }
4962
4963 /* restore max_active and repopulate worklist */
4964 list_for_each_entry(wq, &workqueues, list) {
4965 mutex_lock(&wq->mutex);
4966 for_each_pwq(pwq, wq)
4967 pwq_adjust_max_active(pwq);
4968 mutex_unlock(&wq->mutex);
4969 }
4970
4971 workqueue_freezing = false;
4972 out_unlock:
4973 mutex_unlock(&wq_pool_mutex);
4974 }
4975 #endif /* CONFIG_FREEZER */
4976
4977 static void __init wq_numa_init(void)
4978 {
4979 cpumask_var_t *tbl;
4980 int node, cpu;
4981
4982 /* determine NUMA pwq table len - highest node id + 1 */
4983 for_each_node(node)
4984 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4985
4986 if (num_possible_nodes() <= 1)
4987 return;
4988
4989 if (wq_disable_numa) {
4990 pr_info("workqueue: NUMA affinity support disabled\n");
4991 return;
4992 }
4993
4994 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4995 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4996
4997 /*
4998 * We want masks of possible CPUs of each node which isn't readily
4999 * available. Build one from cpu_to_node() which should have been
5000 * fully initialized by now.
5001 */
5002 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5003 BUG_ON(!tbl);
5004
5005 for_each_node(node)
5006 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5007 node_online(node) ? node : NUMA_NO_NODE));
5008
5009 for_each_possible_cpu(cpu) {
5010 node = cpu_to_node(cpu);
5011 if (WARN_ON(node == NUMA_NO_NODE)) {
5012 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5013 /* happens iff arch is bonkers, let's just proceed */
5014 return;
5015 }
5016 cpumask_set_cpu(cpu, tbl[node]);
5017 }
5018
5019 wq_numa_possible_cpumask = tbl;
5020 wq_numa_enabled = true;
5021 }
5022
5023 static int __init init_workqueues(void)
5024 {
5025 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5026 int i, cpu;
5027
5028 /* make sure we have enough bits for OFFQ pool ID */
5029 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
5030 WORK_CPU_END * NR_STD_WORKER_POOLS);
5031
5032 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5033
5034 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5035
5036 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5037 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5038
5039 wq_numa_init();
5040
5041 /* initialize CPU pools */
5042 for_each_possible_cpu(cpu) {
5043 struct worker_pool *pool;
5044
5045 i = 0;
5046 for_each_cpu_worker_pool(pool, cpu) {
5047 BUG_ON(init_worker_pool(pool));
5048 pool->cpu = cpu;
5049 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5050 pool->attrs->nice = std_nice[i++];
5051 pool->node = cpu_to_node(cpu);
5052
5053 /* alloc pool ID */
5054 mutex_lock(&wq_pool_mutex);
5055 BUG_ON(worker_pool_assign_id(pool));
5056 mutex_unlock(&wq_pool_mutex);
5057 }
5058 }
5059
5060 /* create the initial worker */
5061 for_each_online_cpu(cpu) {
5062 struct worker_pool *pool;
5063
5064 for_each_cpu_worker_pool(pool, cpu) {
5065 pool->flags &= ~POOL_DISASSOCIATED;
5066 BUG_ON(create_and_start_worker(pool) < 0);
5067 }
5068 }
5069
5070 /* create default unbound and ordered wq attrs */
5071 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5072 struct workqueue_attrs *attrs;
5073
5074 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5075 attrs->nice = std_nice[i];
5076 unbound_std_wq_attrs[i] = attrs;
5077
5078 /*
5079 * An ordered wq should have only one pwq as ordering is
5080 * guaranteed by max_active which is enforced by pwqs.
5081 * Turn off NUMA so that dfl_pwq is used for all nodes.
5082 */
5083 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5084 attrs->nice = std_nice[i];
5085 attrs->no_numa = true;
5086 ordered_wq_attrs[i] = attrs;
5087 }
5088
5089 system_wq = alloc_workqueue("events", 0, 0);
5090 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5091 system_long_wq = alloc_workqueue("events_long", 0, 0);
5092 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5093 WQ_UNBOUND_MAX_ACTIVE);
5094 system_freezable_wq = alloc_workqueue("events_freezable",
5095 WQ_FREEZABLE, 0);
5096 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5097 !system_unbound_wq || !system_freezable_wq);
5098 return 0;
5099 }
5100 early_initcall(init_workqueues);