workqueue: use kmem_cache_free() instead of kfree()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49
50 #include "workqueue_internal.h"
51
52 enum {
53 /*
54 * worker_pool flags
55 *
56 * A bound pool is either associated or disassociated with its CPU.
57 * While associated (!DISASSOCIATED), all workers are bound to the
58 * CPU and none has %WORKER_UNBOUND set and concurrency management
59 * is in effect.
60 *
61 * While DISASSOCIATED, the cpu may be offline and all workers have
62 * %WORKER_UNBOUND set and concurrency management disabled, and may
63 * be executing on any CPU. The pool behaves as an unbound one.
64 *
65 * Note that DISASSOCIATED should be flipped only while holding
66 * manager_mutex to avoid changing binding state while
67 * create_worker() is in progress.
68 */
69 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
70 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
71 POOL_FREEZING = 1 << 3, /* freeze in progress */
72
73 /* worker flags */
74 WORKER_STARTED = 1 << 0, /* started */
75 WORKER_DIE = 1 << 1, /* die die die */
76 WORKER_IDLE = 1 << 2, /* is idle */
77 WORKER_PREP = 1 << 3, /* preparing to run works */
78 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
79 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
80 WORKER_REBOUND = 1 << 8, /* worker was rebound */
81
82 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
83 WORKER_UNBOUND | WORKER_REBOUND,
84
85 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
86
87 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
88 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
89
90 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
91 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
92
93 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
94 /* call for help after 10ms
95 (min two ticks) */
96 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
97 CREATE_COOLDOWN = HZ, /* time to breath after fail */
98
99 /*
100 * Rescue workers are used only on emergencies and shared by
101 * all cpus. Give -20.
102 */
103 RESCUER_NICE_LEVEL = -20,
104 HIGHPRI_NICE_LEVEL = -20,
105
106 WQ_NAME_LEN = 24,
107 };
108
109 /*
110 * Structure fields follow one of the following exclusion rules.
111 *
112 * I: Modifiable by initialization/destruction paths and read-only for
113 * everyone else.
114 *
115 * P: Preemption protected. Disabling preemption is enough and should
116 * only be modified and accessed from the local cpu.
117 *
118 * L: pool->lock protected. Access with pool->lock held.
119 *
120 * X: During normal operation, modification requires pool->lock and should
121 * be done only from local cpu. Either disabling preemption on local
122 * cpu or grabbing pool->lock is enough for read access. If
123 * POOL_DISASSOCIATED is set, it's identical to L.
124 *
125 * MG: pool->manager_mutex and pool->lock protected. Writes require both
126 * locks. Reads can happen under either lock.
127 *
128 * PL: wq_pool_mutex protected.
129 *
130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
131 *
132 * WQ: wq->mutex protected.
133 *
134 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
135 *
136 * MD: wq_mayday_lock protected.
137 */
138
139 /* struct worker is defined in workqueue_internal.h */
140
141 struct worker_pool {
142 spinlock_t lock; /* the pool lock */
143 int cpu; /* I: the associated cpu */
144 int node; /* I: the associated node ID */
145 int id; /* I: pool ID */
146 unsigned int flags; /* X: flags */
147
148 struct list_head worklist; /* L: list of pending works */
149 int nr_workers; /* L: total number of workers */
150
151 /* nr_idle includes the ones off idle_list for rebinding */
152 int nr_idle; /* L: currently idle ones */
153
154 struct list_head idle_list; /* X: list of idle workers */
155 struct timer_list idle_timer; /* L: worker idle timeout */
156 struct timer_list mayday_timer; /* L: SOS timer for workers */
157
158 /* a workers is either on busy_hash or idle_list, or the manager */
159 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
160 /* L: hash of busy workers */
161
162 /* see manage_workers() for details on the two manager mutexes */
163 struct mutex manager_arb; /* manager arbitration */
164 struct mutex manager_mutex; /* manager exclusion */
165 struct idr worker_idr; /* MG: worker IDs and iteration */
166
167 struct workqueue_attrs *attrs; /* I: worker attributes */
168 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
169 int refcnt; /* PL: refcnt for unbound pools */
170
171 /*
172 * The current concurrency level. As it's likely to be accessed
173 * from other CPUs during try_to_wake_up(), put it in a separate
174 * cacheline.
175 */
176 atomic_t nr_running ____cacheline_aligned_in_smp;
177
178 /*
179 * Destruction of pool is sched-RCU protected to allow dereferences
180 * from get_work_pool().
181 */
182 struct rcu_head rcu;
183 } ____cacheline_aligned_in_smp;
184
185 /*
186 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
187 * of work_struct->data are used for flags and the remaining high bits
188 * point to the pwq; thus, pwqs need to be aligned at two's power of the
189 * number of flag bits.
190 */
191 struct pool_workqueue {
192 struct worker_pool *pool; /* I: the associated pool */
193 struct workqueue_struct *wq; /* I: the owning workqueue */
194 int work_color; /* L: current color */
195 int flush_color; /* L: flushing color */
196 int refcnt; /* L: reference count */
197 int nr_in_flight[WORK_NR_COLORS];
198 /* L: nr of in_flight works */
199 int nr_active; /* L: nr of active works */
200 int max_active; /* L: max active works */
201 struct list_head delayed_works; /* L: delayed works */
202 struct list_head pwqs_node; /* WR: node on wq->pwqs */
203 struct list_head mayday_node; /* MD: node on wq->maydays */
204
205 /*
206 * Release of unbound pwq is punted to system_wq. See put_pwq()
207 * and pwq_unbound_release_workfn() for details. pool_workqueue
208 * itself is also sched-RCU protected so that the first pwq can be
209 * determined without grabbing wq->mutex.
210 */
211 struct work_struct unbound_release_work;
212 struct rcu_head rcu;
213 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
214
215 /*
216 * Structure used to wait for workqueue flush.
217 */
218 struct wq_flusher {
219 struct list_head list; /* WQ: list of flushers */
220 int flush_color; /* WQ: flush color waiting for */
221 struct completion done; /* flush completion */
222 };
223
224 struct wq_device;
225
226 /*
227 * The externally visible workqueue. It relays the issued work items to
228 * the appropriate worker_pool through its pool_workqueues.
229 */
230 struct workqueue_struct {
231 struct list_head pwqs; /* WR: all pwqs of this wq */
232 struct list_head list; /* PL: list of all workqueues */
233
234 struct mutex mutex; /* protects this wq */
235 int work_color; /* WQ: current work color */
236 int flush_color; /* WQ: current flush color */
237 atomic_t nr_pwqs_to_flush; /* flush in progress */
238 struct wq_flusher *first_flusher; /* WQ: first flusher */
239 struct list_head flusher_queue; /* WQ: flush waiters */
240 struct list_head flusher_overflow; /* WQ: flush overflow list */
241
242 struct list_head maydays; /* MD: pwqs requesting rescue */
243 struct worker *rescuer; /* I: rescue worker */
244
245 int nr_drainers; /* WQ: drain in progress */
246 int saved_max_active; /* WQ: saved pwq max_active */
247
248 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
249 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
250
251 #ifdef CONFIG_SYSFS
252 struct wq_device *wq_dev; /* I: for sysfs interface */
253 #endif
254 #ifdef CONFIG_LOCKDEP
255 struct lockdep_map lockdep_map;
256 #endif
257 char name[WQ_NAME_LEN]; /* I: workqueue name */
258
259 /* hot fields used during command issue, aligned to cacheline */
260 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
261 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
262 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
263 };
264
265 static struct kmem_cache *pwq_cache;
266
267 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
268 static cpumask_var_t *wq_numa_possible_cpumask;
269 /* possible CPUs of each node */
270
271 static bool wq_disable_numa;
272 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
273
274 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
275
276 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
277 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
278
279 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
280 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
281
282 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
283 static bool workqueue_freezing; /* PL: have wqs started freezing? */
284
285 /* the per-cpu worker pools */
286 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
287 cpu_worker_pools);
288
289 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
290
291 /* PL: hash of all unbound pools keyed by pool->attrs */
292 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
293
294 /* I: attributes used when instantiating standard unbound pools on demand */
295 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
296
297 struct workqueue_struct *system_wq __read_mostly;
298 EXPORT_SYMBOL_GPL(system_wq);
299 struct workqueue_struct *system_highpri_wq __read_mostly;
300 EXPORT_SYMBOL_GPL(system_highpri_wq);
301 struct workqueue_struct *system_long_wq __read_mostly;
302 EXPORT_SYMBOL_GPL(system_long_wq);
303 struct workqueue_struct *system_unbound_wq __read_mostly;
304 EXPORT_SYMBOL_GPL(system_unbound_wq);
305 struct workqueue_struct *system_freezable_wq __read_mostly;
306 EXPORT_SYMBOL_GPL(system_freezable_wq);
307
308 static int worker_thread(void *__worker);
309 static void copy_workqueue_attrs(struct workqueue_attrs *to,
310 const struct workqueue_attrs *from);
311
312 #define CREATE_TRACE_POINTS
313 #include <trace/events/workqueue.h>
314
315 #define assert_rcu_or_pool_mutex() \
316 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
317 lockdep_is_held(&wq_pool_mutex), \
318 "sched RCU or wq_pool_mutex should be held")
319
320 #define assert_rcu_or_wq_mutex(wq) \
321 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
322 lockdep_is_held(&wq->mutex), \
323 "sched RCU or wq->mutex should be held")
324
325 #ifdef CONFIG_LOCKDEP
326 #define assert_manager_or_pool_lock(pool) \
327 WARN_ONCE(debug_locks && \
328 !lockdep_is_held(&(pool)->manager_mutex) && \
329 !lockdep_is_held(&(pool)->lock), \
330 "pool->manager_mutex or ->lock should be held")
331 #else
332 #define assert_manager_or_pool_lock(pool) do { } while (0)
333 #endif
334
335 #define for_each_cpu_worker_pool(pool, cpu) \
336 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
337 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
338 (pool)++)
339
340 /**
341 * for_each_pool - iterate through all worker_pools in the system
342 * @pool: iteration cursor
343 * @pi: integer used for iteration
344 *
345 * This must be called either with wq_pool_mutex held or sched RCU read
346 * locked. If the pool needs to be used beyond the locking in effect, the
347 * caller is responsible for guaranteeing that the pool stays online.
348 *
349 * The if/else clause exists only for the lockdep assertion and can be
350 * ignored.
351 */
352 #define for_each_pool(pool, pi) \
353 idr_for_each_entry(&worker_pool_idr, pool, pi) \
354 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
355 else
356
357 /**
358 * for_each_pool_worker - iterate through all workers of a worker_pool
359 * @worker: iteration cursor
360 * @wi: integer used for iteration
361 * @pool: worker_pool to iterate workers of
362 *
363 * This must be called with either @pool->manager_mutex or ->lock held.
364 *
365 * The if/else clause exists only for the lockdep assertion and can be
366 * ignored.
367 */
368 #define for_each_pool_worker(worker, wi, pool) \
369 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
370 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
371 else
372
373 /**
374 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
375 * @pwq: iteration cursor
376 * @wq: the target workqueue
377 *
378 * This must be called either with wq->mutex held or sched RCU read locked.
379 * If the pwq needs to be used beyond the locking in effect, the caller is
380 * responsible for guaranteeing that the pwq stays online.
381 *
382 * The if/else clause exists only for the lockdep assertion and can be
383 * ignored.
384 */
385 #define for_each_pwq(pwq, wq) \
386 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
387 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
388 else
389
390 #ifdef CONFIG_DEBUG_OBJECTS_WORK
391
392 static struct debug_obj_descr work_debug_descr;
393
394 static void *work_debug_hint(void *addr)
395 {
396 return ((struct work_struct *) addr)->func;
397 }
398
399 /*
400 * fixup_init is called when:
401 * - an active object is initialized
402 */
403 static int work_fixup_init(void *addr, enum debug_obj_state state)
404 {
405 struct work_struct *work = addr;
406
407 switch (state) {
408 case ODEBUG_STATE_ACTIVE:
409 cancel_work_sync(work);
410 debug_object_init(work, &work_debug_descr);
411 return 1;
412 default:
413 return 0;
414 }
415 }
416
417 /*
418 * fixup_activate is called when:
419 * - an active object is activated
420 * - an unknown object is activated (might be a statically initialized object)
421 */
422 static int work_fixup_activate(void *addr, enum debug_obj_state state)
423 {
424 struct work_struct *work = addr;
425
426 switch (state) {
427
428 case ODEBUG_STATE_NOTAVAILABLE:
429 /*
430 * This is not really a fixup. The work struct was
431 * statically initialized. We just make sure that it
432 * is tracked in the object tracker.
433 */
434 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
435 debug_object_init(work, &work_debug_descr);
436 debug_object_activate(work, &work_debug_descr);
437 return 0;
438 }
439 WARN_ON_ONCE(1);
440 return 0;
441
442 case ODEBUG_STATE_ACTIVE:
443 WARN_ON(1);
444
445 default:
446 return 0;
447 }
448 }
449
450 /*
451 * fixup_free is called when:
452 * - an active object is freed
453 */
454 static int work_fixup_free(void *addr, enum debug_obj_state state)
455 {
456 struct work_struct *work = addr;
457
458 switch (state) {
459 case ODEBUG_STATE_ACTIVE:
460 cancel_work_sync(work);
461 debug_object_free(work, &work_debug_descr);
462 return 1;
463 default:
464 return 0;
465 }
466 }
467
468 static struct debug_obj_descr work_debug_descr = {
469 .name = "work_struct",
470 .debug_hint = work_debug_hint,
471 .fixup_init = work_fixup_init,
472 .fixup_activate = work_fixup_activate,
473 .fixup_free = work_fixup_free,
474 };
475
476 static inline void debug_work_activate(struct work_struct *work)
477 {
478 debug_object_activate(work, &work_debug_descr);
479 }
480
481 static inline void debug_work_deactivate(struct work_struct *work)
482 {
483 debug_object_deactivate(work, &work_debug_descr);
484 }
485
486 void __init_work(struct work_struct *work, int onstack)
487 {
488 if (onstack)
489 debug_object_init_on_stack(work, &work_debug_descr);
490 else
491 debug_object_init(work, &work_debug_descr);
492 }
493 EXPORT_SYMBOL_GPL(__init_work);
494
495 void destroy_work_on_stack(struct work_struct *work)
496 {
497 debug_object_free(work, &work_debug_descr);
498 }
499 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
500
501 #else
502 static inline void debug_work_activate(struct work_struct *work) { }
503 static inline void debug_work_deactivate(struct work_struct *work) { }
504 #endif
505
506 /* allocate ID and assign it to @pool */
507 static int worker_pool_assign_id(struct worker_pool *pool)
508 {
509 int ret;
510
511 lockdep_assert_held(&wq_pool_mutex);
512
513 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
514 if (ret >= 0) {
515 pool->id = ret;
516 return 0;
517 }
518 return ret;
519 }
520
521 /**
522 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
523 * @wq: the target workqueue
524 * @node: the node ID
525 *
526 * This must be called either with pwq_lock held or sched RCU read locked.
527 * If the pwq needs to be used beyond the locking in effect, the caller is
528 * responsible for guaranteeing that the pwq stays online.
529 */
530 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
531 int node)
532 {
533 assert_rcu_or_wq_mutex(wq);
534 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
535 }
536
537 static unsigned int work_color_to_flags(int color)
538 {
539 return color << WORK_STRUCT_COLOR_SHIFT;
540 }
541
542 static int get_work_color(struct work_struct *work)
543 {
544 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
545 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
546 }
547
548 static int work_next_color(int color)
549 {
550 return (color + 1) % WORK_NR_COLORS;
551 }
552
553 /*
554 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
555 * contain the pointer to the queued pwq. Once execution starts, the flag
556 * is cleared and the high bits contain OFFQ flags and pool ID.
557 *
558 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
559 * and clear_work_data() can be used to set the pwq, pool or clear
560 * work->data. These functions should only be called while the work is
561 * owned - ie. while the PENDING bit is set.
562 *
563 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
564 * corresponding to a work. Pool is available once the work has been
565 * queued anywhere after initialization until it is sync canceled. pwq is
566 * available only while the work item is queued.
567 *
568 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
569 * canceled. While being canceled, a work item may have its PENDING set
570 * but stay off timer and worklist for arbitrarily long and nobody should
571 * try to steal the PENDING bit.
572 */
573 static inline void set_work_data(struct work_struct *work, unsigned long data,
574 unsigned long flags)
575 {
576 WARN_ON_ONCE(!work_pending(work));
577 atomic_long_set(&work->data, data | flags | work_static(work));
578 }
579
580 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
581 unsigned long extra_flags)
582 {
583 set_work_data(work, (unsigned long)pwq,
584 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
585 }
586
587 static void set_work_pool_and_keep_pending(struct work_struct *work,
588 int pool_id)
589 {
590 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
591 WORK_STRUCT_PENDING);
592 }
593
594 static void set_work_pool_and_clear_pending(struct work_struct *work,
595 int pool_id)
596 {
597 /*
598 * The following wmb is paired with the implied mb in
599 * test_and_set_bit(PENDING) and ensures all updates to @work made
600 * here are visible to and precede any updates by the next PENDING
601 * owner.
602 */
603 smp_wmb();
604 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
605 }
606
607 static void clear_work_data(struct work_struct *work)
608 {
609 smp_wmb(); /* see set_work_pool_and_clear_pending() */
610 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
611 }
612
613 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
614 {
615 unsigned long data = atomic_long_read(&work->data);
616
617 if (data & WORK_STRUCT_PWQ)
618 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
619 else
620 return NULL;
621 }
622
623 /**
624 * get_work_pool - return the worker_pool a given work was associated with
625 * @work: the work item of interest
626 *
627 * Return the worker_pool @work was last associated with. %NULL if none.
628 *
629 * Pools are created and destroyed under wq_pool_mutex, and allows read
630 * access under sched-RCU read lock. As such, this function should be
631 * called under wq_pool_mutex or with preemption disabled.
632 *
633 * All fields of the returned pool are accessible as long as the above
634 * mentioned locking is in effect. If the returned pool needs to be used
635 * beyond the critical section, the caller is responsible for ensuring the
636 * returned pool is and stays online.
637 */
638 static struct worker_pool *get_work_pool(struct work_struct *work)
639 {
640 unsigned long data = atomic_long_read(&work->data);
641 int pool_id;
642
643 assert_rcu_or_pool_mutex();
644
645 if (data & WORK_STRUCT_PWQ)
646 return ((struct pool_workqueue *)
647 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
648
649 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
650 if (pool_id == WORK_OFFQ_POOL_NONE)
651 return NULL;
652
653 return idr_find(&worker_pool_idr, pool_id);
654 }
655
656 /**
657 * get_work_pool_id - return the worker pool ID a given work is associated with
658 * @work: the work item of interest
659 *
660 * Return the worker_pool ID @work was last associated with.
661 * %WORK_OFFQ_POOL_NONE if none.
662 */
663 static int get_work_pool_id(struct work_struct *work)
664 {
665 unsigned long data = atomic_long_read(&work->data);
666
667 if (data & WORK_STRUCT_PWQ)
668 return ((struct pool_workqueue *)
669 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
670
671 return data >> WORK_OFFQ_POOL_SHIFT;
672 }
673
674 static void mark_work_canceling(struct work_struct *work)
675 {
676 unsigned long pool_id = get_work_pool_id(work);
677
678 pool_id <<= WORK_OFFQ_POOL_SHIFT;
679 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
680 }
681
682 static bool work_is_canceling(struct work_struct *work)
683 {
684 unsigned long data = atomic_long_read(&work->data);
685
686 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
687 }
688
689 /*
690 * Policy functions. These define the policies on how the global worker
691 * pools are managed. Unless noted otherwise, these functions assume that
692 * they're being called with pool->lock held.
693 */
694
695 static bool __need_more_worker(struct worker_pool *pool)
696 {
697 return !atomic_read(&pool->nr_running);
698 }
699
700 /*
701 * Need to wake up a worker? Called from anything but currently
702 * running workers.
703 *
704 * Note that, because unbound workers never contribute to nr_running, this
705 * function will always return %true for unbound pools as long as the
706 * worklist isn't empty.
707 */
708 static bool need_more_worker(struct worker_pool *pool)
709 {
710 return !list_empty(&pool->worklist) && __need_more_worker(pool);
711 }
712
713 /* Can I start working? Called from busy but !running workers. */
714 static bool may_start_working(struct worker_pool *pool)
715 {
716 return pool->nr_idle;
717 }
718
719 /* Do I need to keep working? Called from currently running workers. */
720 static bool keep_working(struct worker_pool *pool)
721 {
722 return !list_empty(&pool->worklist) &&
723 atomic_read(&pool->nr_running) <= 1;
724 }
725
726 /* Do we need a new worker? Called from manager. */
727 static bool need_to_create_worker(struct worker_pool *pool)
728 {
729 return need_more_worker(pool) && !may_start_working(pool);
730 }
731
732 /* Do I need to be the manager? */
733 static bool need_to_manage_workers(struct worker_pool *pool)
734 {
735 return need_to_create_worker(pool) ||
736 (pool->flags & POOL_MANAGE_WORKERS);
737 }
738
739 /* Do we have too many workers and should some go away? */
740 static bool too_many_workers(struct worker_pool *pool)
741 {
742 bool managing = mutex_is_locked(&pool->manager_arb);
743 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
744 int nr_busy = pool->nr_workers - nr_idle;
745
746 /*
747 * nr_idle and idle_list may disagree if idle rebinding is in
748 * progress. Never return %true if idle_list is empty.
749 */
750 if (list_empty(&pool->idle_list))
751 return false;
752
753 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
754 }
755
756 /*
757 * Wake up functions.
758 */
759
760 /* Return the first worker. Safe with preemption disabled */
761 static struct worker *first_worker(struct worker_pool *pool)
762 {
763 if (unlikely(list_empty(&pool->idle_list)))
764 return NULL;
765
766 return list_first_entry(&pool->idle_list, struct worker, entry);
767 }
768
769 /**
770 * wake_up_worker - wake up an idle worker
771 * @pool: worker pool to wake worker from
772 *
773 * Wake up the first idle worker of @pool.
774 *
775 * CONTEXT:
776 * spin_lock_irq(pool->lock).
777 */
778 static void wake_up_worker(struct worker_pool *pool)
779 {
780 struct worker *worker = first_worker(pool);
781
782 if (likely(worker))
783 wake_up_process(worker->task);
784 }
785
786 /**
787 * wq_worker_waking_up - a worker is waking up
788 * @task: task waking up
789 * @cpu: CPU @task is waking up to
790 *
791 * This function is called during try_to_wake_up() when a worker is
792 * being awoken.
793 *
794 * CONTEXT:
795 * spin_lock_irq(rq->lock)
796 */
797 void wq_worker_waking_up(struct task_struct *task, int cpu)
798 {
799 struct worker *worker = kthread_data(task);
800
801 if (!(worker->flags & WORKER_NOT_RUNNING)) {
802 WARN_ON_ONCE(worker->pool->cpu != cpu);
803 atomic_inc(&worker->pool->nr_running);
804 }
805 }
806
807 /**
808 * wq_worker_sleeping - a worker is going to sleep
809 * @task: task going to sleep
810 * @cpu: CPU in question, must be the current CPU number
811 *
812 * This function is called during schedule() when a busy worker is
813 * going to sleep. Worker on the same cpu can be woken up by
814 * returning pointer to its task.
815 *
816 * CONTEXT:
817 * spin_lock_irq(rq->lock)
818 *
819 * RETURNS:
820 * Worker task on @cpu to wake up, %NULL if none.
821 */
822 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
823 {
824 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
825 struct worker_pool *pool;
826
827 /*
828 * Rescuers, which may not have all the fields set up like normal
829 * workers, also reach here, let's not access anything before
830 * checking NOT_RUNNING.
831 */
832 if (worker->flags & WORKER_NOT_RUNNING)
833 return NULL;
834
835 pool = worker->pool;
836
837 /* this can only happen on the local cpu */
838 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
839 return NULL;
840
841 /*
842 * The counterpart of the following dec_and_test, implied mb,
843 * worklist not empty test sequence is in insert_work().
844 * Please read comment there.
845 *
846 * NOT_RUNNING is clear. This means that we're bound to and
847 * running on the local cpu w/ rq lock held and preemption
848 * disabled, which in turn means that none else could be
849 * manipulating idle_list, so dereferencing idle_list without pool
850 * lock is safe.
851 */
852 if (atomic_dec_and_test(&pool->nr_running) &&
853 !list_empty(&pool->worklist))
854 to_wakeup = first_worker(pool);
855 return to_wakeup ? to_wakeup->task : NULL;
856 }
857
858 /**
859 * worker_set_flags - set worker flags and adjust nr_running accordingly
860 * @worker: self
861 * @flags: flags to set
862 * @wakeup: wakeup an idle worker if necessary
863 *
864 * Set @flags in @worker->flags and adjust nr_running accordingly. If
865 * nr_running becomes zero and @wakeup is %true, an idle worker is
866 * woken up.
867 *
868 * CONTEXT:
869 * spin_lock_irq(pool->lock)
870 */
871 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
872 bool wakeup)
873 {
874 struct worker_pool *pool = worker->pool;
875
876 WARN_ON_ONCE(worker->task != current);
877
878 /*
879 * If transitioning into NOT_RUNNING, adjust nr_running and
880 * wake up an idle worker as necessary if requested by
881 * @wakeup.
882 */
883 if ((flags & WORKER_NOT_RUNNING) &&
884 !(worker->flags & WORKER_NOT_RUNNING)) {
885 if (wakeup) {
886 if (atomic_dec_and_test(&pool->nr_running) &&
887 !list_empty(&pool->worklist))
888 wake_up_worker(pool);
889 } else
890 atomic_dec(&pool->nr_running);
891 }
892
893 worker->flags |= flags;
894 }
895
896 /**
897 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
898 * @worker: self
899 * @flags: flags to clear
900 *
901 * Clear @flags in @worker->flags and adjust nr_running accordingly.
902 *
903 * CONTEXT:
904 * spin_lock_irq(pool->lock)
905 */
906 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
907 {
908 struct worker_pool *pool = worker->pool;
909 unsigned int oflags = worker->flags;
910
911 WARN_ON_ONCE(worker->task != current);
912
913 worker->flags &= ~flags;
914
915 /*
916 * If transitioning out of NOT_RUNNING, increment nr_running. Note
917 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
918 * of multiple flags, not a single flag.
919 */
920 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
921 if (!(worker->flags & WORKER_NOT_RUNNING))
922 atomic_inc(&pool->nr_running);
923 }
924
925 /**
926 * find_worker_executing_work - find worker which is executing a work
927 * @pool: pool of interest
928 * @work: work to find worker for
929 *
930 * Find a worker which is executing @work on @pool by searching
931 * @pool->busy_hash which is keyed by the address of @work. For a worker
932 * to match, its current execution should match the address of @work and
933 * its work function. This is to avoid unwanted dependency between
934 * unrelated work executions through a work item being recycled while still
935 * being executed.
936 *
937 * This is a bit tricky. A work item may be freed once its execution
938 * starts and nothing prevents the freed area from being recycled for
939 * another work item. If the same work item address ends up being reused
940 * before the original execution finishes, workqueue will identify the
941 * recycled work item as currently executing and make it wait until the
942 * current execution finishes, introducing an unwanted dependency.
943 *
944 * This function checks the work item address and work function to avoid
945 * false positives. Note that this isn't complete as one may construct a
946 * work function which can introduce dependency onto itself through a
947 * recycled work item. Well, if somebody wants to shoot oneself in the
948 * foot that badly, there's only so much we can do, and if such deadlock
949 * actually occurs, it should be easy to locate the culprit work function.
950 *
951 * CONTEXT:
952 * spin_lock_irq(pool->lock).
953 *
954 * RETURNS:
955 * Pointer to worker which is executing @work if found, NULL
956 * otherwise.
957 */
958 static struct worker *find_worker_executing_work(struct worker_pool *pool,
959 struct work_struct *work)
960 {
961 struct worker *worker;
962
963 hash_for_each_possible(pool->busy_hash, worker, hentry,
964 (unsigned long)work)
965 if (worker->current_work == work &&
966 worker->current_func == work->func)
967 return worker;
968
969 return NULL;
970 }
971
972 /**
973 * move_linked_works - move linked works to a list
974 * @work: start of series of works to be scheduled
975 * @head: target list to append @work to
976 * @nextp: out paramter for nested worklist walking
977 *
978 * Schedule linked works starting from @work to @head. Work series to
979 * be scheduled starts at @work and includes any consecutive work with
980 * WORK_STRUCT_LINKED set in its predecessor.
981 *
982 * If @nextp is not NULL, it's updated to point to the next work of
983 * the last scheduled work. This allows move_linked_works() to be
984 * nested inside outer list_for_each_entry_safe().
985 *
986 * CONTEXT:
987 * spin_lock_irq(pool->lock).
988 */
989 static void move_linked_works(struct work_struct *work, struct list_head *head,
990 struct work_struct **nextp)
991 {
992 struct work_struct *n;
993
994 /*
995 * Linked worklist will always end before the end of the list,
996 * use NULL for list head.
997 */
998 list_for_each_entry_safe_from(work, n, NULL, entry) {
999 list_move_tail(&work->entry, head);
1000 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1001 break;
1002 }
1003
1004 /*
1005 * If we're already inside safe list traversal and have moved
1006 * multiple works to the scheduled queue, the next position
1007 * needs to be updated.
1008 */
1009 if (nextp)
1010 *nextp = n;
1011 }
1012
1013 /**
1014 * get_pwq - get an extra reference on the specified pool_workqueue
1015 * @pwq: pool_workqueue to get
1016 *
1017 * Obtain an extra reference on @pwq. The caller should guarantee that
1018 * @pwq has positive refcnt and be holding the matching pool->lock.
1019 */
1020 static void get_pwq(struct pool_workqueue *pwq)
1021 {
1022 lockdep_assert_held(&pwq->pool->lock);
1023 WARN_ON_ONCE(pwq->refcnt <= 0);
1024 pwq->refcnt++;
1025 }
1026
1027 /**
1028 * put_pwq - put a pool_workqueue reference
1029 * @pwq: pool_workqueue to put
1030 *
1031 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1032 * destruction. The caller should be holding the matching pool->lock.
1033 */
1034 static void put_pwq(struct pool_workqueue *pwq)
1035 {
1036 lockdep_assert_held(&pwq->pool->lock);
1037 if (likely(--pwq->refcnt))
1038 return;
1039 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1040 return;
1041 /*
1042 * @pwq can't be released under pool->lock, bounce to
1043 * pwq_unbound_release_workfn(). This never recurses on the same
1044 * pool->lock as this path is taken only for unbound workqueues and
1045 * the release work item is scheduled on a per-cpu workqueue. To
1046 * avoid lockdep warning, unbound pool->locks are given lockdep
1047 * subclass of 1 in get_unbound_pool().
1048 */
1049 schedule_work(&pwq->unbound_release_work);
1050 }
1051
1052 /**
1053 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1054 * @pwq: pool_workqueue to put (can be %NULL)
1055 *
1056 * put_pwq() with locking. This function also allows %NULL @pwq.
1057 */
1058 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1059 {
1060 if (pwq) {
1061 /*
1062 * As both pwqs and pools are sched-RCU protected, the
1063 * following lock operations are safe.
1064 */
1065 spin_lock_irq(&pwq->pool->lock);
1066 put_pwq(pwq);
1067 spin_unlock_irq(&pwq->pool->lock);
1068 }
1069 }
1070
1071 static void pwq_activate_delayed_work(struct work_struct *work)
1072 {
1073 struct pool_workqueue *pwq = get_work_pwq(work);
1074
1075 trace_workqueue_activate_work(work);
1076 move_linked_works(work, &pwq->pool->worklist, NULL);
1077 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1078 pwq->nr_active++;
1079 }
1080
1081 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1082 {
1083 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1084 struct work_struct, entry);
1085
1086 pwq_activate_delayed_work(work);
1087 }
1088
1089 /**
1090 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1091 * @pwq: pwq of interest
1092 * @color: color of work which left the queue
1093 *
1094 * A work either has completed or is removed from pending queue,
1095 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1096 *
1097 * CONTEXT:
1098 * spin_lock_irq(pool->lock).
1099 */
1100 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1101 {
1102 /* uncolored work items don't participate in flushing or nr_active */
1103 if (color == WORK_NO_COLOR)
1104 goto out_put;
1105
1106 pwq->nr_in_flight[color]--;
1107
1108 pwq->nr_active--;
1109 if (!list_empty(&pwq->delayed_works)) {
1110 /* one down, submit a delayed one */
1111 if (pwq->nr_active < pwq->max_active)
1112 pwq_activate_first_delayed(pwq);
1113 }
1114
1115 /* is flush in progress and are we at the flushing tip? */
1116 if (likely(pwq->flush_color != color))
1117 goto out_put;
1118
1119 /* are there still in-flight works? */
1120 if (pwq->nr_in_flight[color])
1121 goto out_put;
1122
1123 /* this pwq is done, clear flush_color */
1124 pwq->flush_color = -1;
1125
1126 /*
1127 * If this was the last pwq, wake up the first flusher. It
1128 * will handle the rest.
1129 */
1130 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1131 complete(&pwq->wq->first_flusher->done);
1132 out_put:
1133 put_pwq(pwq);
1134 }
1135
1136 /**
1137 * try_to_grab_pending - steal work item from worklist and disable irq
1138 * @work: work item to steal
1139 * @is_dwork: @work is a delayed_work
1140 * @flags: place to store irq state
1141 *
1142 * Try to grab PENDING bit of @work. This function can handle @work in any
1143 * stable state - idle, on timer or on worklist. Return values are
1144 *
1145 * 1 if @work was pending and we successfully stole PENDING
1146 * 0 if @work was idle and we claimed PENDING
1147 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1148 * -ENOENT if someone else is canceling @work, this state may persist
1149 * for arbitrarily long
1150 *
1151 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1152 * interrupted while holding PENDING and @work off queue, irq must be
1153 * disabled on entry. This, combined with delayed_work->timer being
1154 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1155 *
1156 * On successful return, >= 0, irq is disabled and the caller is
1157 * responsible for releasing it using local_irq_restore(*@flags).
1158 *
1159 * This function is safe to call from any context including IRQ handler.
1160 */
1161 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1162 unsigned long *flags)
1163 {
1164 struct worker_pool *pool;
1165 struct pool_workqueue *pwq;
1166
1167 local_irq_save(*flags);
1168
1169 /* try to steal the timer if it exists */
1170 if (is_dwork) {
1171 struct delayed_work *dwork = to_delayed_work(work);
1172
1173 /*
1174 * dwork->timer is irqsafe. If del_timer() fails, it's
1175 * guaranteed that the timer is not queued anywhere and not
1176 * running on the local CPU.
1177 */
1178 if (likely(del_timer(&dwork->timer)))
1179 return 1;
1180 }
1181
1182 /* try to claim PENDING the normal way */
1183 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1184 return 0;
1185
1186 /*
1187 * The queueing is in progress, or it is already queued. Try to
1188 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1189 */
1190 pool = get_work_pool(work);
1191 if (!pool)
1192 goto fail;
1193
1194 spin_lock(&pool->lock);
1195 /*
1196 * work->data is guaranteed to point to pwq only while the work
1197 * item is queued on pwq->wq, and both updating work->data to point
1198 * to pwq on queueing and to pool on dequeueing are done under
1199 * pwq->pool->lock. This in turn guarantees that, if work->data
1200 * points to pwq which is associated with a locked pool, the work
1201 * item is currently queued on that pool.
1202 */
1203 pwq = get_work_pwq(work);
1204 if (pwq && pwq->pool == pool) {
1205 debug_work_deactivate(work);
1206
1207 /*
1208 * A delayed work item cannot be grabbed directly because
1209 * it might have linked NO_COLOR work items which, if left
1210 * on the delayed_list, will confuse pwq->nr_active
1211 * management later on and cause stall. Make sure the work
1212 * item is activated before grabbing.
1213 */
1214 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1215 pwq_activate_delayed_work(work);
1216
1217 list_del_init(&work->entry);
1218 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1219
1220 /* work->data points to pwq iff queued, point to pool */
1221 set_work_pool_and_keep_pending(work, pool->id);
1222
1223 spin_unlock(&pool->lock);
1224 return 1;
1225 }
1226 spin_unlock(&pool->lock);
1227 fail:
1228 local_irq_restore(*flags);
1229 if (work_is_canceling(work))
1230 return -ENOENT;
1231 cpu_relax();
1232 return -EAGAIN;
1233 }
1234
1235 /**
1236 * insert_work - insert a work into a pool
1237 * @pwq: pwq @work belongs to
1238 * @work: work to insert
1239 * @head: insertion point
1240 * @extra_flags: extra WORK_STRUCT_* flags to set
1241 *
1242 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1243 * work_struct flags.
1244 *
1245 * CONTEXT:
1246 * spin_lock_irq(pool->lock).
1247 */
1248 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1249 struct list_head *head, unsigned int extra_flags)
1250 {
1251 struct worker_pool *pool = pwq->pool;
1252
1253 /* we own @work, set data and link */
1254 set_work_pwq(work, pwq, extra_flags);
1255 list_add_tail(&work->entry, head);
1256 get_pwq(pwq);
1257
1258 /*
1259 * Ensure either wq_worker_sleeping() sees the above
1260 * list_add_tail() or we see zero nr_running to avoid workers lying
1261 * around lazily while there are works to be processed.
1262 */
1263 smp_mb();
1264
1265 if (__need_more_worker(pool))
1266 wake_up_worker(pool);
1267 }
1268
1269 /*
1270 * Test whether @work is being queued from another work executing on the
1271 * same workqueue.
1272 */
1273 static bool is_chained_work(struct workqueue_struct *wq)
1274 {
1275 struct worker *worker;
1276
1277 worker = current_wq_worker();
1278 /*
1279 * Return %true iff I'm a worker execuing a work item on @wq. If
1280 * I'm @worker, it's safe to dereference it without locking.
1281 */
1282 return worker && worker->current_pwq->wq == wq;
1283 }
1284
1285 static void __queue_work(int cpu, struct workqueue_struct *wq,
1286 struct work_struct *work)
1287 {
1288 struct pool_workqueue *pwq;
1289 struct worker_pool *last_pool;
1290 struct list_head *worklist;
1291 unsigned int work_flags;
1292 unsigned int req_cpu = cpu;
1293
1294 /*
1295 * While a work item is PENDING && off queue, a task trying to
1296 * steal the PENDING will busy-loop waiting for it to either get
1297 * queued or lose PENDING. Grabbing PENDING and queueing should
1298 * happen with IRQ disabled.
1299 */
1300 WARN_ON_ONCE(!irqs_disabled());
1301
1302 debug_work_activate(work);
1303
1304 /* if dying, only works from the same workqueue are allowed */
1305 if (unlikely(wq->flags & __WQ_DRAINING) &&
1306 WARN_ON_ONCE(!is_chained_work(wq)))
1307 return;
1308 retry:
1309 if (req_cpu == WORK_CPU_UNBOUND)
1310 cpu = raw_smp_processor_id();
1311
1312 /* pwq which will be used unless @work is executing elsewhere */
1313 if (!(wq->flags & WQ_UNBOUND))
1314 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1315 else
1316 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1317
1318 /*
1319 * If @work was previously on a different pool, it might still be
1320 * running there, in which case the work needs to be queued on that
1321 * pool to guarantee non-reentrancy.
1322 */
1323 last_pool = get_work_pool(work);
1324 if (last_pool && last_pool != pwq->pool) {
1325 struct worker *worker;
1326
1327 spin_lock(&last_pool->lock);
1328
1329 worker = find_worker_executing_work(last_pool, work);
1330
1331 if (worker && worker->current_pwq->wq == wq) {
1332 pwq = worker->current_pwq;
1333 } else {
1334 /* meh... not running there, queue here */
1335 spin_unlock(&last_pool->lock);
1336 spin_lock(&pwq->pool->lock);
1337 }
1338 } else {
1339 spin_lock(&pwq->pool->lock);
1340 }
1341
1342 /*
1343 * pwq is determined and locked. For unbound pools, we could have
1344 * raced with pwq release and it could already be dead. If its
1345 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1346 * without another pwq replacing it in the numa_pwq_tbl or while
1347 * work items are executing on it, so the retrying is guaranteed to
1348 * make forward-progress.
1349 */
1350 if (unlikely(!pwq->refcnt)) {
1351 if (wq->flags & WQ_UNBOUND) {
1352 spin_unlock(&pwq->pool->lock);
1353 cpu_relax();
1354 goto retry;
1355 }
1356 /* oops */
1357 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1358 wq->name, cpu);
1359 }
1360
1361 /* pwq determined, queue */
1362 trace_workqueue_queue_work(req_cpu, pwq, work);
1363
1364 if (WARN_ON(!list_empty(&work->entry))) {
1365 spin_unlock(&pwq->pool->lock);
1366 return;
1367 }
1368
1369 pwq->nr_in_flight[pwq->work_color]++;
1370 work_flags = work_color_to_flags(pwq->work_color);
1371
1372 if (likely(pwq->nr_active < pwq->max_active)) {
1373 trace_workqueue_activate_work(work);
1374 pwq->nr_active++;
1375 worklist = &pwq->pool->worklist;
1376 } else {
1377 work_flags |= WORK_STRUCT_DELAYED;
1378 worklist = &pwq->delayed_works;
1379 }
1380
1381 insert_work(pwq, work, worklist, work_flags);
1382
1383 spin_unlock(&pwq->pool->lock);
1384 }
1385
1386 /**
1387 * queue_work_on - queue work on specific cpu
1388 * @cpu: CPU number to execute work on
1389 * @wq: workqueue to use
1390 * @work: work to queue
1391 *
1392 * Returns %false if @work was already on a queue, %true otherwise.
1393 *
1394 * We queue the work to a specific CPU, the caller must ensure it
1395 * can't go away.
1396 */
1397 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1398 struct work_struct *work)
1399 {
1400 bool ret = false;
1401 unsigned long flags;
1402
1403 local_irq_save(flags);
1404
1405 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1406 __queue_work(cpu, wq, work);
1407 ret = true;
1408 }
1409
1410 local_irq_restore(flags);
1411 return ret;
1412 }
1413 EXPORT_SYMBOL_GPL(queue_work_on);
1414
1415 void delayed_work_timer_fn(unsigned long __data)
1416 {
1417 struct delayed_work *dwork = (struct delayed_work *)__data;
1418
1419 /* should have been called from irqsafe timer with irq already off */
1420 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1421 }
1422 EXPORT_SYMBOL(delayed_work_timer_fn);
1423
1424 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1425 struct delayed_work *dwork, unsigned long delay)
1426 {
1427 struct timer_list *timer = &dwork->timer;
1428 struct work_struct *work = &dwork->work;
1429
1430 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1431 timer->data != (unsigned long)dwork);
1432 WARN_ON_ONCE(timer_pending(timer));
1433 WARN_ON_ONCE(!list_empty(&work->entry));
1434
1435 /*
1436 * If @delay is 0, queue @dwork->work immediately. This is for
1437 * both optimization and correctness. The earliest @timer can
1438 * expire is on the closest next tick and delayed_work users depend
1439 * on that there's no such delay when @delay is 0.
1440 */
1441 if (!delay) {
1442 __queue_work(cpu, wq, &dwork->work);
1443 return;
1444 }
1445
1446 timer_stats_timer_set_start_info(&dwork->timer);
1447
1448 dwork->wq = wq;
1449 dwork->cpu = cpu;
1450 timer->expires = jiffies + delay;
1451
1452 if (unlikely(cpu != WORK_CPU_UNBOUND))
1453 add_timer_on(timer, cpu);
1454 else
1455 add_timer(timer);
1456 }
1457
1458 /**
1459 * queue_delayed_work_on - queue work on specific CPU after delay
1460 * @cpu: CPU number to execute work on
1461 * @wq: workqueue to use
1462 * @dwork: work to queue
1463 * @delay: number of jiffies to wait before queueing
1464 *
1465 * Returns %false if @work was already on a queue, %true otherwise. If
1466 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1467 * execution.
1468 */
1469 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1470 struct delayed_work *dwork, unsigned long delay)
1471 {
1472 struct work_struct *work = &dwork->work;
1473 bool ret = false;
1474 unsigned long flags;
1475
1476 /* read the comment in __queue_work() */
1477 local_irq_save(flags);
1478
1479 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1480 __queue_delayed_work(cpu, wq, dwork, delay);
1481 ret = true;
1482 }
1483
1484 local_irq_restore(flags);
1485 return ret;
1486 }
1487 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1488
1489 /**
1490 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1491 * @cpu: CPU number to execute work on
1492 * @wq: workqueue to use
1493 * @dwork: work to queue
1494 * @delay: number of jiffies to wait before queueing
1495 *
1496 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1497 * modify @dwork's timer so that it expires after @delay. If @delay is
1498 * zero, @work is guaranteed to be scheduled immediately regardless of its
1499 * current state.
1500 *
1501 * Returns %false if @dwork was idle and queued, %true if @dwork was
1502 * pending and its timer was modified.
1503 *
1504 * This function is safe to call from any context including IRQ handler.
1505 * See try_to_grab_pending() for details.
1506 */
1507 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1508 struct delayed_work *dwork, unsigned long delay)
1509 {
1510 unsigned long flags;
1511 int ret;
1512
1513 do {
1514 ret = try_to_grab_pending(&dwork->work, true, &flags);
1515 } while (unlikely(ret == -EAGAIN));
1516
1517 if (likely(ret >= 0)) {
1518 __queue_delayed_work(cpu, wq, dwork, delay);
1519 local_irq_restore(flags);
1520 }
1521
1522 /* -ENOENT from try_to_grab_pending() becomes %true */
1523 return ret;
1524 }
1525 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1526
1527 /**
1528 * worker_enter_idle - enter idle state
1529 * @worker: worker which is entering idle state
1530 *
1531 * @worker is entering idle state. Update stats and idle timer if
1532 * necessary.
1533 *
1534 * LOCKING:
1535 * spin_lock_irq(pool->lock).
1536 */
1537 static void worker_enter_idle(struct worker *worker)
1538 {
1539 struct worker_pool *pool = worker->pool;
1540
1541 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1542 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1543 (worker->hentry.next || worker->hentry.pprev)))
1544 return;
1545
1546 /* can't use worker_set_flags(), also called from start_worker() */
1547 worker->flags |= WORKER_IDLE;
1548 pool->nr_idle++;
1549 worker->last_active = jiffies;
1550
1551 /* idle_list is LIFO */
1552 list_add(&worker->entry, &pool->idle_list);
1553
1554 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1555 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1556
1557 /*
1558 * Sanity check nr_running. Because wq_unbind_fn() releases
1559 * pool->lock between setting %WORKER_UNBOUND and zapping
1560 * nr_running, the warning may trigger spuriously. Check iff
1561 * unbind is not in progress.
1562 */
1563 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1564 pool->nr_workers == pool->nr_idle &&
1565 atomic_read(&pool->nr_running));
1566 }
1567
1568 /**
1569 * worker_leave_idle - leave idle state
1570 * @worker: worker which is leaving idle state
1571 *
1572 * @worker is leaving idle state. Update stats.
1573 *
1574 * LOCKING:
1575 * spin_lock_irq(pool->lock).
1576 */
1577 static void worker_leave_idle(struct worker *worker)
1578 {
1579 struct worker_pool *pool = worker->pool;
1580
1581 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1582 return;
1583 worker_clr_flags(worker, WORKER_IDLE);
1584 pool->nr_idle--;
1585 list_del_init(&worker->entry);
1586 }
1587
1588 /**
1589 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1590 * @pool: target worker_pool
1591 *
1592 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1593 *
1594 * Works which are scheduled while the cpu is online must at least be
1595 * scheduled to a worker which is bound to the cpu so that if they are
1596 * flushed from cpu callbacks while cpu is going down, they are
1597 * guaranteed to execute on the cpu.
1598 *
1599 * This function is to be used by unbound workers and rescuers to bind
1600 * themselves to the target cpu and may race with cpu going down or
1601 * coming online. kthread_bind() can't be used because it may put the
1602 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1603 * verbatim as it's best effort and blocking and pool may be
1604 * [dis]associated in the meantime.
1605 *
1606 * This function tries set_cpus_allowed() and locks pool and verifies the
1607 * binding against %POOL_DISASSOCIATED which is set during
1608 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1609 * enters idle state or fetches works without dropping lock, it can
1610 * guarantee the scheduling requirement described in the first paragraph.
1611 *
1612 * CONTEXT:
1613 * Might sleep. Called without any lock but returns with pool->lock
1614 * held.
1615 *
1616 * RETURNS:
1617 * %true if the associated pool is online (@worker is successfully
1618 * bound), %false if offline.
1619 */
1620 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1621 __acquires(&pool->lock)
1622 {
1623 while (true) {
1624 /*
1625 * The following call may fail, succeed or succeed
1626 * without actually migrating the task to the cpu if
1627 * it races with cpu hotunplug operation. Verify
1628 * against POOL_DISASSOCIATED.
1629 */
1630 if (!(pool->flags & POOL_DISASSOCIATED))
1631 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1632
1633 spin_lock_irq(&pool->lock);
1634 if (pool->flags & POOL_DISASSOCIATED)
1635 return false;
1636 if (task_cpu(current) == pool->cpu &&
1637 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1638 return true;
1639 spin_unlock_irq(&pool->lock);
1640
1641 /*
1642 * We've raced with CPU hot[un]plug. Give it a breather
1643 * and retry migration. cond_resched() is required here;
1644 * otherwise, we might deadlock against cpu_stop trying to
1645 * bring down the CPU on non-preemptive kernel.
1646 */
1647 cpu_relax();
1648 cond_resched();
1649 }
1650 }
1651
1652 static struct worker *alloc_worker(void)
1653 {
1654 struct worker *worker;
1655
1656 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1657 if (worker) {
1658 INIT_LIST_HEAD(&worker->entry);
1659 INIT_LIST_HEAD(&worker->scheduled);
1660 /* on creation a worker is in !idle && prep state */
1661 worker->flags = WORKER_PREP;
1662 }
1663 return worker;
1664 }
1665
1666 /**
1667 * create_worker - create a new workqueue worker
1668 * @pool: pool the new worker will belong to
1669 *
1670 * Create a new worker which is bound to @pool. The returned worker
1671 * can be started by calling start_worker() or destroyed using
1672 * destroy_worker().
1673 *
1674 * CONTEXT:
1675 * Might sleep. Does GFP_KERNEL allocations.
1676 *
1677 * RETURNS:
1678 * Pointer to the newly created worker.
1679 */
1680 static struct worker *create_worker(struct worker_pool *pool)
1681 {
1682 struct worker *worker = NULL;
1683 int id = -1;
1684 char id_buf[16];
1685
1686 lockdep_assert_held(&pool->manager_mutex);
1687
1688 /*
1689 * ID is needed to determine kthread name. Allocate ID first
1690 * without installing the pointer.
1691 */
1692 idr_preload(GFP_KERNEL);
1693 spin_lock_irq(&pool->lock);
1694
1695 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1696
1697 spin_unlock_irq(&pool->lock);
1698 idr_preload_end();
1699 if (id < 0)
1700 goto fail;
1701
1702 worker = alloc_worker();
1703 if (!worker)
1704 goto fail;
1705
1706 worker->pool = pool;
1707 worker->id = id;
1708
1709 if (pool->cpu >= 0)
1710 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1711 pool->attrs->nice < 0 ? "H" : "");
1712 else
1713 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1714
1715 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1716 "kworker/%s", id_buf);
1717 if (IS_ERR(worker->task))
1718 goto fail;
1719
1720 /*
1721 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1722 * online CPUs. It'll be re-applied when any of the CPUs come up.
1723 */
1724 set_user_nice(worker->task, pool->attrs->nice);
1725 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1726
1727 /* prevent userland from meddling with cpumask of workqueue workers */
1728 worker->task->flags |= PF_NO_SETAFFINITY;
1729
1730 /*
1731 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1732 * remains stable across this function. See the comments above the
1733 * flag definition for details.
1734 */
1735 if (pool->flags & POOL_DISASSOCIATED)
1736 worker->flags |= WORKER_UNBOUND;
1737
1738 /* successful, commit the pointer to idr */
1739 spin_lock_irq(&pool->lock);
1740 idr_replace(&pool->worker_idr, worker, worker->id);
1741 spin_unlock_irq(&pool->lock);
1742
1743 return worker;
1744
1745 fail:
1746 if (id >= 0) {
1747 spin_lock_irq(&pool->lock);
1748 idr_remove(&pool->worker_idr, id);
1749 spin_unlock_irq(&pool->lock);
1750 }
1751 kfree(worker);
1752 return NULL;
1753 }
1754
1755 /**
1756 * start_worker - start a newly created worker
1757 * @worker: worker to start
1758 *
1759 * Make the pool aware of @worker and start it.
1760 *
1761 * CONTEXT:
1762 * spin_lock_irq(pool->lock).
1763 */
1764 static void start_worker(struct worker *worker)
1765 {
1766 worker->flags |= WORKER_STARTED;
1767 worker->pool->nr_workers++;
1768 worker_enter_idle(worker);
1769 wake_up_process(worker->task);
1770 }
1771
1772 /**
1773 * create_and_start_worker - create and start a worker for a pool
1774 * @pool: the target pool
1775 *
1776 * Grab the managership of @pool and create and start a new worker for it.
1777 */
1778 static int create_and_start_worker(struct worker_pool *pool)
1779 {
1780 struct worker *worker;
1781
1782 mutex_lock(&pool->manager_mutex);
1783
1784 worker = create_worker(pool);
1785 if (worker) {
1786 spin_lock_irq(&pool->lock);
1787 start_worker(worker);
1788 spin_unlock_irq(&pool->lock);
1789 }
1790
1791 mutex_unlock(&pool->manager_mutex);
1792
1793 return worker ? 0 : -ENOMEM;
1794 }
1795
1796 /**
1797 * destroy_worker - destroy a workqueue worker
1798 * @worker: worker to be destroyed
1799 *
1800 * Destroy @worker and adjust @pool stats accordingly.
1801 *
1802 * CONTEXT:
1803 * spin_lock_irq(pool->lock) which is released and regrabbed.
1804 */
1805 static void destroy_worker(struct worker *worker)
1806 {
1807 struct worker_pool *pool = worker->pool;
1808
1809 lockdep_assert_held(&pool->manager_mutex);
1810 lockdep_assert_held(&pool->lock);
1811
1812 /* sanity check frenzy */
1813 if (WARN_ON(worker->current_work) ||
1814 WARN_ON(!list_empty(&worker->scheduled)))
1815 return;
1816
1817 if (worker->flags & WORKER_STARTED)
1818 pool->nr_workers--;
1819 if (worker->flags & WORKER_IDLE)
1820 pool->nr_idle--;
1821
1822 list_del_init(&worker->entry);
1823 worker->flags |= WORKER_DIE;
1824
1825 idr_remove(&pool->worker_idr, worker->id);
1826
1827 spin_unlock_irq(&pool->lock);
1828
1829 kthread_stop(worker->task);
1830 kfree(worker);
1831
1832 spin_lock_irq(&pool->lock);
1833 }
1834
1835 static void idle_worker_timeout(unsigned long __pool)
1836 {
1837 struct worker_pool *pool = (void *)__pool;
1838
1839 spin_lock_irq(&pool->lock);
1840
1841 if (too_many_workers(pool)) {
1842 struct worker *worker;
1843 unsigned long expires;
1844
1845 /* idle_list is kept in LIFO order, check the last one */
1846 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1847 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1848
1849 if (time_before(jiffies, expires))
1850 mod_timer(&pool->idle_timer, expires);
1851 else {
1852 /* it's been idle for too long, wake up manager */
1853 pool->flags |= POOL_MANAGE_WORKERS;
1854 wake_up_worker(pool);
1855 }
1856 }
1857
1858 spin_unlock_irq(&pool->lock);
1859 }
1860
1861 static void send_mayday(struct work_struct *work)
1862 {
1863 struct pool_workqueue *pwq = get_work_pwq(work);
1864 struct workqueue_struct *wq = pwq->wq;
1865
1866 lockdep_assert_held(&wq_mayday_lock);
1867
1868 if (!wq->rescuer)
1869 return;
1870
1871 /* mayday mayday mayday */
1872 if (list_empty(&pwq->mayday_node)) {
1873 list_add_tail(&pwq->mayday_node, &wq->maydays);
1874 wake_up_process(wq->rescuer->task);
1875 }
1876 }
1877
1878 static void pool_mayday_timeout(unsigned long __pool)
1879 {
1880 struct worker_pool *pool = (void *)__pool;
1881 struct work_struct *work;
1882
1883 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1884 spin_lock(&pool->lock);
1885
1886 if (need_to_create_worker(pool)) {
1887 /*
1888 * We've been trying to create a new worker but
1889 * haven't been successful. We might be hitting an
1890 * allocation deadlock. Send distress signals to
1891 * rescuers.
1892 */
1893 list_for_each_entry(work, &pool->worklist, entry)
1894 send_mayday(work);
1895 }
1896
1897 spin_unlock(&pool->lock);
1898 spin_unlock_irq(&wq_mayday_lock);
1899
1900 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1901 }
1902
1903 /**
1904 * maybe_create_worker - create a new worker if necessary
1905 * @pool: pool to create a new worker for
1906 *
1907 * Create a new worker for @pool if necessary. @pool is guaranteed to
1908 * have at least one idle worker on return from this function. If
1909 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1910 * sent to all rescuers with works scheduled on @pool to resolve
1911 * possible allocation deadlock.
1912 *
1913 * On return, need_to_create_worker() is guaranteed to be %false and
1914 * may_start_working() %true.
1915 *
1916 * LOCKING:
1917 * spin_lock_irq(pool->lock) which may be released and regrabbed
1918 * multiple times. Does GFP_KERNEL allocations. Called only from
1919 * manager.
1920 *
1921 * RETURNS:
1922 * %false if no action was taken and pool->lock stayed locked, %true
1923 * otherwise.
1924 */
1925 static bool maybe_create_worker(struct worker_pool *pool)
1926 __releases(&pool->lock)
1927 __acquires(&pool->lock)
1928 {
1929 if (!need_to_create_worker(pool))
1930 return false;
1931 restart:
1932 spin_unlock_irq(&pool->lock);
1933
1934 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1935 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1936
1937 while (true) {
1938 struct worker *worker;
1939
1940 worker = create_worker(pool);
1941 if (worker) {
1942 del_timer_sync(&pool->mayday_timer);
1943 spin_lock_irq(&pool->lock);
1944 start_worker(worker);
1945 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1946 goto restart;
1947 return true;
1948 }
1949
1950 if (!need_to_create_worker(pool))
1951 break;
1952
1953 __set_current_state(TASK_INTERRUPTIBLE);
1954 schedule_timeout(CREATE_COOLDOWN);
1955
1956 if (!need_to_create_worker(pool))
1957 break;
1958 }
1959
1960 del_timer_sync(&pool->mayday_timer);
1961 spin_lock_irq(&pool->lock);
1962 if (need_to_create_worker(pool))
1963 goto restart;
1964 return true;
1965 }
1966
1967 /**
1968 * maybe_destroy_worker - destroy workers which have been idle for a while
1969 * @pool: pool to destroy workers for
1970 *
1971 * Destroy @pool workers which have been idle for longer than
1972 * IDLE_WORKER_TIMEOUT.
1973 *
1974 * LOCKING:
1975 * spin_lock_irq(pool->lock) which may be released and regrabbed
1976 * multiple times. Called only from manager.
1977 *
1978 * RETURNS:
1979 * %false if no action was taken and pool->lock stayed locked, %true
1980 * otherwise.
1981 */
1982 static bool maybe_destroy_workers(struct worker_pool *pool)
1983 {
1984 bool ret = false;
1985
1986 while (too_many_workers(pool)) {
1987 struct worker *worker;
1988 unsigned long expires;
1989
1990 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1991 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1992
1993 if (time_before(jiffies, expires)) {
1994 mod_timer(&pool->idle_timer, expires);
1995 break;
1996 }
1997
1998 destroy_worker(worker);
1999 ret = true;
2000 }
2001
2002 return ret;
2003 }
2004
2005 /**
2006 * manage_workers - manage worker pool
2007 * @worker: self
2008 *
2009 * Assume the manager role and manage the worker pool @worker belongs
2010 * to. At any given time, there can be only zero or one manager per
2011 * pool. The exclusion is handled automatically by this function.
2012 *
2013 * The caller can safely start processing works on false return. On
2014 * true return, it's guaranteed that need_to_create_worker() is false
2015 * and may_start_working() is true.
2016 *
2017 * CONTEXT:
2018 * spin_lock_irq(pool->lock) which may be released and regrabbed
2019 * multiple times. Does GFP_KERNEL allocations.
2020 *
2021 * RETURNS:
2022 * spin_lock_irq(pool->lock) which may be released and regrabbed
2023 * multiple times. Does GFP_KERNEL allocations.
2024 */
2025 static bool manage_workers(struct worker *worker)
2026 {
2027 struct worker_pool *pool = worker->pool;
2028 bool ret = false;
2029
2030 /*
2031 * Managership is governed by two mutexes - manager_arb and
2032 * manager_mutex. manager_arb handles arbitration of manager role.
2033 * Anyone who successfully grabs manager_arb wins the arbitration
2034 * and becomes the manager. mutex_trylock() on pool->manager_arb
2035 * failure while holding pool->lock reliably indicates that someone
2036 * else is managing the pool and the worker which failed trylock
2037 * can proceed to executing work items. This means that anyone
2038 * grabbing manager_arb is responsible for actually performing
2039 * manager duties. If manager_arb is grabbed and released without
2040 * actual management, the pool may stall indefinitely.
2041 *
2042 * manager_mutex is used for exclusion of actual management
2043 * operations. The holder of manager_mutex can be sure that none
2044 * of management operations, including creation and destruction of
2045 * workers, won't take place until the mutex is released. Because
2046 * manager_mutex doesn't interfere with manager role arbitration,
2047 * it is guaranteed that the pool's management, while may be
2048 * delayed, won't be disturbed by someone else grabbing
2049 * manager_mutex.
2050 */
2051 if (!mutex_trylock(&pool->manager_arb))
2052 return ret;
2053
2054 /*
2055 * With manager arbitration won, manager_mutex would be free in
2056 * most cases. trylock first without dropping @pool->lock.
2057 */
2058 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2059 spin_unlock_irq(&pool->lock);
2060 mutex_lock(&pool->manager_mutex);
2061 ret = true;
2062 }
2063
2064 pool->flags &= ~POOL_MANAGE_WORKERS;
2065
2066 /*
2067 * Destroy and then create so that may_start_working() is true
2068 * on return.
2069 */
2070 ret |= maybe_destroy_workers(pool);
2071 ret |= maybe_create_worker(pool);
2072
2073 mutex_unlock(&pool->manager_mutex);
2074 mutex_unlock(&pool->manager_arb);
2075 return ret;
2076 }
2077
2078 /**
2079 * process_one_work - process single work
2080 * @worker: self
2081 * @work: work to process
2082 *
2083 * Process @work. This function contains all the logics necessary to
2084 * process a single work including synchronization against and
2085 * interaction with other workers on the same cpu, queueing and
2086 * flushing. As long as context requirement is met, any worker can
2087 * call this function to process a work.
2088 *
2089 * CONTEXT:
2090 * spin_lock_irq(pool->lock) which is released and regrabbed.
2091 */
2092 static void process_one_work(struct worker *worker, struct work_struct *work)
2093 __releases(&pool->lock)
2094 __acquires(&pool->lock)
2095 {
2096 struct pool_workqueue *pwq = get_work_pwq(work);
2097 struct worker_pool *pool = worker->pool;
2098 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2099 int work_color;
2100 struct worker *collision;
2101 #ifdef CONFIG_LOCKDEP
2102 /*
2103 * It is permissible to free the struct work_struct from
2104 * inside the function that is called from it, this we need to
2105 * take into account for lockdep too. To avoid bogus "held
2106 * lock freed" warnings as well as problems when looking into
2107 * work->lockdep_map, make a copy and use that here.
2108 */
2109 struct lockdep_map lockdep_map;
2110
2111 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2112 #endif
2113 /*
2114 * Ensure we're on the correct CPU. DISASSOCIATED test is
2115 * necessary to avoid spurious warnings from rescuers servicing the
2116 * unbound or a disassociated pool.
2117 */
2118 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2119 !(pool->flags & POOL_DISASSOCIATED) &&
2120 raw_smp_processor_id() != pool->cpu);
2121
2122 /*
2123 * A single work shouldn't be executed concurrently by
2124 * multiple workers on a single cpu. Check whether anyone is
2125 * already processing the work. If so, defer the work to the
2126 * currently executing one.
2127 */
2128 collision = find_worker_executing_work(pool, work);
2129 if (unlikely(collision)) {
2130 move_linked_works(work, &collision->scheduled, NULL);
2131 return;
2132 }
2133
2134 /* claim and dequeue */
2135 debug_work_deactivate(work);
2136 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2137 worker->current_work = work;
2138 worker->current_func = work->func;
2139 worker->current_pwq = pwq;
2140 work_color = get_work_color(work);
2141
2142 list_del_init(&work->entry);
2143
2144 /*
2145 * CPU intensive works don't participate in concurrency
2146 * management. They're the scheduler's responsibility.
2147 */
2148 if (unlikely(cpu_intensive))
2149 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2150
2151 /*
2152 * Unbound pool isn't concurrency managed and work items should be
2153 * executed ASAP. Wake up another worker if necessary.
2154 */
2155 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2156 wake_up_worker(pool);
2157
2158 /*
2159 * Record the last pool and clear PENDING which should be the last
2160 * update to @work. Also, do this inside @pool->lock so that
2161 * PENDING and queued state changes happen together while IRQ is
2162 * disabled.
2163 */
2164 set_work_pool_and_clear_pending(work, pool->id);
2165
2166 spin_unlock_irq(&pool->lock);
2167
2168 lock_map_acquire_read(&pwq->wq->lockdep_map);
2169 lock_map_acquire(&lockdep_map);
2170 trace_workqueue_execute_start(work);
2171 worker->current_func(work);
2172 /*
2173 * While we must be careful to not use "work" after this, the trace
2174 * point will only record its address.
2175 */
2176 trace_workqueue_execute_end(work);
2177 lock_map_release(&lockdep_map);
2178 lock_map_release(&pwq->wq->lockdep_map);
2179
2180 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2181 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2182 " last function: %pf\n",
2183 current->comm, preempt_count(), task_pid_nr(current),
2184 worker->current_func);
2185 debug_show_held_locks(current);
2186 dump_stack();
2187 }
2188
2189 spin_lock_irq(&pool->lock);
2190
2191 /* clear cpu intensive status */
2192 if (unlikely(cpu_intensive))
2193 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2194
2195 /* we're done with it, release */
2196 hash_del(&worker->hentry);
2197 worker->current_work = NULL;
2198 worker->current_func = NULL;
2199 worker->current_pwq = NULL;
2200 pwq_dec_nr_in_flight(pwq, work_color);
2201 }
2202
2203 /**
2204 * process_scheduled_works - process scheduled works
2205 * @worker: self
2206 *
2207 * Process all scheduled works. Please note that the scheduled list
2208 * may change while processing a work, so this function repeatedly
2209 * fetches a work from the top and executes it.
2210 *
2211 * CONTEXT:
2212 * spin_lock_irq(pool->lock) which may be released and regrabbed
2213 * multiple times.
2214 */
2215 static void process_scheduled_works(struct worker *worker)
2216 {
2217 while (!list_empty(&worker->scheduled)) {
2218 struct work_struct *work = list_first_entry(&worker->scheduled,
2219 struct work_struct, entry);
2220 process_one_work(worker, work);
2221 }
2222 }
2223
2224 /**
2225 * worker_thread - the worker thread function
2226 * @__worker: self
2227 *
2228 * The worker thread function. All workers belong to a worker_pool -
2229 * either a per-cpu one or dynamic unbound one. These workers process all
2230 * work items regardless of their specific target workqueue. The only
2231 * exception is work items which belong to workqueues with a rescuer which
2232 * will be explained in rescuer_thread().
2233 */
2234 static int worker_thread(void *__worker)
2235 {
2236 struct worker *worker = __worker;
2237 struct worker_pool *pool = worker->pool;
2238
2239 /* tell the scheduler that this is a workqueue worker */
2240 worker->task->flags |= PF_WQ_WORKER;
2241 woke_up:
2242 spin_lock_irq(&pool->lock);
2243
2244 /* am I supposed to die? */
2245 if (unlikely(worker->flags & WORKER_DIE)) {
2246 spin_unlock_irq(&pool->lock);
2247 WARN_ON_ONCE(!list_empty(&worker->entry));
2248 worker->task->flags &= ~PF_WQ_WORKER;
2249 return 0;
2250 }
2251
2252 worker_leave_idle(worker);
2253 recheck:
2254 /* no more worker necessary? */
2255 if (!need_more_worker(pool))
2256 goto sleep;
2257
2258 /* do we need to manage? */
2259 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2260 goto recheck;
2261
2262 /*
2263 * ->scheduled list can only be filled while a worker is
2264 * preparing to process a work or actually processing it.
2265 * Make sure nobody diddled with it while I was sleeping.
2266 */
2267 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2268
2269 /*
2270 * Finish PREP stage. We're guaranteed to have at least one idle
2271 * worker or that someone else has already assumed the manager
2272 * role. This is where @worker starts participating in concurrency
2273 * management if applicable and concurrency management is restored
2274 * after being rebound. See rebind_workers() for details.
2275 */
2276 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2277
2278 do {
2279 struct work_struct *work =
2280 list_first_entry(&pool->worklist,
2281 struct work_struct, entry);
2282
2283 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2284 /* optimization path, not strictly necessary */
2285 process_one_work(worker, work);
2286 if (unlikely(!list_empty(&worker->scheduled)))
2287 process_scheduled_works(worker);
2288 } else {
2289 move_linked_works(work, &worker->scheduled, NULL);
2290 process_scheduled_works(worker);
2291 }
2292 } while (keep_working(pool));
2293
2294 worker_set_flags(worker, WORKER_PREP, false);
2295 sleep:
2296 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2297 goto recheck;
2298
2299 /*
2300 * pool->lock is held and there's no work to process and no need to
2301 * manage, sleep. Workers are woken up only while holding
2302 * pool->lock or from local cpu, so setting the current state
2303 * before releasing pool->lock is enough to prevent losing any
2304 * event.
2305 */
2306 worker_enter_idle(worker);
2307 __set_current_state(TASK_INTERRUPTIBLE);
2308 spin_unlock_irq(&pool->lock);
2309 schedule();
2310 goto woke_up;
2311 }
2312
2313 /**
2314 * rescuer_thread - the rescuer thread function
2315 * @__rescuer: self
2316 *
2317 * Workqueue rescuer thread function. There's one rescuer for each
2318 * workqueue which has WQ_MEM_RECLAIM set.
2319 *
2320 * Regular work processing on a pool may block trying to create a new
2321 * worker which uses GFP_KERNEL allocation which has slight chance of
2322 * developing into deadlock if some works currently on the same queue
2323 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2324 * the problem rescuer solves.
2325 *
2326 * When such condition is possible, the pool summons rescuers of all
2327 * workqueues which have works queued on the pool and let them process
2328 * those works so that forward progress can be guaranteed.
2329 *
2330 * This should happen rarely.
2331 */
2332 static int rescuer_thread(void *__rescuer)
2333 {
2334 struct worker *rescuer = __rescuer;
2335 struct workqueue_struct *wq = rescuer->rescue_wq;
2336 struct list_head *scheduled = &rescuer->scheduled;
2337
2338 set_user_nice(current, RESCUER_NICE_LEVEL);
2339
2340 /*
2341 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2342 * doesn't participate in concurrency management.
2343 */
2344 rescuer->task->flags |= PF_WQ_WORKER;
2345 repeat:
2346 set_current_state(TASK_INTERRUPTIBLE);
2347
2348 if (kthread_should_stop()) {
2349 __set_current_state(TASK_RUNNING);
2350 rescuer->task->flags &= ~PF_WQ_WORKER;
2351 return 0;
2352 }
2353
2354 /* see whether any pwq is asking for help */
2355 spin_lock_irq(&wq_mayday_lock);
2356
2357 while (!list_empty(&wq->maydays)) {
2358 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2359 struct pool_workqueue, mayday_node);
2360 struct worker_pool *pool = pwq->pool;
2361 struct work_struct *work, *n;
2362
2363 __set_current_state(TASK_RUNNING);
2364 list_del_init(&pwq->mayday_node);
2365
2366 spin_unlock_irq(&wq_mayday_lock);
2367
2368 /* migrate to the target cpu if possible */
2369 worker_maybe_bind_and_lock(pool);
2370 rescuer->pool = pool;
2371
2372 /*
2373 * Slurp in all works issued via this workqueue and
2374 * process'em.
2375 */
2376 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2377 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2378 if (get_work_pwq(work) == pwq)
2379 move_linked_works(work, scheduled, &n);
2380
2381 process_scheduled_works(rescuer);
2382
2383 /*
2384 * Leave this pool. If keep_working() is %true, notify a
2385 * regular worker; otherwise, we end up with 0 concurrency
2386 * and stalling the execution.
2387 */
2388 if (keep_working(pool))
2389 wake_up_worker(pool);
2390
2391 rescuer->pool = NULL;
2392 spin_unlock(&pool->lock);
2393 spin_lock(&wq_mayday_lock);
2394 }
2395
2396 spin_unlock_irq(&wq_mayday_lock);
2397
2398 /* rescuers should never participate in concurrency management */
2399 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2400 schedule();
2401 goto repeat;
2402 }
2403
2404 struct wq_barrier {
2405 struct work_struct work;
2406 struct completion done;
2407 };
2408
2409 static void wq_barrier_func(struct work_struct *work)
2410 {
2411 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2412 complete(&barr->done);
2413 }
2414
2415 /**
2416 * insert_wq_barrier - insert a barrier work
2417 * @pwq: pwq to insert barrier into
2418 * @barr: wq_barrier to insert
2419 * @target: target work to attach @barr to
2420 * @worker: worker currently executing @target, NULL if @target is not executing
2421 *
2422 * @barr is linked to @target such that @barr is completed only after
2423 * @target finishes execution. Please note that the ordering
2424 * guarantee is observed only with respect to @target and on the local
2425 * cpu.
2426 *
2427 * Currently, a queued barrier can't be canceled. This is because
2428 * try_to_grab_pending() can't determine whether the work to be
2429 * grabbed is at the head of the queue and thus can't clear LINKED
2430 * flag of the previous work while there must be a valid next work
2431 * after a work with LINKED flag set.
2432 *
2433 * Note that when @worker is non-NULL, @target may be modified
2434 * underneath us, so we can't reliably determine pwq from @target.
2435 *
2436 * CONTEXT:
2437 * spin_lock_irq(pool->lock).
2438 */
2439 static void insert_wq_barrier(struct pool_workqueue *pwq,
2440 struct wq_barrier *barr,
2441 struct work_struct *target, struct worker *worker)
2442 {
2443 struct list_head *head;
2444 unsigned int linked = 0;
2445
2446 /*
2447 * debugobject calls are safe here even with pool->lock locked
2448 * as we know for sure that this will not trigger any of the
2449 * checks and call back into the fixup functions where we
2450 * might deadlock.
2451 */
2452 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2453 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2454 init_completion(&barr->done);
2455
2456 /*
2457 * If @target is currently being executed, schedule the
2458 * barrier to the worker; otherwise, put it after @target.
2459 */
2460 if (worker)
2461 head = worker->scheduled.next;
2462 else {
2463 unsigned long *bits = work_data_bits(target);
2464
2465 head = target->entry.next;
2466 /* there can already be other linked works, inherit and set */
2467 linked = *bits & WORK_STRUCT_LINKED;
2468 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2469 }
2470
2471 debug_work_activate(&barr->work);
2472 insert_work(pwq, &barr->work, head,
2473 work_color_to_flags(WORK_NO_COLOR) | linked);
2474 }
2475
2476 /**
2477 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2478 * @wq: workqueue being flushed
2479 * @flush_color: new flush color, < 0 for no-op
2480 * @work_color: new work color, < 0 for no-op
2481 *
2482 * Prepare pwqs for workqueue flushing.
2483 *
2484 * If @flush_color is non-negative, flush_color on all pwqs should be
2485 * -1. If no pwq has in-flight commands at the specified color, all
2486 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2487 * has in flight commands, its pwq->flush_color is set to
2488 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2489 * wakeup logic is armed and %true is returned.
2490 *
2491 * The caller should have initialized @wq->first_flusher prior to
2492 * calling this function with non-negative @flush_color. If
2493 * @flush_color is negative, no flush color update is done and %false
2494 * is returned.
2495 *
2496 * If @work_color is non-negative, all pwqs should have the same
2497 * work_color which is previous to @work_color and all will be
2498 * advanced to @work_color.
2499 *
2500 * CONTEXT:
2501 * mutex_lock(wq->mutex).
2502 *
2503 * RETURNS:
2504 * %true if @flush_color >= 0 and there's something to flush. %false
2505 * otherwise.
2506 */
2507 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2508 int flush_color, int work_color)
2509 {
2510 bool wait = false;
2511 struct pool_workqueue *pwq;
2512
2513 if (flush_color >= 0) {
2514 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2515 atomic_set(&wq->nr_pwqs_to_flush, 1);
2516 }
2517
2518 for_each_pwq(pwq, wq) {
2519 struct worker_pool *pool = pwq->pool;
2520
2521 spin_lock_irq(&pool->lock);
2522
2523 if (flush_color >= 0) {
2524 WARN_ON_ONCE(pwq->flush_color != -1);
2525
2526 if (pwq->nr_in_flight[flush_color]) {
2527 pwq->flush_color = flush_color;
2528 atomic_inc(&wq->nr_pwqs_to_flush);
2529 wait = true;
2530 }
2531 }
2532
2533 if (work_color >= 0) {
2534 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2535 pwq->work_color = work_color;
2536 }
2537
2538 spin_unlock_irq(&pool->lock);
2539 }
2540
2541 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2542 complete(&wq->first_flusher->done);
2543
2544 return wait;
2545 }
2546
2547 /**
2548 * flush_workqueue - ensure that any scheduled work has run to completion.
2549 * @wq: workqueue to flush
2550 *
2551 * This function sleeps until all work items which were queued on entry
2552 * have finished execution, but it is not livelocked by new incoming ones.
2553 */
2554 void flush_workqueue(struct workqueue_struct *wq)
2555 {
2556 struct wq_flusher this_flusher = {
2557 .list = LIST_HEAD_INIT(this_flusher.list),
2558 .flush_color = -1,
2559 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2560 };
2561 int next_color;
2562
2563 lock_map_acquire(&wq->lockdep_map);
2564 lock_map_release(&wq->lockdep_map);
2565
2566 mutex_lock(&wq->mutex);
2567
2568 /*
2569 * Start-to-wait phase
2570 */
2571 next_color = work_next_color(wq->work_color);
2572
2573 if (next_color != wq->flush_color) {
2574 /*
2575 * Color space is not full. The current work_color
2576 * becomes our flush_color and work_color is advanced
2577 * by one.
2578 */
2579 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2580 this_flusher.flush_color = wq->work_color;
2581 wq->work_color = next_color;
2582
2583 if (!wq->first_flusher) {
2584 /* no flush in progress, become the first flusher */
2585 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2586
2587 wq->first_flusher = &this_flusher;
2588
2589 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2590 wq->work_color)) {
2591 /* nothing to flush, done */
2592 wq->flush_color = next_color;
2593 wq->first_flusher = NULL;
2594 goto out_unlock;
2595 }
2596 } else {
2597 /* wait in queue */
2598 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2599 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2600 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2601 }
2602 } else {
2603 /*
2604 * Oops, color space is full, wait on overflow queue.
2605 * The next flush completion will assign us
2606 * flush_color and transfer to flusher_queue.
2607 */
2608 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2609 }
2610
2611 mutex_unlock(&wq->mutex);
2612
2613 wait_for_completion(&this_flusher.done);
2614
2615 /*
2616 * Wake-up-and-cascade phase
2617 *
2618 * First flushers are responsible for cascading flushes and
2619 * handling overflow. Non-first flushers can simply return.
2620 */
2621 if (wq->first_flusher != &this_flusher)
2622 return;
2623
2624 mutex_lock(&wq->mutex);
2625
2626 /* we might have raced, check again with mutex held */
2627 if (wq->first_flusher != &this_flusher)
2628 goto out_unlock;
2629
2630 wq->first_flusher = NULL;
2631
2632 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2633 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2634
2635 while (true) {
2636 struct wq_flusher *next, *tmp;
2637
2638 /* complete all the flushers sharing the current flush color */
2639 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2640 if (next->flush_color != wq->flush_color)
2641 break;
2642 list_del_init(&next->list);
2643 complete(&next->done);
2644 }
2645
2646 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2647 wq->flush_color != work_next_color(wq->work_color));
2648
2649 /* this flush_color is finished, advance by one */
2650 wq->flush_color = work_next_color(wq->flush_color);
2651
2652 /* one color has been freed, handle overflow queue */
2653 if (!list_empty(&wq->flusher_overflow)) {
2654 /*
2655 * Assign the same color to all overflowed
2656 * flushers, advance work_color and append to
2657 * flusher_queue. This is the start-to-wait
2658 * phase for these overflowed flushers.
2659 */
2660 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2661 tmp->flush_color = wq->work_color;
2662
2663 wq->work_color = work_next_color(wq->work_color);
2664
2665 list_splice_tail_init(&wq->flusher_overflow,
2666 &wq->flusher_queue);
2667 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2668 }
2669
2670 if (list_empty(&wq->flusher_queue)) {
2671 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2672 break;
2673 }
2674
2675 /*
2676 * Need to flush more colors. Make the next flusher
2677 * the new first flusher and arm pwqs.
2678 */
2679 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2680 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2681
2682 list_del_init(&next->list);
2683 wq->first_flusher = next;
2684
2685 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2686 break;
2687
2688 /*
2689 * Meh... this color is already done, clear first
2690 * flusher and repeat cascading.
2691 */
2692 wq->first_flusher = NULL;
2693 }
2694
2695 out_unlock:
2696 mutex_unlock(&wq->mutex);
2697 }
2698 EXPORT_SYMBOL_GPL(flush_workqueue);
2699
2700 /**
2701 * drain_workqueue - drain a workqueue
2702 * @wq: workqueue to drain
2703 *
2704 * Wait until the workqueue becomes empty. While draining is in progress,
2705 * only chain queueing is allowed. IOW, only currently pending or running
2706 * work items on @wq can queue further work items on it. @wq is flushed
2707 * repeatedly until it becomes empty. The number of flushing is detemined
2708 * by the depth of chaining and should be relatively short. Whine if it
2709 * takes too long.
2710 */
2711 void drain_workqueue(struct workqueue_struct *wq)
2712 {
2713 unsigned int flush_cnt = 0;
2714 struct pool_workqueue *pwq;
2715
2716 /*
2717 * __queue_work() needs to test whether there are drainers, is much
2718 * hotter than drain_workqueue() and already looks at @wq->flags.
2719 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2720 */
2721 mutex_lock(&wq->mutex);
2722 if (!wq->nr_drainers++)
2723 wq->flags |= __WQ_DRAINING;
2724 mutex_unlock(&wq->mutex);
2725 reflush:
2726 flush_workqueue(wq);
2727
2728 mutex_lock(&wq->mutex);
2729
2730 for_each_pwq(pwq, wq) {
2731 bool drained;
2732
2733 spin_lock_irq(&pwq->pool->lock);
2734 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2735 spin_unlock_irq(&pwq->pool->lock);
2736
2737 if (drained)
2738 continue;
2739
2740 if (++flush_cnt == 10 ||
2741 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2742 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2743 wq->name, flush_cnt);
2744
2745 mutex_unlock(&wq->mutex);
2746 goto reflush;
2747 }
2748
2749 if (!--wq->nr_drainers)
2750 wq->flags &= ~__WQ_DRAINING;
2751 mutex_unlock(&wq->mutex);
2752 }
2753 EXPORT_SYMBOL_GPL(drain_workqueue);
2754
2755 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2756 {
2757 struct worker *worker = NULL;
2758 struct worker_pool *pool;
2759 struct pool_workqueue *pwq;
2760
2761 might_sleep();
2762
2763 local_irq_disable();
2764 pool = get_work_pool(work);
2765 if (!pool) {
2766 local_irq_enable();
2767 return false;
2768 }
2769
2770 spin_lock(&pool->lock);
2771 /* see the comment in try_to_grab_pending() with the same code */
2772 pwq = get_work_pwq(work);
2773 if (pwq) {
2774 if (unlikely(pwq->pool != pool))
2775 goto already_gone;
2776 } else {
2777 worker = find_worker_executing_work(pool, work);
2778 if (!worker)
2779 goto already_gone;
2780 pwq = worker->current_pwq;
2781 }
2782
2783 insert_wq_barrier(pwq, barr, work, worker);
2784 spin_unlock_irq(&pool->lock);
2785
2786 /*
2787 * If @max_active is 1 or rescuer is in use, flushing another work
2788 * item on the same workqueue may lead to deadlock. Make sure the
2789 * flusher is not running on the same workqueue by verifying write
2790 * access.
2791 */
2792 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2793 lock_map_acquire(&pwq->wq->lockdep_map);
2794 else
2795 lock_map_acquire_read(&pwq->wq->lockdep_map);
2796 lock_map_release(&pwq->wq->lockdep_map);
2797
2798 return true;
2799 already_gone:
2800 spin_unlock_irq(&pool->lock);
2801 return false;
2802 }
2803
2804 /**
2805 * flush_work - wait for a work to finish executing the last queueing instance
2806 * @work: the work to flush
2807 *
2808 * Wait until @work has finished execution. @work is guaranteed to be idle
2809 * on return if it hasn't been requeued since flush started.
2810 *
2811 * RETURNS:
2812 * %true if flush_work() waited for the work to finish execution,
2813 * %false if it was already idle.
2814 */
2815 bool flush_work(struct work_struct *work)
2816 {
2817 struct wq_barrier barr;
2818
2819 lock_map_acquire(&work->lockdep_map);
2820 lock_map_release(&work->lockdep_map);
2821
2822 if (start_flush_work(work, &barr)) {
2823 wait_for_completion(&barr.done);
2824 destroy_work_on_stack(&barr.work);
2825 return true;
2826 } else {
2827 return false;
2828 }
2829 }
2830 EXPORT_SYMBOL_GPL(flush_work);
2831
2832 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2833 {
2834 unsigned long flags;
2835 int ret;
2836
2837 do {
2838 ret = try_to_grab_pending(work, is_dwork, &flags);
2839 /*
2840 * If someone else is canceling, wait for the same event it
2841 * would be waiting for before retrying.
2842 */
2843 if (unlikely(ret == -ENOENT))
2844 flush_work(work);
2845 } while (unlikely(ret < 0));
2846
2847 /* tell other tasks trying to grab @work to back off */
2848 mark_work_canceling(work);
2849 local_irq_restore(flags);
2850
2851 flush_work(work);
2852 clear_work_data(work);
2853 return ret;
2854 }
2855
2856 /**
2857 * cancel_work_sync - cancel a work and wait for it to finish
2858 * @work: the work to cancel
2859 *
2860 * Cancel @work and wait for its execution to finish. This function
2861 * can be used even if the work re-queues itself or migrates to
2862 * another workqueue. On return from this function, @work is
2863 * guaranteed to be not pending or executing on any CPU.
2864 *
2865 * cancel_work_sync(&delayed_work->work) must not be used for
2866 * delayed_work's. Use cancel_delayed_work_sync() instead.
2867 *
2868 * The caller must ensure that the workqueue on which @work was last
2869 * queued can't be destroyed before this function returns.
2870 *
2871 * RETURNS:
2872 * %true if @work was pending, %false otherwise.
2873 */
2874 bool cancel_work_sync(struct work_struct *work)
2875 {
2876 return __cancel_work_timer(work, false);
2877 }
2878 EXPORT_SYMBOL_GPL(cancel_work_sync);
2879
2880 /**
2881 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2882 * @dwork: the delayed work to flush
2883 *
2884 * Delayed timer is cancelled and the pending work is queued for
2885 * immediate execution. Like flush_work(), this function only
2886 * considers the last queueing instance of @dwork.
2887 *
2888 * RETURNS:
2889 * %true if flush_work() waited for the work to finish execution,
2890 * %false if it was already idle.
2891 */
2892 bool flush_delayed_work(struct delayed_work *dwork)
2893 {
2894 local_irq_disable();
2895 if (del_timer_sync(&dwork->timer))
2896 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2897 local_irq_enable();
2898 return flush_work(&dwork->work);
2899 }
2900 EXPORT_SYMBOL(flush_delayed_work);
2901
2902 /**
2903 * cancel_delayed_work - cancel a delayed work
2904 * @dwork: delayed_work to cancel
2905 *
2906 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2907 * and canceled; %false if wasn't pending. Note that the work callback
2908 * function may still be running on return, unless it returns %true and the
2909 * work doesn't re-arm itself. Explicitly flush or use
2910 * cancel_delayed_work_sync() to wait on it.
2911 *
2912 * This function is safe to call from any context including IRQ handler.
2913 */
2914 bool cancel_delayed_work(struct delayed_work *dwork)
2915 {
2916 unsigned long flags;
2917 int ret;
2918
2919 do {
2920 ret = try_to_grab_pending(&dwork->work, true, &flags);
2921 } while (unlikely(ret == -EAGAIN));
2922
2923 if (unlikely(ret < 0))
2924 return false;
2925
2926 set_work_pool_and_clear_pending(&dwork->work,
2927 get_work_pool_id(&dwork->work));
2928 local_irq_restore(flags);
2929 return ret;
2930 }
2931 EXPORT_SYMBOL(cancel_delayed_work);
2932
2933 /**
2934 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2935 * @dwork: the delayed work cancel
2936 *
2937 * This is cancel_work_sync() for delayed works.
2938 *
2939 * RETURNS:
2940 * %true if @dwork was pending, %false otherwise.
2941 */
2942 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2943 {
2944 return __cancel_work_timer(&dwork->work, true);
2945 }
2946 EXPORT_SYMBOL(cancel_delayed_work_sync);
2947
2948 /**
2949 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2950 * @func: the function to call
2951 *
2952 * schedule_on_each_cpu() executes @func on each online CPU using the
2953 * system workqueue and blocks until all CPUs have completed.
2954 * schedule_on_each_cpu() is very slow.
2955 *
2956 * RETURNS:
2957 * 0 on success, -errno on failure.
2958 */
2959 int schedule_on_each_cpu(work_func_t func)
2960 {
2961 int cpu;
2962 struct work_struct __percpu *works;
2963
2964 works = alloc_percpu(struct work_struct);
2965 if (!works)
2966 return -ENOMEM;
2967
2968 get_online_cpus();
2969
2970 for_each_online_cpu(cpu) {
2971 struct work_struct *work = per_cpu_ptr(works, cpu);
2972
2973 INIT_WORK(work, func);
2974 schedule_work_on(cpu, work);
2975 }
2976
2977 for_each_online_cpu(cpu)
2978 flush_work(per_cpu_ptr(works, cpu));
2979
2980 put_online_cpus();
2981 free_percpu(works);
2982 return 0;
2983 }
2984
2985 /**
2986 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2987 *
2988 * Forces execution of the kernel-global workqueue and blocks until its
2989 * completion.
2990 *
2991 * Think twice before calling this function! It's very easy to get into
2992 * trouble if you don't take great care. Either of the following situations
2993 * will lead to deadlock:
2994 *
2995 * One of the work items currently on the workqueue needs to acquire
2996 * a lock held by your code or its caller.
2997 *
2998 * Your code is running in the context of a work routine.
2999 *
3000 * They will be detected by lockdep when they occur, but the first might not
3001 * occur very often. It depends on what work items are on the workqueue and
3002 * what locks they need, which you have no control over.
3003 *
3004 * In most situations flushing the entire workqueue is overkill; you merely
3005 * need to know that a particular work item isn't queued and isn't running.
3006 * In such cases you should use cancel_delayed_work_sync() or
3007 * cancel_work_sync() instead.
3008 */
3009 void flush_scheduled_work(void)
3010 {
3011 flush_workqueue(system_wq);
3012 }
3013 EXPORT_SYMBOL(flush_scheduled_work);
3014
3015 /**
3016 * execute_in_process_context - reliably execute the routine with user context
3017 * @fn: the function to execute
3018 * @ew: guaranteed storage for the execute work structure (must
3019 * be available when the work executes)
3020 *
3021 * Executes the function immediately if process context is available,
3022 * otherwise schedules the function for delayed execution.
3023 *
3024 * Returns: 0 - function was executed
3025 * 1 - function was scheduled for execution
3026 */
3027 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3028 {
3029 if (!in_interrupt()) {
3030 fn(&ew->work);
3031 return 0;
3032 }
3033
3034 INIT_WORK(&ew->work, fn);
3035 schedule_work(&ew->work);
3036
3037 return 1;
3038 }
3039 EXPORT_SYMBOL_GPL(execute_in_process_context);
3040
3041 #ifdef CONFIG_SYSFS
3042 /*
3043 * Workqueues with WQ_SYSFS flag set is visible to userland via
3044 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3045 * following attributes.
3046 *
3047 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3048 * max_active RW int : maximum number of in-flight work items
3049 *
3050 * Unbound workqueues have the following extra attributes.
3051 *
3052 * id RO int : the associated pool ID
3053 * nice RW int : nice value of the workers
3054 * cpumask RW mask : bitmask of allowed CPUs for the workers
3055 */
3056 struct wq_device {
3057 struct workqueue_struct *wq;
3058 struct device dev;
3059 };
3060
3061 static struct workqueue_struct *dev_to_wq(struct device *dev)
3062 {
3063 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3064
3065 return wq_dev->wq;
3066 }
3067
3068 static ssize_t wq_per_cpu_show(struct device *dev,
3069 struct device_attribute *attr, char *buf)
3070 {
3071 struct workqueue_struct *wq = dev_to_wq(dev);
3072
3073 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3074 }
3075
3076 static ssize_t wq_max_active_show(struct device *dev,
3077 struct device_attribute *attr, char *buf)
3078 {
3079 struct workqueue_struct *wq = dev_to_wq(dev);
3080
3081 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3082 }
3083
3084 static ssize_t wq_max_active_store(struct device *dev,
3085 struct device_attribute *attr,
3086 const char *buf, size_t count)
3087 {
3088 struct workqueue_struct *wq = dev_to_wq(dev);
3089 int val;
3090
3091 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3092 return -EINVAL;
3093
3094 workqueue_set_max_active(wq, val);
3095 return count;
3096 }
3097
3098 static struct device_attribute wq_sysfs_attrs[] = {
3099 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3100 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3101 __ATTR_NULL,
3102 };
3103
3104 static ssize_t wq_pool_ids_show(struct device *dev,
3105 struct device_attribute *attr, char *buf)
3106 {
3107 struct workqueue_struct *wq = dev_to_wq(dev);
3108 const char *delim = "";
3109 int node, written = 0;
3110
3111 rcu_read_lock_sched();
3112 for_each_node(node) {
3113 written += scnprintf(buf + written, PAGE_SIZE - written,
3114 "%s%d:%d", delim, node,
3115 unbound_pwq_by_node(wq, node)->pool->id);
3116 delim = " ";
3117 }
3118 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3119 rcu_read_unlock_sched();
3120
3121 return written;
3122 }
3123
3124 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3125 char *buf)
3126 {
3127 struct workqueue_struct *wq = dev_to_wq(dev);
3128 int written;
3129
3130 mutex_lock(&wq->mutex);
3131 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3132 mutex_unlock(&wq->mutex);
3133
3134 return written;
3135 }
3136
3137 /* prepare workqueue_attrs for sysfs store operations */
3138 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3139 {
3140 struct workqueue_attrs *attrs;
3141
3142 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3143 if (!attrs)
3144 return NULL;
3145
3146 mutex_lock(&wq->mutex);
3147 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3148 mutex_unlock(&wq->mutex);
3149 return attrs;
3150 }
3151
3152 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3153 const char *buf, size_t count)
3154 {
3155 struct workqueue_struct *wq = dev_to_wq(dev);
3156 struct workqueue_attrs *attrs;
3157 int ret;
3158
3159 attrs = wq_sysfs_prep_attrs(wq);
3160 if (!attrs)
3161 return -ENOMEM;
3162
3163 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3164 attrs->nice >= -20 && attrs->nice <= 19)
3165 ret = apply_workqueue_attrs(wq, attrs);
3166 else
3167 ret = -EINVAL;
3168
3169 free_workqueue_attrs(attrs);
3170 return ret ?: count;
3171 }
3172
3173 static ssize_t wq_cpumask_show(struct device *dev,
3174 struct device_attribute *attr, char *buf)
3175 {
3176 struct workqueue_struct *wq = dev_to_wq(dev);
3177 int written;
3178
3179 mutex_lock(&wq->mutex);
3180 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3181 mutex_unlock(&wq->mutex);
3182
3183 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3184 return written;
3185 }
3186
3187 static ssize_t wq_cpumask_store(struct device *dev,
3188 struct device_attribute *attr,
3189 const char *buf, size_t count)
3190 {
3191 struct workqueue_struct *wq = dev_to_wq(dev);
3192 struct workqueue_attrs *attrs;
3193 int ret;
3194
3195 attrs = wq_sysfs_prep_attrs(wq);
3196 if (!attrs)
3197 return -ENOMEM;
3198
3199 ret = cpumask_parse(buf, attrs->cpumask);
3200 if (!ret)
3201 ret = apply_workqueue_attrs(wq, attrs);
3202
3203 free_workqueue_attrs(attrs);
3204 return ret ?: count;
3205 }
3206
3207 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3208 char *buf)
3209 {
3210 struct workqueue_struct *wq = dev_to_wq(dev);
3211 int written;
3212
3213 mutex_lock(&wq->mutex);
3214 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3215 !wq->unbound_attrs->no_numa);
3216 mutex_unlock(&wq->mutex);
3217
3218 return written;
3219 }
3220
3221 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3222 const char *buf, size_t count)
3223 {
3224 struct workqueue_struct *wq = dev_to_wq(dev);
3225 struct workqueue_attrs *attrs;
3226 int v, ret;
3227
3228 attrs = wq_sysfs_prep_attrs(wq);
3229 if (!attrs)
3230 return -ENOMEM;
3231
3232 ret = -EINVAL;
3233 if (sscanf(buf, "%d", &v) == 1) {
3234 attrs->no_numa = !v;
3235 ret = apply_workqueue_attrs(wq, attrs);
3236 }
3237
3238 free_workqueue_attrs(attrs);
3239 return ret ?: count;
3240 }
3241
3242 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3243 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3244 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3245 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3246 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3247 __ATTR_NULL,
3248 };
3249
3250 static struct bus_type wq_subsys = {
3251 .name = "workqueue",
3252 .dev_attrs = wq_sysfs_attrs,
3253 };
3254
3255 static int __init wq_sysfs_init(void)
3256 {
3257 return subsys_virtual_register(&wq_subsys, NULL);
3258 }
3259 core_initcall(wq_sysfs_init);
3260
3261 static void wq_device_release(struct device *dev)
3262 {
3263 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3264
3265 kfree(wq_dev);
3266 }
3267
3268 /**
3269 * workqueue_sysfs_register - make a workqueue visible in sysfs
3270 * @wq: the workqueue to register
3271 *
3272 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3273 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3274 * which is the preferred method.
3275 *
3276 * Workqueue user should use this function directly iff it wants to apply
3277 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3278 * apply_workqueue_attrs() may race against userland updating the
3279 * attributes.
3280 *
3281 * Returns 0 on success, -errno on failure.
3282 */
3283 int workqueue_sysfs_register(struct workqueue_struct *wq)
3284 {
3285 struct wq_device *wq_dev;
3286 int ret;
3287
3288 /*
3289 * Adjusting max_active or creating new pwqs by applyting
3290 * attributes breaks ordering guarantee. Disallow exposing ordered
3291 * workqueues.
3292 */
3293 if (WARN_ON(wq->flags & __WQ_ORDERED))
3294 return -EINVAL;
3295
3296 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3297 if (!wq_dev)
3298 return -ENOMEM;
3299
3300 wq_dev->wq = wq;
3301 wq_dev->dev.bus = &wq_subsys;
3302 wq_dev->dev.init_name = wq->name;
3303 wq_dev->dev.release = wq_device_release;
3304
3305 /*
3306 * unbound_attrs are created separately. Suppress uevent until
3307 * everything is ready.
3308 */
3309 dev_set_uevent_suppress(&wq_dev->dev, true);
3310
3311 ret = device_register(&wq_dev->dev);
3312 if (ret) {
3313 kfree(wq_dev);
3314 wq->wq_dev = NULL;
3315 return ret;
3316 }
3317
3318 if (wq->flags & WQ_UNBOUND) {
3319 struct device_attribute *attr;
3320
3321 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3322 ret = device_create_file(&wq_dev->dev, attr);
3323 if (ret) {
3324 device_unregister(&wq_dev->dev);
3325 wq->wq_dev = NULL;
3326 return ret;
3327 }
3328 }
3329 }
3330
3331 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3332 return 0;
3333 }
3334
3335 /**
3336 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3337 * @wq: the workqueue to unregister
3338 *
3339 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3340 */
3341 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3342 {
3343 struct wq_device *wq_dev = wq->wq_dev;
3344
3345 if (!wq->wq_dev)
3346 return;
3347
3348 wq->wq_dev = NULL;
3349 device_unregister(&wq_dev->dev);
3350 }
3351 #else /* CONFIG_SYSFS */
3352 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3353 #endif /* CONFIG_SYSFS */
3354
3355 /**
3356 * free_workqueue_attrs - free a workqueue_attrs
3357 * @attrs: workqueue_attrs to free
3358 *
3359 * Undo alloc_workqueue_attrs().
3360 */
3361 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3362 {
3363 if (attrs) {
3364 free_cpumask_var(attrs->cpumask);
3365 kfree(attrs);
3366 }
3367 }
3368
3369 /**
3370 * alloc_workqueue_attrs - allocate a workqueue_attrs
3371 * @gfp_mask: allocation mask to use
3372 *
3373 * Allocate a new workqueue_attrs, initialize with default settings and
3374 * return it. Returns NULL on failure.
3375 */
3376 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3377 {
3378 struct workqueue_attrs *attrs;
3379
3380 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3381 if (!attrs)
3382 goto fail;
3383 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3384 goto fail;
3385
3386 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3387 return attrs;
3388 fail:
3389 free_workqueue_attrs(attrs);
3390 return NULL;
3391 }
3392
3393 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3394 const struct workqueue_attrs *from)
3395 {
3396 to->nice = from->nice;
3397 cpumask_copy(to->cpumask, from->cpumask);
3398 }
3399
3400 /* hash value of the content of @attr */
3401 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3402 {
3403 u32 hash = 0;
3404
3405 hash = jhash_1word(attrs->nice, hash);
3406 hash = jhash(cpumask_bits(attrs->cpumask),
3407 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3408 return hash;
3409 }
3410
3411 /* content equality test */
3412 static bool wqattrs_equal(const struct workqueue_attrs *a,
3413 const struct workqueue_attrs *b)
3414 {
3415 if (a->nice != b->nice)
3416 return false;
3417 if (!cpumask_equal(a->cpumask, b->cpumask))
3418 return false;
3419 return true;
3420 }
3421
3422 /**
3423 * init_worker_pool - initialize a newly zalloc'd worker_pool
3424 * @pool: worker_pool to initialize
3425 *
3426 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3427 * Returns 0 on success, -errno on failure. Even on failure, all fields
3428 * inside @pool proper are initialized and put_unbound_pool() can be called
3429 * on @pool safely to release it.
3430 */
3431 static int init_worker_pool(struct worker_pool *pool)
3432 {
3433 spin_lock_init(&pool->lock);
3434 pool->id = -1;
3435 pool->cpu = -1;
3436 pool->node = NUMA_NO_NODE;
3437 pool->flags |= POOL_DISASSOCIATED;
3438 INIT_LIST_HEAD(&pool->worklist);
3439 INIT_LIST_HEAD(&pool->idle_list);
3440 hash_init(pool->busy_hash);
3441
3442 init_timer_deferrable(&pool->idle_timer);
3443 pool->idle_timer.function = idle_worker_timeout;
3444 pool->idle_timer.data = (unsigned long)pool;
3445
3446 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3447 (unsigned long)pool);
3448
3449 mutex_init(&pool->manager_arb);
3450 mutex_init(&pool->manager_mutex);
3451 idr_init(&pool->worker_idr);
3452
3453 INIT_HLIST_NODE(&pool->hash_node);
3454 pool->refcnt = 1;
3455
3456 /* shouldn't fail above this point */
3457 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3458 if (!pool->attrs)
3459 return -ENOMEM;
3460 return 0;
3461 }
3462
3463 static void rcu_free_pool(struct rcu_head *rcu)
3464 {
3465 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3466
3467 idr_destroy(&pool->worker_idr);
3468 free_workqueue_attrs(pool->attrs);
3469 kfree(pool);
3470 }
3471
3472 /**
3473 * put_unbound_pool - put a worker_pool
3474 * @pool: worker_pool to put
3475 *
3476 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3477 * safe manner. get_unbound_pool() calls this function on its failure path
3478 * and this function should be able to release pools which went through,
3479 * successfully or not, init_worker_pool().
3480 *
3481 * Should be called with wq_pool_mutex held.
3482 */
3483 static void put_unbound_pool(struct worker_pool *pool)
3484 {
3485 struct worker *worker;
3486
3487 lockdep_assert_held(&wq_pool_mutex);
3488
3489 if (--pool->refcnt)
3490 return;
3491
3492 /* sanity checks */
3493 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3494 WARN_ON(!list_empty(&pool->worklist)))
3495 return;
3496
3497 /* release id and unhash */
3498 if (pool->id >= 0)
3499 idr_remove(&worker_pool_idr, pool->id);
3500 hash_del(&pool->hash_node);
3501
3502 /*
3503 * Become the manager and destroy all workers. Grabbing
3504 * manager_arb prevents @pool's workers from blocking on
3505 * manager_mutex.
3506 */
3507 mutex_lock(&pool->manager_arb);
3508 mutex_lock(&pool->manager_mutex);
3509 spin_lock_irq(&pool->lock);
3510
3511 while ((worker = first_worker(pool)))
3512 destroy_worker(worker);
3513 WARN_ON(pool->nr_workers || pool->nr_idle);
3514
3515 spin_unlock_irq(&pool->lock);
3516 mutex_unlock(&pool->manager_mutex);
3517 mutex_unlock(&pool->manager_arb);
3518
3519 /* shut down the timers */
3520 del_timer_sync(&pool->idle_timer);
3521 del_timer_sync(&pool->mayday_timer);
3522
3523 /* sched-RCU protected to allow dereferences from get_work_pool() */
3524 call_rcu_sched(&pool->rcu, rcu_free_pool);
3525 }
3526
3527 /**
3528 * get_unbound_pool - get a worker_pool with the specified attributes
3529 * @attrs: the attributes of the worker_pool to get
3530 *
3531 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3532 * reference count and return it. If there already is a matching
3533 * worker_pool, it will be used; otherwise, this function attempts to
3534 * create a new one. On failure, returns NULL.
3535 *
3536 * Should be called with wq_pool_mutex held.
3537 */
3538 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3539 {
3540 u32 hash = wqattrs_hash(attrs);
3541 struct worker_pool *pool;
3542 int node;
3543
3544 lockdep_assert_held(&wq_pool_mutex);
3545
3546 /* do we already have a matching pool? */
3547 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3548 if (wqattrs_equal(pool->attrs, attrs)) {
3549 pool->refcnt++;
3550 goto out_unlock;
3551 }
3552 }
3553
3554 /* nope, create a new one */
3555 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3556 if (!pool || init_worker_pool(pool) < 0)
3557 goto fail;
3558
3559 if (workqueue_freezing)
3560 pool->flags |= POOL_FREEZING;
3561
3562 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3563 copy_workqueue_attrs(pool->attrs, attrs);
3564
3565 /* if cpumask is contained inside a NUMA node, we belong to that node */
3566 if (wq_numa_enabled) {
3567 for_each_node(node) {
3568 if (cpumask_subset(pool->attrs->cpumask,
3569 wq_numa_possible_cpumask[node])) {
3570 pool->node = node;
3571 break;
3572 }
3573 }
3574 }
3575
3576 if (worker_pool_assign_id(pool) < 0)
3577 goto fail;
3578
3579 /* create and start the initial worker */
3580 if (create_and_start_worker(pool) < 0)
3581 goto fail;
3582
3583 /* install */
3584 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3585 out_unlock:
3586 return pool;
3587 fail:
3588 if (pool)
3589 put_unbound_pool(pool);
3590 return NULL;
3591 }
3592
3593 static void rcu_free_pwq(struct rcu_head *rcu)
3594 {
3595 kmem_cache_free(pwq_cache,
3596 container_of(rcu, struct pool_workqueue, rcu));
3597 }
3598
3599 /*
3600 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3601 * and needs to be destroyed.
3602 */
3603 static void pwq_unbound_release_workfn(struct work_struct *work)
3604 {
3605 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3606 unbound_release_work);
3607 struct workqueue_struct *wq = pwq->wq;
3608 struct worker_pool *pool = pwq->pool;
3609 bool is_last;
3610
3611 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3612 return;
3613
3614 /*
3615 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
3616 * necessary on release but do it anyway. It's easier to verify
3617 * and consistent with the linking path.
3618 */
3619 mutex_lock(&wq->mutex);
3620 list_del_rcu(&pwq->pwqs_node);
3621 is_last = list_empty(&wq->pwqs);
3622 mutex_unlock(&wq->mutex);
3623
3624 mutex_lock(&wq_pool_mutex);
3625 put_unbound_pool(pool);
3626 mutex_unlock(&wq_pool_mutex);
3627
3628 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3629
3630 /*
3631 * If we're the last pwq going away, @wq is already dead and no one
3632 * is gonna access it anymore. Free it.
3633 */
3634 if (is_last) {
3635 free_workqueue_attrs(wq->unbound_attrs);
3636 kfree(wq);
3637 }
3638 }
3639
3640 /**
3641 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3642 * @pwq: target pool_workqueue
3643 *
3644 * If @pwq isn't freezing, set @pwq->max_active to the associated
3645 * workqueue's saved_max_active and activate delayed work items
3646 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3647 */
3648 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3649 {
3650 struct workqueue_struct *wq = pwq->wq;
3651 bool freezable = wq->flags & WQ_FREEZABLE;
3652
3653 /* for @wq->saved_max_active */
3654 lockdep_assert_held(&wq->mutex);
3655
3656 /* fast exit for non-freezable wqs */
3657 if (!freezable && pwq->max_active == wq->saved_max_active)
3658 return;
3659
3660 spin_lock_irq(&pwq->pool->lock);
3661
3662 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3663 pwq->max_active = wq->saved_max_active;
3664
3665 while (!list_empty(&pwq->delayed_works) &&
3666 pwq->nr_active < pwq->max_active)
3667 pwq_activate_first_delayed(pwq);
3668
3669 /*
3670 * Need to kick a worker after thawed or an unbound wq's
3671 * max_active is bumped. It's a slow path. Do it always.
3672 */
3673 wake_up_worker(pwq->pool);
3674 } else {
3675 pwq->max_active = 0;
3676 }
3677
3678 spin_unlock_irq(&pwq->pool->lock);
3679 }
3680
3681 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3682 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3683 struct worker_pool *pool)
3684 {
3685 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3686
3687 memset(pwq, 0, sizeof(*pwq));
3688
3689 pwq->pool = pool;
3690 pwq->wq = wq;
3691 pwq->flush_color = -1;
3692 pwq->refcnt = 1;
3693 INIT_LIST_HEAD(&pwq->delayed_works);
3694 INIT_LIST_HEAD(&pwq->pwqs_node);
3695 INIT_LIST_HEAD(&pwq->mayday_node);
3696 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3697 }
3698
3699 /* sync @pwq with the current state of its associated wq and link it */
3700 static void link_pwq(struct pool_workqueue *pwq)
3701 {
3702 struct workqueue_struct *wq = pwq->wq;
3703
3704 lockdep_assert_held(&wq->mutex);
3705
3706 /* may be called multiple times, ignore if already linked */
3707 if (!list_empty(&pwq->pwqs_node))
3708 return;
3709
3710 /*
3711 * Set the matching work_color. This is synchronized with
3712 * wq->mutex to avoid confusing flush_workqueue().
3713 */
3714 pwq->work_color = wq->work_color;
3715
3716 /* sync max_active to the current setting */
3717 pwq_adjust_max_active(pwq);
3718
3719 /* link in @pwq */
3720 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3721 }
3722
3723 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3724 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3725 const struct workqueue_attrs *attrs)
3726 {
3727 struct worker_pool *pool;
3728 struct pool_workqueue *pwq;
3729
3730 lockdep_assert_held(&wq_pool_mutex);
3731
3732 pool = get_unbound_pool(attrs);
3733 if (!pool)
3734 return NULL;
3735
3736 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3737 if (!pwq) {
3738 put_unbound_pool(pool);
3739 return NULL;
3740 }
3741
3742 init_pwq(pwq, wq, pool);
3743 return pwq;
3744 }
3745
3746 /* undo alloc_unbound_pwq(), used only in the error path */
3747 static void free_unbound_pwq(struct pool_workqueue *pwq)
3748 {
3749 lockdep_assert_held(&wq_pool_mutex);
3750
3751 if (pwq) {
3752 put_unbound_pool(pwq->pool);
3753 kmem_cache_free(pwq_cache, pwq);
3754 }
3755 }
3756
3757 /**
3758 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3759 * @attrs: the wq_attrs of interest
3760 * @node: the target NUMA node
3761 * @cpu_going_down: if >= 0, the CPU to consider as offline
3762 * @cpumask: outarg, the resulting cpumask
3763 *
3764 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3765 * @cpu_going_down is >= 0, that cpu is considered offline during
3766 * calculation. The result is stored in @cpumask. This function returns
3767 * %true if the resulting @cpumask is different from @attrs->cpumask,
3768 * %false if equal.
3769 *
3770 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3771 * enabled and @node has online CPUs requested by @attrs, the returned
3772 * cpumask is the intersection of the possible CPUs of @node and
3773 * @attrs->cpumask.
3774 *
3775 * The caller is responsible for ensuring that the cpumask of @node stays
3776 * stable.
3777 */
3778 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3779 int cpu_going_down, cpumask_t *cpumask)
3780 {
3781 if (!wq_numa_enabled || attrs->no_numa)
3782 goto use_dfl;
3783
3784 /* does @node have any online CPUs @attrs wants? */
3785 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3786 if (cpu_going_down >= 0)
3787 cpumask_clear_cpu(cpu_going_down, cpumask);
3788
3789 if (cpumask_empty(cpumask))
3790 goto use_dfl;
3791
3792 /* yeap, return possible CPUs in @node that @attrs wants */
3793 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3794 return !cpumask_equal(cpumask, attrs->cpumask);
3795
3796 use_dfl:
3797 cpumask_copy(cpumask, attrs->cpumask);
3798 return false;
3799 }
3800
3801 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3802 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3803 int node,
3804 struct pool_workqueue *pwq)
3805 {
3806 struct pool_workqueue *old_pwq;
3807
3808 lockdep_assert_held(&wq->mutex);
3809
3810 /* link_pwq() can handle duplicate calls */
3811 link_pwq(pwq);
3812
3813 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3814 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3815 return old_pwq;
3816 }
3817
3818 /**
3819 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3820 * @wq: the target workqueue
3821 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3822 *
3823 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3824 * machines, this function maps a separate pwq to each NUMA node with
3825 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3826 * NUMA node it was issued on. Older pwqs are released as in-flight work
3827 * items finish. Note that a work item which repeatedly requeues itself
3828 * back-to-back will stay on its current pwq.
3829 *
3830 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3831 * failure.
3832 */
3833 int apply_workqueue_attrs(struct workqueue_struct *wq,
3834 const struct workqueue_attrs *attrs)
3835 {
3836 struct workqueue_attrs *new_attrs, *tmp_attrs;
3837 struct pool_workqueue **pwq_tbl, *dfl_pwq;
3838 int node, ret;
3839
3840 /* only unbound workqueues can change attributes */
3841 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3842 return -EINVAL;
3843
3844 /* creating multiple pwqs breaks ordering guarantee */
3845 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3846 return -EINVAL;
3847
3848 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3849 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3850 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3851 if (!pwq_tbl || !new_attrs || !tmp_attrs)
3852 goto enomem;
3853
3854 /* make a copy of @attrs and sanitize it */
3855 copy_workqueue_attrs(new_attrs, attrs);
3856 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3857
3858 /*
3859 * We may create multiple pwqs with differing cpumasks. Make a
3860 * copy of @new_attrs which will be modified and used to obtain
3861 * pools.
3862 */
3863 copy_workqueue_attrs(tmp_attrs, new_attrs);
3864
3865 /*
3866 * CPUs should stay stable across pwq creations and installations.
3867 * Pin CPUs, determine the target cpumask for each node and create
3868 * pwqs accordingly.
3869 */
3870 get_online_cpus();
3871
3872 mutex_lock(&wq_pool_mutex);
3873
3874 /*
3875 * If something goes wrong during CPU up/down, we'll fall back to
3876 * the default pwq covering whole @attrs->cpumask. Always create
3877 * it even if we don't use it immediately.
3878 */
3879 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3880 if (!dfl_pwq)
3881 goto enomem_pwq;
3882
3883 for_each_node(node) {
3884 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3885 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3886 if (!pwq_tbl[node])
3887 goto enomem_pwq;
3888 } else {
3889 dfl_pwq->refcnt++;
3890 pwq_tbl[node] = dfl_pwq;
3891 }
3892 }
3893
3894 mutex_unlock(&wq_pool_mutex);
3895
3896 /* all pwqs have been created successfully, let's install'em */
3897 mutex_lock(&wq->mutex);
3898
3899 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3900
3901 /* save the previous pwq and install the new one */
3902 for_each_node(node)
3903 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3904
3905 /* @dfl_pwq might not have been used, ensure it's linked */
3906 link_pwq(dfl_pwq);
3907 swap(wq->dfl_pwq, dfl_pwq);
3908
3909 mutex_unlock(&wq->mutex);
3910
3911 /* put the old pwqs */
3912 for_each_node(node)
3913 put_pwq_unlocked(pwq_tbl[node]);
3914 put_pwq_unlocked(dfl_pwq);
3915
3916 put_online_cpus();
3917 ret = 0;
3918 /* fall through */
3919 out_free:
3920 free_workqueue_attrs(tmp_attrs);
3921 free_workqueue_attrs(new_attrs);
3922 kfree(pwq_tbl);
3923 return ret;
3924
3925 enomem_pwq:
3926 free_unbound_pwq(dfl_pwq);
3927 for_each_node(node)
3928 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3929 free_unbound_pwq(pwq_tbl[node]);
3930 mutex_unlock(&wq_pool_mutex);
3931 put_online_cpus();
3932 enomem:
3933 ret = -ENOMEM;
3934 goto out_free;
3935 }
3936
3937 /**
3938 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3939 * @wq: the target workqueue
3940 * @cpu: the CPU coming up or going down
3941 * @online: whether @cpu is coming up or going down
3942 *
3943 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3944 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3945 * @wq accordingly.
3946 *
3947 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3948 * falls back to @wq->dfl_pwq which may not be optimal but is always
3949 * correct.
3950 *
3951 * Note that when the last allowed CPU of a NUMA node goes offline for a
3952 * workqueue with a cpumask spanning multiple nodes, the workers which were
3953 * already executing the work items for the workqueue will lose their CPU
3954 * affinity and may execute on any CPU. This is similar to how per-cpu
3955 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3956 * affinity, it's the user's responsibility to flush the work item from
3957 * CPU_DOWN_PREPARE.
3958 */
3959 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3960 bool online)
3961 {
3962 int node = cpu_to_node(cpu);
3963 int cpu_off = online ? -1 : cpu;
3964 struct pool_workqueue *old_pwq = NULL, *pwq;
3965 struct workqueue_attrs *target_attrs;
3966 cpumask_t *cpumask;
3967
3968 lockdep_assert_held(&wq_pool_mutex);
3969
3970 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3971 return;
3972
3973 /*
3974 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3975 * Let's use a preallocated one. The following buf is protected by
3976 * CPU hotplug exclusion.
3977 */
3978 target_attrs = wq_update_unbound_numa_attrs_buf;
3979 cpumask = target_attrs->cpumask;
3980
3981 mutex_lock(&wq->mutex);
3982 if (wq->unbound_attrs->no_numa)
3983 goto out_unlock;
3984
3985 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3986 pwq = unbound_pwq_by_node(wq, node);
3987
3988 /*
3989 * Let's determine what needs to be done. If the target cpumask is
3990 * different from wq's, we need to compare it to @pwq's and create
3991 * a new one if they don't match. If the target cpumask equals
3992 * wq's, the default pwq should be used. If @pwq is already the
3993 * default one, nothing to do; otherwise, install the default one.
3994 */
3995 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3996 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3997 goto out_unlock;
3998 } else {
3999 if (pwq == wq->dfl_pwq)
4000 goto out_unlock;
4001 else
4002 goto use_dfl_pwq;
4003 }
4004
4005 mutex_unlock(&wq->mutex);
4006
4007 /* create a new pwq */
4008 pwq = alloc_unbound_pwq(wq, target_attrs);
4009 if (!pwq) {
4010 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4011 wq->name);
4012 goto out_unlock;
4013 }
4014
4015 /*
4016 * Install the new pwq. As this function is called only from CPU
4017 * hotplug callbacks and applying a new attrs is wrapped with
4018 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4019 * inbetween.
4020 */
4021 mutex_lock(&wq->mutex);
4022 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4023 goto out_unlock;
4024
4025 use_dfl_pwq:
4026 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4027 get_pwq(wq->dfl_pwq);
4028 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4029 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4030 out_unlock:
4031 mutex_unlock(&wq->mutex);
4032 put_pwq_unlocked(old_pwq);
4033 }
4034
4035 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4036 {
4037 bool highpri = wq->flags & WQ_HIGHPRI;
4038 int cpu;
4039
4040 if (!(wq->flags & WQ_UNBOUND)) {
4041 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4042 if (!wq->cpu_pwqs)
4043 return -ENOMEM;
4044
4045 for_each_possible_cpu(cpu) {
4046 struct pool_workqueue *pwq =
4047 per_cpu_ptr(wq->cpu_pwqs, cpu);
4048 struct worker_pool *cpu_pools =
4049 per_cpu(cpu_worker_pools, cpu);
4050
4051 init_pwq(pwq, wq, &cpu_pools[highpri]);
4052
4053 mutex_lock(&wq->mutex);
4054 link_pwq(pwq);
4055 mutex_unlock(&wq->mutex);
4056 }
4057 return 0;
4058 } else {
4059 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4060 }
4061 }
4062
4063 static int wq_clamp_max_active(int max_active, unsigned int flags,
4064 const char *name)
4065 {
4066 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4067
4068 if (max_active < 1 || max_active > lim)
4069 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4070 max_active, name, 1, lim);
4071
4072 return clamp_val(max_active, 1, lim);
4073 }
4074
4075 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4076 unsigned int flags,
4077 int max_active,
4078 struct lock_class_key *key,
4079 const char *lock_name, ...)
4080 {
4081 size_t tbl_size = 0;
4082 va_list args;
4083 struct workqueue_struct *wq;
4084 struct pool_workqueue *pwq;
4085
4086 /* allocate wq and format name */
4087 if (flags & WQ_UNBOUND)
4088 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4089
4090 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4091 if (!wq)
4092 return NULL;
4093
4094 if (flags & WQ_UNBOUND) {
4095 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4096 if (!wq->unbound_attrs)
4097 goto err_free_wq;
4098 }
4099
4100 va_start(args, lock_name);
4101 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4102 va_end(args);
4103
4104 max_active = max_active ?: WQ_DFL_ACTIVE;
4105 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4106
4107 /* init wq */
4108 wq->flags = flags;
4109 wq->saved_max_active = max_active;
4110 mutex_init(&wq->mutex);
4111 atomic_set(&wq->nr_pwqs_to_flush, 0);
4112 INIT_LIST_HEAD(&wq->pwqs);
4113 INIT_LIST_HEAD(&wq->flusher_queue);
4114 INIT_LIST_HEAD(&wq->flusher_overflow);
4115 INIT_LIST_HEAD(&wq->maydays);
4116
4117 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4118 INIT_LIST_HEAD(&wq->list);
4119
4120 if (alloc_and_link_pwqs(wq) < 0)
4121 goto err_free_wq;
4122
4123 /*
4124 * Workqueues which may be used during memory reclaim should
4125 * have a rescuer to guarantee forward progress.
4126 */
4127 if (flags & WQ_MEM_RECLAIM) {
4128 struct worker *rescuer;
4129
4130 rescuer = alloc_worker();
4131 if (!rescuer)
4132 goto err_destroy;
4133
4134 rescuer->rescue_wq = wq;
4135 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4136 wq->name);
4137 if (IS_ERR(rescuer->task)) {
4138 kfree(rescuer);
4139 goto err_destroy;
4140 }
4141
4142 wq->rescuer = rescuer;
4143 rescuer->task->flags |= PF_NO_SETAFFINITY;
4144 wake_up_process(rescuer->task);
4145 }
4146
4147 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4148 goto err_destroy;
4149
4150 /*
4151 * wq_pool_mutex protects global freeze state and workqueues list.
4152 * Grab it, adjust max_active and add the new @wq to workqueues
4153 * list.
4154 */
4155 mutex_lock(&wq_pool_mutex);
4156
4157 mutex_lock(&wq->mutex);
4158 for_each_pwq(pwq, wq)
4159 pwq_adjust_max_active(pwq);
4160 mutex_unlock(&wq->mutex);
4161
4162 list_add(&wq->list, &workqueues);
4163
4164 mutex_unlock(&wq_pool_mutex);
4165
4166 return wq;
4167
4168 err_free_wq:
4169 free_workqueue_attrs(wq->unbound_attrs);
4170 kfree(wq);
4171 return NULL;
4172 err_destroy:
4173 destroy_workqueue(wq);
4174 return NULL;
4175 }
4176 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4177
4178 /**
4179 * destroy_workqueue - safely terminate a workqueue
4180 * @wq: target workqueue
4181 *
4182 * Safely destroy a workqueue. All work currently pending will be done first.
4183 */
4184 void destroy_workqueue(struct workqueue_struct *wq)
4185 {
4186 struct pool_workqueue *pwq;
4187 int node;
4188
4189 /* drain it before proceeding with destruction */
4190 drain_workqueue(wq);
4191
4192 /* sanity checks */
4193 mutex_lock(&wq->mutex);
4194 for_each_pwq(pwq, wq) {
4195 int i;
4196
4197 for (i = 0; i < WORK_NR_COLORS; i++) {
4198 if (WARN_ON(pwq->nr_in_flight[i])) {
4199 mutex_unlock(&wq->mutex);
4200 return;
4201 }
4202 }
4203
4204 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4205 WARN_ON(pwq->nr_active) ||
4206 WARN_ON(!list_empty(&pwq->delayed_works))) {
4207 mutex_unlock(&wq->mutex);
4208 return;
4209 }
4210 }
4211 mutex_unlock(&wq->mutex);
4212
4213 /*
4214 * wq list is used to freeze wq, remove from list after
4215 * flushing is complete in case freeze races us.
4216 */
4217 mutex_lock(&wq_pool_mutex);
4218 list_del_init(&wq->list);
4219 mutex_unlock(&wq_pool_mutex);
4220
4221 workqueue_sysfs_unregister(wq);
4222
4223 if (wq->rescuer) {
4224 kthread_stop(wq->rescuer->task);
4225 kfree(wq->rescuer);
4226 wq->rescuer = NULL;
4227 }
4228
4229 if (!(wq->flags & WQ_UNBOUND)) {
4230 /*
4231 * The base ref is never dropped on per-cpu pwqs. Directly
4232 * free the pwqs and wq.
4233 */
4234 free_percpu(wq->cpu_pwqs);
4235 kfree(wq);
4236 } else {
4237 /*
4238 * We're the sole accessor of @wq at this point. Directly
4239 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4240 * @wq will be freed when the last pwq is released.
4241 */
4242 for_each_node(node) {
4243 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4244 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4245 put_pwq_unlocked(pwq);
4246 }
4247
4248 /*
4249 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4250 * put. Don't access it afterwards.
4251 */
4252 pwq = wq->dfl_pwq;
4253 wq->dfl_pwq = NULL;
4254 put_pwq_unlocked(pwq);
4255 }
4256 }
4257 EXPORT_SYMBOL_GPL(destroy_workqueue);
4258
4259 /**
4260 * workqueue_set_max_active - adjust max_active of a workqueue
4261 * @wq: target workqueue
4262 * @max_active: new max_active value.
4263 *
4264 * Set max_active of @wq to @max_active.
4265 *
4266 * CONTEXT:
4267 * Don't call from IRQ context.
4268 */
4269 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4270 {
4271 struct pool_workqueue *pwq;
4272
4273 /* disallow meddling with max_active for ordered workqueues */
4274 if (WARN_ON(wq->flags & __WQ_ORDERED))
4275 return;
4276
4277 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4278
4279 mutex_lock(&wq->mutex);
4280
4281 wq->saved_max_active = max_active;
4282
4283 for_each_pwq(pwq, wq)
4284 pwq_adjust_max_active(pwq);
4285
4286 mutex_unlock(&wq->mutex);
4287 }
4288 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4289
4290 /**
4291 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4292 *
4293 * Determine whether %current is a workqueue rescuer. Can be used from
4294 * work functions to determine whether it's being run off the rescuer task.
4295 */
4296 bool current_is_workqueue_rescuer(void)
4297 {
4298 struct worker *worker = current_wq_worker();
4299
4300 return worker && worker->rescue_wq;
4301 }
4302
4303 /**
4304 * workqueue_congested - test whether a workqueue is congested
4305 * @cpu: CPU in question
4306 * @wq: target workqueue
4307 *
4308 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4309 * no synchronization around this function and the test result is
4310 * unreliable and only useful as advisory hints or for debugging.
4311 *
4312 * RETURNS:
4313 * %true if congested, %false otherwise.
4314 */
4315 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4316 {
4317 struct pool_workqueue *pwq;
4318 bool ret;
4319
4320 rcu_read_lock_sched();
4321
4322 if (!(wq->flags & WQ_UNBOUND))
4323 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4324 else
4325 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4326
4327 ret = !list_empty(&pwq->delayed_works);
4328 rcu_read_unlock_sched();
4329
4330 return ret;
4331 }
4332 EXPORT_SYMBOL_GPL(workqueue_congested);
4333
4334 /**
4335 * work_busy - test whether a work is currently pending or running
4336 * @work: the work to be tested
4337 *
4338 * Test whether @work is currently pending or running. There is no
4339 * synchronization around this function and the test result is
4340 * unreliable and only useful as advisory hints or for debugging.
4341 *
4342 * RETURNS:
4343 * OR'd bitmask of WORK_BUSY_* bits.
4344 */
4345 unsigned int work_busy(struct work_struct *work)
4346 {
4347 struct worker_pool *pool;
4348 unsigned long flags;
4349 unsigned int ret = 0;
4350
4351 if (work_pending(work))
4352 ret |= WORK_BUSY_PENDING;
4353
4354 local_irq_save(flags);
4355 pool = get_work_pool(work);
4356 if (pool) {
4357 spin_lock(&pool->lock);
4358 if (find_worker_executing_work(pool, work))
4359 ret |= WORK_BUSY_RUNNING;
4360 spin_unlock(&pool->lock);
4361 }
4362 local_irq_restore(flags);
4363
4364 return ret;
4365 }
4366 EXPORT_SYMBOL_GPL(work_busy);
4367
4368 /*
4369 * CPU hotplug.
4370 *
4371 * There are two challenges in supporting CPU hotplug. Firstly, there
4372 * are a lot of assumptions on strong associations among work, pwq and
4373 * pool which make migrating pending and scheduled works very
4374 * difficult to implement without impacting hot paths. Secondly,
4375 * worker pools serve mix of short, long and very long running works making
4376 * blocked draining impractical.
4377 *
4378 * This is solved by allowing the pools to be disassociated from the CPU
4379 * running as an unbound one and allowing it to be reattached later if the
4380 * cpu comes back online.
4381 */
4382
4383 static void wq_unbind_fn(struct work_struct *work)
4384 {
4385 int cpu = smp_processor_id();
4386 struct worker_pool *pool;
4387 struct worker *worker;
4388 int wi;
4389
4390 for_each_cpu_worker_pool(pool, cpu) {
4391 WARN_ON_ONCE(cpu != smp_processor_id());
4392
4393 mutex_lock(&pool->manager_mutex);
4394 spin_lock_irq(&pool->lock);
4395
4396 /*
4397 * We've blocked all manager operations. Make all workers
4398 * unbound and set DISASSOCIATED. Before this, all workers
4399 * except for the ones which are still executing works from
4400 * before the last CPU down must be on the cpu. After
4401 * this, they may become diasporas.
4402 */
4403 for_each_pool_worker(worker, wi, pool)
4404 worker->flags |= WORKER_UNBOUND;
4405
4406 pool->flags |= POOL_DISASSOCIATED;
4407
4408 spin_unlock_irq(&pool->lock);
4409 mutex_unlock(&pool->manager_mutex);
4410
4411 /*
4412 * Call schedule() so that we cross rq->lock and thus can
4413 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4414 * This is necessary as scheduler callbacks may be invoked
4415 * from other cpus.
4416 */
4417 schedule();
4418
4419 /*
4420 * Sched callbacks are disabled now. Zap nr_running.
4421 * After this, nr_running stays zero and need_more_worker()
4422 * and keep_working() are always true as long as the
4423 * worklist is not empty. This pool now behaves as an
4424 * unbound (in terms of concurrency management) pool which
4425 * are served by workers tied to the pool.
4426 */
4427 atomic_set(&pool->nr_running, 0);
4428
4429 /*
4430 * With concurrency management just turned off, a busy
4431 * worker blocking could lead to lengthy stalls. Kick off
4432 * unbound chain execution of currently pending work items.
4433 */
4434 spin_lock_irq(&pool->lock);
4435 wake_up_worker(pool);
4436 spin_unlock_irq(&pool->lock);
4437 }
4438 }
4439
4440 /**
4441 * rebind_workers - rebind all workers of a pool to the associated CPU
4442 * @pool: pool of interest
4443 *
4444 * @pool->cpu is coming online. Rebind all workers to the CPU.
4445 */
4446 static void rebind_workers(struct worker_pool *pool)
4447 {
4448 struct worker *worker;
4449 int wi;
4450
4451 lockdep_assert_held(&pool->manager_mutex);
4452
4453 /*
4454 * Restore CPU affinity of all workers. As all idle workers should
4455 * be on the run-queue of the associated CPU before any local
4456 * wake-ups for concurrency management happen, restore CPU affinty
4457 * of all workers first and then clear UNBOUND. As we're called
4458 * from CPU_ONLINE, the following shouldn't fail.
4459 */
4460 for_each_pool_worker(worker, wi, pool)
4461 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4462 pool->attrs->cpumask) < 0);
4463
4464 spin_lock_irq(&pool->lock);
4465
4466 for_each_pool_worker(worker, wi, pool) {
4467 unsigned int worker_flags = worker->flags;
4468
4469 /*
4470 * A bound idle worker should actually be on the runqueue
4471 * of the associated CPU for local wake-ups targeting it to
4472 * work. Kick all idle workers so that they migrate to the
4473 * associated CPU. Doing this in the same loop as
4474 * replacing UNBOUND with REBOUND is safe as no worker will
4475 * be bound before @pool->lock is released.
4476 */
4477 if (worker_flags & WORKER_IDLE)
4478 wake_up_process(worker->task);
4479
4480 /*
4481 * We want to clear UNBOUND but can't directly call
4482 * worker_clr_flags() or adjust nr_running. Atomically
4483 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4484 * @worker will clear REBOUND using worker_clr_flags() when
4485 * it initiates the next execution cycle thus restoring
4486 * concurrency management. Note that when or whether
4487 * @worker clears REBOUND doesn't affect correctness.
4488 *
4489 * ACCESS_ONCE() is necessary because @worker->flags may be
4490 * tested without holding any lock in
4491 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4492 * fail incorrectly leading to premature concurrency
4493 * management operations.
4494 */
4495 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4496 worker_flags |= WORKER_REBOUND;
4497 worker_flags &= ~WORKER_UNBOUND;
4498 ACCESS_ONCE(worker->flags) = worker_flags;
4499 }
4500
4501 spin_unlock_irq(&pool->lock);
4502 }
4503
4504 /**
4505 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4506 * @pool: unbound pool of interest
4507 * @cpu: the CPU which is coming up
4508 *
4509 * An unbound pool may end up with a cpumask which doesn't have any online
4510 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4511 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4512 * online CPU before, cpus_allowed of all its workers should be restored.
4513 */
4514 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4515 {
4516 static cpumask_t cpumask;
4517 struct worker *worker;
4518 int wi;
4519
4520 lockdep_assert_held(&pool->manager_mutex);
4521
4522 /* is @cpu allowed for @pool? */
4523 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4524 return;
4525
4526 /* is @cpu the only online CPU? */
4527 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4528 if (cpumask_weight(&cpumask) != 1)
4529 return;
4530
4531 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4532 for_each_pool_worker(worker, wi, pool)
4533 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4534 pool->attrs->cpumask) < 0);
4535 }
4536
4537 /*
4538 * Workqueues should be brought up before normal priority CPU notifiers.
4539 * This will be registered high priority CPU notifier.
4540 */
4541 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
4542 unsigned long action,
4543 void *hcpu)
4544 {
4545 int cpu = (unsigned long)hcpu;
4546 struct worker_pool *pool;
4547 struct workqueue_struct *wq;
4548 int pi;
4549
4550 switch (action & ~CPU_TASKS_FROZEN) {
4551 case CPU_UP_PREPARE:
4552 for_each_cpu_worker_pool(pool, cpu) {
4553 if (pool->nr_workers)
4554 continue;
4555 if (create_and_start_worker(pool) < 0)
4556 return NOTIFY_BAD;
4557 }
4558 break;
4559
4560 case CPU_DOWN_FAILED:
4561 case CPU_ONLINE:
4562 mutex_lock(&wq_pool_mutex);
4563
4564 for_each_pool(pool, pi) {
4565 mutex_lock(&pool->manager_mutex);
4566
4567 if (pool->cpu == cpu) {
4568 spin_lock_irq(&pool->lock);
4569 pool->flags &= ~POOL_DISASSOCIATED;
4570 spin_unlock_irq(&pool->lock);
4571
4572 rebind_workers(pool);
4573 } else if (pool->cpu < 0) {
4574 restore_unbound_workers_cpumask(pool, cpu);
4575 }
4576
4577 mutex_unlock(&pool->manager_mutex);
4578 }
4579
4580 /* update NUMA affinity of unbound workqueues */
4581 list_for_each_entry(wq, &workqueues, list)
4582 wq_update_unbound_numa(wq, cpu, true);
4583
4584 mutex_unlock(&wq_pool_mutex);
4585 break;
4586 }
4587 return NOTIFY_OK;
4588 }
4589
4590 /*
4591 * Workqueues should be brought down after normal priority CPU notifiers.
4592 * This will be registered as low priority CPU notifier.
4593 */
4594 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4595 unsigned long action,
4596 void *hcpu)
4597 {
4598 int cpu = (unsigned long)hcpu;
4599 struct work_struct unbind_work;
4600 struct workqueue_struct *wq;
4601
4602 switch (action & ~CPU_TASKS_FROZEN) {
4603 case CPU_DOWN_PREPARE:
4604 /* unbinding per-cpu workers should happen on the local CPU */
4605 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4606 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4607
4608 /* update NUMA affinity of unbound workqueues */
4609 mutex_lock(&wq_pool_mutex);
4610 list_for_each_entry(wq, &workqueues, list)
4611 wq_update_unbound_numa(wq, cpu, false);
4612 mutex_unlock(&wq_pool_mutex);
4613
4614 /* wait for per-cpu unbinding to finish */
4615 flush_work(&unbind_work);
4616 break;
4617 }
4618 return NOTIFY_OK;
4619 }
4620
4621 #ifdef CONFIG_SMP
4622
4623 struct work_for_cpu {
4624 struct work_struct work;
4625 long (*fn)(void *);
4626 void *arg;
4627 long ret;
4628 };
4629
4630 static void work_for_cpu_fn(struct work_struct *work)
4631 {
4632 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4633
4634 wfc->ret = wfc->fn(wfc->arg);
4635 }
4636
4637 /**
4638 * work_on_cpu - run a function in user context on a particular cpu
4639 * @cpu: the cpu to run on
4640 * @fn: the function to run
4641 * @arg: the function arg
4642 *
4643 * This will return the value @fn returns.
4644 * It is up to the caller to ensure that the cpu doesn't go offline.
4645 * The caller must not hold any locks which would prevent @fn from completing.
4646 */
4647 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4648 {
4649 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4650
4651 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4652 schedule_work_on(cpu, &wfc.work);
4653 flush_work(&wfc.work);
4654 return wfc.ret;
4655 }
4656 EXPORT_SYMBOL_GPL(work_on_cpu);
4657 #endif /* CONFIG_SMP */
4658
4659 #ifdef CONFIG_FREEZER
4660
4661 /**
4662 * freeze_workqueues_begin - begin freezing workqueues
4663 *
4664 * Start freezing workqueues. After this function returns, all freezable
4665 * workqueues will queue new works to their delayed_works list instead of
4666 * pool->worklist.
4667 *
4668 * CONTEXT:
4669 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4670 */
4671 void freeze_workqueues_begin(void)
4672 {
4673 struct worker_pool *pool;
4674 struct workqueue_struct *wq;
4675 struct pool_workqueue *pwq;
4676 int pi;
4677
4678 mutex_lock(&wq_pool_mutex);
4679
4680 WARN_ON_ONCE(workqueue_freezing);
4681 workqueue_freezing = true;
4682
4683 /* set FREEZING */
4684 for_each_pool(pool, pi) {
4685 spin_lock_irq(&pool->lock);
4686 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4687 pool->flags |= POOL_FREEZING;
4688 spin_unlock_irq(&pool->lock);
4689 }
4690
4691 list_for_each_entry(wq, &workqueues, list) {
4692 mutex_lock(&wq->mutex);
4693 for_each_pwq(pwq, wq)
4694 pwq_adjust_max_active(pwq);
4695 mutex_unlock(&wq->mutex);
4696 }
4697
4698 mutex_unlock(&wq_pool_mutex);
4699 }
4700
4701 /**
4702 * freeze_workqueues_busy - are freezable workqueues still busy?
4703 *
4704 * Check whether freezing is complete. This function must be called
4705 * between freeze_workqueues_begin() and thaw_workqueues().
4706 *
4707 * CONTEXT:
4708 * Grabs and releases wq_pool_mutex.
4709 *
4710 * RETURNS:
4711 * %true if some freezable workqueues are still busy. %false if freezing
4712 * is complete.
4713 */
4714 bool freeze_workqueues_busy(void)
4715 {
4716 bool busy = false;
4717 struct workqueue_struct *wq;
4718 struct pool_workqueue *pwq;
4719
4720 mutex_lock(&wq_pool_mutex);
4721
4722 WARN_ON_ONCE(!workqueue_freezing);
4723
4724 list_for_each_entry(wq, &workqueues, list) {
4725 if (!(wq->flags & WQ_FREEZABLE))
4726 continue;
4727 /*
4728 * nr_active is monotonically decreasing. It's safe
4729 * to peek without lock.
4730 */
4731 rcu_read_lock_sched();
4732 for_each_pwq(pwq, wq) {
4733 WARN_ON_ONCE(pwq->nr_active < 0);
4734 if (pwq->nr_active) {
4735 busy = true;
4736 rcu_read_unlock_sched();
4737 goto out_unlock;
4738 }
4739 }
4740 rcu_read_unlock_sched();
4741 }
4742 out_unlock:
4743 mutex_unlock(&wq_pool_mutex);
4744 return busy;
4745 }
4746
4747 /**
4748 * thaw_workqueues - thaw workqueues
4749 *
4750 * Thaw workqueues. Normal queueing is restored and all collected
4751 * frozen works are transferred to their respective pool worklists.
4752 *
4753 * CONTEXT:
4754 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4755 */
4756 void thaw_workqueues(void)
4757 {
4758 struct workqueue_struct *wq;
4759 struct pool_workqueue *pwq;
4760 struct worker_pool *pool;
4761 int pi;
4762
4763 mutex_lock(&wq_pool_mutex);
4764
4765 if (!workqueue_freezing)
4766 goto out_unlock;
4767
4768 /* clear FREEZING */
4769 for_each_pool(pool, pi) {
4770 spin_lock_irq(&pool->lock);
4771 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4772 pool->flags &= ~POOL_FREEZING;
4773 spin_unlock_irq(&pool->lock);
4774 }
4775
4776 /* restore max_active and repopulate worklist */
4777 list_for_each_entry(wq, &workqueues, list) {
4778 mutex_lock(&wq->mutex);
4779 for_each_pwq(pwq, wq)
4780 pwq_adjust_max_active(pwq);
4781 mutex_unlock(&wq->mutex);
4782 }
4783
4784 workqueue_freezing = false;
4785 out_unlock:
4786 mutex_unlock(&wq_pool_mutex);
4787 }
4788 #endif /* CONFIG_FREEZER */
4789
4790 static void __init wq_numa_init(void)
4791 {
4792 cpumask_var_t *tbl;
4793 int node, cpu;
4794
4795 /* determine NUMA pwq table len - highest node id + 1 */
4796 for_each_node(node)
4797 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4798
4799 if (num_possible_nodes() <= 1)
4800 return;
4801
4802 if (wq_disable_numa) {
4803 pr_info("workqueue: NUMA affinity support disabled\n");
4804 return;
4805 }
4806
4807 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4808 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4809
4810 /*
4811 * We want masks of possible CPUs of each node which isn't readily
4812 * available. Build one from cpu_to_node() which should have been
4813 * fully initialized by now.
4814 */
4815 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4816 BUG_ON(!tbl);
4817
4818 for_each_node(node)
4819 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, node));
4820
4821 for_each_possible_cpu(cpu) {
4822 node = cpu_to_node(cpu);
4823 if (WARN_ON(node == NUMA_NO_NODE)) {
4824 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4825 /* happens iff arch is bonkers, let's just proceed */
4826 return;
4827 }
4828 cpumask_set_cpu(cpu, tbl[node]);
4829 }
4830
4831 wq_numa_possible_cpumask = tbl;
4832 wq_numa_enabled = true;
4833 }
4834
4835 static int __init init_workqueues(void)
4836 {
4837 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4838 int i, cpu;
4839
4840 /* make sure we have enough bits for OFFQ pool ID */
4841 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4842 WORK_CPU_END * NR_STD_WORKER_POOLS);
4843
4844 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4845
4846 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4847
4848 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4849 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4850
4851 wq_numa_init();
4852
4853 /* initialize CPU pools */
4854 for_each_possible_cpu(cpu) {
4855 struct worker_pool *pool;
4856
4857 i = 0;
4858 for_each_cpu_worker_pool(pool, cpu) {
4859 BUG_ON(init_worker_pool(pool));
4860 pool->cpu = cpu;
4861 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4862 pool->attrs->nice = std_nice[i++];
4863 pool->node = cpu_to_node(cpu);
4864
4865 /* alloc pool ID */
4866 mutex_lock(&wq_pool_mutex);
4867 BUG_ON(worker_pool_assign_id(pool));
4868 mutex_unlock(&wq_pool_mutex);
4869 }
4870 }
4871
4872 /* create the initial worker */
4873 for_each_online_cpu(cpu) {
4874 struct worker_pool *pool;
4875
4876 for_each_cpu_worker_pool(pool, cpu) {
4877 pool->flags &= ~POOL_DISASSOCIATED;
4878 BUG_ON(create_and_start_worker(pool) < 0);
4879 }
4880 }
4881
4882 /* create default unbound wq attrs */
4883 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4884 struct workqueue_attrs *attrs;
4885
4886 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4887 attrs->nice = std_nice[i];
4888 unbound_std_wq_attrs[i] = attrs;
4889 }
4890
4891 system_wq = alloc_workqueue("events", 0, 0);
4892 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4893 system_long_wq = alloc_workqueue("events_long", 0, 0);
4894 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4895 WQ_UNBOUND_MAX_ACTIVE);
4896 system_freezable_wq = alloc_workqueue("events_freezable",
4897 WQ_FREEZABLE, 0);
4898 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4899 !system_unbound_wq || !system_freezable_wq);
4900 return 0;
4901 }
4902 early_initcall(init_workqueues);