printk: do cond_resched() between lines while outputting to consoles
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50
51 #include "workqueue_internal.h"
52
53 enum {
54 /*
55 * worker_pool flags
56 *
57 * A bound pool is either associated or disassociated with its CPU.
58 * While associated (!DISASSOCIATED), all workers are bound to the
59 * CPU and none has %WORKER_UNBOUND set and concurrency management
60 * is in effect.
61 *
62 * While DISASSOCIATED, the cpu may be offline and all workers have
63 * %WORKER_UNBOUND set and concurrency management disabled, and may
64 * be executing on any CPU. The pool behaves as an unbound one.
65 *
66 * Note that DISASSOCIATED should be flipped only while holding
67 * manager_mutex to avoid changing binding state while
68 * create_worker() is in progress.
69 */
70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
72 POOL_FREEZING = 1 << 3, /* freeze in progress */
73
74 /* worker flags */
75 WORKER_STARTED = 1 << 0, /* started */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
78 WORKER_PREP = 1 << 3, /* preparing to run works */
79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
82
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
85
86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
87
88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
90
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give -20.
103 */
104 RESCUER_NICE_LEVEL = -20,
105 HIGHPRI_NICE_LEVEL = -20,
106
107 WQ_NAME_LEN = 24,
108 };
109
110 /*
111 * Structure fields follow one of the following exclusion rules.
112 *
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
115 *
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
119 * L: pool->lock protected. Access with pool->lock held.
120 *
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
125 *
126 * MG: pool->manager_mutex and pool->lock protected. Writes require both
127 * locks. Reads can happen under either lock.
128 *
129 * PL: wq_pool_mutex protected.
130 *
131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
132 *
133 * WQ: wq->mutex protected.
134 *
135 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
136 *
137 * MD: wq_mayday_lock protected.
138 */
139
140 /* struct worker is defined in workqueue_internal.h */
141
142 struct worker_pool {
143 spinlock_t lock; /* the pool lock */
144 int cpu; /* I: the associated cpu */
145 int node; /* I: the associated node ID */
146 int id; /* I: pool ID */
147 unsigned int flags; /* X: flags */
148
149 struct list_head worklist; /* L: list of pending works */
150 int nr_workers; /* L: total number of workers */
151
152 /* nr_idle includes the ones off idle_list for rebinding */
153 int nr_idle; /* L: currently idle ones */
154
155 struct list_head idle_list; /* X: list of idle workers */
156 struct timer_list idle_timer; /* L: worker idle timeout */
157 struct timer_list mayday_timer; /* L: SOS timer for workers */
158
159 /* a workers is either on busy_hash or idle_list, or the manager */
160 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
161 /* L: hash of busy workers */
162
163 /* see manage_workers() for details on the two manager mutexes */
164 struct mutex manager_arb; /* manager arbitration */
165 struct mutex manager_mutex; /* manager exclusion */
166 struct idr worker_idr; /* MG: worker IDs and iteration */
167
168 struct workqueue_attrs *attrs; /* I: worker attributes */
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
171
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
184 } ____cacheline_aligned_in_smp;
185
186 /*
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
191 */
192 struct pool_workqueue {
193 struct worker_pool *pool; /* I: the associated pool */
194 struct workqueue_struct *wq; /* I: the owning workqueue */
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
197 int refcnt; /* L: reference count */
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
200 int nr_active; /* L: nr of active works */
201 int max_active; /* L: max active works */
202 struct list_head delayed_works; /* L: delayed works */
203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
204 struct list_head mayday_node; /* MD: node on wq->maydays */
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
210 * determined without grabbing wq->mutex.
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215
216 /*
217 * Structure used to wait for workqueue flush.
218 */
219 struct wq_flusher {
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
222 struct completion done; /* flush completion */
223 };
224
225 struct wq_device;
226
227 /*
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
230 */
231 struct workqueue_struct {
232 struct list_head pwqs; /* WR: all pwqs of this wq */
233 struct list_head list; /* PL: list of all workqueues */
234
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
238 atomic_t nr_pwqs_to_flush; /* flush in progress */
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
242
243 struct list_head maydays; /* MD: pwqs requesting rescue */
244 struct worker *rescuer; /* I: rescue worker */
245
246 int nr_drainers; /* WQ: drain in progress */
247 int saved_max_active; /* WQ: saved pwq max_active */
248
249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
251
252 #ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256 struct lockdep_map lockdep_map;
257 #endif
258 char name[WQ_NAME_LEN]; /* I: workqueue name */
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265
266 static struct kmem_cache *pwq_cache;
267
268 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269 static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
272 static bool wq_disable_numa;
273 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
275 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
276
277 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
278 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
279
280 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
281 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
282
283 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
284 static bool workqueue_freezing; /* PL: have wqs started freezing? */
285
286 /* the per-cpu worker pools */
287 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
288 cpu_worker_pools);
289
290 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
291
292 /* PL: hash of all unbound pools keyed by pool->attrs */
293 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
294
295 /* I: attributes used when instantiating standard unbound pools on demand */
296 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
297
298 /* I: attributes used when instantiating ordered pools on demand */
299 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
300
301 struct workqueue_struct *system_wq __read_mostly;
302 EXPORT_SYMBOL(system_wq);
303 struct workqueue_struct *system_highpri_wq __read_mostly;
304 EXPORT_SYMBOL_GPL(system_highpri_wq);
305 struct workqueue_struct *system_long_wq __read_mostly;
306 EXPORT_SYMBOL_GPL(system_long_wq);
307 struct workqueue_struct *system_unbound_wq __read_mostly;
308 EXPORT_SYMBOL_GPL(system_unbound_wq);
309 struct workqueue_struct *system_freezable_wq __read_mostly;
310 EXPORT_SYMBOL_GPL(system_freezable_wq);
311
312 static int worker_thread(void *__worker);
313 static void copy_workqueue_attrs(struct workqueue_attrs *to,
314 const struct workqueue_attrs *from);
315
316 #define CREATE_TRACE_POINTS
317 #include <trace/events/workqueue.h>
318
319 #define assert_rcu_or_pool_mutex() \
320 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
321 lockdep_is_held(&wq_pool_mutex), \
322 "sched RCU or wq_pool_mutex should be held")
323
324 #define assert_rcu_or_wq_mutex(wq) \
325 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
326 lockdep_is_held(&wq->mutex), \
327 "sched RCU or wq->mutex should be held")
328
329 #ifdef CONFIG_LOCKDEP
330 #define assert_manager_or_pool_lock(pool) \
331 WARN_ONCE(debug_locks && \
332 !lockdep_is_held(&(pool)->manager_mutex) && \
333 !lockdep_is_held(&(pool)->lock), \
334 "pool->manager_mutex or ->lock should be held")
335 #else
336 #define assert_manager_or_pool_lock(pool) do { } while (0)
337 #endif
338
339 #define for_each_cpu_worker_pool(pool, cpu) \
340 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
341 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
342 (pool)++)
343
344 /**
345 * for_each_pool - iterate through all worker_pools in the system
346 * @pool: iteration cursor
347 * @pi: integer used for iteration
348 *
349 * This must be called either with wq_pool_mutex held or sched RCU read
350 * locked. If the pool needs to be used beyond the locking in effect, the
351 * caller is responsible for guaranteeing that the pool stays online.
352 *
353 * The if/else clause exists only for the lockdep assertion and can be
354 * ignored.
355 */
356 #define for_each_pool(pool, pi) \
357 idr_for_each_entry(&worker_pool_idr, pool, pi) \
358 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
359 else
360
361 /**
362 * for_each_pool_worker - iterate through all workers of a worker_pool
363 * @worker: iteration cursor
364 * @wi: integer used for iteration
365 * @pool: worker_pool to iterate workers of
366 *
367 * This must be called with either @pool->manager_mutex or ->lock held.
368 *
369 * The if/else clause exists only for the lockdep assertion and can be
370 * ignored.
371 */
372 #define for_each_pool_worker(worker, wi, pool) \
373 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
374 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
375 else
376
377 /**
378 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
379 * @pwq: iteration cursor
380 * @wq: the target workqueue
381 *
382 * This must be called either with wq->mutex held or sched RCU read locked.
383 * If the pwq needs to be used beyond the locking in effect, the caller is
384 * responsible for guaranteeing that the pwq stays online.
385 *
386 * The if/else clause exists only for the lockdep assertion and can be
387 * ignored.
388 */
389 #define for_each_pwq(pwq, wq) \
390 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
391 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
392 else
393
394 #ifdef CONFIG_DEBUG_OBJECTS_WORK
395
396 static struct debug_obj_descr work_debug_descr;
397
398 static void *work_debug_hint(void *addr)
399 {
400 return ((struct work_struct *) addr)->func;
401 }
402
403 /*
404 * fixup_init is called when:
405 * - an active object is initialized
406 */
407 static int work_fixup_init(void *addr, enum debug_obj_state state)
408 {
409 struct work_struct *work = addr;
410
411 switch (state) {
412 case ODEBUG_STATE_ACTIVE:
413 cancel_work_sync(work);
414 debug_object_init(work, &work_debug_descr);
415 return 1;
416 default:
417 return 0;
418 }
419 }
420
421 /*
422 * fixup_activate is called when:
423 * - an active object is activated
424 * - an unknown object is activated (might be a statically initialized object)
425 */
426 static int work_fixup_activate(void *addr, enum debug_obj_state state)
427 {
428 struct work_struct *work = addr;
429
430 switch (state) {
431
432 case ODEBUG_STATE_NOTAVAILABLE:
433 /*
434 * This is not really a fixup. The work struct was
435 * statically initialized. We just make sure that it
436 * is tracked in the object tracker.
437 */
438 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
439 debug_object_init(work, &work_debug_descr);
440 debug_object_activate(work, &work_debug_descr);
441 return 0;
442 }
443 WARN_ON_ONCE(1);
444 return 0;
445
446 case ODEBUG_STATE_ACTIVE:
447 WARN_ON(1);
448
449 default:
450 return 0;
451 }
452 }
453
454 /*
455 * fixup_free is called when:
456 * - an active object is freed
457 */
458 static int work_fixup_free(void *addr, enum debug_obj_state state)
459 {
460 struct work_struct *work = addr;
461
462 switch (state) {
463 case ODEBUG_STATE_ACTIVE:
464 cancel_work_sync(work);
465 debug_object_free(work, &work_debug_descr);
466 return 1;
467 default:
468 return 0;
469 }
470 }
471
472 static struct debug_obj_descr work_debug_descr = {
473 .name = "work_struct",
474 .debug_hint = work_debug_hint,
475 .fixup_init = work_fixup_init,
476 .fixup_activate = work_fixup_activate,
477 .fixup_free = work_fixup_free,
478 };
479
480 static inline void debug_work_activate(struct work_struct *work)
481 {
482 debug_object_activate(work, &work_debug_descr);
483 }
484
485 static inline void debug_work_deactivate(struct work_struct *work)
486 {
487 debug_object_deactivate(work, &work_debug_descr);
488 }
489
490 void __init_work(struct work_struct *work, int onstack)
491 {
492 if (onstack)
493 debug_object_init_on_stack(work, &work_debug_descr);
494 else
495 debug_object_init(work, &work_debug_descr);
496 }
497 EXPORT_SYMBOL_GPL(__init_work);
498
499 void destroy_work_on_stack(struct work_struct *work)
500 {
501 debug_object_free(work, &work_debug_descr);
502 }
503 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
504
505 #else
506 static inline void debug_work_activate(struct work_struct *work) { }
507 static inline void debug_work_deactivate(struct work_struct *work) { }
508 #endif
509
510 /* allocate ID and assign it to @pool */
511 static int worker_pool_assign_id(struct worker_pool *pool)
512 {
513 int ret;
514
515 lockdep_assert_held(&wq_pool_mutex);
516
517 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
518 if (ret >= 0) {
519 pool->id = ret;
520 return 0;
521 }
522 return ret;
523 }
524
525 /**
526 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
527 * @wq: the target workqueue
528 * @node: the node ID
529 *
530 * This must be called either with pwq_lock held or sched RCU read locked.
531 * If the pwq needs to be used beyond the locking in effect, the caller is
532 * responsible for guaranteeing that the pwq stays online.
533 */
534 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
535 int node)
536 {
537 assert_rcu_or_wq_mutex(wq);
538 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
539 }
540
541 static unsigned int work_color_to_flags(int color)
542 {
543 return color << WORK_STRUCT_COLOR_SHIFT;
544 }
545
546 static int get_work_color(struct work_struct *work)
547 {
548 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
549 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
550 }
551
552 static int work_next_color(int color)
553 {
554 return (color + 1) % WORK_NR_COLORS;
555 }
556
557 /*
558 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
559 * contain the pointer to the queued pwq. Once execution starts, the flag
560 * is cleared and the high bits contain OFFQ flags and pool ID.
561 *
562 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
563 * and clear_work_data() can be used to set the pwq, pool or clear
564 * work->data. These functions should only be called while the work is
565 * owned - ie. while the PENDING bit is set.
566 *
567 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
568 * corresponding to a work. Pool is available once the work has been
569 * queued anywhere after initialization until it is sync canceled. pwq is
570 * available only while the work item is queued.
571 *
572 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
573 * canceled. While being canceled, a work item may have its PENDING set
574 * but stay off timer and worklist for arbitrarily long and nobody should
575 * try to steal the PENDING bit.
576 */
577 static inline void set_work_data(struct work_struct *work, unsigned long data,
578 unsigned long flags)
579 {
580 WARN_ON_ONCE(!work_pending(work));
581 atomic_long_set(&work->data, data | flags | work_static(work));
582 }
583
584 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
585 unsigned long extra_flags)
586 {
587 set_work_data(work, (unsigned long)pwq,
588 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
589 }
590
591 static void set_work_pool_and_keep_pending(struct work_struct *work,
592 int pool_id)
593 {
594 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
595 WORK_STRUCT_PENDING);
596 }
597
598 static void set_work_pool_and_clear_pending(struct work_struct *work,
599 int pool_id)
600 {
601 /*
602 * The following wmb is paired with the implied mb in
603 * test_and_set_bit(PENDING) and ensures all updates to @work made
604 * here are visible to and precede any updates by the next PENDING
605 * owner.
606 */
607 smp_wmb();
608 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
609 /*
610 * The following mb guarantees that previous clear of a PENDING bit
611 * will not be reordered with any speculative LOADS or STORES from
612 * work->current_func, which is executed afterwards. This possible
613 * reordering can lead to a missed execution on attempt to qeueue
614 * the same @work. E.g. consider this case:
615 *
616 * CPU#0 CPU#1
617 * ---------------------------- --------------------------------
618 *
619 * 1 STORE event_indicated
620 * 2 queue_work_on() {
621 * 3 test_and_set_bit(PENDING)
622 * 4 } set_..._and_clear_pending() {
623 * 5 set_work_data() # clear bit
624 * 6 smp_mb()
625 * 7 work->current_func() {
626 * 8 LOAD event_indicated
627 * }
628 *
629 * Without an explicit full barrier speculative LOAD on line 8 can
630 * be executed before CPU#0 does STORE on line 1. If that happens,
631 * CPU#0 observes the PENDING bit is still set and new execution of
632 * a @work is not queued in a hope, that CPU#1 will eventually
633 * finish the queued @work. Meanwhile CPU#1 does not see
634 * event_indicated is set, because speculative LOAD was executed
635 * before actual STORE.
636 */
637 smp_mb();
638 }
639
640 static void clear_work_data(struct work_struct *work)
641 {
642 smp_wmb(); /* see set_work_pool_and_clear_pending() */
643 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
644 }
645
646 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
647 {
648 unsigned long data = atomic_long_read(&work->data);
649
650 if (data & WORK_STRUCT_PWQ)
651 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
652 else
653 return NULL;
654 }
655
656 /**
657 * get_work_pool - return the worker_pool a given work was associated with
658 * @work: the work item of interest
659 *
660 * Return the worker_pool @work was last associated with. %NULL if none.
661 *
662 * Pools are created and destroyed under wq_pool_mutex, and allows read
663 * access under sched-RCU read lock. As such, this function should be
664 * called under wq_pool_mutex or with preemption disabled.
665 *
666 * All fields of the returned pool are accessible as long as the above
667 * mentioned locking is in effect. If the returned pool needs to be used
668 * beyond the critical section, the caller is responsible for ensuring the
669 * returned pool is and stays online.
670 */
671 static struct worker_pool *get_work_pool(struct work_struct *work)
672 {
673 unsigned long data = atomic_long_read(&work->data);
674 int pool_id;
675
676 assert_rcu_or_pool_mutex();
677
678 if (data & WORK_STRUCT_PWQ)
679 return ((struct pool_workqueue *)
680 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
681
682 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
683 if (pool_id == WORK_OFFQ_POOL_NONE)
684 return NULL;
685
686 return idr_find(&worker_pool_idr, pool_id);
687 }
688
689 /**
690 * get_work_pool_id - return the worker pool ID a given work is associated with
691 * @work: the work item of interest
692 *
693 * Return the worker_pool ID @work was last associated with.
694 * %WORK_OFFQ_POOL_NONE if none.
695 */
696 static int get_work_pool_id(struct work_struct *work)
697 {
698 unsigned long data = atomic_long_read(&work->data);
699
700 if (data & WORK_STRUCT_PWQ)
701 return ((struct pool_workqueue *)
702 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
703
704 return data >> WORK_OFFQ_POOL_SHIFT;
705 }
706
707 static void mark_work_canceling(struct work_struct *work)
708 {
709 unsigned long pool_id = get_work_pool_id(work);
710
711 pool_id <<= WORK_OFFQ_POOL_SHIFT;
712 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
713 }
714
715 static bool work_is_canceling(struct work_struct *work)
716 {
717 unsigned long data = atomic_long_read(&work->data);
718
719 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
720 }
721
722 /*
723 * Policy functions. These define the policies on how the global worker
724 * pools are managed. Unless noted otherwise, these functions assume that
725 * they're being called with pool->lock held.
726 */
727
728 static bool __need_more_worker(struct worker_pool *pool)
729 {
730 return !atomic_read(&pool->nr_running);
731 }
732
733 /*
734 * Need to wake up a worker? Called from anything but currently
735 * running workers.
736 *
737 * Note that, because unbound workers never contribute to nr_running, this
738 * function will always return %true for unbound pools as long as the
739 * worklist isn't empty.
740 */
741 static bool need_more_worker(struct worker_pool *pool)
742 {
743 return !list_empty(&pool->worklist) && __need_more_worker(pool);
744 }
745
746 /* Can I start working? Called from busy but !running workers. */
747 static bool may_start_working(struct worker_pool *pool)
748 {
749 return pool->nr_idle;
750 }
751
752 /* Do I need to keep working? Called from currently running workers. */
753 static bool keep_working(struct worker_pool *pool)
754 {
755 return !list_empty(&pool->worklist) &&
756 atomic_read(&pool->nr_running) <= 1;
757 }
758
759 /* Do we need a new worker? Called from manager. */
760 static bool need_to_create_worker(struct worker_pool *pool)
761 {
762 return need_more_worker(pool) && !may_start_working(pool);
763 }
764
765 /* Do I need to be the manager? */
766 static bool need_to_manage_workers(struct worker_pool *pool)
767 {
768 return need_to_create_worker(pool) ||
769 (pool->flags & POOL_MANAGE_WORKERS);
770 }
771
772 /* Do we have too many workers and should some go away? */
773 static bool too_many_workers(struct worker_pool *pool)
774 {
775 bool managing = mutex_is_locked(&pool->manager_arb);
776 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
777 int nr_busy = pool->nr_workers - nr_idle;
778
779 /*
780 * nr_idle and idle_list may disagree if idle rebinding is in
781 * progress. Never return %true if idle_list is empty.
782 */
783 if (list_empty(&pool->idle_list))
784 return false;
785
786 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
787 }
788
789 /*
790 * Wake up functions.
791 */
792
793 /* Return the first worker. Safe with preemption disabled */
794 static struct worker *first_worker(struct worker_pool *pool)
795 {
796 if (unlikely(list_empty(&pool->idle_list)))
797 return NULL;
798
799 return list_first_entry(&pool->idle_list, struct worker, entry);
800 }
801
802 /**
803 * wake_up_worker - wake up an idle worker
804 * @pool: worker pool to wake worker from
805 *
806 * Wake up the first idle worker of @pool.
807 *
808 * CONTEXT:
809 * spin_lock_irq(pool->lock).
810 */
811 static void wake_up_worker(struct worker_pool *pool)
812 {
813 struct worker *worker = first_worker(pool);
814
815 if (likely(worker))
816 wake_up_process(worker->task);
817 }
818
819 /**
820 * wq_worker_waking_up - a worker is waking up
821 * @task: task waking up
822 * @cpu: CPU @task is waking up to
823 *
824 * This function is called during try_to_wake_up() when a worker is
825 * being awoken.
826 *
827 * CONTEXT:
828 * spin_lock_irq(rq->lock)
829 */
830 void wq_worker_waking_up(struct task_struct *task, int cpu)
831 {
832 struct worker *worker = kthread_data(task);
833
834 if (!(worker->flags & WORKER_NOT_RUNNING)) {
835 WARN_ON_ONCE(worker->pool->cpu != cpu);
836 atomic_inc(&worker->pool->nr_running);
837 }
838 }
839
840 /**
841 * wq_worker_sleeping - a worker is going to sleep
842 * @task: task going to sleep
843 * @cpu: CPU in question, must be the current CPU number
844 *
845 * This function is called during schedule() when a busy worker is
846 * going to sleep. Worker on the same cpu can be woken up by
847 * returning pointer to its task.
848 *
849 * CONTEXT:
850 * spin_lock_irq(rq->lock)
851 *
852 * RETURNS:
853 * Worker task on @cpu to wake up, %NULL if none.
854 */
855 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
856 {
857 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
858 struct worker_pool *pool;
859
860 /*
861 * Rescuers, which may not have all the fields set up like normal
862 * workers, also reach here, let's not access anything before
863 * checking NOT_RUNNING.
864 */
865 if (worker->flags & WORKER_NOT_RUNNING)
866 return NULL;
867
868 pool = worker->pool;
869
870 /* this can only happen on the local cpu */
871 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
872 return NULL;
873
874 /*
875 * The counterpart of the following dec_and_test, implied mb,
876 * worklist not empty test sequence is in insert_work().
877 * Please read comment there.
878 *
879 * NOT_RUNNING is clear. This means that we're bound to and
880 * running on the local cpu w/ rq lock held and preemption
881 * disabled, which in turn means that none else could be
882 * manipulating idle_list, so dereferencing idle_list without pool
883 * lock is safe.
884 */
885 if (atomic_dec_and_test(&pool->nr_running) &&
886 !list_empty(&pool->worklist))
887 to_wakeup = first_worker(pool);
888 return to_wakeup ? to_wakeup->task : NULL;
889 }
890
891 /**
892 * worker_set_flags - set worker flags and adjust nr_running accordingly
893 * @worker: self
894 * @flags: flags to set
895 * @wakeup: wakeup an idle worker if necessary
896 *
897 * Set @flags in @worker->flags and adjust nr_running accordingly. If
898 * nr_running becomes zero and @wakeup is %true, an idle worker is
899 * woken up.
900 *
901 * CONTEXT:
902 * spin_lock_irq(pool->lock)
903 */
904 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
905 bool wakeup)
906 {
907 struct worker_pool *pool = worker->pool;
908
909 WARN_ON_ONCE(worker->task != current);
910
911 /*
912 * If transitioning into NOT_RUNNING, adjust nr_running and
913 * wake up an idle worker as necessary if requested by
914 * @wakeup.
915 */
916 if ((flags & WORKER_NOT_RUNNING) &&
917 !(worker->flags & WORKER_NOT_RUNNING)) {
918 if (wakeup) {
919 if (atomic_dec_and_test(&pool->nr_running) &&
920 !list_empty(&pool->worklist))
921 wake_up_worker(pool);
922 } else
923 atomic_dec(&pool->nr_running);
924 }
925
926 worker->flags |= flags;
927 }
928
929 /**
930 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
931 * @worker: self
932 * @flags: flags to clear
933 *
934 * Clear @flags in @worker->flags and adjust nr_running accordingly.
935 *
936 * CONTEXT:
937 * spin_lock_irq(pool->lock)
938 */
939 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
940 {
941 struct worker_pool *pool = worker->pool;
942 unsigned int oflags = worker->flags;
943
944 WARN_ON_ONCE(worker->task != current);
945
946 worker->flags &= ~flags;
947
948 /*
949 * If transitioning out of NOT_RUNNING, increment nr_running. Note
950 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
951 * of multiple flags, not a single flag.
952 */
953 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
954 if (!(worker->flags & WORKER_NOT_RUNNING))
955 atomic_inc(&pool->nr_running);
956 }
957
958 /**
959 * find_worker_executing_work - find worker which is executing a work
960 * @pool: pool of interest
961 * @work: work to find worker for
962 *
963 * Find a worker which is executing @work on @pool by searching
964 * @pool->busy_hash which is keyed by the address of @work. For a worker
965 * to match, its current execution should match the address of @work and
966 * its work function. This is to avoid unwanted dependency between
967 * unrelated work executions through a work item being recycled while still
968 * being executed.
969 *
970 * This is a bit tricky. A work item may be freed once its execution
971 * starts and nothing prevents the freed area from being recycled for
972 * another work item. If the same work item address ends up being reused
973 * before the original execution finishes, workqueue will identify the
974 * recycled work item as currently executing and make it wait until the
975 * current execution finishes, introducing an unwanted dependency.
976 *
977 * This function checks the work item address and work function to avoid
978 * false positives. Note that this isn't complete as one may construct a
979 * work function which can introduce dependency onto itself through a
980 * recycled work item. Well, if somebody wants to shoot oneself in the
981 * foot that badly, there's only so much we can do, and if such deadlock
982 * actually occurs, it should be easy to locate the culprit work function.
983 *
984 * CONTEXT:
985 * spin_lock_irq(pool->lock).
986 *
987 * RETURNS:
988 * Pointer to worker which is executing @work if found, NULL
989 * otherwise.
990 */
991 static struct worker *find_worker_executing_work(struct worker_pool *pool,
992 struct work_struct *work)
993 {
994 struct worker *worker;
995
996 hash_for_each_possible(pool->busy_hash, worker, hentry,
997 (unsigned long)work)
998 if (worker->current_work == work &&
999 worker->current_func == work->func)
1000 return worker;
1001
1002 return NULL;
1003 }
1004
1005 /**
1006 * move_linked_works - move linked works to a list
1007 * @work: start of series of works to be scheduled
1008 * @head: target list to append @work to
1009 * @nextp: out paramter for nested worklist walking
1010 *
1011 * Schedule linked works starting from @work to @head. Work series to
1012 * be scheduled starts at @work and includes any consecutive work with
1013 * WORK_STRUCT_LINKED set in its predecessor.
1014 *
1015 * If @nextp is not NULL, it's updated to point to the next work of
1016 * the last scheduled work. This allows move_linked_works() to be
1017 * nested inside outer list_for_each_entry_safe().
1018 *
1019 * CONTEXT:
1020 * spin_lock_irq(pool->lock).
1021 */
1022 static void move_linked_works(struct work_struct *work, struct list_head *head,
1023 struct work_struct **nextp)
1024 {
1025 struct work_struct *n;
1026
1027 /*
1028 * Linked worklist will always end before the end of the list,
1029 * use NULL for list head.
1030 */
1031 list_for_each_entry_safe_from(work, n, NULL, entry) {
1032 list_move_tail(&work->entry, head);
1033 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1034 break;
1035 }
1036
1037 /*
1038 * If we're already inside safe list traversal and have moved
1039 * multiple works to the scheduled queue, the next position
1040 * needs to be updated.
1041 */
1042 if (nextp)
1043 *nextp = n;
1044 }
1045
1046 /**
1047 * get_pwq - get an extra reference on the specified pool_workqueue
1048 * @pwq: pool_workqueue to get
1049 *
1050 * Obtain an extra reference on @pwq. The caller should guarantee that
1051 * @pwq has positive refcnt and be holding the matching pool->lock.
1052 */
1053 static void get_pwq(struct pool_workqueue *pwq)
1054 {
1055 lockdep_assert_held(&pwq->pool->lock);
1056 WARN_ON_ONCE(pwq->refcnt <= 0);
1057 pwq->refcnt++;
1058 }
1059
1060 /**
1061 * put_pwq - put a pool_workqueue reference
1062 * @pwq: pool_workqueue to put
1063 *
1064 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1065 * destruction. The caller should be holding the matching pool->lock.
1066 */
1067 static void put_pwq(struct pool_workqueue *pwq)
1068 {
1069 lockdep_assert_held(&pwq->pool->lock);
1070 if (likely(--pwq->refcnt))
1071 return;
1072 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1073 return;
1074 /*
1075 * @pwq can't be released under pool->lock, bounce to
1076 * pwq_unbound_release_workfn(). This never recurses on the same
1077 * pool->lock as this path is taken only for unbound workqueues and
1078 * the release work item is scheduled on a per-cpu workqueue. To
1079 * avoid lockdep warning, unbound pool->locks are given lockdep
1080 * subclass of 1 in get_unbound_pool().
1081 */
1082 schedule_work(&pwq->unbound_release_work);
1083 }
1084
1085 /**
1086 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1087 * @pwq: pool_workqueue to put (can be %NULL)
1088 *
1089 * put_pwq() with locking. This function also allows %NULL @pwq.
1090 */
1091 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1092 {
1093 if (pwq) {
1094 /*
1095 * As both pwqs and pools are sched-RCU protected, the
1096 * following lock operations are safe.
1097 */
1098 spin_lock_irq(&pwq->pool->lock);
1099 put_pwq(pwq);
1100 spin_unlock_irq(&pwq->pool->lock);
1101 }
1102 }
1103
1104 static void pwq_activate_delayed_work(struct work_struct *work)
1105 {
1106 struct pool_workqueue *pwq = get_work_pwq(work);
1107
1108 trace_workqueue_activate_work(work);
1109 move_linked_works(work, &pwq->pool->worklist, NULL);
1110 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1111 pwq->nr_active++;
1112 }
1113
1114 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1115 {
1116 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1117 struct work_struct, entry);
1118
1119 pwq_activate_delayed_work(work);
1120 }
1121
1122 /**
1123 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1124 * @pwq: pwq of interest
1125 * @color: color of work which left the queue
1126 *
1127 * A work either has completed or is removed from pending queue,
1128 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1129 *
1130 * CONTEXT:
1131 * spin_lock_irq(pool->lock).
1132 */
1133 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1134 {
1135 /* uncolored work items don't participate in flushing or nr_active */
1136 if (color == WORK_NO_COLOR)
1137 goto out_put;
1138
1139 pwq->nr_in_flight[color]--;
1140
1141 pwq->nr_active--;
1142 if (!list_empty(&pwq->delayed_works)) {
1143 /* one down, submit a delayed one */
1144 if (pwq->nr_active < pwq->max_active)
1145 pwq_activate_first_delayed(pwq);
1146 }
1147
1148 /* is flush in progress and are we at the flushing tip? */
1149 if (likely(pwq->flush_color != color))
1150 goto out_put;
1151
1152 /* are there still in-flight works? */
1153 if (pwq->nr_in_flight[color])
1154 goto out_put;
1155
1156 /* this pwq is done, clear flush_color */
1157 pwq->flush_color = -1;
1158
1159 /*
1160 * If this was the last pwq, wake up the first flusher. It
1161 * will handle the rest.
1162 */
1163 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1164 complete(&pwq->wq->first_flusher->done);
1165 out_put:
1166 put_pwq(pwq);
1167 }
1168
1169 /**
1170 * try_to_grab_pending - steal work item from worklist and disable irq
1171 * @work: work item to steal
1172 * @is_dwork: @work is a delayed_work
1173 * @flags: place to store irq state
1174 *
1175 * Try to grab PENDING bit of @work. This function can handle @work in any
1176 * stable state - idle, on timer or on worklist. Return values are
1177 *
1178 * 1 if @work was pending and we successfully stole PENDING
1179 * 0 if @work was idle and we claimed PENDING
1180 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1181 * -ENOENT if someone else is canceling @work, this state may persist
1182 * for arbitrarily long
1183 *
1184 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1185 * interrupted while holding PENDING and @work off queue, irq must be
1186 * disabled on entry. This, combined with delayed_work->timer being
1187 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1188 *
1189 * On successful return, >= 0, irq is disabled and the caller is
1190 * responsible for releasing it using local_irq_restore(*@flags).
1191 *
1192 * This function is safe to call from any context including IRQ handler.
1193 */
1194 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1195 unsigned long *flags)
1196 {
1197 struct worker_pool *pool;
1198 struct pool_workqueue *pwq;
1199
1200 local_irq_save(*flags);
1201
1202 /* try to steal the timer if it exists */
1203 if (is_dwork) {
1204 struct delayed_work *dwork = to_delayed_work(work);
1205
1206 /*
1207 * dwork->timer is irqsafe. If del_timer() fails, it's
1208 * guaranteed that the timer is not queued anywhere and not
1209 * running on the local CPU.
1210 */
1211 if (likely(del_timer(&dwork->timer)))
1212 return 1;
1213 }
1214
1215 /* try to claim PENDING the normal way */
1216 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1217 return 0;
1218
1219 /*
1220 * The queueing is in progress, or it is already queued. Try to
1221 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1222 */
1223 pool = get_work_pool(work);
1224 if (!pool)
1225 goto fail;
1226
1227 spin_lock(&pool->lock);
1228 /*
1229 * work->data is guaranteed to point to pwq only while the work
1230 * item is queued on pwq->wq, and both updating work->data to point
1231 * to pwq on queueing and to pool on dequeueing are done under
1232 * pwq->pool->lock. This in turn guarantees that, if work->data
1233 * points to pwq which is associated with a locked pool, the work
1234 * item is currently queued on that pool.
1235 */
1236 pwq = get_work_pwq(work);
1237 if (pwq && pwq->pool == pool) {
1238 debug_work_deactivate(work);
1239
1240 /*
1241 * A delayed work item cannot be grabbed directly because
1242 * it might have linked NO_COLOR work items which, if left
1243 * on the delayed_list, will confuse pwq->nr_active
1244 * management later on and cause stall. Make sure the work
1245 * item is activated before grabbing.
1246 */
1247 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1248 pwq_activate_delayed_work(work);
1249
1250 list_del_init(&work->entry);
1251 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1252
1253 /* work->data points to pwq iff queued, point to pool */
1254 set_work_pool_and_keep_pending(work, pool->id);
1255
1256 spin_unlock(&pool->lock);
1257 return 1;
1258 }
1259 spin_unlock(&pool->lock);
1260 fail:
1261 local_irq_restore(*flags);
1262 if (work_is_canceling(work))
1263 return -ENOENT;
1264 cpu_relax();
1265 return -EAGAIN;
1266 }
1267
1268 /**
1269 * insert_work - insert a work into a pool
1270 * @pwq: pwq @work belongs to
1271 * @work: work to insert
1272 * @head: insertion point
1273 * @extra_flags: extra WORK_STRUCT_* flags to set
1274 *
1275 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1276 * work_struct flags.
1277 *
1278 * CONTEXT:
1279 * spin_lock_irq(pool->lock).
1280 */
1281 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1282 struct list_head *head, unsigned int extra_flags)
1283 {
1284 struct worker_pool *pool = pwq->pool;
1285
1286 /* we own @work, set data and link */
1287 set_work_pwq(work, pwq, extra_flags);
1288 list_add_tail(&work->entry, head);
1289 get_pwq(pwq);
1290
1291 /*
1292 * Ensure either wq_worker_sleeping() sees the above
1293 * list_add_tail() or we see zero nr_running to avoid workers lying
1294 * around lazily while there are works to be processed.
1295 */
1296 smp_mb();
1297
1298 if (__need_more_worker(pool))
1299 wake_up_worker(pool);
1300 }
1301
1302 /*
1303 * Test whether @work is being queued from another work executing on the
1304 * same workqueue.
1305 */
1306 static bool is_chained_work(struct workqueue_struct *wq)
1307 {
1308 struct worker *worker;
1309
1310 worker = current_wq_worker();
1311 /*
1312 * Return %true iff I'm a worker execuing a work item on @wq. If
1313 * I'm @worker, it's safe to dereference it without locking.
1314 */
1315 return worker && worker->current_pwq->wq == wq;
1316 }
1317
1318 static void __queue_work(int cpu, struct workqueue_struct *wq,
1319 struct work_struct *work)
1320 {
1321 struct pool_workqueue *pwq;
1322 struct worker_pool *last_pool;
1323 struct list_head *worklist;
1324 unsigned int work_flags;
1325 unsigned int req_cpu = cpu;
1326
1327 /*
1328 * While a work item is PENDING && off queue, a task trying to
1329 * steal the PENDING will busy-loop waiting for it to either get
1330 * queued or lose PENDING. Grabbing PENDING and queueing should
1331 * happen with IRQ disabled.
1332 */
1333 WARN_ON_ONCE(!irqs_disabled());
1334
1335 debug_work_activate(work);
1336
1337 /* if dying, only works from the same workqueue are allowed */
1338 if (unlikely(wq->flags & __WQ_DRAINING) &&
1339 WARN_ON_ONCE(!is_chained_work(wq)))
1340 return;
1341 retry:
1342 if (req_cpu == WORK_CPU_UNBOUND)
1343 cpu = raw_smp_processor_id();
1344
1345 /* pwq which will be used unless @work is executing elsewhere */
1346 if (!(wq->flags & WQ_UNBOUND))
1347 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1348 else
1349 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1350
1351 /*
1352 * If @work was previously on a different pool, it might still be
1353 * running there, in which case the work needs to be queued on that
1354 * pool to guarantee non-reentrancy.
1355 */
1356 last_pool = get_work_pool(work);
1357 if (last_pool && last_pool != pwq->pool) {
1358 struct worker *worker;
1359
1360 spin_lock(&last_pool->lock);
1361
1362 worker = find_worker_executing_work(last_pool, work);
1363
1364 if (worker && worker->current_pwq->wq == wq) {
1365 pwq = worker->current_pwq;
1366 } else {
1367 /* meh... not running there, queue here */
1368 spin_unlock(&last_pool->lock);
1369 spin_lock(&pwq->pool->lock);
1370 }
1371 } else {
1372 spin_lock(&pwq->pool->lock);
1373 }
1374
1375 /*
1376 * pwq is determined and locked. For unbound pools, we could have
1377 * raced with pwq release and it could already be dead. If its
1378 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1379 * without another pwq replacing it in the numa_pwq_tbl or while
1380 * work items are executing on it, so the retrying is guaranteed to
1381 * make forward-progress.
1382 */
1383 if (unlikely(!pwq->refcnt)) {
1384 if (wq->flags & WQ_UNBOUND) {
1385 spin_unlock(&pwq->pool->lock);
1386 cpu_relax();
1387 goto retry;
1388 }
1389 /* oops */
1390 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1391 wq->name, cpu);
1392 }
1393
1394 /* pwq determined, queue */
1395 trace_workqueue_queue_work(req_cpu, pwq, work);
1396
1397 if (WARN_ON(!list_empty(&work->entry))) {
1398 spin_unlock(&pwq->pool->lock);
1399 return;
1400 }
1401
1402 pwq->nr_in_flight[pwq->work_color]++;
1403 work_flags = work_color_to_flags(pwq->work_color);
1404
1405 if (likely(pwq->nr_active < pwq->max_active)) {
1406 trace_workqueue_activate_work(work);
1407 pwq->nr_active++;
1408 worklist = &pwq->pool->worklist;
1409 } else {
1410 work_flags |= WORK_STRUCT_DELAYED;
1411 worklist = &pwq->delayed_works;
1412 }
1413
1414 insert_work(pwq, work, worklist, work_flags);
1415
1416 spin_unlock(&pwq->pool->lock);
1417 }
1418
1419 /**
1420 * queue_work_on - queue work on specific cpu
1421 * @cpu: CPU number to execute work on
1422 * @wq: workqueue to use
1423 * @work: work to queue
1424 *
1425 * Returns %false if @work was already on a queue, %true otherwise.
1426 *
1427 * We queue the work to a specific CPU, the caller must ensure it
1428 * can't go away.
1429 */
1430 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1431 struct work_struct *work)
1432 {
1433 bool ret = false;
1434 unsigned long flags;
1435
1436 local_irq_save(flags);
1437
1438 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1439 __queue_work(cpu, wq, work);
1440 ret = true;
1441 }
1442
1443 local_irq_restore(flags);
1444 return ret;
1445 }
1446 EXPORT_SYMBOL(queue_work_on);
1447
1448 void delayed_work_timer_fn(unsigned long __data)
1449 {
1450 struct delayed_work *dwork = (struct delayed_work *)__data;
1451
1452 /* should have been called from irqsafe timer with irq already off */
1453 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1454 }
1455 EXPORT_SYMBOL(delayed_work_timer_fn);
1456
1457 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1458 struct delayed_work *dwork, unsigned long delay)
1459 {
1460 struct timer_list *timer = &dwork->timer;
1461 struct work_struct *work = &dwork->work;
1462
1463 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1464 timer->data != (unsigned long)dwork);
1465 WARN_ON_ONCE(timer_pending(timer));
1466 WARN_ON_ONCE(!list_empty(&work->entry));
1467
1468 /*
1469 * If @delay is 0, queue @dwork->work immediately. This is for
1470 * both optimization and correctness. The earliest @timer can
1471 * expire is on the closest next tick and delayed_work users depend
1472 * on that there's no such delay when @delay is 0.
1473 */
1474 if (!delay) {
1475 __queue_work(cpu, wq, &dwork->work);
1476 return;
1477 }
1478
1479 timer_stats_timer_set_start_info(&dwork->timer);
1480
1481 dwork->wq = wq;
1482 dwork->cpu = cpu;
1483 timer->expires = jiffies + delay;
1484
1485 if (unlikely(cpu != WORK_CPU_UNBOUND))
1486 add_timer_on(timer, cpu);
1487 else
1488 add_timer(timer);
1489 }
1490
1491 /**
1492 * queue_delayed_work_on - queue work on specific CPU after delay
1493 * @cpu: CPU number to execute work on
1494 * @wq: workqueue to use
1495 * @dwork: work to queue
1496 * @delay: number of jiffies to wait before queueing
1497 *
1498 * Returns %false if @work was already on a queue, %true otherwise. If
1499 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1500 * execution.
1501 */
1502 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1503 struct delayed_work *dwork, unsigned long delay)
1504 {
1505 struct work_struct *work = &dwork->work;
1506 bool ret = false;
1507 unsigned long flags;
1508
1509 /* read the comment in __queue_work() */
1510 local_irq_save(flags);
1511
1512 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1513 __queue_delayed_work(cpu, wq, dwork, delay);
1514 ret = true;
1515 }
1516
1517 local_irq_restore(flags);
1518 return ret;
1519 }
1520 EXPORT_SYMBOL(queue_delayed_work_on);
1521
1522 /**
1523 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1524 * @cpu: CPU number to execute work on
1525 * @wq: workqueue to use
1526 * @dwork: work to queue
1527 * @delay: number of jiffies to wait before queueing
1528 *
1529 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1530 * modify @dwork's timer so that it expires after @delay. If @delay is
1531 * zero, @work is guaranteed to be scheduled immediately regardless of its
1532 * current state.
1533 *
1534 * Returns %false if @dwork was idle and queued, %true if @dwork was
1535 * pending and its timer was modified.
1536 *
1537 * This function is safe to call from any context including IRQ handler.
1538 * See try_to_grab_pending() for details.
1539 */
1540 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1541 struct delayed_work *dwork, unsigned long delay)
1542 {
1543 unsigned long flags;
1544 int ret;
1545
1546 do {
1547 ret = try_to_grab_pending(&dwork->work, true, &flags);
1548 } while (unlikely(ret == -EAGAIN));
1549
1550 if (likely(ret >= 0)) {
1551 __queue_delayed_work(cpu, wq, dwork, delay);
1552 local_irq_restore(flags);
1553 }
1554
1555 /* -ENOENT from try_to_grab_pending() becomes %true */
1556 return ret;
1557 }
1558 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1559
1560 /**
1561 * worker_enter_idle - enter idle state
1562 * @worker: worker which is entering idle state
1563 *
1564 * @worker is entering idle state. Update stats and idle timer if
1565 * necessary.
1566 *
1567 * LOCKING:
1568 * spin_lock_irq(pool->lock).
1569 */
1570 static void worker_enter_idle(struct worker *worker)
1571 {
1572 struct worker_pool *pool = worker->pool;
1573
1574 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1575 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1576 (worker->hentry.next || worker->hentry.pprev)))
1577 return;
1578
1579 /* can't use worker_set_flags(), also called from start_worker() */
1580 worker->flags |= WORKER_IDLE;
1581 pool->nr_idle++;
1582 worker->last_active = jiffies;
1583
1584 /* idle_list is LIFO */
1585 list_add(&worker->entry, &pool->idle_list);
1586
1587 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1588 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1589
1590 /*
1591 * Sanity check nr_running. Because wq_unbind_fn() releases
1592 * pool->lock between setting %WORKER_UNBOUND and zapping
1593 * nr_running, the warning may trigger spuriously. Check iff
1594 * unbind is not in progress.
1595 */
1596 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1597 pool->nr_workers == pool->nr_idle &&
1598 atomic_read(&pool->nr_running));
1599 }
1600
1601 /**
1602 * worker_leave_idle - leave idle state
1603 * @worker: worker which is leaving idle state
1604 *
1605 * @worker is leaving idle state. Update stats.
1606 *
1607 * LOCKING:
1608 * spin_lock_irq(pool->lock).
1609 */
1610 static void worker_leave_idle(struct worker *worker)
1611 {
1612 struct worker_pool *pool = worker->pool;
1613
1614 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1615 return;
1616 worker_clr_flags(worker, WORKER_IDLE);
1617 pool->nr_idle--;
1618 list_del_init(&worker->entry);
1619 }
1620
1621 /**
1622 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1623 * @pool: target worker_pool
1624 *
1625 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1626 *
1627 * Works which are scheduled while the cpu is online must at least be
1628 * scheduled to a worker which is bound to the cpu so that if they are
1629 * flushed from cpu callbacks while cpu is going down, they are
1630 * guaranteed to execute on the cpu.
1631 *
1632 * This function is to be used by unbound workers and rescuers to bind
1633 * themselves to the target cpu and may race with cpu going down or
1634 * coming online. kthread_bind() can't be used because it may put the
1635 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1636 * verbatim as it's best effort and blocking and pool may be
1637 * [dis]associated in the meantime.
1638 *
1639 * This function tries set_cpus_allowed() and locks pool and verifies the
1640 * binding against %POOL_DISASSOCIATED which is set during
1641 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1642 * enters idle state or fetches works without dropping lock, it can
1643 * guarantee the scheduling requirement described in the first paragraph.
1644 *
1645 * CONTEXT:
1646 * Might sleep. Called without any lock but returns with pool->lock
1647 * held.
1648 *
1649 * RETURNS:
1650 * %true if the associated pool is online (@worker is successfully
1651 * bound), %false if offline.
1652 */
1653 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1654 __acquires(&pool->lock)
1655 {
1656 while (true) {
1657 /*
1658 * The following call may fail, succeed or succeed
1659 * without actually migrating the task to the cpu if
1660 * it races with cpu hotunplug operation. Verify
1661 * against POOL_DISASSOCIATED.
1662 */
1663 if (!(pool->flags & POOL_DISASSOCIATED))
1664 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1665
1666 spin_lock_irq(&pool->lock);
1667 if (pool->flags & POOL_DISASSOCIATED)
1668 return false;
1669 if (task_cpu(current) == pool->cpu &&
1670 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1671 return true;
1672 spin_unlock_irq(&pool->lock);
1673
1674 /*
1675 * We've raced with CPU hot[un]plug. Give it a breather
1676 * and retry migration. cond_resched() is required here;
1677 * otherwise, we might deadlock against cpu_stop trying to
1678 * bring down the CPU on non-preemptive kernel.
1679 */
1680 cpu_relax();
1681 cond_resched();
1682 }
1683 }
1684
1685 static struct worker *alloc_worker(void)
1686 {
1687 struct worker *worker;
1688
1689 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1690 if (worker) {
1691 INIT_LIST_HEAD(&worker->entry);
1692 INIT_LIST_HEAD(&worker->scheduled);
1693 /* on creation a worker is in !idle && prep state */
1694 worker->flags = WORKER_PREP;
1695 }
1696 return worker;
1697 }
1698
1699 /**
1700 * create_worker - create a new workqueue worker
1701 * @pool: pool the new worker will belong to
1702 *
1703 * Create a new worker which is bound to @pool. The returned worker
1704 * can be started by calling start_worker() or destroyed using
1705 * destroy_worker().
1706 *
1707 * CONTEXT:
1708 * Might sleep. Does GFP_KERNEL allocations.
1709 *
1710 * RETURNS:
1711 * Pointer to the newly created worker.
1712 */
1713 static struct worker *create_worker(struct worker_pool *pool)
1714 {
1715 struct worker *worker = NULL;
1716 int id = -1;
1717 char id_buf[16];
1718
1719 lockdep_assert_held(&pool->manager_mutex);
1720
1721 /*
1722 * ID is needed to determine kthread name. Allocate ID first
1723 * without installing the pointer.
1724 */
1725 idr_preload(GFP_KERNEL);
1726 spin_lock_irq(&pool->lock);
1727
1728 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1729
1730 spin_unlock_irq(&pool->lock);
1731 idr_preload_end();
1732 if (id < 0)
1733 goto fail;
1734
1735 worker = alloc_worker();
1736 if (!worker)
1737 goto fail;
1738
1739 worker->pool = pool;
1740 worker->id = id;
1741
1742 if (pool->cpu >= 0)
1743 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1744 pool->attrs->nice < 0 ? "H" : "");
1745 else
1746 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1747
1748 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1749 "kworker/%s", id_buf);
1750 if (IS_ERR(worker->task))
1751 goto fail;
1752
1753 /*
1754 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1755 * online CPUs. It'll be re-applied when any of the CPUs come up.
1756 */
1757 set_user_nice(worker->task, pool->attrs->nice);
1758 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1759
1760 /* prevent userland from meddling with cpumask of workqueue workers */
1761 worker->task->flags |= PF_NO_SETAFFINITY;
1762
1763 /*
1764 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1765 * remains stable across this function. See the comments above the
1766 * flag definition for details.
1767 */
1768 if (pool->flags & POOL_DISASSOCIATED)
1769 worker->flags |= WORKER_UNBOUND;
1770
1771 /* successful, commit the pointer to idr */
1772 spin_lock_irq(&pool->lock);
1773 idr_replace(&pool->worker_idr, worker, worker->id);
1774 spin_unlock_irq(&pool->lock);
1775
1776 return worker;
1777
1778 fail:
1779 if (id >= 0) {
1780 spin_lock_irq(&pool->lock);
1781 idr_remove(&pool->worker_idr, id);
1782 spin_unlock_irq(&pool->lock);
1783 }
1784 kfree(worker);
1785 return NULL;
1786 }
1787
1788 /**
1789 * start_worker - start a newly created worker
1790 * @worker: worker to start
1791 *
1792 * Make the pool aware of @worker and start it.
1793 *
1794 * CONTEXT:
1795 * spin_lock_irq(pool->lock).
1796 */
1797 static void start_worker(struct worker *worker)
1798 {
1799 worker->flags |= WORKER_STARTED;
1800 worker->pool->nr_workers++;
1801 worker_enter_idle(worker);
1802 wake_up_process(worker->task);
1803 }
1804
1805 /**
1806 * create_and_start_worker - create and start a worker for a pool
1807 * @pool: the target pool
1808 *
1809 * Grab the managership of @pool and create and start a new worker for it.
1810 */
1811 static int create_and_start_worker(struct worker_pool *pool)
1812 {
1813 struct worker *worker;
1814
1815 mutex_lock(&pool->manager_mutex);
1816
1817 worker = create_worker(pool);
1818 if (worker) {
1819 spin_lock_irq(&pool->lock);
1820 start_worker(worker);
1821 spin_unlock_irq(&pool->lock);
1822 }
1823
1824 mutex_unlock(&pool->manager_mutex);
1825
1826 return worker ? 0 : -ENOMEM;
1827 }
1828
1829 /**
1830 * destroy_worker - destroy a workqueue worker
1831 * @worker: worker to be destroyed
1832 *
1833 * Destroy @worker and adjust @pool stats accordingly.
1834 *
1835 * CONTEXT:
1836 * spin_lock_irq(pool->lock) which is released and regrabbed.
1837 */
1838 static void destroy_worker(struct worker *worker)
1839 {
1840 struct worker_pool *pool = worker->pool;
1841
1842 lockdep_assert_held(&pool->manager_mutex);
1843 lockdep_assert_held(&pool->lock);
1844
1845 /* sanity check frenzy */
1846 if (WARN_ON(worker->current_work) ||
1847 WARN_ON(!list_empty(&worker->scheduled)))
1848 return;
1849
1850 if (worker->flags & WORKER_STARTED)
1851 pool->nr_workers--;
1852 if (worker->flags & WORKER_IDLE)
1853 pool->nr_idle--;
1854
1855 /*
1856 * Once WORKER_DIE is set, the kworker may destroy itself at any
1857 * point. Pin to ensure the task stays until we're done with it.
1858 */
1859 get_task_struct(worker->task);
1860
1861 list_del_init(&worker->entry);
1862 worker->flags |= WORKER_DIE;
1863
1864 idr_remove(&pool->worker_idr, worker->id);
1865
1866 spin_unlock_irq(&pool->lock);
1867
1868 kthread_stop(worker->task);
1869 put_task_struct(worker->task);
1870 kfree(worker);
1871
1872 spin_lock_irq(&pool->lock);
1873 }
1874
1875 static void idle_worker_timeout(unsigned long __pool)
1876 {
1877 struct worker_pool *pool = (void *)__pool;
1878
1879 spin_lock_irq(&pool->lock);
1880
1881 if (too_many_workers(pool)) {
1882 struct worker *worker;
1883 unsigned long expires;
1884
1885 /* idle_list is kept in LIFO order, check the last one */
1886 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1887 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1888
1889 if (time_before(jiffies, expires))
1890 mod_timer(&pool->idle_timer, expires);
1891 else {
1892 /* it's been idle for too long, wake up manager */
1893 pool->flags |= POOL_MANAGE_WORKERS;
1894 wake_up_worker(pool);
1895 }
1896 }
1897
1898 spin_unlock_irq(&pool->lock);
1899 }
1900
1901 static void send_mayday(struct work_struct *work)
1902 {
1903 struct pool_workqueue *pwq = get_work_pwq(work);
1904 struct workqueue_struct *wq = pwq->wq;
1905
1906 lockdep_assert_held(&wq_mayday_lock);
1907
1908 if (!wq->rescuer)
1909 return;
1910
1911 /* mayday mayday mayday */
1912 if (list_empty(&pwq->mayday_node)) {
1913 /*
1914 * If @pwq is for an unbound wq, its base ref may be put at
1915 * any time due to an attribute change. Pin @pwq until the
1916 * rescuer is done with it.
1917 */
1918 get_pwq(pwq);
1919 list_add_tail(&pwq->mayday_node, &wq->maydays);
1920 wake_up_process(wq->rescuer->task);
1921 }
1922 }
1923
1924 static void pool_mayday_timeout(unsigned long __pool)
1925 {
1926 struct worker_pool *pool = (void *)__pool;
1927 struct work_struct *work;
1928
1929 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1930 spin_lock(&pool->lock);
1931
1932 if (need_to_create_worker(pool)) {
1933 /*
1934 * We've been trying to create a new worker but
1935 * haven't been successful. We might be hitting an
1936 * allocation deadlock. Send distress signals to
1937 * rescuers.
1938 */
1939 list_for_each_entry(work, &pool->worklist, entry)
1940 send_mayday(work);
1941 }
1942
1943 spin_unlock(&pool->lock);
1944 spin_unlock_irq(&wq_mayday_lock);
1945
1946 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1947 }
1948
1949 /**
1950 * maybe_create_worker - create a new worker if necessary
1951 * @pool: pool to create a new worker for
1952 *
1953 * Create a new worker for @pool if necessary. @pool is guaranteed to
1954 * have at least one idle worker on return from this function. If
1955 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1956 * sent to all rescuers with works scheduled on @pool to resolve
1957 * possible allocation deadlock.
1958 *
1959 * On return, need_to_create_worker() is guaranteed to be %false and
1960 * may_start_working() %true.
1961 *
1962 * LOCKING:
1963 * spin_lock_irq(pool->lock) which may be released and regrabbed
1964 * multiple times. Does GFP_KERNEL allocations. Called only from
1965 * manager.
1966 */
1967 static void maybe_create_worker(struct worker_pool *pool)
1968 __releases(&pool->lock)
1969 __acquires(&pool->lock)
1970 {
1971 if (!need_to_create_worker(pool))
1972 return;
1973 restart:
1974 spin_unlock_irq(&pool->lock);
1975
1976 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1977 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1978
1979 while (true) {
1980 struct worker *worker;
1981
1982 worker = create_worker(pool);
1983 if (worker) {
1984 del_timer_sync(&pool->mayday_timer);
1985 spin_lock_irq(&pool->lock);
1986 start_worker(worker);
1987 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1988 goto restart;
1989 return;
1990 }
1991
1992 if (!need_to_create_worker(pool))
1993 break;
1994
1995 __set_current_state(TASK_INTERRUPTIBLE);
1996 schedule_timeout(CREATE_COOLDOWN);
1997
1998 if (!need_to_create_worker(pool))
1999 break;
2000 }
2001
2002 del_timer_sync(&pool->mayday_timer);
2003 spin_lock_irq(&pool->lock);
2004 if (need_to_create_worker(pool))
2005 goto restart;
2006 return;
2007 }
2008
2009 /**
2010 * maybe_destroy_worker - destroy workers which have been idle for a while
2011 * @pool: pool to destroy workers for
2012 *
2013 * Destroy @pool workers which have been idle for longer than
2014 * IDLE_WORKER_TIMEOUT.
2015 *
2016 * LOCKING:
2017 * spin_lock_irq(pool->lock) which may be released and regrabbed
2018 * multiple times. Called only from manager.
2019 */
2020 static void maybe_destroy_workers(struct worker_pool *pool)
2021 {
2022 while (too_many_workers(pool)) {
2023 struct worker *worker;
2024 unsigned long expires;
2025
2026 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2027 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2028
2029 if (time_before(jiffies, expires)) {
2030 mod_timer(&pool->idle_timer, expires);
2031 break;
2032 }
2033
2034 destroy_worker(worker);
2035 }
2036 }
2037
2038 /**
2039 * manage_workers - manage worker pool
2040 * @worker: self
2041 *
2042 * Assume the manager role and manage the worker pool @worker belongs
2043 * to. At any given time, there can be only zero or one manager per
2044 * pool. The exclusion is handled automatically by this function.
2045 *
2046 * The caller can safely start processing works on false return. On
2047 * true return, it's guaranteed that need_to_create_worker() is false
2048 * and may_start_working() is true.
2049 *
2050 * CONTEXT:
2051 * spin_lock_irq(pool->lock) which may be released and regrabbed
2052 * multiple times. Does GFP_KERNEL allocations.
2053 *
2054 * RETURNS:
2055 * %false if the pool doesn't need management and the caller can safely
2056 * start processing works, %true if management function was performed and
2057 * the conditions that the caller verified before calling the function may
2058 * no longer be true.
2059 */
2060 static bool manage_workers(struct worker *worker)
2061 {
2062 struct worker_pool *pool = worker->pool;
2063
2064 /*
2065 * Managership is governed by two mutexes - manager_arb and
2066 * manager_mutex. manager_arb handles arbitration of manager role.
2067 * Anyone who successfully grabs manager_arb wins the arbitration
2068 * and becomes the manager. mutex_trylock() on pool->manager_arb
2069 * failure while holding pool->lock reliably indicates that someone
2070 * else is managing the pool and the worker which failed trylock
2071 * can proceed to executing work items. This means that anyone
2072 * grabbing manager_arb is responsible for actually performing
2073 * manager duties. If manager_arb is grabbed and released without
2074 * actual management, the pool may stall indefinitely.
2075 *
2076 * manager_mutex is used for exclusion of actual management
2077 * operations. The holder of manager_mutex can be sure that none
2078 * of management operations, including creation and destruction of
2079 * workers, won't take place until the mutex is released. Because
2080 * manager_mutex doesn't interfere with manager role arbitration,
2081 * it is guaranteed that the pool's management, while may be
2082 * delayed, won't be disturbed by someone else grabbing
2083 * manager_mutex.
2084 */
2085 if (!mutex_trylock(&pool->manager_arb))
2086 return false;
2087
2088 /*
2089 * With manager arbitration won, manager_mutex would be free in
2090 * most cases. trylock first without dropping @pool->lock.
2091 */
2092 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2093 spin_unlock_irq(&pool->lock);
2094 mutex_lock(&pool->manager_mutex);
2095 spin_lock_irq(&pool->lock);
2096 }
2097
2098 pool->flags &= ~POOL_MANAGE_WORKERS;
2099
2100 /*
2101 * Destroy and then create so that may_start_working() is true
2102 * on return.
2103 */
2104 maybe_destroy_workers(pool);
2105 maybe_create_worker(pool);
2106
2107 mutex_unlock(&pool->manager_mutex);
2108 mutex_unlock(&pool->manager_arb);
2109 return true;
2110 }
2111
2112 /**
2113 * process_one_work - process single work
2114 * @worker: self
2115 * @work: work to process
2116 *
2117 * Process @work. This function contains all the logics necessary to
2118 * process a single work including synchronization against and
2119 * interaction with other workers on the same cpu, queueing and
2120 * flushing. As long as context requirement is met, any worker can
2121 * call this function to process a work.
2122 *
2123 * CONTEXT:
2124 * spin_lock_irq(pool->lock) which is released and regrabbed.
2125 */
2126 static void process_one_work(struct worker *worker, struct work_struct *work)
2127 __releases(&pool->lock)
2128 __acquires(&pool->lock)
2129 {
2130 struct pool_workqueue *pwq = get_work_pwq(work);
2131 struct worker_pool *pool = worker->pool;
2132 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2133 int work_color;
2134 struct worker *collision;
2135 #ifdef CONFIG_LOCKDEP
2136 /*
2137 * It is permissible to free the struct work_struct from
2138 * inside the function that is called from it, this we need to
2139 * take into account for lockdep too. To avoid bogus "held
2140 * lock freed" warnings as well as problems when looking into
2141 * work->lockdep_map, make a copy and use that here.
2142 */
2143 struct lockdep_map lockdep_map;
2144
2145 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2146 #endif
2147 /*
2148 * Ensure we're on the correct CPU. DISASSOCIATED test is
2149 * necessary to avoid spurious warnings from rescuers servicing the
2150 * unbound or a disassociated pool.
2151 */
2152 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2153 !(pool->flags & POOL_DISASSOCIATED) &&
2154 raw_smp_processor_id() != pool->cpu);
2155
2156 /*
2157 * A single work shouldn't be executed concurrently by
2158 * multiple workers on a single cpu. Check whether anyone is
2159 * already processing the work. If so, defer the work to the
2160 * currently executing one.
2161 */
2162 collision = find_worker_executing_work(pool, work);
2163 if (unlikely(collision)) {
2164 move_linked_works(work, &collision->scheduled, NULL);
2165 return;
2166 }
2167
2168 /* claim and dequeue */
2169 debug_work_deactivate(work);
2170 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2171 worker->current_work = work;
2172 worker->current_func = work->func;
2173 worker->current_pwq = pwq;
2174 work_color = get_work_color(work);
2175
2176 list_del_init(&work->entry);
2177
2178 /*
2179 * CPU intensive works don't participate in concurrency
2180 * management. They're the scheduler's responsibility.
2181 */
2182 if (unlikely(cpu_intensive))
2183 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2184
2185 /*
2186 * Unbound pool isn't concurrency managed and work items should be
2187 * executed ASAP. Wake up another worker if necessary.
2188 */
2189 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2190 wake_up_worker(pool);
2191
2192 /*
2193 * Record the last pool and clear PENDING which should be the last
2194 * update to @work. Also, do this inside @pool->lock so that
2195 * PENDING and queued state changes happen together while IRQ is
2196 * disabled.
2197 */
2198 set_work_pool_and_clear_pending(work, pool->id);
2199
2200 spin_unlock_irq(&pool->lock);
2201
2202 lock_map_acquire_read(&pwq->wq->lockdep_map);
2203 lock_map_acquire(&lockdep_map);
2204 trace_workqueue_execute_start(work);
2205 worker->current_func(work);
2206 /*
2207 * While we must be careful to not use "work" after this, the trace
2208 * point will only record its address.
2209 */
2210 trace_workqueue_execute_end(work);
2211 lock_map_release(&lockdep_map);
2212 lock_map_release(&pwq->wq->lockdep_map);
2213
2214 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2215 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2216 " last function: %pf\n",
2217 current->comm, preempt_count(), task_pid_nr(current),
2218 worker->current_func);
2219 debug_show_held_locks(current);
2220 dump_stack();
2221 }
2222
2223 /*
2224 * The following prevents a kworker from hogging CPU on !PREEMPT
2225 * kernels, where a requeueing work item waiting for something to
2226 * happen could deadlock with stop_machine as such work item could
2227 * indefinitely requeue itself while all other CPUs are trapped in
2228 * stop_machine.
2229 */
2230 cond_resched();
2231
2232 spin_lock_irq(&pool->lock);
2233
2234 /* clear cpu intensive status */
2235 if (unlikely(cpu_intensive))
2236 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2237
2238 /* we're done with it, release */
2239 hash_del(&worker->hentry);
2240 worker->current_work = NULL;
2241 worker->current_func = NULL;
2242 worker->current_pwq = NULL;
2243 worker->desc_valid = false;
2244 pwq_dec_nr_in_flight(pwq, work_color);
2245 }
2246
2247 /**
2248 * process_scheduled_works - process scheduled works
2249 * @worker: self
2250 *
2251 * Process all scheduled works. Please note that the scheduled list
2252 * may change while processing a work, so this function repeatedly
2253 * fetches a work from the top and executes it.
2254 *
2255 * CONTEXT:
2256 * spin_lock_irq(pool->lock) which may be released and regrabbed
2257 * multiple times.
2258 */
2259 static void process_scheduled_works(struct worker *worker)
2260 {
2261 while (!list_empty(&worker->scheduled)) {
2262 struct work_struct *work = list_first_entry(&worker->scheduled,
2263 struct work_struct, entry);
2264 process_one_work(worker, work);
2265 }
2266 }
2267
2268 /**
2269 * worker_thread - the worker thread function
2270 * @__worker: self
2271 *
2272 * The worker thread function. All workers belong to a worker_pool -
2273 * either a per-cpu one or dynamic unbound one. These workers process all
2274 * work items regardless of their specific target workqueue. The only
2275 * exception is work items which belong to workqueues with a rescuer which
2276 * will be explained in rescuer_thread().
2277 */
2278 static int worker_thread(void *__worker)
2279 {
2280 struct worker *worker = __worker;
2281 struct worker_pool *pool = worker->pool;
2282
2283 /* tell the scheduler that this is a workqueue worker */
2284 worker->task->flags |= PF_WQ_WORKER;
2285 woke_up:
2286 spin_lock_irq(&pool->lock);
2287
2288 /* am I supposed to die? */
2289 if (unlikely(worker->flags & WORKER_DIE)) {
2290 spin_unlock_irq(&pool->lock);
2291 WARN_ON_ONCE(!list_empty(&worker->entry));
2292 worker->task->flags &= ~PF_WQ_WORKER;
2293 return 0;
2294 }
2295
2296 worker_leave_idle(worker);
2297 recheck:
2298 /* no more worker necessary? */
2299 if (!need_more_worker(pool))
2300 goto sleep;
2301
2302 /* do we need to manage? */
2303 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2304 goto recheck;
2305
2306 /*
2307 * ->scheduled list can only be filled while a worker is
2308 * preparing to process a work or actually processing it.
2309 * Make sure nobody diddled with it while I was sleeping.
2310 */
2311 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2312
2313 /*
2314 * Finish PREP stage. We're guaranteed to have at least one idle
2315 * worker or that someone else has already assumed the manager
2316 * role. This is where @worker starts participating in concurrency
2317 * management if applicable and concurrency management is restored
2318 * after being rebound. See rebind_workers() for details.
2319 */
2320 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2321
2322 do {
2323 struct work_struct *work =
2324 list_first_entry(&pool->worklist,
2325 struct work_struct, entry);
2326
2327 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2328 /* optimization path, not strictly necessary */
2329 process_one_work(worker, work);
2330 if (unlikely(!list_empty(&worker->scheduled)))
2331 process_scheduled_works(worker);
2332 } else {
2333 move_linked_works(work, &worker->scheduled, NULL);
2334 process_scheduled_works(worker);
2335 }
2336 } while (keep_working(pool));
2337
2338 worker_set_flags(worker, WORKER_PREP, false);
2339 sleep:
2340 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2341 goto recheck;
2342
2343 /*
2344 * pool->lock is held and there's no work to process and no need to
2345 * manage, sleep. Workers are woken up only while holding
2346 * pool->lock or from local cpu, so setting the current state
2347 * before releasing pool->lock is enough to prevent losing any
2348 * event.
2349 */
2350 worker_enter_idle(worker);
2351 __set_current_state(TASK_INTERRUPTIBLE);
2352 spin_unlock_irq(&pool->lock);
2353 schedule();
2354 goto woke_up;
2355 }
2356
2357 /**
2358 * rescuer_thread - the rescuer thread function
2359 * @__rescuer: self
2360 *
2361 * Workqueue rescuer thread function. There's one rescuer for each
2362 * workqueue which has WQ_MEM_RECLAIM set.
2363 *
2364 * Regular work processing on a pool may block trying to create a new
2365 * worker which uses GFP_KERNEL allocation which has slight chance of
2366 * developing into deadlock if some works currently on the same queue
2367 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2368 * the problem rescuer solves.
2369 *
2370 * When such condition is possible, the pool summons rescuers of all
2371 * workqueues which have works queued on the pool and let them process
2372 * those works so that forward progress can be guaranteed.
2373 *
2374 * This should happen rarely.
2375 */
2376 static int rescuer_thread(void *__rescuer)
2377 {
2378 struct worker *rescuer = __rescuer;
2379 struct workqueue_struct *wq = rescuer->rescue_wq;
2380 struct list_head *scheduled = &rescuer->scheduled;
2381 bool should_stop;
2382
2383 set_user_nice(current, RESCUER_NICE_LEVEL);
2384
2385 /*
2386 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2387 * doesn't participate in concurrency management.
2388 */
2389 rescuer->task->flags |= PF_WQ_WORKER;
2390 repeat:
2391 set_current_state(TASK_INTERRUPTIBLE);
2392
2393 /*
2394 * By the time the rescuer is requested to stop, the workqueue
2395 * shouldn't have any work pending, but @wq->maydays may still have
2396 * pwq(s) queued. This can happen by non-rescuer workers consuming
2397 * all the work items before the rescuer got to them. Go through
2398 * @wq->maydays processing before acting on should_stop so that the
2399 * list is always empty on exit.
2400 */
2401 should_stop = kthread_should_stop();
2402
2403 /* see whether any pwq is asking for help */
2404 spin_lock_irq(&wq_mayday_lock);
2405
2406 while (!list_empty(&wq->maydays)) {
2407 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2408 struct pool_workqueue, mayday_node);
2409 struct worker_pool *pool = pwq->pool;
2410 struct work_struct *work, *n;
2411
2412 __set_current_state(TASK_RUNNING);
2413 list_del_init(&pwq->mayday_node);
2414
2415 spin_unlock_irq(&wq_mayday_lock);
2416
2417 /* migrate to the target cpu if possible */
2418 worker_maybe_bind_and_lock(pool);
2419 rescuer->pool = pool;
2420
2421 /*
2422 * Slurp in all works issued via this workqueue and
2423 * process'em.
2424 */
2425 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2426 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2427 if (get_work_pwq(work) == pwq)
2428 move_linked_works(work, scheduled, &n);
2429
2430 process_scheduled_works(rescuer);
2431
2432 /*
2433 * Put the reference grabbed by send_mayday(). @pool won't
2434 * go away while we're holding its lock.
2435 */
2436 put_pwq(pwq);
2437
2438 /*
2439 * Leave this pool. If keep_working() is %true, notify a
2440 * regular worker; otherwise, we end up with 0 concurrency
2441 * and stalling the execution.
2442 */
2443 if (keep_working(pool))
2444 wake_up_worker(pool);
2445
2446 rescuer->pool = NULL;
2447 spin_unlock(&pool->lock);
2448 spin_lock(&wq_mayday_lock);
2449 }
2450
2451 spin_unlock_irq(&wq_mayday_lock);
2452
2453 if (should_stop) {
2454 __set_current_state(TASK_RUNNING);
2455 rescuer->task->flags &= ~PF_WQ_WORKER;
2456 return 0;
2457 }
2458
2459 /* rescuers should never participate in concurrency management */
2460 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2461 schedule();
2462 goto repeat;
2463 }
2464
2465 struct wq_barrier {
2466 struct work_struct work;
2467 struct completion done;
2468 };
2469
2470 static void wq_barrier_func(struct work_struct *work)
2471 {
2472 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2473 complete(&barr->done);
2474 }
2475
2476 /**
2477 * insert_wq_barrier - insert a barrier work
2478 * @pwq: pwq to insert barrier into
2479 * @barr: wq_barrier to insert
2480 * @target: target work to attach @barr to
2481 * @worker: worker currently executing @target, NULL if @target is not executing
2482 *
2483 * @barr is linked to @target such that @barr is completed only after
2484 * @target finishes execution. Please note that the ordering
2485 * guarantee is observed only with respect to @target and on the local
2486 * cpu.
2487 *
2488 * Currently, a queued barrier can't be canceled. This is because
2489 * try_to_grab_pending() can't determine whether the work to be
2490 * grabbed is at the head of the queue and thus can't clear LINKED
2491 * flag of the previous work while there must be a valid next work
2492 * after a work with LINKED flag set.
2493 *
2494 * Note that when @worker is non-NULL, @target may be modified
2495 * underneath us, so we can't reliably determine pwq from @target.
2496 *
2497 * CONTEXT:
2498 * spin_lock_irq(pool->lock).
2499 */
2500 static void insert_wq_barrier(struct pool_workqueue *pwq,
2501 struct wq_barrier *barr,
2502 struct work_struct *target, struct worker *worker)
2503 {
2504 struct list_head *head;
2505 unsigned int linked = 0;
2506
2507 /*
2508 * debugobject calls are safe here even with pool->lock locked
2509 * as we know for sure that this will not trigger any of the
2510 * checks and call back into the fixup functions where we
2511 * might deadlock.
2512 */
2513 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2514 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2515 init_completion(&barr->done);
2516
2517 /*
2518 * If @target is currently being executed, schedule the
2519 * barrier to the worker; otherwise, put it after @target.
2520 */
2521 if (worker)
2522 head = worker->scheduled.next;
2523 else {
2524 unsigned long *bits = work_data_bits(target);
2525
2526 head = target->entry.next;
2527 /* there can already be other linked works, inherit and set */
2528 linked = *bits & WORK_STRUCT_LINKED;
2529 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2530 }
2531
2532 debug_work_activate(&barr->work);
2533 insert_work(pwq, &barr->work, head,
2534 work_color_to_flags(WORK_NO_COLOR) | linked);
2535 }
2536
2537 /**
2538 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2539 * @wq: workqueue being flushed
2540 * @flush_color: new flush color, < 0 for no-op
2541 * @work_color: new work color, < 0 for no-op
2542 *
2543 * Prepare pwqs for workqueue flushing.
2544 *
2545 * If @flush_color is non-negative, flush_color on all pwqs should be
2546 * -1. If no pwq has in-flight commands at the specified color, all
2547 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2548 * has in flight commands, its pwq->flush_color is set to
2549 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2550 * wakeup logic is armed and %true is returned.
2551 *
2552 * The caller should have initialized @wq->first_flusher prior to
2553 * calling this function with non-negative @flush_color. If
2554 * @flush_color is negative, no flush color update is done and %false
2555 * is returned.
2556 *
2557 * If @work_color is non-negative, all pwqs should have the same
2558 * work_color which is previous to @work_color and all will be
2559 * advanced to @work_color.
2560 *
2561 * CONTEXT:
2562 * mutex_lock(wq->mutex).
2563 *
2564 * RETURNS:
2565 * %true if @flush_color >= 0 and there's something to flush. %false
2566 * otherwise.
2567 */
2568 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2569 int flush_color, int work_color)
2570 {
2571 bool wait = false;
2572 struct pool_workqueue *pwq;
2573
2574 if (flush_color >= 0) {
2575 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2576 atomic_set(&wq->nr_pwqs_to_flush, 1);
2577 }
2578
2579 for_each_pwq(pwq, wq) {
2580 struct worker_pool *pool = pwq->pool;
2581
2582 spin_lock_irq(&pool->lock);
2583
2584 if (flush_color >= 0) {
2585 WARN_ON_ONCE(pwq->flush_color != -1);
2586
2587 if (pwq->nr_in_flight[flush_color]) {
2588 pwq->flush_color = flush_color;
2589 atomic_inc(&wq->nr_pwqs_to_flush);
2590 wait = true;
2591 }
2592 }
2593
2594 if (work_color >= 0) {
2595 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2596 pwq->work_color = work_color;
2597 }
2598
2599 spin_unlock_irq(&pool->lock);
2600 }
2601
2602 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2603 complete(&wq->first_flusher->done);
2604
2605 return wait;
2606 }
2607
2608 /**
2609 * flush_workqueue - ensure that any scheduled work has run to completion.
2610 * @wq: workqueue to flush
2611 *
2612 * This function sleeps until all work items which were queued on entry
2613 * have finished execution, but it is not livelocked by new incoming ones.
2614 */
2615 void flush_workqueue(struct workqueue_struct *wq)
2616 {
2617 struct wq_flusher this_flusher = {
2618 .list = LIST_HEAD_INIT(this_flusher.list),
2619 .flush_color = -1,
2620 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2621 };
2622 int next_color;
2623
2624 lock_map_acquire(&wq->lockdep_map);
2625 lock_map_release(&wq->lockdep_map);
2626
2627 mutex_lock(&wq->mutex);
2628
2629 /*
2630 * Start-to-wait phase
2631 */
2632 next_color = work_next_color(wq->work_color);
2633
2634 if (next_color != wq->flush_color) {
2635 /*
2636 * Color space is not full. The current work_color
2637 * becomes our flush_color and work_color is advanced
2638 * by one.
2639 */
2640 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2641 this_flusher.flush_color = wq->work_color;
2642 wq->work_color = next_color;
2643
2644 if (!wq->first_flusher) {
2645 /* no flush in progress, become the first flusher */
2646 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2647
2648 wq->first_flusher = &this_flusher;
2649
2650 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2651 wq->work_color)) {
2652 /* nothing to flush, done */
2653 wq->flush_color = next_color;
2654 wq->first_flusher = NULL;
2655 goto out_unlock;
2656 }
2657 } else {
2658 /* wait in queue */
2659 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2660 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2661 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2662 }
2663 } else {
2664 /*
2665 * Oops, color space is full, wait on overflow queue.
2666 * The next flush completion will assign us
2667 * flush_color and transfer to flusher_queue.
2668 */
2669 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2670 }
2671
2672 mutex_unlock(&wq->mutex);
2673
2674 wait_for_completion(&this_flusher.done);
2675
2676 /*
2677 * Wake-up-and-cascade phase
2678 *
2679 * First flushers are responsible for cascading flushes and
2680 * handling overflow. Non-first flushers can simply return.
2681 */
2682 if (wq->first_flusher != &this_flusher)
2683 return;
2684
2685 mutex_lock(&wq->mutex);
2686
2687 /* we might have raced, check again with mutex held */
2688 if (wq->first_flusher != &this_flusher)
2689 goto out_unlock;
2690
2691 wq->first_flusher = NULL;
2692
2693 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2694 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2695
2696 while (true) {
2697 struct wq_flusher *next, *tmp;
2698
2699 /* complete all the flushers sharing the current flush color */
2700 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2701 if (next->flush_color != wq->flush_color)
2702 break;
2703 list_del_init(&next->list);
2704 complete(&next->done);
2705 }
2706
2707 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2708 wq->flush_color != work_next_color(wq->work_color));
2709
2710 /* this flush_color is finished, advance by one */
2711 wq->flush_color = work_next_color(wq->flush_color);
2712
2713 /* one color has been freed, handle overflow queue */
2714 if (!list_empty(&wq->flusher_overflow)) {
2715 /*
2716 * Assign the same color to all overflowed
2717 * flushers, advance work_color and append to
2718 * flusher_queue. This is the start-to-wait
2719 * phase for these overflowed flushers.
2720 */
2721 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2722 tmp->flush_color = wq->work_color;
2723
2724 wq->work_color = work_next_color(wq->work_color);
2725
2726 list_splice_tail_init(&wq->flusher_overflow,
2727 &wq->flusher_queue);
2728 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2729 }
2730
2731 if (list_empty(&wq->flusher_queue)) {
2732 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2733 break;
2734 }
2735
2736 /*
2737 * Need to flush more colors. Make the next flusher
2738 * the new first flusher and arm pwqs.
2739 */
2740 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2741 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2742
2743 list_del_init(&next->list);
2744 wq->first_flusher = next;
2745
2746 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2747 break;
2748
2749 /*
2750 * Meh... this color is already done, clear first
2751 * flusher and repeat cascading.
2752 */
2753 wq->first_flusher = NULL;
2754 }
2755
2756 out_unlock:
2757 mutex_unlock(&wq->mutex);
2758 }
2759 EXPORT_SYMBOL_GPL(flush_workqueue);
2760
2761 /**
2762 * drain_workqueue - drain a workqueue
2763 * @wq: workqueue to drain
2764 *
2765 * Wait until the workqueue becomes empty. While draining is in progress,
2766 * only chain queueing is allowed. IOW, only currently pending or running
2767 * work items on @wq can queue further work items on it. @wq is flushed
2768 * repeatedly until it becomes empty. The number of flushing is detemined
2769 * by the depth of chaining and should be relatively short. Whine if it
2770 * takes too long.
2771 */
2772 void drain_workqueue(struct workqueue_struct *wq)
2773 {
2774 unsigned int flush_cnt = 0;
2775 struct pool_workqueue *pwq;
2776
2777 /*
2778 * __queue_work() needs to test whether there are drainers, is much
2779 * hotter than drain_workqueue() and already looks at @wq->flags.
2780 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2781 */
2782 mutex_lock(&wq->mutex);
2783 if (!wq->nr_drainers++)
2784 wq->flags |= __WQ_DRAINING;
2785 mutex_unlock(&wq->mutex);
2786 reflush:
2787 flush_workqueue(wq);
2788
2789 mutex_lock(&wq->mutex);
2790
2791 for_each_pwq(pwq, wq) {
2792 bool drained;
2793
2794 spin_lock_irq(&pwq->pool->lock);
2795 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2796 spin_unlock_irq(&pwq->pool->lock);
2797
2798 if (drained)
2799 continue;
2800
2801 if (++flush_cnt == 10 ||
2802 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2803 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2804 wq->name, flush_cnt);
2805
2806 mutex_unlock(&wq->mutex);
2807 goto reflush;
2808 }
2809
2810 if (!--wq->nr_drainers)
2811 wq->flags &= ~__WQ_DRAINING;
2812 mutex_unlock(&wq->mutex);
2813 }
2814 EXPORT_SYMBOL_GPL(drain_workqueue);
2815
2816 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2817 {
2818 struct worker *worker = NULL;
2819 struct worker_pool *pool;
2820 struct pool_workqueue *pwq;
2821
2822 might_sleep();
2823
2824 local_irq_disable();
2825 pool = get_work_pool(work);
2826 if (!pool) {
2827 local_irq_enable();
2828 return false;
2829 }
2830
2831 spin_lock(&pool->lock);
2832 /* see the comment in try_to_grab_pending() with the same code */
2833 pwq = get_work_pwq(work);
2834 if (pwq) {
2835 if (unlikely(pwq->pool != pool))
2836 goto already_gone;
2837 } else {
2838 worker = find_worker_executing_work(pool, work);
2839 if (!worker)
2840 goto already_gone;
2841 pwq = worker->current_pwq;
2842 }
2843
2844 insert_wq_barrier(pwq, barr, work, worker);
2845 spin_unlock_irq(&pool->lock);
2846
2847 /*
2848 * If @max_active is 1 or rescuer is in use, flushing another work
2849 * item on the same workqueue may lead to deadlock. Make sure the
2850 * flusher is not running on the same workqueue by verifying write
2851 * access.
2852 */
2853 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2854 lock_map_acquire(&pwq->wq->lockdep_map);
2855 else
2856 lock_map_acquire_read(&pwq->wq->lockdep_map);
2857 lock_map_release(&pwq->wq->lockdep_map);
2858
2859 return true;
2860 already_gone:
2861 spin_unlock_irq(&pool->lock);
2862 return false;
2863 }
2864
2865 /**
2866 * flush_work - wait for a work to finish executing the last queueing instance
2867 * @work: the work to flush
2868 *
2869 * Wait until @work has finished execution. @work is guaranteed to be idle
2870 * on return if it hasn't been requeued since flush started.
2871 *
2872 * RETURNS:
2873 * %true if flush_work() waited for the work to finish execution,
2874 * %false if it was already idle.
2875 */
2876 bool flush_work(struct work_struct *work)
2877 {
2878 struct wq_barrier barr;
2879
2880 lock_map_acquire(&work->lockdep_map);
2881 lock_map_release(&work->lockdep_map);
2882
2883 if (start_flush_work(work, &barr)) {
2884 wait_for_completion(&barr.done);
2885 destroy_work_on_stack(&barr.work);
2886 return true;
2887 } else {
2888 return false;
2889 }
2890 }
2891 EXPORT_SYMBOL_GPL(flush_work);
2892
2893 struct cwt_wait {
2894 wait_queue_t wait;
2895 struct work_struct *work;
2896 };
2897
2898 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2899 {
2900 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2901
2902 if (cwait->work != key)
2903 return 0;
2904 return autoremove_wake_function(wait, mode, sync, key);
2905 }
2906
2907 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2908 {
2909 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2910 unsigned long flags;
2911 int ret;
2912
2913 do {
2914 ret = try_to_grab_pending(work, is_dwork, &flags);
2915 /*
2916 * If someone else is already canceling, wait for it to
2917 * finish. flush_work() doesn't work for PREEMPT_NONE
2918 * because we may get scheduled between @work's completion
2919 * and the other canceling task resuming and clearing
2920 * CANCELING - flush_work() will return false immediately
2921 * as @work is no longer busy, try_to_grab_pending() will
2922 * return -ENOENT as @work is still being canceled and the
2923 * other canceling task won't be able to clear CANCELING as
2924 * we're hogging the CPU.
2925 *
2926 * Let's wait for completion using a waitqueue. As this
2927 * may lead to the thundering herd problem, use a custom
2928 * wake function which matches @work along with exclusive
2929 * wait and wakeup.
2930 */
2931 if (unlikely(ret == -ENOENT)) {
2932 struct cwt_wait cwait;
2933
2934 init_wait(&cwait.wait);
2935 cwait.wait.func = cwt_wakefn;
2936 cwait.work = work;
2937
2938 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2939 TASK_UNINTERRUPTIBLE);
2940 if (work_is_canceling(work))
2941 schedule();
2942 finish_wait(&cancel_waitq, &cwait.wait);
2943 }
2944 } while (unlikely(ret < 0));
2945
2946 /* tell other tasks trying to grab @work to back off */
2947 mark_work_canceling(work);
2948 local_irq_restore(flags);
2949
2950 flush_work(work);
2951 clear_work_data(work);
2952
2953 /*
2954 * Paired with prepare_to_wait() above so that either
2955 * waitqueue_active() is visible here or !work_is_canceling() is
2956 * visible there.
2957 */
2958 smp_mb();
2959 if (waitqueue_active(&cancel_waitq))
2960 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2961
2962 return ret;
2963 }
2964
2965 /**
2966 * cancel_work_sync - cancel a work and wait for it to finish
2967 * @work: the work to cancel
2968 *
2969 * Cancel @work and wait for its execution to finish. This function
2970 * can be used even if the work re-queues itself or migrates to
2971 * another workqueue. On return from this function, @work is
2972 * guaranteed to be not pending or executing on any CPU.
2973 *
2974 * cancel_work_sync(&delayed_work->work) must not be used for
2975 * delayed_work's. Use cancel_delayed_work_sync() instead.
2976 *
2977 * The caller must ensure that the workqueue on which @work was last
2978 * queued can't be destroyed before this function returns.
2979 *
2980 * RETURNS:
2981 * %true if @work was pending, %false otherwise.
2982 */
2983 bool cancel_work_sync(struct work_struct *work)
2984 {
2985 return __cancel_work_timer(work, false);
2986 }
2987 EXPORT_SYMBOL_GPL(cancel_work_sync);
2988
2989 /**
2990 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2991 * @dwork: the delayed work to flush
2992 *
2993 * Delayed timer is cancelled and the pending work is queued for
2994 * immediate execution. Like flush_work(), this function only
2995 * considers the last queueing instance of @dwork.
2996 *
2997 * RETURNS:
2998 * %true if flush_work() waited for the work to finish execution,
2999 * %false if it was already idle.
3000 */
3001 bool flush_delayed_work(struct delayed_work *dwork)
3002 {
3003 local_irq_disable();
3004 if (del_timer_sync(&dwork->timer))
3005 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3006 local_irq_enable();
3007 return flush_work(&dwork->work);
3008 }
3009 EXPORT_SYMBOL(flush_delayed_work);
3010
3011 /**
3012 * cancel_delayed_work - cancel a delayed work
3013 * @dwork: delayed_work to cancel
3014 *
3015 * Kill off a pending delayed_work. Returns %true if @dwork was pending
3016 * and canceled; %false if wasn't pending. Note that the work callback
3017 * function may still be running on return, unless it returns %true and the
3018 * work doesn't re-arm itself. Explicitly flush or use
3019 * cancel_delayed_work_sync() to wait on it.
3020 *
3021 * This function is safe to call from any context including IRQ handler.
3022 */
3023 bool cancel_delayed_work(struct delayed_work *dwork)
3024 {
3025 unsigned long flags;
3026 int ret;
3027
3028 do {
3029 ret = try_to_grab_pending(&dwork->work, true, &flags);
3030 } while (unlikely(ret == -EAGAIN));
3031
3032 if (unlikely(ret < 0))
3033 return false;
3034
3035 set_work_pool_and_clear_pending(&dwork->work,
3036 get_work_pool_id(&dwork->work));
3037 local_irq_restore(flags);
3038 return ret;
3039 }
3040 EXPORT_SYMBOL(cancel_delayed_work);
3041
3042 /**
3043 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3044 * @dwork: the delayed work cancel
3045 *
3046 * This is cancel_work_sync() for delayed works.
3047 *
3048 * RETURNS:
3049 * %true if @dwork was pending, %false otherwise.
3050 */
3051 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3052 {
3053 return __cancel_work_timer(&dwork->work, true);
3054 }
3055 EXPORT_SYMBOL(cancel_delayed_work_sync);
3056
3057 /**
3058 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3059 * @func: the function to call
3060 *
3061 * schedule_on_each_cpu() executes @func on each online CPU using the
3062 * system workqueue and blocks until all CPUs have completed.
3063 * schedule_on_each_cpu() is very slow.
3064 *
3065 * RETURNS:
3066 * 0 on success, -errno on failure.
3067 */
3068 int schedule_on_each_cpu(work_func_t func)
3069 {
3070 int cpu;
3071 struct work_struct __percpu *works;
3072
3073 works = alloc_percpu(struct work_struct);
3074 if (!works)
3075 return -ENOMEM;
3076
3077 get_online_cpus();
3078
3079 for_each_online_cpu(cpu) {
3080 struct work_struct *work = per_cpu_ptr(works, cpu);
3081
3082 INIT_WORK(work, func);
3083 schedule_work_on(cpu, work);
3084 }
3085
3086 for_each_online_cpu(cpu)
3087 flush_work(per_cpu_ptr(works, cpu));
3088
3089 put_online_cpus();
3090 free_percpu(works);
3091 return 0;
3092 }
3093
3094 /**
3095 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3096 *
3097 * Forces execution of the kernel-global workqueue and blocks until its
3098 * completion.
3099 *
3100 * Think twice before calling this function! It's very easy to get into
3101 * trouble if you don't take great care. Either of the following situations
3102 * will lead to deadlock:
3103 *
3104 * One of the work items currently on the workqueue needs to acquire
3105 * a lock held by your code or its caller.
3106 *
3107 * Your code is running in the context of a work routine.
3108 *
3109 * They will be detected by lockdep when they occur, but the first might not
3110 * occur very often. It depends on what work items are on the workqueue and
3111 * what locks they need, which you have no control over.
3112 *
3113 * In most situations flushing the entire workqueue is overkill; you merely
3114 * need to know that a particular work item isn't queued and isn't running.
3115 * In such cases you should use cancel_delayed_work_sync() or
3116 * cancel_work_sync() instead.
3117 */
3118 void flush_scheduled_work(void)
3119 {
3120 flush_workqueue(system_wq);
3121 }
3122 EXPORT_SYMBOL(flush_scheduled_work);
3123
3124 /**
3125 * execute_in_process_context - reliably execute the routine with user context
3126 * @fn: the function to execute
3127 * @ew: guaranteed storage for the execute work structure (must
3128 * be available when the work executes)
3129 *
3130 * Executes the function immediately if process context is available,
3131 * otherwise schedules the function for delayed execution.
3132 *
3133 * Returns: 0 - function was executed
3134 * 1 - function was scheduled for execution
3135 */
3136 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3137 {
3138 if (!in_interrupt()) {
3139 fn(&ew->work);
3140 return 0;
3141 }
3142
3143 INIT_WORK(&ew->work, fn);
3144 schedule_work(&ew->work);
3145
3146 return 1;
3147 }
3148 EXPORT_SYMBOL_GPL(execute_in_process_context);
3149
3150 #ifdef CONFIG_SYSFS
3151 /*
3152 * Workqueues with WQ_SYSFS flag set is visible to userland via
3153 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3154 * following attributes.
3155 *
3156 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3157 * max_active RW int : maximum number of in-flight work items
3158 *
3159 * Unbound workqueues have the following extra attributes.
3160 *
3161 * id RO int : the associated pool ID
3162 * nice RW int : nice value of the workers
3163 * cpumask RW mask : bitmask of allowed CPUs for the workers
3164 */
3165 struct wq_device {
3166 struct workqueue_struct *wq;
3167 struct device dev;
3168 };
3169
3170 static struct workqueue_struct *dev_to_wq(struct device *dev)
3171 {
3172 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3173
3174 return wq_dev->wq;
3175 }
3176
3177 static ssize_t wq_per_cpu_show(struct device *dev,
3178 struct device_attribute *attr, char *buf)
3179 {
3180 struct workqueue_struct *wq = dev_to_wq(dev);
3181
3182 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3183 }
3184
3185 static ssize_t wq_max_active_show(struct device *dev,
3186 struct device_attribute *attr, char *buf)
3187 {
3188 struct workqueue_struct *wq = dev_to_wq(dev);
3189
3190 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3191 }
3192
3193 static ssize_t wq_max_active_store(struct device *dev,
3194 struct device_attribute *attr,
3195 const char *buf, size_t count)
3196 {
3197 struct workqueue_struct *wq = dev_to_wq(dev);
3198 int val;
3199
3200 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3201 return -EINVAL;
3202
3203 workqueue_set_max_active(wq, val);
3204 return count;
3205 }
3206
3207 static struct device_attribute wq_sysfs_attrs[] = {
3208 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3209 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3210 __ATTR_NULL,
3211 };
3212
3213 static ssize_t wq_pool_ids_show(struct device *dev,
3214 struct device_attribute *attr, char *buf)
3215 {
3216 struct workqueue_struct *wq = dev_to_wq(dev);
3217 const char *delim = "";
3218 int node, written = 0;
3219
3220 rcu_read_lock_sched();
3221 for_each_node(node) {
3222 written += scnprintf(buf + written, PAGE_SIZE - written,
3223 "%s%d:%d", delim, node,
3224 unbound_pwq_by_node(wq, node)->pool->id);
3225 delim = " ";
3226 }
3227 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3228 rcu_read_unlock_sched();
3229
3230 return written;
3231 }
3232
3233 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3234 char *buf)
3235 {
3236 struct workqueue_struct *wq = dev_to_wq(dev);
3237 int written;
3238
3239 mutex_lock(&wq->mutex);
3240 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3241 mutex_unlock(&wq->mutex);
3242
3243 return written;
3244 }
3245
3246 /* prepare workqueue_attrs for sysfs store operations */
3247 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3248 {
3249 struct workqueue_attrs *attrs;
3250
3251 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3252 if (!attrs)
3253 return NULL;
3254
3255 mutex_lock(&wq->mutex);
3256 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3257 mutex_unlock(&wq->mutex);
3258 return attrs;
3259 }
3260
3261 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3262 const char *buf, size_t count)
3263 {
3264 struct workqueue_struct *wq = dev_to_wq(dev);
3265 struct workqueue_attrs *attrs;
3266 int ret;
3267
3268 attrs = wq_sysfs_prep_attrs(wq);
3269 if (!attrs)
3270 return -ENOMEM;
3271
3272 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3273 attrs->nice >= -20 && attrs->nice <= 19)
3274 ret = apply_workqueue_attrs(wq, attrs);
3275 else
3276 ret = -EINVAL;
3277
3278 free_workqueue_attrs(attrs);
3279 return ret ?: count;
3280 }
3281
3282 static ssize_t wq_cpumask_show(struct device *dev,
3283 struct device_attribute *attr, char *buf)
3284 {
3285 struct workqueue_struct *wq = dev_to_wq(dev);
3286 int written;
3287
3288 mutex_lock(&wq->mutex);
3289 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3290 mutex_unlock(&wq->mutex);
3291
3292 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3293 return written;
3294 }
3295
3296 static ssize_t wq_cpumask_store(struct device *dev,
3297 struct device_attribute *attr,
3298 const char *buf, size_t count)
3299 {
3300 struct workqueue_struct *wq = dev_to_wq(dev);
3301 struct workqueue_attrs *attrs;
3302 int ret;
3303
3304 attrs = wq_sysfs_prep_attrs(wq);
3305 if (!attrs)
3306 return -ENOMEM;
3307
3308 ret = cpumask_parse(buf, attrs->cpumask);
3309 if (!ret)
3310 ret = apply_workqueue_attrs(wq, attrs);
3311
3312 free_workqueue_attrs(attrs);
3313 return ret ?: count;
3314 }
3315
3316 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3317 char *buf)
3318 {
3319 struct workqueue_struct *wq = dev_to_wq(dev);
3320 int written;
3321
3322 mutex_lock(&wq->mutex);
3323 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3324 !wq->unbound_attrs->no_numa);
3325 mutex_unlock(&wq->mutex);
3326
3327 return written;
3328 }
3329
3330 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3331 const char *buf, size_t count)
3332 {
3333 struct workqueue_struct *wq = dev_to_wq(dev);
3334 struct workqueue_attrs *attrs;
3335 int v, ret;
3336
3337 attrs = wq_sysfs_prep_attrs(wq);
3338 if (!attrs)
3339 return -ENOMEM;
3340
3341 ret = -EINVAL;
3342 if (sscanf(buf, "%d", &v) == 1) {
3343 attrs->no_numa = !v;
3344 ret = apply_workqueue_attrs(wq, attrs);
3345 }
3346
3347 free_workqueue_attrs(attrs);
3348 return ret ?: count;
3349 }
3350
3351 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3352 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3353 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3354 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3355 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3356 __ATTR_NULL,
3357 };
3358
3359 static struct bus_type wq_subsys = {
3360 .name = "workqueue",
3361 .dev_attrs = wq_sysfs_attrs,
3362 };
3363
3364 static int __init wq_sysfs_init(void)
3365 {
3366 return subsys_virtual_register(&wq_subsys, NULL);
3367 }
3368 core_initcall(wq_sysfs_init);
3369
3370 static void wq_device_release(struct device *dev)
3371 {
3372 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3373
3374 kfree(wq_dev);
3375 }
3376
3377 /**
3378 * workqueue_sysfs_register - make a workqueue visible in sysfs
3379 * @wq: the workqueue to register
3380 *
3381 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3382 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3383 * which is the preferred method.
3384 *
3385 * Workqueue user should use this function directly iff it wants to apply
3386 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3387 * apply_workqueue_attrs() may race against userland updating the
3388 * attributes.
3389 *
3390 * Returns 0 on success, -errno on failure.
3391 */
3392 int workqueue_sysfs_register(struct workqueue_struct *wq)
3393 {
3394 struct wq_device *wq_dev;
3395 int ret;
3396
3397 /*
3398 * Adjusting max_active or creating new pwqs by applyting
3399 * attributes breaks ordering guarantee. Disallow exposing ordered
3400 * workqueues.
3401 */
3402 if (WARN_ON(wq->flags & __WQ_ORDERED))
3403 return -EINVAL;
3404
3405 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3406 if (!wq_dev)
3407 return -ENOMEM;
3408
3409 wq_dev->wq = wq;
3410 wq_dev->dev.bus = &wq_subsys;
3411 wq_dev->dev.init_name = wq->name;
3412 wq_dev->dev.release = wq_device_release;
3413
3414 /*
3415 * unbound_attrs are created separately. Suppress uevent until
3416 * everything is ready.
3417 */
3418 dev_set_uevent_suppress(&wq_dev->dev, true);
3419
3420 ret = device_register(&wq_dev->dev);
3421 if (ret) {
3422 kfree(wq_dev);
3423 wq->wq_dev = NULL;
3424 return ret;
3425 }
3426
3427 if (wq->flags & WQ_UNBOUND) {
3428 struct device_attribute *attr;
3429
3430 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3431 ret = device_create_file(&wq_dev->dev, attr);
3432 if (ret) {
3433 device_unregister(&wq_dev->dev);
3434 wq->wq_dev = NULL;
3435 return ret;
3436 }
3437 }
3438 }
3439
3440 dev_set_uevent_suppress(&wq_dev->dev, false);
3441 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3442 return 0;
3443 }
3444
3445 /**
3446 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3447 * @wq: the workqueue to unregister
3448 *
3449 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3450 */
3451 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3452 {
3453 struct wq_device *wq_dev = wq->wq_dev;
3454
3455 if (!wq->wq_dev)
3456 return;
3457
3458 wq->wq_dev = NULL;
3459 device_unregister(&wq_dev->dev);
3460 }
3461 #else /* CONFIG_SYSFS */
3462 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3463 #endif /* CONFIG_SYSFS */
3464
3465 /**
3466 * free_workqueue_attrs - free a workqueue_attrs
3467 * @attrs: workqueue_attrs to free
3468 *
3469 * Undo alloc_workqueue_attrs().
3470 */
3471 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3472 {
3473 if (attrs) {
3474 free_cpumask_var(attrs->cpumask);
3475 kfree(attrs);
3476 }
3477 }
3478
3479 /**
3480 * alloc_workqueue_attrs - allocate a workqueue_attrs
3481 * @gfp_mask: allocation mask to use
3482 *
3483 * Allocate a new workqueue_attrs, initialize with default settings and
3484 * return it. Returns NULL on failure.
3485 */
3486 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3487 {
3488 struct workqueue_attrs *attrs;
3489
3490 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3491 if (!attrs)
3492 goto fail;
3493 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3494 goto fail;
3495
3496 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3497 return attrs;
3498 fail:
3499 free_workqueue_attrs(attrs);
3500 return NULL;
3501 }
3502
3503 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3504 const struct workqueue_attrs *from)
3505 {
3506 to->nice = from->nice;
3507 cpumask_copy(to->cpumask, from->cpumask);
3508 /*
3509 * Unlike hash and equality test, this function doesn't ignore
3510 * ->no_numa as it is used for both pool and wq attrs. Instead,
3511 * get_unbound_pool() explicitly clears ->no_numa after copying.
3512 */
3513 to->no_numa = from->no_numa;
3514 }
3515
3516 /* hash value of the content of @attr */
3517 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3518 {
3519 u32 hash = 0;
3520
3521 hash = jhash_1word(attrs->nice, hash);
3522 hash = jhash(cpumask_bits(attrs->cpumask),
3523 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3524 return hash;
3525 }
3526
3527 /* content equality test */
3528 static bool wqattrs_equal(const struct workqueue_attrs *a,
3529 const struct workqueue_attrs *b)
3530 {
3531 if (a->nice != b->nice)
3532 return false;
3533 if (!cpumask_equal(a->cpumask, b->cpumask))
3534 return false;
3535 return true;
3536 }
3537
3538 /**
3539 * init_worker_pool - initialize a newly zalloc'd worker_pool
3540 * @pool: worker_pool to initialize
3541 *
3542 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3543 * Returns 0 on success, -errno on failure. Even on failure, all fields
3544 * inside @pool proper are initialized and put_unbound_pool() can be called
3545 * on @pool safely to release it.
3546 */
3547 static int init_worker_pool(struct worker_pool *pool)
3548 {
3549 spin_lock_init(&pool->lock);
3550 pool->id = -1;
3551 pool->cpu = -1;
3552 pool->node = NUMA_NO_NODE;
3553 pool->flags |= POOL_DISASSOCIATED;
3554 INIT_LIST_HEAD(&pool->worklist);
3555 INIT_LIST_HEAD(&pool->idle_list);
3556 hash_init(pool->busy_hash);
3557
3558 init_timer_deferrable(&pool->idle_timer);
3559 pool->idle_timer.function = idle_worker_timeout;
3560 pool->idle_timer.data = (unsigned long)pool;
3561
3562 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3563 (unsigned long)pool);
3564
3565 mutex_init(&pool->manager_arb);
3566 mutex_init(&pool->manager_mutex);
3567 idr_init(&pool->worker_idr);
3568
3569 INIT_HLIST_NODE(&pool->hash_node);
3570 pool->refcnt = 1;
3571
3572 /* shouldn't fail above this point */
3573 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3574 if (!pool->attrs)
3575 return -ENOMEM;
3576 return 0;
3577 }
3578
3579 static void rcu_free_pool(struct rcu_head *rcu)
3580 {
3581 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3582
3583 idr_destroy(&pool->worker_idr);
3584 free_workqueue_attrs(pool->attrs);
3585 kfree(pool);
3586 }
3587
3588 /**
3589 * put_unbound_pool - put a worker_pool
3590 * @pool: worker_pool to put
3591 *
3592 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3593 * safe manner. get_unbound_pool() calls this function on its failure path
3594 * and this function should be able to release pools which went through,
3595 * successfully or not, init_worker_pool().
3596 *
3597 * Should be called with wq_pool_mutex held.
3598 */
3599 static void put_unbound_pool(struct worker_pool *pool)
3600 {
3601 struct worker *worker;
3602
3603 lockdep_assert_held(&wq_pool_mutex);
3604
3605 if (--pool->refcnt)
3606 return;
3607
3608 /* sanity checks */
3609 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3610 WARN_ON(!list_empty(&pool->worklist)))
3611 return;
3612
3613 /* release id and unhash */
3614 if (pool->id >= 0)
3615 idr_remove(&worker_pool_idr, pool->id);
3616 hash_del(&pool->hash_node);
3617
3618 /*
3619 * Become the manager and destroy all workers. Grabbing
3620 * manager_arb prevents @pool's workers from blocking on
3621 * manager_mutex.
3622 */
3623 mutex_lock(&pool->manager_arb);
3624 mutex_lock(&pool->manager_mutex);
3625 spin_lock_irq(&pool->lock);
3626
3627 while ((worker = first_worker(pool)))
3628 destroy_worker(worker);
3629 WARN_ON(pool->nr_workers || pool->nr_idle);
3630
3631 spin_unlock_irq(&pool->lock);
3632 mutex_unlock(&pool->manager_mutex);
3633 mutex_unlock(&pool->manager_arb);
3634
3635 /* shut down the timers */
3636 del_timer_sync(&pool->idle_timer);
3637 del_timer_sync(&pool->mayday_timer);
3638
3639 /* sched-RCU protected to allow dereferences from get_work_pool() */
3640 call_rcu_sched(&pool->rcu, rcu_free_pool);
3641 }
3642
3643 /**
3644 * get_unbound_pool - get a worker_pool with the specified attributes
3645 * @attrs: the attributes of the worker_pool to get
3646 *
3647 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3648 * reference count and return it. If there already is a matching
3649 * worker_pool, it will be used; otherwise, this function attempts to
3650 * create a new one. On failure, returns NULL.
3651 *
3652 * Should be called with wq_pool_mutex held.
3653 */
3654 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3655 {
3656 u32 hash = wqattrs_hash(attrs);
3657 struct worker_pool *pool;
3658 int node;
3659
3660 lockdep_assert_held(&wq_pool_mutex);
3661
3662 /* do we already have a matching pool? */
3663 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3664 if (wqattrs_equal(pool->attrs, attrs)) {
3665 pool->refcnt++;
3666 goto out_unlock;
3667 }
3668 }
3669
3670 /* nope, create a new one */
3671 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3672 if (!pool || init_worker_pool(pool) < 0)
3673 goto fail;
3674
3675 if (workqueue_freezing)
3676 pool->flags |= POOL_FREEZING;
3677
3678 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3679 copy_workqueue_attrs(pool->attrs, attrs);
3680
3681 /*
3682 * no_numa isn't a worker_pool attribute, always clear it. See
3683 * 'struct workqueue_attrs' comments for detail.
3684 */
3685 pool->attrs->no_numa = false;
3686
3687 /* if cpumask is contained inside a NUMA node, we belong to that node */
3688 if (wq_numa_enabled) {
3689 for_each_node(node) {
3690 if (cpumask_subset(pool->attrs->cpumask,
3691 wq_numa_possible_cpumask[node])) {
3692 pool->node = node;
3693 break;
3694 }
3695 }
3696 }
3697
3698 if (worker_pool_assign_id(pool) < 0)
3699 goto fail;
3700
3701 /* create and start the initial worker */
3702 if (create_and_start_worker(pool) < 0)
3703 goto fail;
3704
3705 /* install */
3706 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3707 out_unlock:
3708 return pool;
3709 fail:
3710 if (pool)
3711 put_unbound_pool(pool);
3712 return NULL;
3713 }
3714
3715 static void rcu_free_pwq(struct rcu_head *rcu)
3716 {
3717 kmem_cache_free(pwq_cache,
3718 container_of(rcu, struct pool_workqueue, rcu));
3719 }
3720
3721 /*
3722 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3723 * and needs to be destroyed.
3724 */
3725 static void pwq_unbound_release_workfn(struct work_struct *work)
3726 {
3727 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3728 unbound_release_work);
3729 struct workqueue_struct *wq = pwq->wq;
3730 struct worker_pool *pool = pwq->pool;
3731 bool is_last;
3732
3733 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3734 return;
3735
3736 /*
3737 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
3738 * necessary on release but do it anyway. It's easier to verify
3739 * and consistent with the linking path.
3740 */
3741 mutex_lock(&wq->mutex);
3742 list_del_rcu(&pwq->pwqs_node);
3743 is_last = list_empty(&wq->pwqs);
3744 mutex_unlock(&wq->mutex);
3745
3746 mutex_lock(&wq_pool_mutex);
3747 put_unbound_pool(pool);
3748 mutex_unlock(&wq_pool_mutex);
3749
3750 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3751
3752 /*
3753 * If we're the last pwq going away, @wq is already dead and no one
3754 * is gonna access it anymore. Free it.
3755 */
3756 if (is_last) {
3757 free_workqueue_attrs(wq->unbound_attrs);
3758 kfree(wq);
3759 }
3760 }
3761
3762 /**
3763 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3764 * @pwq: target pool_workqueue
3765 *
3766 * If @pwq isn't freezing, set @pwq->max_active to the associated
3767 * workqueue's saved_max_active and activate delayed work items
3768 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3769 */
3770 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3771 {
3772 struct workqueue_struct *wq = pwq->wq;
3773 bool freezable = wq->flags & WQ_FREEZABLE;
3774
3775 /* for @wq->saved_max_active */
3776 lockdep_assert_held(&wq->mutex);
3777
3778 /* fast exit for non-freezable wqs */
3779 if (!freezable && pwq->max_active == wq->saved_max_active)
3780 return;
3781
3782 spin_lock_irq(&pwq->pool->lock);
3783
3784 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3785 pwq->max_active = wq->saved_max_active;
3786
3787 while (!list_empty(&pwq->delayed_works) &&
3788 pwq->nr_active < pwq->max_active)
3789 pwq_activate_first_delayed(pwq);
3790
3791 /*
3792 * Need to kick a worker after thawed or an unbound wq's
3793 * max_active is bumped. It's a slow path. Do it always.
3794 */
3795 wake_up_worker(pwq->pool);
3796 } else {
3797 pwq->max_active = 0;
3798 }
3799
3800 spin_unlock_irq(&pwq->pool->lock);
3801 }
3802
3803 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3804 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3805 struct worker_pool *pool)
3806 {
3807 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3808
3809 memset(pwq, 0, sizeof(*pwq));
3810
3811 pwq->pool = pool;
3812 pwq->wq = wq;
3813 pwq->flush_color = -1;
3814 pwq->refcnt = 1;
3815 INIT_LIST_HEAD(&pwq->delayed_works);
3816 INIT_LIST_HEAD(&pwq->pwqs_node);
3817 INIT_LIST_HEAD(&pwq->mayday_node);
3818 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3819 }
3820
3821 /* sync @pwq with the current state of its associated wq and link it */
3822 static void link_pwq(struct pool_workqueue *pwq)
3823 {
3824 struct workqueue_struct *wq = pwq->wq;
3825
3826 lockdep_assert_held(&wq->mutex);
3827
3828 /* may be called multiple times, ignore if already linked */
3829 if (!list_empty(&pwq->pwqs_node))
3830 return;
3831
3832 /*
3833 * Set the matching work_color. This is synchronized with
3834 * wq->mutex to avoid confusing flush_workqueue().
3835 */
3836 pwq->work_color = wq->work_color;
3837
3838 /* sync max_active to the current setting */
3839 pwq_adjust_max_active(pwq);
3840
3841 /* link in @pwq */
3842 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3843 }
3844
3845 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3846 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3847 const struct workqueue_attrs *attrs)
3848 {
3849 struct worker_pool *pool;
3850 struct pool_workqueue *pwq;
3851
3852 lockdep_assert_held(&wq_pool_mutex);
3853
3854 pool = get_unbound_pool(attrs);
3855 if (!pool)
3856 return NULL;
3857
3858 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3859 if (!pwq) {
3860 put_unbound_pool(pool);
3861 return NULL;
3862 }
3863
3864 init_pwq(pwq, wq, pool);
3865 return pwq;
3866 }
3867
3868 /* undo alloc_unbound_pwq(), used only in the error path */
3869 static void free_unbound_pwq(struct pool_workqueue *pwq)
3870 {
3871 lockdep_assert_held(&wq_pool_mutex);
3872
3873 if (pwq) {
3874 put_unbound_pool(pwq->pool);
3875 kmem_cache_free(pwq_cache, pwq);
3876 }
3877 }
3878
3879 /**
3880 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3881 * @attrs: the wq_attrs of interest
3882 * @node: the target NUMA node
3883 * @cpu_going_down: if >= 0, the CPU to consider as offline
3884 * @cpumask: outarg, the resulting cpumask
3885 *
3886 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3887 * @cpu_going_down is >= 0, that cpu is considered offline during
3888 * calculation. The result is stored in @cpumask. This function returns
3889 * %true if the resulting @cpumask is different from @attrs->cpumask,
3890 * %false if equal.
3891 *
3892 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3893 * enabled and @node has online CPUs requested by @attrs, the returned
3894 * cpumask is the intersection of the possible CPUs of @node and
3895 * @attrs->cpumask.
3896 *
3897 * The caller is responsible for ensuring that the cpumask of @node stays
3898 * stable.
3899 */
3900 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3901 int cpu_going_down, cpumask_t *cpumask)
3902 {
3903 if (!wq_numa_enabled || attrs->no_numa)
3904 goto use_dfl;
3905
3906 /* does @node have any online CPUs @attrs wants? */
3907 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3908 if (cpu_going_down >= 0)
3909 cpumask_clear_cpu(cpu_going_down, cpumask);
3910
3911 if (cpumask_empty(cpumask))
3912 goto use_dfl;
3913
3914 /* yeap, return possible CPUs in @node that @attrs wants */
3915 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3916 return !cpumask_equal(cpumask, attrs->cpumask);
3917
3918 use_dfl:
3919 cpumask_copy(cpumask, attrs->cpumask);
3920 return false;
3921 }
3922
3923 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3924 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3925 int node,
3926 struct pool_workqueue *pwq)
3927 {
3928 struct pool_workqueue *old_pwq;
3929
3930 lockdep_assert_held(&wq->mutex);
3931
3932 /* link_pwq() can handle duplicate calls */
3933 link_pwq(pwq);
3934
3935 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3936 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3937 return old_pwq;
3938 }
3939
3940 /**
3941 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3942 * @wq: the target workqueue
3943 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3944 *
3945 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3946 * machines, this function maps a separate pwq to each NUMA node with
3947 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3948 * NUMA node it was issued on. Older pwqs are released as in-flight work
3949 * items finish. Note that a work item which repeatedly requeues itself
3950 * back-to-back will stay on its current pwq.
3951 *
3952 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3953 * failure.
3954 */
3955 int apply_workqueue_attrs(struct workqueue_struct *wq,
3956 const struct workqueue_attrs *attrs)
3957 {
3958 struct workqueue_attrs *new_attrs, *tmp_attrs;
3959 struct pool_workqueue **pwq_tbl, *dfl_pwq;
3960 int node, ret;
3961
3962 /* only unbound workqueues can change attributes */
3963 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3964 return -EINVAL;
3965
3966 /* creating multiple pwqs breaks ordering guarantee */
3967 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3968 return -EINVAL;
3969
3970 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3971 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3972 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3973 if (!pwq_tbl || !new_attrs || !tmp_attrs)
3974 goto enomem;
3975
3976 /* make a copy of @attrs and sanitize it */
3977 copy_workqueue_attrs(new_attrs, attrs);
3978 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3979
3980 /*
3981 * We may create multiple pwqs with differing cpumasks. Make a
3982 * copy of @new_attrs which will be modified and used to obtain
3983 * pools.
3984 */
3985 copy_workqueue_attrs(tmp_attrs, new_attrs);
3986
3987 /*
3988 * CPUs should stay stable across pwq creations and installations.
3989 * Pin CPUs, determine the target cpumask for each node and create
3990 * pwqs accordingly.
3991 */
3992 get_online_cpus();
3993
3994 mutex_lock(&wq_pool_mutex);
3995
3996 /*
3997 * If something goes wrong during CPU up/down, we'll fall back to
3998 * the default pwq covering whole @attrs->cpumask. Always create
3999 * it even if we don't use it immediately.
4000 */
4001 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4002 if (!dfl_pwq)
4003 goto enomem_pwq;
4004
4005 for_each_node(node) {
4006 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
4007 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4008 if (!pwq_tbl[node])
4009 goto enomem_pwq;
4010 } else {
4011 dfl_pwq->refcnt++;
4012 pwq_tbl[node] = dfl_pwq;
4013 }
4014 }
4015
4016 mutex_unlock(&wq_pool_mutex);
4017
4018 /* all pwqs have been created successfully, let's install'em */
4019 mutex_lock(&wq->mutex);
4020
4021 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4022
4023 /* save the previous pwq and install the new one */
4024 for_each_node(node)
4025 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
4026
4027 /* @dfl_pwq might not have been used, ensure it's linked */
4028 link_pwq(dfl_pwq);
4029 swap(wq->dfl_pwq, dfl_pwq);
4030
4031 mutex_unlock(&wq->mutex);
4032
4033 /* put the old pwqs */
4034 for_each_node(node)
4035 put_pwq_unlocked(pwq_tbl[node]);
4036 put_pwq_unlocked(dfl_pwq);
4037
4038 put_online_cpus();
4039 ret = 0;
4040 /* fall through */
4041 out_free:
4042 free_workqueue_attrs(tmp_attrs);
4043 free_workqueue_attrs(new_attrs);
4044 kfree(pwq_tbl);
4045 return ret;
4046
4047 enomem_pwq:
4048 free_unbound_pwq(dfl_pwq);
4049 for_each_node(node)
4050 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4051 free_unbound_pwq(pwq_tbl[node]);
4052 mutex_unlock(&wq_pool_mutex);
4053 put_online_cpus();
4054 enomem:
4055 ret = -ENOMEM;
4056 goto out_free;
4057 }
4058
4059 /**
4060 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4061 * @wq: the target workqueue
4062 * @cpu: the CPU coming up or going down
4063 * @online: whether @cpu is coming up or going down
4064 *
4065 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4066 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4067 * @wq accordingly.
4068 *
4069 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4070 * falls back to @wq->dfl_pwq which may not be optimal but is always
4071 * correct.
4072 *
4073 * Note that when the last allowed CPU of a NUMA node goes offline for a
4074 * workqueue with a cpumask spanning multiple nodes, the workers which were
4075 * already executing the work items for the workqueue will lose their CPU
4076 * affinity and may execute on any CPU. This is similar to how per-cpu
4077 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4078 * affinity, it's the user's responsibility to flush the work item from
4079 * CPU_DOWN_PREPARE.
4080 */
4081 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4082 bool online)
4083 {
4084 int node = cpu_to_node(cpu);
4085 int cpu_off = online ? -1 : cpu;
4086 struct pool_workqueue *old_pwq = NULL, *pwq;
4087 struct workqueue_attrs *target_attrs;
4088 cpumask_t *cpumask;
4089
4090 lockdep_assert_held(&wq_pool_mutex);
4091
4092 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4093 return;
4094
4095 /*
4096 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4097 * Let's use a preallocated one. The following buf is protected by
4098 * CPU hotplug exclusion.
4099 */
4100 target_attrs = wq_update_unbound_numa_attrs_buf;
4101 cpumask = target_attrs->cpumask;
4102
4103 mutex_lock(&wq->mutex);
4104 if (wq->unbound_attrs->no_numa)
4105 goto out_unlock;
4106
4107 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4108 pwq = unbound_pwq_by_node(wq, node);
4109
4110 /*
4111 * Let's determine what needs to be done. If the target cpumask is
4112 * different from wq's, we need to compare it to @pwq's and create
4113 * a new one if they don't match. If the target cpumask equals
4114 * wq's, the default pwq should be used. If @pwq is already the
4115 * default one, nothing to do; otherwise, install the default one.
4116 */
4117 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4118 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4119 goto out_unlock;
4120 } else {
4121 if (pwq == wq->dfl_pwq)
4122 goto out_unlock;
4123 else
4124 goto use_dfl_pwq;
4125 }
4126
4127 mutex_unlock(&wq->mutex);
4128
4129 /* create a new pwq */
4130 pwq = alloc_unbound_pwq(wq, target_attrs);
4131 if (!pwq) {
4132 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4133 wq->name);
4134 mutex_lock(&wq->mutex);
4135 goto use_dfl_pwq;
4136 }
4137
4138 /*
4139 * Install the new pwq. As this function is called only from CPU
4140 * hotplug callbacks and applying a new attrs is wrapped with
4141 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4142 * inbetween.
4143 */
4144 mutex_lock(&wq->mutex);
4145 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4146 goto out_unlock;
4147
4148 use_dfl_pwq:
4149 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4150 get_pwq(wq->dfl_pwq);
4151 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4152 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4153 out_unlock:
4154 mutex_unlock(&wq->mutex);
4155 put_pwq_unlocked(old_pwq);
4156 }
4157
4158 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4159 {
4160 bool highpri = wq->flags & WQ_HIGHPRI;
4161 int cpu, ret;
4162
4163 if (!(wq->flags & WQ_UNBOUND)) {
4164 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4165 if (!wq->cpu_pwqs)
4166 return -ENOMEM;
4167
4168 for_each_possible_cpu(cpu) {
4169 struct pool_workqueue *pwq =
4170 per_cpu_ptr(wq->cpu_pwqs, cpu);
4171 struct worker_pool *cpu_pools =
4172 per_cpu(cpu_worker_pools, cpu);
4173
4174 init_pwq(pwq, wq, &cpu_pools[highpri]);
4175
4176 mutex_lock(&wq->mutex);
4177 link_pwq(pwq);
4178 mutex_unlock(&wq->mutex);
4179 }
4180 return 0;
4181 } else if (wq->flags & __WQ_ORDERED) {
4182 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4183 /* there should only be single pwq for ordering guarantee */
4184 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4185 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4186 "ordering guarantee broken for workqueue %s\n", wq->name);
4187 return ret;
4188 } else {
4189 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4190 }
4191 }
4192
4193 static int wq_clamp_max_active(int max_active, unsigned int flags,
4194 const char *name)
4195 {
4196 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4197
4198 if (max_active < 1 || max_active > lim)
4199 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4200 max_active, name, 1, lim);
4201
4202 return clamp_val(max_active, 1, lim);
4203 }
4204
4205 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4206 unsigned int flags,
4207 int max_active,
4208 struct lock_class_key *key,
4209 const char *lock_name, ...)
4210 {
4211 size_t tbl_size = 0;
4212 va_list args;
4213 struct workqueue_struct *wq;
4214 struct pool_workqueue *pwq;
4215
4216 /* allocate wq and format name */
4217 if (flags & WQ_UNBOUND)
4218 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4219
4220 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4221 if (!wq)
4222 return NULL;
4223
4224 if (flags & WQ_UNBOUND) {
4225 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4226 if (!wq->unbound_attrs)
4227 goto err_free_wq;
4228 }
4229
4230 va_start(args, lock_name);
4231 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4232 va_end(args);
4233
4234 max_active = max_active ?: WQ_DFL_ACTIVE;
4235 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4236
4237 /* init wq */
4238 wq->flags = flags;
4239 wq->saved_max_active = max_active;
4240 mutex_init(&wq->mutex);
4241 atomic_set(&wq->nr_pwqs_to_flush, 0);
4242 INIT_LIST_HEAD(&wq->pwqs);
4243 INIT_LIST_HEAD(&wq->flusher_queue);
4244 INIT_LIST_HEAD(&wq->flusher_overflow);
4245 INIT_LIST_HEAD(&wq->maydays);
4246
4247 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4248 INIT_LIST_HEAD(&wq->list);
4249
4250 if (alloc_and_link_pwqs(wq) < 0)
4251 goto err_free_wq;
4252
4253 /*
4254 * Workqueues which may be used during memory reclaim should
4255 * have a rescuer to guarantee forward progress.
4256 */
4257 if (flags & WQ_MEM_RECLAIM) {
4258 struct worker *rescuer;
4259
4260 rescuer = alloc_worker();
4261 if (!rescuer)
4262 goto err_destroy;
4263
4264 rescuer->rescue_wq = wq;
4265 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4266 wq->name);
4267 if (IS_ERR(rescuer->task)) {
4268 kfree(rescuer);
4269 goto err_destroy;
4270 }
4271
4272 wq->rescuer = rescuer;
4273 rescuer->task->flags |= PF_NO_SETAFFINITY;
4274 wake_up_process(rescuer->task);
4275 }
4276
4277 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4278 goto err_destroy;
4279
4280 /*
4281 * wq_pool_mutex protects global freeze state and workqueues list.
4282 * Grab it, adjust max_active and add the new @wq to workqueues
4283 * list.
4284 */
4285 mutex_lock(&wq_pool_mutex);
4286
4287 mutex_lock(&wq->mutex);
4288 for_each_pwq(pwq, wq)
4289 pwq_adjust_max_active(pwq);
4290 mutex_unlock(&wq->mutex);
4291
4292 list_add(&wq->list, &workqueues);
4293
4294 mutex_unlock(&wq_pool_mutex);
4295
4296 return wq;
4297
4298 err_free_wq:
4299 free_workqueue_attrs(wq->unbound_attrs);
4300 kfree(wq);
4301 return NULL;
4302 err_destroy:
4303 destroy_workqueue(wq);
4304 return NULL;
4305 }
4306 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4307
4308 /**
4309 * destroy_workqueue - safely terminate a workqueue
4310 * @wq: target workqueue
4311 *
4312 * Safely destroy a workqueue. All work currently pending will be done first.
4313 */
4314 void destroy_workqueue(struct workqueue_struct *wq)
4315 {
4316 struct pool_workqueue *pwq;
4317 int node;
4318
4319 /* drain it before proceeding with destruction */
4320 drain_workqueue(wq);
4321
4322 /* sanity checks */
4323 mutex_lock(&wq->mutex);
4324 for_each_pwq(pwq, wq) {
4325 int i;
4326
4327 for (i = 0; i < WORK_NR_COLORS; i++) {
4328 if (WARN_ON(pwq->nr_in_flight[i])) {
4329 mutex_unlock(&wq->mutex);
4330 return;
4331 }
4332 }
4333
4334 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4335 WARN_ON(pwq->nr_active) ||
4336 WARN_ON(!list_empty(&pwq->delayed_works))) {
4337 mutex_unlock(&wq->mutex);
4338 return;
4339 }
4340 }
4341 mutex_unlock(&wq->mutex);
4342
4343 /*
4344 * wq list is used to freeze wq, remove from list after
4345 * flushing is complete in case freeze races us.
4346 */
4347 mutex_lock(&wq_pool_mutex);
4348 list_del_init(&wq->list);
4349 mutex_unlock(&wq_pool_mutex);
4350
4351 workqueue_sysfs_unregister(wq);
4352
4353 if (wq->rescuer) {
4354 kthread_stop(wq->rescuer->task);
4355 kfree(wq->rescuer);
4356 wq->rescuer = NULL;
4357 }
4358
4359 if (!(wq->flags & WQ_UNBOUND)) {
4360 /*
4361 * The base ref is never dropped on per-cpu pwqs. Directly
4362 * free the pwqs and wq.
4363 */
4364 free_percpu(wq->cpu_pwqs);
4365 kfree(wq);
4366 } else {
4367 /*
4368 * We're the sole accessor of @wq at this point. Directly
4369 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4370 * @wq will be freed when the last pwq is released.
4371 */
4372 for_each_node(node) {
4373 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4374 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4375 put_pwq_unlocked(pwq);
4376 }
4377
4378 /*
4379 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4380 * put. Don't access it afterwards.
4381 */
4382 pwq = wq->dfl_pwq;
4383 wq->dfl_pwq = NULL;
4384 put_pwq_unlocked(pwq);
4385 }
4386 }
4387 EXPORT_SYMBOL_GPL(destroy_workqueue);
4388
4389 /**
4390 * workqueue_set_max_active - adjust max_active of a workqueue
4391 * @wq: target workqueue
4392 * @max_active: new max_active value.
4393 *
4394 * Set max_active of @wq to @max_active.
4395 *
4396 * CONTEXT:
4397 * Don't call from IRQ context.
4398 */
4399 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4400 {
4401 struct pool_workqueue *pwq;
4402
4403 /* disallow meddling with max_active for ordered workqueues */
4404 if (WARN_ON(wq->flags & __WQ_ORDERED))
4405 return;
4406
4407 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4408
4409 mutex_lock(&wq->mutex);
4410
4411 wq->saved_max_active = max_active;
4412
4413 for_each_pwq(pwq, wq)
4414 pwq_adjust_max_active(pwq);
4415
4416 mutex_unlock(&wq->mutex);
4417 }
4418 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4419
4420 /**
4421 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4422 *
4423 * Determine whether %current is a workqueue rescuer. Can be used from
4424 * work functions to determine whether it's being run off the rescuer task.
4425 */
4426 bool current_is_workqueue_rescuer(void)
4427 {
4428 struct worker *worker = current_wq_worker();
4429
4430 return worker && worker->rescue_wq;
4431 }
4432
4433 /**
4434 * workqueue_congested - test whether a workqueue is congested
4435 * @cpu: CPU in question
4436 * @wq: target workqueue
4437 *
4438 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4439 * no synchronization around this function and the test result is
4440 * unreliable and only useful as advisory hints or for debugging.
4441 *
4442 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4443 * Note that both per-cpu and unbound workqueues may be associated with
4444 * multiple pool_workqueues which have separate congested states. A
4445 * workqueue being congested on one CPU doesn't mean the workqueue is also
4446 * contested on other CPUs / NUMA nodes.
4447 *
4448 * RETURNS:
4449 * %true if congested, %false otherwise.
4450 */
4451 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4452 {
4453 struct pool_workqueue *pwq;
4454 bool ret;
4455
4456 rcu_read_lock_sched();
4457
4458 if (cpu == WORK_CPU_UNBOUND)
4459 cpu = smp_processor_id();
4460
4461 if (!(wq->flags & WQ_UNBOUND))
4462 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4463 else
4464 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4465
4466 ret = !list_empty(&pwq->delayed_works);
4467 rcu_read_unlock_sched();
4468
4469 return ret;
4470 }
4471 EXPORT_SYMBOL_GPL(workqueue_congested);
4472
4473 /**
4474 * work_busy - test whether a work is currently pending or running
4475 * @work: the work to be tested
4476 *
4477 * Test whether @work is currently pending or running. There is no
4478 * synchronization around this function and the test result is
4479 * unreliable and only useful as advisory hints or for debugging.
4480 *
4481 * RETURNS:
4482 * OR'd bitmask of WORK_BUSY_* bits.
4483 */
4484 unsigned int work_busy(struct work_struct *work)
4485 {
4486 struct worker_pool *pool;
4487 unsigned long flags;
4488 unsigned int ret = 0;
4489
4490 if (work_pending(work))
4491 ret |= WORK_BUSY_PENDING;
4492
4493 local_irq_save(flags);
4494 pool = get_work_pool(work);
4495 if (pool) {
4496 spin_lock(&pool->lock);
4497 if (find_worker_executing_work(pool, work))
4498 ret |= WORK_BUSY_RUNNING;
4499 spin_unlock(&pool->lock);
4500 }
4501 local_irq_restore(flags);
4502
4503 return ret;
4504 }
4505 EXPORT_SYMBOL_GPL(work_busy);
4506
4507 /**
4508 * set_worker_desc - set description for the current work item
4509 * @fmt: printf-style format string
4510 * @...: arguments for the format string
4511 *
4512 * This function can be called by a running work function to describe what
4513 * the work item is about. If the worker task gets dumped, this
4514 * information will be printed out together to help debugging. The
4515 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4516 */
4517 void set_worker_desc(const char *fmt, ...)
4518 {
4519 struct worker *worker = current_wq_worker();
4520 va_list args;
4521
4522 if (worker) {
4523 va_start(args, fmt);
4524 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4525 va_end(args);
4526 worker->desc_valid = true;
4527 }
4528 }
4529
4530 /**
4531 * print_worker_info - print out worker information and description
4532 * @log_lvl: the log level to use when printing
4533 * @task: target task
4534 *
4535 * If @task is a worker and currently executing a work item, print out the
4536 * name of the workqueue being serviced and worker description set with
4537 * set_worker_desc() by the currently executing work item.
4538 *
4539 * This function can be safely called on any task as long as the
4540 * task_struct itself is accessible. While safe, this function isn't
4541 * synchronized and may print out mixups or garbages of limited length.
4542 */
4543 void print_worker_info(const char *log_lvl, struct task_struct *task)
4544 {
4545 work_func_t *fn = NULL;
4546 char name[WQ_NAME_LEN] = { };
4547 char desc[WORKER_DESC_LEN] = { };
4548 struct pool_workqueue *pwq = NULL;
4549 struct workqueue_struct *wq = NULL;
4550 bool desc_valid = false;
4551 struct worker *worker;
4552
4553 if (!(task->flags & PF_WQ_WORKER))
4554 return;
4555
4556 /*
4557 * This function is called without any synchronization and @task
4558 * could be in any state. Be careful with dereferences.
4559 */
4560 worker = probe_kthread_data(task);
4561
4562 /*
4563 * Carefully copy the associated workqueue's workfn and name. Keep
4564 * the original last '\0' in case the original contains garbage.
4565 */
4566 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4567 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4568 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4569 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4570
4571 /* copy worker description */
4572 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4573 if (desc_valid)
4574 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4575
4576 if (fn || name[0] || desc[0]) {
4577 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4578 if (desc[0])
4579 pr_cont(" (%s)", desc);
4580 pr_cont("\n");
4581 }
4582 }
4583
4584 /*
4585 * CPU hotplug.
4586 *
4587 * There are two challenges in supporting CPU hotplug. Firstly, there
4588 * are a lot of assumptions on strong associations among work, pwq and
4589 * pool which make migrating pending and scheduled works very
4590 * difficult to implement without impacting hot paths. Secondly,
4591 * worker pools serve mix of short, long and very long running works making
4592 * blocked draining impractical.
4593 *
4594 * This is solved by allowing the pools to be disassociated from the CPU
4595 * running as an unbound one and allowing it to be reattached later if the
4596 * cpu comes back online.
4597 */
4598
4599 static void wq_unbind_fn(struct work_struct *work)
4600 {
4601 int cpu = smp_processor_id();
4602 struct worker_pool *pool;
4603 struct worker *worker;
4604 int wi;
4605
4606 for_each_cpu_worker_pool(pool, cpu) {
4607 WARN_ON_ONCE(cpu != smp_processor_id());
4608
4609 mutex_lock(&pool->manager_mutex);
4610 spin_lock_irq(&pool->lock);
4611
4612 /*
4613 * We've blocked all manager operations. Make all workers
4614 * unbound and set DISASSOCIATED. Before this, all workers
4615 * except for the ones which are still executing works from
4616 * before the last CPU down must be on the cpu. After
4617 * this, they may become diasporas.
4618 */
4619 for_each_pool_worker(worker, wi, pool)
4620 worker->flags |= WORKER_UNBOUND;
4621
4622 pool->flags |= POOL_DISASSOCIATED;
4623
4624 spin_unlock_irq(&pool->lock);
4625 mutex_unlock(&pool->manager_mutex);
4626
4627 /*
4628 * Call schedule() so that we cross rq->lock and thus can
4629 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4630 * This is necessary as scheduler callbacks may be invoked
4631 * from other cpus.
4632 */
4633 schedule();
4634
4635 /*
4636 * Sched callbacks are disabled now. Zap nr_running.
4637 * After this, nr_running stays zero and need_more_worker()
4638 * and keep_working() are always true as long as the
4639 * worklist is not empty. This pool now behaves as an
4640 * unbound (in terms of concurrency management) pool which
4641 * are served by workers tied to the pool.
4642 */
4643 atomic_set(&pool->nr_running, 0);
4644
4645 /*
4646 * With concurrency management just turned off, a busy
4647 * worker blocking could lead to lengthy stalls. Kick off
4648 * unbound chain execution of currently pending work items.
4649 */
4650 spin_lock_irq(&pool->lock);
4651 wake_up_worker(pool);
4652 spin_unlock_irq(&pool->lock);
4653 }
4654 }
4655
4656 /**
4657 * rebind_workers - rebind all workers of a pool to the associated CPU
4658 * @pool: pool of interest
4659 *
4660 * @pool->cpu is coming online. Rebind all workers to the CPU.
4661 */
4662 static void rebind_workers(struct worker_pool *pool)
4663 {
4664 struct worker *worker;
4665 int wi;
4666
4667 lockdep_assert_held(&pool->manager_mutex);
4668
4669 /*
4670 * Restore CPU affinity of all workers. As all idle workers should
4671 * be on the run-queue of the associated CPU before any local
4672 * wake-ups for concurrency management happen, restore CPU affinty
4673 * of all workers first and then clear UNBOUND. As we're called
4674 * from CPU_ONLINE, the following shouldn't fail.
4675 */
4676 for_each_pool_worker(worker, wi, pool)
4677 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4678 pool->attrs->cpumask) < 0);
4679
4680 spin_lock_irq(&pool->lock);
4681
4682 for_each_pool_worker(worker, wi, pool) {
4683 unsigned int worker_flags = worker->flags;
4684
4685 /*
4686 * A bound idle worker should actually be on the runqueue
4687 * of the associated CPU for local wake-ups targeting it to
4688 * work. Kick all idle workers so that they migrate to the
4689 * associated CPU. Doing this in the same loop as
4690 * replacing UNBOUND with REBOUND is safe as no worker will
4691 * be bound before @pool->lock is released.
4692 */
4693 if (worker_flags & WORKER_IDLE)
4694 wake_up_process(worker->task);
4695
4696 /*
4697 * We want to clear UNBOUND but can't directly call
4698 * worker_clr_flags() or adjust nr_running. Atomically
4699 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4700 * @worker will clear REBOUND using worker_clr_flags() when
4701 * it initiates the next execution cycle thus restoring
4702 * concurrency management. Note that when or whether
4703 * @worker clears REBOUND doesn't affect correctness.
4704 *
4705 * ACCESS_ONCE() is necessary because @worker->flags may be
4706 * tested without holding any lock in
4707 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4708 * fail incorrectly leading to premature concurrency
4709 * management operations.
4710 */
4711 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4712 worker_flags |= WORKER_REBOUND;
4713 worker_flags &= ~WORKER_UNBOUND;
4714 ACCESS_ONCE(worker->flags) = worker_flags;
4715 }
4716
4717 spin_unlock_irq(&pool->lock);
4718 }
4719
4720 /**
4721 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4722 * @pool: unbound pool of interest
4723 * @cpu: the CPU which is coming up
4724 *
4725 * An unbound pool may end up with a cpumask which doesn't have any online
4726 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4727 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4728 * online CPU before, cpus_allowed of all its workers should be restored.
4729 */
4730 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4731 {
4732 static cpumask_t cpumask;
4733 struct worker *worker;
4734 int wi;
4735
4736 lockdep_assert_held(&pool->manager_mutex);
4737
4738 /* is @cpu allowed for @pool? */
4739 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4740 return;
4741
4742 /* is @cpu the only online CPU? */
4743 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4744 if (cpumask_weight(&cpumask) != 1)
4745 return;
4746
4747 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4748 for_each_pool_worker(worker, wi, pool)
4749 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4750 pool->attrs->cpumask) < 0);
4751 }
4752
4753 /*
4754 * Workqueues should be brought up before normal priority CPU notifiers.
4755 * This will be registered high priority CPU notifier.
4756 */
4757 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
4758 unsigned long action,
4759 void *hcpu)
4760 {
4761 int cpu = (unsigned long)hcpu;
4762 struct worker_pool *pool;
4763 struct workqueue_struct *wq;
4764 int pi;
4765
4766 switch (action & ~CPU_TASKS_FROZEN) {
4767 case CPU_UP_PREPARE:
4768 for_each_cpu_worker_pool(pool, cpu) {
4769 if (pool->nr_workers)
4770 continue;
4771 if (create_and_start_worker(pool) < 0)
4772 return NOTIFY_BAD;
4773 }
4774 break;
4775
4776 case CPU_DOWN_FAILED:
4777 case CPU_ONLINE:
4778 mutex_lock(&wq_pool_mutex);
4779
4780 for_each_pool(pool, pi) {
4781 mutex_lock(&pool->manager_mutex);
4782
4783 if (pool->cpu == cpu) {
4784 spin_lock_irq(&pool->lock);
4785 pool->flags &= ~POOL_DISASSOCIATED;
4786 spin_unlock_irq(&pool->lock);
4787
4788 rebind_workers(pool);
4789 } else if (pool->cpu < 0) {
4790 restore_unbound_workers_cpumask(pool, cpu);
4791 }
4792
4793 mutex_unlock(&pool->manager_mutex);
4794 }
4795
4796 /* update NUMA affinity of unbound workqueues */
4797 list_for_each_entry(wq, &workqueues, list)
4798 wq_update_unbound_numa(wq, cpu, true);
4799
4800 mutex_unlock(&wq_pool_mutex);
4801 break;
4802 }
4803 return NOTIFY_OK;
4804 }
4805
4806 /*
4807 * Workqueues should be brought down after normal priority CPU notifiers.
4808 * This will be registered as low priority CPU notifier.
4809 */
4810 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4811 unsigned long action,
4812 void *hcpu)
4813 {
4814 int cpu = (unsigned long)hcpu;
4815 struct work_struct unbind_work;
4816 struct workqueue_struct *wq;
4817
4818 switch (action & ~CPU_TASKS_FROZEN) {
4819 case CPU_DOWN_PREPARE:
4820 /* unbinding per-cpu workers should happen on the local CPU */
4821 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4822 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4823
4824 /* update NUMA affinity of unbound workqueues */
4825 mutex_lock(&wq_pool_mutex);
4826 list_for_each_entry(wq, &workqueues, list)
4827 wq_update_unbound_numa(wq, cpu, false);
4828 mutex_unlock(&wq_pool_mutex);
4829
4830 /* wait for per-cpu unbinding to finish */
4831 flush_work(&unbind_work);
4832 break;
4833 }
4834 return NOTIFY_OK;
4835 }
4836
4837 #ifdef CONFIG_SMP
4838
4839 struct work_for_cpu {
4840 struct work_struct work;
4841 long (*fn)(void *);
4842 void *arg;
4843 long ret;
4844 };
4845
4846 static void work_for_cpu_fn(struct work_struct *work)
4847 {
4848 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4849
4850 wfc->ret = wfc->fn(wfc->arg);
4851 }
4852
4853 /**
4854 * work_on_cpu - run a function in user context on a particular cpu
4855 * @cpu: the cpu to run on
4856 * @fn: the function to run
4857 * @arg: the function arg
4858 *
4859 * This will return the value @fn returns.
4860 * It is up to the caller to ensure that the cpu doesn't go offline.
4861 * The caller must not hold any locks which would prevent @fn from completing.
4862 */
4863 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4864 {
4865 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4866
4867 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4868 schedule_work_on(cpu, &wfc.work);
4869 flush_work(&wfc.work);
4870 return wfc.ret;
4871 }
4872 EXPORT_SYMBOL_GPL(work_on_cpu);
4873 #endif /* CONFIG_SMP */
4874
4875 #ifdef CONFIG_FREEZER
4876
4877 /**
4878 * freeze_workqueues_begin - begin freezing workqueues
4879 *
4880 * Start freezing workqueues. After this function returns, all freezable
4881 * workqueues will queue new works to their delayed_works list instead of
4882 * pool->worklist.
4883 *
4884 * CONTEXT:
4885 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4886 */
4887 void freeze_workqueues_begin(void)
4888 {
4889 struct worker_pool *pool;
4890 struct workqueue_struct *wq;
4891 struct pool_workqueue *pwq;
4892 int pi;
4893
4894 mutex_lock(&wq_pool_mutex);
4895
4896 WARN_ON_ONCE(workqueue_freezing);
4897 workqueue_freezing = true;
4898
4899 /* set FREEZING */
4900 for_each_pool(pool, pi) {
4901 spin_lock_irq(&pool->lock);
4902 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4903 pool->flags |= POOL_FREEZING;
4904 spin_unlock_irq(&pool->lock);
4905 }
4906
4907 list_for_each_entry(wq, &workqueues, list) {
4908 mutex_lock(&wq->mutex);
4909 for_each_pwq(pwq, wq)
4910 pwq_adjust_max_active(pwq);
4911 mutex_unlock(&wq->mutex);
4912 }
4913
4914 mutex_unlock(&wq_pool_mutex);
4915 }
4916
4917 /**
4918 * freeze_workqueues_busy - are freezable workqueues still busy?
4919 *
4920 * Check whether freezing is complete. This function must be called
4921 * between freeze_workqueues_begin() and thaw_workqueues().
4922 *
4923 * CONTEXT:
4924 * Grabs and releases wq_pool_mutex.
4925 *
4926 * RETURNS:
4927 * %true if some freezable workqueues are still busy. %false if freezing
4928 * is complete.
4929 */
4930 bool freeze_workqueues_busy(void)
4931 {
4932 bool busy = false;
4933 struct workqueue_struct *wq;
4934 struct pool_workqueue *pwq;
4935
4936 mutex_lock(&wq_pool_mutex);
4937
4938 WARN_ON_ONCE(!workqueue_freezing);
4939
4940 list_for_each_entry(wq, &workqueues, list) {
4941 if (!(wq->flags & WQ_FREEZABLE))
4942 continue;
4943 /*
4944 * nr_active is monotonically decreasing. It's safe
4945 * to peek without lock.
4946 */
4947 rcu_read_lock_sched();
4948 for_each_pwq(pwq, wq) {
4949 WARN_ON_ONCE(pwq->nr_active < 0);
4950 if (pwq->nr_active) {
4951 busy = true;
4952 rcu_read_unlock_sched();
4953 goto out_unlock;
4954 }
4955 }
4956 rcu_read_unlock_sched();
4957 }
4958 out_unlock:
4959 mutex_unlock(&wq_pool_mutex);
4960 return busy;
4961 }
4962
4963 /**
4964 * thaw_workqueues - thaw workqueues
4965 *
4966 * Thaw workqueues. Normal queueing is restored and all collected
4967 * frozen works are transferred to their respective pool worklists.
4968 *
4969 * CONTEXT:
4970 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4971 */
4972 void thaw_workqueues(void)
4973 {
4974 struct workqueue_struct *wq;
4975 struct pool_workqueue *pwq;
4976 struct worker_pool *pool;
4977 int pi;
4978
4979 mutex_lock(&wq_pool_mutex);
4980
4981 if (!workqueue_freezing)
4982 goto out_unlock;
4983
4984 /* clear FREEZING */
4985 for_each_pool(pool, pi) {
4986 spin_lock_irq(&pool->lock);
4987 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4988 pool->flags &= ~POOL_FREEZING;
4989 spin_unlock_irq(&pool->lock);
4990 }
4991
4992 /* restore max_active and repopulate worklist */
4993 list_for_each_entry(wq, &workqueues, list) {
4994 mutex_lock(&wq->mutex);
4995 for_each_pwq(pwq, wq)
4996 pwq_adjust_max_active(pwq);
4997 mutex_unlock(&wq->mutex);
4998 }
4999
5000 workqueue_freezing = false;
5001 out_unlock:
5002 mutex_unlock(&wq_pool_mutex);
5003 }
5004 #endif /* CONFIG_FREEZER */
5005
5006 static void __init wq_numa_init(void)
5007 {
5008 cpumask_var_t *tbl;
5009 int node, cpu;
5010
5011 /* determine NUMA pwq table len - highest node id + 1 */
5012 for_each_node(node)
5013 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
5014
5015 if (num_possible_nodes() <= 1)
5016 return;
5017
5018 if (wq_disable_numa) {
5019 pr_info("workqueue: NUMA affinity support disabled\n");
5020 return;
5021 }
5022
5023 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5024 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5025
5026 /*
5027 * We want masks of possible CPUs of each node which isn't readily
5028 * available. Build one from cpu_to_node() which should have been
5029 * fully initialized by now.
5030 */
5031 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5032 BUG_ON(!tbl);
5033
5034 for_each_node(node)
5035 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5036 node_online(node) ? node : NUMA_NO_NODE));
5037
5038 for_each_possible_cpu(cpu) {
5039 node = cpu_to_node(cpu);
5040 if (WARN_ON(node == NUMA_NO_NODE)) {
5041 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5042 /* happens iff arch is bonkers, let's just proceed */
5043 return;
5044 }
5045 cpumask_set_cpu(cpu, tbl[node]);
5046 }
5047
5048 wq_numa_possible_cpumask = tbl;
5049 wq_numa_enabled = true;
5050 }
5051
5052 static int __init init_workqueues(void)
5053 {
5054 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5055 int i, cpu;
5056
5057 /* make sure we have enough bits for OFFQ pool ID */
5058 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
5059 WORK_CPU_END * NR_STD_WORKER_POOLS);
5060
5061 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5062
5063 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5064
5065 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5066 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5067
5068 wq_numa_init();
5069
5070 /* initialize CPU pools */
5071 for_each_possible_cpu(cpu) {
5072 struct worker_pool *pool;
5073
5074 i = 0;
5075 for_each_cpu_worker_pool(pool, cpu) {
5076 BUG_ON(init_worker_pool(pool));
5077 pool->cpu = cpu;
5078 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5079 pool->attrs->nice = std_nice[i++];
5080 pool->node = cpu_to_node(cpu);
5081
5082 /* alloc pool ID */
5083 mutex_lock(&wq_pool_mutex);
5084 BUG_ON(worker_pool_assign_id(pool));
5085 mutex_unlock(&wq_pool_mutex);
5086 }
5087 }
5088
5089 /* create the initial worker */
5090 for_each_online_cpu(cpu) {
5091 struct worker_pool *pool;
5092
5093 for_each_cpu_worker_pool(pool, cpu) {
5094 pool->flags &= ~POOL_DISASSOCIATED;
5095 BUG_ON(create_and_start_worker(pool) < 0);
5096 }
5097 }
5098
5099 /* create default unbound and ordered wq attrs */
5100 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5101 struct workqueue_attrs *attrs;
5102
5103 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5104 attrs->nice = std_nice[i];
5105 unbound_std_wq_attrs[i] = attrs;
5106
5107 /*
5108 * An ordered wq should have only one pwq as ordering is
5109 * guaranteed by max_active which is enforced by pwqs.
5110 * Turn off NUMA so that dfl_pwq is used for all nodes.
5111 */
5112 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5113 attrs->nice = std_nice[i];
5114 attrs->no_numa = true;
5115 ordered_wq_attrs[i] = attrs;
5116 }
5117
5118 system_wq = alloc_workqueue("events", 0, 0);
5119 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5120 system_long_wq = alloc_workqueue("events_long", 0, 0);
5121 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5122 WQ_UNBOUND_MAX_ACTIVE);
5123 system_freezable_wq = alloc_workqueue("events_freezable",
5124 WQ_FREEZABLE, 0);
5125 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5126 !system_unbound_wq || !system_freezable_wq);
5127 return 0;
5128 }
5129 early_initcall(init_workqueues);