workqueue: gut flush[_delayed]_work_sync()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44
45 #include "workqueue_sched.h"
46
47 enum {
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
69
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
74 WORKER_PREP = 1 << 3, /* preparing to run works */
75 WORKER_REBIND = 1 << 5, /* mom is home, come back */
76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
78
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
81
82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
83
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
87
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
102 HIGHPRI_NICE_LEVEL = -20,
103 };
104
105 /*
106 * Structure fields follow one of the following exclusion rules.
107 *
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
110 *
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
114 * L: gcwq->lock protected. Access with gcwq->lock held.
115 *
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
120 *
121 * F: wq->flush_mutex protected.
122 *
123 * W: workqueue_lock protected.
124 */
125
126 struct global_cwq;
127 struct worker_pool;
128 struct idle_rebind;
129
130 /*
131 * The poor guys doing the actual heavy lifting. All on-duty workers
132 * are either serving the manager role, on idle list or on busy hash.
133 */
134 struct worker {
135 /* on idle list while idle, on busy hash table while busy */
136 union {
137 struct list_head entry; /* L: while idle */
138 struct hlist_node hentry; /* L: while busy */
139 };
140
141 struct work_struct *current_work; /* L: work being processed */
142 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
143 struct list_head scheduled; /* L: scheduled works */
144 struct task_struct *task; /* I: worker task */
145 struct worker_pool *pool; /* I: the associated pool */
146 /* 64 bytes boundary on 64bit, 32 on 32bit */
147 unsigned long last_active; /* L: last active timestamp */
148 unsigned int flags; /* X: flags */
149 int id; /* I: worker id */
150
151 /* for rebinding worker to CPU */
152 struct idle_rebind *idle_rebind; /* L: for idle worker */
153 struct work_struct rebind_work; /* L: for busy worker */
154 };
155
156 struct worker_pool {
157 struct global_cwq *gcwq; /* I: the owning gcwq */
158 unsigned int flags; /* X: flags */
159
160 struct list_head worklist; /* L: list of pending works */
161 int nr_workers; /* L: total number of workers */
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
168 struct mutex manager_mutex; /* mutex manager should hold */
169 struct ida worker_ida; /* L: for worker IDs */
170 };
171
172 /*
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
176 */
177 struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
180 unsigned int flags; /* L: GCWQ_* flags */
181
182 /* workers are chained either in busy_hash or pool idle_list */
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
186 struct worker_pool pools[NR_WORKER_POOLS];
187 /* normal and highpri pools */
188
189 wait_queue_head_t rebind_hold; /* rebind hold wait */
190 } ____cacheline_aligned_in_smp;
191
192 /*
193 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
194 * work_struct->data are used for flags and thus cwqs need to be
195 * aligned at two's power of the number of flag bits.
196 */
197 struct cpu_workqueue_struct {
198 struct worker_pool *pool; /* I: the associated pool */
199 struct workqueue_struct *wq; /* I: the owning workqueue */
200 int work_color; /* L: current color */
201 int flush_color; /* L: flushing color */
202 int nr_in_flight[WORK_NR_COLORS];
203 /* L: nr of in_flight works */
204 int nr_active; /* L: nr of active works */
205 int max_active; /* L: max active works */
206 struct list_head delayed_works; /* L: delayed works */
207 };
208
209 /*
210 * Structure used to wait for workqueue flush.
211 */
212 struct wq_flusher {
213 struct list_head list; /* F: list of flushers */
214 int flush_color; /* F: flush color waiting for */
215 struct completion done; /* flush completion */
216 };
217
218 /*
219 * All cpumasks are assumed to be always set on UP and thus can't be
220 * used to determine whether there's something to be done.
221 */
222 #ifdef CONFIG_SMP
223 typedef cpumask_var_t mayday_mask_t;
224 #define mayday_test_and_set_cpu(cpu, mask) \
225 cpumask_test_and_set_cpu((cpu), (mask))
226 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
227 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
228 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
229 #define free_mayday_mask(mask) free_cpumask_var((mask))
230 #else
231 typedef unsigned long mayday_mask_t;
232 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
233 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
234 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
235 #define alloc_mayday_mask(maskp, gfp) true
236 #define free_mayday_mask(mask) do { } while (0)
237 #endif
238
239 /*
240 * The externally visible workqueue abstraction is an array of
241 * per-CPU workqueues:
242 */
243 struct workqueue_struct {
244 unsigned int flags; /* W: WQ_* flags */
245 union {
246 struct cpu_workqueue_struct __percpu *pcpu;
247 struct cpu_workqueue_struct *single;
248 unsigned long v;
249 } cpu_wq; /* I: cwq's */
250 struct list_head list; /* W: list of all workqueues */
251
252 struct mutex flush_mutex; /* protects wq flushing */
253 int work_color; /* F: current work color */
254 int flush_color; /* F: current flush color */
255 atomic_t nr_cwqs_to_flush; /* flush in progress */
256 struct wq_flusher *first_flusher; /* F: first flusher */
257 struct list_head flusher_queue; /* F: flush waiters */
258 struct list_head flusher_overflow; /* F: flush overflow list */
259
260 mayday_mask_t mayday_mask; /* cpus requesting rescue */
261 struct worker *rescuer; /* I: rescue worker */
262
263 int nr_drainers; /* W: drain in progress */
264 int saved_max_active; /* W: saved cwq max_active */
265 #ifdef CONFIG_LOCKDEP
266 struct lockdep_map lockdep_map;
267 #endif
268 char name[]; /* I: workqueue name */
269 };
270
271 struct workqueue_struct *system_wq __read_mostly;
272 EXPORT_SYMBOL_GPL(system_wq);
273 struct workqueue_struct *system_highpri_wq __read_mostly;
274 EXPORT_SYMBOL_GPL(system_highpri_wq);
275 struct workqueue_struct *system_long_wq __read_mostly;
276 EXPORT_SYMBOL_GPL(system_long_wq);
277 struct workqueue_struct *system_nrt_wq __read_mostly;
278 EXPORT_SYMBOL_GPL(system_nrt_wq);
279 struct workqueue_struct *system_unbound_wq __read_mostly;
280 EXPORT_SYMBOL_GPL(system_unbound_wq);
281 struct workqueue_struct *system_freezable_wq __read_mostly;
282 EXPORT_SYMBOL_GPL(system_freezable_wq);
283 struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
284 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
285
286 #define CREATE_TRACE_POINTS
287 #include <trace/events/workqueue.h>
288
289 #define for_each_worker_pool(pool, gcwq) \
290 for ((pool) = &(gcwq)->pools[0]; \
291 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
292
293 #define for_each_busy_worker(worker, i, pos, gcwq) \
294 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
295 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
296
297 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
298 unsigned int sw)
299 {
300 if (cpu < nr_cpu_ids) {
301 if (sw & 1) {
302 cpu = cpumask_next(cpu, mask);
303 if (cpu < nr_cpu_ids)
304 return cpu;
305 }
306 if (sw & 2)
307 return WORK_CPU_UNBOUND;
308 }
309 return WORK_CPU_NONE;
310 }
311
312 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
313 struct workqueue_struct *wq)
314 {
315 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
316 }
317
318 /*
319 * CPU iterators
320 *
321 * An extra gcwq is defined for an invalid cpu number
322 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
323 * specific CPU. The following iterators are similar to
324 * for_each_*_cpu() iterators but also considers the unbound gcwq.
325 *
326 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
327 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
328 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
329 * WORK_CPU_UNBOUND for unbound workqueues
330 */
331 #define for_each_gcwq_cpu(cpu) \
332 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
333 (cpu) < WORK_CPU_NONE; \
334 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
335
336 #define for_each_online_gcwq_cpu(cpu) \
337 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
338 (cpu) < WORK_CPU_NONE; \
339 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
340
341 #define for_each_cwq_cpu(cpu, wq) \
342 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
343 (cpu) < WORK_CPU_NONE; \
344 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
345
346 #ifdef CONFIG_DEBUG_OBJECTS_WORK
347
348 static struct debug_obj_descr work_debug_descr;
349
350 static void *work_debug_hint(void *addr)
351 {
352 return ((struct work_struct *) addr)->func;
353 }
354
355 /*
356 * fixup_init is called when:
357 * - an active object is initialized
358 */
359 static int work_fixup_init(void *addr, enum debug_obj_state state)
360 {
361 struct work_struct *work = addr;
362
363 switch (state) {
364 case ODEBUG_STATE_ACTIVE:
365 cancel_work_sync(work);
366 debug_object_init(work, &work_debug_descr);
367 return 1;
368 default:
369 return 0;
370 }
371 }
372
373 /*
374 * fixup_activate is called when:
375 * - an active object is activated
376 * - an unknown object is activated (might be a statically initialized object)
377 */
378 static int work_fixup_activate(void *addr, enum debug_obj_state state)
379 {
380 struct work_struct *work = addr;
381
382 switch (state) {
383
384 case ODEBUG_STATE_NOTAVAILABLE:
385 /*
386 * This is not really a fixup. The work struct was
387 * statically initialized. We just make sure that it
388 * is tracked in the object tracker.
389 */
390 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
391 debug_object_init(work, &work_debug_descr);
392 debug_object_activate(work, &work_debug_descr);
393 return 0;
394 }
395 WARN_ON_ONCE(1);
396 return 0;
397
398 case ODEBUG_STATE_ACTIVE:
399 WARN_ON(1);
400
401 default:
402 return 0;
403 }
404 }
405
406 /*
407 * fixup_free is called when:
408 * - an active object is freed
409 */
410 static int work_fixup_free(void *addr, enum debug_obj_state state)
411 {
412 struct work_struct *work = addr;
413
414 switch (state) {
415 case ODEBUG_STATE_ACTIVE:
416 cancel_work_sync(work);
417 debug_object_free(work, &work_debug_descr);
418 return 1;
419 default:
420 return 0;
421 }
422 }
423
424 static struct debug_obj_descr work_debug_descr = {
425 .name = "work_struct",
426 .debug_hint = work_debug_hint,
427 .fixup_init = work_fixup_init,
428 .fixup_activate = work_fixup_activate,
429 .fixup_free = work_fixup_free,
430 };
431
432 static inline void debug_work_activate(struct work_struct *work)
433 {
434 debug_object_activate(work, &work_debug_descr);
435 }
436
437 static inline void debug_work_deactivate(struct work_struct *work)
438 {
439 debug_object_deactivate(work, &work_debug_descr);
440 }
441
442 void __init_work(struct work_struct *work, int onstack)
443 {
444 if (onstack)
445 debug_object_init_on_stack(work, &work_debug_descr);
446 else
447 debug_object_init(work, &work_debug_descr);
448 }
449 EXPORT_SYMBOL_GPL(__init_work);
450
451 void destroy_work_on_stack(struct work_struct *work)
452 {
453 debug_object_free(work, &work_debug_descr);
454 }
455 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
456
457 #else
458 static inline void debug_work_activate(struct work_struct *work) { }
459 static inline void debug_work_deactivate(struct work_struct *work) { }
460 #endif
461
462 /* Serializes the accesses to the list of workqueues. */
463 static DEFINE_SPINLOCK(workqueue_lock);
464 static LIST_HEAD(workqueues);
465 static bool workqueue_freezing; /* W: have wqs started freezing? */
466
467 /*
468 * The almighty global cpu workqueues. nr_running is the only field
469 * which is expected to be used frequently by other cpus via
470 * try_to_wake_up(). Put it in a separate cacheline.
471 */
472 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
473 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
474
475 /*
476 * Global cpu workqueue and nr_running counter for unbound gcwq. The
477 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
478 * workers have WORKER_UNBOUND set.
479 */
480 static struct global_cwq unbound_global_cwq;
481 static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
482 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
483 };
484
485 static int worker_thread(void *__worker);
486
487 static int worker_pool_pri(struct worker_pool *pool)
488 {
489 return pool - pool->gcwq->pools;
490 }
491
492 static struct global_cwq *get_gcwq(unsigned int cpu)
493 {
494 if (cpu != WORK_CPU_UNBOUND)
495 return &per_cpu(global_cwq, cpu);
496 else
497 return &unbound_global_cwq;
498 }
499
500 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
501 {
502 int cpu = pool->gcwq->cpu;
503 int idx = worker_pool_pri(pool);
504
505 if (cpu != WORK_CPU_UNBOUND)
506 return &per_cpu(pool_nr_running, cpu)[idx];
507 else
508 return &unbound_pool_nr_running[idx];
509 }
510
511 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
512 struct workqueue_struct *wq)
513 {
514 if (!(wq->flags & WQ_UNBOUND)) {
515 if (likely(cpu < nr_cpu_ids))
516 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
517 } else if (likely(cpu == WORK_CPU_UNBOUND))
518 return wq->cpu_wq.single;
519 return NULL;
520 }
521
522 static unsigned int work_color_to_flags(int color)
523 {
524 return color << WORK_STRUCT_COLOR_SHIFT;
525 }
526
527 static int get_work_color(struct work_struct *work)
528 {
529 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
530 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
531 }
532
533 static int work_next_color(int color)
534 {
535 return (color + 1) % WORK_NR_COLORS;
536 }
537
538 /*
539 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
540 * contain the pointer to the queued cwq. Once execution starts, the flag
541 * is cleared and the high bits contain OFFQ flags and CPU number.
542 *
543 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
544 * and clear_work_data() can be used to set the cwq, cpu or clear
545 * work->data. These functions should only be called while the work is
546 * owned - ie. while the PENDING bit is set.
547 *
548 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
549 * a work. gcwq is available once the work has been queued anywhere after
550 * initialization until it is sync canceled. cwq is available only while
551 * the work item is queued.
552 *
553 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
554 * canceled. While being canceled, a work item may have its PENDING set
555 * but stay off timer and worklist for arbitrarily long and nobody should
556 * try to steal the PENDING bit.
557 */
558 static inline void set_work_data(struct work_struct *work, unsigned long data,
559 unsigned long flags)
560 {
561 BUG_ON(!work_pending(work));
562 atomic_long_set(&work->data, data | flags | work_static(work));
563 }
564
565 static void set_work_cwq(struct work_struct *work,
566 struct cpu_workqueue_struct *cwq,
567 unsigned long extra_flags)
568 {
569 set_work_data(work, (unsigned long)cwq,
570 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
571 }
572
573 static void set_work_cpu_and_clear_pending(struct work_struct *work,
574 unsigned int cpu)
575 {
576 /*
577 * The following wmb is paired with the implied mb in
578 * test_and_set_bit(PENDING) and ensures all updates to @work made
579 * here are visible to and precede any updates by the next PENDING
580 * owner.
581 */
582 smp_wmb();
583 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
584 }
585
586 static void clear_work_data(struct work_struct *work)
587 {
588 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
589 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
590 }
591
592 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
593 {
594 unsigned long data = atomic_long_read(&work->data);
595
596 if (data & WORK_STRUCT_CWQ)
597 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
598 else
599 return NULL;
600 }
601
602 static struct global_cwq *get_work_gcwq(struct work_struct *work)
603 {
604 unsigned long data = atomic_long_read(&work->data);
605 unsigned int cpu;
606
607 if (data & WORK_STRUCT_CWQ)
608 return ((struct cpu_workqueue_struct *)
609 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
610
611 cpu = data >> WORK_OFFQ_CPU_SHIFT;
612 if (cpu == WORK_CPU_NONE)
613 return NULL;
614
615 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
616 return get_gcwq(cpu);
617 }
618
619 static void mark_work_canceling(struct work_struct *work)
620 {
621 struct global_cwq *gcwq = get_work_gcwq(work);
622 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
623
624 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
625 WORK_STRUCT_PENDING);
626 }
627
628 static bool work_is_canceling(struct work_struct *work)
629 {
630 unsigned long data = atomic_long_read(&work->data);
631
632 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
633 }
634
635 /*
636 * Policy functions. These define the policies on how the global worker
637 * pools are managed. Unless noted otherwise, these functions assume that
638 * they're being called with gcwq->lock held.
639 */
640
641 static bool __need_more_worker(struct worker_pool *pool)
642 {
643 return !atomic_read(get_pool_nr_running(pool));
644 }
645
646 /*
647 * Need to wake up a worker? Called from anything but currently
648 * running workers.
649 *
650 * Note that, because unbound workers never contribute to nr_running, this
651 * function will always return %true for unbound gcwq as long as the
652 * worklist isn't empty.
653 */
654 static bool need_more_worker(struct worker_pool *pool)
655 {
656 return !list_empty(&pool->worklist) && __need_more_worker(pool);
657 }
658
659 /* Can I start working? Called from busy but !running workers. */
660 static bool may_start_working(struct worker_pool *pool)
661 {
662 return pool->nr_idle;
663 }
664
665 /* Do I need to keep working? Called from currently running workers. */
666 static bool keep_working(struct worker_pool *pool)
667 {
668 atomic_t *nr_running = get_pool_nr_running(pool);
669
670 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
671 }
672
673 /* Do we need a new worker? Called from manager. */
674 static bool need_to_create_worker(struct worker_pool *pool)
675 {
676 return need_more_worker(pool) && !may_start_working(pool);
677 }
678
679 /* Do I need to be the manager? */
680 static bool need_to_manage_workers(struct worker_pool *pool)
681 {
682 return need_to_create_worker(pool) ||
683 (pool->flags & POOL_MANAGE_WORKERS);
684 }
685
686 /* Do we have too many workers and should some go away? */
687 static bool too_many_workers(struct worker_pool *pool)
688 {
689 bool managing = mutex_is_locked(&pool->manager_mutex);
690 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
691 int nr_busy = pool->nr_workers - nr_idle;
692
693 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
694 }
695
696 /*
697 * Wake up functions.
698 */
699
700 /* Return the first worker. Safe with preemption disabled */
701 static struct worker *first_worker(struct worker_pool *pool)
702 {
703 if (unlikely(list_empty(&pool->idle_list)))
704 return NULL;
705
706 return list_first_entry(&pool->idle_list, struct worker, entry);
707 }
708
709 /**
710 * wake_up_worker - wake up an idle worker
711 * @pool: worker pool to wake worker from
712 *
713 * Wake up the first idle worker of @pool.
714 *
715 * CONTEXT:
716 * spin_lock_irq(gcwq->lock).
717 */
718 static void wake_up_worker(struct worker_pool *pool)
719 {
720 struct worker *worker = first_worker(pool);
721
722 if (likely(worker))
723 wake_up_process(worker->task);
724 }
725
726 /**
727 * wq_worker_waking_up - a worker is waking up
728 * @task: task waking up
729 * @cpu: CPU @task is waking up to
730 *
731 * This function is called during try_to_wake_up() when a worker is
732 * being awoken.
733 *
734 * CONTEXT:
735 * spin_lock_irq(rq->lock)
736 */
737 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
738 {
739 struct worker *worker = kthread_data(task);
740
741 if (!(worker->flags & WORKER_NOT_RUNNING))
742 atomic_inc(get_pool_nr_running(worker->pool));
743 }
744
745 /**
746 * wq_worker_sleeping - a worker is going to sleep
747 * @task: task going to sleep
748 * @cpu: CPU in question, must be the current CPU number
749 *
750 * This function is called during schedule() when a busy worker is
751 * going to sleep. Worker on the same cpu can be woken up by
752 * returning pointer to its task.
753 *
754 * CONTEXT:
755 * spin_lock_irq(rq->lock)
756 *
757 * RETURNS:
758 * Worker task on @cpu to wake up, %NULL if none.
759 */
760 struct task_struct *wq_worker_sleeping(struct task_struct *task,
761 unsigned int cpu)
762 {
763 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
764 struct worker_pool *pool = worker->pool;
765 atomic_t *nr_running = get_pool_nr_running(pool);
766
767 if (worker->flags & WORKER_NOT_RUNNING)
768 return NULL;
769
770 /* this can only happen on the local cpu */
771 BUG_ON(cpu != raw_smp_processor_id());
772
773 /*
774 * The counterpart of the following dec_and_test, implied mb,
775 * worklist not empty test sequence is in insert_work().
776 * Please read comment there.
777 *
778 * NOT_RUNNING is clear. This means that we're bound to and
779 * running on the local cpu w/ rq lock held and preemption
780 * disabled, which in turn means that none else could be
781 * manipulating idle_list, so dereferencing idle_list without gcwq
782 * lock is safe.
783 */
784 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
785 to_wakeup = first_worker(pool);
786 return to_wakeup ? to_wakeup->task : NULL;
787 }
788
789 /**
790 * worker_set_flags - set worker flags and adjust nr_running accordingly
791 * @worker: self
792 * @flags: flags to set
793 * @wakeup: wakeup an idle worker if necessary
794 *
795 * Set @flags in @worker->flags and adjust nr_running accordingly. If
796 * nr_running becomes zero and @wakeup is %true, an idle worker is
797 * woken up.
798 *
799 * CONTEXT:
800 * spin_lock_irq(gcwq->lock)
801 */
802 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
803 bool wakeup)
804 {
805 struct worker_pool *pool = worker->pool;
806
807 WARN_ON_ONCE(worker->task != current);
808
809 /*
810 * If transitioning into NOT_RUNNING, adjust nr_running and
811 * wake up an idle worker as necessary if requested by
812 * @wakeup.
813 */
814 if ((flags & WORKER_NOT_RUNNING) &&
815 !(worker->flags & WORKER_NOT_RUNNING)) {
816 atomic_t *nr_running = get_pool_nr_running(pool);
817
818 if (wakeup) {
819 if (atomic_dec_and_test(nr_running) &&
820 !list_empty(&pool->worklist))
821 wake_up_worker(pool);
822 } else
823 atomic_dec(nr_running);
824 }
825
826 worker->flags |= flags;
827 }
828
829 /**
830 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
831 * @worker: self
832 * @flags: flags to clear
833 *
834 * Clear @flags in @worker->flags and adjust nr_running accordingly.
835 *
836 * CONTEXT:
837 * spin_lock_irq(gcwq->lock)
838 */
839 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
840 {
841 struct worker_pool *pool = worker->pool;
842 unsigned int oflags = worker->flags;
843
844 WARN_ON_ONCE(worker->task != current);
845
846 worker->flags &= ~flags;
847
848 /*
849 * If transitioning out of NOT_RUNNING, increment nr_running. Note
850 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
851 * of multiple flags, not a single flag.
852 */
853 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
854 if (!(worker->flags & WORKER_NOT_RUNNING))
855 atomic_inc(get_pool_nr_running(pool));
856 }
857
858 /**
859 * busy_worker_head - return the busy hash head for a work
860 * @gcwq: gcwq of interest
861 * @work: work to be hashed
862 *
863 * Return hash head of @gcwq for @work.
864 *
865 * CONTEXT:
866 * spin_lock_irq(gcwq->lock).
867 *
868 * RETURNS:
869 * Pointer to the hash head.
870 */
871 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
872 struct work_struct *work)
873 {
874 const int base_shift = ilog2(sizeof(struct work_struct));
875 unsigned long v = (unsigned long)work;
876
877 /* simple shift and fold hash, do we need something better? */
878 v >>= base_shift;
879 v += v >> BUSY_WORKER_HASH_ORDER;
880 v &= BUSY_WORKER_HASH_MASK;
881
882 return &gcwq->busy_hash[v];
883 }
884
885 /**
886 * __find_worker_executing_work - find worker which is executing a work
887 * @gcwq: gcwq of interest
888 * @bwh: hash head as returned by busy_worker_head()
889 * @work: work to find worker for
890 *
891 * Find a worker which is executing @work on @gcwq. @bwh should be
892 * the hash head obtained by calling busy_worker_head() with the same
893 * work.
894 *
895 * CONTEXT:
896 * spin_lock_irq(gcwq->lock).
897 *
898 * RETURNS:
899 * Pointer to worker which is executing @work if found, NULL
900 * otherwise.
901 */
902 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
903 struct hlist_head *bwh,
904 struct work_struct *work)
905 {
906 struct worker *worker;
907 struct hlist_node *tmp;
908
909 hlist_for_each_entry(worker, tmp, bwh, hentry)
910 if (worker->current_work == work)
911 return worker;
912 return NULL;
913 }
914
915 /**
916 * find_worker_executing_work - find worker which is executing a work
917 * @gcwq: gcwq of interest
918 * @work: work to find worker for
919 *
920 * Find a worker which is executing @work on @gcwq. This function is
921 * identical to __find_worker_executing_work() except that this
922 * function calculates @bwh itself.
923 *
924 * CONTEXT:
925 * spin_lock_irq(gcwq->lock).
926 *
927 * RETURNS:
928 * Pointer to worker which is executing @work if found, NULL
929 * otherwise.
930 */
931 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
932 struct work_struct *work)
933 {
934 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
935 work);
936 }
937
938 /**
939 * move_linked_works - move linked works to a list
940 * @work: start of series of works to be scheduled
941 * @head: target list to append @work to
942 * @nextp: out paramter for nested worklist walking
943 *
944 * Schedule linked works starting from @work to @head. Work series to
945 * be scheduled starts at @work and includes any consecutive work with
946 * WORK_STRUCT_LINKED set in its predecessor.
947 *
948 * If @nextp is not NULL, it's updated to point to the next work of
949 * the last scheduled work. This allows move_linked_works() to be
950 * nested inside outer list_for_each_entry_safe().
951 *
952 * CONTEXT:
953 * spin_lock_irq(gcwq->lock).
954 */
955 static void move_linked_works(struct work_struct *work, struct list_head *head,
956 struct work_struct **nextp)
957 {
958 struct work_struct *n;
959
960 /*
961 * Linked worklist will always end before the end of the list,
962 * use NULL for list head.
963 */
964 list_for_each_entry_safe_from(work, n, NULL, entry) {
965 list_move_tail(&work->entry, head);
966 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
967 break;
968 }
969
970 /*
971 * If we're already inside safe list traversal and have moved
972 * multiple works to the scheduled queue, the next position
973 * needs to be updated.
974 */
975 if (nextp)
976 *nextp = n;
977 }
978
979 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
980 {
981 struct work_struct *work = list_first_entry(&cwq->delayed_works,
982 struct work_struct, entry);
983
984 trace_workqueue_activate_work(work);
985 move_linked_works(work, &cwq->pool->worklist, NULL);
986 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
987 cwq->nr_active++;
988 }
989
990 /**
991 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
992 * @cwq: cwq of interest
993 * @color: color of work which left the queue
994 * @delayed: for a delayed work
995 *
996 * A work either has completed or is removed from pending queue,
997 * decrement nr_in_flight of its cwq and handle workqueue flushing.
998 *
999 * CONTEXT:
1000 * spin_lock_irq(gcwq->lock).
1001 */
1002 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1003 bool delayed)
1004 {
1005 /* ignore uncolored works */
1006 if (color == WORK_NO_COLOR)
1007 return;
1008
1009 cwq->nr_in_flight[color]--;
1010
1011 if (!delayed) {
1012 cwq->nr_active--;
1013 if (!list_empty(&cwq->delayed_works)) {
1014 /* one down, submit a delayed one */
1015 if (cwq->nr_active < cwq->max_active)
1016 cwq_activate_first_delayed(cwq);
1017 }
1018 }
1019
1020 /* is flush in progress and are we at the flushing tip? */
1021 if (likely(cwq->flush_color != color))
1022 return;
1023
1024 /* are there still in-flight works? */
1025 if (cwq->nr_in_flight[color])
1026 return;
1027
1028 /* this cwq is done, clear flush_color */
1029 cwq->flush_color = -1;
1030
1031 /*
1032 * If this was the last cwq, wake up the first flusher. It
1033 * will handle the rest.
1034 */
1035 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1036 complete(&cwq->wq->first_flusher->done);
1037 }
1038
1039 /**
1040 * try_to_grab_pending - steal work item from worklist and disable irq
1041 * @work: work item to steal
1042 * @is_dwork: @work is a delayed_work
1043 * @flags: place to store irq state
1044 *
1045 * Try to grab PENDING bit of @work. This function can handle @work in any
1046 * stable state - idle, on timer or on worklist. Return values are
1047 *
1048 * 1 if @work was pending and we successfully stole PENDING
1049 * 0 if @work was idle and we claimed PENDING
1050 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1051 * -ENOENT if someone else is canceling @work, this state may persist
1052 * for arbitrarily long
1053 *
1054 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1055 * preempted while holding PENDING and @work off queue, preemption must be
1056 * disabled on entry. This ensures that we don't return -EAGAIN while
1057 * another task is preempted in this function.
1058 *
1059 * On successful return, >= 0, irq is disabled and the caller is
1060 * responsible for releasing it using local_irq_restore(*@flags).
1061 *
1062 * This function is safe to call from any context other than IRQ handler.
1063 * An IRQ handler may run on top of delayed_work_timer_fn() which can make
1064 * this function return -EAGAIN perpetually.
1065 */
1066 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1067 unsigned long *flags)
1068 {
1069 struct global_cwq *gcwq;
1070
1071 WARN_ON_ONCE(in_irq());
1072
1073 local_irq_save(*flags);
1074
1075 /* try to steal the timer if it exists */
1076 if (is_dwork) {
1077 struct delayed_work *dwork = to_delayed_work(work);
1078
1079 if (likely(del_timer(&dwork->timer)))
1080 return 1;
1081 }
1082
1083 /* try to claim PENDING the normal way */
1084 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1085 return 0;
1086
1087 /*
1088 * The queueing is in progress, or it is already queued. Try to
1089 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1090 */
1091 gcwq = get_work_gcwq(work);
1092 if (!gcwq)
1093 goto fail;
1094
1095 spin_lock(&gcwq->lock);
1096 if (!list_empty(&work->entry)) {
1097 /*
1098 * This work is queued, but perhaps we locked the wrong gcwq.
1099 * In that case we must see the new value after rmb(), see
1100 * insert_work()->wmb().
1101 */
1102 smp_rmb();
1103 if (gcwq == get_work_gcwq(work)) {
1104 debug_work_deactivate(work);
1105 list_del_init(&work->entry);
1106 cwq_dec_nr_in_flight(get_work_cwq(work),
1107 get_work_color(work),
1108 *work_data_bits(work) & WORK_STRUCT_DELAYED);
1109
1110 spin_unlock(&gcwq->lock);
1111 return 1;
1112 }
1113 }
1114 spin_unlock(&gcwq->lock);
1115 fail:
1116 local_irq_restore(*flags);
1117 if (work_is_canceling(work))
1118 return -ENOENT;
1119 cpu_relax();
1120 return -EAGAIN;
1121 }
1122
1123 /**
1124 * insert_work - insert a work into gcwq
1125 * @cwq: cwq @work belongs to
1126 * @work: work to insert
1127 * @head: insertion point
1128 * @extra_flags: extra WORK_STRUCT_* flags to set
1129 *
1130 * Insert @work which belongs to @cwq into @gcwq after @head.
1131 * @extra_flags is or'd to work_struct flags.
1132 *
1133 * CONTEXT:
1134 * spin_lock_irq(gcwq->lock).
1135 */
1136 static void insert_work(struct cpu_workqueue_struct *cwq,
1137 struct work_struct *work, struct list_head *head,
1138 unsigned int extra_flags)
1139 {
1140 struct worker_pool *pool = cwq->pool;
1141
1142 /* we own @work, set data and link */
1143 set_work_cwq(work, cwq, extra_flags);
1144
1145 /*
1146 * Ensure that we get the right work->data if we see the
1147 * result of list_add() below, see try_to_grab_pending().
1148 */
1149 smp_wmb();
1150
1151 list_add_tail(&work->entry, head);
1152
1153 /*
1154 * Ensure either worker_sched_deactivated() sees the above
1155 * list_add_tail() or we see zero nr_running to avoid workers
1156 * lying around lazily while there are works to be processed.
1157 */
1158 smp_mb();
1159
1160 if (__need_more_worker(pool))
1161 wake_up_worker(pool);
1162 }
1163
1164 /*
1165 * Test whether @work is being queued from another work executing on the
1166 * same workqueue. This is rather expensive and should only be used from
1167 * cold paths.
1168 */
1169 static bool is_chained_work(struct workqueue_struct *wq)
1170 {
1171 unsigned long flags;
1172 unsigned int cpu;
1173
1174 for_each_gcwq_cpu(cpu) {
1175 struct global_cwq *gcwq = get_gcwq(cpu);
1176 struct worker *worker;
1177 struct hlist_node *pos;
1178 int i;
1179
1180 spin_lock_irqsave(&gcwq->lock, flags);
1181 for_each_busy_worker(worker, i, pos, gcwq) {
1182 if (worker->task != current)
1183 continue;
1184 spin_unlock_irqrestore(&gcwq->lock, flags);
1185 /*
1186 * I'm @worker, no locking necessary. See if @work
1187 * is headed to the same workqueue.
1188 */
1189 return worker->current_cwq->wq == wq;
1190 }
1191 spin_unlock_irqrestore(&gcwq->lock, flags);
1192 }
1193 return false;
1194 }
1195
1196 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1197 struct work_struct *work)
1198 {
1199 struct global_cwq *gcwq;
1200 struct cpu_workqueue_struct *cwq;
1201 struct list_head *worklist;
1202 unsigned int work_flags;
1203 unsigned int req_cpu = cpu;
1204
1205 /*
1206 * While a work item is PENDING && off queue, a task trying to
1207 * steal the PENDING will busy-loop waiting for it to either get
1208 * queued or lose PENDING. Grabbing PENDING and queueing should
1209 * happen with IRQ disabled.
1210 */
1211 WARN_ON_ONCE(!irqs_disabled());
1212
1213 debug_work_activate(work);
1214
1215 /* if dying, only works from the same workqueue are allowed */
1216 if (unlikely(wq->flags & WQ_DRAINING) &&
1217 WARN_ON_ONCE(!is_chained_work(wq)))
1218 return;
1219
1220 /* determine gcwq to use */
1221 if (!(wq->flags & WQ_UNBOUND)) {
1222 struct global_cwq *last_gcwq;
1223
1224 if (cpu == WORK_CPU_UNBOUND)
1225 cpu = raw_smp_processor_id();
1226
1227 /*
1228 * It's multi cpu. If @work was previously on a different
1229 * cpu, it might still be running there, in which case the
1230 * work needs to be queued on that cpu to guarantee
1231 * non-reentrancy.
1232 */
1233 gcwq = get_gcwq(cpu);
1234 last_gcwq = get_work_gcwq(work);
1235
1236 if (last_gcwq && last_gcwq != gcwq) {
1237 struct worker *worker;
1238
1239 spin_lock(&last_gcwq->lock);
1240
1241 worker = find_worker_executing_work(last_gcwq, work);
1242
1243 if (worker && worker->current_cwq->wq == wq)
1244 gcwq = last_gcwq;
1245 else {
1246 /* meh... not running there, queue here */
1247 spin_unlock(&last_gcwq->lock);
1248 spin_lock(&gcwq->lock);
1249 }
1250 } else {
1251 spin_lock(&gcwq->lock);
1252 }
1253 } else {
1254 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1255 spin_lock(&gcwq->lock);
1256 }
1257
1258 /* gcwq determined, get cwq and queue */
1259 cwq = get_cwq(gcwq->cpu, wq);
1260 trace_workqueue_queue_work(req_cpu, cwq, work);
1261
1262 if (WARN_ON(!list_empty(&work->entry))) {
1263 spin_unlock(&gcwq->lock);
1264 return;
1265 }
1266
1267 cwq->nr_in_flight[cwq->work_color]++;
1268 work_flags = work_color_to_flags(cwq->work_color);
1269
1270 if (likely(cwq->nr_active < cwq->max_active)) {
1271 trace_workqueue_activate_work(work);
1272 cwq->nr_active++;
1273 worklist = &cwq->pool->worklist;
1274 } else {
1275 work_flags |= WORK_STRUCT_DELAYED;
1276 worklist = &cwq->delayed_works;
1277 }
1278
1279 insert_work(cwq, work, worklist, work_flags);
1280
1281 spin_unlock(&gcwq->lock);
1282 }
1283
1284 /**
1285 * queue_work_on - queue work on specific cpu
1286 * @cpu: CPU number to execute work on
1287 * @wq: workqueue to use
1288 * @work: work to queue
1289 *
1290 * Returns %false if @work was already on a queue, %true otherwise.
1291 *
1292 * We queue the work to a specific CPU, the caller must ensure it
1293 * can't go away.
1294 */
1295 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1296 struct work_struct *work)
1297 {
1298 bool ret = false;
1299 unsigned long flags;
1300
1301 local_irq_save(flags);
1302
1303 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1304 __queue_work(cpu, wq, work);
1305 ret = true;
1306 }
1307
1308 local_irq_restore(flags);
1309 return ret;
1310 }
1311 EXPORT_SYMBOL_GPL(queue_work_on);
1312
1313 /**
1314 * queue_work - queue work on a workqueue
1315 * @wq: workqueue to use
1316 * @work: work to queue
1317 *
1318 * Returns %false if @work was already on a queue, %true otherwise.
1319 *
1320 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1321 * it can be processed by another CPU.
1322 */
1323 bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1324 {
1325 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1326 }
1327 EXPORT_SYMBOL_GPL(queue_work);
1328
1329 void delayed_work_timer_fn(unsigned long __data)
1330 {
1331 struct delayed_work *dwork = (struct delayed_work *)__data;
1332 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1333
1334 local_irq_disable();
1335 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1336 local_irq_enable();
1337 }
1338 EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1339
1340 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1341 struct delayed_work *dwork, unsigned long delay)
1342 {
1343 struct timer_list *timer = &dwork->timer;
1344 struct work_struct *work = &dwork->work;
1345 unsigned int lcpu;
1346
1347 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1348 timer->data != (unsigned long)dwork);
1349 BUG_ON(timer_pending(timer));
1350 BUG_ON(!list_empty(&work->entry));
1351
1352 timer_stats_timer_set_start_info(&dwork->timer);
1353
1354 /*
1355 * This stores cwq for the moment, for the timer_fn. Note that the
1356 * work's gcwq is preserved to allow reentrance detection for
1357 * delayed works.
1358 */
1359 if (!(wq->flags & WQ_UNBOUND)) {
1360 struct global_cwq *gcwq = get_work_gcwq(work);
1361
1362 /*
1363 * If we cannot get the last gcwq from @work directly,
1364 * select the last CPU such that it avoids unnecessarily
1365 * triggering non-reentrancy check in __queue_work().
1366 */
1367 lcpu = cpu;
1368 if (gcwq)
1369 lcpu = gcwq->cpu;
1370 if (lcpu == WORK_CPU_UNBOUND)
1371 lcpu = raw_smp_processor_id();
1372 } else {
1373 lcpu = WORK_CPU_UNBOUND;
1374 }
1375
1376 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1377
1378 dwork->cpu = cpu;
1379 timer->expires = jiffies + delay;
1380
1381 if (unlikely(cpu != WORK_CPU_UNBOUND))
1382 add_timer_on(timer, cpu);
1383 else
1384 add_timer(timer);
1385 }
1386
1387 /**
1388 * queue_delayed_work_on - queue work on specific CPU after delay
1389 * @cpu: CPU number to execute work on
1390 * @wq: workqueue to use
1391 * @dwork: work to queue
1392 * @delay: number of jiffies to wait before queueing
1393 *
1394 * Returns %false if @work was already on a queue, %true otherwise. If
1395 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1396 * execution.
1397 */
1398 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1399 struct delayed_work *dwork, unsigned long delay)
1400 {
1401 struct work_struct *work = &dwork->work;
1402 bool ret = false;
1403 unsigned long flags;
1404
1405 if (!delay)
1406 return queue_work_on(cpu, wq, &dwork->work);
1407
1408 /* read the comment in __queue_work() */
1409 local_irq_save(flags);
1410
1411 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1412 __queue_delayed_work(cpu, wq, dwork, delay);
1413 ret = true;
1414 }
1415
1416 local_irq_restore(flags);
1417 return ret;
1418 }
1419 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1420
1421 /**
1422 * queue_delayed_work - queue work on a workqueue after delay
1423 * @wq: workqueue to use
1424 * @dwork: delayable work to queue
1425 * @delay: number of jiffies to wait before queueing
1426 *
1427 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1428 */
1429 bool queue_delayed_work(struct workqueue_struct *wq,
1430 struct delayed_work *dwork, unsigned long delay)
1431 {
1432 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1433 }
1434 EXPORT_SYMBOL_GPL(queue_delayed_work);
1435
1436 /**
1437 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1438 * @cpu: CPU number to execute work on
1439 * @wq: workqueue to use
1440 * @dwork: work to queue
1441 * @delay: number of jiffies to wait before queueing
1442 *
1443 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1444 * modify @dwork's timer so that it expires after @delay. If @delay is
1445 * zero, @work is guaranteed to be scheduled immediately regardless of its
1446 * current state.
1447 *
1448 * Returns %false if @dwork was idle and queued, %true if @dwork was
1449 * pending and its timer was modified.
1450 *
1451 * This function is safe to call from any context other than IRQ handler.
1452 * See try_to_grab_pending() for details.
1453 */
1454 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1455 struct delayed_work *dwork, unsigned long delay)
1456 {
1457 unsigned long flags;
1458 int ret;
1459
1460 do {
1461 ret = try_to_grab_pending(&dwork->work, true, &flags);
1462 } while (unlikely(ret == -EAGAIN));
1463
1464 if (likely(ret >= 0)) {
1465 __queue_delayed_work(cpu, wq, dwork, delay);
1466 local_irq_restore(flags);
1467 }
1468
1469 /* -ENOENT from try_to_grab_pending() becomes %true */
1470 return ret;
1471 }
1472 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1473
1474 /**
1475 * mod_delayed_work - modify delay of or queue a delayed work
1476 * @wq: workqueue to use
1477 * @dwork: work to queue
1478 * @delay: number of jiffies to wait before queueing
1479 *
1480 * mod_delayed_work_on() on local CPU.
1481 */
1482 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1483 unsigned long delay)
1484 {
1485 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1486 }
1487 EXPORT_SYMBOL_GPL(mod_delayed_work);
1488
1489 /**
1490 * worker_enter_idle - enter idle state
1491 * @worker: worker which is entering idle state
1492 *
1493 * @worker is entering idle state. Update stats and idle timer if
1494 * necessary.
1495 *
1496 * LOCKING:
1497 * spin_lock_irq(gcwq->lock).
1498 */
1499 static void worker_enter_idle(struct worker *worker)
1500 {
1501 struct worker_pool *pool = worker->pool;
1502 struct global_cwq *gcwq = pool->gcwq;
1503
1504 BUG_ON(worker->flags & WORKER_IDLE);
1505 BUG_ON(!list_empty(&worker->entry) &&
1506 (worker->hentry.next || worker->hentry.pprev));
1507
1508 /* can't use worker_set_flags(), also called from start_worker() */
1509 worker->flags |= WORKER_IDLE;
1510 pool->nr_idle++;
1511 worker->last_active = jiffies;
1512
1513 /* idle_list is LIFO */
1514 list_add(&worker->entry, &pool->idle_list);
1515
1516 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1517 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1518
1519 /*
1520 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1521 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1522 * nr_running, the warning may trigger spuriously. Check iff
1523 * unbind is not in progress.
1524 */
1525 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1526 pool->nr_workers == pool->nr_idle &&
1527 atomic_read(get_pool_nr_running(pool)));
1528 }
1529
1530 /**
1531 * worker_leave_idle - leave idle state
1532 * @worker: worker which is leaving idle state
1533 *
1534 * @worker is leaving idle state. Update stats.
1535 *
1536 * LOCKING:
1537 * spin_lock_irq(gcwq->lock).
1538 */
1539 static void worker_leave_idle(struct worker *worker)
1540 {
1541 struct worker_pool *pool = worker->pool;
1542
1543 BUG_ON(!(worker->flags & WORKER_IDLE));
1544 worker_clr_flags(worker, WORKER_IDLE);
1545 pool->nr_idle--;
1546 list_del_init(&worker->entry);
1547 }
1548
1549 /**
1550 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1551 * @worker: self
1552 *
1553 * Works which are scheduled while the cpu is online must at least be
1554 * scheduled to a worker which is bound to the cpu so that if they are
1555 * flushed from cpu callbacks while cpu is going down, they are
1556 * guaranteed to execute on the cpu.
1557 *
1558 * This function is to be used by rogue workers and rescuers to bind
1559 * themselves to the target cpu and may race with cpu going down or
1560 * coming online. kthread_bind() can't be used because it may put the
1561 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1562 * verbatim as it's best effort and blocking and gcwq may be
1563 * [dis]associated in the meantime.
1564 *
1565 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1566 * binding against %GCWQ_DISASSOCIATED which is set during
1567 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1568 * enters idle state or fetches works without dropping lock, it can
1569 * guarantee the scheduling requirement described in the first paragraph.
1570 *
1571 * CONTEXT:
1572 * Might sleep. Called without any lock but returns with gcwq->lock
1573 * held.
1574 *
1575 * RETURNS:
1576 * %true if the associated gcwq is online (@worker is successfully
1577 * bound), %false if offline.
1578 */
1579 static bool worker_maybe_bind_and_lock(struct worker *worker)
1580 __acquires(&gcwq->lock)
1581 {
1582 struct global_cwq *gcwq = worker->pool->gcwq;
1583 struct task_struct *task = worker->task;
1584
1585 while (true) {
1586 /*
1587 * The following call may fail, succeed or succeed
1588 * without actually migrating the task to the cpu if
1589 * it races with cpu hotunplug operation. Verify
1590 * against GCWQ_DISASSOCIATED.
1591 */
1592 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1593 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1594
1595 spin_lock_irq(&gcwq->lock);
1596 if (gcwq->flags & GCWQ_DISASSOCIATED)
1597 return false;
1598 if (task_cpu(task) == gcwq->cpu &&
1599 cpumask_equal(&current->cpus_allowed,
1600 get_cpu_mask(gcwq->cpu)))
1601 return true;
1602 spin_unlock_irq(&gcwq->lock);
1603
1604 /*
1605 * We've raced with CPU hot[un]plug. Give it a breather
1606 * and retry migration. cond_resched() is required here;
1607 * otherwise, we might deadlock against cpu_stop trying to
1608 * bring down the CPU on non-preemptive kernel.
1609 */
1610 cpu_relax();
1611 cond_resched();
1612 }
1613 }
1614
1615 struct idle_rebind {
1616 int cnt; /* # workers to be rebound */
1617 struct completion done; /* all workers rebound */
1618 };
1619
1620 /*
1621 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1622 * happen synchronously for idle workers. worker_thread() will test
1623 * %WORKER_REBIND before leaving idle and call this function.
1624 */
1625 static void idle_worker_rebind(struct worker *worker)
1626 {
1627 struct global_cwq *gcwq = worker->pool->gcwq;
1628
1629 /* CPU must be online at this point */
1630 WARN_ON(!worker_maybe_bind_and_lock(worker));
1631 if (!--worker->idle_rebind->cnt)
1632 complete(&worker->idle_rebind->done);
1633 spin_unlock_irq(&worker->pool->gcwq->lock);
1634
1635 /* we did our part, wait for rebind_workers() to finish up */
1636 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1637 }
1638
1639 /*
1640 * Function for @worker->rebind.work used to rebind unbound busy workers to
1641 * the associated cpu which is coming back online. This is scheduled by
1642 * cpu up but can race with other cpu hotplug operations and may be
1643 * executed twice without intervening cpu down.
1644 */
1645 static void busy_worker_rebind_fn(struct work_struct *work)
1646 {
1647 struct worker *worker = container_of(work, struct worker, rebind_work);
1648 struct global_cwq *gcwq = worker->pool->gcwq;
1649
1650 if (worker_maybe_bind_and_lock(worker))
1651 worker_clr_flags(worker, WORKER_REBIND);
1652
1653 spin_unlock_irq(&gcwq->lock);
1654 }
1655
1656 /**
1657 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1658 * @gcwq: gcwq of interest
1659 *
1660 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1661 * is different for idle and busy ones.
1662 *
1663 * The idle ones should be rebound synchronously and idle rebinding should
1664 * be complete before any worker starts executing work items with
1665 * concurrency management enabled; otherwise, scheduler may oops trying to
1666 * wake up non-local idle worker from wq_worker_sleeping().
1667 *
1668 * This is achieved by repeatedly requesting rebinding until all idle
1669 * workers are known to have been rebound under @gcwq->lock and holding all
1670 * idle workers from becoming busy until idle rebinding is complete.
1671 *
1672 * Once idle workers are rebound, busy workers can be rebound as they
1673 * finish executing their current work items. Queueing the rebind work at
1674 * the head of their scheduled lists is enough. Note that nr_running will
1675 * be properbly bumped as busy workers rebind.
1676 *
1677 * On return, all workers are guaranteed to either be bound or have rebind
1678 * work item scheduled.
1679 */
1680 static void rebind_workers(struct global_cwq *gcwq)
1681 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1682 {
1683 struct idle_rebind idle_rebind;
1684 struct worker_pool *pool;
1685 struct worker *worker;
1686 struct hlist_node *pos;
1687 int i;
1688
1689 lockdep_assert_held(&gcwq->lock);
1690
1691 for_each_worker_pool(pool, gcwq)
1692 lockdep_assert_held(&pool->manager_mutex);
1693
1694 /*
1695 * Rebind idle workers. Interlocked both ways. We wait for
1696 * workers to rebind via @idle_rebind.done. Workers will wait for
1697 * us to finish up by watching %WORKER_REBIND.
1698 */
1699 init_completion(&idle_rebind.done);
1700 retry:
1701 idle_rebind.cnt = 1;
1702 INIT_COMPLETION(idle_rebind.done);
1703
1704 /* set REBIND and kick idle ones, we'll wait for these later */
1705 for_each_worker_pool(pool, gcwq) {
1706 list_for_each_entry(worker, &pool->idle_list, entry) {
1707 if (worker->flags & WORKER_REBIND)
1708 continue;
1709
1710 /* morph UNBOUND to REBIND */
1711 worker->flags &= ~WORKER_UNBOUND;
1712 worker->flags |= WORKER_REBIND;
1713
1714 idle_rebind.cnt++;
1715 worker->idle_rebind = &idle_rebind;
1716
1717 /* worker_thread() will call idle_worker_rebind() */
1718 wake_up_process(worker->task);
1719 }
1720 }
1721
1722 if (--idle_rebind.cnt) {
1723 spin_unlock_irq(&gcwq->lock);
1724 wait_for_completion(&idle_rebind.done);
1725 spin_lock_irq(&gcwq->lock);
1726 /* busy ones might have become idle while waiting, retry */
1727 goto retry;
1728 }
1729
1730 /*
1731 * All idle workers are rebound and waiting for %WORKER_REBIND to
1732 * be cleared inside idle_worker_rebind(). Clear and release.
1733 * Clearing %WORKER_REBIND from this foreign context is safe
1734 * because these workers are still guaranteed to be idle.
1735 */
1736 for_each_worker_pool(pool, gcwq)
1737 list_for_each_entry(worker, &pool->idle_list, entry)
1738 worker->flags &= ~WORKER_REBIND;
1739
1740 wake_up_all(&gcwq->rebind_hold);
1741
1742 /* rebind busy workers */
1743 for_each_busy_worker(worker, i, pos, gcwq) {
1744 struct work_struct *rebind_work = &worker->rebind_work;
1745 struct workqueue_struct *wq;
1746
1747 /* morph UNBOUND to REBIND */
1748 worker->flags &= ~WORKER_UNBOUND;
1749 worker->flags |= WORKER_REBIND;
1750
1751 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1752 work_data_bits(rebind_work)))
1753 continue;
1754
1755 debug_work_activate(rebind_work);
1756
1757 /*
1758 * wq doesn't really matter but let's keep @worker->pool
1759 * and @cwq->pool consistent for sanity.
1760 */
1761 if (worker_pool_pri(worker->pool))
1762 wq = system_highpri_wq;
1763 else
1764 wq = system_wq;
1765
1766 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1767 worker->scheduled.next,
1768 work_color_to_flags(WORK_NO_COLOR));
1769 }
1770 }
1771
1772 static struct worker *alloc_worker(void)
1773 {
1774 struct worker *worker;
1775
1776 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1777 if (worker) {
1778 INIT_LIST_HEAD(&worker->entry);
1779 INIT_LIST_HEAD(&worker->scheduled);
1780 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1781 /* on creation a worker is in !idle && prep state */
1782 worker->flags = WORKER_PREP;
1783 }
1784 return worker;
1785 }
1786
1787 /**
1788 * create_worker - create a new workqueue worker
1789 * @pool: pool the new worker will belong to
1790 *
1791 * Create a new worker which is bound to @pool. The returned worker
1792 * can be started by calling start_worker() or destroyed using
1793 * destroy_worker().
1794 *
1795 * CONTEXT:
1796 * Might sleep. Does GFP_KERNEL allocations.
1797 *
1798 * RETURNS:
1799 * Pointer to the newly created worker.
1800 */
1801 static struct worker *create_worker(struct worker_pool *pool)
1802 {
1803 struct global_cwq *gcwq = pool->gcwq;
1804 const char *pri = worker_pool_pri(pool) ? "H" : "";
1805 struct worker *worker = NULL;
1806 int id = -1;
1807
1808 spin_lock_irq(&gcwq->lock);
1809 while (ida_get_new(&pool->worker_ida, &id)) {
1810 spin_unlock_irq(&gcwq->lock);
1811 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1812 goto fail;
1813 spin_lock_irq(&gcwq->lock);
1814 }
1815 spin_unlock_irq(&gcwq->lock);
1816
1817 worker = alloc_worker();
1818 if (!worker)
1819 goto fail;
1820
1821 worker->pool = pool;
1822 worker->id = id;
1823
1824 if (gcwq->cpu != WORK_CPU_UNBOUND)
1825 worker->task = kthread_create_on_node(worker_thread,
1826 worker, cpu_to_node(gcwq->cpu),
1827 "kworker/%u:%d%s", gcwq->cpu, id, pri);
1828 else
1829 worker->task = kthread_create(worker_thread, worker,
1830 "kworker/u:%d%s", id, pri);
1831 if (IS_ERR(worker->task))
1832 goto fail;
1833
1834 if (worker_pool_pri(pool))
1835 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1836
1837 /*
1838 * Determine CPU binding of the new worker depending on
1839 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1840 * flag remains stable across this function. See the comments
1841 * above the flag definition for details.
1842 *
1843 * As an unbound worker may later become a regular one if CPU comes
1844 * online, make sure every worker has %PF_THREAD_BOUND set.
1845 */
1846 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1847 kthread_bind(worker->task, gcwq->cpu);
1848 } else {
1849 worker->task->flags |= PF_THREAD_BOUND;
1850 worker->flags |= WORKER_UNBOUND;
1851 }
1852
1853 return worker;
1854 fail:
1855 if (id >= 0) {
1856 spin_lock_irq(&gcwq->lock);
1857 ida_remove(&pool->worker_ida, id);
1858 spin_unlock_irq(&gcwq->lock);
1859 }
1860 kfree(worker);
1861 return NULL;
1862 }
1863
1864 /**
1865 * start_worker - start a newly created worker
1866 * @worker: worker to start
1867 *
1868 * Make the gcwq aware of @worker and start it.
1869 *
1870 * CONTEXT:
1871 * spin_lock_irq(gcwq->lock).
1872 */
1873 static void start_worker(struct worker *worker)
1874 {
1875 worker->flags |= WORKER_STARTED;
1876 worker->pool->nr_workers++;
1877 worker_enter_idle(worker);
1878 wake_up_process(worker->task);
1879 }
1880
1881 /**
1882 * destroy_worker - destroy a workqueue worker
1883 * @worker: worker to be destroyed
1884 *
1885 * Destroy @worker and adjust @gcwq stats accordingly.
1886 *
1887 * CONTEXT:
1888 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1889 */
1890 static void destroy_worker(struct worker *worker)
1891 {
1892 struct worker_pool *pool = worker->pool;
1893 struct global_cwq *gcwq = pool->gcwq;
1894 int id = worker->id;
1895
1896 /* sanity check frenzy */
1897 BUG_ON(worker->current_work);
1898 BUG_ON(!list_empty(&worker->scheduled));
1899
1900 if (worker->flags & WORKER_STARTED)
1901 pool->nr_workers--;
1902 if (worker->flags & WORKER_IDLE)
1903 pool->nr_idle--;
1904
1905 list_del_init(&worker->entry);
1906 worker->flags |= WORKER_DIE;
1907
1908 spin_unlock_irq(&gcwq->lock);
1909
1910 kthread_stop(worker->task);
1911 kfree(worker);
1912
1913 spin_lock_irq(&gcwq->lock);
1914 ida_remove(&pool->worker_ida, id);
1915 }
1916
1917 static void idle_worker_timeout(unsigned long __pool)
1918 {
1919 struct worker_pool *pool = (void *)__pool;
1920 struct global_cwq *gcwq = pool->gcwq;
1921
1922 spin_lock_irq(&gcwq->lock);
1923
1924 if (too_many_workers(pool)) {
1925 struct worker *worker;
1926 unsigned long expires;
1927
1928 /* idle_list is kept in LIFO order, check the last one */
1929 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1930 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1931
1932 if (time_before(jiffies, expires))
1933 mod_timer(&pool->idle_timer, expires);
1934 else {
1935 /* it's been idle for too long, wake up manager */
1936 pool->flags |= POOL_MANAGE_WORKERS;
1937 wake_up_worker(pool);
1938 }
1939 }
1940
1941 spin_unlock_irq(&gcwq->lock);
1942 }
1943
1944 static bool send_mayday(struct work_struct *work)
1945 {
1946 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1947 struct workqueue_struct *wq = cwq->wq;
1948 unsigned int cpu;
1949
1950 if (!(wq->flags & WQ_RESCUER))
1951 return false;
1952
1953 /* mayday mayday mayday */
1954 cpu = cwq->pool->gcwq->cpu;
1955 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1956 if (cpu == WORK_CPU_UNBOUND)
1957 cpu = 0;
1958 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1959 wake_up_process(wq->rescuer->task);
1960 return true;
1961 }
1962
1963 static void gcwq_mayday_timeout(unsigned long __pool)
1964 {
1965 struct worker_pool *pool = (void *)__pool;
1966 struct global_cwq *gcwq = pool->gcwq;
1967 struct work_struct *work;
1968
1969 spin_lock_irq(&gcwq->lock);
1970
1971 if (need_to_create_worker(pool)) {
1972 /*
1973 * We've been trying to create a new worker but
1974 * haven't been successful. We might be hitting an
1975 * allocation deadlock. Send distress signals to
1976 * rescuers.
1977 */
1978 list_for_each_entry(work, &pool->worklist, entry)
1979 send_mayday(work);
1980 }
1981
1982 spin_unlock_irq(&gcwq->lock);
1983
1984 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1985 }
1986
1987 /**
1988 * maybe_create_worker - create a new worker if necessary
1989 * @pool: pool to create a new worker for
1990 *
1991 * Create a new worker for @pool if necessary. @pool is guaranteed to
1992 * have at least one idle worker on return from this function. If
1993 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1994 * sent to all rescuers with works scheduled on @pool to resolve
1995 * possible allocation deadlock.
1996 *
1997 * On return, need_to_create_worker() is guaranteed to be false and
1998 * may_start_working() true.
1999 *
2000 * LOCKING:
2001 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2002 * multiple times. Does GFP_KERNEL allocations. Called only from
2003 * manager.
2004 *
2005 * RETURNS:
2006 * false if no action was taken and gcwq->lock stayed locked, true
2007 * otherwise.
2008 */
2009 static bool maybe_create_worker(struct worker_pool *pool)
2010 __releases(&gcwq->lock)
2011 __acquires(&gcwq->lock)
2012 {
2013 struct global_cwq *gcwq = pool->gcwq;
2014
2015 if (!need_to_create_worker(pool))
2016 return false;
2017 restart:
2018 spin_unlock_irq(&gcwq->lock);
2019
2020 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2021 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2022
2023 while (true) {
2024 struct worker *worker;
2025
2026 worker = create_worker(pool);
2027 if (worker) {
2028 del_timer_sync(&pool->mayday_timer);
2029 spin_lock_irq(&gcwq->lock);
2030 start_worker(worker);
2031 BUG_ON(need_to_create_worker(pool));
2032 return true;
2033 }
2034
2035 if (!need_to_create_worker(pool))
2036 break;
2037
2038 __set_current_state(TASK_INTERRUPTIBLE);
2039 schedule_timeout(CREATE_COOLDOWN);
2040
2041 if (!need_to_create_worker(pool))
2042 break;
2043 }
2044
2045 del_timer_sync(&pool->mayday_timer);
2046 spin_lock_irq(&gcwq->lock);
2047 if (need_to_create_worker(pool))
2048 goto restart;
2049 return true;
2050 }
2051
2052 /**
2053 * maybe_destroy_worker - destroy workers which have been idle for a while
2054 * @pool: pool to destroy workers for
2055 *
2056 * Destroy @pool workers which have been idle for longer than
2057 * IDLE_WORKER_TIMEOUT.
2058 *
2059 * LOCKING:
2060 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2061 * multiple times. Called only from manager.
2062 *
2063 * RETURNS:
2064 * false if no action was taken and gcwq->lock stayed locked, true
2065 * otherwise.
2066 */
2067 static bool maybe_destroy_workers(struct worker_pool *pool)
2068 {
2069 bool ret = false;
2070
2071 while (too_many_workers(pool)) {
2072 struct worker *worker;
2073 unsigned long expires;
2074
2075 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2076 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2077
2078 if (time_before(jiffies, expires)) {
2079 mod_timer(&pool->idle_timer, expires);
2080 break;
2081 }
2082
2083 destroy_worker(worker);
2084 ret = true;
2085 }
2086
2087 return ret;
2088 }
2089
2090 /**
2091 * manage_workers - manage worker pool
2092 * @worker: self
2093 *
2094 * Assume the manager role and manage gcwq worker pool @worker belongs
2095 * to. At any given time, there can be only zero or one manager per
2096 * gcwq. The exclusion is handled automatically by this function.
2097 *
2098 * The caller can safely start processing works on false return. On
2099 * true return, it's guaranteed that need_to_create_worker() is false
2100 * and may_start_working() is true.
2101 *
2102 * CONTEXT:
2103 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2104 * multiple times. Does GFP_KERNEL allocations.
2105 *
2106 * RETURNS:
2107 * false if no action was taken and gcwq->lock stayed locked, true if
2108 * some action was taken.
2109 */
2110 static bool manage_workers(struct worker *worker)
2111 {
2112 struct worker_pool *pool = worker->pool;
2113 bool ret = false;
2114
2115 if (!mutex_trylock(&pool->manager_mutex))
2116 return ret;
2117
2118 pool->flags &= ~POOL_MANAGE_WORKERS;
2119
2120 /*
2121 * Destroy and then create so that may_start_working() is true
2122 * on return.
2123 */
2124 ret |= maybe_destroy_workers(pool);
2125 ret |= maybe_create_worker(pool);
2126
2127 mutex_unlock(&pool->manager_mutex);
2128 return ret;
2129 }
2130
2131 /**
2132 * process_one_work - process single work
2133 * @worker: self
2134 * @work: work to process
2135 *
2136 * Process @work. This function contains all the logics necessary to
2137 * process a single work including synchronization against and
2138 * interaction with other workers on the same cpu, queueing and
2139 * flushing. As long as context requirement is met, any worker can
2140 * call this function to process a work.
2141 *
2142 * CONTEXT:
2143 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2144 */
2145 static void process_one_work(struct worker *worker, struct work_struct *work)
2146 __releases(&gcwq->lock)
2147 __acquires(&gcwq->lock)
2148 {
2149 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2150 struct worker_pool *pool = worker->pool;
2151 struct global_cwq *gcwq = pool->gcwq;
2152 struct hlist_head *bwh = busy_worker_head(gcwq, work);
2153 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2154 work_func_t f = work->func;
2155 int work_color;
2156 struct worker *collision;
2157 #ifdef CONFIG_LOCKDEP
2158 /*
2159 * It is permissible to free the struct work_struct from
2160 * inside the function that is called from it, this we need to
2161 * take into account for lockdep too. To avoid bogus "held
2162 * lock freed" warnings as well as problems when looking into
2163 * work->lockdep_map, make a copy and use that here.
2164 */
2165 struct lockdep_map lockdep_map;
2166
2167 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2168 #endif
2169 /*
2170 * Ensure we're on the correct CPU. DISASSOCIATED test is
2171 * necessary to avoid spurious warnings from rescuers servicing the
2172 * unbound or a disassociated gcwq.
2173 */
2174 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
2175 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2176 raw_smp_processor_id() != gcwq->cpu);
2177
2178 /*
2179 * A single work shouldn't be executed concurrently by
2180 * multiple workers on a single cpu. Check whether anyone is
2181 * already processing the work. If so, defer the work to the
2182 * currently executing one.
2183 */
2184 collision = __find_worker_executing_work(gcwq, bwh, work);
2185 if (unlikely(collision)) {
2186 move_linked_works(work, &collision->scheduled, NULL);
2187 return;
2188 }
2189
2190 /* claim and dequeue */
2191 debug_work_deactivate(work);
2192 hlist_add_head(&worker->hentry, bwh);
2193 worker->current_work = work;
2194 worker->current_cwq = cwq;
2195 work_color = get_work_color(work);
2196
2197 list_del_init(&work->entry);
2198
2199 /*
2200 * CPU intensive works don't participate in concurrency
2201 * management. They're the scheduler's responsibility.
2202 */
2203 if (unlikely(cpu_intensive))
2204 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2205
2206 /*
2207 * Unbound gcwq isn't concurrency managed and work items should be
2208 * executed ASAP. Wake up another worker if necessary.
2209 */
2210 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2211 wake_up_worker(pool);
2212
2213 /*
2214 * Record the last CPU and clear PENDING which should be the last
2215 * update to @work. Also, do this inside @gcwq->lock so that
2216 * PENDING and queued state changes happen together while IRQ is
2217 * disabled.
2218 */
2219 set_work_cpu_and_clear_pending(work, gcwq->cpu);
2220
2221 spin_unlock_irq(&gcwq->lock);
2222
2223 lock_map_acquire_read(&cwq->wq->lockdep_map);
2224 lock_map_acquire(&lockdep_map);
2225 trace_workqueue_execute_start(work);
2226 f(work);
2227 /*
2228 * While we must be careful to not use "work" after this, the trace
2229 * point will only record its address.
2230 */
2231 trace_workqueue_execute_end(work);
2232 lock_map_release(&lockdep_map);
2233 lock_map_release(&cwq->wq->lockdep_map);
2234
2235 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2236 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2237 " last function: %pf\n",
2238 current->comm, preempt_count(), task_pid_nr(current), f);
2239 debug_show_held_locks(current);
2240 dump_stack();
2241 }
2242
2243 spin_lock_irq(&gcwq->lock);
2244
2245 /* clear cpu intensive status */
2246 if (unlikely(cpu_intensive))
2247 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2248
2249 /* we're done with it, release */
2250 hlist_del_init(&worker->hentry);
2251 worker->current_work = NULL;
2252 worker->current_cwq = NULL;
2253 cwq_dec_nr_in_flight(cwq, work_color, false);
2254 }
2255
2256 /**
2257 * process_scheduled_works - process scheduled works
2258 * @worker: self
2259 *
2260 * Process all scheduled works. Please note that the scheduled list
2261 * may change while processing a work, so this function repeatedly
2262 * fetches a work from the top and executes it.
2263 *
2264 * CONTEXT:
2265 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2266 * multiple times.
2267 */
2268 static void process_scheduled_works(struct worker *worker)
2269 {
2270 while (!list_empty(&worker->scheduled)) {
2271 struct work_struct *work = list_first_entry(&worker->scheduled,
2272 struct work_struct, entry);
2273 process_one_work(worker, work);
2274 }
2275 }
2276
2277 /**
2278 * worker_thread - the worker thread function
2279 * @__worker: self
2280 *
2281 * The gcwq worker thread function. There's a single dynamic pool of
2282 * these per each cpu. These workers process all works regardless of
2283 * their specific target workqueue. The only exception is works which
2284 * belong to workqueues with a rescuer which will be explained in
2285 * rescuer_thread().
2286 */
2287 static int worker_thread(void *__worker)
2288 {
2289 struct worker *worker = __worker;
2290 struct worker_pool *pool = worker->pool;
2291 struct global_cwq *gcwq = pool->gcwq;
2292
2293 /* tell the scheduler that this is a workqueue worker */
2294 worker->task->flags |= PF_WQ_WORKER;
2295 woke_up:
2296 spin_lock_irq(&gcwq->lock);
2297
2298 /*
2299 * DIE can be set only while idle and REBIND set while busy has
2300 * @worker->rebind_work scheduled. Checking here is enough.
2301 */
2302 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
2303 spin_unlock_irq(&gcwq->lock);
2304
2305 if (worker->flags & WORKER_DIE) {
2306 worker->task->flags &= ~PF_WQ_WORKER;
2307 return 0;
2308 }
2309
2310 idle_worker_rebind(worker);
2311 goto woke_up;
2312 }
2313
2314 worker_leave_idle(worker);
2315 recheck:
2316 /* no more worker necessary? */
2317 if (!need_more_worker(pool))
2318 goto sleep;
2319
2320 /* do we need to manage? */
2321 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2322 goto recheck;
2323
2324 /*
2325 * ->scheduled list can only be filled while a worker is
2326 * preparing to process a work or actually processing it.
2327 * Make sure nobody diddled with it while I was sleeping.
2328 */
2329 BUG_ON(!list_empty(&worker->scheduled));
2330
2331 /*
2332 * When control reaches this point, we're guaranteed to have
2333 * at least one idle worker or that someone else has already
2334 * assumed the manager role.
2335 */
2336 worker_clr_flags(worker, WORKER_PREP);
2337
2338 do {
2339 struct work_struct *work =
2340 list_first_entry(&pool->worklist,
2341 struct work_struct, entry);
2342
2343 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2344 /* optimization path, not strictly necessary */
2345 process_one_work(worker, work);
2346 if (unlikely(!list_empty(&worker->scheduled)))
2347 process_scheduled_works(worker);
2348 } else {
2349 move_linked_works(work, &worker->scheduled, NULL);
2350 process_scheduled_works(worker);
2351 }
2352 } while (keep_working(pool));
2353
2354 worker_set_flags(worker, WORKER_PREP, false);
2355 sleep:
2356 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2357 goto recheck;
2358
2359 /*
2360 * gcwq->lock is held and there's no work to process and no
2361 * need to manage, sleep. Workers are woken up only while
2362 * holding gcwq->lock or from local cpu, so setting the
2363 * current state before releasing gcwq->lock is enough to
2364 * prevent losing any event.
2365 */
2366 worker_enter_idle(worker);
2367 __set_current_state(TASK_INTERRUPTIBLE);
2368 spin_unlock_irq(&gcwq->lock);
2369 schedule();
2370 goto woke_up;
2371 }
2372
2373 /**
2374 * rescuer_thread - the rescuer thread function
2375 * @__wq: the associated workqueue
2376 *
2377 * Workqueue rescuer thread function. There's one rescuer for each
2378 * workqueue which has WQ_RESCUER set.
2379 *
2380 * Regular work processing on a gcwq may block trying to create a new
2381 * worker which uses GFP_KERNEL allocation which has slight chance of
2382 * developing into deadlock if some works currently on the same queue
2383 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2384 * the problem rescuer solves.
2385 *
2386 * When such condition is possible, the gcwq summons rescuers of all
2387 * workqueues which have works queued on the gcwq and let them process
2388 * those works so that forward progress can be guaranteed.
2389 *
2390 * This should happen rarely.
2391 */
2392 static int rescuer_thread(void *__wq)
2393 {
2394 struct workqueue_struct *wq = __wq;
2395 struct worker *rescuer = wq->rescuer;
2396 struct list_head *scheduled = &rescuer->scheduled;
2397 bool is_unbound = wq->flags & WQ_UNBOUND;
2398 unsigned int cpu;
2399
2400 set_user_nice(current, RESCUER_NICE_LEVEL);
2401 repeat:
2402 set_current_state(TASK_INTERRUPTIBLE);
2403
2404 if (kthread_should_stop())
2405 return 0;
2406
2407 /*
2408 * See whether any cpu is asking for help. Unbounded
2409 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2410 */
2411 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2412 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2413 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2414 struct worker_pool *pool = cwq->pool;
2415 struct global_cwq *gcwq = pool->gcwq;
2416 struct work_struct *work, *n;
2417
2418 __set_current_state(TASK_RUNNING);
2419 mayday_clear_cpu(cpu, wq->mayday_mask);
2420
2421 /* migrate to the target cpu if possible */
2422 rescuer->pool = pool;
2423 worker_maybe_bind_and_lock(rescuer);
2424
2425 /*
2426 * Slurp in all works issued via this workqueue and
2427 * process'em.
2428 */
2429 BUG_ON(!list_empty(&rescuer->scheduled));
2430 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2431 if (get_work_cwq(work) == cwq)
2432 move_linked_works(work, scheduled, &n);
2433
2434 process_scheduled_works(rescuer);
2435
2436 /*
2437 * Leave this gcwq. If keep_working() is %true, notify a
2438 * regular worker; otherwise, we end up with 0 concurrency
2439 * and stalling the execution.
2440 */
2441 if (keep_working(pool))
2442 wake_up_worker(pool);
2443
2444 spin_unlock_irq(&gcwq->lock);
2445 }
2446
2447 schedule();
2448 goto repeat;
2449 }
2450
2451 struct wq_barrier {
2452 struct work_struct work;
2453 struct completion done;
2454 };
2455
2456 static void wq_barrier_func(struct work_struct *work)
2457 {
2458 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2459 complete(&barr->done);
2460 }
2461
2462 /**
2463 * insert_wq_barrier - insert a barrier work
2464 * @cwq: cwq to insert barrier into
2465 * @barr: wq_barrier to insert
2466 * @target: target work to attach @barr to
2467 * @worker: worker currently executing @target, NULL if @target is not executing
2468 *
2469 * @barr is linked to @target such that @barr is completed only after
2470 * @target finishes execution. Please note that the ordering
2471 * guarantee is observed only with respect to @target and on the local
2472 * cpu.
2473 *
2474 * Currently, a queued barrier can't be canceled. This is because
2475 * try_to_grab_pending() can't determine whether the work to be
2476 * grabbed is at the head of the queue and thus can't clear LINKED
2477 * flag of the previous work while there must be a valid next work
2478 * after a work with LINKED flag set.
2479 *
2480 * Note that when @worker is non-NULL, @target may be modified
2481 * underneath us, so we can't reliably determine cwq from @target.
2482 *
2483 * CONTEXT:
2484 * spin_lock_irq(gcwq->lock).
2485 */
2486 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2487 struct wq_barrier *barr,
2488 struct work_struct *target, struct worker *worker)
2489 {
2490 struct list_head *head;
2491 unsigned int linked = 0;
2492
2493 /*
2494 * debugobject calls are safe here even with gcwq->lock locked
2495 * as we know for sure that this will not trigger any of the
2496 * checks and call back into the fixup functions where we
2497 * might deadlock.
2498 */
2499 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2500 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2501 init_completion(&barr->done);
2502
2503 /*
2504 * If @target is currently being executed, schedule the
2505 * barrier to the worker; otherwise, put it after @target.
2506 */
2507 if (worker)
2508 head = worker->scheduled.next;
2509 else {
2510 unsigned long *bits = work_data_bits(target);
2511
2512 head = target->entry.next;
2513 /* there can already be other linked works, inherit and set */
2514 linked = *bits & WORK_STRUCT_LINKED;
2515 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2516 }
2517
2518 debug_work_activate(&barr->work);
2519 insert_work(cwq, &barr->work, head,
2520 work_color_to_flags(WORK_NO_COLOR) | linked);
2521 }
2522
2523 /**
2524 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2525 * @wq: workqueue being flushed
2526 * @flush_color: new flush color, < 0 for no-op
2527 * @work_color: new work color, < 0 for no-op
2528 *
2529 * Prepare cwqs for workqueue flushing.
2530 *
2531 * If @flush_color is non-negative, flush_color on all cwqs should be
2532 * -1. If no cwq has in-flight commands at the specified color, all
2533 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2534 * has in flight commands, its cwq->flush_color is set to
2535 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2536 * wakeup logic is armed and %true is returned.
2537 *
2538 * The caller should have initialized @wq->first_flusher prior to
2539 * calling this function with non-negative @flush_color. If
2540 * @flush_color is negative, no flush color update is done and %false
2541 * is returned.
2542 *
2543 * If @work_color is non-negative, all cwqs should have the same
2544 * work_color which is previous to @work_color and all will be
2545 * advanced to @work_color.
2546 *
2547 * CONTEXT:
2548 * mutex_lock(wq->flush_mutex).
2549 *
2550 * RETURNS:
2551 * %true if @flush_color >= 0 and there's something to flush. %false
2552 * otherwise.
2553 */
2554 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2555 int flush_color, int work_color)
2556 {
2557 bool wait = false;
2558 unsigned int cpu;
2559
2560 if (flush_color >= 0) {
2561 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2562 atomic_set(&wq->nr_cwqs_to_flush, 1);
2563 }
2564
2565 for_each_cwq_cpu(cpu, wq) {
2566 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2567 struct global_cwq *gcwq = cwq->pool->gcwq;
2568
2569 spin_lock_irq(&gcwq->lock);
2570
2571 if (flush_color >= 0) {
2572 BUG_ON(cwq->flush_color != -1);
2573
2574 if (cwq->nr_in_flight[flush_color]) {
2575 cwq->flush_color = flush_color;
2576 atomic_inc(&wq->nr_cwqs_to_flush);
2577 wait = true;
2578 }
2579 }
2580
2581 if (work_color >= 0) {
2582 BUG_ON(work_color != work_next_color(cwq->work_color));
2583 cwq->work_color = work_color;
2584 }
2585
2586 spin_unlock_irq(&gcwq->lock);
2587 }
2588
2589 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2590 complete(&wq->first_flusher->done);
2591
2592 return wait;
2593 }
2594
2595 /**
2596 * flush_workqueue - ensure that any scheduled work has run to completion.
2597 * @wq: workqueue to flush
2598 *
2599 * Forces execution of the workqueue and blocks until its completion.
2600 * This is typically used in driver shutdown handlers.
2601 *
2602 * We sleep until all works which were queued on entry have been handled,
2603 * but we are not livelocked by new incoming ones.
2604 */
2605 void flush_workqueue(struct workqueue_struct *wq)
2606 {
2607 struct wq_flusher this_flusher = {
2608 .list = LIST_HEAD_INIT(this_flusher.list),
2609 .flush_color = -1,
2610 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2611 };
2612 int next_color;
2613
2614 lock_map_acquire(&wq->lockdep_map);
2615 lock_map_release(&wq->lockdep_map);
2616
2617 mutex_lock(&wq->flush_mutex);
2618
2619 /*
2620 * Start-to-wait phase
2621 */
2622 next_color = work_next_color(wq->work_color);
2623
2624 if (next_color != wq->flush_color) {
2625 /*
2626 * Color space is not full. The current work_color
2627 * becomes our flush_color and work_color is advanced
2628 * by one.
2629 */
2630 BUG_ON(!list_empty(&wq->flusher_overflow));
2631 this_flusher.flush_color = wq->work_color;
2632 wq->work_color = next_color;
2633
2634 if (!wq->first_flusher) {
2635 /* no flush in progress, become the first flusher */
2636 BUG_ON(wq->flush_color != this_flusher.flush_color);
2637
2638 wq->first_flusher = &this_flusher;
2639
2640 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2641 wq->work_color)) {
2642 /* nothing to flush, done */
2643 wq->flush_color = next_color;
2644 wq->first_flusher = NULL;
2645 goto out_unlock;
2646 }
2647 } else {
2648 /* wait in queue */
2649 BUG_ON(wq->flush_color == this_flusher.flush_color);
2650 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2651 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2652 }
2653 } else {
2654 /*
2655 * Oops, color space is full, wait on overflow queue.
2656 * The next flush completion will assign us
2657 * flush_color and transfer to flusher_queue.
2658 */
2659 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2660 }
2661
2662 mutex_unlock(&wq->flush_mutex);
2663
2664 wait_for_completion(&this_flusher.done);
2665
2666 /*
2667 * Wake-up-and-cascade phase
2668 *
2669 * First flushers are responsible for cascading flushes and
2670 * handling overflow. Non-first flushers can simply return.
2671 */
2672 if (wq->first_flusher != &this_flusher)
2673 return;
2674
2675 mutex_lock(&wq->flush_mutex);
2676
2677 /* we might have raced, check again with mutex held */
2678 if (wq->first_flusher != &this_flusher)
2679 goto out_unlock;
2680
2681 wq->first_flusher = NULL;
2682
2683 BUG_ON(!list_empty(&this_flusher.list));
2684 BUG_ON(wq->flush_color != this_flusher.flush_color);
2685
2686 while (true) {
2687 struct wq_flusher *next, *tmp;
2688
2689 /* complete all the flushers sharing the current flush color */
2690 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2691 if (next->flush_color != wq->flush_color)
2692 break;
2693 list_del_init(&next->list);
2694 complete(&next->done);
2695 }
2696
2697 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2698 wq->flush_color != work_next_color(wq->work_color));
2699
2700 /* this flush_color is finished, advance by one */
2701 wq->flush_color = work_next_color(wq->flush_color);
2702
2703 /* one color has been freed, handle overflow queue */
2704 if (!list_empty(&wq->flusher_overflow)) {
2705 /*
2706 * Assign the same color to all overflowed
2707 * flushers, advance work_color and append to
2708 * flusher_queue. This is the start-to-wait
2709 * phase for these overflowed flushers.
2710 */
2711 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2712 tmp->flush_color = wq->work_color;
2713
2714 wq->work_color = work_next_color(wq->work_color);
2715
2716 list_splice_tail_init(&wq->flusher_overflow,
2717 &wq->flusher_queue);
2718 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2719 }
2720
2721 if (list_empty(&wq->flusher_queue)) {
2722 BUG_ON(wq->flush_color != wq->work_color);
2723 break;
2724 }
2725
2726 /*
2727 * Need to flush more colors. Make the next flusher
2728 * the new first flusher and arm cwqs.
2729 */
2730 BUG_ON(wq->flush_color == wq->work_color);
2731 BUG_ON(wq->flush_color != next->flush_color);
2732
2733 list_del_init(&next->list);
2734 wq->first_flusher = next;
2735
2736 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2737 break;
2738
2739 /*
2740 * Meh... this color is already done, clear first
2741 * flusher and repeat cascading.
2742 */
2743 wq->first_flusher = NULL;
2744 }
2745
2746 out_unlock:
2747 mutex_unlock(&wq->flush_mutex);
2748 }
2749 EXPORT_SYMBOL_GPL(flush_workqueue);
2750
2751 /**
2752 * drain_workqueue - drain a workqueue
2753 * @wq: workqueue to drain
2754 *
2755 * Wait until the workqueue becomes empty. While draining is in progress,
2756 * only chain queueing is allowed. IOW, only currently pending or running
2757 * work items on @wq can queue further work items on it. @wq is flushed
2758 * repeatedly until it becomes empty. The number of flushing is detemined
2759 * by the depth of chaining and should be relatively short. Whine if it
2760 * takes too long.
2761 */
2762 void drain_workqueue(struct workqueue_struct *wq)
2763 {
2764 unsigned int flush_cnt = 0;
2765 unsigned int cpu;
2766
2767 /*
2768 * __queue_work() needs to test whether there are drainers, is much
2769 * hotter than drain_workqueue() and already looks at @wq->flags.
2770 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2771 */
2772 spin_lock(&workqueue_lock);
2773 if (!wq->nr_drainers++)
2774 wq->flags |= WQ_DRAINING;
2775 spin_unlock(&workqueue_lock);
2776 reflush:
2777 flush_workqueue(wq);
2778
2779 for_each_cwq_cpu(cpu, wq) {
2780 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2781 bool drained;
2782
2783 spin_lock_irq(&cwq->pool->gcwq->lock);
2784 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2785 spin_unlock_irq(&cwq->pool->gcwq->lock);
2786
2787 if (drained)
2788 continue;
2789
2790 if (++flush_cnt == 10 ||
2791 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2792 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2793 wq->name, flush_cnt);
2794 goto reflush;
2795 }
2796
2797 spin_lock(&workqueue_lock);
2798 if (!--wq->nr_drainers)
2799 wq->flags &= ~WQ_DRAINING;
2800 spin_unlock(&workqueue_lock);
2801 }
2802 EXPORT_SYMBOL_GPL(drain_workqueue);
2803
2804 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2805 {
2806 struct worker *worker = NULL;
2807 struct global_cwq *gcwq;
2808 struct cpu_workqueue_struct *cwq;
2809
2810 might_sleep();
2811 gcwq = get_work_gcwq(work);
2812 if (!gcwq)
2813 return false;
2814
2815 spin_lock_irq(&gcwq->lock);
2816 if (!list_empty(&work->entry)) {
2817 /*
2818 * See the comment near try_to_grab_pending()->smp_rmb().
2819 * If it was re-queued to a different gcwq under us, we
2820 * are not going to wait.
2821 */
2822 smp_rmb();
2823 cwq = get_work_cwq(work);
2824 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
2825 goto already_gone;
2826 } else {
2827 worker = find_worker_executing_work(gcwq, work);
2828 if (!worker)
2829 goto already_gone;
2830 cwq = worker->current_cwq;
2831 }
2832
2833 insert_wq_barrier(cwq, barr, work, worker);
2834 spin_unlock_irq(&gcwq->lock);
2835
2836 /*
2837 * If @max_active is 1 or rescuer is in use, flushing another work
2838 * item on the same workqueue may lead to deadlock. Make sure the
2839 * flusher is not running on the same workqueue by verifying write
2840 * access.
2841 */
2842 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2843 lock_map_acquire(&cwq->wq->lockdep_map);
2844 else
2845 lock_map_acquire_read(&cwq->wq->lockdep_map);
2846 lock_map_release(&cwq->wq->lockdep_map);
2847
2848 return true;
2849 already_gone:
2850 spin_unlock_irq(&gcwq->lock);
2851 return false;
2852 }
2853
2854 /**
2855 * flush_work - wait for a work to finish executing the last queueing instance
2856 * @work: the work to flush
2857 *
2858 * Wait until @work has finished execution. @work is guaranteed to be idle
2859 * on return if it hasn't been requeued since flush started.
2860 *
2861 * RETURNS:
2862 * %true if flush_work() waited for the work to finish execution,
2863 * %false if it was already idle.
2864 */
2865 bool flush_work(struct work_struct *work)
2866 {
2867 struct wq_barrier barr;
2868
2869 lock_map_acquire(&work->lockdep_map);
2870 lock_map_release(&work->lockdep_map);
2871
2872 if (start_flush_work(work, &barr)) {
2873 wait_for_completion(&barr.done);
2874 destroy_work_on_stack(&barr.work);
2875 return true;
2876 } else {
2877 return false;
2878 }
2879 }
2880 EXPORT_SYMBOL_GPL(flush_work);
2881
2882 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2883 {
2884 unsigned long flags;
2885 int ret;
2886
2887 do {
2888 ret = try_to_grab_pending(work, is_dwork, &flags);
2889 /*
2890 * If someone else is canceling, wait for the same event it
2891 * would be waiting for before retrying.
2892 */
2893 if (unlikely(ret == -ENOENT))
2894 flush_work(work);
2895 } while (unlikely(ret < 0));
2896
2897 /* tell other tasks trying to grab @work to back off */
2898 mark_work_canceling(work);
2899 local_irq_restore(flags);
2900
2901 flush_work(work);
2902 clear_work_data(work);
2903 return ret;
2904 }
2905
2906 /**
2907 * cancel_work_sync - cancel a work and wait for it to finish
2908 * @work: the work to cancel
2909 *
2910 * Cancel @work and wait for its execution to finish. This function
2911 * can be used even if the work re-queues itself or migrates to
2912 * another workqueue. On return from this function, @work is
2913 * guaranteed to be not pending or executing on any CPU.
2914 *
2915 * cancel_work_sync(&delayed_work->work) must not be used for
2916 * delayed_work's. Use cancel_delayed_work_sync() instead.
2917 *
2918 * The caller must ensure that the workqueue on which @work was last
2919 * queued can't be destroyed before this function returns.
2920 *
2921 * RETURNS:
2922 * %true if @work was pending, %false otherwise.
2923 */
2924 bool cancel_work_sync(struct work_struct *work)
2925 {
2926 return __cancel_work_timer(work, false);
2927 }
2928 EXPORT_SYMBOL_GPL(cancel_work_sync);
2929
2930 /**
2931 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2932 * @dwork: the delayed work to flush
2933 *
2934 * Delayed timer is cancelled and the pending work is queued for
2935 * immediate execution. Like flush_work(), this function only
2936 * considers the last queueing instance of @dwork.
2937 *
2938 * RETURNS:
2939 * %true if flush_work() waited for the work to finish execution,
2940 * %false if it was already idle.
2941 */
2942 bool flush_delayed_work(struct delayed_work *dwork)
2943 {
2944 local_irq_disable();
2945 if (del_timer_sync(&dwork->timer))
2946 __queue_work(dwork->cpu,
2947 get_work_cwq(&dwork->work)->wq, &dwork->work);
2948 local_irq_enable();
2949 return flush_work(&dwork->work);
2950 }
2951 EXPORT_SYMBOL(flush_delayed_work);
2952
2953 /**
2954 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2955 * @dwork: the delayed work cancel
2956 *
2957 * This is cancel_work_sync() for delayed works.
2958 *
2959 * RETURNS:
2960 * %true if @dwork was pending, %false otherwise.
2961 */
2962 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2963 {
2964 return __cancel_work_timer(&dwork->work, true);
2965 }
2966 EXPORT_SYMBOL(cancel_delayed_work_sync);
2967
2968 /**
2969 * schedule_work_on - put work task on a specific cpu
2970 * @cpu: cpu to put the work task on
2971 * @work: job to be done
2972 *
2973 * This puts a job on a specific cpu
2974 */
2975 bool schedule_work_on(int cpu, struct work_struct *work)
2976 {
2977 return queue_work_on(cpu, system_wq, work);
2978 }
2979 EXPORT_SYMBOL(schedule_work_on);
2980
2981 /**
2982 * schedule_work - put work task in global workqueue
2983 * @work: job to be done
2984 *
2985 * Returns %false if @work was already on the kernel-global workqueue and
2986 * %true otherwise.
2987 *
2988 * This puts a job in the kernel-global workqueue if it was not already
2989 * queued and leaves it in the same position on the kernel-global
2990 * workqueue otherwise.
2991 */
2992 bool schedule_work(struct work_struct *work)
2993 {
2994 return queue_work(system_wq, work);
2995 }
2996 EXPORT_SYMBOL(schedule_work);
2997
2998 /**
2999 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3000 * @cpu: cpu to use
3001 * @dwork: job to be done
3002 * @delay: number of jiffies to wait
3003 *
3004 * After waiting for a given time this puts a job in the kernel-global
3005 * workqueue on the specified CPU.
3006 */
3007 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3008 unsigned long delay)
3009 {
3010 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3011 }
3012 EXPORT_SYMBOL(schedule_delayed_work_on);
3013
3014 /**
3015 * schedule_delayed_work - put work task in global workqueue after delay
3016 * @dwork: job to be done
3017 * @delay: number of jiffies to wait or 0 for immediate execution
3018 *
3019 * After waiting for a given time this puts a job in the kernel-global
3020 * workqueue.
3021 */
3022 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
3023 {
3024 return queue_delayed_work(system_wq, dwork, delay);
3025 }
3026 EXPORT_SYMBOL(schedule_delayed_work);
3027
3028 /**
3029 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3030 * @func: the function to call
3031 *
3032 * schedule_on_each_cpu() executes @func on each online CPU using the
3033 * system workqueue and blocks until all CPUs have completed.
3034 * schedule_on_each_cpu() is very slow.
3035 *
3036 * RETURNS:
3037 * 0 on success, -errno on failure.
3038 */
3039 int schedule_on_each_cpu(work_func_t func)
3040 {
3041 int cpu;
3042 struct work_struct __percpu *works;
3043
3044 works = alloc_percpu(struct work_struct);
3045 if (!works)
3046 return -ENOMEM;
3047
3048 get_online_cpus();
3049
3050 for_each_online_cpu(cpu) {
3051 struct work_struct *work = per_cpu_ptr(works, cpu);
3052
3053 INIT_WORK(work, func);
3054 schedule_work_on(cpu, work);
3055 }
3056
3057 for_each_online_cpu(cpu)
3058 flush_work(per_cpu_ptr(works, cpu));
3059
3060 put_online_cpus();
3061 free_percpu(works);
3062 return 0;
3063 }
3064
3065 /**
3066 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3067 *
3068 * Forces execution of the kernel-global workqueue and blocks until its
3069 * completion.
3070 *
3071 * Think twice before calling this function! It's very easy to get into
3072 * trouble if you don't take great care. Either of the following situations
3073 * will lead to deadlock:
3074 *
3075 * One of the work items currently on the workqueue needs to acquire
3076 * a lock held by your code or its caller.
3077 *
3078 * Your code is running in the context of a work routine.
3079 *
3080 * They will be detected by lockdep when they occur, but the first might not
3081 * occur very often. It depends on what work items are on the workqueue and
3082 * what locks they need, which you have no control over.
3083 *
3084 * In most situations flushing the entire workqueue is overkill; you merely
3085 * need to know that a particular work item isn't queued and isn't running.
3086 * In such cases you should use cancel_delayed_work_sync() or
3087 * cancel_work_sync() instead.
3088 */
3089 void flush_scheduled_work(void)
3090 {
3091 flush_workqueue(system_wq);
3092 }
3093 EXPORT_SYMBOL(flush_scheduled_work);
3094
3095 /**
3096 * execute_in_process_context - reliably execute the routine with user context
3097 * @fn: the function to execute
3098 * @ew: guaranteed storage for the execute work structure (must
3099 * be available when the work executes)
3100 *
3101 * Executes the function immediately if process context is available,
3102 * otherwise schedules the function for delayed execution.
3103 *
3104 * Returns: 0 - function was executed
3105 * 1 - function was scheduled for execution
3106 */
3107 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3108 {
3109 if (!in_interrupt()) {
3110 fn(&ew->work);
3111 return 0;
3112 }
3113
3114 INIT_WORK(&ew->work, fn);
3115 schedule_work(&ew->work);
3116
3117 return 1;
3118 }
3119 EXPORT_SYMBOL_GPL(execute_in_process_context);
3120
3121 int keventd_up(void)
3122 {
3123 return system_wq != NULL;
3124 }
3125
3126 static int alloc_cwqs(struct workqueue_struct *wq)
3127 {
3128 /*
3129 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3130 * Make sure that the alignment isn't lower than that of
3131 * unsigned long long.
3132 */
3133 const size_t size = sizeof(struct cpu_workqueue_struct);
3134 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3135 __alignof__(unsigned long long));
3136
3137 if (!(wq->flags & WQ_UNBOUND))
3138 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3139 else {
3140 void *ptr;
3141
3142 /*
3143 * Allocate enough room to align cwq and put an extra
3144 * pointer at the end pointing back to the originally
3145 * allocated pointer which will be used for free.
3146 */
3147 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3148 if (ptr) {
3149 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3150 *(void **)(wq->cpu_wq.single + 1) = ptr;
3151 }
3152 }
3153
3154 /* just in case, make sure it's actually aligned */
3155 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3156 return wq->cpu_wq.v ? 0 : -ENOMEM;
3157 }
3158
3159 static void free_cwqs(struct workqueue_struct *wq)
3160 {
3161 if (!(wq->flags & WQ_UNBOUND))
3162 free_percpu(wq->cpu_wq.pcpu);
3163 else if (wq->cpu_wq.single) {
3164 /* the pointer to free is stored right after the cwq */
3165 kfree(*(void **)(wq->cpu_wq.single + 1));
3166 }
3167 }
3168
3169 static int wq_clamp_max_active(int max_active, unsigned int flags,
3170 const char *name)
3171 {
3172 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3173
3174 if (max_active < 1 || max_active > lim)
3175 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3176 max_active, name, 1, lim);
3177
3178 return clamp_val(max_active, 1, lim);
3179 }
3180
3181 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3182 unsigned int flags,
3183 int max_active,
3184 struct lock_class_key *key,
3185 const char *lock_name, ...)
3186 {
3187 va_list args, args1;
3188 struct workqueue_struct *wq;
3189 unsigned int cpu;
3190 size_t namelen;
3191
3192 /* determine namelen, allocate wq and format name */
3193 va_start(args, lock_name);
3194 va_copy(args1, args);
3195 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3196
3197 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3198 if (!wq)
3199 goto err;
3200
3201 vsnprintf(wq->name, namelen, fmt, args1);
3202 va_end(args);
3203 va_end(args1);
3204
3205 /*
3206 * Workqueues which may be used during memory reclaim should
3207 * have a rescuer to guarantee forward progress.
3208 */
3209 if (flags & WQ_MEM_RECLAIM)
3210 flags |= WQ_RESCUER;
3211
3212 max_active = max_active ?: WQ_DFL_ACTIVE;
3213 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3214
3215 /* init wq */
3216 wq->flags = flags;
3217 wq->saved_max_active = max_active;
3218 mutex_init(&wq->flush_mutex);
3219 atomic_set(&wq->nr_cwqs_to_flush, 0);
3220 INIT_LIST_HEAD(&wq->flusher_queue);
3221 INIT_LIST_HEAD(&wq->flusher_overflow);
3222
3223 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3224 INIT_LIST_HEAD(&wq->list);
3225
3226 if (alloc_cwqs(wq) < 0)
3227 goto err;
3228
3229 for_each_cwq_cpu(cpu, wq) {
3230 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3231 struct global_cwq *gcwq = get_gcwq(cpu);
3232 int pool_idx = (bool)(flags & WQ_HIGHPRI);
3233
3234 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3235 cwq->pool = &gcwq->pools[pool_idx];
3236 cwq->wq = wq;
3237 cwq->flush_color = -1;
3238 cwq->max_active = max_active;
3239 INIT_LIST_HEAD(&cwq->delayed_works);
3240 }
3241
3242 if (flags & WQ_RESCUER) {
3243 struct worker *rescuer;
3244
3245 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3246 goto err;
3247
3248 wq->rescuer = rescuer = alloc_worker();
3249 if (!rescuer)
3250 goto err;
3251
3252 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3253 wq->name);
3254 if (IS_ERR(rescuer->task))
3255 goto err;
3256
3257 rescuer->task->flags |= PF_THREAD_BOUND;
3258 wake_up_process(rescuer->task);
3259 }
3260
3261 /*
3262 * workqueue_lock protects global freeze state and workqueues
3263 * list. Grab it, set max_active accordingly and add the new
3264 * workqueue to workqueues list.
3265 */
3266 spin_lock(&workqueue_lock);
3267
3268 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3269 for_each_cwq_cpu(cpu, wq)
3270 get_cwq(cpu, wq)->max_active = 0;
3271
3272 list_add(&wq->list, &workqueues);
3273
3274 spin_unlock(&workqueue_lock);
3275
3276 return wq;
3277 err:
3278 if (wq) {
3279 free_cwqs(wq);
3280 free_mayday_mask(wq->mayday_mask);
3281 kfree(wq->rescuer);
3282 kfree(wq);
3283 }
3284 return NULL;
3285 }
3286 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3287
3288 /**
3289 * destroy_workqueue - safely terminate a workqueue
3290 * @wq: target workqueue
3291 *
3292 * Safely destroy a workqueue. All work currently pending will be done first.
3293 */
3294 void destroy_workqueue(struct workqueue_struct *wq)
3295 {
3296 unsigned int cpu;
3297
3298 /* drain it before proceeding with destruction */
3299 drain_workqueue(wq);
3300
3301 /*
3302 * wq list is used to freeze wq, remove from list after
3303 * flushing is complete in case freeze races us.
3304 */
3305 spin_lock(&workqueue_lock);
3306 list_del(&wq->list);
3307 spin_unlock(&workqueue_lock);
3308
3309 /* sanity check */
3310 for_each_cwq_cpu(cpu, wq) {
3311 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3312 int i;
3313
3314 for (i = 0; i < WORK_NR_COLORS; i++)
3315 BUG_ON(cwq->nr_in_flight[i]);
3316 BUG_ON(cwq->nr_active);
3317 BUG_ON(!list_empty(&cwq->delayed_works));
3318 }
3319
3320 if (wq->flags & WQ_RESCUER) {
3321 kthread_stop(wq->rescuer->task);
3322 free_mayday_mask(wq->mayday_mask);
3323 kfree(wq->rescuer);
3324 }
3325
3326 free_cwqs(wq);
3327 kfree(wq);
3328 }
3329 EXPORT_SYMBOL_GPL(destroy_workqueue);
3330
3331 /**
3332 * workqueue_set_max_active - adjust max_active of a workqueue
3333 * @wq: target workqueue
3334 * @max_active: new max_active value.
3335 *
3336 * Set max_active of @wq to @max_active.
3337 *
3338 * CONTEXT:
3339 * Don't call from IRQ context.
3340 */
3341 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3342 {
3343 unsigned int cpu;
3344
3345 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3346
3347 spin_lock(&workqueue_lock);
3348
3349 wq->saved_max_active = max_active;
3350
3351 for_each_cwq_cpu(cpu, wq) {
3352 struct global_cwq *gcwq = get_gcwq(cpu);
3353
3354 spin_lock_irq(&gcwq->lock);
3355
3356 if (!(wq->flags & WQ_FREEZABLE) ||
3357 !(gcwq->flags & GCWQ_FREEZING))
3358 get_cwq(gcwq->cpu, wq)->max_active = max_active;
3359
3360 spin_unlock_irq(&gcwq->lock);
3361 }
3362
3363 spin_unlock(&workqueue_lock);
3364 }
3365 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3366
3367 /**
3368 * workqueue_congested - test whether a workqueue is congested
3369 * @cpu: CPU in question
3370 * @wq: target workqueue
3371 *
3372 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3373 * no synchronization around this function and the test result is
3374 * unreliable and only useful as advisory hints or for debugging.
3375 *
3376 * RETURNS:
3377 * %true if congested, %false otherwise.
3378 */
3379 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3380 {
3381 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3382
3383 return !list_empty(&cwq->delayed_works);
3384 }
3385 EXPORT_SYMBOL_GPL(workqueue_congested);
3386
3387 /**
3388 * work_cpu - return the last known associated cpu for @work
3389 * @work: the work of interest
3390 *
3391 * RETURNS:
3392 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3393 */
3394 unsigned int work_cpu(struct work_struct *work)
3395 {
3396 struct global_cwq *gcwq = get_work_gcwq(work);
3397
3398 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3399 }
3400 EXPORT_SYMBOL_GPL(work_cpu);
3401
3402 /**
3403 * work_busy - test whether a work is currently pending or running
3404 * @work: the work to be tested
3405 *
3406 * Test whether @work is currently pending or running. There is no
3407 * synchronization around this function and the test result is
3408 * unreliable and only useful as advisory hints or for debugging.
3409 * Especially for reentrant wqs, the pending state might hide the
3410 * running state.
3411 *
3412 * RETURNS:
3413 * OR'd bitmask of WORK_BUSY_* bits.
3414 */
3415 unsigned int work_busy(struct work_struct *work)
3416 {
3417 struct global_cwq *gcwq = get_work_gcwq(work);
3418 unsigned long flags;
3419 unsigned int ret = 0;
3420
3421 if (!gcwq)
3422 return false;
3423
3424 spin_lock_irqsave(&gcwq->lock, flags);
3425
3426 if (work_pending(work))
3427 ret |= WORK_BUSY_PENDING;
3428 if (find_worker_executing_work(gcwq, work))
3429 ret |= WORK_BUSY_RUNNING;
3430
3431 spin_unlock_irqrestore(&gcwq->lock, flags);
3432
3433 return ret;
3434 }
3435 EXPORT_SYMBOL_GPL(work_busy);
3436
3437 /*
3438 * CPU hotplug.
3439 *
3440 * There are two challenges in supporting CPU hotplug. Firstly, there
3441 * are a lot of assumptions on strong associations among work, cwq and
3442 * gcwq which make migrating pending and scheduled works very
3443 * difficult to implement without impacting hot paths. Secondly,
3444 * gcwqs serve mix of short, long and very long running works making
3445 * blocked draining impractical.
3446 *
3447 * This is solved by allowing a gcwq to be disassociated from the CPU
3448 * running as an unbound one and allowing it to be reattached later if the
3449 * cpu comes back online.
3450 */
3451
3452 /* claim manager positions of all pools */
3453 static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
3454 {
3455 struct worker_pool *pool;
3456
3457 for_each_worker_pool(pool, gcwq)
3458 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
3459 spin_lock_irq(&gcwq->lock);
3460 }
3461
3462 /* release manager positions */
3463 static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
3464 {
3465 struct worker_pool *pool;
3466
3467 spin_unlock_irq(&gcwq->lock);
3468 for_each_worker_pool(pool, gcwq)
3469 mutex_unlock(&pool->manager_mutex);
3470 }
3471
3472 static void gcwq_unbind_fn(struct work_struct *work)
3473 {
3474 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3475 struct worker_pool *pool;
3476 struct worker *worker;
3477 struct hlist_node *pos;
3478 int i;
3479
3480 BUG_ON(gcwq->cpu != smp_processor_id());
3481
3482 gcwq_claim_management_and_lock(gcwq);
3483
3484 /*
3485 * We've claimed all manager positions. Make all workers unbound
3486 * and set DISASSOCIATED. Before this, all workers except for the
3487 * ones which are still executing works from before the last CPU
3488 * down must be on the cpu. After this, they may become diasporas.
3489 */
3490 for_each_worker_pool(pool, gcwq)
3491 list_for_each_entry(worker, &pool->idle_list, entry)
3492 worker->flags |= WORKER_UNBOUND;
3493
3494 for_each_busy_worker(worker, i, pos, gcwq)
3495 worker->flags |= WORKER_UNBOUND;
3496
3497 gcwq->flags |= GCWQ_DISASSOCIATED;
3498
3499 gcwq_release_management_and_unlock(gcwq);
3500
3501 /*
3502 * Call schedule() so that we cross rq->lock and thus can guarantee
3503 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3504 * as scheduler callbacks may be invoked from other cpus.
3505 */
3506 schedule();
3507
3508 /*
3509 * Sched callbacks are disabled now. Zap nr_running. After this,
3510 * nr_running stays zero and need_more_worker() and keep_working()
3511 * are always true as long as the worklist is not empty. @gcwq now
3512 * behaves as unbound (in terms of concurrency management) gcwq
3513 * which is served by workers tied to the CPU.
3514 *
3515 * On return from this function, the current worker would trigger
3516 * unbound chain execution of pending work items if other workers
3517 * didn't already.
3518 */
3519 for_each_worker_pool(pool, gcwq)
3520 atomic_set(get_pool_nr_running(pool), 0);
3521 }
3522
3523 /*
3524 * Workqueues should be brought up before normal priority CPU notifiers.
3525 * This will be registered high priority CPU notifier.
3526 */
3527 static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3528 unsigned long action,
3529 void *hcpu)
3530 {
3531 unsigned int cpu = (unsigned long)hcpu;
3532 struct global_cwq *gcwq = get_gcwq(cpu);
3533 struct worker_pool *pool;
3534
3535 switch (action & ~CPU_TASKS_FROZEN) {
3536 case CPU_UP_PREPARE:
3537 for_each_worker_pool(pool, gcwq) {
3538 struct worker *worker;
3539
3540 if (pool->nr_workers)
3541 continue;
3542
3543 worker = create_worker(pool);
3544 if (!worker)
3545 return NOTIFY_BAD;
3546
3547 spin_lock_irq(&gcwq->lock);
3548 start_worker(worker);
3549 spin_unlock_irq(&gcwq->lock);
3550 }
3551 break;
3552
3553 case CPU_DOWN_FAILED:
3554 case CPU_ONLINE:
3555 gcwq_claim_management_and_lock(gcwq);
3556 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3557 rebind_workers(gcwq);
3558 gcwq_release_management_and_unlock(gcwq);
3559 break;
3560 }
3561 return NOTIFY_OK;
3562 }
3563
3564 /*
3565 * Workqueues should be brought down after normal priority CPU notifiers.
3566 * This will be registered as low priority CPU notifier.
3567 */
3568 static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3569 unsigned long action,
3570 void *hcpu)
3571 {
3572 unsigned int cpu = (unsigned long)hcpu;
3573 struct work_struct unbind_work;
3574
3575 switch (action & ~CPU_TASKS_FROZEN) {
3576 case CPU_DOWN_PREPARE:
3577 /* unbinding should happen on the local CPU */
3578 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3579 queue_work_on(cpu, system_highpri_wq, &unbind_work);
3580 flush_work(&unbind_work);
3581 break;
3582 }
3583 return NOTIFY_OK;
3584 }
3585
3586 #ifdef CONFIG_SMP
3587
3588 struct work_for_cpu {
3589 struct completion completion;
3590 long (*fn)(void *);
3591 void *arg;
3592 long ret;
3593 };
3594
3595 static int do_work_for_cpu(void *_wfc)
3596 {
3597 struct work_for_cpu *wfc = _wfc;
3598 wfc->ret = wfc->fn(wfc->arg);
3599 complete(&wfc->completion);
3600 return 0;
3601 }
3602
3603 /**
3604 * work_on_cpu - run a function in user context on a particular cpu
3605 * @cpu: the cpu to run on
3606 * @fn: the function to run
3607 * @arg: the function arg
3608 *
3609 * This will return the value @fn returns.
3610 * It is up to the caller to ensure that the cpu doesn't go offline.
3611 * The caller must not hold any locks which would prevent @fn from completing.
3612 */
3613 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3614 {
3615 struct task_struct *sub_thread;
3616 struct work_for_cpu wfc = {
3617 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3618 .fn = fn,
3619 .arg = arg,
3620 };
3621
3622 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3623 if (IS_ERR(sub_thread))
3624 return PTR_ERR(sub_thread);
3625 kthread_bind(sub_thread, cpu);
3626 wake_up_process(sub_thread);
3627 wait_for_completion(&wfc.completion);
3628 return wfc.ret;
3629 }
3630 EXPORT_SYMBOL_GPL(work_on_cpu);
3631 #endif /* CONFIG_SMP */
3632
3633 #ifdef CONFIG_FREEZER
3634
3635 /**
3636 * freeze_workqueues_begin - begin freezing workqueues
3637 *
3638 * Start freezing workqueues. After this function returns, all freezable
3639 * workqueues will queue new works to their frozen_works list instead of
3640 * gcwq->worklist.
3641 *
3642 * CONTEXT:
3643 * Grabs and releases workqueue_lock and gcwq->lock's.
3644 */
3645 void freeze_workqueues_begin(void)
3646 {
3647 unsigned int cpu;
3648
3649 spin_lock(&workqueue_lock);
3650
3651 BUG_ON(workqueue_freezing);
3652 workqueue_freezing = true;
3653
3654 for_each_gcwq_cpu(cpu) {
3655 struct global_cwq *gcwq = get_gcwq(cpu);
3656 struct workqueue_struct *wq;
3657
3658 spin_lock_irq(&gcwq->lock);
3659
3660 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3661 gcwq->flags |= GCWQ_FREEZING;
3662
3663 list_for_each_entry(wq, &workqueues, list) {
3664 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3665
3666 if (cwq && wq->flags & WQ_FREEZABLE)
3667 cwq->max_active = 0;
3668 }
3669
3670 spin_unlock_irq(&gcwq->lock);
3671 }
3672
3673 spin_unlock(&workqueue_lock);
3674 }
3675
3676 /**
3677 * freeze_workqueues_busy - are freezable workqueues still busy?
3678 *
3679 * Check whether freezing is complete. This function must be called
3680 * between freeze_workqueues_begin() and thaw_workqueues().
3681 *
3682 * CONTEXT:
3683 * Grabs and releases workqueue_lock.
3684 *
3685 * RETURNS:
3686 * %true if some freezable workqueues are still busy. %false if freezing
3687 * is complete.
3688 */
3689 bool freeze_workqueues_busy(void)
3690 {
3691 unsigned int cpu;
3692 bool busy = false;
3693
3694 spin_lock(&workqueue_lock);
3695
3696 BUG_ON(!workqueue_freezing);
3697
3698 for_each_gcwq_cpu(cpu) {
3699 struct workqueue_struct *wq;
3700 /*
3701 * nr_active is monotonically decreasing. It's safe
3702 * to peek without lock.
3703 */
3704 list_for_each_entry(wq, &workqueues, list) {
3705 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3706
3707 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3708 continue;
3709
3710 BUG_ON(cwq->nr_active < 0);
3711 if (cwq->nr_active) {
3712 busy = true;
3713 goto out_unlock;
3714 }
3715 }
3716 }
3717 out_unlock:
3718 spin_unlock(&workqueue_lock);
3719 return busy;
3720 }
3721
3722 /**
3723 * thaw_workqueues - thaw workqueues
3724 *
3725 * Thaw workqueues. Normal queueing is restored and all collected
3726 * frozen works are transferred to their respective gcwq worklists.
3727 *
3728 * CONTEXT:
3729 * Grabs and releases workqueue_lock and gcwq->lock's.
3730 */
3731 void thaw_workqueues(void)
3732 {
3733 unsigned int cpu;
3734
3735 spin_lock(&workqueue_lock);
3736
3737 if (!workqueue_freezing)
3738 goto out_unlock;
3739
3740 for_each_gcwq_cpu(cpu) {
3741 struct global_cwq *gcwq = get_gcwq(cpu);
3742 struct worker_pool *pool;
3743 struct workqueue_struct *wq;
3744
3745 spin_lock_irq(&gcwq->lock);
3746
3747 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3748 gcwq->flags &= ~GCWQ_FREEZING;
3749
3750 list_for_each_entry(wq, &workqueues, list) {
3751 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3752
3753 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3754 continue;
3755
3756 /* restore max_active and repopulate worklist */
3757 cwq->max_active = wq->saved_max_active;
3758
3759 while (!list_empty(&cwq->delayed_works) &&
3760 cwq->nr_active < cwq->max_active)
3761 cwq_activate_first_delayed(cwq);
3762 }
3763
3764 for_each_worker_pool(pool, gcwq)
3765 wake_up_worker(pool);
3766
3767 spin_unlock_irq(&gcwq->lock);
3768 }
3769
3770 workqueue_freezing = false;
3771 out_unlock:
3772 spin_unlock(&workqueue_lock);
3773 }
3774 #endif /* CONFIG_FREEZER */
3775
3776 static int __init init_workqueues(void)
3777 {
3778 unsigned int cpu;
3779 int i;
3780
3781 /* make sure we have enough bits for OFFQ CPU number */
3782 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3783 WORK_CPU_LAST);
3784
3785 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3786 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3787
3788 /* initialize gcwqs */
3789 for_each_gcwq_cpu(cpu) {
3790 struct global_cwq *gcwq = get_gcwq(cpu);
3791 struct worker_pool *pool;
3792
3793 spin_lock_init(&gcwq->lock);
3794 gcwq->cpu = cpu;
3795 gcwq->flags |= GCWQ_DISASSOCIATED;
3796
3797 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3798 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3799
3800 for_each_worker_pool(pool, gcwq) {
3801 pool->gcwq = gcwq;
3802 INIT_LIST_HEAD(&pool->worklist);
3803 INIT_LIST_HEAD(&pool->idle_list);
3804
3805 init_timer_deferrable(&pool->idle_timer);
3806 pool->idle_timer.function = idle_worker_timeout;
3807 pool->idle_timer.data = (unsigned long)pool;
3808
3809 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3810 (unsigned long)pool);
3811
3812 mutex_init(&pool->manager_mutex);
3813 ida_init(&pool->worker_ida);
3814 }
3815
3816 init_waitqueue_head(&gcwq->rebind_hold);
3817 }
3818
3819 /* create the initial worker */
3820 for_each_online_gcwq_cpu(cpu) {
3821 struct global_cwq *gcwq = get_gcwq(cpu);
3822 struct worker_pool *pool;
3823
3824 if (cpu != WORK_CPU_UNBOUND)
3825 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3826
3827 for_each_worker_pool(pool, gcwq) {
3828 struct worker *worker;
3829
3830 worker = create_worker(pool);
3831 BUG_ON(!worker);
3832 spin_lock_irq(&gcwq->lock);
3833 start_worker(worker);
3834 spin_unlock_irq(&gcwq->lock);
3835 }
3836 }
3837
3838 system_wq = alloc_workqueue("events", 0, 0);
3839 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3840 system_long_wq = alloc_workqueue("events_long", 0, 0);
3841 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3842 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3843 WQ_UNBOUND_MAX_ACTIVE);
3844 system_freezable_wq = alloc_workqueue("events_freezable",
3845 WQ_FREEZABLE, 0);
3846 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3847 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3848 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3849 !system_nrt_wq || !system_unbound_wq || !system_freezable_wq ||
3850 !system_nrt_freezable_wq);
3851 return 0;
3852 }
3853 early_initcall(init_workqueues);